Mineral Separation in a CELSS by Ion-exchange Chromatography
NASA Technical Reports Server (NTRS)
Ballou, E. V.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.
1982-01-01
Operational parameters pertinent to ion exchange chromatography separation were identified. The experiments were performed with 9 mm diameter ion exchange columns and conventional column accessories. The cation separation beds were packed with AG 50W-X2 strong acid cation exchange resin in H(+) form and 200-400 dry mesh particle size. The stripper beds used in some experiments were packed with AG 1-XB strong base cation exchange resin in OH(-) form and 200-400 dry mesh particle size.
Production of sodium-22 from proton irradiated aluminum
Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.
1996-01-01
A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.
High-performance cation-exchange chromatofocusing of proteins.
Kang, Xuezhen; Frey, Douglas D
2003-03-28
Chromatofocusing using high-performance cation-exchange column packings, as opposed to the more commonly used anion-exchange column packings, is investigated with regard to the performance achieved and the range of applications possible. Linear or convex gradients in the range from pH 2.6 to 9 were formed using a variety of commercially available column packings that provide a buffering capacity in different pH ranges, and either polyampholytes or simple mixtures having a small number (three or fewer) of buffering species as the elution buffer. The resolutions achieved using cation-exchange or anion-exchange chromatofocusing were in general comparable, although for certain pairs of proteins better resolution could be achieved using one type of packing as compared to the other, evidently due to the way electrostatic charges are distributed on the protein surface. Several chromatofocusing methods were investigated that take advantage of the acid-base properties of commercially available cation-exchange column packings. These include the use of gradients with a composite shape, the use of very low pH ranges, and the use of elution buffers containing a single buffering species. The advantages of chromatofocusing over ion-exchange chromatography using a salt gradient at constant pH were illustrated by employing the former method and a cation-exchange column packing to separate beta-lactoglobulins A and B, which is a separation reported to be impossible using the latter method and a cation-exchange column packing. Trends in the apparent isoelectric points determined using cation- and anion-exchange chromatofocusing were interpreted using applicable theories. Results of this study indicate that cation-exchange chromatofocusing is a useful technique which is complementary to anion-exchange chromatofocusing and isoelectric focusing for separating proteins at both the analytical and preparative scales.
Self-regenerating column chromatography
Park, Woo K.
1995-05-30
The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.
Isotopic generator for bismuth-212 and lead-212 based on radium
Hines, J.J.; Atcher, R.W.; Friedman, A.M.
1985-01-30
Disclosed are method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.
Isotopic generator for bismuth-212 and lead-212 from radium
Atcher, Robert W.; Friedman, Arnold M.; Hines, John
1987-01-01
A method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.
Chiou, Cary T.; Rutherford, David W.
1997-01-01
The effects of exchanged cation and layer charge on the sorption of water and ethylene glycol monoethyl ether (EGME) vapors on montmorillonite have been studied on SAz-1 and SWy-1 source clays, each exchanged respectively with Ca, Na, K, Cs and tetramethylammonium (TMA) cations. The corresponding lattice expansions were also determined, and the corresponding N2 adsorption data were provided for comparison. For clays exchanged with cations of low hydrating powers (such as K, Cs and TMA), water shows a notably lower uptake than does N2 at low relative pressures (P/P0). By contrast, EGME shows higher uptakes than N2 on all exchanged clays at all P/P0. The anomaly for water is attributed to its relatively low attraction for siloxane surfaces of montmorillonite because of its high cohesive energy density. In addition to solvating cations and expanding interlayers, water and EGME vapors condense into small clay pores and interlayer voids created by interlayer expansion. The initial (dry) interlayer separation varies more significantly with cation type than with layer charge; the water-saturated interlayer separation varies more with cation type than the EGME-saturated interlayer separation. Because of the differences in surface adsorption and interlayer expansion for water and EGME, no general correspondence is found between the isotherms of water and EGME on exchanged clays, nor is a simple relation observed between the overall uptake of either vapor and the cation solvating power. The excess interlayer capacities of water and of EGME that result from lattice expansion of the exchanged clays are estimated by correcting for amounts of vapor adsorption on planar clay surfaces and of vapor condensation into intrinsic clay pores. The resulting data follow more closely the relative solvating powers of the exchanged cations.
CATION EXCHANGE METHOD FOR THE RECOVERY OF PROTACTINIUM
Studier, M.H.; Sullivan, J.C.
1959-07-14
A cation exchange prccess is described for separating protactinium values from thorium values whereby they are initially adsorbed together from an aqueous 0.1 to 2 N hydrochloric acid on a cation exchange resin in a column. Then selectively eluting the thorium by an ammonium sulfate solution and subsequently eluting the protactinium by an oxalate solution.
ADSORPTION METHOD FOR SEPARATING METAL CATIONS
Khym, J.X.
1959-03-10
The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.
Method of separating and recovering uranium and related cations from spent Purex-type systems
Mailen, J.C.; Tallent, O.K.
1987-02-25
A process for separating uranium and related cations from a spent Purex-type solvent extraction system which contains degradation complexes of tributylphosphate wherein the system is subjected to an ion-exchange process prior to a sodium carbonate scrubbing step. A further embodiment comprises recovery of the separated uranium and related cations. 5 figs.
ABSORPTION METHOD FOR SEPARATING METAL CATIONS
Tompkins, E.R.; Parker, G.W.
1959-03-10
An improved method is presented for the chromatographic separation of fission products wherein a substantial reduction in liquid volume is obtained. The process consists in contacting a solution containing fission products with a body of ion-exchange adsorbent to effect adsorption of fission product cations. The loaded exchange resin is then contacted with a small volume of a carboxylic acid eluant, thereby recovering the fission products. The fission product carrying eluate is acidified without increasing its volume to the volume of the original solution, and the acidified eluate is then used as a feed solution for a smaller body of ion-exchange resin effecting readsorption of the fission product cations.
Mori, Masanobu; Tanaka, Kazuhiko; Satori, Tatsuya; Ikedo, Mikaru; Hu, Wenzhi; Itabashi, Hideyuki
2006-06-16
Influence of acidic eluent on retention behaviors of common anions and cations by ion-exclusion/cation-exchange chromatography (ion-exclusion/CEC) were investigated on a weakly acidic cation-exchange resin in the H(+)-form with conductivity. Sensitivities of analyte ions, especially weak acid anions (F(-) and HCOO(-)), were affected with degree of background conductivity level with pK(a1) (first dissociation constant) of acid in eluent. The retention behaviors of anions and cations were related to that of elution dip induced after eluting acid to separation column and injecting analyte sample. These results were largely dependent on the natures of acid as eluent. Through this study, succinic acid as the eluent was suitable for simultaneous separation of strong acid anions (SO(4)(2-), Cl(-), NO(3)(-) and I(-)), weak acid anions (F(-), HCOO(-) and CH(3)COO(-)), and cations (Na(+), K(+), NH(4)(+), Mg(2+) and Ca(2+)). The separation was achieved in 20 min under the optimum eluent condition, 20 mM succinic acid/2 mM 18-crown-6. Detection limits at S/N=3 ranged from 0.10 to 0.51 microM for strong acid anions, 0.20 to 5.04 microM for weak acid anions and 0.75 to 1.72 microM for cations. The relative standard deviations of peak areas in the repeated chromatographic runs (n=10) were in the range of 1.1-2.9% for anions and 1.8-4.5% for cations. This method was successfully applied to hot spring water containing strong acid anions, weak acid anions and cations, with satisfactory results.
Rangreez, Tauseef Ahmad; Alhogbi, Basma G.; Naushad, Mu.
2017-01-01
In this study, graphene Th(IV) phosphate was prepared by sol–gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were also carried out. The material possessed an IEC of 1.56 meq·dry·g−1 of the exchanger and was found to be nano-composite. The selectivity studies showed that the material is selective towards Pb(II) ions. The selectivity of this cation-exchanger was demonstrated in the binary separation of Pb(II) ions from mixture with other metal ions. The recovery was found to be both quantitative and reproducible. PMID:28737717
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerrai, E.; Ronchetti, C.; Triulzi, C.
1963-05-01
The preparation of an acidic cationic exchanger from a calcium bentonite is described. The behavior and properties of acidic montmorillonite and activated clay are given as well as the effect of thermal treatment and gamma irradiation on cationic exchange capacity and internal surface area. (auth)
Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?
Šljukić, Biljana; Morais, Ana L.; Santos, Diogo M. F.; Sequeira, César A. C.
2012-01-01
Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load. PMID:24958292
Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?
Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C
2012-07-19
Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.
Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko
2011-01-01
We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method.
Ludewig, Ronny; Nietzsche, Sandor; Scriba, Gerhard K E
2011-01-01
A CEC weak cation-exchange monolith has been prepared by in situ polymerization of acrylamide, methylenebisacrylamide and 4-acrylamidobutyric acid in a decanol-dimethylsulfoxide mixture as porogen. The columns were evaluated by SEM and characterized with regard to the separation of diastereomers and α/β-isomers of aspartyl peptides. Column preparation was reproducible as evidenced by comparison of the analyte retention times of several columns prepared simultaneously. Analyte separation was achieved using mobile phases consisting of acidic phosphate buffer and ACN. Under these conditions the peptides migrated due to their electrophoretic mobility but the EOF also contributed as driving force as a function of the pH of the mobile phase due to increasing dissociation of the carboxyl groups of the polymer. Raising the pH of the mobile phase also resulted in deprotonation of the peptides reducing analyte mobility. Due to these mechanisms each pair of diastereomeric peptides displayed the highest resolution at a different pH of the buffer component of the mobile phase. Comparing the weak-cation exchange monolith to an RP monolith and a strong cation-exchange monolith different elution order of some peptide diastereomers was observed, clearly illustrating that interactions with the stationary phase contribute to the CEC separations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Separation of Pb, Bi and Po by cation exchange resin
Kmak, Kelly N.; Despotopulos, John D.; Shaughnessy, Dawn A.
2017-09-27
In this paper, a separation of 209Po, 207Bi and 212Pb using AG 50Wx8 and AG MP 50 cation exchange resins in an HCl medium was developed. A procedure in which Po(IV) elutes first in 0.2 M HCl, followed by Bi(III) in 0.4 M HCl and finally Pb(II) in 2 M HCl was established. The separation using AG 50Wx8 provides a much better elution profile than that of AG MP 50 with no overlap between the elution bands. Finally, this separation has the potential to be used as an isotope generator for producing 210Po from 210Pb.
Multiple-membrane multiple-electrolyte redox flow battery design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yushan; Gu, Shuang; Gong, Ke
A redox flow battery is provided. The redox flow battery involves multiple-membrane (at least one cation exchange membrane and at least one anion exchange membrane), multiple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and at least one electrolyte disposed between the two membranes) as the basic characteristic, such as a double-membrane, triple electrolyte (DMTE) configuration or a triple-membrane, quadruple electrolyte (TMQE) configuration. The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolytemore » and the positive or negative electrolyte.« less
Amino acid ionic liquids as chiral ligands in ligand-exchange chiral separations.
Liu, Qian; Wu, Kangkang; Tang, Fei; Yao, Lihua; Yang, Fei; Nie, Zhou; Yao, Shouzhuo
2009-09-28
Recently, amino acid ionic liquids (AAILs) have attracted much research interest. In this paper, we present the first application of AAILs in chiral separation based on the chiral ligand exchange principle. By using 1-alkyl-3-methylimidazolium L-proline (L-Pro) as a chiral ligand coordinated with copper(II), four pairs of underivatized amino acid enantiomers-dl-phenylalanine (dl-Phe), dl-histidine (dl-His), dl-tryptophane (dl-Trp), and dl-tyrosine (dl-Tyr)-were successfully separated in two major chiral separation techniques, HPLC and capillary electrophoresis (CE), with higher enantioselectivity than conventionally used amino acid ligands (resolution (R(s))=3.26-10.81 for HPLC; R(s)=1.34-4.27 for CE). Interestingly, increasing the alkyl chain length of the AAIL cation remarkably enhanced the enantioselectivity. It was inferred that the alkylmethylimidazolium cations and L-Pro form ion pairs on the surface of the stationary phase or on the inner surface of the capillary. The ternary copper complexes with L-Pro are consequently attached to the support surface, thus inducing an ion-exchange type of retention for the dl-enantiomers. Therefore, the AAIL cation plays an essential role in the separation. This work demonstrates that AAILs are good alternatives to conventional amino acid ligands for ligand-exchange-based chiral separation. It also reveals the tremendous application potential of this new type of task-specific ILs.
NASA Astrophysics Data System (ADS)
El-Sayed, Mayyada; Chase, Howard
2009-05-01
This paper describes the cation-exchange adsorption of the two major whey proteins, alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) with the purpose of establishing a process for isolating them from cow's milk whey. The single- and two-component adsorption of 1.5 mg/ml ALA and 3 mg/ml BLG to the cation-exchanger SP Sepharose FF at 20° C using 0.1 M acetate buffer of pH 3.7 was studied. Langmuir isotherm parameters were determined for the pure proteins. In two-component systems, BLG breakthrough curve exhibited an overshoot phenomenon that gave evidence for the presence of a competitive adsorption between the two proteins. Complete separation occurred and it was possible to obtain each of the two proteins in a pure form. The process was then applied to a whey concentrate mixture where incomplete separation took place. However, BLG was produced with 95% purity and a recovery of 80%, while ALA showed an 84% recovery with low purity.
Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill
2003-05-16
The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.
SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS
Tompkins, E.R.
1959-02-24
The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.
Wernisch, Stefanie; Pell, Reinhard; Lindner, Wolfgang
2012-07-01
The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases facilitating reversal of elution orders for all analytes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Process for separation and preconcentration of radium from water
Dietz, Mark; Horwitz, E. Philip; Chiarizia, Renato; Bartsch, Richard A.
1999-01-01
A process for preconcentrating and separating radium from a contaminated solution containing at least water and radium includes the steps of adding a quantity of a water-soluble macrocyclic polyether to the contaminated solution to form a combined solution. An acid is added to the combined solution to form an acidic combined solution having an ›H.sup.+ ! concentration of about 0.5M. The acidic combined solution is contacted with a sulfonic acid-based strong acid cation exchange medium or a organophilic sulfonic acid medium having a plurality of binding sites thereon to bind the radium thereto and to form a radium-depleted solution. The radium-depleted solution is separated from the strong acid cation exchange medium or organophilic sulfonic acid medium. The radium remaining bound to the exchange medium or organophilic reagent is then stripped from the exchange medium or organophilic medium and the activity of the radium is measured.
Process for separation and preconcentration of radium from water
Dietz, M.; Horwitz, E.P.; Chiarizia, R.; Bartsch, R.A.
1999-01-26
A process for preconcentrating and separating radium from a contaminated solution containing at least water and radium includes the steps of adding a quantity of a water-soluble macrocyclic polyether to the contaminated solution to form a combined solution. An acid is added to the combined solution to form an acidic combined solution having an [H{sup +}] concentration of about 0.5M. The acidic combined solution is contacted with a sulfonic acid-based strong acid cation exchange medium or a organophilic sulfonic acid medium having a plurality of binding sites thereon to bind the radium thereto and to form a radium-depleted solution. The radium-depleted solution is separated from the strong acid cation exchange medium or organophilic sulfonic acid medium. The radium remaining bound to the exchange medium or organophilic reagent is then stripped from the exchange medium or organophilic medium and the activity of the radium is measured. 24 figs.
CATIONIC EXCHANGE PROCESS FOR THE SEPARATION OF RARE EARTHS
Choppin, G.R.; Thompson, S.G.; Harvey, B.G.
1960-02-16
A process for separating mixtures of elements in the lanthanum and actinium series of the periodic table is described. The mixture of elements is dissolved in 0.05 M HCI, wherein the elements exist as tripositive ions. The resulting solution is then transferred to a column of cationic exchange resin and the column eluted with 0.1 to 0.6 M aqueous ammonium alpha hydroxy isobutyrate solution of pH 3.8 to 5.0. The use of ammonium alpha hydroxy isobutyrate as an eluting agent results in sharper and more rapid separations than previously obtainable with eluants such as citric, tartaric, glycolic, and lactic acids.
SEPARATION PROCESS USING COMPLEXING AND ADSORPTION
Spedding, J.H.; Ayers, J.A.
1958-06-01
An adsorption process is described for separating plutonium from a solution of neutron-irradiated uranium containing ions of a compound of plutonium and other cations. The method consists of forming a chelate complex compound with plutoniunn ions in the solution by adding a derivative of 8- hydroxyquinoline, which derivative contains a sulfonic acid group, and adsorbing the remaining cations from the solution on a cation exchange resin, while the complexed plutonium remains in the solution.
Tryptic digests of human serum albumin (HSA) and human lung epithelial cell lysates were used as test samples in a novel proteomics study. Peptides were separated and analyzed using 2D-nano-LC/MSMS with strong cation exchange (SCX) and reverse phase (RP) chromatography and contin...
Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.
Wang, Fangjun; Dong, Jing; Jiang, Xiaogang; Ye, Mingliang; Zou, Hanfa
2007-09-01
A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 microL/min with a back pressure of approximately 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 microg of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54,780 peptides) at the false positive rate only 0.46%.
Adsorption studies of heavy metal ions on mesoporous aluminosilicate, novel cation exchanger.
Sepehrian, H; Ahmadi, S J; Waqif-Husain, S; Faghihian, H; Alighanbari, H
2010-04-15
Mesoporous aluminosilicates, have been prepared with various mole ratios of Si/Al and Cethyltrimethylammonium bromide (CTAB). They have been characterized by XRD, nitrogen adsorption/desorption measurements, FT-IR and thermogravimetry. Adsorption behavior of heavy metal ions on this adsorbent have been studied and discussed. The results show that incorporation of aluminum ions in the framework of the mesoporous MCM-41 has transformed it into an effective cation exchanger. The K(d) values of several metal ions have been increased. Separation of Sr(II)-Ce(III), Sr(II)-U(VI) and Cd(II)-Ce(III) has been developed on columns of this novel mesoporous cation exchanger. 2009 Elsevier B.V. All rights reserved.
Comparative analysis of cation/proton antiporter superfamily in plants.
Ye, Chu-Yu; Yang, Xiaohan; Xia, Xinli; Yin, Weilun
2013-06-01
The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant species was reported. We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240 members are separated into three families, i.e., Na(+)/H(+) exchangers, K(+) efflux antiporters, and cation/H(+) exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H(+) exchangers in the examined angiosperm species. Sliding window analysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and found most motifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants. Copyright © 2013 Elsevier B.V. All rights reserved.
Ralla, Kathrin; Sohling, Ulrich; Suck, Kirstin; Kasper, Cornelia; Ruf, Friedrich; Scheper, Thomas
2012-07-01
Potato fruit juice as a by-product of the starch industry contains proteins with interesting functionalities such as protease inhibitors or patatin with its high nutritional value. Due to their functional properties, these proteins are principally of industrial interest. A drawback for the application of these potato proteins is the separation and isolation under maintenance of the biological activity. So far, there are no methods in literature, which are satisfying concerning the costs or the separation performance. In this study, we show a chromatographic approach using natural clay minerals as cation exchangers to separate two protein fractions in potato fruit juice. Additionally, the content of glycoalkaloids naturally occurring in potatoes is significantly reduced in a single step together with the separation of the patatins and the protease inhibitors. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SEPARATING HAFNIUM FROM ZIRCONIUM
Lister, B.A.J.; Duncan, J.F.
1956-08-21
A dilute aqueous solution of zirconyl chloride which is 1N to 2N in HCl is passed through a column of a cation exchange resin in acid form thereby absorbing both zirconium and associated hafnium impurity in the mesin. The cation exchange material with the absorbate is then eluted with aqueous sulfuric acid of a O.8N to 1.2N strength. The first portion of the eluate contains the zirconium substantially free of hafnium.
Double-membrane triple-electrolyte redox flow battery design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yushan, Yan; Gu, Shuang; Gong, Ke
A redox flow battery is provided having a double-membrane (one cation exchange membrane and one anion exchange membrane), triple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and one electrolyte positioned between and in contact with the two membranes). The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte. This design physically isolates, but ionically connects, the negative electrolyte and positive electrolyte. The physical isolation offers greatmore » freedom in choosing redox pairs in the negative electrolyte and positive electrolyte, making high voltage of redox flow batteries possible. The ionic conduction drastically reduces the overall ionic crossover between negative electrolyte and positive one, leading to high columbic efficiency.« less
METHOD OF SEPARATING RARE EARTHS BY ION EXCHANGE
Spedding, F.H.; Powell, J.E.
1960-10-18
A process is given for separating yttrium and rare earth values having atomic numbers of from 57 through 60 and 68 through 71 from an aqueous solution whose pH value can range from 1 to 9. All rare earths and yttrium are first adsorbed on a cation exchange resin, and they are then eluted with a solution of N-hydroxyethylethylenediaminetriacetic acid (HEDTA) in the order of decreasing atomic number, yttrium behaving like element 61; the effluents are collected in fractions. The HEDTA is recovered by elution with ammonia solution and the resin is regenerated with sulfuric acid. Rare earths are precipitated from the various effluents with oxalic acid, and each supernatant is passed over cation exchange resin for adsorption of HEDTA and nonprecipitated rare earths: the oxalic acid is not retained by the resin.
Meng, Hong-Bo; Wang, Tian-Ran; Guo, Bao-Yuan; Hashi, Yuki; Guo, Can-Xiong; Lin, Jin-Ming
2008-07-15
A non-suppressed ion chromatographic method by connecting anion-exchange and cation-exchange columns directly was developed for the separation and determination of five inorganic anions (sulfate, nitrate, chloride, nitrite, and chlorate) and three cations (sodium, ammonium, and potassium) simultaneously in explosive residues. The mobile phase was composed of 3.5mM phthalic acid with 2% acetonitrile and water at flow rate of 0.2 mL/min. Under the optimal conditions, the eight inorganic ions were completely separated and detected simultaneously within 16 min. The limits of detection (S/N=3) of the anions and cations were in the range of 50-100 microg/L and 150-320 microg/L, respectively, the linear correlation coefficients were 0.9941-0.9996, and the R.S.D. of retention time and peak area were 0.10-0.29% and 5.65-8.12%, respectively. The method was applied successfully to the analysis of the explosive samples with satisfactory results.
Li, Jingyi; Shao, Shan; Jaworsky, Markian S; Kurtulik, Paul T
2008-03-28
A novel mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography (HPLC) method is described to simultaneously determine four related impurities of cations, zwitterions and neutral compounds in developmental Drug A. The commercial column is Primesep 200 containing hydrophobic alkyl chains with embedded acidic groups in H(+) form on a silica support. The mobile phase variables of acid additives, contents of acetonitrile and concentrations of potassium chloride have been thoroughly investigated to optimize the separation. The retention factors as a function of the concentrations of potassium chloride and the percentages of acetonitrile in the mobile phases are investigated to get an insight into the retention and separation mechanisms of each related impurity and Drug A. Furthermore, the elution orders of the related impurities and Drug A in an ion-pair chromatography (IPC) are compared to those in the mixed-mode HPLC to further understand the chromatographic retention behaviors of each related impurity and Drug A. The study found that the positively charged Degradant 1, Degradant 2 and Drug A were retained by both ion-exchange and reversed-phase partitioning mechanisms. RI2, a small ionic compound, was primarily retained by ion-exchange. RI4, a neutral compound, was retained through reversed-phase partitioning without ion-exchange. Moreover, the method performance characteristics of selectivity, sensitivity and accuracy have been demonstrated to be suitable to determine the related impurities in the capsules of Drug A.
Separation of certain carboxylic acids utilizing cation exchange membranes
Chum, H.L.; Sopher, D.W.
1983-05-09
A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100/sup 0/C and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.
Separation of certain carboxylic acids utilizing cation exchange membranes
Chum, Helena L.; Sopher, David W.
1984-01-01
A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100.degree. C. and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.
Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers.
Heebøll-Nielsen, Anders; Justesen, Sune F L; Thomas, Owen R T
2004-09-30
In this study we describe the design, preparation and testing of superparamagnetic anion-exchangers, and their use together with cation-exchangers in the fractionation of bovine whey proteins as a model study for high-gradient magnetic fishing. Adsorbents prepared by attachment of trimethyl amine to particles activated in sequential reactions with allyl bromide and N-bromosuccinimide yielded a maximum bovine serum albumin binding capacity of 156 mg g(-1) combined with a dissociation constant of 0.60 microM, whereas ion-exchangers created by linking polyethylene imine through superficial aldehydes bound up to 337 mg g(-1) with a dissociation constant of 0.042 microM. The latter anion-exchanger was selected for studies of whey protein fractionation. In these, crude bovine whey was treated with a superparamagnetic cation-exchanger to adsorb basic protein species, and the supernatant arising from this treatment was then contacted with the anion-exchanger. For both adsorbent classes of ion-exchanger, desorption selectivity was subsequently studied by sequentially increasing the concentration of NaCl in the elution buffer. In the initial cation-exchange step quantitative removal of lactoferrin (LF) and lactoperoxidase (LPO) was achieved with some simultaneous binding of immunoglobulins (Ig). The immunoglobulins were separated from the other two proteins by desorbing with a low concentration of NaCl (< or = 0.4 M), whereas lactoferrin and lactoperoxidase were co-eluted in significantly purer form, e.g. lactoperoxidase was purified 28-fold over the starting material, when the NaCl concentration was increased to 0.4-1 M. The anion-exchanger adsorbed beta-lactoglobulin (beta-LG) selectively allowing separation from the remaining protein.
Kwon, Yeon Hye; Min, Byunghyun; Yang, Shaowei; ...
2018-01-29
Separation of radioisotope 85Kr from 136Xe is of importance in used nuclear fuel reprocessing. Membrane separation based on zeolite molecular sieves such as chabazite SAPO- 34 is an attractive alternative to energy-intensive cryogenic distillation. We report the synthesis of SAPO-34 membranes with considerably enhanced performance, via thickness reduction based upon control of a steam-assisted vapor-solid conversion technique followed by ion exchange with alkali metal cations. The reduction of membrane thickness leads to a large increase in Kr permeance from 7.5 gas permeation units (GPU) to 26.3 GPU with ideal Kr/Xe selectivities > 20 at 298 K. Cation-exchanged membranes show largemore » (>50%) increases in selectivity at ambient or slight sub-ambient conditions. The adsorption, diffusion, and permeation characteristics of ionexchanged SAPO-34 materials and membranes are investigated in detail, with potassium exchanged SAPO-34 membranes showing particularly attractive performance. Lastly, we then demonstrate the fabrication of selective SAPO-34 membranes on α-alumina hollow fibers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Yeon Hye; Min, Byunghyun; Yang, Shaowei
Separation of radioisotope 85Kr from 136Xe is of importance in used nuclear fuel reprocessing. Membrane separation based on zeolite molecular sieves such as chabazite SAPO- 34 is an attractive alternative to energy-intensive cryogenic distillation. We report the synthesis of SAPO-34 membranes with considerably enhanced performance, via thickness reduction based upon control of a steam-assisted vapor-solid conversion technique followed by ion exchange with alkali metal cations. The reduction of membrane thickness leads to a large increase in Kr permeance from 7.5 gas permeation units (GPU) to 26.3 GPU with ideal Kr/Xe selectivities > 20 at 298 K. Cation-exchanged membranes show largemore » (>50%) increases in selectivity at ambient or slight sub-ambient conditions. The adsorption, diffusion, and permeation characteristics of ionexchanged SAPO-34 materials and membranes are investigated in detail, with potassium exchanged SAPO-34 membranes showing particularly attractive performance. Lastly, we then demonstrate the fabrication of selective SAPO-34 membranes on α-alumina hollow fibers.« less
Edelmann, Mariola J.
2011-01-01
Strong cation exchange (SCX) chromatography has been utilized as an excellent separation technique that can be combined with reversed-phase (RP) chromatography, which is frequently used in peptide mass spectrometry. Although SCX is valuable as the second component of such two-dimensional separation methods, its application goes far beyond efficient fractionation of complex peptide mixtures. Here I describe how SCX facilitates mapping of the protein posttranslational modifications (PTMs), specifically phosphorylation and N-terminal acetylation. The SCX chromatography has been mainly used for enrichment of these two PTMs, but it might also be beneficial for high-throughput analysis of other modifications that alter the net charge of a peptide. PMID:22174558
Manufactured soils for plant growth at a lunar base
NASA Technical Reports Server (NTRS)
Ming, Douglas W.
1989-01-01
Advantages and disadvantages of synthetic soils are discussed. It is pointed out that synthetic soils may provide the proper physical and chemical properties necessary to maximize plant growth, such as a toxic-free composition and cation exchange capacities. The importance of nutrient retention, aeration, moisture retention, and mechanical support as qualities for synthetic soils are stressed. Zeoponics, or the cultivation of plants in zeolite substrates that both contain essential plant-growth cations on their exchange sites and have minor amounts of mineral phases and/or anion-exchange resins that supply essential plant growth ions, is discussed. It is suggested that synthetic zeolites at lunar bases could provide adsorption media for separation of various gases, act as catalysts and as molecular sieves, and serve as cation exchangers in sewage-effluent treatment, radioactive-waste disposal, and pollution control. A flow chart of a potential zeoponics system illustrates this process.
Selective digestion of Ba2+/Ca2+ alginate gel microdroplets for single-cell handling
NASA Astrophysics Data System (ADS)
Odaka, Masao; Hattori, Akihiro; Matsuura, Kenji; Yasuda, Kenji
2018-06-01
Cells encapsuled by polymer microdroplets are an effective platform for the identification and separation of individual cells for single-cell-based analysis. However, a key challenge is to maintain and release the captured cells in the microdroplets selectively, nondestructively, and noninvasively. We developed a simple method of encapsulating cells in alginate microdroplets having different digestion characteristics. Cells were diluted with an alginate polymer of sol state and encapsulated into microdroplets with Ba2+ and Ca2+ by a spray method. When a chelating buffer was applied, alginate gel microdroplets were digested according to the difference in chelating efficiency of linkage-divalent cations; hence, two types of alginate microdroplets were formed. Moreover, we examined the capability of the alginate gel to exchange linkage-divalent cations and found that both Ca2+ exchange in Ba-alginate microdroplets and Ba2+ exchange in Ca-alginate microdroplets occurred. These results indicate that the potential applications of a mixture of alginate microdroplets with different divalent cations control the selective digestion of microdroplets to improve the high-throughput, high-content microdroplet-based separation, analysis, or storage of single cells.
Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R
2003-05-16
In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.
Structural Studies of NH4-exchanged Natrolites at Ambient Conditions and High Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Lee; D Seoung; Y Jang
2011-12-31
We report here for the first time that fully and partially NH{sub 4}-exchanged natrolites can be prepared in hydrated states using the solution exchange method with potassium-natrolite. The structural models of the as-prepared hydrated phases and their dehydrated forms at elevated temperature were refined in space group Fdd2 using in situ synchrotron X-ray powder diffraction data and Rietveld methods. The unit-cell volumes of the hydrated NH{sub 4}-exchanged natrolites at ambient conditions, (NH{sub 4}){sub 16(2)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}14.1(9)H{sub 2}O and (NH{sub 4}){sub 5.1(1)}K{sub 10.9(1)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}15.7(3)H{sub 2}O, are found to be larger than that the original sodium-natrolite by ca. 15.6%more » and 12.8%, respectively. Upon temperature increase, the fully NH{sub 4}-exchanged natrolite undergoes dehydration at ca. 150 C with ca. 16.4% contraction in the unit-cell volume. The dehydrated phase of the fully NH{sub 4}-exchanged natrolite exhibits marginal volume expansion up to 425 C and then becomes amorphized during temperature decrease and exposure to atmospheric condition. In the case of the partially NH{sub 4}-exchanged natrolite, the dehydration starts from ca. 175 C with {approx}15.1% volume contraction and leads to a partial phase separation to show a phase related to the dehydrated K-natrolite. The degree of the phase separation decreases with temperature increase up to 475 C, concomitant to the gradual volume contraction occurring in the partially NH{sub 4}-exchanged natrolite in the dehydrared state. Upon temperature decrease and exposure to atmospheric condition, only the dehydrated K-natrolite is recovered as a crystalline phase from the partially NH{sub 4}-exchanged natrolite. In the hydrated model of the fully NH{sub 4}-exchanged natrolite, the ammonium cations and water molecules are statistically distributed along the elliptical channels, similar to the disordered pattern observed in natrolites exchanged with larger alkali metal cations such as the K-, Rb-, and Cs-forms. The dehydrated model of the fully NH{sub 4}-exchanged natrolite at 400 C is essentially same as the one reported previously from the sample prepared by direct melt exchange method using sodium-natrolite. Both the hydrated and dehydrated structures of the partially NH{sub 4}-exchanged natrolite at RT and at 400 C, respectively, are characterized by having two separate sites for the ammonium and potassium cations. Comparing the structural models of the monovalent cation forms studied so far, we find that the rotation angle of the natrolite chain is inversely proportional to the cation radius both in the hydrated and dehydrated phases. The distribution pattern of the non-framework species along the natrolite channel also seems to be related to the non-framework cation radius and hence to the chain rotation angle.« less
Ko, K Y; Ahn, D U
2007-02-01
The objective of this study was to develop an economical, simple, and large-scale separation method for IgY from egg yolk. Egg yolk diluted with 9 volumes of cold water was centrifuged after adjusting the pH to 5.0. The supernatant was added with 0.01% charcoal or 0.01% carrageenan and centrifuged at 2,800 x g for 30 min. The supernatant was filtered through a Whatman no. 1 filter paper and then the filtrate was concentrated to 20% original volume using ultrafiltration. The concentrated solution was further purified using either cation exchange chromatography or ammonium sulfate precipitation. For the cation exchange chromatography method, the concentrated sample was loaded onto a column equilibrated with 20 mM citrate-phosphate buffer at pH 4.8 and eluted with 200 mM citrate-phosphate buffer at pH 6.4. For the ammonium sulfate precipitation method, the concentrated sample was twice precipitated with 40% ammonium sulfate solution at pH 9.0. The yield and purity of IgY were determined by ELISA and electrophoresis. The yield of IgY from the cation exchange chromatography method was 30 to 40%, whereas that of the ammonium sulfate precipitation was 70 to 80%. The purity of IgY from the ammonium sulfate method was higher than that of the cation exchange chromatography. The cation exchange chromatography could handle only a small amount of samples, whereas the ammonium sulfate precipitation could handle a large volume of samples. This suggests that ammonium sulfate precipitation was a more efficient and useful purification method than cation exchange chromatography for the large-scale preparation of IgY from egg yolk.
Single-stage separation and esterification of cation salt carboxylates using electrodeionization
Lin, YuPo J.; Henry, Michael; Hestekin, Jamie; Snyder, Seth W.; St. Martin, Edward J.
2006-11-28
A method of and apparatus for continuously making an organic ester from a lower alcohol and an organic acid is disclosed. An organic acid or salt is introduced or produced in an electrode ionization (EDI) stack with a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and a cation exchange membrane or an anion exchange membrane and a bipolar exchange membranes. At least some reaction chambers are esterification chambers and/or bioreactor chambers and/or chambers containing an organic acid or salt. A lower alcohol in the esterification chamber reacts with an anion to form an organic ester and water with at least some of the water splitting with the ions leaving the chamber to drive the reaction.
Crock, J.G.; Lichte, F.E.; Wildeman, T.R.
1984-01-01
Demand is increasing for the determination of the rare-earth elements (REE) and yttrium in geologic materials. Due to their low natural abundance in many materials and the interferences that occur in many methods of determination, a separation procedure utilizing gradient strong-acid cation-exchange chromatography is often used to preconcentrate and isolate these elements from the host-rock matrix. Two separate gradient strong-acid cation-exchange procedures were characterized and the major elements as well as those elements thought to provide the greatest interference for the determination of the REE in geologic materials were tested for separation from the REE. Simultaneous inductively coupled argon plasma-atomic emission spectroscopy (ICAP-AES) measurements were used to construct the chromatograms for the elution studies, allowing the elution patterns of all the elements of interest to be determined in a single fraction of eluent. As a rock matrix, U.S. Geological Survey standard reference BCR-1 basalt was digested using both an acid decomposition procedure and a lithium metaborate fusion. Hydrochloric and nitric acids were tested as eluents and chromatograms were plotted using the ICAP-AES data; and we observed substantial differences in the elution patterns of the REE and as well as in the solution patterns of Ba, Ca, Fe and Sr. The nitric acid elution required substantially less eluent to elute the REE and Y as a group when compared to the hydrochloric acid elution, and provided a clearer separation of the REE from interfering and matrix elements. ?? 1984.
Chen, Bo; Xu, Junyan; Fu, Qing; Dong, Xuefang; Guo, Zhimou; Jin, Yu; Liang, Xinmiao
2015-07-07
Peptides from scorpion venom represent one of the most promising drug sources for drug discovery for some specific diseases. Current challenges in their separation include high complexity, high homologies and the huge range of peptides. In this paper, a modified strong cation exchange material, named MEX, was utilised for the two-dimensional separation of peptides from complex scorpion venom. The silica-based MEX column was bonded with two functional groups; benzenesulfonic acid and cyanopropyl. To better understand its separation mechanisms, seven standard peptides with different properties were employed in an evaluation study, the results of which showed that two interactions were involved in the MEX column: electrostatic interactions based on benzenesulfonic acid groups dominated the separation of peptides; weak hydrophobic interactions introduced by cyanopropyl groups increased the column's selectivity for peptides with the same charge. This characteristic allowed the MEX column to overcome some of the drawbacks of traditional strong cation exchange (SCX) columns. Furthermore, the study showed the great effects of the acetonitrile (ACN) content, the sodium perchlorate (NaClO4) concentration and the buffer pH in the mobile phase on the peptides' retention and separation selectivity on the MEX column. Subsequently, the MEX column was combined with a C18 column to establish an off-line 2D-MEX × C18 system to separate peptides from scorpion Buthus martensi Karsch (BmK) venom. Due to complementary separation mechanisms in each dimension, a high orthogonality of 47.62% was achieved. Moreover, a good loading capacity, excellent stability and repeatability were exhibited by the MEX column, which are beneficial for its use in future preparation experiments. Therefore, the MEX column could be an alternative to the traditional SCX columns for the separation of peptides from scorpion venom.
Dynamic adsorption of CO2/N2 on cation-exchanged chabazite SSZ-13: A breakthrough analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bower, Jamey K.; Barpaga, Dushyant; Prodinger, Sebastian
2018-04-17
Alkali exchanged SSZ-13 adsorbents were investigated for their applicability in separating N2 from CO2 in flue gas streams using a dynamic breakthrough method. In contrast to IAST calculations based on equilibrium isotherms, K+ exchanged SSZ-13 was found to yield the best N2 productivity under dynamic conditions where diffusion properties play a significant role. This was attributed to the selective, partial blockage of access to the CHA cavities enhancing the separation potential in a 15/85 CO2/N2 binary gas mixture.
Dynamic Adsorption of CO 2 /N 2 on Cation-Exchanged Chabazite SSZ-13: A Breakthrough Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bower, Jamey K.; Barpaga, Dushyant; Prodinger, Sebastian
2018-03-30
Alkali exchanged SSZ-13 adsorbents were investigated for their applicability in separating N2 from CO 2 in flue gas streams using a dynamic breakthrough method. In contrast to IAST calculations based on equilibrium isotherms, K+ exchanged SSZ-13 was found to yield the best N2 productivity under dynamic conditions where diffusion properties play a significant role. This was attributed to the selective, partial blockage of access to the CHA cavities enhancing the separation potential in a 15/85 CO2/N2 binary gas mixture.
ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM
Russell, E.R.; Adamson, A.W.; Boyd, G.E.
1960-06-28
A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Mathew S.; Snyder, Darin C.; Mann, Nick R.
2015-05-01
135Cs/ 137Cs isotope ratios can provide the age, origin and history of environmental Cs contamination. Relatively high precision 135Cs/ 137Cs isotope ratio measurements from samples containing femtogram quantities of 137Cs are needed to accurately track contamination resuspension and redistribution following environmental 137Cs releases; however, mass spectrometric analyses of environmental samples are limited by the large quantities of ionization inhibitors and isobaric interferences which are present at relatively high concentrations in the environment. We report a new approach for Cs purification from environmental samples. An initial ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) column provides a robust method for extracting Cs under a wide varietymore » of sample matrices and mass loads. Cation exchange separations using a second AMP-PAN column result in more than two orders of magnitude greater Cs/Rb separation factors than commercially available strong cation exchangers. Coupling an AMP-PAN cation exchanging step to a microcation column (AG50W resin) enables consistent 2-4% (2σ) measurement errors for samples containing 3-6,000 fg 137Cs, representing the highest precision 135Cs/ 137Cs ratio measurements currently reported for soil samples at the femtogram level.« less
Fischer, Michael; Bell, Robert G
2014-10-21
The influence of the nature of the cation on the interaction of the silicoaluminophosphate SAPO-34 with small hydrocarbons (ethane, ethylene, acetylene, propane, propylene) is investigated using periodic density-functional theory calculations including a semi-empirical dispersion correction (DFT-D). Initial calculations are used to evaluate which of the guest-accessible cation sites in the chabazite-type structure is energetically preferred for a set of ten cations, which comprises four alkali metals (Li(+), Na(+), K(+), Rb(+)), three alkaline earth metals (Mg(2+), Ca(2+), Sr(2+)), and three transition metals (Cu(+), Ag(+), Fe(2+)). All eight cations that are likely to be found at the SII site (centre of a six-ring) are then included in the following investigation, which studies the interaction with the hydrocarbon guest molecules. In addition to the interaction energies, some trends and peculiarities regarding the adsorption geometries are analysed, and electron density difference plots obtained from the calculations are used to gain insights into the dominant interaction types. In addition to dispersion interactions, electrostatic and polarisation effects dominate for the main group cations, whereas significant orbital interactions are observed for unsaturated hydrocarbons interacting with transition metal (TM) cations. The differences between the interaction energies obtained for pairs of hydrocarbons of interest (such as ethylene-ethane and propylene-propane) deliver some qualitative insights: if this energy difference is large, it can be expected that the material will exhibit a high selectivity in the adsorption-based separation of alkene-alkane mixtures, which constitutes a problem of considerable industrial relevance. While the calculations show that TM-exchanged SAPO-34 materials are likely to exhibit a very high preference for alkenes over alkanes, the strong interaction may render an application in industrial processes impractical due to the large amount of energy required for regeneration. In this respect, SAPOs exchanged with alkaline earth cations could provide a better balance between selectivity and energy cost of regeneration.
Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang
2008-11-15
In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.
Wenzel, Barbara; Fischer, Steffen; Brust, Peter; Steinbach, Jörg
2010-12-10
Different RP-HPLC columns (phenyl, conventional ODS, cross-linked C(18) and special end-capped C(8) and C(18) phases) were used to investigate the separation of four basic ionizable isomers. Using ACN/20mM NH(4)OAc aq., a separation was observed exclusively on RP columns with higher silanol activity at unusual high ACN concentration, indicating cation-exchange as main retention mechanism. Using MeOH/20mM NH(4)OAc aq., another separation at low MeOH concentrations was observed on both, RP columns with higher as well as RP columns with lower silanol activity, which is mainly based on hydrophobic interactions. The isomers were also separated on a bare silica column at higher MeOH content using NH(4)OAc. Since cation-exchange governs this retention, the elution order was different compared to the RP phases. A strong retention on the silica column was observed in ACN, which could be attributed to partition processes as additional retention mechanism. Copyright © 2010 Elsevier B.V. All rights reserved.
Kondaveeti, Sanath; Kakarla, Ramesh; Kim, Hong Suck; Kim, Byung-Goon; Min, Booki
2018-02-01
This study evaluates long-term stability of low-cost separators in single-chamber bottle-type microbial fuel cells with domestic wastewater. Low-cost separators tested in this study were nonwoven fabrics (NWF) of polypropylene (PP80, PP100), textile fabrics of polyphenylene sulfide (PPS), sulfonated polyphenylene sulfide (SPPS), and cellulose esters. NWF PP80 separator generated the highest power density of 280 mW/m 2 , which was higher than with ion-exchange membranes (cation exchange membrane; CEM = 271 mW/m 2 , cation exchange membrane; CMI = 196 mW/m 2 , Nafion = 260 mW/m 2 ). MFC operations with other size-selective separators such as SPPS, PPS, and cellulose esters exhibited power densities of 261, 231, and 250 mW/m 2 , respectively. During a 280-day operation, initial power density of PP80 (278 mW/m 2 ) was decreased to 257 mW/m 2 , but this decrease was smaller than with others (Nafion: 265-230 mW/m 2 ; PP100: 220-126 mW/m 2 ). The anode potential of around -430 mV did not change much with all separators in the long-term operation, but the initial cathode potential gradually decreased. Fouling analysis suggested that the presence of carbonaceous substance on Nafion and PP80 after 280 days of operation and Nafion was subject to be more biofouling.
Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim
2016-01-01
A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na+), potassium (K+), ammonium (NH4+), chloride (Cl−) and nitrate (NO3−) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples. PMID:26786906
Corfield, M. C.; Fletcher, J. C.
1969-01-01
1. A chymotryptic digest of the protein fraction U.S.3. from oxidized wool was separated into 51 peptide fractions by chromatography on a column of cation-exchange resin. 2. The less acidic fractions were separated into their component peptides by a combination of cation-exchange-resin chromatography, paper chromatography and paper electrophoresis. 3. The amino acid sequences of 34 of these peptides were elucidated, and those of 14 others partially determined. 4. Overlaps between the tryptic and chymotryptic peptides from fraction U.S.3 have enabled ten extended amino acid sequences to be deduced, the longest containing 20 amino acid residues. 5. The relevance of the results to the structures of the helical and non-helical regions of wool is discussed. PMID:5395876
Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin; ...
2016-06-13
Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO 3 ) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H 2 O and CO 2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, Sr La ') by the positively charged oxygen vacancies (Vmore » $$••\\atop{o}$$) enriched at the surface. Here we show that reducing the surface V $$••\\atop{o}$$ concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O 2 molecules. We take La 0.8 Sr 0.2 CoO 3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of V $$••\\atop{o}$$ and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin
Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO 3 ) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H 2 O and CO 2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, Sr La ') by the positively charged oxygen vacancies (Vmore » $$••\\atop{o}$$) enriched at the surface. Here we show that reducing the surface V $$••\\atop{o}$$ concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O 2 molecules. We take La 0.8 Sr 0.2 CoO 3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of V $$••\\atop{o}$$ and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.« less
Pittman, Jon K; Hirschi, Kendal D
2016-12-01
The Ca(2+)/Cation Antiporter (CaCA) superfamily is an ancient and widespread family of ion-coupled cation transporters found in nearly all kingdoms of life. In animals, K(+)-dependent and K(+)-indendent Na(+)/Ca(2+) exchangers (NCKX and NCX) are important CaCA members. Recently it was proposed that all rice and Arabidopsis CaCA proteins should be classified as NCX proteins. Here we performed phylogenetic analysis of CaCA genes and protein structure homology modelling to further characterise members of this transporter superfamily. Phylogenetic analysis of rice and Arabidopsis CaCAs in comparison with selected CaCA members from non-plant species demonstrated that these genes form clearly distinct families, with the H(+)/Cation exchanger (CAX) and cation/Ca(2+) exchanger (CCX) families dominant in higher plants but the NCKX and NCX families absent. NCX-related Mg(2+)/H(+) exchanger (MHX) and CAX-related Na(+)/Ca(2+) exchanger-like (NCL) proteins are instead present. Analysis of genomes of ten closely-related rice species and four Arabidopsis-related species found that CaCA gene family structures are highly conserved within related plants, apart from minor variation. Protein structures were modelled for OsCAX1a and OsMHX1. Despite exhibiting broad structural conservation, there are clear structural differences observed between the different CaCA types. Members of the CaCA superfamily form clearly distinct families with different phylogenetic, structural and functional characteristics, and therefore should not be simply classified as NCX proteins, which should remain as a separate gene family.
A new configuration of membrane stack for retrieval of nickel absorbed in resins*
Chen, Xue-fen; Wu, Zu-cheng
2005-01-01
A new configuration integrated ion exchange effect with both electro-migration and electrochemical reaction in a single cell was developed to effectively retrieve metal ions from simulated wastewater using ion exchange resins without additive chemicals. By simply assembling cation exchange resins and anion exchange resins separated by homogeneous membranes, we found that the system will always be acidic in the concentrate compartment so that ion exchange resins could be in-situ regenerated without hydroxide precipitation. Such a realizable design will be really suitable for wastewater purification. PMID:15909341
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fodor, M.
An ion exchange-complexion separation meihod was developed for the removal of interfering elements in the determination of the uranium content of recovery solutions. By adding (ethylenediamine)tetraacetic acid to the solution, most of the interfering elements can be brought into an anionic complex. Adjusting the soluiion to pH 7 and letting it pass through an Amberlite IRC-50 type cation exchanger of hydrogen form, the uranium remains on the column whereas the interfering elements pass into the effluent. The method was successfully applied in analyzing the recovery solutions of uranium ores. (auth)
ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION
Boyd, G.E.; Russell, E.R.; Taylor, M.D.
1961-07-11
Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.
Applications for special-purpose minerals at a lunar base
NASA Technical Reports Server (NTRS)
Ming, Douglas W.
1992-01-01
Maintaining a colony on the Moon will require the use of lunar resources to reduce the number of launches necessary to transport goods from the Earth. It may be possible to alter lunar materials to produce minerals or other materials that can be used for applications in life support systems at a lunar base. For example, mild hydrothermal alteration of lunar basaltic glasses can produce special-purpose minerals (e.g., zeolites, smectites, and tobermorites) that in turn may be used in life support, construction, waste renovation, and chemical processes. Zeolites, smectites, and tobermorites have a number of potential applications at a lunar base. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations that possess infinite, three-dimensional crystal structures. They are further characterized by an ability to hydrate and dehydrate reversibly and to exchange some of their constituent cations, both without major change of structure. Based on their unique absorption, cation exchange, molecular sieving, and catalytic properties, zeolites may be used as a solid support medium for the growth of plants, as an adsorption medium for separation of various gases (e.g., N2 from O2), as catalysts, as molecular sieves, and as a cation exchanger in sewage-effluent treatment, in radioactive waste disposal, and in pollution control. Smectites are crystalline, hydrated 2:1 layered aluminosilicates that also have the ability to exchange some of their constituent cations. Like zeolites, smectites may be used as an adsorption medium for waste renovation, as adsorption sites for important essential plant growth cations in solid support plant growth mediums (i.e., 'soils'), as cation exchangers, and in other important application. Tobermorites are cystalline, hydrated single-chained layered silicates that have cation-exchange and selectivity properties between those of smectites and most zeolites. Tobermorites may be used as a cement in building lunar base structures, as catalysts, as media for nuclear and hazardous waste disposal, as exchange media for waste-water treatment, and in other potential applications. Special-purpose minerals synthesized at a lunar base may also have important applications at a space station and for other planetary missions. New technologies will be required at a lunar base to develop life support systems that are self-sufficient, and the use of special-purpose minerals may help achieve this self-sufficiency.
Performance Evaluations of Ion Exchanged Zeolite Membranes on Alumina Supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhave, Ramesh R.; Jubin, Robert Thomas; Spencer, Barry B.
2017-08-27
This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. In the first phase of this effort, several monovalent and divalent cation-exchanged silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on disk supports and characterized with gas and vapor permeation measurements. In the second phase, Linde Type A (LTA) zeolite membranes were synthesized in disk and tubular supports. The pervaporation process performance was evaluated for the separation and concentration of tritiated water.
Nakatani, Nobutake; Kozaki, Daisuke; Mori, Masanobu; Hasebe, Kiyoshi; Nakagoshi, Nobukazu; Tanaka, Kazuhiko
2011-01-01
Simultaneous determinations of common inorganic anionic species (SO(4)(2-), Cl(-), NO(3)(-), phosphate and silicate) and cations (Na(+), NH(4)(+), K(+), Mg(2+) and Ca(2+)) were conducted using an ion-chromatography system with dual detection of conductivity and spectrophotometry in tandem. The separation of ionic species on a weakly acidic cation-exchange resin was accomplished using a mixture of 100 mM ascorbic acid and 4 mM 18-crown-6 as an acidic eluent (pH 2.6), after which the ions were detected using a conductivity detector. Subsequently, phosphate and silicate were analyzed based on derivatization with molybdate and spectrophotometry at 700 nm. The detection limits at S/N = 3 ranged from 0.11 to 2.9 µM for analyte ionic species. This method was applied to practical river water and wastewater with acceptable criteria for the anion-cation balance and comparisons of the measured and calculated electrical conductivity, demonstrating the usefulness of the present method for water quality monitoring.
Kim, Younggy; Walker, W Shane; Lawler, Desmond F
2012-05-01
In electrodialysis desalination, the boundary layer near ion-exchange membranes is the limiting region for the overall rate of ionic separation due to concentration polarization over tens of micrometers in that layer. Under high current conditions, this sharp concentration gradient, creating substantial ionic diffusion, can drive a preferential separation for certain ions depending on their concentration and diffusivity in the solution. Thus, this study tested a hypothesis that the boundary layer affects the competitive transport between di- and mono-valent cations, which is known to be governed primarily by the partitioning with cation-exchange membranes. A laboratory-scale electrodialyzer was operated at steady state with a mixture of 10mM KCl and 10mM CaCl(2) at various flow rates. Increased flows increased the relative calcium transport. A two-dimensional model was built with analytical solutions of the Nernst-Planck equation. In the model, the boundary layer thickness was considered as a random variable defined with three statistical parameters: mean, standard deviation, and correlation coefficient between the thicknesses of the two boundary layers facing across a spacer. Model simulations with the Monte Carlo method found that a greater calcium separation was achieved with a smaller mean, greater standard deviation, or more negative correlation coefficient. The model and experimental results were compared for the cationic transport number as well as the current and potential relationship. The mean boundary layer thickness was found to decrease from 40 to less than 10 μm as the superficial water velocity increased from 1.06 to 4.24 cm/s. The standard deviation was greater than the mean thickness at slower water velocities and smaller at faster water velocities. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mommen, Geert P M; Meiring, Hugo D; Heck, Albert J R; de Jong, Ad P J M
2013-07-16
In proteomics, comprehensive analysis of peptides mixtures necessitates multiple dimensions of separation prior to mass spectrometry analysis to reduce sample complexity and increase the dynamic range of analysis. The main goal of this work was to improve the performance of (online) multidimensional protein identification technology (MudPIT) in terms of sensitivity, compatibility and recovery. The method employs weak anion and strong cation mixed-bed ion exchange chromatography (ACE) in the first separation dimension and reversed phase chromatography (RP) in the second separation dimension (Motoyama et.al. Anal. Chem 2007, 79, 3623-34.). We demonstrated that the chromatographic behavior of peptides in ACE chromatography depends on both the WAX/SCX mixing ratio as the ionic strength of the mobile phase system. This property allowed us to replace the conventional salt gradient by a (discontinuous) salt-free, pH gradient. First dimensional separation of peptides was accomplished with mixtures of aqueous formic acid and dimethylsulfoxide with increasing concentrations. The overall performance of this mobile phase system was found comparable to ammonium acetate buffers in application to ACE chromatography, but clearly outperformed strong cation exchange for use in first dimensional peptide separation. The dramatically improved compatibility between (salt-free) ion exchange chromatography and reversed phase chromatography-mass spectrometry allowed us to downscale the dimensions of the RP analytical column down to 25 μm i.d. for an additional 2- to 3-fold improvement in performance compared to current technology. The achieved levels of sensitivity, orthogonality, and compatibility demonstrates the potential of salt-free ACE MudPIT for the ultrasensitive, multidimensional analysis of very modest amounts of sample material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, Andrew H.; Ha, Don-Hyung; Ding, Xiaoyue
2014-10-28
Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu 1.81S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tunedmore » from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ~8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.« less
NASA Astrophysics Data System (ADS)
Caldwell, Andrew H.; Ha, Don-Hyung; Ding, Xiaoyue; Robinson, Richard D.
2014-10-01
Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu1.81S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tuned from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ˜8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.
Ceazan, M.L.; Thurman, E.M.; Smith, R.L.
1989-01-01
The role of cation exchange in the retardation of ammonium (NH4+) and potassium (K+) transport in a shallow sand and gravel aquifer was evaluated by use of observed distributions of NH4+ and K+ within a plume of sewage-contaminated groundwater, small-scale tracer injection tests, and batch sorption experiments on aquifer material. Both NH4+ and K+ were transported ???2 km in the 4-km-long contaminant plume (retardation factor, Rf = 2.0). Sediments from the NH4+-containing zone of the plume contained significant quantities of KCl-extractable NH4+ (extraction distribution coefficient, Kd,extr = 0.59-0.87 mL/g of dry sediment), and when added to uncontaminated sediments, NH4+ sorption followed a linear isotherm. Small-scale tracer tests demonstrated that NH4+ and K+ were retarded (Rf =3.5) relative to a nonreactive tracer (Br-). Sorption of dissolved NH4+ was accompanied by concomitant release of calcium (Ca2+), magnesium (Mg2+), and sodium (Na+) from aquifer sediments, suggesting involvement of cation exchange. In contrast, nitrate (NO3-) was not retarded and cleanly separated from NH4+ and K+ in the small-scale tracer tests. This study demonstrates that transport of NH4+ and K+ through a sand and gravel aquifer can be markedly affected by cation-exchange processes even at a clay content less than 0.1%.
[Studies on alkaloids of Asteropyrum cavaleriei (Lévl. et Vant.) Drumm. et Hutch].
Xu, H L
2000-08-01
To investigate the chemical constituents in the plant of Asteropyrum cavaleriei. The Chemical constituents were extracted with cation exchange resin 732 and separated by column chromatography, and the structures were identified by spectral analysis. Four compounds were isolated and identified as berberine, berberrabine, palmatine and magnoflorine. All compounds were separated from A. Cavaleriei for the first time.
Ishihara, Takashi; Kadoya, Toshihiko; Endo, Naomi; Yamamoto, Shuichi
2006-05-05
Our simple method for optimization of the elution salt concentration in stepwise elution was applied to the actual protein separation system, which involves several difficulties such as detection of the target. As a model separation system, reducing residual protein A by cation-exchange chromatography in human monoclonal antibody (hMab) purification was chosen. We carried out linear gradient elution experiments and obtained the data for the peak salt concentration of hMab and residual protein A, respectively. An enzyme-linked immunosorbent assay was applied to the measurement of the residual protein A. From these data, we calculated the distribution coefficient of the hMab and the residual protein A as a function of salt concentration. The optimal salt concentration of stepwise elution to reduce the residual protein A from the hMab was determined based on the relationship between the distribution coefficient and the salt concentration. Using the optimized condition, we successfully performed the separation, resulting in high recovery of hMab and the elimination of residual protein A.
Choices of capture chromatography technology in antibody manufacturing processes.
DiLeo, Michael; Ley, Arthur; Nixon, Andrew E; Chen, Jie
2017-11-15
The capture process employed in monoclonal antibody downstream purification is not only the most critically impacted process by increased antibody titer resulting from optimized mammalian cell culture expression systems, but also the most important purification step in determining overall process throughput, product quality, and economics. Advances in separation technology for capturing antibodies from complex feedstocks have been one focus of downstream purification process innovation for past 10 years. In this study, we evaluated new generation chromatography resins used in the antibody capture process including Protein A, cation exchange, and mixed mode chromatography to address the benefits and unique challenges posed by each chromatography approach. Our results demonstrate the benefit of improved binding capacity of new generation Protein A resins, address the concern of high concentration surge caused aggregation when using new generation cation exchange resins with over 100mg/mL binding capacity, and highlight the potential of multimodal cation exchange resins for capture process design. The new landscape of capture chromatography technologies provides options to achieve overall downstream purification outcome with high product quality and process efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Zhen; Han, Yu; Wei, Junhua; Wang, Wenqiang; Cao, Tiantian; Xu, Shengming; Xu, Zhenghe
2017-12-27
Suppressing the shuttle effect of polysulfide ions to obtain high durability and good electrochemical performance is of great concern in the field of lithium-sulfur batteries. To address this issue, a Janus membrane consisting of an ultrathin dense layer and a robust microporous layer is fabricated using cation exchange resin. Different from the composite membranes made from polyolefin membranes, the multiple layers of the Janus membrane in this study are synchronously generated by one step, getting rid of the additional complex coating processes. Excellent overall performance is obtained by the cooperation of multiple factors. The excellent ionic selectivity of cation exchange resin renders a great suppression of the shuttle effect, endowing the lithium-sulfur battery with high Coulombic efficiency of 92.0-99.0% (LiNO 3 -free electrolyte). The ultrathin property of a dense layer renders a low ionic resistance, resulting in 60% higher discharge capacity over the entire C-rates (versus the control sample with Celgard 2400 membrane). The robust macroporous layer supports the ultrathin layer to achieve a free-standing property, ensuring the usability of the Janus membrane.
Tsonev, Latchezar I; Hirsh, Allen G
2008-07-25
pISep is a major new advance in low ionic strength ion exchange chromatography. It enables the formation of externally controlled pH gradients over the very broad pH range from 2 to 12. The gradients can be generated on either cationic or anionic exchangers over arbitrary pH ranges wherein the stationary phases remain totally charged. Associated pISep software makes possible the calculation of either linear, nonlinear or combined, multi-step, multi-slope pH gradients. These highly reproducible pH gradients, while separating proteins and glycoproteins in the order of their electrophoretic pIs, provide superior chromatographic resolution compared to salt. This paper also presents a statistical mechanical model for protein binding to ion exchange stationary phases enhancing the electrostatic interaction theory for the general dependence of retention factor k, on both salt and pH simultaneously. It is shown that the retention factors computed from short time isocratic salt elution data of a model protein can be used to accurately predict its salt elution concentration in varying slope salt elution gradients formed at varying isocratic pH as well as the pH at which it will be eluted from an anionic exchange column by a pISep pH gradient in the absence of salt.
ADSORPTION METHOD FOR SEPARATING THORIUM VALUES FROM URANIUM VALUES
Boyd, G.E.; Russell, E.R.; Schubert, J.
1959-08-01
An improved ion exchange method is described for recovery of uranium and thorium values as separate functions from an aqueous acidic solution containing less than 10/sup -3/ M thorium ions and between 0.1 and 1 M uranyl ions. The solution is passed through a bed of cation exchange resin in the acid form to adsorb all the thorium ions and a portion of the uranyl ions. The uranium is eluted by means of aqueous 0.1 to 0.4 M sulfuric acid. The thorium may then be stripped from the resin by elution with aqueous 0.5 M oxalic acid.
ADSORPTION METHOD FOR SEPARATING THORIUM VALUES FROM URANIUM VALUES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, G.E.; Russell, E.R.; Schubert, J.
An improved ion exchange method is described for recovery of uranium and thorium values as separate functions from an aqueous acidic solution containing less than 10/sup -3/ M thorium ions and between 0.1 and 1 M uranyl ions. The solution is passed through a bed of cation exchange resin in the acid form to adsorb all the thorium ions and a portion of the uranyl ions. The uranium is eluted by means of aqueous 0.1 to 0.4 M sulfuric acid. The thorium may then be stripped from the resin by elution with aqueous 0.5 M oxalic acid.
2013-01-01
Due to its compatibility and orthogonality to reversed phase (RP) liquid chromatography (LC) separation, ion exchange chromatography, and mainly strong cation exchange (SCX), has often been the first choice in multidimensional LC experiments in proteomics. Here, we have tested the ability of three strong anion exchanger (SAX) columns differing in their hydrophobicity to fractionate RAW264.7 macrophage cell lysate. IonPac AS24, a strong anion exchange material with ultralow hydrophobicity, demonstrated to be superior to other materials by fractionation and separation of tryptic peptides from both a mixture of 6 proteins as well as mouse cell lysate. The chromatography displayed very high orthogonality and high robustness depending on the hydrophilicity of column chemistry, which we termed hydrophilic strong anion exchange (hSAX). Mass spectrometry analysis of 34 SAX fractions from RAW264.7 macrophage cell lysate digest resulted in an identification of 9469 unique proteins and 126318 distinct peptides in one week of instrument time. Moreover, when compared to an optimized high pH/low pH RP separation approach, the method presented here raised the identification of proteins and peptides by 10 and 28%, respectively. This novel hSAX approach provides robust, reproducible, and highly orthogonal separation of complex protein digest samples for deep coverage proteome analysis. PMID:23294059
Nabi, Syed A; Shalla, Aabid H
2009-04-30
A new hybrid inorganic-organic cation exchanger acrylamide zirconium (IV) arsenate has been synthesized, characterized and its analytical application explored. The effect of experimental parameters such as mixing ratio of reagents, temperature, and pH on the properties of material has been studied. FTIR, TGA, X-ray, UV-vis spectrophotometry, SEM and elemental analysis were used to determine the physiochemical properties of this hybrid ion exchanger. The material behaves as a monofunctional acid with ion-exchange capacity of 1.65 meq/g for Na(+) ions. The chemical stability data reveals that the exchanger is quite stable in mineral acids, bases and fairly stable in organic solvents, while as thermal analysis shows that the material retain 84% of its ion-exchange capacity up to 600 degrees C. Adsorption behavior of metal ions in solvents with increasing dielectric constant has also been explored. The sorption studies reveal that the material is selective for Pb(2+) ions. The analytical utility of the material has been explored by achieving some binary separations of metal ions on its column. Pb(2+) has been selectively removed from synthetic mixtures containing Mg(2+), Ca(2+), Sr(2+), Zn(2+) and Cu(2+), Al(3+), Ni(2+), Fe(3+). In order to demonstrate practical utility of the material quantitative separation of the Cu(2+) and Zn(2+) in brass sample has been achieved on its columns.
Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett
2014-08-01
Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cation exchange properties of zeolites in hyper alkaline aqueous media.
Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric
2015-02-03
Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.
Process and apparatus for the production of BI-213 cations
Horwitz, E. Philip; Hines, John J.; Chiarizia, Renato; Dietz, Mark
1998-01-01
A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed.
Process and apparatus for the production of Bi-213 cations
Horwitz, E.P.; Hines, J.J.; Chiarizia, R.; Dietz, M.
1998-12-29
A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed. 7 figs.
Meintjies, E; Strelow, F W; Victor, A H
1987-04-01
Traces and small amounts of bismuth can be separated from gram amounts of thallium and silver by successively eluting these elements with 0.3M and 0.6M nitric acid from a column containing 13 ml (3 g) of AG50W-X4, a cation-exchanger (100-200 mesh particle size) with low cross-linking. Bismuth is retained and can be eluted with 0.2M hydrobromic acid containing 20% v/v acetone, leaving many other trace elements absorbed. Elution of thallium is quite sharp, but silver shows a small amount of tailing (less than 1 gmg/ml silver in the eluate) when gram amounts are present, between 20 and 80 mug of silver appearing in the bismuth fraction. Relevant elution curves and results for the analysis of synthetic mixtures containing between 50 mug and 10 mg of bismuth and up to more than 1 g of thallium and silver are presented, as well as results for bismuth in a sample of thallium metal and in Merck thallium(I) carbonate. As little as 0.01 ppm of bismuth can be determined when the separation is combined with electrothermal atomic-absorption spectrometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, Andrew H.; Ha, Don-Hyung; Robinson, Richard D., E-mail: rdr82@cornell.edu
2014-10-28
Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu{sub 1.81}S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tunedmore » from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ∼8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.« less
Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianbing; Chernomordik, Boris D.; Crisp, Ryan W.
2015-07-28
We developed a strategy for producing quasi-spherical nanocrystals of anisotropic heterostructures of Cd/Pb chalcogenides. The nanostructures are fabricated via a controlled cation exchange reaction where the Cd2+ cation is exchanged for the Pb2+ cation. The cation exchange reaction is thermally activated and can be controlled by adjusting the reaction temperature or time. We characterized the particles using TEM, XPS, PL, and absorption spectroscopy. With complete exchange, high quality Pb-chalcogenide quantum dots are produced. In addition to Cd2+, we also find suitable conditions for the exchange of Zn2+ cations for Pb2+ cations. The cation exchange is anisotropic starting at one edgemore » of the nanocrystals and proceeds along the <111> direction producing a sharp interface at a (111) crystallographic plane. Instead of spherical core/shell structures, we produced and studied quasi-spherical CdS/PbS and CdSe/PbSe Janus-type heterostructures. Nontrivial PL behavior was observed from the CdS(e)/PbS(e) heterostructures as the Pb:Cd ratio is increased.« less
Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange.
Zhang, Jianbing; Chernomordik, Boris D; Crisp, Ryan W; Kroupa, Daniel M; Luther, Joseph M; Miller, Elisa M; Gao, Jianbo; Beard, Matthew C
2015-07-28
We developed a strategy for producing quasi-spherical nanocrystals of anisotropic heterostructures of Cd/Pb chalcogenides. The nanostructures are fabricated via a controlled cation exchange reaction where the Cd(2+) cation is exchanged for the Pb(2+) cation. The cation exchange reaction is thermally activated and can be controlled by adjusting the reaction temperature or time. We characterized the particles using TEM, XPS, PL, and absorption spectroscopy. With complete exchange, high quality Pb-chalcogenide quantum dots are produced. In addition to Cd(2+), we also find suitable conditions for the exchange of Zn(2+) cations for Pb(2+) cations. The cation exchange is anisotropic starting at one edge of the nanocrystals and proceeds along the ⟨111⟩ direction producing a sharp interface at a (111) crystallographic plane. Instead of spherical core/shell structures, we produced and studied quasi-spherical CdS/PbS and CdSe/PbSe Janus-type heterostructures. Nontrivial PL behavior was observed from the CdS(e)/PbS(e) heterostructures as the Pb:Cd ratio is increased.
Holland, B; Rahimi Yazdi, S; Ion Titapiccolo, G; Corredig, M
2010-03-01
The aim of this work was to improve an existing method to separate and quantify the 4 major caseins from milk samples (i.e., containing whey proteins) using ion-exchange chromatography. The separation process was carried out using a mini-preparative cation exchange column (1 or 5mL of column volume), using urea acetate as elution buffer at pH 3.5 with a NaCl gradient. All 4 major caseins were separated, and the purity of each peak was assessed using sodium dodecyl sulfate-PAGE. Purified casein fractions were also added to raw milk to confirm their elution volumes. The quantification was carried out using purified caseins in buffer as well as added directly to fresh skim milk. This method can also be employed to determine the decrease in kappa-casein and the release of the casein-macropeptide during enzymatic hydrolysis using rennet. In this case, the main advantage of using this method is the lack of organic solvents compared with the conventional method for separation of macropeptide (using reversed phase HPLC).
Beaton, R.H.
1960-06-28
A process is given for separating tri- or tetravalent plutonium from fission products in an aqueous solution by complexing the fission products with oxalate, tannate, citrate, or tartrate anions at a pH value of at least 2.4 (preferably between 2.4 and 4), and contacting a cation exchange resin with the solution whereby the plutonium is adsorbed while the complexed fission products remain in solution.
NASA Astrophysics Data System (ADS)
Sathe, Ajay A.
Sustainability is an important part of the design and development of new chemical and energy conversion processes. Simply put sustainability is the ability to meet our needs without sacrificing the ability of the next generations to meet theirs. This thesis describes our efforts in developing two orthogonal strategies for the fixation of CO2 by utilizing high energy intermediates which are generated via oxidative or reductive processes on common organic substrates and of thermochemical measurements of cation exchange reactions which will aid the development of new materials relevant for energy conversion and storage. The first chapter lays a background for the challenges and opportunities for the use of CO2 in organic synthesis. The rapidly growing field of continuous flow processing in organic synthesis is introduced, and its importance in the development of sustainable chemical conversions is highlighted. The second chapter describes the development of a novel route to alpha-amino acids via reductive carboxylation of imines. A mechanistic proposal is presented and the reaction is shown to proceed through the intermediacy of alpha-amino alkyl metal species. Possible strategies for designing catalytic and enantioselective variants of the reaction are presented. The third chapter describes the development of a catalytic oxidative carboxylation of olefins to yield cyclic carbonates. The importance of flow chemistry and membrane separation is demonstrated by allowing the combination of mutually incompatible reagents in a single reaction sequence. While the use of carbon dioxide for synthesis of organic fine chemicals is not expected to help reduce the atmospheric carbon dioxide levels, or tackle climate change, it certainly has the potential to reduce our dependence on non-sustainable carbon feedstocks, and help achieve a carbon neutral chemical life cycle. Having described the use of carbon dioxide and flow chemistry for sustainable chemical conversion, the fourth chapter introduces the role of nanomaterials in sustainable solar energy conversion and storage. The use of cation exchange reactions in nanocrystals to access novel materials is highlighted. Despite having shown tremendous promise in the synthetic applications, the fundamental measurements of the thermodynamic and kinetic parameters of a cation exchange reaction are largely non-existent. This impedes the future growth of this powerful methodology. The technique of isothermal titration calorimetry is introduced, and its importance to studying the thermochemical changes occurring during cation exchange is outlined. The final chapter presents results obtained from the isothermal titration calorimetry on the prototypical cation exchange reaction between cadmium selenide and silver ions. The role of nanoparticle size, identity of the silver salt, solvent, surface ligands and temperature is studied. Recommendations for future investigations using ITC as well as other characterization techniques for discerning the kinetics of cation exchange are presented. I believe that a more unified mechanistic understanding of the cation exchange process in nanomaterials will aid the development of more efficient and robust materials for applications in a wide variety of fields.
Separations by supported liquid membrane cascades
Danesi, P.R.
1983-09-01
The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solution and the supported liquid membranes are arranged to provide a continuous process.
Harnisch, Falk; Schröder, Uwe; Scholz, Fritz
2008-03-01
A proton exchange (Nafion-117), a cation exchange (Ultrex CMI7000), an anion exchange (Fumasep FAD), and a bipolar (FumasepFBM) membrane have been studied to evaluate the principle suitability of ion exchange membranes as separators between the anode and the cathode compartment of biological fuel cells. The applicability of these membranes is severely affected by the neutral pH, and the usually low ionic strength of the electrolyte solutions. Thus, the ohmic resistance of the monopolar membranes was found to greatly increase at neutral pH and at decreasing electrolyte concentrations. None of the studied membranes can prevent the acidification of the anode and the alkalization of the cathode compartment, which occurs in the course of the fuel cell operation. Bipolar membranes are shown to be least suitable for biofuel cell application since they show the highest polarization without being able to prevent pH splitting between the anode and cathode compartments.
Polymers in separation processes
NASA Astrophysics Data System (ADS)
Wieszczycka, Karolina; Staszak, Katarzyna
2017-05-01
Application of polymer materials as membranes and ion-exchange resins was presented with a focus on their use for the recovery of metal ions from aqueous solutions. Several membrane techniques were described including reverse osmosis, nanofiltration, ultrafiltration, diffusion and Donnan dialysis, electrodialysis and membrane extraction system (polymer inclusion and supported membranes). Moreover, the examples of using ion-exchange resins in metal recovery were presented. The possibility of modification of the resin was discussed, including hybrid system with metal cation or metal oxide immobilized on polymer matrices or solvent impregnated resin.
Qiu, Hongdeng; Zhang, Qinghua; Chen, Limei; Liu, Xia; Jiang, Shengxiang
2008-08-01
Separations of common inorganic anions were carried out on ODS columns coated with two long-chain alkylimidazolium ionic liquids ([C(12)MIm]Br and [C(14)MIm]Br) as new cationic surfactants for ion chromatography. With phthalate buffer solution as the mobile phases and non-suppressed conductivity detection, high column efficiencies and excellent selectivity were obtained in the separation of inorganic anions. Chromatographic parameters are calculated and the results show that the coated column possesses significant potential for the analysis of some inorganic anions such as CH(3)COO(-), IO(3)(-), Cl(-), BrO(3)(-), NO(2)(-), Br(-), NO(3)(-), SO(4)(2-), I(-), BF(4)(-), and SCN(-). The effect of eluent pH values on the separation of anions has been studied on the column coated with [C(12)MIm]Br. The stability of the coated columns was also examined.
Creasy, Arch; Reck, Jason; Pabst, Timothy; Hunter, Alan; Barker, Gregory; Carta, Giorgio
2018-05-29
A previously developed empirical interpolation (EI) method is extended to predict highly overloaded multicomponent elution behavior on a cation exchange (CEX) column based on batch isotherm data. Instead of a fully mechanistic model, the EI method employs an empirically modified multicomponent Langmuir equation to correlate two-component adsorption isotherm data at different salt concentrations. Piecewise cubic interpolating polynomials are then used to predict competitive binding at intermediate salt concentrations. The approach is tested for the separation of monoclonal antibody monomer and dimer mixtures by gradient elution on the cation exchange resin Nuvia HR-S. Adsorption isotherms are obtained over a range of salt concentrations with varying monomer and dimer concentrations. Coupled with a lumped kinetic model, the interpolated isotherms predict the column behavior for highly overloaded conditions. Predictions based on the EI method showed good agreement with experimental elution curves for protein loads up to 40 mg/mL column or about 50% of the column binding capacity. The approach can be extended to other chromatographic modalities and to more than two components. This article is protected by copyright. All rights reserved.
Rey, M A
2001-06-22
One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.
Hafnium radioisotope recovery from irradiated tantalum
Taylor, Wayne A.; Jamriska, David J.
2001-01-01
Hafnium is recovered from irradiated tantalum by: (a) contacting the irradiated tantalum with at least one acid to obtain a solution of dissolved tantalum; (b) combining an aqueous solution of a calcium compound with the solution of dissolved tantalum to obtain a third combined solution; (c) precipitating hafnium, lanthanide, and insoluble calcium complexes from the third combined solution to obtain a first precipitate; (d) contacting the first precipitate of hafnium, lanthanide and calcium complexes with at least one fluoride ion complexing agent to form a fourth solution; (e) selectively adsorbing lanthanides and calcium from the fourth solution by cationic exchange; (f) separating fluoride ion complexing agent product from hafnium in the fourth solution by adding an aqueous solution of ferric chloride to obtain a second precipitate containing the hafnium and iron; (g) dissolving the second precipitate containing the hafnium and iron in acid to obtain an acid solution of hafnium and iron; (h) selectively adsorbing the iron from the acid solution of hafnium and iron by anionic exchange; (i) drying the ion exchanged hafnium solution to obtain hafnium isotopes. Additionally, if needed to remove residue remaining after the product is dried, dissolution in acid followed by cation exchange, then anion exchange, is performed.
Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands
Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.
2016-01-01
Cation exchange is a powerful tool for the synthesis of nanostructures such as core–shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core–shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals. PMID:27160371
Dudley, E; El-Shakawi, S; Games, D E; Newton, R P
2000-03-01
A chromatographic separation of nucleosides from urine has been developed in order to facilitate their mass spectrometric analysis for clinical diagnosis. A number of chromatographic resins were studied in order to develop an effective and efficient purification procedure. The optimized sequential protocol comprises a centrifugation, acidification and neutralization step, followed by application of an affinity chromatographic column and finally further separation on an acidic cation exchange column and a basic anion exchanger. This scheme shows effective clean-up of a standard radiolabelled nucleoside with a recovery of 92.5%, and recovery of nucleosides added to urine samples before extraction showed recoveries of 72-82%.
Production and separation of carrier-free 7Be
Gharibyan, N.; Moody, K. J.; Tumey, S. J.; ...
2015-10-24
A high-purity carrier-free 7Be was efficiently isolated following proton bombardment of a lithium hydroxide - aluminum target. The separation of beryllium from lithium and aluminum was achieved through a hydrochloric acid elution system utilizing cation exchange chromatography. The beryllium recovery, +99%, was assessed through gamma spectroscopy while the chemical purity was established by mass spectrometry. In conclusion, the decontamination factors of beryllium from lithium and aluminum were determined to be 6900 and 300, respectively.
Capability of cation exchange technology to remove proven N-nitrosodimethylamine precursors.
Li, Shixiang; Zhang, Xulan; Bei, Er; Yue, Huihui; Lin, Pengfei; Wang, Jun; Zhang, Xiaojian; Chen, Chao
2017-08-01
N-nitrosodimethylamine (NDMA) precursors consist of a positively charged dimethylamine group and a non-polar moiety, which inspired us to develop a targeted cation exchange technology to remove NDMA precursors. In this study, we tested the removal of two representative NDMA precursors, dimethylamine (DMA) and ranitidine (RNTD), by strong acidic cation exchange resin. The results showed that pH greatly affected the exchange efficiency, with high removal (DMA>78% and RNTD>94%) observed at pH
Huang, Guangguang; Wang, Chunlei; Xu, Shuhong; Zong, Shenfei; Lu, Ju; Wang, Zhuyuan; Lu, Changgui; Cui, Yiping
2017-08-01
Unlike widely used postsynthetic halide exchange for CsPbX 3 (X is halide) perovskite nanocrystals (NCs), cation exchange of Pb is of a great challenge due to the rigid nature of the Pb cationic sublattice. Actually, cation exchange has more potential for rendering NCs with peculiar properties. Herein, a novel halide exchange-driven cation exchange (HEDCE) strategy is developed to prepare dually emitting Mn-doped CsPb(Cl/Br) 3 NCs via postsynthetic replacement of partial Pb in preformed perovskite NCs. The basic idea for HEDCE is that the partial cation exchange of Pb by Mn has a large probability to occur as a concomitant result for opening the rigid halide octahedron structure around Pb during halide exchange. Compared to traditional ionic exchange, HEDCE is featured by proceeding of halide exchange and cation exchange at the same time and lattice site. The time and space requirements make only MnCl 2 molecules (rather than mixture of Mn and Cl ions) capable of doping into perovskite NCs. This special molecular doping nature results in a series of unusual phenomenon, including long reaction time, core-shell structured mid states with triple emission bands, and dopant molecules composition-dependent doping process. As-prepared dual-emitting Mn-doped CsPb(Cl/Br) 3 NCs are available for ratiometric temperature sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ball, J.W.; Bassett, R.L.
2000-01-01
A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.
1987-11-10
The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.
Jansod, Sutida; Wang, Lu; Cuartero, Maria; Bakker, Eric
2017-09-28
A new lipophilic dinonyl bipyridyl Os(ii)/Os(iii) complex successfully mediates ion transfer processes across voltammetric thin membranes. An added lipophilic cation-exchanger may impose voltammetric anion or cation transfer waves of Gaussian shape that are reversible and repeatable. The peak potential is found to shift with the ion concentration in agreement with the Nernst equation. The addition of tridodecylmethylammonium nitrate to the polymeric film dramatically reduces the peak separation from 240 mV to 65 mV, and the peak width to a near-theoretical value of 85 mV, which agrees with a surface confined process. It is suggested that the cationic additive serves as a phase transfer catalyst.
Determination of labile copper, cobalt, and chromium in textile mill wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crain, J.S.; Essling, A.M.; Kiely, J.T.
1997-01-01
Copper, chromium, and cobalt species present in filtered wastewater effluent were separated by cation exchange and reverse phase chromatography. Three sample fractions were obtained: one containing metal cations (i.e., trivalent Cr, divalent Cu, and divalent Co), one containing organic species (including metallized dyes), and one containing other unretained species. The metal content of each fraction was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The sum of the corrected data was compared to the metal content of a filtered effluent aliquot digested totally with fuming sulfuric acid. Other aliquots of the filtered effluent were spiked with the metals ofmore » interest and digested to confirm chemical yield and accuracy. Method detection limits were consistently below 20 {mu}g L{sup -1} for Cu, 30 {mu}g L{sup -1} for Co, and 10 {mu}g L{sup -1} for Cr. Spike recoveries for undifferentiated Cu and Cr were statistically indistinguishable from unity; although Co spike recoveries were slightly low ({approximately}95%), its chemical yield was 98%. Copper retention on the sodium sulfonate cation exchange resin was closely correlated with the [EDTA]/[Cu] ratio, suggesting that metals retained upon the cation exchange column were assignable to labile metal species; however, mass balances for all three elements, though reasonable ({approximately}90%), were significantly different from unity. Mechanical factors may have contributed to the material loss, but other data suggest that some metal species reacted irreversibly with the reverse phase column. 3 refs., 2 figs., 4 tabs.« less
Recovery of transplutonium elements from nuclear reactor waste
Campbell, David O.; Buxton, Samuel R.
1977-05-24
A method of separating actinide values from nitric acid waste solutions resulting from reprocessing of irradiated nuclear fuels comprises oxalate precipitation of the major portion of actinide and lanthanide values to provide a trivalent fraction suitable for subsequent actinide/lanthanide partition, exchange of actinide and lanthanide values in the supernate onto a suitable cation exchange resin to provide an intermediate-lived raffinate waste stream substantially free of actinides, and elution of the actinide values from the exchange resin. The eluate is then used to dissolve the trivalent oxalate fraction prior to actinide/lanthanide partition or may be combined with the reprocessing waste stream and recycled.
Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange
2013-01-01
For three types of colloidal magnetic nanocrystals, we demonstrate that postsynthetic cation exchange enables tuning of the nanocrystal’s magnetic properties and achieving characteristics not obtainable by conventional synthetic routes. While the cation exchange procedure, performed in solution phase approach, was restricted so far to chalcogenide based semiconductor nanocrystals, here ferrite-based nanocrystals were subjected to a Fe2+ to Co2+ cation exchange procedure. This allows tracing of the compositional modifications by systematic and detailed magnetic characterization. In homogeneous magnetite nanocrystals and in gold/magnetite core shell nanocrystals the cation exchange increases the coercivity field, the remanence magnetization, as well as the superparamagnetic blocking temperature. For core/shell nanoheterostructures a selective doping of either the shell or predominantly of the core with Co2+ is demonstrated. By applying the cation exchange to FeO/CoFe2O4 core/shell nanocrystals the Neél temperature of the core material is increased and exchange-bias effects are enhanced so that vertical shifts of the hysteresis loops are obtained which are superior to those in any other system. PMID:23362940
Alkaline degradation studies of anion exchange polymers to enable new membrane designs
NASA Astrophysics Data System (ADS)
Nunez, Sean Andrew
Current performance targets for anion-exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 hours at temperatures up to 120 °C. Using this target temperature of 120 °C, an incisive 1H NMR-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogs. Herein, the degradation mechanisms and rates of benzyltrimethylammonium-, n-alkyl interstitial spacer- and n-alkyl terminal pendant-cations are studied on several architectures. These findings demonstrate that benzyltrimethylammonium- and n-alkyl terminal pendant cations are more labile than an n-alkyl interstitial spacer cation and conclude that Hofmann elimination is not the predominant mechanism of alkaline degradation. Additionally, the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when combined with an n-alkyl terminal pendant. Interestingly, at 120 °C, an inverse trend was found in the overall alkaline stability of AEM poly(styrene) and AEM poly(phenylene oxide) samples than was previously shown at 80 °C. Successive small molecule studies suggest that at 120 °C, an anion-induced 1,4-elimination degradation mechanism may be activated on styrenic AEM polymers bearing an acidic alpha-hydrogen. In addition, an ATR-FTIR based method was developed to assess the alkaline stability of solid membranes and any added resistance to degradation that may be due to differential solubilities and phase separation. To increase the stability of anion exchange membranes, Oshima magnesate--halogen exchange was demonstrated as a method for the synthesis of new anion exchange membranes that typically fail in the presence of organolithium or Grignard reagents alone. This new chemistry, applied to non-resinous polymers for the first time, proved effective for the n-akyl interstitial spacer functionalization of poly(phenylene oxide) and poly(styrene- co-ethylene-co-butylene-co-styrene) polymer backbones. The comprehensive methodologies for the assessment of alkaline stability in AEMs as well as the new synthetic methodologies are intended as a guide toward robust AEM synthetic designs that approach current performance standards.
Extrinsic Cation Selectivity of 2D Membranes
2017-01-01
From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333
Ishihara, Takashi; Kadoya, Toshihiko; Yamamoto, Shuichi
2007-08-24
We applied the model described in our previous paper to the rapid scale-up in the ion exchange chromatography of proteins, in which linear flow velocity, column length and gradient slope were changed. We carried out linear gradient elution experiments, and obtained data for the peak salt concentration and peak width. From these data, the plate height (HETP) was calculated as a function of the mobile phase velocity and iso-resolution curve (the separation time and elution volume relationship for the same resolution) was calculated. The scale-up chromatography conditions were determined by the iso-resolution curve. The scale-up of the linear gradient elution from 5 to 100mL and 2.5L column sizes was performed both by the separation of beta-lactoglobulin A and beta-lactoglobulin B with anion-exchange chromatography and by the purification of a recombinant protein with cation-exchange chromatography. Resolution, recovery and purity were examined in order to verify the proposed method.
Production Of High Specific Activity Copper-67
Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.
2002-12-03
A process for the selective production and isolation of high specific activity cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.
Production Of High Specific Activity Copper-67
Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.
2003-10-28
A process for the selective production and isolation of high specific activity Cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kmak, Kelly N.; Despotopulos, John D.; Shaughnessy, Dawn A.
In this paper, a separation of 209Po, 207Bi and 212Pb using AG 50Wx8 and AG MP 50 cation exchange resins in an HCl medium was developed. A procedure in which Po(IV) elutes first in 0.2 M HCl, followed by Bi(III) in 0.4 M HCl and finally Pb(II) in 2 M HCl was established. The separation using AG 50Wx8 provides a much better elution profile than that of AG MP 50 with no overlap between the elution bands. Finally, this separation has the potential to be used as an isotope generator for producing 210Po from 210Pb.
New Metal Niobate and Silicotitanate Ion Exchangers: Development and Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandra Navrotsky; Mary Lou Balmer; Tina M. Nenoff
2003-12-05
This renewal proposal outlines our current progress and future research plans for ion exchangers: novel metal niobate and silicotitanate ion exchangers and their ultimate deployment in the DOE complex. In our original study several forms (including Cs exchanged) of the heat treated Crystalline Silicotitanates (CSTs) were fully characterized by a combination of high temperature synthesis and phase identification, low temperature synthesis and phase identification, and thermodynamics. This renewal proposal is predicated on work completed in our current EMSP program: we have shown preliminary data of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionallymore » high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), in addition to novel silicotitanate phases which are also selective for divalent cations. Furthermore, these materials are easily converted by a high temperature in-situ heat treatment into a refractory ceramic waste form with low cation leachability. The new waste form is a perovskite phase, which is also a major component of Synroc, a titanate ceramic waste form used for sequestration of HLW wastes from reprocessed, spent nuclear fuel. These new niobate ion exchangers also shown orders of magnitude better selectivity for Sr2+ under acid conditions than any other material. The goal of the program is to reduce the costs associated with divalent cation waste removal and disposal, to minimize the risk of contamination to the environment during ion exchanger processing, and to provide DOE with materials for near-term lab-bench stimulant testing, and eventual deployment. The proposed work will provide information on the structure/property relationship between ion exchanger frameworks and selectivity for specific ions, allowing for the eventual ''tuning'' of framework for specific ion exchange needs. To date, DOE sites have become interested in on-site testing of these materials; ongoing discussions and initial experiments are occurring with Dr. Dean Peterman, Idaho National Engineering and Environmental Laboratory (INEEL) (location of the DOE/EM Waste Treatment Focus Area), and Dr. John Harbour, Savannah River Site (SRS). Yet the materials have not been optimized, and further research and development of the novel ion exchangers and testing conditions with simulants are needed. In addition, studies of the ion exchanger composition versus ion selectivity, ion exchange capacity and durability of final waste form are needed. This program will bring together three key institutions to address scientific hurdles of the separation process associated with metal niobate and silicotitanate ion exchangers, in particular for divalent cations (e.g., Sr2+). The program involves a joint effort between researchers at Pacific Northwest National Laboratory, who are leaders in structure/property relations in silicotitanates and in waste form development and performance assessment, Sandia National Laboratories, who discovered and developed crystalline silicotitanate ion exchangers (with Texas A&M and UOP) and also the novel class of divalent metal niobate ion exchangers, and the Thermochemistry Facility at UC Davis, who are world renowned experts in calorimetry and have already performed extensive thermodynamic studies on silicotitanate materials. In addition, Dr. Rodney Ewing of University of Michigan, an expert in radiation effects on materials, and Dr. Robert Roth of the National Institute of Standards and Technology and The Viper Group, a leader in phase equilibria development, will be consultants for radiation and phase studies. The research team will focus on three tasks that will provide both the basic research necessary for the development of highly selective ion exchange materials and also materials for short-term deployment within the DOE complex: (1) Structure/property relationships of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionally high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), (2) the role of ion exchanger structure change (both niobates and silicotitanates) on the exchange capacity (for elements such as Sr and actinide-surrogates) which results from exposure to DOE complex waste simulants, (3) thermodynamic stability of metal niobates and silicotitanate ion exchangers.« less
Microscopic theory of cation exchange in CdSe nanocrystals.
Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C
2014-10-10
Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.
Process for separation of zirconium-88, rubidium-83 and yttrium-88
Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.
1994-01-01
A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, passing the first ion-containing solution through a first cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in the first ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, contacting the first resin with an acid solution capable of stripping adsorbed ions from the first cationic exchange resin whereby the adsorbed ions are removed from the first resin to form a second ion-containing solution, evaporating the second ion-containing solution for time sufficient to remove substantially all of the acid and water from the second ion-containing solution whereby a residue remains, dissolving the residue from the evaporated second-ion containing solution in a dilute acid to form a third ion-containing solution, said third ion-containing solution having an acid molarity adapted to permit said ions to be adsorbed by a cationic exchange resin, passing the third ion-containing solution through a second cationic resin whereby the ions are adsorbed by the second resin, contacting the second resin with a dilute sulfuric acid solution whereby the adsorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, and zirconium are selectively removed from the second resin, and contacting the second resin with a dilute acid solution whereby the adsorbed strontium ions are selectively removed. Zirconium, rubidium, and yttrium radioisotopes can also be recovered with additional steps.
Bruchet, Marion; Melman, Artem
2015-10-20
Calcium cross-linked alginate hydrogels are widely used in targeted drug delivery, tissue engineering, wound treatment, and other biomedical applications. We developed a method for preparing homogeneous alginate hydrogels cross-linked with Ca(2+) cations using reductive cation exchange in homogeneous iron(III) cross-linked alginate hydrogels. Treatment of iron(III) cross-linked alginate hydrogels with calcium salts and sodium ascorbate results in reduction of iron(III) cations to iron(II) that are instantaneously replaced with Ca(2+) cations, producing homogeneous ionically cross-linking hydrogels. Alternatively, the cation exchange can be performed by photochemical reduction in the presence of calcium chloride using a sacrificial photoreductant. This approach allows fabrication of patterned calcium alginate hydrogels through photochemical patterning of iron(III) cross-linked alginate hydrogel followed by the photochemical reductive exchange of iron cations to calcium. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A
2017-06-06
With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (K d ). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (K d ) decreasing as follows: K d Na + > K d NH 4 + ≥ K d K + > K d Ca 2+ ≥ K d Mg 2+ > K d Al 3+ . This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium K d values, allowed for estimation of K d values for more structurally complex organic cations to homoionic montmorillonites and to heteroionic soils (mean absolute error of 0.27 log unit). Accordingly, we concluded that the use of phenyltrimethylammonium as a probe compound was a promising means to account for the identity, affinity, and abundance of natural exchange ions in the prediction of organic cation sorption coefficients for environmental solids.
Xiong, Caifeng; Yuan, Jie; Wang, Zhiying; Wang, Siyao; Yuan, Chenchen; Wang, Lili
2018-04-20
In this work, 2-methacryloyloxyethyl phosphorylcholine (MPC) was used as a ligand to prepare a novel mixed-mode chromatography (MMC) stationary phase by the thiol-ene click reaction onto silica (MPC-silica). It was found that this MPC-silica showed the retention characteristics of hydrophilic interaction chromatography (HILIC) and weak cation exchange chromatography (WCX) under suitable mobile phase conditions. In detail, acidic and basic hydrophilic compounds and puerarin from pueraria were separated quickly with HILIC mode. Meanwhile, six standard proteins were allowed to reach baseline separation in WCX mode, and protein separation from egg white was also achieved with this mode. In addition, reduced/denatured lysozyme could be refolded with the MPC-silica column. In the meantime, the MPC-silica has been applied for refolding with simultaneous purification of recombinant human Delta-like1-RGD (rhDll1-RGD) expressed in Escherichia coli. The results show that the mass recovery and purity of rhDll1-RGD could reach 63.4% and 97% by one step, respectively. Furthermore, the reporter assay results demonstrated that refolded with simultaneously purified rhDll1-RGD could efficiently activate the signalling pathway in a dose-dependent manner. In general, this MPC-silica has good resolution and selectivity in the separation of polar compounds and protein samples in different high-performance liquid chromatography (HPLC) modes, and it successfully achieved refolding with simultaneous purification of denatured protein. Copyright © 2018 Elsevier B.V. All rights reserved.
Investigation of Sorption and Diffusion Mechanisms, and Preliminary Economic Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhave, Ramesh R.; Jubin, Robert Thomas; Spencer, Barry B.
This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. Several monovalent and divalent cation exchanged silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on disk supports and characterized with gas and vapor permeation measurements. The pervaporation process performance was evaluated for the separation and concentration of tritiated water. Experiments were performed using tritiated water feed solution containing tritium at the high end of the range (1 mCi/mL) anticipated in a nuclear fuel processing system that includes both acid and water streams recycling. Themore » tritium concentration was about 0.1 ppm. The permeate was recovered under vacuum. The HTO/H2O selectivity and separation factor calculated from the measured tritium concentrations ranged from 0.99 to 1.23, and 0.83-0.98, respectively. Although the membrane performance for HTO separation was lower than expected, several encouraging observations including molecular sieving and high vapor permeance are reported. Additionally, several new approaches are proposed, such as tuning the sorption and diffusion properties offered by small pore LTA zeolite materials, and cation exchanged aluminosilicates with high metal loading. It is hypothesized that substantially improved preferential transport of tritium (HTO) resulting in a more concentrated permeate can be achieved. Preliminary economic analysis for the membrane-based process to concentrate tritiated water is also discussed.« less
Chen, Shuang; Lau, Hollis; Brodsky, Yan; Kleemann, Gerd R; Latypov, Ramil F
2010-01-01
This study introduces a novel analytical approach for studying aggregation and phase separation of monoclonal antibodies (mAbs). The approach is based on using analytical scale cation-exchange chromatography (CEX) for measuring the loss of soluble monomer in the case of individual and mixed protein solutions. Native CEX outperforms traditional size-exclusion chromatography in separating complex protein mixtures, offering an easy way to assess mAb aggregation propensity. Different IgG1 and IgG2 molecules were tested individually and in mixtures consisting of up to four protein molecules. Antibody aggregation was induced by four different stress factors: high temperature, low pH, addition of fatty acids, and rigorous agitation. The extent of aggregation was determined from the amount of monomeric protein remaining in solution after stress. Consequently, it was possible to address the role of specific mAb regions in antibody aggregation by co-incubating Fab and Fc fragments with their respective full-length molecules. Our results revealed that the relative contribution of Fab and Fc regions in mAb aggregation is strongly dependent on pH and the stress factor applied. In addition, the CEX-based approach was used to study reversible protein precipitation due to phase separation, which demonstrated its use for a broader range of protein–protein association phenomena. In all cases, the role of Fab and Fc was clearly dissected, providing important information for engineering more stable mAb-based therapeutics. PMID:20512972
RECOVERY AND SEPARATION OF LITHIUM VALUES FROM SALVAGE SOLUTIONS
Hansford, D.L.; Raabe, E.W.
1963-08-20
Lithium values can be recovered from an aqueous basic solution by reacting the values with a phosphate salt soluble in the solution, forming an aqueous slurry of the resultant aqueous insoluble lithium phosphate, contacting the slurry with an organic cation exchange resin in the acid form until the slurry has been clarified, and thereafter recovering lithium values from the resin. (AEC)
Influence of pine bark particle size and pH on cation exchange capacity
USDA-ARS?s Scientific Manuscript database
Cation exchange capacity (CEC) describes the maximum quantity of cations a soil or substrate can hold while being exchangeable with the soil solution. While CEC has been studied for peat-based substrates, relatively little work has documented factors that affect CEC of pine bark substrates. The ob...
Ammonia vapor sensing properties of polyaniline-titanium(IV)phosphate cation exchange nanocomposite.
Khan, Asif Ali; Baig, Umair; Khalid, Mohd
2011-02-28
In this study, the electrically conducting polyaniline-titanium(IV)phosphate (PANI-TiP) cation exchange nanocomposite was synthesized by sol-gel method. The cation exchange nanocomposite based sensor for detection of ammonia vapors was developed at room temperature. It was revealed that the sensor showed good reversible response towards ammonia vapors ranging from 3 to 6%. It was found that the sensor with p-toluene sulphonic acid (p-TSA) doped exhibited higher sensing response than hydrochloric acid doped. This sensor has detection limit ≤1% ammonia. The response of resistivity changes of the cation exchange nanocomposite on exposure to different concentrations of ammonia vapors shows its utility as a sensing material. These studies suggest that the cation exchange nanocomposite could be a good material for ammonia sensor at room temperature. Copyright © 2010 Elsevier B.V. All rights reserved.
Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; ...
2015-10-01
Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less
Nesterenko, Ekaterina P; Nesterenko, Pavel N; Paull, Brett
2008-12-05
The retention and separation selectivity of inorganic anions and on-column derivatised negatively charged citrate or oxalate metal complexes on reversed-phase stationary phases dynamically coated with N-(dodecyl-N,N-dimethylammonio)undecanoate (DDMAU) has been investigated. The retention mechanism for the metal-citrate complexes was predominantly anion exchange, although the amphoteric/zwitterionic nature of the stationary phase coating undoubtedly also contributed to the unusual separation selectivity shown. A mixture of 10 inorganic anions and metal cations was achieved using a 20 cm monolithic DDMAU modified column and a 1 mM citrate eluent, pH 4.0, flow rate equal to 0.8 mL/min. Selectivity was found to be strongly pH dependent, allowing additional scope for manipulation of solute retention, and thus application to complex samples. This is illustrated with the analysis of an acidic mine drainage sample with a range of inorganic anions and transition metal cations, varying significantly in their concentrations levels.
Electrically Driven Ion Separations in Permeable Membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruening, Merlin
2017-04-21
Membranes are attractive for a wide range of separations due to their low energy costs and continuous operation. To achieve practical fluxes, most membranes consist of a thin, selective skin on a highly permeable substrate that provides mechanical strength. Thus, this project focused on creating new methods for forming highly selective ultrathin skins as well as modeling transport through these coatings to better understand their unprecedented selectivities. The research explored both gas and ion separations, and the latter included transport due to concentration, pressure and electrical potential gradients. This report describes a series of highlights of the research and thenmore » provides a complete list of publications supported by the grant. These publications have been cited more than 4000 times. Perhaps the most stunning finding is the recent discovery of monovalent/divalent cation and anion selectivities around 1000 when modifying cation- and anion-exchange membranes with polyelectrolyte multilayers (PEMs). This discovery builds on many years of exciting research. (Citation numbers refer to the journal articles in the bibliography.)« less
Winfield, Jonathan; Chambers, Lily D; Rossiter, Jonathan; Ieropoulos, Ioannis
2013-11-01
The long and short-term stability of two porous dependent ion exchange materials; starch-based compostable bags (BioBag) and ceramic, were compared to commercially available cation exchange membrane (CEM) in microbial fuel cells. Using bi-directional polarisation methods, CEM exhibited power overshoot during the forward sweep followed by significant power decline over the reverse sweep (38%). The porous membranes displayed no power overshoot with comparably smaller drops in power during the reverse sweep (ceramic 8%, BioBag 5.5%). The total internal resistance at maximum power increased by 64% for CEM compared to 4% (ceramic) and 6% (BioBag). Under fixed external resistive loads, CEM exhibited steeper pH reductions than the porous membranes. Despite its limited lifetime, the BioBag proved an efficient material for a stable microbial environment until failing after 8 months, due to natural degradation. These findings highlight porous separators as ideal candidates for advancing MFC technology in terms of cost and operation stability. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karimi, A.R.
In this study a method for the measurement of uranium in natural waters at sub-ppB concentration levels by the separation and determination of U/sup 4 +/ and UO/sub 2//sup 2 +/ species is proposed. Reversed phase high performance liquid chromatography, followed by a post-column reaction and a sensitive UV-visible detection system was the method of choice to determine qualitatively and quantitatively the two uranium species. Also a cation-exchange and fluorescence detection system was studied for separation and determination of UO/sub 2//sup 2 +/ ions. Uranyl ion was selectively complexed with L-phenylalanine moetie in the sample solution containing U/sup 4 +/more » ions. Uranium (IV)/U(VI)-ligand was separated on a C/sub 18/ column with acetate buffer. Hexanesulfonate was found to be the choice for ion-pair reagent. The separation was best done with the acetate buffer at .01 M concentration and pH of 3.5. Absorption of the two species were measured after a post-column reaction with Arsenazo-III. Chromatographic parameters were calculated and a calibration curves were constructed. The detection limit for the procedure was 0.7 ..mu..g/mo and 1.2..mu..g/ml for U(IV) and U(VI) respectively. When U(VI) was separated on the cation-exchange column the limit of detection was calculated to be 1 ..mu..g/ml. The direct fluorometric method for U(VI) measurement results in a detection limit of 2 ppB and upper concentration limit of 2 ppM. The effect of interfering ions in the direct method of determination could be eliminated by dilution of sample solution.« less
Jiang, Xiaogang; Feng, Shun; Tian, Ruijun; Han, Guanghui; Jiang, Xinning; Ye, Mingliang; Zou, Hanfa
2007-02-01
An approach was developed to automate sample introduction for nanoflow LC-MS/MS (microLC-MS/MS) analysis using a strong cation exchange (SCX) trap column. The system consisted of a 100 microm id x 2 cm SCX trap column and a 75 microm id x 12 cm C18 RP analytical column. During the sample loading step, the flow passing through the SCX trap column was directed to waste for loading a large volume of sample at high flow rate. Then the peptides bound on the SCX trap column were eluted onto the RP analytical column by a high salt buffer followed by RP chromatographic separation of the peptides at nanoliter flow rate. It was observed that higher performance of separation could be achieved with the system using SCX trap column than with the system using C18 trap column. The high proteomic coverage using this approach was demonstrated in the analysis of tryptic digest of BSA and yeast cell lysate. In addition, this system was also applied to two-dimensional separation of tryptic digest of human hepatocellular carcinoma cell line SMMC-7721 for large scale proteome analysis. This system was fully automated and required minimum changes on current microLC-MS/MS system. This system represented a promising platform for routine proteome analysis.
Separation of protactinum, actinium, and other radionuclides from proton irradiated thorium target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fassbender, Michael E.; Radchenko, Valery
Protactinium, actinium, radium, radiolanthanides and other radionuclide fission products were separated and recovered from a proton-irradiated thorium target. The target was dissolved in concentrated HCl, which formed anionic complexes of protactinium but not with thorium, actinium, radium, or radiolanthanides. Protactinium was separated from soluble thorium by loading a concentrated HCl solution of the target onto a column of strongly basic anion exchanger resin and eluting with concentrated HCl. Actinium, radium and radiolanthanides elute with thorium. The protactinium that is retained on the column, along with other radionuclides, is eluted may subsequently treated to remove radionuclide impurities to afford a fractionmore » of substantially pure protactinium. The eluate with the soluble thorium, actinium, radium and radiolanthanides may be subjected to treatment with citric acid to form anionic thorium, loaded onto a cationic exchanger resin, and eluted. Actinium, radium and radiolanthanides that are retained can be subjected to extraction chromatography to separate the actinium from the radium and from the radio lanthanides.« less
Separators used in microbial electrochemical technologies: Current status and future prospects.
Daud, Siti Mariam; Kim, Byung Hong; Ghasemi, Mostafa; Daud, Wan Ramli Wan
2015-11-01
Microbial electrochemical technologies (METs) are emerging green processes producing useful products from renewable sources without causing environmental pollution and treating wastes. The separator, an important part of METs that greatly affects the latter's performance, is commonly made of Nafion proton exchange membrane (PEM). However, many problems have been identified associated with the Nafion PEM such as high cost of membrane, significant oxygen and substrate crossovers, and transport of cations other than protons protons and biofouling. A variety of materials have been offered as alternative separators such as ion-exchange membranes, salt bridges, glass fibers, composite membranes and porous materials. It has been claimed that low cost porous materials perform better than PEM. These include J-cloth, nylon filter, glass fiber mat, non-woven cloth, earthen pot and ceramics that enable non-ion selective charge transfer. This paper provides an up-to-date review on porous separators and plots directions for future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chemical Properties of Elements 99 and 100 [Einsteinium and Fermium
DOE R&D Accomplishments Database
Seaborg, G. T.; Thompson, S. G.; Harvey, B. G.; Choppin, G. R.
1954-07-23
A description of some of the chemical properties and of the methods used in the separations of elements 99 [Einsteinium] and 100 [Fermium] are given. The new elements exhibit the properties expected for the tenth and eleventh actinide elements. Attempts to produce an oxidation state greater than III of element 99 have been unsuccessful. In normal aqueous media only the III state of element 100 appears to exist. The relative spacings of the elution peaks of the new elements in some separations with ion exchange resin columns are the same as the relative spacings of the homologous lanthanide elements. The results of experiments involving cation exchange resins with very concentrated hydrochloric acid eluant show that the new elements, like the earlier actinides, are more strongly complexed than the lanthanides. The new elements also exist partially as anions in concentrated hydrochloric acid, as do earlier actinide elements, and they may be partially separated from each other by means of ion exchange resins. With some eluants interesting reversals of elution positions are observed in the region Bk-Cf-99-100, indicating complex ion formation involving unusual factors.
Solid-support substrates for plant growth at a lunar base
NASA Technical Reports Server (NTRS)
Ming, D. W.; Galindo, C.; Henninger, D. L.
1990-01-01
Zeoponics is only in its developmental stages at the Johnson Space Center and is defined as the cultivation of plants in zeolite substrates that contain several essential plant growth cations on their exchange sites, and have minor amounts of mineral phases and/or anion-exchange resins that supply essential plant growth anions. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations with the ability to exchange most of their constituent exchange cations as well as hydrate/dehydrate without change to their structural framework. Because zeolites have extremely high cation exchange capabilities, they are very attractive media for plant growth. It is possible to partially or fully saturate plant-essential cations on zeolites. Zeoponic systems will probably have their greatest applications at planetary bases (e.g., lunar bases). Lunar raw materials will have to be located that are suited for the synthesis of zeolites and other exchange resings. Lunar 'soil' simulants have been or are being prepared for zeolite/smectite synthesis and 'soil' dissolution studies.
Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene
2015-10-01
Previously (Kostyukevich et al. Anal Chem 2014, 86, 2595), we have reported that oligosaccharides anions are produced in the electrospray in two different conformations, which differ by the rate of gas phase hydrogen/deuterium (H/D) exchange reaction. In the present paper, we apply the in-electrospray ionization (ESI) source H/D exchange approach for the investigation of the oligosaccharides cations formed by attaching of metal ions (Na, K) to the molecule. It was observed that the formation of different conformers can be manipulated by varying the temperature of the desolvating capillary of the ESI interphase. Separation of the conformers was performed using gas phase H/D approach. Because the conformers have different rates of the H/D exchange reaction, the deuterium distribution spectrum becomes bimodal. It was found that the conformation corresponding to the slow H/D exchange rate dominates in the spectrum when the capillary temperature is low (~200 °C), and the conformation corresponding to the fast H/D exchange rate dominates at high (~400 °C) temperatures. In the intermediate temperature region, two conformers are present simultaneously. It was also observed that large oligosaccharide requires higher temperature for the formation of another conformer. It was found that the presence of the conformers considerably depends on the solvent used for ESI and the pH. We have compared these results with the previously performed in-ESI source H/D exchange experiments with peptides and proteins. Copyright © 2015 John Wiley & Sons, Ltd.
Using ion exchange chromatography to purify a recombinantly expressed protein.
Duong-Ly, Krisna C; Gabelli, Sandra B
2014-01-01
Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. © 2014 Elsevier Inc. All rights reserved.
Measurement of cation exchange capacity (CEC) on natural zeolite by percolation method
NASA Astrophysics Data System (ADS)
Wiyantoko, Bayu; Rahmah, Nafisa
2017-12-01
The cation exchange capacity (CEC)measurement has been carried out in natural zeolite by percolation method. The natural zeolite samples used for cation exchange capacity measurement were activated beforehand with physical activation and chemical activation. The physically activated zeolite was done by calcination process at 600 °C for 4 hours. The natural zeolite was activated chemically by using sodium hydroxide by refluxing process at 60-80 °C for 3 hours. In summary, cation exchange capacity (CEC) determination was performed by percolation, distillation and titration processes. Based on the measurement that has been done, the exchange rate results from physical activated and chemical activated of natural zeolite were 181.90cmol (+)/kg and 901.49cmol (+)/kg respectively.
Wolrab, Denise; Kohout, Michal; Boras, Mario; Lindner, Wolfgang
2013-05-10
A new strong cation exchange type chiral stationary phase (SCX CSP) based on a syringic acid amide derivative of trans-(R, R)-2-aminocyclohexanesulfonic acid was applied to subcritical fluid chromatography (SFC) for separation of various chiral basic drugs and their analogues. Mobile phase systems consisting of aliphatic alcohols as polar modifiers and a broad range of amines with different substitution patterns and lipophilicity were employed to evaluate the impact on the SFC retention and selectivity characteristics. The observed results point to the existence of carbonic and carbamic acid salts formed as a consequence of reactions occurring between carbon dioxide, the alcoholic modifiers and the amine species present in the sub/supercritical fluid medium, respectively. Evidence is provided that these species are essential for affecting ion exchange between the strongly acidic chiral selector units and the basic analytes, following the well-established stoichiometric displacement mechanisms. Specific trends were observed when different types of amines were used as basic additives. While ammonia gave rise to the formation of the most strongly eluting carbonic and carbamic salt species, simple tertiary amines consistently provided superior levels of enantioselectivity. Furthermore, trends in the chiral SFC separation characteristics were investigated by the systematic variation of the modifier content and temperature. Different effects of additives are interpreted in terms of changes in the relative concentration of the transient ionic species contributing to analyte elution, with ammonia-derived carbamic salts being depleted at elevated temperatures by decomposition. Additionally, in an effort to optimize SFC enantiomer separation conditions for selected analytes, the impact of the type of the organic modifier, temperature, flow rate and active back pressure were also investigated. Copyright © 2013 Elsevier B.V. All rights reserved.
Rosokha, Sergiy V; Lü, Jian-Ming; Newton, Marshall D; Kochi, Jay K
2005-05-25
Definitive X-ray structures of "separated" versus "contact" ion pairs, together with their spectral (UV-NIR, ESR) characterizations, provide the quantitative basis for evaluating the complex equilibria and intrinsic (self-exchange) electron-transfer rates for the potassium salts of p-dinitrobenzene radical anion (DNB(-)). Three principal types of ion pairs, K(L)(+)DNB(-), are designated as Classes S, M, and C via the specific ligation of K(+) with different macrocyclic polyether ligands (L). For Class S, the self-exchange rate constant for the separated ion pair (SIP) is essentially the same as that of the "free" anion, and we conclude that dinitrobenzenide reactivity is unaffected when the interionic distance in the separated ion pair is r(SIP) > or =6 Angstroms. For Class M, the dynamic equilibrium between the contact ion pair (with r(CIP) = 2.7 Angstroms) and its separated ion pair is quantitatively evaluated, and the rather minor fraction of SIP is nonetheless the principal contributor to the overall electron-transfer kinetics. For Class C, the SIP rate is limited by the slow rate of CIP right arrow over left arrow SIP interconversion, and the self-exchange proceeds via the contact ion pair by default. Theoretically, the electron-transfer rate constant for the separated ion pair is well-accommodated by the Marcus/Sutin two-state formulation when the precursor in Scheme 2 is identified as the "separated" inner-sphere complex (IS(SIP)) of cofacial DNB(-)/DNB dyads. By contrast, the significantly slower rate of self-exchange via the contact ion pair requires an associative mechanism (Scheme 3) in which the electron-transfer rate is strongly governed by cationic mobility of K(L)(+) within the "contact" precursor complex (IS(CIP)) according to the kinetics in Scheme 4.
Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus
2013-05-07
An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.
Mixed mode HILIC/anion exchange separations on latex coated silica monoliths.
Ibrahim, Mohammed E A; Lucy, Charles A
2012-10-15
Bare silica monoliths do not possess anion exchange sites hence they show low retention for anions. Moreover, bare silica monoliths show low retention in hydrophilic interaction liquid chromatography (HILIC). Coating the silica surface with cationic nanoparticles e.g. AS9-SC (latex A), AS12A (latex B) and DNApac (latex C) increases the thickness of the water layer on the Onyx silica monolith 8-10 times enabling HILIC retention when a high % acetonitrile (ACN) mobile phase is used. The formed water layer by itself is not sufficient to perform good separation of the studied anions (acetate, formate, nitrate, bromate, thiocyanate and iodide). On the other hand, the latex nanoparticles introduce positively charged sites, making anion exchange chromatography possible, with the anion exchange capacity varying with the latex adsorbed (44.1 ± 0.2, 4.4 ± 0.1 and 14.0 ± 0.7 μeq/column for latex A, B and C, respectively). Latex A nanoparticles which provided the highest ion exchange capacity separated all tested anions with reasonable resolution. Fast separation (2.5 min) of acetate, formate, nitrate, bromate, thiocyanate and iodide was performed using the latex A coated silica monolith. The obtained efficiencies are 13,000-50,000 plates/m at 3 mL/min with a minimum resolution of 0.85. Retention is mixed mode under HILIC conditions with HILIC dominating for the kosmotropic anions and ion exchange dominating for the chaotropic anions. The two different brands of silica monoliths (Merck Chromolith and Phenomenex Onyx) coated with the same latex A nanoparticles displayed similar water layer volumes, ion exchange capacity and selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.
Comparison of amine-selective properties of weak and strong cation-exchangers.
Stenholm, Ake; Lindgren, Helena; Shaffie, Juliana
2006-09-22
The capacity of several weak and strong cation-exchangers to adsorb 2-diethylaminoethanol (DEAE) and (2,3-hydroxypropyl) trimethylammonium chloride (HPMAC) from sodium-containing process water streams, and the ease of subsequently eluting the amines and regenerating the exchangers, were investigated. (2,3-hydroxypropyl) trimethylammonium chloride was enriched 40-fold compared with the initial amine/sodium-ratio in the bulk fluid by Amberlite IRC-50. The highest selectivity for 2-diethylaminoethanol (26-fold) was provided by Imac HP336. Neither of the selected strong cation-exchangers showed any selectivity towards 2-diethylaminoethanol, but they enriched (2,3-hydroxypropyl) trimethylammonium chloride approximately three to four fold. These findings suggest that weak cation-exchangers (WCX) could be readily used for the selective removal of these or similar amines from sodium-containing process waters.
Cation Exchange in the Presence of Oil in Porous Media
2017-01-01
Cation exchange is an interfacial process during which cations on a clay surface are replaced by other cations. This study investigates the effect of oil type and composition on cation exchange on rock surfaces, relevant for a variety of oil-recovery processes. We perform experiments in which brine with a different composition than that of the in situ brine is injected into cores with and without remaining oil saturation. The cation-exchange capacity (CEC) of the rocks was calculated using PHREEQC software (coupled to a multipurpose transport simulator) with the ionic composition of the effluent histories as input parameters. We observe that in the presence of crude oil, ion exchange is a kinetically controlled process and its rate depends on residence time of the oil in the pore, the temperature, and kinetic rate of adsorption of the polar groups on the rock surface. The cation-exchange process occurs in two stages during two phase flow in porous media. Initially, the charged sites of the internal surface of the clays establish a new equilibrium by exchanging cations with the aqueous phase. At later stages, the components of the aqueous and oleic phases compete for the charged sites on the external surface or edges of the clays. When there is sufficient time for crude oil to interact with the rock (i.e., when the core is aged with crude oil), a fraction of the charged sites are neutralized by the charged components stemming from crude oil. Moreover, the positively charged calcite and dolomite surfaces (at the prevailing pH environment of our experiments) are covered with the negatively charged components of the crude oil and therefore less mineral dissolution takes place when oil is present in porous media. PMID:28580442
Madadkar, Pedram; Nino, Sergio Luna; Ghosh, Raja
2016-11-01
We discuss the use of a laterally-fed membrane chromatography (or LFMC) device for single-step purification of mono-PEGylated lysozyme. Recent studies have shown such LFMC devices to be suitable for high-resolution, multi-component separation of proteins in the bind-and-elute mode. The device used in this study contained a stack of rectangular cation-exchange membranes having 9.25mL bed volume. PEGylation of lysozyme was carried out in batch mode using 5kDa methoxy-polyethyleneglycol propionaldehyde (or m-PEG propionaldehyde) in the presence of sodium cyanoborohydride as reducing agent. Membrane chromatographic separation was carried out at 1.62 membrane bed volumes per minute flow rate, in the bind-and-elute mode. When a salt gradient was applied, the higher PEGylated forms of lysozyme (i.e. the byproducts) eluted earlier than mono-PEGylated lysozyme (the target product), while lysozyme eluted last. Under elution conditions optimized for resolution and speed, the separation could be carried out in less than 15 membrane bed volumes. High purity and recovery of mono-PEGylated lysozyme was obtained. The resolution of separation of mono-PEGylated lysozyme obtained under the above condition was comparable to that reported in the literature for equivalent cation-exchange resin columns while the flow rate expressed in bed volumes/min was 21.7 times higher. Also, the number of theoretical plates per meter was significantly higher with the LFMC device. Therefore the LFMC based purification process discussed in this paper combined high-productivity with high-resolution. Copyright © 2016 Elsevier B.V. All rights reserved.
ERYTHROPOIETIC FACTOR PURIFICATION
White, W.F.; Schlueter, R.J.
1962-05-01
A method is given for purifying and concentrating the blood plasma erythropoietic factor. Anemic sheep plasma is contacted three times successively with ion exchange resins: an anion exchange resin, a cation exchange resin at a pH of about 5, and a cation exchange resin at a pH of about 6. (AEC)
Detection and measurement of organic lampricide residues
Daniels, Stacy L.; Kempe, Lloyd L.; Billy, Thomas J.; Beeton, Alfred M.
1965-01-01
The selective lampricide, 3-trifluoromethyl-4-nitrophenol (TFM), and its synergist, 5,2'-dichloro-4'-nitrosalicylanilide (DCN), are separable from natural waters by anion exchange. The adsorbed compounds can then be recovered from the resin as concentrates by elution with selective solvent mixtures. Measurements of the amounts of lampricides in the final concentrates can be made colorimetrically at 395 mI? for TFM and at 530 mI? for the safranin complex of DCN. TFM has also been separated for quantitative determination from homogenates of whole fish. The fish is first macerated in a blender and then hydrolyzed in hot, 3 N hydrochloric acid. The amount of background color, due to certain components of the fish in the hydrolysate, is reduced by one or a combination of three methods: (1) a series of three extractions with ether, methylene chloride, and benzene; (2) cation exchange followed by methylene chloride extraction; or (3) ether extraction followed by anion exchange and subsequent desorption with amyl acetate-acetic acid.
Radiochemical microassay for aspartate aminotransferase activity in the nervous system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrison, D.; Beattie, J.; Namboodiri, M.A.
1988-07-01
A radiochemical procedure for measuring aspartate aminotransferase activity in the nervous system is described. The method is based on the exchange of tritium atoms at positions 2 and 3 of L-2,3-(/sup 3/H)aspartate with water when this amino acid is transaminated in the presence of alpha-ketoglutarate to form oxaloacetate. The tritiated water is separated from the radiolabeled aspartate by passing the reaction mixture over a cation exchange column. Confirmation that the radioactivity in the product is associated with water was obtained by separating it by anion exchange HPLC and by evaporation. The product formation is linear with time up to 120more » min and with tissue in the 0.05- to 10-micrograms range. The apparent Km for aspartate in the rat brain homogenate is found to be 0.83 mM and that for alpha-ketoglutarate to be 0.12 mM. Methods that further improve the sensitivity of the assay are also discussed.« less
Cation Exchange Reactions for Improved Quality and Diversity of Semiconductor Nanocrystals
NASA Astrophysics Data System (ADS)
Beberwyck, Brandon James
Observing the size and shape dependent physical properties of semiconductor nanocrystals requires synthetic methods capable of not only composition and crystalline phase control but also molecular scale uniformity for a particle consisting of tens to hundreds of thousands of atoms. The desire for synthetic methods that produce uniform nanocrystals of complex morphologies continues to increase as nanocrystals find roles in commercial applications, such as biolabeling and display technologies, that are simultaneously restricting material compositions. With these constraints, new synthetic strategies that decouple the nanocrystal's chemical composition from its morphology are necessary. This dissertation explores the cation exchange reaction of colloidal semiconductor nanocrystals, a template-based chemical transformation that enables the interconversion of nanocrystals between a variety of compositions while maintaining their size dispersity and morphology. Chapter 1 provides an introduction to the versatility of this replacement reaction as a synthetic method for semiconductor nanocrystals. An overview of the fundamentals of the cation exchange reaction and the diversity of products that are achievable is presented. Chapter 2 examines the optical properties of nanocrystal heterostructures produced through cation exchange reactions. The deleterious impact of exchange on the photoluminescence is correlated to residual impurities and a simple annealing protocol is demonstrated to achieve photoluminescence yields comparable to samples produced by conventional methods. Chapter 3 investigates the extension of the cation exchange reaction beyond ionic nanocrystals. Covalent III-V nanocrystal of high crystallinity and low size dispersity are synthesized by the cation exchange of cadmium pnictide nanocrystals with group 13 ions. Lastly, Chapter 4 highlights future studies to probe cation exchange reactions in colloidal semiconductor nanocrystals and progress that needs to be made for its adoption as a routine synthetic approach.
Zhang, Yu-ge; Xiao, Min; Dong, Yi-hua; Jiang, Yong
2012-08-01
A method to determine soil exchangeable calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) by using atomic absorption spectrophotometer (AAS) and extraction with ammonium acetate was developed. Results showed that the accuracy of exchangeable base cation data with AAS method fits well with the national standard referential soil data. The relative errors for parallel samples of exchangeable Ca and Mg with 66 pair samples ranged from 0.02%-3.14% and 0.06%-4.06%, and averaged to be 1.22% and 1.25%, respectively. The relative errors for exchangeable K and Na with AAS and flame photometer (FP) ranged from 0.06%-8.39% and 0.06-1.54, and averaged to be 3.72% and 0.56%, respectively. A case study showed that the determination method for exchangeable base cations by using AAS was proven to be reliable and trustable, which could reflect the real situation of soil cation exchange properties in farmlands.
Patel, Bhumit A; Pinto, Nuno D S; Gospodarek, Adrian; Kilgore, Bruce; Goswami, Kudrat; Napoli, William N; Desai, Jayesh; Heo, Jun H; Panzera, Dominick; Pollard, David; Richardson, Daisy; Brower, Mark; Richardson, Douglas D
2017-11-07
Combining process analytical technology (PAT) with continuous production provides a powerful tool to observe and control monoclonal antibody (mAb) fermentation and purification processes. This work demonstrates on-line liquid chromatography (on-line LC) as a PAT tool for monitoring a continuous biologics process and forced degradation studies. Specifically, this work focused on ion exchange chromatography (IEX), which is a critical separation technique to detect charge variants. Product-related impurities, including charge variants, that impact function are classified as critical quality attributes (CQAs). First, we confirmed no significant differences were observed in the charge heterogeneity profile of a mAb through both at-line and on-line sampling and that the on-line method has the ability to rapidly detect changes in protein quality over time. The robustness and versatility of the PAT methods were tested by sampling from two purification locations in a continuous mAb process. The PAT IEX methods used with on-line LC were a weak cation exchange (WCX) separation and a newly developed shorter strong cation exchange (SCX) assay. Both methods provided similar results with the distribution of percent acidic, main, and basic species remaining unchanged over a 2 week period. Second, a forced degradation study showed an increase in acidic species and a decrease in basic species when sampled on-line over 7 days. These applications further strengthen the use of on-line LC to monitor CQAs of a mAb continuously with various PAT IEX analytical methods. Implementation of on-line IEX will enable faster decision making during process development and could potentially be applied to control in biomanufacturing.
Mondal, Abhishek N; Dai, Chunhua; Pan, Jiefeng; Zheng, Chunlei; Hossain, Md Masem; Khan, Muhammad Imran; Wu, Liang; Xu, Tongwen
2015-07-29
To reconcile the trade-off between separation performance and availability of desired material for cation exchange membranes (CEMs), we designed and successfully prepared a novel sulfonated aromatic backbone-based cation exchange precursor named sodium 4,4'-(((((3,3'-disulfo-[1,1'-biphenyl]-4,4'-diyl)bis(oxy)) bis(4,1-phenylene))bis(azanediyl))bis(methylene))bis(benzene-1,3-disulfonate) [DSBPB] from 4,4'-bis(4-aminophenoxy)-[1,1'-biphenyl]-3,3'-disulfonic acid [BAPBDS] by a three-step procedure that included sulfonation, Michael condensation followed by reduction. Prepared DSBPB was used to blend with sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) to get CEMs for alkali recovery via diffusion dialysis. Physiochemical properties and electrochemical performance of prepared membranes can be tuned by varying the dosage of DSBPB. All the thermo-mechanical properties like DMA and TGA were investigated along with water uptake (WR), ion exchange capacity (IEC), dimensional stability, etc. The effect of DSBPB was discussed in brief in connection with alkali recovery and ion conducting channels. The SPPO/DSBPB membranes possess both high water uptake as well as ion exchange capacity with high thermo-mechanical stability. At 25 °C the dialysis coefficients (UOH) appeared to be in the range of 0.0048-0.00814 m/h, whereas the separation factor (S) ranged from 12.61 to 36.88 when the membranes were tested for base recovery in Na2WO4/NaOH waste solution. Prepared membranes showed much improved DD performances compared to traditional SPPO membrane and possess the potentiality to be a promising candidate for alkali recovery via diffusion dialysis.
ADSORPTION PROCEDURE IN PREPARING U$sup 23$$sup 3$
Stoughton, R.W.
1958-10-14
A process is presented for the separation of protoactinium and thorium from an aqueous nitric acid solution containing these metals. It comprises contacting the solution with a cation exchange phenol-formaldehyde resin containing sulfonic acid groups, and eluting the adsorbed thorium from the resin by means of aqueous nitric acid. Thereafter the adsorbed protoactinium is eluted from the resin by means of an aqueous solution of ammonium fluoride.
Corfield, M. C.; Fletcher, J. C.; Robson, A.
1967-01-01
1. A tryptic digest of the protein fraction U.S.3 from oxidized wool has been separated into 32 peptide fractions by cation-exchange resin chromatography. 2. Most of these fractions have been resolved into their component peptides by a combination of the techniques of cation-exchange resin chromatography, paper chromatography and paper electrophoresis. 3. The amino acid compositions of 58 of the peptides in the digest present in the largest amounts have been determined. 4. The amino acid sequences of 38 of these have been completely elucidated and those of six others partially derived. 5. These findings indicate that the parent protein in wool from which the protein fraction U.S.3 is derived has a minimum molecular weight of 74000. 6. The structures of wool proteins are discussed in the light of the peptide sequences determined, and, in particular, of those sequences in fraction U.S.3 that could not be elucidated. PMID:16742497
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, Krishna P.; Nguyen, Hue M.; Paulite, Melissa
2015-03-06
Core/thick-shell "giant" quantum dots (gQDs) possessing type II electronic structures exhibit suppressed blinking and diminished nonradiative Auger recombination. Here we investigate CdSe/ZnSe and ZnSe/CdS as potential new gQDs. We show theoretically and experimentally that both can exhibit partial or complete spatial separation of an excited-state electron–hole pair (i.e., type II behavior). However, we reveal that thick-shell growth is challenged by competing processes: alloying and cation exchange. We demonstrate that these can be largely avoided by choice of shelling conditions (e.g., time, temperature, and QD core identity). The resulting CdSe/ZnSe gQDs exhibit unusual single-QD properties, principally emitting from dim gray statesmore » but having high two-exciton (biexciton) emission efficiencies, whereas ZnSe/CdS gQDs show characteristic gQD blinking suppression, though only if shelling is accompanied by partial cation exchange.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, H.B.; Desai, S.R.; Nadkarni, M.N.
1961-01-01
A procedure has been standardized for the determination of boron in cokes, pitches, and graphites. The method consists of fixing the boron present in the sample as calcium borate, ion-exchange separation of boric acid from the associated cations, and the colorimetric determination of boron using the curcumin-trichloracetic acid method. Sulfur which is usually present in pitches and cokes is expected to be oxidized to sulfate during the fixation of boron and hence its effect on the colorimetry has been studied. Application of the procedure to the determination of 0.50 and 1.00 microgram amounts of boron, has given coefficients of variationmore » of l0.0 and 6.7% respectively. (auth)« less
Lin, Zian; Huang, Hui; Sun, Xiaobo; Lin, Yao; Zhang, Lan; Chen, Guonan
2012-07-13
A new polymer monolith with three modes of reverse-phase, hydrophilic and cation-exchange interaction was synthesized in 100 μm i.d. fused-silica capillary by in situ polymerization procedure. The pre-polymerization mixture consisted of glycidyl methacrylate (GMA) and 4-vinylphenylboronic acid (VPBA) as bifunctional monomers, ethylene dimethacrylate (EDMA) as crosslinker, 1,4-butanediol (BDO) and diethylene glycol (DEG) as binary porogenic solvents, and azobisisobutyronitrile (AIBN) as initiator. The resulting poly(GMA-co-VPBA-co-EDMA) monolith showed a relatively homogeneous monolithic structure, good permeability and mechanical stability. Different ratios of monomers and porogens were used for optimizing the properties of monolithic column. The column performance was assessed by the separation of a series of neutral solutes, charge solutes, phenols and anilines. Compared with poly(GMA-co-EDMA) monolith, the proposed monolith exhibited more flexible adjustment of selectivity in terms of hydrophobic, hydrophilic, as well as cation-exchange interaction in the same chromatographic conditions. High column efficiencies for benzene derivatives with 70,000-102,000 theoretical plates/m could be obtained at a linear velocity of 0.265 mm/s. The run-to-run, column-to-column, and batch-to-batch repeatabilities of the retention times were less than 8.23%. Additionally, the purposed monolith was also applied to efficient separation of alkaloids and proteins for demonstrating its potential in biomolecule separation. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Cation exchange concentraion of the Americium product from TRUEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barney, G.S.; Cooper, T.D.; Fisher, F.D.
1991-06-01
A transuranic extraction (TRUEX) process has been developed to separate and recover plutonium, americium, and other transuranic (TRU) elements from acid wastes. The main objective of the process is to reduce the effluent to below the TRU limit for actinide concentrations (<100 nCi/g of material) so it can be disposed of inexpensively. The process yields a dilute nitric acid stream containing low concentrations of the extracted americium product. This solution also contains residual plutonium and trace amounts of iron. The americium will be absorbed into a cation exchange resin bed to concentrate it for disposal or for future use. Themore » overall objective of these laboratory tests was to determine the performance of the cation exchange process under expected conditions of the TRUEX process. Effects of acid, iron, and americium concentrations on americium absorption on the resin were determined. Distribution coefficients for americium absorption from acide solutions on the resin were measured using batch equilibrations. Batch equilibrations were also used to measure americium absorption in the presence of complexants. This data will be used to identify complexants and solution conditions that can be used to elute the americium from the columns. The rate of absorption was measured by passing solutions containing americium through small columns of resin, varying the flowrates, and measuring the concentrations of americium in the effluent. The rate data will be used to estimate the minimum bed size of the columns required to concentrate the americium product. 11 refs. , 10 figs., 2 tabs.« less
Prototype development of ion exchanging alpha detectors
NASA Astrophysics Data System (ADS)
Krupp, Dominik; Scherer, Ulrich W.
2018-07-01
In contemporary alpha particle spectrometry, the sample preparation is separated from the detection of the radionuclides. The sample preparation itself requires much time and the equipment of a radiochemistry lab. If sample preparation and detection could be combined in one step, a huge time-saving potential becomes available. One way to realize such a combination is described here. The concept was explored by simulations with the well-established computer programs SRIM and AASI. In a proof of concept, the active surface of commercially available alpha detectors was modified with sulfonic acid groups as a well-known type of cation exchanger. It was shown, that in contrast to a pristine detector, a chemically modified detector is able to extract uranium-238 and -234 selectively as uranyl cations onto the detector surface from a diluted [238/234U]uranyl acetate solution. It was possible to measure directly in the sample solution for one week or to prepare the modified detector surfaces within 30 s for measurements in conventional alpha chambers. In either case, the full width at half maximum of the measured spectra was around 100 keV, allowing a clear nuclide identification. After regenerating the cation exchanger surfaces by rinsing with hydrochloric acid the typical uranium spectra had disappeared, proving chemical bonding of the uranium. Due to the large variety of potential functional groups this new way of alpha spectrometry could be beneficial for all fields of alpha particle spectrometry, from environmental analysis, over security measurements to studies of the heaviest elements.
NASA Astrophysics Data System (ADS)
Novikov, G. V.; Bogdanova, O. Yu.; Melnikov, M. E.; Drozdova, A. N.; Lobus, N. V.; Shulga, N. A.
2017-12-01
It is shown that the reaction ability of metal cations of ore minerals in Fe-Mn crusts of the Marcus Wake Rise increases in the following manner: (Co2+ < Cu2+ < Ni2+) < (Mg2+ < Mn2+ < K+ ≈ Ca2+ ≈ Na+). The composition of the exchange complex of the ore minerals is constant and includes these metal cations. Ca2+ and Na+ are major contributors to the exchange capacity of the ore minerals. The capacity of the ore minerals by cations of alkali and base metals is 0.43-0.60 and 2.08-2.70 mg-equiv/g, respectively. The exchange capacity of the ore minerals by cations of base metals increases linearly with the increase in the MnO2 content of the crust and does not depend on the geographical locations of the Marcus Wake guyots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radchenko, Valery; Engle, Jonathan Ward; Medvedev, Dmitri G.
Scandium-44 g (half-life 3.97 h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44gSc is the 44Ti/ 44gSc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44Ti isolation and purification. This study describes the production of a combined 175 MBq (4.7 mCi) batch yield of 44Ti inmore » week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44Ti via anion exchange sorption in concentrated HCl results in a 44Tc/Sc separation factor of 10 2–10 3. A second, cation exchange based step in HCl media is then applied for 44Ti fine purification from residual Sc mass. In conclusion, this method yields a 90–97% 44Ti recovery with an overall Ti/Sc separation factor of ≥10 6.« less
SEPARATION OF THORIUM FROM URANIUM
Bane, R.W.
1959-09-01
A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.
Birnbaum, Eva R.; Bene, Balazs J.; Taylor, Wayne Allen; ...
2016-06-04
Here, this paper discusses the development of a separation method for isolation of Tm-171 from a half-gram irradiated erbium target in support of stockpile stewardship and astrophysics research. The developed procedure is based on cation exchange separation using alpha-hydroxyisobutyric acid (α-HIBA) as chelating agent. It is able to achieve either a decontamination factor of 1.4(4) × 10 5 with 68.9(3) % recovery or 95.4(3) % recovery with a decontamination factor of 5.82(7) × 10 3 for a mock 500-mg target containing 17.9 mg thulium in a single pass-through at room temperature.
Lewis, Nathan S.; Spurgeon, Joshua M.
2016-10-25
The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.
Synthesis and Characterization of Perfluoro Quaternary Ammonium Anion Exchange Membranes
2012-01-01
study, new alkaline exchange membranes were prepared from the perfluorinated 3M ionomer with various quaternary ammonium cations attached with...ammonium anion exchange membranes Report Title ABSTRACT In this study, new alkaline exchange membranes were prepared from the perfluorinated 3M ionomer...exchange membranes were prepared from the perfluorinated 3M ionomer with vari- ous quaternary ammonium cations attached with sulfonamide linkage. The
Recovery process for electroless plating baths
Anderson, Roger W.; Neff, Wayne A.
1992-01-01
A process for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO.sub.3. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths.
Recovery process for electroless plating baths
Anderson, R.W.; Neff, W.A.
1992-05-12
A process is described for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO[sub 3]. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths. 18 figs.
Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors
Sharp, Nicholas; Ticknor, Brian W.; Bronikowski, Michael; ...
2016-11-17
Rare earth elements such as neodymium and samarium are ideal for probing the neutron environment that spent nuclear fuels are exposed to in nuclear reactors. The large number of stable isotopes can provide distinct isotopic signatures for differentiating the source material for nuclear forensic investigations. The rare-earth elements were isolated from the high activity fuel matrix via ion exchange chromatography in a shielded cell. The individual elements were then separated using cation exchange chromatography. In conclusion, the neodymium and samarium aliquots were analyzed via MC–ICP–MS, resulting in isotopic compositions with a precision of 0.01–0.3%.
Nd and Sm isotopic composition of spent nuclear fuels from three material test reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, Nicholas; Ticknor, Brian W.; Bronikowski, Michael
Rare earth elements such as neodymium and samarium are ideal for probing the neutron environment that spent nuclear fuels are exposed to in nuclear reactors. The large number of stable isotopes can provide distinct isotopic signatures for differentiating the source material for nuclear forensic investigations. The rare-earth elements were isolated from the high activity fuel matrix via ion exchange chromatography in a shielded cell. The individual elements were then separated using cation exchange chromatography. In conclusion, the neodymium and samarium aliquots were analyzed via MC–ICP–MS, resulting in isotopic compositions with a precision of 0.01–0.3%.
Sadavarte, Rahul; Madadkar, Pedram; Filipe, Carlos Dm; Ghosh, Raja
2018-01-15
Monoclonal antibodies undergo various forms of chemical transformation which have been shown to cause loss in efficacy and alteration in pharmacokinetic properties of these molecules. Such modified antibody molecules are known as variants. They also display physical properties such as charge that are different from intact antibody molecules. However, the difference in charge is very subtle and separation based on it is quite challenging. Charge variants are usually separated using ion-exchange column chromatography or isoelectric focusing. In this paper, we report a rapid and scalable method for fractionating monoclonal antibody charge variants, based on the use of cation exchange laterally-fed membrane chromatography (LFMC). Starting with a sample of monoclonal antibody hIgG1-CD4, three well-resolved fractions were obtained using either pH or salt gradient. These fractions were identified as acidic, neutral and basic variants. Each of these fractions contained intact heavy and light chains and so antibody fragmentation had no role in variant generation. The separation was comparable to that using column chromatography but was an order of magnitude faster. Copyright © 2017 Elsevier B.V. All rights reserved.
All-inorganic Germanium nanocrystal films by cationic ligand exchange
Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; ...
2016-01-21
In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less
Nongeminate Radiative Recombination of Free Charges in Cation-Exchanged PbS Quantum Dot Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Ashley R.; Beard, Matthew C.; Johnson, Justin C.
2016-06-01
Using photoluminescence (PL) spectroscopy we explore the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Moreover, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films.more » We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.« less
Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Ashley R.; Beard, Matthew C.; Johnson, Justin C.
2016-06-01
Using photoluminescence (PL) spectroscopy we explore the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Moreover, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films.more » We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.« less
Method of preparing high specific activity platinum-195m
Mirzadeh, Saed; Du, Miting; Beets, Arnold L.; Knapp, Jr., Furn F.
2004-06-15
A method of preparing high-specific-activity .sup.195m Pt includes the steps of: exposing .sup.193 Ir to a flux of neutrons sufficient to convert a portion of the .sup.193 Ir to .sup.195m Pt to form an irradiated material; dissolving the irradiated material to form an intermediate solution comprising Ir and Pt; and separating the Pt from the Ir by cation exchange chromatography to produce .sup.195m Pt.
A Scale Model of Cation Exchange for Classroom Demonstration.
ERIC Educational Resources Information Center
Guertal, E. A.; Hattey, J. A.
1996-01-01
Describes a project that developed a scale model of cation exchange that can be used for a classroom demonstration. The model uses kaolinite clay, nails, plywood, and foam balls to enable students to gain a better understanding of the exchange complex of soil clays. (DDR)
Zhu, Hailiang; Wu, Zhigang; Gadi, Madhusudhan Reddy; Wang, Shuaishuai; Guo, Yuxi; Edmunds, Garrett; Guan, Wanyi; Fang, Junqiang
2017-09-15
A cation exchange assisted binding-elution (BE) strategy for enzymatic synthesis of human milk oligosaccharides (HMOs) was developed. An amino linker was used to provide the cation ion under acidic condition which can be readily bound to cation exchange resin and then eluted off by saturated ammonium bicarbonate. Ammonium bicarbonate in the collections was easily removed by vacuum evaporation. This strategy circumvented the incompatible issue between glycosyltransferases and solid support or large polymers, and no purification was needed for intermediate products. With current approach, polyLacNAc backbones of HMOs and fucosylated HMOs were synthesized smoothly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gussakovsky, Daniel; Neustaeter, Haley; Spicer, Victor; Krokhin, Oleg V
2017-11-07
The development of a peptide retention prediction model for strong cation exchange (SCX) separation on a Polysulfoethyl A column is reported. Off-line 2D LC-MS/MS analysis (SCX-RPLC) of S. cerevisiae whole cell lysate was used to generate a retention dataset of ∼30 000 peptides, sufficient for identifying the major sequence-specific features of peptide retention mechanisms in SCX. In contrast to RPLC/hydrophilic interaction liquid chromatography (HILIC) separation modes, where retention is driven by hydrophobic/hydrophilic contributions of all individual residues, SCX interactions depend mainly on peptide charge (number of basic residues at acidic pH) and size. An additive model (incorporating the contributions of all 20 residues into the peptide retention) combined with a peptide length correction produces a 0.976 R 2 value prediction accuracy, significantly higher than the additive models for either HILIC or RPLC. Position-dependent effects on peptide retention for different residues were driven by the spatial orientation of tryptic peptides upon interaction with the negatively charged surface functional groups. The positively charged N-termini serve as a primary point of interaction. For example, basic residues (Arg, His, Lys) increase peptide retention when located closer to the N-terminus. We also found that hydrophobic interactions, which could lead to a mixed-mode separation mechanism, are largely suppressed at 20-30% of acetonitrile in the eluent. The accuracy of the final Sequence-Specific Retention Calculator (SSRCalc) SCX model (∼0.99 R 2 value) exceeds all previously reported predictors for peptide LC separations. This also provides a solid platform for method development in 2D LC-MS protocols in proteomics and peptide retention prediction filtering of false positive identifications.
Li, Jiaxiao; Zhu, Marcel
2018-02-01
A simple, selective, and accurate ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was established and validated for the efficient separation and quantification of polyurethane amine catalysts in polyether polyols. Amine catalysts were primarily separated in polyether polyol-based sample by solid-phase extraction, and further baseline separated on a reversed-phase/cation-exchange mixed-mode column (SiELC Primesep™ 200) using 0.1% trifluoroacetic acid/acetonitrile as a mobile phase in gradient elution mode at a flow rate of 0.2 mL/min. High-resolution quadrupole time-of-flight mass spectrometry analysis in electrospray ionization positive mode allowed the identification as N,N'-bis[3-(dimethylamino)propyl]urea, N-[2-(2-dimethylaminoethoxy)ethyl]-N-methyl-1,3-propanediamine, and N,N,N',N'-tetramethyldipropylenetriamine. The method was validated and presented good linearity for all the analytes in blank matrices within the concentration range of 0.20-5.0 or 0.1-2.0 μg/mL with the correlation coefficients (R 2 ) ranging from 0.986 to 0.997. Method recovery ranged within 81-105% at all three levels (80, 100, and 120% of the original amount) with relative standard deviations of 1.0-6.2%. The limits of detection were in the range of 0.007-0.051 μg/mL. Good precision was obtained with relative standard deviation below 3.2 and 0.72% for peak area and retention time of three amines, respectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermodynamic derivation of open circuit voltage in vanadium redox flow batteries
NASA Astrophysics Data System (ADS)
Pavelka, Michal; Wandschneider, Frank; Mazur, Petr
2015-10-01
Open circuit voltage of vanadium redox flow batteries is carefully calculated using equilibrium thermodynamics. This analysis reveals some terms in the Nernst relation which are usually omitted in literature. Due to the careful thermodynamic treatment, all uncertainties about the form of Nernst relation are removed except for uncertainties in activity coefficients of particular species. Moreover, it is shown (based again on equilibrium thermodynamics) that batteries with anion-exchange membranes follow different Nernst relation than batteries with cation-exchange membranes. The difference is calculated, and it is verified experimentally that the formula for anion-exchange membranes describes experiments with anion-exchange membranes better than the corresponding formula for cation-exchange membranes. In summary, careful thermodynamic calculation of open circuit voltage of vanadium redox flow batteries is presented, and the difference between voltage for anion-exchange and cation-exchange membranes is revealed.
Sn Cation Valency Dependence in Cation Exchange Reactions Involving Cu2-xSe Nanocrystals
2014-01-01
We studied cation exchange reactions in colloidal Cu2-xSe nanocrystals (NCs) involving the replacement of Cu+ cations with either Sn2+ or Sn4+ cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu2-xSe NCs remains cubic regardless of the degree of copper deficiency (that is, “x”) in the NC lattice. Also, Sn4+ ions are comparable in size to the Cu+ ions, while Sn2+ ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn4+ cations are used, alloyed Cu2–4ySnySe NCs (with y ≤ 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu+ cations with Sn4+ cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn2+ cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu2-xSe/SnSe heterostructures, with no Cu–Sn–Se alloys. PMID:25340627
Separations by supported liquid membrane cascades
Danesi, Pier R.
1986-01-01
The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid membranes. The membranes contain alternatively a liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solutions and the supported liquid membranes are arranged in such a way to provide a continuous process which leads to the continuous enrichment of the species which show the highest permeability coefficients. By virtue of the very high number of stages which can be arranged, even chemical species having very similar chemical behavior (and consequently very similar permeability coefficients) can be completely separated. The invention also provide a way to concentrate the separated species.
NASA Technical Reports Server (NTRS)
Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.
1975-01-01
Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.
Publications - GMC 319 | Alaska Division of Geological & Geophysical
DGGS GMC 319 Publication Details Title: Porotechnology data and cation exchange capacity data Authors and cation exchange capacity data: Alaska Division of Geological & Geophysical Surveys Geologic
Geometrical isomerization of carotenoids mediated by cation radical/dication formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, G.; Wei, C.C.; Jeevarajan, A.S.
1996-03-28
Electrochemical oxidation of all-trans-canthaxanthin and {beta}-carotene in dichloromethane leads to significant trans-to-cis isomerization, with cis isomers accounting for about 40% of the products formed. The electrochemically generated isomers were separated by reverse-phase high-performance liquid chromatography and identified as 9-cis, 13-cis, 15-cis, and 9,13-di-cis isomers of the carotenoids by {sup 1}H-NMR spectroscopy and optical spectroscopy (Q ratio). The results of simultaneous bulk electrolysis and optical absorption spectroscopy indicate the following isomerization mechanism: the all-trans cation radicals and/or dications formed by electrochemical oxidation of all-trans-carotenoids can easily undergo geometrical isomerization to form cis cation radicals and/or dications. The latter are converted bymore » the comproportionation equilibrium to cation radicals which are then transformed to neutral cis-carotenoids by exchanging one electron with neutral carotenoids. AM1 molecular orbital calculations, which show that the energy barriers of configurational transformation from trans to cis are much lower in the cation radical and dication species than in the neutral molecule, strongly support the first step of this mechanism. 36 refs., 5 figs., 2 tabs.« less
Thayer, J R; Rohrer, J S; Avdalovic, N; Gearing, R P
1998-02-15
High-pH anion exchange chromatography with pulsed amperometric detection (HPAEC/PAD) (1) is routinely used to separate neutral and charged oligosaccharides differing by branch, linkage, and positional isomerism. Oligosaccharides are eluted in 0.1 M NaOH with gradients of sodium acetate (up to 0.25 M). Analyses of HPAEC/PAD-purified oligosaccharides generally require neutralization and removal of eluent salts. To facilitate the process, we designed and produced a cation-exchange system to remove sodium ions (Na+) from the eluent after oligosaccharide detection [the Carbohydrate Membrane Desalter (CMD), with a volatile regenerant]. Exchange of >99.5% of eluent Na+ for hydronium ions (H3O+) within the CMD generates dilute acetic acid (removable by vacuum evaporation). The exchange process desalts up to 0.35 M Na+ at 1.0 ml/min. Oligosaccharides collected after on-line desalting, evaporated and resuspended in their original volume of deionized water contained < or = 350 muM residual Na+ when the eluting sodium concentration was 300 mM. This represents a desalting efficiency of >99.8%. Recovery of neutral and sialylated oligosaccharides under these conditions ranged from 75 to 100%. With the CMD system and postcollection evaporation, HPAEC/PAD can purify oligosaccharides ready for further characterization. As a proof test, oligosaccharides from a human monoclonal antibody were separated by HPAEC/PAD, desalted with the CMD system, dried, and analyzed by matrix-assisted laser desorption-ionization, time-of-flight mass spectrometry. Copyright 1998 Academic Press.
USDA-ARS?s Scientific Manuscript database
CAtion/H (+) eXchangers (CAXs) are integral membrane proteins that transport Ca (2+) or other cations by exchange with protons. While several yeast and plant CAX proteins have been characterized, no functional analysis of a vertebrate CAX homologue has yet been reported. In this study, we further ch...
NASA Astrophysics Data System (ADS)
Karlsson, Stefan; Wondraczek, Lothar; Ali, Sharafat; Jonson, Bo
2017-04-01
Monovalent cations enable efficient ion exchange processes due to their high mobility in silicate glasses. Numerous properties can be modified in this way, e.g., mechanical, optical, electrical or chemical performance. In particular, alkali cation exchange has received significant attention, primarily with respect to introducing compressive stress into the surface region of a glass, which increases mechanical durability. However, most of the present applications rely on specifically tailored matrix compositions in which the cation mobility is enhanced. This largely excludes the major area of soda lime silicates (SLS) such as are commodity in almost all large-scale applications of glasses. Basic understanding of the relations between structural parameters and the effective diffusion coefficients may help to improve ion-exchanged SLS glass products, on the one hand in terms of obtainable strength and on the other in terms of cost. In the present paper, we discuss the trends in the effective diffusion coefficients when exchanging Na+ for various monovalent cations (K+, Cu+, Ag+, Rb+ and Cs+) by drawing relations to physico-chemical properties. Correlations of effective diffusion coefficients were found for the bond dissociation energy and the electronic cation polarizability, indicating that localization and rupture of bonds are of importance for the ion exchange rate.
Forging Colloidal Nanostructures via Cation Exchange Reactions
2016-01-01
Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471
Forging Colloidal Nanostructures via Cation Exchange Reactions.
De Trizio, Luca; Manna, Liberato
2016-09-28
Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field.
RECOVERY OF ALUMINUM FROM FISSION PRODUCTS
Blanco, R.E.; Higgins, I.R.
1962-11-20
A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)
Nitrogen removal from wastewater through microbial electrolysis cells and cation exchange membrane.
Haddadi, Sakineh; Nabi-Bidhendi, Gholamreza; Mehrdadi, Nasser
2014-02-17
Vulnerability of water resources to nutrients led to progressively stricter standards for wastewater effluents. Modification of the conventional procedures to meet the new standards is inevitable. New technologies should give a priority to nitrogen removal. In this paper, ammonium chloride and urine as nitrogen sources were used to investigate the capacity of a microbial electrolysis cell (MEC) configured by cation exchange membrane (CEM) for electrochemical removal of nitrogen over open-and closed-circuit potentials (OCP and CCP) during biodegradation of organic matter. Results obtained from this study indicated that CEM was permeable to both organic and ammonium nitrogen over OCP. Power substantially mediated ammonium migration from anodic wastewater to the cathode, as well. With a urine rich wastewater in the anode, the maximum rate of ammonium intake into the cathode varied from 34.2 to 40.6 mg/L.h over CCP compared to 10.5-14.9 mg/L.h over OCP. Ammonium separation over CCP was directly related to current. For 1.46-2.12 mmol electron produced, 20.5-29.7 mg-N ammonium was removed. Current also increased cathodic pH up to 12, a desirable pH for changing ammonium ion to ammonia gas. Results emphasized the potential for MEC in control of ammonium through ammonium separation and ammonia volatilization provided that membrane characteristic is considered in their development.
Cation Exchange Water Softeners
WaterSense released a notice of intent to develop a specification for cation exchange water softeners. The program has made the decision not to move forward with a spec at this time, but is making this information available.
Chatelain, Lucile; Tuna, Floriana; Pécaut, Jacques; Mazzanti, Marinella
2017-05-02
Trinuclear versus dinuclear heterodimetallic U V O 2 + Co 2+ complexes were selectively assembled via a cation-cation interaction by tuning the ligand. The trimeric complex 2, with a linear [Co-O[double bond, length as m-dash]U[double bond, length as m-dash]O-Co] core, exhibits magnetic exchange and slow relaxation with a reversal barrier of 30.5 ± 0.9 K providing the first example of a U-Co exchange-coupled SMM.
Radchenko, Valery; Engle, Jonathan W; Medvedev, Dmitri G; Maassen, Joel M; Naranjo, Cleo M; Unc, George A; Meyer, Catherine A L; Mastren, Tara; Brugh, Mark; Mausner, Leonard; Cutler, Cathy S; Birnbaum, Eva R; John, Kevin D; Nortier, F Meiring; Fassbender, Michael E
2017-07-01
Scandium-44g (half-life 3.97h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44g Sc is the 44 Ti/ 44g Sc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44 Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44 Ti isolation and purification. This study describes the production of a combined 175MBq (4.7mCi) batch yield of 44 Ti in week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44 Ti via anion exchange sorption in concentrated HCl results in a 44 Tc/Sc separation factor of 10 2 -10 3 . A second, cation exchange based step in HCl media is then applied for 44 Ti fine purification from residual Sc mass. In summary, this method yields a 90-97% 44 Ti recovery with an overall Ti/Sc separation factor of ≥10 6 . Copyright © 2017 Elsevier Inc. All rights reserved.
Radchenko, Valery; Engle, Jonathan Ward; Medvedev, Dmitri G.; ...
2017-04-07
Scandium-44 g (half-life 3.97 h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44gSc is the 44Ti/ 44gSc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44Ti isolation and purification. This study describes the production of a combined 175 MBq (4.7 mCi) batch yield of 44Ti inmore » week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44Ti via anion exchange sorption in concentrated HCl results in a 44Tc/Sc separation factor of 10 2–10 3. A second, cation exchange based step in HCl media is then applied for 44Ti fine purification from residual Sc mass. In conclusion, this method yields a 90–97% 44Ti recovery with an overall Ti/Sc separation factor of ≥10 6.« less
Appelo, C A J; Vinsot, A; Mettler, S; Wechner, S
2008-10-23
A borehole in the Callovo-Oxfordian clay rock in ANDRA's underground research facility was sampled during 1 year and chemically analyzed. Diffusion between porewater and the borehole solution resulted in concentration changes which were modeled with PHREEQC's multicomponent diffusion module. In the model, the clay rock's pore space is divided in free porewater (electrically neutral) and diffuse double layer water (devoid of anions). Diffusion is calculated separately for the two domains, and individually for all the solute species while a zero-charge flux is maintained. We explain how the finite difference formulas for radial diffusion can be translated into mixing factors for solutions. Operator splitting is used to calculate advective flow and chemical reactions such as ion exchange and calcite dissolution and precipitation. The ion exchange reaction is formulated in the form of surface complexation, which allows distributing charge over the fixed sites and the diffuse double layer. The charge distribution affects pH when calcite dissolves, and modeling of the experimental data shows that about 7% of the cation exchange capacity resides in the diffuse double layer. The model calculates the observed concentration changes very well and provides an estimate of the pristine porewater composition in the clay rock.
Bhaskar, M; Surekha, M; Suma, N
2018-02-01
The liquid phase esterification of phenyl acetic acid with p -cresol over different metal cation exchanged montmorillonite nanoclays yields p -cresyl phenyl acetate. Different metal cation exchanged montmorillonite nanoclays (M n + = Al 3+ , Zn 2+ , Mn 2+ , Fe 3+ , Cu 2+ ) were prepared and the catalytic activity was studied. The esterification reaction was conducted by varying molar ratio of the reactants, reaction time and catalyst amount on the yield of the ester. Among the different metal cation exchanged catalysts used, Al 3+ -montmorillonite nanoclay was found to be more active. The characterization of the material used was studied under different techniques, namely X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The product obtained, p -cresyl phenyl acetate, was identified by thin-layer chromotography and confirmed by Fourier transform infrared, 1 H NMR and 13 C NMR. The regeneration activity of used catalyst was also investigated up to fourth generation.
Spectroscopic study of carbaryl sorption on smectite from aqueous suspension.
de Oliveira, Maurilio Fernandes; Johnston, Cliff T; Premachandra, G S; Teppen, Brian J; Li, Hui; Laird, David A; Zhu, Dongqiang; Boyd, Stephen A
2005-12-01
Sorption of carbaryl (1-naphthyl-N-methyl-carbamate) from aqueous suspension to smectite was studied using Fourier transform infrared (FTIR), high-performance liquid chromatography (HPLC) (for batch sorption), and quantum chemical methods. The amount of carbaryl sorbed was strongly dependent on the surface-charge density of the smectite with more sorption occurring on the two "low" surface-charge density smectites (SHCa-1 and SWy-2) compared to that of the high surface-charge SAz-1 smectite. In addition, the amount of carbaryl sorbed was strongly dependent on the nature of the exchangeable cation and followed the order of Ba approximately Cs approximately Ca > Mg approximately K > Na approximately Li for SWy-2. A similartrend was found for hectorite (SHCa-1) of Cs > Ba > Ca > K approximately Mg > Na approximately Li. Using the shift of the carbonyl stretching band as an indicator of the strength of interaction between carbaryl and the exchangeable cation, the observed order was Mg > Ca > Ba approximately K > Na > Cs. The position of the carbonyl stretching band shifted to lower wavenumbers with increasing ionic potential of the exchangeable cation. Density functional theory predicted a cation-induced lengthening of the C=O bond, resulting from the carbonyl group interacting directly with the exchangeable cation in support of the spectroscopic observations. Further evidence was provided by a concomitant shift in the opposite direction by several vibrational bands in the 1355-1375 cm(-1) region assigned to stretching bands of the carbamate N-Ccarbonyl and Oether-Ccarbonyl bonds. These data indicate that carbaryl sorption is due, in part, to site-specific interactions between the carbamate functional group and exchangeable cations, as evidenced by the FTIR data. However, these data suggest that hydrophobic interactions also contribute to the overall amount of carbaryl sorbed. For example, the FTIR data indicated thatthe weakest interaction occurred when Cs+ was the exchangeable cation. In contrast, the highest amount of carbaryl sorption was observed on Cs-exchanged smectite. Of all the cations studied, Cs has the lowest enthalpy of hydration. It is suggested that this low hydration energy provides the carbaryl with greater access to the hydrophobic regions of the siloxane surface.
Fait, M Elisa; Garrote, Graciela L; Clapés, Pere; Tanco, Sebastian; Lorenzo, Julia; Morcelle, Susana R
2015-07-01
Two novel arginine-based cationic surfactants were synthesized using as biocatalyst papain, an endopeptidase from Carica papaya latex, adsorbed onto polyamide. The classical substrate N (α)-benzoyl-arginine ethyl ester hydrochloride for the determination of cysteine and serine proteases activity was used as the arginine donor, whereas decyl- and dodecylamine were used as nucleophiles for the condensation reaction. Yields higher than 90 and 80 % were achieved for the synthesis of N (α)-benzoyl-arginine decyl amide (Bz-Arg-NHC10) and N (α)-benzoyl-arginine dodecyl amide (Bz-Arg-NHC12), respectively. The purification process was developed in order to make it more sustainable, by using water and ethanol as the main separation solvents in a single cationic exchange chromatographic separation step. Bz-Arg-NHC10 and Bz-Arg-NHC12 proved antimicrobial activity against both Gram-positive and Gram-negative bacteria, revealing their potential use as effective disinfectants as they reduced 99 % the initial bacterial population after only 1 h of contact. The cytotoxic effect towards different cell types of both arginine derivatives was also measured. Bz-Arg-NHCn demonstrated lower haemolytic activity and were less eye-irritating than the commercial cationic surfactant cetrimide. A similar trend could also be observed when cytotoxicity was tested on hepatocytes and fibroblast cell lines: both arginine derivatives were less toxic than cetrimide. All these properties would make the two novel arginine compounds a promising alternative to commercial cationic surfactants, especially for their use as additives in topical formulations.
Cation exchange in a glacial till drumlin at a road salt storage facility
NASA Astrophysics Data System (ADS)
Ostendorf, David W.; Xing, Baoshan; Kallergis, Niki
2009-05-01
We use laboratory and field data to calibrate existing geochemical and transport models of cation exchange induced by contamination of an unconfined aquifer at a road salt storage facility built upon a glacial till drumlin in eastern Massachusetts. A Gaines and Thomas selectivity coefficient K models the equilibrium sodium and divalent cation distribution in the groundwater and solid matrix, while an existing method of characteristics model describes the advective transport of total dissolved cations and sorbed sodium. Laboratory isotherms of split spoon soil samples from the drumlin calibrate K with an average value of 0.0048 (L/g) 1/2 for a measured cation exchange capacity of 0.057 meq/g dry soil. Ten years of monitoring well data document groundwater flow and the advection of conservative chloride due to outdoor storage and handling of road salt at the site. The monitoring well cation data and retarded transport model offer an independent K calibration of 0.0040 to 0.0047 (L/g) 1/2: the consistency of the field and laboratory selectivity coefficient calibrations endorse this application of the Gaines and Thomas and method of characteristics models. The advancing deicing agent plume releases divalent cations from the till into the groundwater, so that monitoring well samples do not reflect the chemical composition of the road salt. In this regard, dissolved divalent cation milliequivalent concentrations are as high as 80% of the total dissolved cationic concentrations in the salt contaminated monitoring well samples, far greater than their 2.5% level in the road salt stored at the site. Cation exchange can thus obscure attempts to hindcast stored road salt sodium water table concentration from monitoring well sample stoichiometry, or to predict sodium impacts on groundwater or receiving stream quality downgradient of the well.
Cation exchange in a glacial till drumlin at a road salt storage facility.
Ostendorf, David W; Xing, Baoshan; Kallergis, Niki
2009-05-12
We use laboratory and field data to calibrate existing geochemical and transport models of cation exchange induced by contamination of an unconfined aquifer at a road salt storage facility built upon a glacial till drumlin in eastern Massachusetts. A Gaines and Thomas selectivity coefficient K models the equilibrium sodium and divalent cation distribution in the groundwater and solid matrix, while an existing method of characteristics model describes the advective transport of total dissolved cations and sorbed sodium. Laboratory isotherms of split spoon soil samples from the drumlin calibrate K with an average value of 0.0048 (L/g)(1/2) for a measured cation exchange capacity of 0.057 meq/g dry soil. Ten years of monitoring well data document groundwater flow and the advection of conservative chloride due to outdoor storage and handling of road salt at the site. The monitoring well cation data and retarded transport model offer an independent K calibration of 0.0040 to 0.0047 (L/g)(1/2): the consistency of the field and laboratory selectivity coefficient calibrations endorse this application of the Gaines and Thomas and method of characteristics models. The advancing deicing agent plume releases divalent cations from the till into the groundwater, so that monitoring well samples do not reflect the chemical composition of the road salt. In this regard, dissolved divalent cation milliequivalent concentrations are as high as 80% of the total dissolved cationic concentrations in the salt contaminated monitoring well samples, far greater than their 2.5% level in the road salt stored at the site. Cation exchange can thus obscure attempts to hindcast stored road salt sodium water table concentration from monitoring well sample stoichiometry, or to predict sodium impacts on groundwater or receiving stream quality downgradient of the well.
Hirsh, Allen G; Tsonev, Latchezar I
2017-04-28
This paper details the use of a method of creating controlled pH gradients (pISep) to improve the separation of protein isoforms on ion exchange (IEX) stationary phases in the presence of various isocratic levels of urea. The pISep technology enables the development of computer controlled pH gradients on both cationic (CEX) and anionic (AEX) IEX stationary phases over the very wide pH range from 2 to 12. In pISep, titration curves generated by proportional mixing of the acidic and basic pISep working buffers alone, or in the presence of non-buffering solutes such as the neutral salt NaCl (0-1M), polar organics such as urea (0-8M) or acetonitrile (0-80 Vol%), can be fitted with high fidelity using high order polynomials which, in turn allows construction of a mathematical manifold %A (% acidic pISep buffer) vs. pH vs. [non-buffering solute], permitting precise computer control of pH and the non-buffering solute concentration allowing formation of dual uncoupled liquid chromatographic (LC) gradients of arbitrary shape (Hirsh and Tsonev, 2012 [1]). The separation of protein isoforms examined in this paper by use of such pH gradients in the presence of urea demonstrates the fractionation power of a true single step two dimensional liquid chromatography which we denote as Stability-Influenced Ion Exchange Chromatography (SIIEX). We present evidence that SIIEX is capable of increasing the resolution of protein isoforms difficult to separate by ordinary pH gradient IEX, and potentially simplifying the development of laboratory and production purification strategies involving on-column simultaneous pH and urea unfolding or refolding of targeted proteins. We model some of the physics implied by the dynamics of the observed protein fractionations as a function of both urea concentration and pH assuming that urea-induced native state unfolding competes with native state electrostatic interaction binding to an IEX stationary phase. Implications for in vivo protein-membrane interactions are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Place, Bryan K.; Quilty, Aleya T.; Di Lorenzo, Robert A.; Ziegler, Susan E.; VandenBoer, Trevor C.
2017-03-01
Amines are important drivers in particle formation and growth, which have implications for Earth's climate. In this work, we developed an ion chromatographic (IC) method using sample cation-exchange preconcentration for separating and quantifying the nine most abundant atmospheric alkylamines (monomethylamine (MMAH+), dimethylamine (DMAH+), trimethylamine (TMAH+), monoethylamine (MEAH+), diethylamine (DEAH+), triethylamine (TEAH+), monopropylamine (MPAH+), isomonopropylamine (iMPAH+), and monobutylamine (MBAH+)) and two alkyl diamines (1, 4-diaminobutane (DABH+) and 1, 5-diaminopentane (DAPH+)). Further, the developed method separates the suite of amines from five common atmospheric inorganic cations (Na+, NH4+, K+, Mg2+, Ca2+). All 16 cations are greater than 95 % baseline resolved and elute in a runtime of 35 min. This paper describes the first successful separation of DEAH+ and TMAH+ by IC and achieves separation between three sets of structural isomers, providing specificity not possible by mass spectrometry. The method detection limits for the alkylamines are in the picogram per injection range and the method precision (±1σ) analyzed over 3 months was within 16 % for all the cations. The performance of the IC method for atmospheric application was tested with biomass-burning (BB) particle extracts collected from two forest fire plumes in Canada. In extracts of a size-resolved BB sample from an aged plume, we detected and quantified MMAH+, DMAH+, TMAH+, MEAH+, DEAH+, and TEAH+ in the presence of Na+, NH4+, and K+ at molar ratios of amine to inorganic cation ranging from 1 : 2 to 1 : 1000. Quantities of DEAH+ and DMAH+ of 0.2-200 and 3-1200 ng m-3, respectively, were present in the extracts and an unprecedented amine-to-ammonium molar ratio greater than 1 was observed in particles with diameters spanning 56-180 nm. Extracts of respirable fine-mode particles (PM2. 5) from a summer forest fire in British Columbia in 2015 were found to contain iMPAH+, TMAH+, DEAH+ and TEAH+ at molar ratios of 1 : 300 with the dominant cations. The amine-to-ammonium ratio in a time series of samples never exceeded 0.15 during the sampling of the plume. These results and an amine standard addition demonstrate the robustness and sensitivity of the developed method when applied to the complex matrix of BB particle samples. The detection of multiple alkylamines in the analyzed BB samples indicates that this speciation and quantitation approach can be used to constrain BB emission estimates and the biogeochemical cycling of these reduced nitrogen species.
Cation-Exchanged Zeolitic Chalcogenides for CO2 Adsorption.
Yang, Huajun; Luo, Min; Chen, Xitong; Zhao, Xiang; Lin, Jian; Hu, Dandan; Li, Dongsheng; Bu, Xianhui; Feng, Pingyun; Wu, Tao
2017-12-18
We report here the intrinsic advantages of a special family of porous chalcogenides for CO 2 adsorption in terms of high selectivity of CO 2 /N 2 , large uptake capacity, and robust structure due to their first-ever unique integration of the chalcogen-soft surface, high porosity, all-inorganic crystalline framework, and the tunable charge-to-volume ratio of exchangeable cations. Although tuning the CO 2 adsorption properties via the type of exchangeable cations has been well-studied in oxides and MOFs, little is known about the effects of inorganic exchangeable cations in porous chalcogenides, in part because ion exchange in chalcogenides can be very sluggish and incomplete due to their soft character. We have demonstrated that, through a methodological change to progressively tune the host-guest interactions, both facile and nearly complete ion exchange can be accomplished. Herein, a series of cation-exchanged zeolitic chalcogenides (denoted as M@RWY) were studied for the first time for CO 2 adsorption. Samples were prepared through a sequential ion-exchange strategy, and Cs + -, Rb + -, and K + -exchanged samples demonstrated excellent CO 2 adsorption performance. Particularly, K@RWY has the superior CO 2 /N 2 selectivity with the N 2 adsorption even undetected at either 298 or 273 K. It also has the large uptake of 6.3 mmol/g (141 cm 3 /g) at 273 K and 1 atm with an isosteric heat of 35-41 kJ mol -1 , the best among known porous chalcogenides. Moreover, it permits a facile regeneration and exhibits an excellent recyclability, as shown by the multicycling adsorption experiments. Notably, K@RWY also demonstrates a strong tolerance toward water.
Divalent cation shrinks DNA but inhibits its compaction with trivalent cation.
Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi
2016-05-28
Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.
Divalent Cation Removal by Donnan Dialysis for Improved Reverse Electrodialysis.
Rijnaarts, Timon; Shenkute, Nathnael T; Wood, Jeffery A; de Vos, Wiebe M; Nijmeijer, Kitty
2018-05-07
Divalent cations in feedwater can cause significant decreases in efficiencies for membrane processes, such as reverse electrodialysis (RED). In RED, power is harvested from the mixing of river and seawater, and the obtainable voltage is reduced and the resistance is increased if divalent cations are present. The power density of the RED process can be improved by removing divalent cations from the fresh water. Here, we study divalent cation removal from fresh water using seawater as draw solution in a Donnan dialysis (DD) process. In this way, a membrane system with neither chemicals nor electrodes but only natural salinity gradients can be used to exchange divalent cations. For DD, the permselectivity of the cation exchange membrane is found to be crucial as it determines the ability to block salt leakage (also referred to as co-ion transport). Operating DD using a membrane stack achieved a 76% reduction in the divalent cation content in natural fresh water with residence times of just a few seconds. DD pretreated fresh water was then used in a RED process, which showed improved gross and net power densities of 9.0 and 6.3%, respectively. This improvement is caused by a lower fresh water resistance (at similar open circuit voltages), due to exchange of divalent for monovalent cations.
Liu, Yong-Qiang; Yu, Hong
2016-08-01
Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guo, Zhongxian; Liu, Ying; Li, Shuping; Yang, Zhaoguang
2009-12-01
Identification of microbial contaminants in drinking water is a challenge to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) due to low levels of microorganisms in fresh water. To avoid the time-consuming culture step of obtaining enough microbial cells for subsequent MALDI-MS analysis, a combination of membrane filtration and nanoparticles- or microparticles-based magnetic separation is a fast and efficient approach. In this work, the interaction of bacteria and fluidMAG-PAA, a cation-exchange superparamagnetic nanomaterial, was investigated by MALDI-MS analysis and transmission electron microscopy. FluidMAG-PAA selectively captured cells of Salmonella, Bacillus, Enterococcus and Staphylococcus aureus. This capture was attributed to the aggregation of negatively charged nanoparticles on bacterial cell regional surfaces that bear positive charges. Three types of non-porous silica-encapsulated anion-exchange magnetic microparticles (SiMAG-Q, SiMAG-PEI, SiMAG-DEAE) were capable of concentrating a variety of bacteria, and were compared with silica-free, smaller fluidMAG particles. Salmonella, Escherichia coli, Enterococcus and other bacteria spiked in aqueous solutions, tap water and reservoir water were separated and concentrated by membrane filtration and magnetic separation based on these ion-exchange magnetic materials, and then characterized by whole cell MALDI-MS. By comparing with the mass spectra of the isolates and pure cells, bacteria in fresh water can be rapidly detected at 1 x 10(3) colony-forming units (cfu)/mL. Copyright 2009 John Wiley & Sons, Ltd.
Espeleta, Javier F.; Cardon, Zoe G.; Mayer, K. Ulrich; ...
2016-11-12
Hydro-biogeochemical processes in the rhizosphere regulate nutrient and water availability, and thus ecosystem productivity. We hypothesized that two such processes often neglected in rhizosphere models — diel plant water use and competitive cation exchange — could interact to enhance availability of K + and NH 4 +, both high-demand nutrients. A rhizosphere model with competitive cation exchange was used to investigate how diel plant water use (i.e., daytime transpiration coupled with no nighttime water use, with nighttime root water release, and with nighttime transpiration) affects competitive ion interactions and availability of K + and NH 4 +. Competitive cation exchangemore » enabled lowdemand cations that accumulate against roots (Ca 2+, Mg 2+, Na +) to desorb NH 4 + and K + from soil, generating non-monotonic dissolved concentration profiles (i.e. ‘hotspots’ 0.1–1 cm from the root). Cation accumulation and competitive desorption increased with net root water uptake. Daytime transpiration rate controlled diel variation in NH 4 + and K + aqueous mass, nighttime water use controlled spatial locations of ‘hotspots’, and day-to-night differences in water use controlled diel differences in ‘hotspot’ concentrations. Finally, diel plant water use and competitive cation exchange enhanced NH 4 + and K + availability and influenced rhizosphere concentration dynamics. Demonstrated responses have implications for understanding rhizosphere nutrient cycling and plant nutrient uptake.« less
Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi
2015-04-28
Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe(3+)>Al(3+)>Cu(2+)>Ca(2+)>K(+)>Na(+), which is consistent with the binding energy of cation-π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation-π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na(+)-smectite and K(+)-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe(3+), Al(3+), and Cu(2+) are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O2(-) , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation. Copyright © 2015 Elsevier B.V. All rights reserved.
Bo, Chun Miao; Wang, Chaozhan; Wei, Yin Mao
2017-12-01
A novel approach that involved the grafting of diblock copolymer with two types of monomer onto substrate by sequential surface initiated-atom transfer radical polymerization was proposed to prepare a mixed-mode chromatographic stationary phase. The distinguishing feature of this method is that it can be applied in the preparation of various mixed-mode stationary phases. In this study, a new reverse-phase/ion-exchange stationary phase was prepared by grafting hydrophobic styrene and cationic sodium 4-styrenesulfonate by the proposed approach onto silica surface. The chromatographic properties of the prepared stationary phase were evaluated by the separation of benzene derivatives, anilines, and β-agonists, and by the effect of pH values and acetonitrile content on the retention. Compared with typical RP columns, the prepared stationary phase achieved the better resolution and higher selectivity at a shorter separation time and lower organic content. Moreover, the application of the prepared column was proved by separating widely distributed polar and charged compounds simultaneously. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yu, Jaecheul; Park, Younghyun; Lee, Taeho
2014-04-01
Single-chamber microbial fuel cell (SMFC)-I consisted of 4 separator-electrode assemblies (SEAs) with two types of cation exchange membrane (CEM: Nafion and CMI 7000) and an anion exchange membrane (AEM: AMI 7001). SMFC-II consisted of 4 SEAs with Nafion and three types of nonwoven fabric. SMFC-I and -II were inoculated with anaerobic digested and activated sludge, respectively, and operated under fed-batch mode. In SMFC I, AEM-SEA showed a maximum power density (PDmax). Nafion-SEA showed a PDmax in SMFC II, which was similar to that of Nafion-SEA of SMFC I. Although different bacteria were developed in SMFC-I (Deltaproteobacteria and Firmicutes) and SMFC-II (Gammaproteobacteria, Betaproteobacteria and Bacteroidetes), the inoculum type little affects electricity generation. Variations of pH and oxygen in biofilm have influenced microbial community structure and electricity generation according to the electrode and separator material. Although the electricity generation of non-woven fabric-SEA was less than that of Nafion-SEA, the use of non-woven fabrics is expected to reduce the construction and operating costs of MFCs.
Method for dissolving plutonium oxide with HI and separating plutonium
Vondra, Benedict L.; Tallent, Othar K.; Mailen, James C.
1979-01-01
PuO.sub.2 -containing solids, particularly residues from incomplete HNO.sub.3 dissolution of irradiated nuclear fuels, are dissolved in aqueous HI. The resulting solution is evaporated to dryness and the solids are dissolved in HNO.sub.3 for further chemical reprocessing. Alternatively, the HI solution containing dissolved Pu values, can be contacted with a cation exchange resin causing the Pu values to load the resin. The Pu values are selectively eluted from the resin with more concentrated HI.
Picart, Sébastien; Ramière, Isabelle; Mokhtari, Hamid; Jobelin, Isabelle
2010-09-02
This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelized by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model.
Zhang, Wenzhong; Hietala, Sami; Khriachtchev, Leonid; Hatanpää, Timo; Doshi, Bhairavi; Koivula, Risto
2018-06-21
The lanthanides (Ln) are an essential part of many advanced technologies. Our societal transformation toward renewable energy drives their ever-growing demand. The similar chemical properties of the Ln pose fundamental difficulties in separating them from each other, yet high purity elements are crucial for specific applications. Here, we propose an intralanthanide separation method utilizing a group of titanium(IV) butyl phosphate coordination polymers as solid-phase extractants. These materials are characterized, and they contain layered structures directed by the hydrophobic interaction of the alkyl chains. The selective Ln uptake results from the transmetalation reaction (framework metal cation exchange), where the titanium(IV) serves as sacrificial coordination centers. The "tetrad effect" is observed from a dilute Ln 3+ mixture. However, smaller Ln 3+ ions are preferentially extracted in competitive binary separation models between adjacent Ln pairs. The intralanthanide ion-exchange selectivity arises synergistically from the coordination and steric strain preferences, both of which follow the reversed Ln contraction order. A one-step aqueous separation of neodymium (Nd) and dysprosium (Dy) is quantitatively achievable by simply controlling the solution pH in a batch mode, translating into a separation factor of greater than 2000 and 99.1% molar purity of Dy in the solid phase. Coordination polymers provide a versatile platform for further exploring selective Ln separation processes via the transmetalation process.
Role of interlayer hydration in lincomycin sorption by smectite clays.
Wang, Cuiping; Ding, Yunjie; Teppen, Brian J; Boyd, Stephen A; Song, Cunyi; Li, Hui
2009-08-15
Lincomycin, an antibiotic widely administered as a veterinary medicine, is frequently detected in water. Little is known about the soil-water distribution of lincomycin despite the fact that this is a major determinant of its environmental fate and potential for exposure. Cation exchange was found to be the primary mechanism responsible for lincomycin sorption by soil clay minerals. This was evidenced by pH-dependent sorption, and competition with inorganic cations for sorptive sites. As solution pH increased, lincomycin sorption decreased. The extent of reduction was consistent with the decrease in cationic lincomycin species in solution. The presence of Ca2+ in solution diminished lincomycin sorption. Clay interlayer hydration status strongly influenced lincomycin adsorption. Smectites with the charge deficit from isomorphic substitution in tetrahedral layers (i.e., saponite) manifest a less hydrated interlayer environment resulting in greater sorption than that by octahedrally substituted clays (i.e., montmorillonite). Strongly hydrated exchangeable cations resulted in a more hydrated clay interlayer environment reducing sorption in the order of Ca- < K- < Cs-smectite. X-ray diffraction revealed that lincomycin was intercalated in smectite clay interlayers. Sorption capacity was limited by clay surface area rather than by cation exchange capacity. Smectite interlayer hydration was shown to be a major, yet previously unrecognized, factor influencing the cation exchange process of lincomycin on aluminosilicate mineral surfaces.
Walch, Nicole; Jungbauer, Alois
2017-06-01
Truly continuous biomanufacturing processes enable an uninterrupted feed stream throughout the whole production without the need for holding tanks. We have utilized microporous anion and cation exchangers into which only salts, but not proteins, can penetrate into the pores for desalting of protein solutions, while diafiltration or dilution is usually employed for feed adjustments. Anion exchange and cation exchange chromatography columns were connected in series to remove both anions and cations. To increase operation performance, a continuous process was developed comprised of four columns. Continuous mode was achieved by staggered cycle operation, where one set of columns, consisting of one anion exchange and one cation exchange column, was loaded during the regeneration of the second set. Refolding, desalting and subsequent ion exchange capturing with a scFv as the model protein was demonstrated. The refolding solution was successfully desalted resulting in a consistent conductivity below 0.5 mS/cm from initial values of 10 to 11 mS/cm. With continuous operation process time could be reduced by 39% while productivity was increased to 163% compared to batch operation. Desalting of the protein solution resulted in up to 7-fold higher binding capacities in the subsequent ion exchange capture step with conventional protein binding resins. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qualitative analysis scheme based on the properties of ion exchangers (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machiroux, R.; Merciny, E.; Schreiber, A.
1973-01-01
A systematic scheme of qualitative analysis of some cations is presented. For didactic purposes the properties of cationic and anionic ion exchangers were used. At the present time, this scheme is limited to 23 ions, including Sr. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jung Hwa; Hyung, Seok-Won; Mun, Dong-Gi
2012-08-03
A multi-functional liquid chromatography system that performs 1-dimensional, 2-dimensional (strong cation exchange/reverse phase liquid chromatography, or SCX/RPLC) separations, and online phosphopeptides enrichment using a single binary nano-flow pump has been developed. With a simple operation of a function selection valve, which is equipped with a SCX column and a TiO2 (titanium dioxide) column, a fully automated selection of three different experiment modes was achieved. Because the current system uses essentially the same solvent flow paths, the same trap column, and the same separation column for reverse-phase separation of 1D, 2D, and online phosphopeptides enrichment experiments, the elution time information obtainedmore » from these experiments is in excellent agreement, which facilitates correlating peptide information from different experiments.« less
RAPID METHOD FOR DETERMINATION OF RADIOSTRONTIUM IN EMERGENCY MILK SAMPLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, S.; Culligan, B.
2008-07-17
A new rapid separation method for radiostrontium in emergency milk samples was developed at the Savannah River Site (SRS) Environmental Bioassay Laboratory (Aiken, SC, USA) that will allow rapid separation and measurement of Sr-90 within 8 hours. The new method uses calcium phosphate precipitation, nitric acid dissolution of the precipitate to coagulate residual fat/proteins and a rapid strontium separation using Sr Resin (Eichrom Technologies, Darien, IL, USA) with vacuum-assisted flow rates. The method is much faster than previous method that use calcination or cation exchange pretreatment, has excellent chemical recovery, and effectively removes beta interferences. When a 100 ml samplemore » aliquot is used, the method has a detection limit of 0.5 Bq/L, well below generic emergency action levels.« less
NASA Astrophysics Data System (ADS)
Araki, Yuki; Satoh, Hisao; Okumura, Masahiko; Onishi, Hiroshi
2017-11-01
Cation exchange of clay mineral is typically analyzed without microscopic study of the clay surfaces. In order to reveal the distribution of exchangeable cations at the clay surface, we performed in situ atomic-scale observations of the surface changes in Na-rich montmorillonite due to exchange with Cs cations using frequency modulation atomic force microscopy (FM-AFM). Lines of protrusion were observed on the surface in aqueous CsCl solution. The amount of Cs of the montmorillonite particles analyzed by energy dispersive X-ray spectrometry was consistent with the ratio of the number of linear protrusions to all protrusions in the FM-AFM images. The results showed that the protrusions represent adsorbed Cs cations. The images indicated that Cs cations at the surface were immobile, and their occupancy remained constant at 10% of the cation sites at the surface with different immersion times in the CsCl solution. This suggests that the mobility and the number of Cs cations at the surface are controlled by the permanent charge of montmorillonite; however, the Cs distribution at the surface is independent of the charge distribution of the inner silicate layer. Our atomic-scale observations demonstrate that surface cations are distributed in different ways in montmorillonite and mica.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Angela D.; Tignor, Steven E.; Sturgeon, Matthew R.
2017-01-01
The increased interest in the use of anion exchange membranes (AEMs) for applications in electrochemical devices has prompted significant efforts in designing materials with robust stability in alkaline media. Most reported AEMs suffer from polymer backbone degradation as well as cation functional group degradation. In this report, we provide comprehensive experimental investigations for the analysis of cation functional group stability under alkaline media. A silver oxide-mediated ion exchange method and an accelerated stability test in aqueous KOH solutions at elevated temperatures using a Parr reactor were used to evaluate a broad scope of quaternary ammonium (QA) cationic model compound structures,more » particularly focusing on alkyl-tethered cations. Additionally, byproduct analysis was employed to gain better understanding of degradation pathways and trends of alkaline stability. Experimental results under different conditions gave consistent trends in the order of cation stability of various QA small molecule model compounds. Overall, cations that are benzyl-substituted or that are near to electronegative atoms (such as oxygen) degrade faster in alkaline media in comparison to alkyl-tethered QAs. These comprehensive model compound stability studies provide valuable information regarding the relative stability of various cation structures and can help guide researchers towards designing new and promising candidates for AEM materials.« less
Coping with effects of high dissolved salt samples on the inductively coupled plasma spectrometer
Jane E. Hislop; James W. Hornbeck; James W. Hornbeck
2002-01-01
Research on acidic forest soils typically uses unbuffered salt solutions as extractants for exchangeable cations. Our lab uses 1 M NH4C1 extractant for exchangeable cations (Ca, K, Mg, and Na) and 1 M KC1 for exchangeable aluminum. The resulting high dissolved salt solutions presented chronic analytical problems on flame atomic absorption spectrophotometer (AAS) and...
Lau, Hollis; Pace, Danielle; Yan, Boxu; McGrath, Theresa; Smallwood, Scott; Patel, Ketaki; Park, Jihea; Park, Sungae S; Latypov, Ramil F
2010-04-01
A new cation-exchange high-performance liquid chromatography (HPLC) method that separates fragment antigen-binding (Fab) and fragment crystallizable (Fc) domains generated by the limited proteolysis of monoclonal antibodies (mAbs) was developed. This assay has proven to be suitable for studying complex degradation processes involving various immunoglobulin G1 (IgG1) molecules. Assignment of covalent degradations to specific regions of mAbs was facilitated by using Lys-C and papain to generate Fab and Fc fragments with unique, protease-dependent elution times. In particular, this method was useful for characterizing protein variants formed in the presence of salt under accelerated storage conditions. Two isoforms that accumulated during storage were readily identified as Fab-related species prior to mass-spectrometric analysis. Both showed reduced biological activity likely resulting from modifications within or in proximity of the complementarity-determining regions (CDRs). Utility of this assay was further illustrated in the work to characterize light-induced degradations in mAb formulations. In this case, a previously unknown Fab-related species which populated upon light exposure was observed. This species was well resolved from unmodified Fab, allowing for direct and high-purity fractionation. Mass-spectrometric analysis subsequently identified a histidine-related degradation product associated with the CDR2 of the heavy chain. In addition, the method was applied to assess the structural organization of a noncovalent IgG1 dimer. A new species corresponding to a Fab-Fab complex was found, implying that interactions between Fab domains were responsible for dimerization. Overall, the data presented demonstrate the suitability of this cation-exchange HPLC method for studying a wide range of covalent and noncovalent degradations in IgG1 mAbs. 2010 Elsevier B.V. All rights reserved.
Boyd, G.E.
1958-08-26
A process is presented fer separating uranium, plutonium, and fission products ions from uranyl nitrate solutions having a pH value between 1 and 3 obtained by dissolving neutron irradiated uranium. The method consists in passing such solutions through a bed of cation exchange resin, which may be a sulfonated phenol formaidehyde type. Following the adsorption step the resin is first treated with a solution of 0.2M to 0.3M sulfuric acid to desorb the uranium. Fission product ions are then desorbed by treating the resin in phosphoric acid and 1M in nitric acid. Lastly, the plutonium may be desorbed by treating the resin with a solution approximately 0.8M in phosphoric acid and 1M in nitric acid.
Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D
2002-10-25
Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.
Bhaskar, M.; Surekha, M.; Suma, N.
2018-01-01
The liquid phase esterification of phenyl acetic acid with p-cresol over different metal cation exchanged montmorillonite nanoclays yields p-cresyl phenyl acetate. Different metal cation exchanged montmorillonite nanoclays (Mn+ = Al3+, Zn2+, Mn2+, Fe3+, Cu2+) were prepared and the catalytic activity was studied. The esterification reaction was conducted by varying molar ratio of the reactants, reaction time and catalyst amount on the yield of the ester. Among the different metal cation exchanged catalysts used, Al3+-montmorillonite nanoclay was found to be more active. The characterization of the material used was studied under different techniques, namely X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The product obtained, p-cresyl phenyl acetate, was identified by thin-layer chromotography and confirmed by Fourier transform infrared, 1H NMR and 13C NMR. The regeneration activity of used catalyst was also investigated up to fourth generation. PMID:29515855
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balboni, Enrica; Burns, Peter C., E-mail: pburns@nd.edu; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
2014-05-01
The isotypical compounds (UO{sub 2}){sub 3}(WO{sub 6})(H{sub 2}O){sub 5} (1), Ag(UO{sub 2}){sub 3}(WO{sub 6})(OH)(H{sub 2}O){sub 3} (2), K(UO{sub 2}){sub 3}(WO{sub 6})OH(H{sub 2}O){sub 4} (3), Rb(UO{sub 2}){sub 3}(WO{sub 6})(OH)(H{sub 2}O){sub 3.5} (4), and Cs(UO{sub 2}){sub 3}(WO{sub 6})OH(H{sub 2}O){sub 3} (5) were synthesized, characterized, and their structures determined. Each crystallizes in space group Cc. (1): a=12.979 (3), b=10.238 (2), c=11.302 (2), β=102.044 (2); (2): a=13.148 (2), b=9.520 (1), c=11.083 (2), β=101.568 (2); (3): a=13.111 (8), b=9.930 (6), c=11.242 (7), β=101.024 (7); (4): a=12.940 (2), b=10.231 (2), c=11.259(2), β=102.205 (2); (5): a=12.983 (3), b=10.191 (3), c=11.263 (4), β=101.661 (4). Compounds 1–5 are amore » framework of uranyl and tungsten polyhedra containing cation–cation interactions. The framework has three symmetrically distinct U(VI) cations, one tungsten, sixteen to eighteen oxygen atoms, and in 2–5, one monovalent cation. Each atom occupies a general position. Each U(VI) cation is present as a typical (UO{sub 2}){sup 2+} uranyl ion in an overall pentagonal bipyramidal coordination environment. Each pentagonal bipyramid shares two equatorial edges with two other pentagonal bipyramids, forming a trimer. Trimers are connected into chains by edge-sharing with WO{sub 6} octahedra. Chains are linked through cation–cation interactions between two symmetrically independent uranyl ions. This yields a remarkably complex system of intersecting channels that extend along [0 0 1] and [−1 1 0]. The cation exchange properties of 2 and 3 were characterized at room temperature and at 140 °C. - Graphical abstract: Chains of uranium and tungsten polyhedra are connected into a three dimensional framework by cation–cation interactions occurring between two symmetrically independent uranyl pentagonal bipyramids. Monovalent cations present in channels within the structure can be exchanged by room temperature or mild hydrothermal treatments. The framework of these compounds is robust to cation exchange and heat. (yellow polyhedra=uranium pentagonal bipyramids; blue polyhedra=tungsten octahedral, purple balls=K; yellow balls=Na; grey balls=Tl). - Highlights: • Five isostructural uranyl tungstates compounds were synthesized hydrothermally. • The structures consist of a chains of uranium and tungstate polyhedral. • Chains are connected into a framework by cation–cation interactions. • Cation exchange does not alter the structural integrity of the compounds. • Cation exchange was successful at room temperature and mild hydrothermal conditions.« less
Crock, J.G.; Lichte, F.E.
1982-01-01
Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.
Ionic Control of the Reversal Response of Cilia in Paramecium caudatum
Naitoh, Yutaka
1968-01-01
The duration of ciliary reversal of Paramecium caudatum in response to changes in external ionic factors was determined with various ionic compositions of both equilibration and stimulation media. The reversal response was found to occur when calcium ions bound by an inferred cellular cation exchange system were liberated in exchange for externally applied cations other than calcium. Factors which affect the duration of the response were (a) initial amount of calcium bound by the cation exchange system, (b) final amount of calcium bound by the system after equilibration with the stimulation medium, and (c) concentration of calcium ions in the stimulation medium. An empirical equation is presented which relates the duration of the response to these three factors. On the basis of these and previously published data, the following hypothesis is proposed for the mechanism underlying ciliary reversal in response to cationic stimulation: Ca++ liberated from the cellular cation exchange system activates a contractile system which is energized by ATP. Contraction of this component results in the reversal of effective beat direction of cilia by a mechanism not yet understood. The duration of reversal in live paramecia is related to the time course of bound calcium release. PMID:4966766
Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy
2014-01-01
Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.
Breit, G.N.; Simmons, E.C.; Goldhaber, M.B.
1985-01-01
A simple procedure for preparing barite samples for chemical and isotopic analysis is described. Sulfate ion, in barite, in the presence of high concentrations of aqueous sodium carbonate, is replaced by carbonate. This replacement forms insoluble carbonates with the cations commonly in barite: Ba, Sr, Ca and Pb. Sulfate is released into the solution by the carbonate replacement and is separated by filtration. The aqueous sulfate can then be reprecipitated for analysis of the sulfur and oxygen isotopes. The cations in the carbonate phase can be dissolved by acidifying the solid residue. Sr can be separated from the solution for Sr isotope analysis by ion-exchange chromatography. The sodium carbonate used contains amounts of Sr which will affect almost all barite 87Sr 86Sr ratios by less than 0.00001 at 1.95?? of the mean. The procedure is preferred over other techniques used for preparing barite samples for the determination of 87Sr 86Sr ratios because it is simple, rapid and enables simultaneous determination of many compositional parameters on the same material. ?? 1985.
Niobate-based octahedral molecular sieves
Nenoff, Tina M.; Nyman, May D.
2006-10-17
Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
Niobate-based octahedral molecular sieves
Nenoff, Tina M.; Nyman, May D.
2003-07-22
Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
Mechanism of epithelial lithium transport. Evidence for basolateral Na:Na and Na:Li exchange
1983-01-01
Measurement of transmural sodium fluxes across isolated, ouabain- inhibited turtle colon in the presence of a serosal-to-mucosal sodium gradient shows that in the absence of active transport the amiloride- sensitive cellular path contains at least two routes for the transmural movement of sodium and lithium, one a conductive path and the other a nonconductive, cation-exchange mechanism. The latter transport element can exchange lithium for sodium, and the countertransport of these two cations provides a mechanistic basis for the ability of tight epithelia to actively absorb lithium despite the low affinity of the basolateral Na/K-ATPase for this cation. PMID:6644269
Nardin, Tiziana; Barnaba, Chiara; Abballe, Franco; Trenti, Gianmaria; Malacarne, Mario; Larcher, Roberto
2017-10-01
A fast separation based on cation-exchange liquid chromatography coupled with high-resolution mass spectrometry is proposed for simultaneous determination of chlormequat, difenzoquat, diquat, mepiquat and paraquat in several food and beverage commodities. Solid samples were extracted using a mixture of water/methanol/formic acid (69.6:30:0.4, v/v/v), while liquid samples were ten times diluted with the same solution. Separation was carried out on an experimental length-modified IonPac CS17 column (2 × 15 mm 2 ) that allowed the use of formic acid and acetonitrile as mobile phase. Detection limits for food and beverage matrices were established at 1.5 μg/L for chlormequat, difenzoquat and mepiquat, and 3 μg/L for diquat and paraquat, while for drinking water a pre-analytical sample concentration allowed detection limits of 9 and 20 ng/L, respectively. Precision, as repeatability (RSD%), ranged from 0.2 to 24%, with a median value of 6%, and trueness, as recovery, ranged from 64 to 118%, with a median value of 96%. The method developed was successfully applied to investigate the presence of herbicide residues in commercial commodities (mineral water, orange juice, beer, tea, green coffee bean, toasted coffee powder, cocoa bean, white corn flour, rice and sugar samples). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thakkar, Rakesh; Chudasama, Uma
2009-12-15
An advanced inorganic ion exchanger, zirconium titanium phosphate (ZTP) of the class of tetravalent bimetallic acid (TBMA) salt has been synthesized by sol-gel route. ZTP has been characterized for ICP-AES, TGA, FTIR and XRD. Chemical stability of the material in various media-acids, bases and organic solvents has been assessed. Cation exchange capacity (CEC) and effect of calcination (100-500 degrees C) on CEC has also been studied. Distribution behaviour of metal ions Co2+, Ni2+, Cu2+, Zn2+ (d-block), Cd2+, Hg2+, Pb2+, Bi3+ (heavy) and La3+, Ce3+, Th4+, UO(2)2+ (f-block) towards ZTP has been studied and distribution coefficient (K(d)) determined in aqueous as well as various electrolyte media/concentrations. Based on the differential selectivity, breakthrough capacity (BTC) and elution behaviour of various metal ions towards ZTP, a few binary and ternary metal ion separations have been carried out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nudel, A.M.
In order to evaluate the effectiveness of ion exchange resins used in cleaning condensates at nuclear power stations by removing dissolved and suspended impurities,- and also to check the design of individual units of the filters, an experimental plant with separate H-cation exchange and OH-anion exchange filters (diameter 2m) in series was installed and tested on the bypass circuit of a VK-50 plant. The investigation was conducted in two stages, the first coinciding with reactor startup after a long shutdown, the second, carried out under settled water conditions. Radioactivity levels of the following isotopes, reponted during investigation of the filters,more » are tabulated: /sup 24/ Na, /sup 18/P, /sup 65/Zn,/sup 59/Mn, /sup 131/I, /sup 140/Ba, /sup 60/Co, /sup 99/M o, and /sup 64/Cu. It was found that the ion exchange filters, put into operation after establishing stable water conditions, ensure satisfactory removal of all impurities from the condensate over a lengthly period of time. (JGB)« less
Method of separating short half-life radionuclides from a mixture of radionuclides
Bray, Lane A.; Ryan, Jack L.
1999-01-01
The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the 22.sup.9 Th or 2.sup.27 Ac "cow" radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium; lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture; are removed from the mixture on the chloride form anion exchange column.
Method of separating short half-life radionuclides from a mixture of radionuclides
Bray, L.A.; Ryan, J.L.
1999-03-23
The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.
Ma, Heping; Liu, Bailing; Li, Bin; Zhang, Liming; Li, Yang-Guang; Tan, Hua-Qiao; Zang, Hong-Ying; Zhu, Guangshan
2016-05-11
Mimicking proton conduction mechanism of Nafion to construct novel proton-conducting materials with low cost and high proton conductivity is of wide interest. Herein, we have designed and synthesized a cationic covalent organic framework with high thermal and chemical stability by combining a cationic monomer, ethidium bromide (EB) (3,8-diamino-5-ethyl-6-phenylphenanthridinium bromide), with 1,3,5-triformylphloroglucinol (TFP) in Schiff base reactions. This is the first time that the stable cationic crystalline frameworks allowed for the fabrication of a series of charged COFs (EB-COF:X, X = F, Cl, Br, I) through ion exchange processes. Exchange of the extra framework ions can finely modulate the COFs' porosity and pore sizes at nanoscale. More importantly, by introducing PW12O40(3-) into this porous cationic framework, we can greatly enhance the proton conductivity of ionic COF-based material. To the best of our knowledge, EB-COF:PW12 shows the best proton conductivity at room temperature among ever reported porous organic materials.
Humic Acid Isolations from Lignite by Ion Exchange Method
NASA Astrophysics Data System (ADS)
Kurniati, E.; Muljani, S.; Virgani, D. G.; Neno, B. P.
2018-01-01
The humic liquid is produced from lignite extraction using alkali solution. Conventional humic acid is obtained by acidifying a humic solution using HCl. The purpose of this research is the formation of solid humic acid from lignite by ion exchange method using cation resin. The results showed that the addition of cation resin was able to reduce the pH from 14 to pH 2 as well as the addition of acid (HCl), indicating the exchange of Na + ions with H + ions. The reduction of pH in the humic solution is influenced by the concentration of sodium ions in the humic solution, the weight of the cation resin, and the ion exchange time. The IR spectra results are in good agreement for humic acid from lignite characterization.
Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty
2017-11-07
Reverse electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain not only monovalent ions but also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities because of both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg 2+ and Ca 2+ ) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The new multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.
Lipson, S M; Stotzky, G
1983-01-01
The adsorption of reovirus to clay minerals has been reported by several investigators, but the mechanisms defining this association have been studied only minimally. The purpose of this investigation was to elucidate the mechanisms involved with this interaction. More reovirus type 3 was adsorbed, in both distilled and synthetic estuarine water, by low concentrations of montmorillonite than by comparable concentrations of kaolinite containing a mixed complement of cations on the exchange complex. Adsorption to the clays was essentially immediate and was correlated with the cation-exchange capacity of the clays, indicating that adsorption was primarily to negatively charged sites on the clays. Adsorption was greater with low concentrations of clays in estuarine water than in distilled water, as the higher ionic strength of the estuarine water reduced the electrokinetic potential of both clay and virus particles. The addition of cations (as chloride salts) to distilled water enhanced adsorption, with divalent cations being more effective than monovalent cations and 10(-2) M resulting in more adsorption than 10(-3) M. Potassium ions suppressed reovirus adsorption to montmorillonite, probably by collapsing the clay lattices and preventing the expression of the interlayer-derived cation-exchange capacity. More virus was adsorbed by montmorillonite made homoionic to various mono-, di-, and trivalent cations (except by montmorillonite homoionic to potassium) than by comparable concentrations of kaolinite homoionic to the same cations. The sequence of the amount of adsorption to homoionic montmorillonite was Al greater than Ca greater than Mg greater than Na greater than K; the sequence of adsorption to kaolinite was Na greater than Al greater than Ca greater than Mg greater than K. The constant partition-type adsorption isotherms obtained when the clay concentration was maintained constant and the virus concentration was varied indicated that a fixed proportion of the added virus population was adsorbed, regardless of the concentration of infectious particles. A heterogeneity within the reovirus population was indicated. PMID:6639022
Carlyle, Harriet F; Tellam, John H; Parker, Karen E
2004-01-01
An attempt has been made to estimate quantitatively cation concentration changes as estuary water invades a Triassic Sandstone aquifer in northwest England. Cation exchange capacities and selectivity coefficients for Na(+), K(+), Ca(2+), and Mg(2+) were measured in the laboratory using standard techniques. Selectivity coefficients were also determined using a method involving optimized back-calculation from flushing experiments, thus permitting better representation of field conditions; in all cases, the Gaines-Thomas/constant cation exchange capacity (CEC) model was found to be a reasonable, though not perfect, first description. The exchange parameters interpreted from the laboratory experiments were used in a one-dimensional reactive transport mixing cell model, and predictions compared with field pumping well data (Cl and hardness spanning a period of around 40 years, and full major ion analyses in approximately 1980). The concentration patterns predicted using Gaines-Thomas exchange with calcite equilibrium were similar to the observed patterns, but the concentrations of the divalent ions were significantly overestimated, as were 1980 sulphate concentrations, and 1980 alkalinity concentrations were underestimated. Including representation of sulphate reduction in the estuarine alluvium failed to replicate 1980 HCO(3) and pH values. However, by including partial CO(2) degassing following sulphate reduction, a process for which there is 34S and 18O evidence from a previous study, a good match for SO(4), HCO(3), and pH was attained. Using this modified estuary water and averaged values from the laboratory ion exchange parameter determinations, good predictions for the field cation data were obtained. It is concluded that the Gaines-Thomas/constant exchange capacity model with averaged parameter values can be used successfully in ion exchange predictions in this aquifer at a regional scale and over extended time scales, despite the numerous assumptions inherent in the approach; this has also been found to be the case in the few other published studies of regional ion exchanging flow.
NASA Astrophysics Data System (ADS)
Carlyle, Harriet F.; Tellam, John H.; Parker, Karen E.
2004-01-01
An attempt has been made to estimate quantitatively cation concentration changes as estuary water invades a Triassic Sandstone aquifer in northwest England. Cation exchange capacities and selectivity coefficients for Na +, K +, Ca 2+, and Mg 2+ were measured in the laboratory using standard techniques. Selectivity coefficients were also determined using a method involving optimized back-calculation from flushing experiments, thus permitting better representation of field conditions; in all cases, the Gaines-Thomas/constant cation exchange capacity (CEC) model was found to be a reasonable, though not perfect, first description. The exchange parameters interpreted from the laboratory experiments were used in a one-dimensional reactive transport mixing cell model, and predictions compared with field pumping well data (Cl and hardness spanning a period of around 40 years, and full major ion analyses in ˜1980). The concentration patterns predicted using Gaines-Thomas exchange with calcite equilibrium were similar to the observed patterns, but the concentrations of the divalent ions were significantly overestimated, as were 1980 sulphate concentrations, and 1980 alkalinity concentrations were underestimated. Including representation of sulphate reduction in the estuarine alluvium failed to replicate 1980 HCO 3 and pH values. However, by including partial CO 2 degassing following sulphate reduction, a process for which there is 34S and 18O evidence from a previous study, a good match for SO 4, HCO 3, and pH was attained. Using this modified estuary water and averaged values from the laboratory ion exchange parameter determinations, good predictions for the field cation data were obtained. It is concluded that the Gaines-Thomas/constant exchange capacity model with averaged parameter values can be used successfully in ion exchange predictions in this aquifer at a regional scale and over extended time scales, despite the numerous assumptions inherent in the approach; this has also been found to be the case in the few other published studies of regional ion exchanging flow.
Li, Fei; Xia, Zhiguo; Pan, Caofeng; Gong, Yue; Gu, Lin; Liu, Quanlin; Zhang, Jin Z
2018-04-11
The unification of tunable band edge (BE) emission and strong Mn 2+ doping luminescence in all-inorganic cesium lead halide perovskite nanocrystals (NCs) CsPbX 3 (X = Cl and Br) is of fundamental importance in fine tuning their optical properties. Herein, we demonstrate that benefiting from the differentiation of the cation/anion exchange rate, ZnBr 2 and preformed CsPb 1- x Cl 3 : xMn 2+ NCs can be used to obtain high Br - content Cs(Pb 1- x- z Zn z )(Cl y Br 1- y ) 3 : xMn 2+ perovskite NCs with strong Mn 2+ emission, and the Mn 2+ substitution ratio can reach about 22%. More specifically, the fast anion exchange could be realized by the soluble halide precursors, leading to anion exchange within a few seconds as observed from the strong BE emission evolution, whereas the cation exchange instead generally required at least a few hours; moreover, their exchange mechanism and dynamics process have been evaluated. The Mn 2+ emission intensity could be further varied by controlling the replacement of Mn 2+ by Zn 2+ with prolonged ion exchange reaction time. White light emission of the doped perovskite NCs via this cation/anion synergistic exchange strategy has been realized, which was also successfully demonstrated in a prototype white light-emitting diode (LED) device based on a commercially available 365 nm LED chip.
Na, K, Rb, and Cs Exchange in Heulandite Single-Crystals: X-Ray Structure Refinements at 100 K
NASA Astrophysics Data System (ADS)
Yang, Ping; Armbruster, Thomas
1996-04-01
The crystal structures of Na-, K-, Rb-, and Cs-exchanged varieties of the zeolite heulandite with the simplified compositionM+9Al9Si27O72·nH2O were studied by single-crystal X-ray diffraction at 100 K. The structure refinements of Na-, K-, and Rb-exchanged heulandite were performed in space groupC2/mwith resultantRvalues of 3.8, 3.0, and 4.9%, respectively. Cs-exchanged heulandite was refined in space groupC[formula], yielding anRvalue of 3.4%. X-ray single-crystal data of the Cs-exchanged variety indicated that many reflections of typeh k lwere not equivalent toh -k las expected for monoclinic symmetry. With increasing radius of the incorporated channel cations, thebaxis increases from 17.93 to 18.09 Å leading to a slight widening of the channels. The number of H2O molecules also decreases with increasing cation radius due to space limitations. Three general cation positions (II-1,C3, andB4) were found in the four exchanged heulandite samples. For Rb- and Cs-exchanged crystals, the additional cation siteA2 occurs. In Cs-exchanged heulandite symmetry lowering is due to partial Si, Al ordering in the framework accompanied with a more asymmetric arrangement of channel Cs. Only if heavy elements in the channels are present the symmetry information of the framework is enforced, thus partial Si, Al ordering can be resolved.
Process for forming a nickel foil with controlled and predetermined permeability to hydrogen
Engelhaupt, Darell E.
1981-09-22
The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.
Water vapor diffusion membrane development. [for water recovery purposes onboard manned spacecraft
NASA Technical Reports Server (NTRS)
Tan, M. K.
1974-01-01
The phase separator component used as a membrane in the vapor diffusion process (VRD) for the recovery of potable water from urine on manned space missions of extended duration was investigated, with particular emphasis on cation-selective membranes because of their noted mechanical strength, superior resistance to acids, oxidants, and germicides, and their potential resistance to organic foulants. Two of the membranes were tested for 700 hours continuously, and were selected on the basis of criteria deemed important to an effective water reclamation system onboard spacecraft. The samples of urine were successfully processed by removing 93 percent of their water content in 70 hours using the selected membranes. Pretreatment with an acid-oxidant formulation improved product quality. Cation exchange membranes were shown to possess superior mechanical strength and chemical resistance, as compared to cellulosic membranes.
Raweerith, Rutai; Ratanabanangkoon, Kavi
2003-11-01
A combined process of caprylic acid (CA) precipitation and ion-exchange chromatography on SP-Sepharose was studied as a means to fractionate pepsin-digested horse antivenom F(ab')(2) antibody. In the CA precipitation, the optimal concentration for fractionation of F(ab')(2) from pepsin-digested horse plasma was 2%, in which 89.61% of F(ab')(2) antibody activity was recovered in the supernatant with 1.5-fold purification. A significant amount of pepsin was not precipitated and remained active under these conditions. An analytical cation exchanger Protein-Pak SP 8HR HPLC column was tested to establish optimal conditions for the effective separation of IgG, albumin, pepsin and CA from the F(ab')(2) product. From these results, the supernatant from CA precipitation of pepsin-digested plasma was subjected to a SP-Sepharose column chromatography using a linear salt gradient. With stepwise elution, a peak containing F(ab')(2) antibody could be obtained by elution with 0.25 M NaCl. The total recovery of antibody was 65.56% with 2.91-fold purification, which was higher than that achieved by ammonium sulfate precipitation. This process simultaneously and effectively removed residual pepsin, high molecular weight aggregates and CA in the final F(ab')(2) product, and should be suitable for large-scale fractionation of therapeutic equine antivenoms.
Rapid determination of 226Ra in environmental samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, Sherrod L.; Culligan, Brian K.
A new rapid method for the determination of {sup 228}Ra in natural water samples has been developed at the SRNL/EBL (Savannah River National Lab/ Environmental Bioassay Laboratory) that can be used for emergency response or routine samples. While gamma spectrometry can be employed with sufficient detection limits to determine {sup 228}Ra in solid samples (via {sup 228}Ac) , radiochemical methods that employ gas flow proportional counting techniques typically provide lower MDA (Minimal Detectable Activity) levels for the determination of {sup 228}Ra in water samples. Most radiochemical methods for {sup 228}Ra collect and purify {sup 228}Ra and allow for {sup 228}Acmore » daughter ingrowth for ~36 hours. In this new SRNL/EBL approach, {sup 228}Ac is collected and purified from the water sample without waiting to eliminate this delay. The sample preparation requires only about 4 hours so that {sup 228}Ra assay results on water samples can be achieved in < 6 hours. The method uses a rapid calcium carbonate precipitation enhanced with a small amount of phosphate added to enhance chemical yields (typically >90%), followed by rapid cation exchange removal of calcium. Lead, bismuth, uranium, thorium and protactinium isotopes are also removed by the cation exchange separation. {sup 228}Ac is eluted from the cation resin directly onto a DGA Resin cartridge attached to the bottom of the cation column to purify {sup 228}Ac. DGA Resin also removes lead and bismuth isotopes, along with Sr isotopes and {sup 90}Y. La is used to determine {sup 228}Ac chemical yield via ICP-MS, but {sup 133}Ba can also be used instead if ICP-MS assay is not available. Unlike some older methods, no lead or strontium holdback carriers or continual readjustment of sample pH is required.« less
Process for strontium-82 separation
Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.
1992-01-01
A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed.
Process for strontium-82 separation
Heaton, R.C.; Jamriska, D.J. Sr.; Taylor, W.A.
1992-12-01
A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed. 1 fig.
Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett
2013-12-01
The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample. Copyright © 2013 Elsevier B.V. All rights reserved.
Watanabe, Yuuya; Ohnaka, Kenji; Fujita, Saki; Kishi, Midori; Yuchi, Akio
2011-10-01
The spaces (voids) available for cations in the five exchange resins with varying exchange capacities and cross-linking degrees were estimated, on the basis of the additivity of molar volumes of the constituents. Tetraalkylammonium ions (NR(4)(+); R: Me, Et, Pr) may completely exchange potassium ion on the resin having a larger void radius. In contrast, the ratio of saturated adsorption capacity to exchange capacity of the resin having a smaller void radius decreased with an increase in size of NR(4)(+) ions, due to the interionic contacts. Alkali metal ions could be exchanged quantitatively. While the hydration numbers of K(+), Rb(+), and Cs(+) were independent of the void radius, those of Li(+) and Na(+), especially Na(+), decreased with a decrease in void radius. Interionic contacts between the hydrated ions enhance the dehydration. Multivalent metal ions have the hydration numbers, comparable to or rather greater than those in water. A greater void volume available due to exchange stoichiometry released the interionic contacts and occasionally promoted the involvement of water molecules other than directly bound molecules. The close proximity between ions in the conventional ion-exchange resins having higher exchange capacities may induce varying interactions.
Davis, R.E.; Dodge, K.A.
1986-01-01
Batch-mixing experiments using spoils water and coal from the West Decker and Big Sky Mines were conducted to determine possible chemical changes in water moving from coal-mine spoils through a coal aquifer. The spoils water was combined with air-dried and oven-dried chunks of coal and air-dried and oven-dried crushed coal at a 1:1 weight ratio, mixed for 2 hr, and separated after a total contact time of 24 hr. The dissolved-solids concentration in water used in the experiments decreased an average 210 mg/liter (5-10%). Other chemical changes included general decreases in the concentrations of magnesium, potassium, and bicarbonate, and general increases in the concentrations of barium and boron. The magnitude of the changes increased as the surface area of the coal increased. The quantity of extractable cations and exchangeable cations on the post-mixing coal was larger than on the pre-mixing coal. Equilibrium and mass-transfer relations indicate that adsorption reactions or ion-exchange and precipitation reactions, or both, probably are the major reactions responsible for the chemical changes observed in the experiments. (Authors ' abstract)
Lee, Seungwoon; Ahn, Jungoh; Kim, Yeon-Gu; Jung, Joon-Ki; Lee, Hongweon; Lee, Eun Gyo
2013-01-01
We have developed a gamma-aminobutyric acid (GABA) production technique using his-tag mediated immobilization of Escherichia coli-derived glutamate decarboxylase (GAD), an enzyme that catalyzes the conversion of glutamate to GABA. The GAD was obtained at 1.43 g/L from GAD-overexpressed E. coli fermentation and consisted of 59.7% monomer, 29.2% dimer and 2.3% tetramer with a 97.6% soluble form of the total GAD. The harvested GAD was immobilized to metal affinity gel with an immobilization yield of 92%. Based on an investigation of specific enzyme activity and reaction characteristics, glutamic acid (GA) was chosen over monosodium glutamate (MSG) as a substrate for immobilized GAD, resulting in conversion of 2.17 M GABA in a 1 L reactor within 100 min. The immobilized enzymes retained 58.1% of their initial activities after ten consecutive uses. By using cation exchange chromatography followed by enzymatic conversion, GABA was separated from the residual substrate and leached GAD. As a consequence, the glutamic acid was mostly removed with no detectable GAD, while 91.2% of GABA was yielded in the purification step. PMID:23322022
Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard
2014-05-01
Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel. Copyright © 2014 Elsevier Ltd. All rights reserved.
Methods and apparatus for using gas and liquid phase cathodic depolarizers
NASA Technical Reports Server (NTRS)
Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)
1998-01-01
The invention provides methods for using gas and liquid phase cathodic depolarizers in an electrochemical cell having a cation exchange membrane in intimate contact with the anode and cathode. The electrochemical conversion of cathodic depolarizers at the cathode lowers the cell potential necessary to achieve a desired electrochemical conversion, such as ozone evolution, at the anode. When gaseous cathodic depolarizers, such as oxygen, are used, a gas diffusion cathode having the cation exchange membrane bonded thereto is preferred. When liquid phase cathodic depolarizers are used, the cathode may be a flow-by electrode, flow-through electrode, packed-bed electrode or a fluidized-bed electrode in intimate contact with the cation exchange membrane.
Salmi, Zakaria; Benzarti, Karim; Chehimi, Mohamed M
2013-11-05
We describe a simple, off-the-beaten-path strategy for making clay/polymer nanocomposites through tandem diazonium salt interface chemistry and radical photopolymerization. Prior to photopolymerization, sodium montmorillonite (MMT) was ion exchanged with N,N'-dimethylbenzenediazonium cation (DMA) from the tetrafluoroborate salt precursor. DMA acts as a hydrogen donor for benzophenone in solution; this pair of co-initiators permits us to photopolymerize glycidyl methacrylate (GMA) between the lamellae of the diazonium-modified clay, therefore providing intercalated MMT-PGMA nanocomposites with an onset of exfoliation. This work conclusively provides a new approach for bridging reactive and functional polymers to layered nanomaterials via aryl diazonium salts in a simple, fast, efficient cation-exchange approach.
Properties and applications of zeolites.
Rhodes, Christopher J
2010-01-01
Zeolites are aluminosilicate solids bearing a negatively charged honeycomb framework of micropores into which molecules may be adsorbed for environmental decontamination, and to catalyse chemical reactions. They are central to green-chemistry since the necessity for organic solvents is minimised. Proton-exchanged (H) zeolites are extensively employed in the petrochemical industry for cracking crude oil fractions into fuels and chemical feedstocks for other industrial processes. Due to their ability to perform cation-exchange, in which the cations that are originally present to counterbalance the framework negative charge may be exchanged out of the zeolite by cations present in aqueous solution, zeolites are useful as industrial water-softeners, in the removal of radioactive Cs+ and Sr2+ cations from liquid nuclear waste and in the removal of toxic heavy metal cations from groundwaters and run-off waters. Surfactant-modified zeolites (SMZ) find particular application in the co-removal of both toxic anions and organic pollutants. Toxic anions such as arsenite, arsenate, chromate, cyanide and radioactive iodide can also be removed by adsorption into zeolites that have been previously loaded with co-precipitating metal cations such as Ag+ and Pb2+ which form practically insoluble complexes that are contained within the zeolite matrix.
Hassidim, Miriam; Braun, Yael; Lerner, Henri R.; Reinhold, Leonora
1990-01-01
Proton fluxes have been followed into and out of membrane vesicles isolated from the roots of the halophyte Atriplex nummularia and the glycophyte Gossypium hirsutum, with the aid of the ΔpH probe [14C]methylamine. Evidence is presented for the operation of Na+/H+ and K+/H+ antiporters in the membranes of both plants. Cation supply after a pH gradient has been set up across the vesicle membrane (either as a result of providing ATP to the H+-ATPase or by imposing an artificial pH gradient) brings about dissipation of the ΔpH, but does not depolarize the membrane potential as observed in similar experiments, but in the absence of Cl−, using the ΔΨ probe SCN−. Cation/H+ exchange is thus indicated. This exchange is not due to nonspecific electric coupling, nor to competition for anionic adsorption sites on the membrane, nor to inhibition of the H+-ATPase; coupling of the opposed cation and H+ fluxes by a membrane component is the most likely explanation. Saturation kinetics have been observed for both Na+/H+ and K+/H+ antiport in Atriplex. Moreover, additive effects are obtained when Na+ is supplied together with saturating concentrations of K+, and vice versa, suggesting that separate antiporters for Na+ and for K+ may be operating. In the case of both Atriplex and Gossypium evidence was obtained suggesting the presence of antiporters in both plasmalemma and tonoplast. PMID:16667918
Hassidim, M; Braun, Y; Lerner, H R; Reinhold, L
1990-12-01
Proton fluxes have been followed into and out of membrane vesicles isolated from the roots of the halophyte Atriplex nummularia and the glycophyte Gossypium hirsutum, with the aid of the DeltapH probe [(14)C]methylamine. Evidence is presented for the operation of Na(+)/H(+) and K(+)/H(+) antiporters in the membranes of both plants. Cation supply after a pH gradient has been set up across the vesicle membrane (either as a result of providing ATP to the H(+)-ATPase or by imposing an artificial pH gradient) brings about dissipation of the DeltapH, but does not depolarize the membrane potential as observed in similar experiments, but in the absence of Cl(-), using the DeltaPsi probe SCN(-). Cation/H(+) exchange is thus indicated. This exchange is not due to nonspecific electric coupling, nor to competition for anionic adsorption sites on the membrane, nor to inhibition of the H(+)-ATPase; coupling of the opposed cation and H(+) fluxes by a membrane component is the most likely explanation. Saturation kinetics have been observed for both Na(+)/H(+) and K(+)/H(+) antiport in Atriplex. Moreover, additive effects are obtained when Na(+) is supplied together with saturating concentrations of K(+), and vice versa, suggesting that separate antiporters for Na(+) and for K(+) may be operating. In the case of both Atriplex and Gossypium evidence was obtained suggesting the presence of antiporters in both plasmalemma and tonoplast.
The ins and outs of intracellular ion homeostasis: NHX-type cation/H(+) transporters.
Bassil, Elias; Blumwald, Eduardo
2014-12-01
The biochemical characterization of cation/H(+) exchange has been known since 1985 [1], yet only recently have we begun to understand the contribution of individual exchangers to ion homeostasis in plants. One particularly important class of exchangers is the NHX-type that is associated with Na(+) transport and therefore salinity tolerance. New evidence suggests that under normal growth conditions NHXs are critical regulators of K(+) and pH homeostasis and have important roles, depending on their cellular localization, in the generation of turgor as well as in vesicular trafficking. Recent advances highlight novel and exciting functions of intracellular NHXs in growth and development, stress adaptation and osmotic adjustment. Here, we elaborate on new and emerging cellular and physiological functions of this group of H(+)-coupled cation exchangers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mesoporous titanium phosphate molecular sieves with ion-exchange capacity.
Bhaumik, A; Inagaki, S
2001-01-31
Novel open framework molecular sieves, titanium(IV) phosphates named, i.e., TCM-7 and -8 (Toyota Composite Materials, numbers 7 and 8), with new mesoporous cationic framework topologies obtained by using both cationic and anionic surfactants are reported. The (31)P MAS NMR, UV-visible absorption, and XANES data suggest the tetrahedral state of P and Ti, and stabilization of the tetrahedral state of Ti in TCM-7/8 is due to the incorporation of phosphorus (at Ti/P = 1:1) vis-à-vis the most stable octahedral state of Ti in the pure mesoporous TiO(2). Mesoporous TCM-7 and -8 show anion exchange capacity due to the framework phosphonium cation and cation exchange capacity due to defective P-OH groups. The high catalytic activity in the liquid-phase partial oxidation of cyclohexene with a dilute H(2)O(2) oxidant supports the tetrahedral coordination of Ti in these materials.
Exchangeable hydrogen explains the pH of spodosol Oa horizons
Ross, D.S.; David, M.B.; Lawrence, G.B.; Bartlett, R.J.
1996-01-01
The chemistry of extremely acid Oa horizons does not conform to traditional pH, Al, and base saturation relationships. Results from two separate studies of northeastern U.S. forested soils were used to investigate relationships between pH in water or dilute salt solutions and other soil characteristics. In Oa horizons with pH below 4, soil pH in dilute CaCl2 solution was correlated with exchangeable H+ measured either by titration (r = -0.88, P = 0.0001, n = 142) or by electrode (r = -0.89, P = 0.0001, n = 45). Exchangeable H+ expressed as a percentage of the cation-exchange capacity (CEC) was linear with pH and showed similar slopes for data from both studies. For all samples, pHw = 4.21 - 1.80 x H+/CEC (R2 = 0.69, n = 194). The reciprocal of the H+/CEC ratio is base saturation with Al added to the bases. Because of the low pH, exchangeable Al does not appear to behave as an acid. Exchangeable H+ remains an operationally defined quantity because of the difficulty in separating exchange and hydrolysis reactions. In a variety of neutral-salt extractants, concentration of H+ were correlated with 0.1 M BaCl2-exchangeable H+ (r > 0.91, P = 0.0001, n = 26) regardless of the strength of the extract. Nine successive extractions with 0.33 mM CaCl2 removed more H+ than was removed by single batch extractions with either 1 M KCl or 0.1 M BaCl2 (average H+ of 70, 43, and 49 mmol kg-1, respectively for 26 samples). The data showed little difference in the chemical behavior of Oa horizons from a variety of geographical sites and vegetation types.
Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J. A.; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen
2013-01-01
It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al3+, Ca2+ or Na+, respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for CaB and aging-induced structural reorganisation can enhance cross-link formation. PMID:23750256
Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J A; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen
2013-01-01
It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+), Ca(2+) or Na(+), respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for CaB and aging-induced structural reorganisation can enhance cross-link formation.
Blanco, R.E.
1959-07-21
A method of separating barium from nuclear fission products is described. In accordance with the invention, barium may be recovered from an acidic solution of neutron-irradiated fissionable material by carrying ihe barium cut of solution as a sulfate with lead as a carrier and then dissolving the barium-containing precipitate in an aqueous solution of an aliphatic diamine chelating reagent. The barium values together with certain other metallic values present in the diamine solution are then absorbed onto a cation exchange resin and the barium is selectively eluted from the resin bed with concentrated nitric acid.
High specific activity platinum-195m
Mirzadeh, Saed; Du, Miting; Beets, Arnold L.; Knapp, Jr., Furn F.
2004-10-12
A new composition of matter includes .sup.195m Pt characterized by a specific activity of at least 30 mCi/mg Pt, generally made by method that includes the steps of: exposing .sup.193 Ir to a flux of neutrons sufficient to convert a portion of the .sup.193 Ir to .sup.195m Pt to form an irradiated material; dissolving the irradiated material to form an intermediate solution comprising Ir and Pt; and separating the Pt from the Ir by cation exchange chromatography to produce .sup.195m Pt.
In vivo cation exchange in quantum dots for tumor-specific imaging.
Liu, Xiangyou; Braun, Gary B; Qin, Mingde; Ruoslahti, Erkki; Sugahara, Kazuki N
2017-08-24
In vivo tumor imaging with nanoprobes suffers from poor tumor specificity. Here, we introduce a nanosystem, which allows selective background quenching to gain exceptionally tumor-specific signals. The system uses near-infrared quantum dots and a membrane-impermeable etchant, which serves as a cation donor. The etchant rapidly quenches the quantum dots through cation exchange (ionic etching), and facilitates renal clearance of metal ions released from the quantum dots. The quantum dots are intravenously delivered into orthotopic breast and pancreas tumors in mice by using the tumor-penetrating iRGD peptide. Subsequent etching quenches excess quantum dots, leaving a highly tumor-specific signal provided by the intact quantum dots remaining in the extravascular tumor cells and fibroblasts. No toxicity is noted. The system also facilitates the detection of peritoneal tumors with high specificity upon intraperitoneal tumor targeting and selective etching of excess untargeted quantum dots. In vivo cation exchange may be a promising strategy to enhance specificity of tumor imaging.The imaging of tumors in vivo using nanoprobes has been challenging due to the lack of sufficient tumor specificity. Here, the authors develop a tumor-specific quantum dot system that permits in vivo cation exchange to achieve selective background quenching and high tumor-specific imaging.
A method for the production of weakly acidic cation exchange resins
NASA Astrophysics Data System (ADS)
Heller, H.; Werner, F.; Mitschker, A.; Diehl, H. V.; Schaefer, A.
1991-12-01
The invention relates to a nonpolluting method for the production of weakly acidic cation exchange resins by saponification of cross-linked acrylonitrile bead polymers, with an alkaline saponification agent at elevated temperature, according to which method the bead polymer and alkaline saponification agent are jointly added only at elevated temperature.
Modifying Silicates for Better Dispersion in Nanocomposites
NASA Technical Reports Server (NTRS)
Campbell, Sandi
2005-01-01
An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces, the co-ion exchange strengthens the polymer/silicate interface and ensures irreversible separation of the silicate layers. One way in which it does this is to essentially tether one amine of each diamine molecule to a silicate surface, leaving the second amine free for reaction with monomers during the synthesis of a polymer. In addition, the incorporation of alkyl ammonium ions into the galleries at low concentration helps to keep low the melt viscosity of the oligomer formed during synthesis of the polymer and associated processing - a consideration that is particularly important in the case of a highly cross-linked, thermosetting polymer. Because of the chemical bonding between the surface-modifying amines and the monomers, even when the alkyl ammonium ions become degraded at high processing temperature, the silicate layers do not aggregate and, hence, nanometer-level dispersion is maintained.
Zuo, Kuichang; Yuan, Lulu; Wei, Jincheng; Liang, Peng; Huang, Xia
2013-10-01
Mixed ion-exchange resins packed microbial desalination cell (R-MDC) could stabilize the internal resistance, however, the impacts of multiple ions on R-MDC performance was unclear. This study investigated the desalination performance, multiple ions migration behaviors and their impacts on R-MDCs fed with salt solution containing multiple anions and cations. Results showed that R-MDC removed multiple anions better than multiple cations with desalination efficiency of 99% (effluent conductivity <0.05 ms/cm) at hydraulic retention time of 50 h. Competitive migration order was SO4(2-)>NO3(-)>Cl(-) for anions and Ca(2+)≈Mg(2+)>NH4(+)>Na(+) for cations, jointly affected by both their molar conductivity and exchange selectivity on resins. After long-term operation, the existence of higher concentration Ca(2+) and Mg(2+) caused the electric conductivity of mixed resins decrease and scaling on the surface of cation-exchange membrane adjoined with cathode chamber, suggesting that R-MDC would be more suitable for desalination of water with lower hardness. Copyright © 2013 Elsevier Ltd. All rights reserved.
McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.
2003-01-01
Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using cation-exchange prior to hydridegeneration permits accurate arsenic(III) determinations in acid mine waters containing high concentrations of interfering metals. Stabilization of the arsenic redox species for as many as 15 months is demonstrated for samples that have been properly filtered and acidified with HCl in the field. The detection limits for the method described in this report are 0.1 micrograms per liter for total arsenic and 0.8 micrograms per liter for arsenic(III).
Sorption mechanism of enrofloxacin on humic acids extracted from Brazilian soils.
Martínez-Mejía, Mónica J; Sato, Isabela; Rath, Susanne
2017-07-01
Veterinary antimicrobials are emerging environmental contaminants of concern. In this study, the sorption of enrofloxacin (ENR) onto humic acids (HAs) extracted from three Brazilian soils was evaluated. HAs were characterized by elemental analysis and solid 13 C nuclear magnetic resonance spectroscopy. The sorption of ENR onto HAs was at least 20-fold higher than onto the soils from which they were separated. Ionic and cation bridging are the primary interactions involved. The interactions driven by cation exchange are predominant on HAs, which appear to have abundant carboxylic groups and a relatively high proportion of H-bond donor moieties with carbohydrate-like structures. Interactions explained by cation bridging and/or surface complexation on HAs are facilitated by moieties containing conjugated ligands, significant content of oxygen-containing functional groups, such as phenolic-OH or lignin-like structures. HAs containing electron-donating phenolic moieties and carboxylic acid ligand groups exhibit a sorption mechanism that is primarily driven by strong metal binding, favoring the formation of ternary complexes between functional groups of the organic matter and drugs.
Cation-enhanced capillary electrophoresis separation of atropoisomer anions.
Na, Yun-Cheol; Berthod, Alain; Armstrong, Daniel W
2015-12-01
CE was used to study the separation of the atropoisomers of four phosphoric acids and two sulfonic acids and the enantiomers of two phosphoric acids. All solutes are in their anionic forms in aqueous electrolytes. The chiral additives were two hydroxypropyl cyclodextrins (CDs) and cyclofructan 6 (CF6). The CDs were able to separate four solutes and the CF6 additive could separate only one: 1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (BHP). Since CF6 is able to bind with cations, nitrate of alkaline metals, Ba(2+) , and Pb(2+) were added, greatly improving the BHP separation at the expense of longer migration times. There seems to be a link between CF6-cation-binding constants and BHP resolution factors. Cation additions were also performed with CD selectors that are less prone to form complexes with cations. Significant improvements of enantiomer or atropoisomer separations were observed also associated with longer migration times. It is speculated that the anionic solutes associate with the added cations forming larger entities better differentiated by CDs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Protein Phylogenetic Analysis of Ca2+/cation Antiporters and Insights into their Evolution in Plants
Emery, Laura; Whelan, Simon; Hirschi, Kendal D.; Pittman, Jon K.
2012-01-01
Cation transport is a critical process in all organisms and is essential for mineral nutrition, ion stress tolerance, and signal transduction. Transporters that are members of the Ca2+/cation antiporter (CaCA) superfamily are involved in the transport of Ca2+ and/or other cations using the counter exchange of another ion such as H+ or Na+. The CaCA superfamily has been previously divided into five transporter families: the YRBG, Na+/Ca2+ exchanger (NCX), Na+/Ca2+, K+ exchanger (NCKX), H+/cation exchanger (CAX), and cation/Ca2+ exchanger (CCX) families, which include the well-characterized NCX and CAX transporters. To examine the evolution of CaCA transporters within higher plants and the green plant lineage, CaCA genes were identified from the genomes of sequenced flowering plants, a bryophyte, lycophyte, and freshwater and marine algae, and compared with those from non-plant species. We found evidence of the expansion and increased diversity of flowering plant genes within the CAX and CCX families. Genes related to the NCX family are present in land plant though they encode distinct MHX homologs which probably have an altered transport function. In contrast, the NCX and NCKX genes which are absent in land plants have been retained in many species of algae, especially the marine algae, indicating that these organisms may share “animal-like” characteristics of Ca2+ homeostasis and signaling. A group of genes encoding novel CAX-like proteins containing an EF-hand domain were identified from plants and selected algae but appeared to be lacking in any other species. Lack of functional data for most of the CaCA proteins make it impossible to reliably predict substrate specificity and function for many of the groups or individual proteins. The abundance and diversity of CaCA genes throughout all branches of life indicates the importance of this class of cation transporter, and that many transporters with novel functions are waiting to be discovered. PMID:22645563
Evaluation of soils for use as liner materials: a soil chemistry approach.
DeSutter, Tom M; Pierzynski, Gary M
2005-01-01
Movement of NH(4)(+) below animal waste lagoons is generally a function of the whole-lagoon seepage rate, soil mineralogy, cations in the lagoon liquor, and selectivity for NH(4)(+) on the soil-exchange sites. Binary exchange reactions (Ca(2+)-K(+), Ca(2+)-NH(4)(+), and K(+)-NH(4)(+)) were conducted on two soils from the Great Plains and with combinations of these soils with bentonite or zeolite added. Binary exchanges were used to predict ternary exchanges Ca(2+)-K(+)-NH(4)(+) following the Rothmund-Kornfeld approach and Gaines-Thomas convention. Potassium and NH(4)(+) were preferred over Ca(2+), and K(+) was preferred over NH(4)(+) in all soils and soils with amendments. Generally, the addition of bentonite did not change cation selectivity over the native soils, whereas the addition of zeolite did. The Rothmund-Kornfeld approach worked well for predicting equivalent fractions of cations on the exchanger phase when only ternary-solution phase compositions were known. Actual swine- and cattle-lagoon solution compositions and the Rothmund-Kornfeld approach were used to project that native soils are predicted to retain 53 and 23%, respectively, of the downward-moving NH(4)(+) on their exchange sites. Additions of bentonite or zeolite to soils under swine lagoons may only slightly improve the equivalent fraction of NH(4)(+) on the exchange sites. Although additions of bentonite or zeolite may not help increase the NH(4)(+) selectivity of a liner material, increases in the overall cation exchange capacity (CEC) of a soil will ultimately decrease the amount of soil needed to adsorb downward-moving NH(4)(+).
Determination of alkyllead compounds by HPLC/ICP using a glass-frit nebulizer ICP interface
NASA Astrophysics Data System (ADS)
Ibrahim, Mona; Nisamaneepong, Wipawan; Haas, David L.; Caruso, Joseph A.
The glass-frit nebulizer, by forming a very fine mist, has improved the ability of the ICP to accept the introduction of organic solvents with high evaporation rates. The reversed-phase chromatographic separation of TML and TEL, and their determination with glass frit nebulization ICP was accomplished with various mobile phases and columns. The separation of several trialkyllead salts also was studied on a strong cation exchange column, but these compounds were not determined with the glass frit nebulizer interface. Detection limits as low as 33 pg s -1 for TML and 100 pg s -1 for TEL and precision of 3.4% for TML and 6.9% relative standard deviation for TEL were obtained.
NASA Astrophysics Data System (ADS)
Bjerg, Poul L.; Ammentorp, Hans C.; Christensen, Thomas H.
1993-04-01
A large-scale and long-term field experiment on cation exchange in a sandy aquifer has been modelled by a three-dimensional geochemical transport model. The geochemical model includes cation-exchange processes using a Gaines-Thomas expression, the closed carbonate system and the effects of ionic strength. Information on geology, hydrogeology and the transient conservative solute transport behaviour was obtained from a dispersion study in the same aquifer. The geochemical input parameters were carefully examined. CEC and selectivity coefficients were determined on the actual aquifer material by batch experiments and by the composition of the cations on the exchange complex. Potassium showed a non-ideal exchange behaviour with KCa selectivity coefficients indicating dependency on equivalent fraction and K + concentration in the aqueous phase. The model simulations over a distance of 35 m and a period of 250 days described accurately the observed attenuation of Na and the expelled amounts of Ca and Mg. Also, model predictions of plateau zones, formed by interaction with the background groundwater, in general agreed satisfactorily with the observations. Transport of K was simulated over a period of 800 days due to a substantially attenuation in the aquifer. The observed and the predicted breakthrough curves showed a reasonable accordance taking the duration of the experiment into account. However, some discrepancies were observed probably caused by the revealed non-ideal exchange behaviour of K +.
On the influence of ion exchange on the local structure of the titanosilicate ETS-10.
Pavel, Claudiu C; Zibrowius, Bodo; Löffler, Elke; Schmidt, Wolfgang
2007-07-14
The effect of ion exchange with different monovalent cations (NH(4)(+), K(+), Na(+) and Cs(+)) on the local structure of the titanosilicate ETS-10 has been studied by (29)Si MAS NMR and Raman spectroscopy. Although X-ray diffraction shows no significant influence of ion exchange on the long range order, ammonium exchange is found to result in substantial damage to the local structure. Ion exchange experiments with alkali cations under significantly more acidic conditions clearly show that the structural damage brought about by ammonium exchange is not caused by the low pH of the exchange solution. The exchange with potassium and caesium ions also leads to significant changes in the (29)Si NMR and Raman spectra. However, these changes can largely be reversed by sodium back-exchange.
NASA Astrophysics Data System (ADS)
Kim, Sojeong; Choi, Soo-Hyung; Lee, Won Bo
Anion exchange membranes(AEMs) have been widely studied due to their various applications, especially for Fuel cells. Previous proton exchange membranes(PEMs), such as Nafions® have better conductivity than AEMs so far. However, technical limitations such as slow electrode kinetics, carbon monoxide (CO) poisoning of metal catalysts, high methanol crossover and high cost of Pt-based catalyst detered further usages. AEMs have advantages to supplement its drawbacks. AEMs are environmentally friendly and cost-efficient. Based on the well-defined block copolymer, self-assembled morphology is expected to have some relationship with its ionic conductivity. Recently AEMs based on various cations, including ammonium, phosphonium, guanidinium, imidazolium, metal cation, and benzimidazolium cations have been developed and extensively studied with the aim to prepare high- performance AEMs. But more fundamental approach, such as relationships between nanostructure and conductivity is needed. We use well-defined block copolymer Poly(styrene-block-isoprene) as a backbone which is synthesized by anionic polymerization. Then we graft various cationic functional groups and analysis the relation between morphology and conductivity. Theoretical and computational soft matter lab.
Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface
Lee, Sang Soo; Fenter, Paul; Nagy, Kathryn L.; Sturchio, Neil C.
2017-01-01
Ion exchange at charged solid–liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here we report temporal variation in the distribution of Rb+ species at the muscovite (001)–water interface during exchange with Na+. Time-resolved resonant anomalous X-ray reflectivity measurements at 25 °C reveal that Rb+ desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb+ slowly transforms to a less stable outer-sphere Rb+. In contrast, Rb+ adsorption is about twice as fast, proceeding from Rb+ in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55 °C shows that the pre-exponential factor for desorption is significantly smaller than that for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface. PMID:28598428
Impact of soil properties on selected pharmaceuticals adsorption in soils
NASA Astrophysics Data System (ADS)
Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej
2014-05-01
The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also related to absorption coefficients of Carbamazepin (R=0.67 and 0.68). Positive correlation was found between Trimetoprim absorption coefficients and Atenolol, Metoprolol or Carbamazepin absorption coefficients. The negative relationship was found between absorption coefficients of Sulfomethoxazol and Clarithromycin (R=-0.80). Sulfamethoxazol absorption coefficient was negatively related to pH_H2O, pH_KCL or sorption complex saturation and positively to the hydrolytic acidity or exchangeable acidity. Trimetoprim absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation or silt content and negatively to particle density or sand content. Clarithromycin absorption coefficient was positively related to pH_H2O, pH_KCL, CaCO3 content, basic cation saturation or sorption complex saturation and negatively to hydrolytic acidity or exchangeable acidity. Atenolol and Metoprolol absorption coefficients were positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation, salinity, clay content or silt content, and negatively to the particle density or sand content. Finally Carbamazepin absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity or basic cation saturation, and negatively to the particle density or sand content. Evaluated pedotransfer rules for different pharmaceuticals included different sets of soil properties. Absorption coefficients could be predicted from: the hydrolytic acidity (Sulfamethoxazol), the oxidable organic carbon content (Trimetoprim and Carbamazepin), the oxidable organic carbon content, hydrolytic acidity and cation exchange capacity (Clarithromycin), the basic cation saturation (Atenolol and Metoprolol). Acknowledgement: Authors acknowledge the financial support of the Czech Science Foundation (Project No. 13-12477S).
NASA Astrophysics Data System (ADS)
Palhares, Leticia F.
The dissertation research is focused on (1) uncovering the mechanism of metal chalcogenide nanoparticle gel formation; (2) extending the cation exchange reaction protocol to zinc sulfide gel networks, with the goal of accessing new aerogel chemistries and understanding the factors that drive the process; and (3) conducting a quantitative analysis of the ability of ZnS aerogels to remove heavy metal ions from aqueous solutions. The mechanism of metal chalcogenide nanoparticle gel formation was investigated using Raman spectroscopy and X-ray Photoelectron Spectroscopy to probe the chemical changes that occur during the gelation process. These techniques suggest that the bonding between the particles in the CdSe nanoparticle gels is due to the oxidation of surface selenide species, forming covalent Se--Se bonds. Treating the gel networks with a suitable reducing agent, such as a thiol, breaks the covalent bond and disperses the gel network. The addition of sodium borohydride, a "pure" reducing agent, also breaks down the gel network, strengthening the hypothesis that the reducing character of the thiols, not their ligation ability, is responsible for the gel network breakdown. UV-Vis spectroscopy, Transmission Electron Microscopy and Powder X-ray Diffraction were used to analyze the particles after successive gelation-dispersion cycles. The primary particle size decreases after repeated oxidation-reduction cycles, due to nanoparticle surface etching. This trend is observed for CdSe and CdS gel networks, allowing for the proposition that the oxidative-reductive mechanism responsible for the formation-dispersion of the gels is general, applying to other metal chalcogenide nanocrystals as well. The cation exchange reaction previously demonstrated for CdSe gels was extended to ZnS gel networks. The exchange occurs under mild reaction conditions (room temperature, methanol solvent) with exchanging ions of different size, charge and mobility (Ag+, Pb2+, Cd2+ , Cu2+). The overall reaction is kinetically controlled, since systems with similar solubility, and thus similar thermodynamic driving force (e.g. PbS and CdS) exchange at very different rates. A correlation exists between the speed of the reaction and the difference between the reduction potential of the incoming cation and that of Zn2+; the larger the difference, the faster the exchange. At the same time, the porosity of the aerogels and the surfactant-free surfaces hold great importance for the exchange reactions, allowing for exchange between cations of similar size and charge (i.e. Pb2+ for Zn2+), a phenomenon that was previously reported as impossible in ligand-capped metal chalcogenide nanoparticles. These observations allowed for a better understanding of the factors governing the cation exchange reaction in nanoscale metal chalcogenides. Quaternary ZnS-CuInS2 gels were obtained by cation exchange with Cu+ and In3+, but the pure CuInS2 phase was not obtained under the mild reaction conditions used, probably due to the very different mobility of the two exchanging cations. The kinetically fast cation exchange process and the propensity of the soft chalcogenide gel networks to bind heavy metal ions selectively, suggest that these materials could also be suitable for the removal of heavy metal ions from the environment. The dissertation research studied the capacity of ZnS aerogels to sequester heavy metal ions such as Pb2+ and Hg2+ from water. The materials are efficient in removing the heavy metal ions from aqueous solutions with a wide range of initial concentrations. For initial concentrations that mimic an environmental spill (i.e. 100 ppb Pb2+), the treatment with the aerogel affords a final concentration lower than the 15 ppm action level recommended by the EPA. Under thermodynamically forcing conditions, the water remediation capacity of the ZnS nanoparticle aerogels was determined to be 14.2 mmol Pb2+ / g ZnS aerogel, which is the highest value reported to date.
Mallik, Abul K; Qiu, Hongdeng; Takafuji, Makoto; Ihara, Hirotaka
2014-05-01
This work reports a new imidazolium and L-alanine derived copolymer-grafted silica stationary phase for ready separation of complex isomers using high-performance liquid chromatography (HPLC). For this purpose, 1-allyl-3-octadecylimidazolium bromide ([AyImC18]Br) and N-acryloyl-L-alanine sodium salt ([AAL]Na) ionic liquids (IL) monomers were synthesized. Subsequently, the bromide counteranion was exchanged with the 2-(acrylamido)propanoate organic counteranion by reacting the [AyImC18]Br with excess [AAL]Na in water. The obtained IL cation-anion monomer pair was then copolymerized on mercaptopropyl-modified silica (Sil-MPS) via a surface-initiated radical chain-transfer reaction. The selective retention behaviors of polycyclic aromatic hydrocarbons (PAHs), including some positional isomers, steroids, and nucleobases were investigated using the newly obtained Sil-poly(ImC18-AAL), and octadecyl silylated silica (ODS) was used as the reference column. Interesting results were obtained for the separation of PAHs, steroids, and nucleobases with the new organic phase. The results showed that the Sil-poly(ImC18-AAL) presented multiple noncovalent interactions, including hydrophobic, π-π, carbonyl-π, and ion-dipole interactions for the separation of PAHs and dipolar compounds. Only pure water was sufficient as the mobile phase for the separation of the nucleobases. Ten nucleosides and bases were separated, using only water as the mobile phase, within a very short time using the Sil-poly(ImC18-AAL), which is otherwise difficult to achieve using conventional hydrophobic columns such as ODS. The combination of electrostatic and hydrophobic interactions are important for the effective separation of such basic compounds without the use of any organic additive as the eluent on the Sil-poly(ImC18-AAL) column.
Atomic sites and stability of Cs+ captured within zeolitic nanocavities
Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi
2013-01-01
Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184
Periodic variation in physical and chemical properties of two central Washington soils.
Tom D. Anderson; Arthur R. Tiedemann
1970-01-01
Soils derived from two widely distributed parent materials in central Washington were examined periodically during 1968-69 for physical and chemical properties. Basalt soils showed significant periodic variation in cation exchange capacity, pH, and Na and K contents. In sandstone soils, cation exchange capacity and Ca, Na, and K contents varied significantly among...
Anion exchange of the cationic layered material [Pb2F2]2+.
Fei, Honghan; Pham, Catherine H; Oliver, Scott R J
2012-07-04
We demonstrate the complete exchange of the interlamellar anions of a 2-D cationic inorganic material. The α,ω-alkanedisulfonates were exchanged for α,ω-alkanedicarboxylates, leading to two new cationic materials with the same [Pb(2)F(2)](2+) layered architecture. Both were solved by single crystal X-ray diffraction and the transformation also followed by in situ optical microscopy and ex situ powder X-ray diffraction. This report represents a rare example of metal-organic framework displaying highly efficient and complete replacement of its anionic organic linker while retaining the original extended inorganic layer. It also opens up further possibilities for introducing other anions or abatement of problematic anions such as pharmaceuticals and their metabolites.
ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS
Long, R.S.; Bailes, R.H.
1958-04-15
A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.
Mills, M.S.; Thurman, E.M.; Pedersen, M.J.
1993-01-01
Silica- and styrene-divinylbenzene-based mixed-mode resins that contain C8, C18 and sulphonated cation-exchange groups were compared for their efficiency in isolation of neutral triazine compounds from water and of the basic drug, benzoylecgonine, from urine. The triazine compounds were isolated by a combination of Van der Waals and hydrogen-bonding interactions, and benzoylecgonine was isolated by Van der Waals interactions and cation exchange. All analytes were eluted with a polar organic solvent contaning 2% ammonium hydroxide. Larger recoveries (95%) were achieved on copolymerized mixed-mode resins where C18 and sulfonic acid are in closer proximity than on 'blended' mixed-mode resins (60-70% recovery).
Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3
Hedrick, James B.; Sinha, Shyama P.; Kosynkin, Valery D.
1997-01-01
The mineral loparite (Ce, NA, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3 is the principal ore of the light-group rare-earth elements (LREE) in Russia. The complex oxide has a perovskite (ABO3) structure with coupled substitutions, polymorphism, defect chemistry and a tendency to become metamict. The A site generally contains weakly bonded, easily exchanged cations of the LREE, Na and Ca. The B site generally contains smaller, highly charged cations of Ti, Nb or Fe+3. Mine production is from Russia's Kola Peninsula. Ore is beneficiated to produce a 95% loparite concentrate containing 30% rare-earth oxides. Loparite concentrate is refined by either a chlorination process or acid decomposition process to recover rare-earths, titanium, niobium and tantalum. Rare-earths are separated by solvent extraction and selective precipitation/dissolution. The concentrate is processed at plants in Russia, Estonia and Kazakstan.
Ion exchanger from chemically modified banana leaves.
El-Gendy, Ahmed A; Mohamed, Samar H; Abd-Elkader, Amal H
2013-07-25
Cation exchangers from chemically modified banana leaves have been prepared. Banana leaves were treated with different molarities of KMnO4 and cross linked with epichlorohydrin and their effect on metal ion adsorption was investigated. Phosphorylation of chemically modified banana leaves was also studied. The metal ion uptake by these modified banana leaves was clarified. Effect of different varieties, e.g. activation of produced cation exchanger, concentration of metal ions was also investigated. Characterization of the prepared ion exchangers by using infrared and thermal analysis was also taken in consideration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei
2012-08-30
We have explored a novel dual-function stationary phase which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary phase is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile phase employed. As a result, it can be employed to separate proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary phase were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein separation. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein separation. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile phase used on protein separation were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary phase, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein separation and be used to set up two-dimensional liquid chromatography with a single column (2DLC-1C), which can also be employed to separate three kinds of active proteins completely, such as lysozyme, ovotransferrin and ovalbumin from egg white. The result is very important not only to the development of new 2DLC technology with a single column for proteomics, but also to recombinant protein drug production for saving column expense and simplifying the process in biotechnology. Copyright © 2012 Elsevier B.V. All rights reserved.
Jiang, Liuwei; Marcus, R Kenneth
2016-02-01
Capillary-channeled polymer (C-CP) fiber stationary phases are finding utility in the realms of protein analytics as well as downstream processing. We have recently described the modification of poly(ethylene terephthalate) (PET) C-CP fibers to affect amine-rich phases for the weak anion-exchange (WAX) separation of proteins. Polyethylenimine (PEI) is covalently coupled to the PET surface, with subsequent cross-linking imparted by treatment with 1,4-butanediol diglycidyl ether (BUDGE). These modifications yield vastly improved dynamic binding capacities over the unmodified fibers. We have also previously employed native (unmodified) nylon 6 C-CP fibers as weak anion/cation-exchange (mixed-mode) and hydrophobic interaction chromatography (HIC) phases for protein separations. Polyamide, nylon 6, consists of amide groups along the polymer backbone, with primary amines and carboxylic acid end groups. The analytical separation characteristics of these three amine-based C-CP fiber phases are compared here. Each of the C-CP fiber columns in this study was shown to be able to separate a bovine serum albumin/hemoglobin/lysozyme mixture at high mobile phase linear velocity (∼70 mm s(-1)) but with different elution characteristics. These differences reflect the types of protein-surface interactions that are occurring, based on the active group composition of the fiber surfaces. This study provides important fundamental understanding for the development of surface-modified C-CP fiber columns for protein separation.
Wei, Zhishen; Fu, Qing; Cai, Jianfeng; Huan, Liyun; Zhao, Jianchao; Shi, Hui; Jin, Yu; Liang, Xinmiao
2016-06-01
In this study, two mixed-mode chromatography stationary phases (C8SAX and C8SCX) were evaluated and used to establish a two-dimensional liquid chromatography system for the separation of traditional Chinese medicine. The chromatographic properties of the mixed-mode columns were systematically evaluated by comparing with other three columns of C8, strong anion exchanger, and strong cation exchanger. The result showed that C8SAX and C8SCX had a mixed-mode retention mechanism including electrostatic interaction and hydrophobic interaction. Especially, they were suitable for separating acidic and/or basic compounds and their separation selectivities could be easily adjusted by changing pH value. Then, several off-line 2D-LC systems based on the C8SAX in the first dimension and C8SAX, C8SCX, or C8 columns in the second dimension were developed to analyze a traditional Chinese medicine-Uncaria rhynchophylla. The two-dimensional liquid chromatography system of C8SAX (pH 3.0) × C8SAX (pH 6.0) exhibited the most effective peak distribution. Finally, fractions of U. rhynchophylla prepared from the first dimension were successfully separated on the C8SAX column with a gradient pH. Thus, the mixed-mode stationary phase could provide a platform to separate the traditional Chinese medicine in practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shaljian, M.; Keller, C. K.; Jones, K. B.; Brooks, E. S.; Huggins, D. R.
2016-12-01
The Long-Term Agroecosystem Research (LTAR) network of the USDA is a nationwide observatory and decadal-timescale field-experimental study of sustainable food production. The LTAR thus supports investigation of hydroecological and biogeochemical processes that could affect agricultural sustainability over the course of the 21st century. Mineral-derived nutrient cations are essential to fertility, and acidification of soils due to chemical fertilization may result in unsustainable chemical denudation of the soil exchange pool. Mineral weathering also contributes to base cation denudation. This study investigated base cation losses for one year in drainage from a semi-arid, rain-fed catchment at the Cook Agronomy Farm (CAF) LTAR site in southeastern Washington. We measured flows, analyzed drainage samples and estimated hydrologic effluxes of base cations from the catchment. The total dissolved base cation denudation rate at CAF-LTAR is about 40 kg ha-1 yr-1, which is comparable to other catchments on silicate terranes. The 2.1keq ha-1 yr-1 of denuded cationic charge is dominated by Ca2+ (61%) and Mg2+ (35%). Principal counter-ions are HCO3- (43%), NO3- (38%) and SO42- (16%), suggesting that both H2CO3 and HNO3 are important acids. Comparing 2008 soil pH and base saturation at CAF-LTAR to a nearby native prairie site, we preliminarily estimate a loss of 120 keq ha-1 of base cations from the upper 1.5m of the soil exchangeable cation pool. Dividing this depletion by the estimated denudation flux returns 60 years, which is approximately the interval of chemically intensive agriculture here. This may suggest that the source of exported base cations in drainage is primarily cation exchange rather than mineral weathering. The LTAR observatory will support ongoing monitoring and experimentation necessary to better understand base cation depletion and how it interacts with agroecological changes over the next several decades.
High-pressure alchemy on a small-pore zeolite
NASA Astrophysics Data System (ADS)
Lee, Y.
2011-12-01
While an ever-expanding variety of zeolites with a wide range of framework topology is available, it is desirable to have a way to tailor the chemistry of the zeolitic nanopores for a given framework topology via controlling both the coordination-inclusion chemistry and framework distortion/relaxation. This is, however, subjected to the ability of a zeolitic nanopore to allow the redistribution of cations-water assembly and/or insertion of foreign molecules into the pores and channels. Small-pore zeolites such as natrolite (Na16Al16Si24O80x16H2O), however, have been known to show very limited capacity for any changes in the confinement chemistry. We have recently shown that various cation-exchanged natrolites can be prepared under modest conditions from natural sodium natrolite and exhibit cation-dependent volume expansions by up to 18.5% via converting the elliptical channels into progressively circular ones. Here, we show that pressure can be used as a unique and clean tool to further manipulate the chemistry of the natrolite nanopores. Our recent crystallographic and spectroscopic studies of pressure-insertion of foreign molecules, trivalent-cation exchange under pressure, and pressure-induced inversion of cation-water coordination and pore geometry in various cation-exchanged natrolites will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espeleta, Javier F.; Cardon, Zoe G.; Mayer, K. Ulrich
Hydro-biogeochemical processes in the rhizosphere regulate nutrient and water availability, and thus ecosystem productivity. We hypothesized that two such processes often neglected in rhizosphere models — diel plant water use and competitive cation exchange — could interact to enhance availability of K + and NH 4 +, both high-demand nutrients. A rhizosphere model with competitive cation exchange was used to investigate how diel plant water use (i.e., daytime transpiration coupled with no nighttime water use, with nighttime root water release, and with nighttime transpiration) affects competitive ion interactions and availability of K + and NH 4 +. Competitive cation exchangemore » enabled lowdemand cations that accumulate against roots (Ca 2+, Mg 2+, Na +) to desorb NH 4 + and K + from soil, generating non-monotonic dissolved concentration profiles (i.e. ‘hotspots’ 0.1–1 cm from the root). Cation accumulation and competitive desorption increased with net root water uptake. Daytime transpiration rate controlled diel variation in NH 4 + and K + aqueous mass, nighttime water use controlled spatial locations of ‘hotspots’, and day-to-night differences in water use controlled diel differences in ‘hotspot’ concentrations. Finally, diel plant water use and competitive cation exchange enhanced NH 4 + and K + availability and influenced rhizosphere concentration dynamics. Demonstrated responses have implications for understanding rhizosphere nutrient cycling and plant nutrient uptake.« less
Electrodeionization Using Microseparated Bipolar Membranes
NASA Technical Reports Server (NTRS)
Lyons, Donald; Jackson, George; Andrews, Craig C.; Tennakoon, Charles L, K.; Singh, Waheguru; Hitchens, G. Duncan; Jabs, Harry; Chepin, James F.; Archer, Shivaun; Gonzalez-Martinez, Anukia;
2004-01-01
An electrochemical technique for deionizing water, now under development, is intended to overcome a major limitation of prior electrically-based water-purification techniques. The limitation in question is caused by the desired decrease in the concentration of ions during purification: As the concentration of ions decreases, the electrical resistivity of the water increases, posing an electrical barrier to the removal of the remaining ions. In the present technique, this limitation is overcome by use of electrodes, a flowfield structure, and solid electrolytes configured to provide conductive paths for the removal of ions from the water to be deionized, even when the water has already been purified to a high degree. The technique involves the use of a bipolar membrane unit (BMU), which includes a cation-exchange membrane and an anion-exchange membrane separated by a nonconductive mesh that has been coated by an ionically conductive material (see figure). The mesh ensures the desired microseparation between the ion-exchange membranes: The interstices bounded by the inner surfaces of the membranes and the outer surfaces of the coated mesh constitute a flow-field structure that allows the water that one seeks to deionize (hereafter called "process water" for short) to flow through the BMU with a low pressure drop. The flow-field structure is such that the distance between any point in the flow field and an ionically conductive material is small; thus, the flow-field structure facilitates the diffusion of molecules and ions to and from the ion-exchange membranes. The BMU is placed between an anode and a cathode, but not in direct contact with these electrodes. Instead, the space between the anion-exchange membrane and the anode is denoted the anode compartment and is filled with an ionic solution. Similarly, the space between the cation-exchange membrane and the cathode is denoted the cathode compartment and is filled with a different ionic solution. The electrodes are made of titanium coated with platinum.
A rice tonoplastic calcium exchanger, OsCCX2 mediates Ca2+/cation transport in yeast
Yadav, Akhilesh K.; Shankar, Alka; Jha, Saroj K.; Kanwar, Poonam; Pandey, Amita; Pandey, Girdhar K.
2015-01-01
In plant cell, cations gradient in cellular compartments is maintained by synergistic action of various exchangers, pumps and channels. The Arabidopsis exchanger family members (AtCCX3 and AtCCX5) were previously studied and belong to CaCA (calcium cation exchangers) superfamily while none of the rice CCXs has been functionally characterized for their cation transport activities till date. Rice genome encode four CCXs and only OsCCX2 transcript showed differential expression under abiotic stresses and Ca2+ starvation conditions. The OsCCX2 localized to tonoplast and suppresses the Ca2+ sensitivity of K667 (low affinity Ca2+ uptake deficient) yeast mutant under excess CaCl2 conditions. In contrast to AtCCXs, OsCCX2 expressing K667 yeast cells show tolerance towards excess Na+, Li+, Fe2+, Zn2+ and Co2+ and suggest its ability to transport both mono as well as divalent cations in yeast. Additionally, in contrast to previously characterized AtCCXs, OsCCX2 is unable to complement yeast trk1trk2 double mutant suggesting inability to transport K+ in yeast system. These finding suggest that OsCCX2 having distinct metal transport properties than previously characterized plant CCXs. OsCCX2 can be used as potential candidate for enhancing the abiotic stress tolerance in plants as well as for phytoremediation of heavy metal polluted soil. PMID:26607171
Bray, Lane Allan; DesChane, Jaquetta R.
1998-01-01
A method for separating .sup.213 Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon .sup.213 Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as .sup.225 Ra, .sup.225 Ac, and .sup.221 Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The .sup.213 Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the .sup.213 Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the .sup.213 Bi. A preferred stripping solution for purification of .sup.213 Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc, to receive the .sup.213 Bi as it is being released from the anion exchange resin.
Bray, L.A.; DesChane, J.R.
1998-05-05
A method is described for separating {sup 213}Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon {sup 213}Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as {sup 225}Ra, {sup 225}Ac, and {sup 221}Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The {sup 213}Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the {sup 213}Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the {sup 213}Bi. A preferred stripping solution for purification of {sup 213}Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc receives the {sup 213}Bi as it is being released from the anion exchange resin. 10 figs.
Bisse, E; Wieland, H
1988-12-29
A high-performance liquid chromatographic system, which uses a weak cation exchanger (PolyCATA) together with Bis-Tris buffer (pH 6.47-7.0) and sodium acetate gradients, is described. Samples from adults and newborns were analysed and a clean separation of many minor and major normal and abnormal haemoglobin (Hb) variants was greatly improved. The method allows the separation of minor foetal haemoglobin (HbF) variants and the simultaneous quantitation of HbF and glycated HbA. HbF values correlated well with those obtained by the alkali denaturation method (r = 0.997). The glycated haemoglobin (HbAIc) levels measured in patients with high HbF concentrations correlated with the total glycated haemoglobin determined by bioaffinity chromatography (r = 0.973). The procedure is useful for diagnostic applications and affords an effective and sensitive way of examining blood samples for haemoglobin abnormalities.
Zhang, Changwang; Xia, Yong; Zhang, Zhiming; ...
2017-03-22
A new strategy for narrowing the size distribution of colloidal quantum dots (QDs) was developed by combining cation exchange and quantized Ostwald ripening. Medium-sized reactant CdS(e) QDs were subjected to cation exchange to form the target PbS(e) QDs, and then small reactant CdS(e) QDs were added which were converted to small PbS(e) dots via cation exchange. The small-sized ensemble of PbS(e) QDs dissolved completely rapidly and released a large amount of monomers, promoting the growth and size-focusing of the medium-sized ensemble of PbS(e) QDs. The addition of small reactant QDs can be repeated to continuously reduce the size distribution. Themore » new method was applied to synthesize PbSe and PbS QDs with extremely narrow size distributions and as a bonus they have hybrid surface passivation. In conclusion, the size distribution of prepared PbSe and PbS QDs are as low as 3.6% and 4.3%, respectively, leading to hexagonal close packing in monolayer and highly ordered three-dimensional superlattice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Changwang; Xia, Yong; Zhang, Zhiming
A new strategy for narrowing the size distribution of colloidal quantum dots (QDs) was developed by combining cation exchange and quantized Ostwald ripening. Medium-sized reactant CdS(e) QDs were subjected to cation exchange to form the target PbS(e) QDs, and then small reactant CdS(e) QDs were added which were converted to small PbS(e) dots via cation exchange. The small-sized ensemble of PbS(e) QDs dissolved completely rapidly and released a large amount of monomers, promoting the growth and size-focusing of the medium-sized ensemble of PbS(e) QDs. The addition of small reactant QDs can be repeated to continuously reduce the size distribution. Themore » new method was applied to synthesize PbSe and PbS QDs with extremely narrow size distributions and as a bonus they have hybrid surface passivation. In conclusion, the size distribution of prepared PbSe and PbS QDs are as low as 3.6% and 4.3%, respectively, leading to hexagonal close packing in monolayer and highly ordered three-dimensional superlattice.« less
Effects of Purification on the Crystallization of Lysozyme
NASA Technical Reports Server (NTRS)
Ewing, Felecia L.; Forsythe, Elizabeth L.; Van Der Woerd, Mark; Pusey, Marc L.
1996-01-01
We have additionally purified a commercial lysozyme preparation by cation exchange chromatography, followed by recrystallization. This material is 99.96% pure with respect to macromolecular impurities. At basic pH, the purified lysozyme gave only tetragonal crystals at 20 C. Protein used directly from the bottle, prepared by dialysis against distilled water, or which did not bind to the cation exchange column had considerably altered crystallization behavior. Lysozyme which did not bind to the cation exchange column was subsequently purified by size exclusion chromatography. This material gave predominately bundles of rod-shaped crystals with some small tetragonal crystals at lower pHs. The origin of the bundled rod habit was postulated to be a thermally dependent tetragonal- orthorhombic change in the protein structure. This was subsequently ruled out on the basis of crystallization behavior and growth rate experiments. This suggests that heterogeneous forms of lysozyme may be responsible. These results demonstrate three classes of impurities: (1) small molecules, which may be removed by dialysis; (2) macromolecules, which are removable by chromatographic techniques; and (3) heterogeneous forms of the protein, which can be removed in this case by cation exchange chromatography. Of these, heterogeneous forms of the lysozyme apparently have the greatest affect on its crystallization behavior.
Kröner, Frieder; Hubbuch, Jürgen
2013-04-12
pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods. Copyright © 2013 Elsevier B.V. All rights reserved.
High Temperature Thermosetting Polyimide Nanocomposites Prepared with Reduced Charge Organoclay
NASA Technical Reports Server (NTRS)
Campbell, Sandi; Liang, Margaret I.
2005-01-01
The naturally occurring sodium and calcium cations found in bentonite clay galleries were exchanged with lithium cations. Following the cation exchange, a series of reduced charge clays were prepared by heat treatment of the lithium bentonite at 130 C, 150 C, or 170 C. Inductively coupled plasma (ICP) analysis showed that heating the lithium clay at elevated temperatures reduced its cation exchange capacity. Ion exchange of heat-treated clays with either a protonated alkyl amine or a protonated aromatic diamine resulted in decreasing amounts of the organic modifier incorporated into the lithium clay. The level of silicate dispersion in a thermosetting polyimide matrix was dependent upon the temperature of Li-clay heat treatment as well as the organic modification. In general, clays treated at 150 C or 170 C, and exchanged with protonated octadcylamine or protonated 2,2'-dimethlybenzidine (DMBZ) showed a higher degree of dispersion than clays treated at 130 C, or exchanged with protonated dodecylamine. Dynamic mechanical analysis showed little change in the storage modulus or T(sub g) of the nanocomposites compared to the base resin. However, long term isothermal aging of the samples showed a significant decrease in the resin oxidative weight loss. Nanocomposite samples aged in air for 1000 hours at 288 C showed of to a decrease in weight loss compared to that of the base resin. This again was dependent on the temperature at which the Li-clay was heated and the choice of organic modification.
Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.
1998-04-28
A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.
Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis.
Masuda, Akiko; Dohmae, Naoshi
2010-11-01
In this study, we developed an automatic protein hydrolysis system using strong cation-exchange resins as solid acid catalysts. Examining several kinds of inorganic solid acids and cation-exchange resins, we found that a few cation-exchange resins worked as acid catalysts for protein hydrolysis when heated in the presence of water. The most efficient resin yielded amounts of amino acids that were over 70% of those recovered after conventional hydrolysis with hydrochloric acid and resulted in amino acid compositions matching the theoretical values. The solid-acid hydrolysis was automated by packing the resin into columns, combining the columns with a high-performance liquid chromatography system, and heating them. The amino acids that constitute a protein can thereby be determined, minimizing contamination from the environment.
Geomaterials: their application to environmental remediation
Yamada, Hirohisa; Tamura, Kenji; Watanabe, Yujiro; Iyi, Nobuo; Morimoto, Kazuya
2011-01-01
Geomaterials are materials inspired by geological systems originating from the billion years long history of the Earth. This article reviews three important classes of geomaterials. The first one is smectites—layered silicates with a cation-exchange capacity. Smectites are useful for removing pollutants and as intercalation compounds, catalysts and polymer nanocomposites. The second class is layered double hydroxides (LDHs). They have an anion-exchange capacity and are used as catalysts, catalyst precursors, sorbents and scavengers for halogens. The third class of geomaterials is zeolites—microporous materials with a cation-exchange capacity which are used for removing harmful cations. Zeolite composites with LDHs can absorb ammonium and phosphate ions in rivers and lakes, whereas zeolite/apatite composites can immobilize the radioactive iodine. These geomaterials are essential for environmental remediation. PMID:27877455
NASA Astrophysics Data System (ADS)
Raju, C. Sudarsana; Goud, P. V. Prakash
1990-09-01
Studies of groundwater chemistry in the Koilsagar project area of Andhra Pradesh indicate that the waters are sodium bicarbonate, sodium chloride, mixed cationic-mixed anionic, mixed cationic Na dominating bicarbonate, and mixed cationic Ca dominating bicarbonate types. Of them, sodium bicarbonate and mixed cationic Mg dominating bicarbonate types of waters are more prevalent. Isocone mapping of specific conductance indicates that the ionic concentration increases from east to west in the area. Graphical treatment of chemical data reveals that, in general, the area has basic water, whereas the left flank canal area is dominated by secondary alkaline water, and Pallamarri and Pedda Rajmur villages have strongly acidic waters. Ion-exchange studies show that cation-anion exchanges exist all over the area except for two places, which have a base exchange hardened type of water. Graphical representation further shows that most of the area has medium salinity-low sodium (C2S1) water useful for irrigation purposes. High salinity-low sodium (C3S1) and high salinity-medium sodium (C3S2) waters are present in some areas, which need adequate drainage to overcome the salinity problem.
Enrofloxacin sorption on smectite clays: effects of pH, cations, and humic acid.
Yan, Wei; Hu, Shan; Jing, Chuanyong
2012-04-15
Enrofloxacin (ENR) occurs widely in natural waters because of its extensive use as a veterinary chemotherapeutic agent. To improve our understanding of the interaction of this emerging contaminant with soils and sediments, sorption of ENR on homoionic smectites and kaolinite was studied as a function of pH, ionic strength, exchangeable cations, and humic acid concentration. Batch experiments and in situ ATR-FTIR analysis suggested multiple sorption mechanisms. Cation exchange was a major contributor to the sorption of cationic ENR species on smectite. The decreased ENR sorption with increasing ionic strength indicated the formation of outer-sphere complexes. Exchangeable cations significantly influenced the sorption capacity, and the observed order was Cs
Wendland, M F; Stevens, T H; Buttlaire, D H; Everett, G W; Himes, R H
1983-02-15
Using nuclear magnetic resonance techniques, we have measured the internuclear distances separating the nucleotide-bound metal from the carbon and hydrogen nuclei of formate as well as the carbon of methylammonium cation when bound to formyltetrahydrofolate synthetase. Measurements were made of the paramagnetic effect on the spin-lattice relaxation rates (1/T1) of 13C and 1H nuclei arising from the replacement of Mg2+ with Mn2+, which binds to the enzyme in the form of a metal-nucleotide complex. Distances from Mn2+ to the formate carbon and proton were found to be 6.3 and 7.4 A, respectively, in the E . ATP . Mn2+ . formate complex and 6.0 and 7.1 A, respectively, in the E . ADP . Mn2+ . formate complex. When tetrahydrofolate was added to the latter complex, the exchange of formate was greatly reduced and became rate limiting for relaxation. These results are consistent with substantial conformational effects produced by the binding of the cofactor. The distance from Mn2+ to the methylammonium carbon in the E . ADP . Mn2+ . CH3NH+3, E . ADP . Mn2+ . formate . CH3NH3+, and E . ADP . Mn2+ . tetrahydrofolate . CH3NH3+ complexes was estimated to be in the range of 7.4-12 A. However, in the E . ADP . Mn2+ formate . tetrahydrofolate . CH3NH3+ complex, the data suggest that exchange of cation contributes significantly to relaxation. These results, combined with other known features of the enzyme, suggest that there may be a monovalent cation site within the active site of the enzyme.
Nakamura, Tatsuji; Kuromitsu, Junro; Oda, Yoshiya
2008-03-01
Two-dimensional liquid-chromatographic (LC) separation followed by mass spectrometric (MS) analysis was examined for the identification of peptides in complex mixtures as an alternative to widely used two-dimensional gel electrophoresis followed by MS analysis for use in proteomics. The present method involves the off-line coupling of a narrow-bore, polymer-based, reversed-phase column using an acetonitrile gradient in an alkaline mobile phase in the first dimension with octadecylsilanized silica (ODS)-based nano-LC/MS in the second dimension. After the first separation, successive fractions were acidified and dried off-line, then loaded on the second dimension column. Both columns separate peptides according to hydrophobicity under different pH conditions, but more peptides were identified than with the conventional technique for shotgun proteomics, that is, the combination of a strong cation exchange column with an ODS column, and the system was robust because no salts were included in the mobile phases. The suitability of the method for proteomics measurements was evaluated.
Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface
Lee, Sang Soo; Fenter, Paul; Nagy, Kathryn L.; ...
2017-06-09
Here, ion exchange at charged solid–liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here, we report temporal variation in the distribution of Rb + species at the muscovite (001)–water interface during exchange with Na +. Time-resolved resonant anomalous X-ray reflectivity measurements reveal that Rb + desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb + slowly transforms to less stable outer-sphere Rb + at 25°C. In contrast, Rb + adsorption is about twice as fast, proceeding quickly from Rb +more » in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55°C shows that the pre-exponential factor for desorption is significantly smaller than for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface.« less
Oxygen isotope geochemistry of the amphiboles: isotope effects of cation substitutions in minerals
NASA Astrophysics Data System (ADS)
Kohn, Matthew J.; Valley, John W.
1998-06-01
The occurrence of coexisting amphiboles in rocks and the likelihood of concurrent isotope closure allows equilibrium oxygen isotope fractionations among the amphiboles to be recovered from natural samples. Oxygen isotope analyses of mineral separates using laser fluorination show that coexisting amphiboles increasingly partition 18O in the order: hornblende ≪ gedrite < cummingtonite ≤ anthophyllite. The observed fractionations at ˜575°C are: Δ(Ged-Hbl) = 0.8‰, Δ(Cum-Hbl) = 0.9, Δ(Cum-Ged) = 0.2, Δ(Ath-Ged) = 0.3, and Δ(Ath-Hbl) > 0.9. Previously published data for hornblende, actinolite, glaucophane, and garnet show that Δ(Act-Hbl) ˜ 0.2, Δ(Gln-Grt) ≫ 1, and Δ(Hbl-Grt) ˜ 0. Thus, glaucophane strongly partitions 18O relative to the calcic amphiboles. The fractionation between two amphiboles of arbitrary composition can be predicted from the known fractionations for mica endmembers, pyroxene endmembers, and exchange components such as CaAl(NaSi) -1, NaAl(CaMg) -1, CaMg -1, MgFe -1, FeMn -1, KNa -1, KAl( Si) -1, and Fe 3+Al -1. Applications of the exchange component method reproduce measured amphibole fractionations to within ±0.1 to ±0.2‰, whereas other predictive methods cause misfit for typical metamorphic hornblende of ≥0.5‰ at 575°C. Although the isotope effects of cation exchanges may be small at high-T, they magnify dramatically for minerals formed in surficial, diagenetic, and low-T metamorphic environments. Different composition clays are predicted to have equilibrium δ 18O differences of 2-9‰. If the isotope fractionation can be determined for one mineral endmember, then calibrated exchanges allow accurate prediction of the isotope fractionations for intermediate compositions of most ortho-, ring-, chain-, and sheet-silicates.
Cobb, J; Warwick, P; Carpenter, R C; Morrison, R T
1995-12-01
Strontium-90 may be determined by beta-counting its yttrium-90 daughter following separation by ion-chromatography, using a three column system comprising a chelating concentrator column, a cation-exchange column and an anion-exchange separator column. The column system has previously been applied to the determination of strontium-90 in water and urine samples. The applicability of the system to the analysis of milk is hampered by the large concentrations of calcium present, which significantly reduces the extraction of yttrium-90 by the concentrator column. A maximum of approximately 200 mg of calcium can be present for the successful extraction of yttrium-90, which greatly limits the quantity of milk that can be analysed. The quantity of milk analysed can be increased by the inclusion of a controlled precipitation step prior to the ion-chromatographic separation. The precipitation is carried out on acid digested milk samples by the addition of ammonia solution until the addition of one drop causes a reduction in pH resulting in the precipitation of calcium hydrogenphosphate. Under these conditions, approximately 20% of the calcium present in the original milk sample is precipitated, yttrium-90 is precipitated whereas strontium-90 is not precipitated. Dissolution of the precipitate, followed by separation of yttrium-90 using the ion-chromatography system facilitates the analysis of a litre of milk with recoveries of greater than 80%.
Potassium Niobate Nanolamina: A Promising Adsorbent for Entrapment of Radioactive Cations from Water
Sun, Jin; Yang, Dongjiang; Sun, Cuihua; Liu, Long; Yang, Shuanglei; (Alec) Jia, Yi; Cai, Rongsheng; Yao, Xiangdong
2014-01-01
Processing and managing radioactive waste is a great challenge worldwide as it is extremely difficult and costly; the radioactive species, cations or anions, leaked into the environment are a serious threat to the health of present and future generations. We report layered potassium niobate (K4Nb6O17) nanolamina as adsorbent to remove toxic Sr2+, Ba2+ and Cs+ cations from wastewater. The results show that K4Nb6O17 nanolamina can permanently confine the toxic cations within the interlayer spacing via a considerable deformation of the metastable layered structure during the ion exchange process. At the same time, the nanolaminar adsorbent exhibits prompt adsorption kinetics, high adsorption capacity and selectivity, and superior acid resistance. These merits make it be a promising material as ion exchanger for the removal of radioactive cations from wastewater. PMID:25472721
Sun, Jin; Yang, Dongjiang; Sun, Cuihua; Liu, Long; Yang, Shuanglei; Alec Jia, Yi; Cai, Rongsheng; Yao, Xiangdong
2014-12-04
Processing and managing radioactive waste is a great challenge worldwide as it is extremely difficult and costly; the radioactive species, cations or anions, leaked into the environment are a serious threat to the health of present and future generations. We report layered potassium niobate (K4Nb6O17) nanolamina as adsorbent to remove toxic Sr(2+), Ba(2+) and Cs(+) cations from wastewater. The results show that K4Nb6O17 nanolamina can permanently confine the toxic cations within the interlayer spacing via a considerable deformation of the metastable layered structure during the ion exchange process. At the same time, the nanolaminar adsorbent exhibits prompt adsorption kinetics, high adsorption capacity and selectivity, and superior acid resistance. These merits make it be a promising material as ion exchanger for the removal of radioactive cations from wastewater.
Uteng, Marianne; Hauge, Håvard Hildeng; Brondz, Ilia; Nissen-Meyer, Jon; Fimland, Gunnar
2002-01-01
A rapid and simple two-step procedure suitable for both small- and large-scale purification of pediocin-like bacteriocins and other cationic peptides has been developed. In the first step, the bacterial culture was applied directly on a cation-exchange column (1-ml cation exchanger per 100-ml cell culture). Bacteria and anionic compounds passed through the column, and cationic bacteriocins were subsequently eluted with 1 M NaCl. In the second step, the bacteriocin fraction was applied on a low-pressure, reverse-phase column and the bacteriocins were detected as major optical density peaks upon elution with propanol. More than 80% of the activity that was initially in the culture supernatant was recovered in both purification steps, and the final bacteriocin preparation was more than 90% pure as judged by analytical reverse-phase chromatography and capillary electrophoresis. PMID:11823243
Biochar production method and composition therefrom
Lee, James W; Buchanan, III, Archibald C; Evans, Barbara R; Kidder, Michelle K
2014-04-29
The invention is directed to a method for producing an oxygenated biochar material possessing a cation-exchanging property, wherein a biochar source is reacted with one or more oxygenating compounds in such a manner that the biochar source homogeneously acquires oxygen-containing cation-exchanging groups in an incomplete combustion process. The invention is also directed to oxygenated biochar compositions and soil formulations containing the oxygenated biochar material.
Biochar production method and composition therefrom
Lee, James W.; Buchanan, III, Archibald C.; Evans, Barbara R.; Kidder, Michelle K.
2013-03-19
The invention is directed to a method for producing an oxygenated biochar material possessing a cation-exchanging property, wherein a biochar source is reacted with one or more oxygenating compounds in such a manner that the biochar source homogeneously acquires oxygen-containing cation-exchanging groups in an incomplete combustion process. The invention is also directed to oxygenated biochar compositions and soil formulations containing the oxygenated biochar material.
Extraction of cesium and strontium from nuclear waste
Davis, Jr., Milton W.; Bowers, Jr., Charles B.
1988-01-01
Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.
Catalysis using hydrous metal oxide ion exchanges
Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.
1985-01-01
In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.
Catalysis using hydrous metal oxide ion exchangers
Dosch, R.G.; Stephens, H.P.; Stohl, F.V.
1983-07-21
In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.
Cycling Performance of the Iron-Chromium Redox Energy Storage System
NASA Technical Reports Server (NTRS)
Gahn, R. F.; Hagedorn, N. H.; Johnson, J. A.
1985-01-01
Extended charge-discharge cycling of this electrochemical storage system at 65 C was performed on 14.5 sq cm single cells and a four cell, 867 sq cm bipolar stack. Both the anolyte and catholyte reactant fluids contained 1 molar concentrations of iron and chromium chlorides in hydrochloric acid and were separated by a low-selectivity, cation-exchange membrane. The effect of cycling on the chromium electrode and the cation-exchange membrane was determined. Bismuth and bismuth-lead catalyzed chromium electrodes and a radiation-grafted polyethylene membrane were evaluated by cycling between 5 and 85 percent state-of-charge at 80 mA/sq cm and by periodic charge-discharge polarization measurements to 140 mA/sq cm. Gradual performance losses were observed during cycling but were recoverable by completely discharging the system. Good scale-up to the 867 sq cm stack was achieved. The only difference appeared to be an unexplained resistive-type loss which resulted in a 75 percent W-hr efficiency (at 80 mA/sq cm versus 81 percent for the 14.5 sq cm cell). A new rebalance cell was developed to maintain reactant ionic balance. The cell successfully reduced ferric ions in the iron reactant stream to ferrous ions while chloride ions were oxidized to chlorine gas.
Zhang, Zhenbin; Sun, Liangliang; Zhu, Guijie; Cox, Olivia F; Huber, Paul W; Dovichi, Norman J
2016-01-05
A sulfonate-silica hybrid strong cation exchange monolith microreactor was synthesized and coupled to a linear polyacrylamide coated capillary for online sample preparation and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) bottom-up proteomic analysis. The protein sample was loaded onto the microreactor in an acidic buffer. After online reduction, alkylation, and digestion with trypsin, the digests were eluted with 200 mM ammonium bicarbonate at pH 8.2 for CZE-MS/MS analysis using 1 M acetic acid as the background electrolyte. This combination of basic elution and acidic background electrolytes results in both sample stacking and formation of a dynamic pH junction. 369 protein groups and 1274 peptides were identified from 50 ng of Xenopus laevis zygote homogenate, which is comparable with an offline sample preparation method, but the time required for sample preparation was decreased from over 24 h to less than 40 min. Dramatically improved performance was produced by coupling the reactor to a longer separation capillary (∼100 cm) and a Q Exactive HF mass spectrometer. 975 protein groups and 3749 peptides were identified from 50 ng of Xenopus protein using the online sample preparation method.
Cycling performance of the iron-chromium redox energy storage system
NASA Technical Reports Server (NTRS)
Gahn, R. F.; Hagedorn, N. H.; Johnson, J. A.
1985-01-01
Extended charge-discharge cycling of this electrochemical storage system at 65 C was performed on 14.5 sq cm single cells and a four cell, 867 sq cm bipolar stack. Both the anolyte and catholyte reactant fluids contained 1 molar concentrations of iron and chromium chlorides in hydrochloric acid and were separated by a low-selectivity, cation-exchange membrane. The effect of cycling on the chromium electrode and the cation-exchange membrane was determined. Bismuth and bismuth-lead catalyzed chromium electrodes and a radiation-grafted polyethylene membrane were evaluated by cycling between 5 and 85 percent state-of-charge at 80 mA/sq cm and by periodic charge-discharge polarization measurements to 140 mA/sq cm. Gradual performance losses were observed during cycling but were recoverable by completely discharging the system. Good scale-up to the 867 sq cm stack was achieved. The only difference appeared to be an unexplained resistive-type loss which resulted in a 75 percent W-hr efficiency (at 80 mA/sq cm versus 81 percent for the 14.5 sq cm cell). A new rebalance cell was developed to maintain reactant ionic balance. The cell successfully reduced ferric ions in the iron reactant stream to ferrous ions while chloride ions were oxidized to chlorine gas.
Ceramic Spheres From Cation Exchange Beads
NASA Technical Reports Server (NTRS)
Dynys, F. W.
2003-01-01
Porous ZrO2 and hollow TiO2 spheres were synthesized from a strong acid cation exchange resin. Spherical cation exchange beads, polystyrene based polymer, were used as a morphological-directing template. Aqueous ion exchange reaction was used to chemically bind (ZrO)(2+) ions to the polystyrene structure. The pyrolysis of the polystyrene at 600 C produces porous ZrO2 spheres with a surface area of 24 sq m/g with a mean sphere size of 42 microns. Hollow TiO2 spheres were synthesized by using the beads as a micro-reactor. A direct surface reaction - between titanium isopropoxide and the resin beads forms a hydrous TiO2 shell around the polystyrene core. The pyrolysis of the polystyrene core at 600 C produces hollow anatase spheres with a surface area of 42 sq m/g with a mean sphere size of 38 microns. The formation of ceramic spheres was studied by XRD, SEM and B.E.T. nitrogen adsorption measurements.
On the Structure-Property Relationships of Cation-Exchanged ZK-5 Zeolites for CO 2 Adsorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Trong D.; Hudson, Matthew R.; Brown, Craig M.
2017-02-16
The CO 2 adsorption properties of cation-exchanged Li-, Na-, K-, and Mg-ZK-5 zeolites were correlated to the molecular structures determined by Rietveld refinements of synchrotron powder X-ray diffraction patterns. Li-, K-, and Na-ZK-5 all exhibited high isosteric heats of adsorption (Qst) at low CO 2 coverage, with Na-ZK-5 having the highest Qst (ca. 49 kJ mol -1). Mg2+ was located at the center of the zeolite hexagonal prism with the cation inaccessible to CO 2, leading to a much lower Qst (ca. 30 kJ mol-1) and lower overall uptake capacity. Multiple CO 2 adsorption sites were identified at a givenmore » CO 2 loading amount for all four cation-exchanged ZK-5 adsorbents. Site A at the flat eight-membered ring windows and site B/B* in the γ-cages were the primary adsorption sites in Li - and Na-ZK-5 zeolites. Relatively strong dual-cation adsorption sites contributed significantly to an enhanced electrostatic interaction for CO 2 in all ZK-5 samples. This interaction gives rise to a migration of Li + and Mg 2+ cations from their original locations at the center of the hexagonal prisms toward the α-cages, in which they interact more strongly with the adsorbed CO 2.« less
Sharma, Satish K; Juyal, Shashibala; Rao, V K; Yadav, V K; Dixit, A K
2014-07-01
A study was conducted to standardize the technology for the removal of amino acids (one of the browning reaction substrates) from sweet orange cv. Malta Common juice to reduce colour and quality deterioration in single strength juice and during subsequent concentration. Juice of sweet orange (Citrus sinensis) cv. Malta Common fruits was extracted by screw type juice extractor, preserved in 500 ppm SO2 and clarified by using "Pectinase CCM" enzyme (0.2% for 2 h at 50 ± 2 °C). For removal of amino acids juice was passed under gravity through a glass column packed with an acidic cation exchange resin (CER), Dowex-50 W and quantity to be treated in one lot was standardized. The CER treated and untreated juices were concentrated to 15 and 30°Brix in a rotary vacuum evaporator. Results indicate that 121 ml of orange juice when passed through a glass column (5 cm internal diameter) packed with cation exchange resin (Dowex-50 W) upto a height of 8 cm, could remove about 98.4% of the amino acids with minimum losses in other juice constituents. With cation exchange resin treatment, the non-enzymatic browning and colour deterioration of orange juice semi-concentrates was reduced to about 3 folds in comparison to untreated counterparts. The retention of vitamin C and sugars was also better in semi-concentrates prepared from cation exchange resin treated juice. Thus, cation exchange resin treatment of orange juice prior to concentration and storage is highly beneficial in reduction of non-enzymatic browning, colour deterioration and retention of nutritional, sensory quality of product during preparation and storage.
Chenette, Heather C.S.; Robinson, Julie R.; Hobley, Eboni; Husson, Scott M.
2012-01-01
This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min. PMID:23175597
Guzzinati, Roberta; Sarti, Elena; Catani, Martina; Costa, Valentina; Pagnoni, Antonella; Martucci, Annalisa; Rodeghero, Elisa; Capitani, Donatella; Pietrantonio, Massimiliana; Cavazzini, Alberto; Pasti, Luisa
2018-05-18
The adsorption behavior of neodymium (Nd3+) and yttrium (Y3+) cations on synthetic FAU zeolite 13X in its sodium form (Na13X) has been investigated by means of an approach based on both macroscopic (namely, adsorption isotherm determination and thermal analysis) and microscopic measurements (including solid-state NMR spectroscopy and X-ray powder diffraction). The multidisciplinary study has revealed some unexpected features. Firstly, adsorption constants of cations are not correlated to their ionic radii (or hydration enthalpy). The adsorption constant of Y3+ on Na13X was indeed about twice that of Nd3+, which is the opposite of what could be expected based on the size of the cations. In addition, adsorption was accompanied by partial dealumination of the zeolite framework. The extent of dealumination changed depending on exchanged cations. It was more significant on the Nd-exchanged zeolite than on the Y-exchanged one. The most interesting finding of this study, however, is the presence of supramolecular clusters composed of water, Nd3+, residual sodium ions and extraframework aluminum at the interface of Nd-exchanged zeolite. The hypothesis that these host-guest complexes are responsible of the significantly different behavior exhibited by Na13X towards the adsorption/desorption of Nd3+ and Y3+ has been formulated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cation exchange in a temporally fluctuating thin freshwater lens on top of saline groundwater
NASA Astrophysics Data System (ADS)
Eeman, S.; De Louw, P. G. B.; Van der Zee, S. E. A. T. M.
2017-01-01
In coastal-zone fields with a high groundwater level and sufficient rainfall, freshwater lenses are formed on top of saline or brackish groundwater. The fresh and the saline water meet at shallow depth, where a transition zone is found. This study investigates the mixing zone that is characterized by this salinity change, as well as by cation exchange processes, and which is forced by seepage and by rainfall which varies as a function of time. The processes are first investigated for a one-dimensional (1D) stream tube perpendicular to the interface concerning salt and major cation composition changes. The complex sequence of changes is explained with basic cation exchange theory. It is also possible to show that the sequence of changes is maintained when a two-dimensional field is considered where the upward saline seepage flows to drains. This illustrates that for cation exchange, the horizontal component (dominant for flow of water) has a small impact on the chemical changes in the vertical direction. The flow's horizontal orientation, parallel to the interface, leads to changes in concentration that are insignificant compared with those that are found perpendicular to the interface, and are accounted for in the 1D flow tube. Near the drains, differences with the 1D considerations are visible, especially in the longer term, exceeding 100 years. The simulations are compared with field data from the Netherlands which reveal similar patterns.
Anion-exchange behavior of several alkylsilica reversed-phase columns.
Marchand, D H; Snyder, L R
2008-10-31
Some alkylsilica columns carry a positive charge at low pH, as determined by anion-exchange with nitrate ion. In the present study, the relative positive charge for 14 alkylsilica columns was measured for a mobile-phase pH 3.0. All but 3 of these columns were found to carry a significant positive charge under these conditions. The relative positive charge on these columns was found to correlate approximately with two other column characteristics: relative cation-exchange behavior as measured by the hydrophobic-subtraction model (values of C-2.8), and slow equilibration of the column to changes in the mobile-phase-as evidenced by a slow change in the retention of anionic and cationic solutes with time. The origin of this positive charge may arise from the bonding process, with incorporation of some cationic entity into the stationary phase.
Bower, Kenneth E.; Weeks, Donald R.
1997-01-01
Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.
Bower, K.E.; Weeks, D.R.
1997-08-12
Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.
Barragán, V M; Izquierdo-Gil, M A; Godino, M P; Villaluenga, J P G
2009-10-01
The effect of an ac sinusoidal perturbation of known amplitude and frequency superimposed to the usual dc applied electric voltage difference on the electroosmotic flow through three cation-exchange membranes with different morphology has been studied. A dispersion of the electroosmotic permeability on the frequency of the applied ac signal has been found for the three membranes investigated, observing that the electroosmotic permeability reaches maximum values for some characteristic values of the frequency. These characteristic frequency values, which are related to relaxation processes in heterogeneous media, depend on the membrane system and permit to obtain information about the different structures of the membrane system. Thus, the study of the electroosmotic permeability relaxation can be used as a method to study the internal morphology of a cation-exchange membrane in a given electrolyte medium.
Liu, Lu-Wen; Zeng, Wei-Li; Zhu, Xiang-Fei; Wu, Jin-Quan; Lin, Zhao-Xiang
2014-03-01
In the present paper, the time evolution study on slip soils treated by different proportions of ionic soil stabilizer (ISS) water solution was conducted by the LIBS system and the relationship between the cation exchange and such engineering properties of reinforcing soil as plasticity index, cohesive force and coefficient of compressibility were analyzed. The results showed that the cation exchange velocity of the proportion of 1:200 ISS reinforcing soil is the fastest among the three proportions (1:100, 1:200 and 1:300) and the modification effect of engineering performance index is quite obvious. These studies provide an experimental basis for the ISS applied to curing project, and monitoring geotechnical engineering performance by LIBS technology also provides a new way of thinking for the curing project monitoring.
Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water
NASA Astrophysics Data System (ADS)
Han, Sanyang; Qin, Xian; An, Zhongfu; Zhu, Yihan; Liang, Liangliang; Han, Yu; Huang, Wei; Liu, Xiaogang
2016-10-01
Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.
Two-dimensional La2/3Sr4/3MnO4 Manganite Films Probed by Epitaxial Strain and Cation Ordering
NASA Astrophysics Data System (ADS)
Nelson-Cheeseman, Brittany; Santos, Tiffany; Bhattacharya, Anand
2010-03-01
Dimensionality is known to play a central role in the properties of strongly correlated systems. Here we investigate magnetism and transport in thin films of the Ruddlesden-Popper n=1 phase, La1-xSr1+xMnO4. Within this material, the MnO6-octahedra form two-dimensional perovskite sheets separated by an extra rocksalt layer. By fabricating high quality thin films with ozone-assisted molecular beam epitaxy, we study how the effects of epitaxial strain and intentional cation ordering, known as digital synthesis, influence the properties of this 2-dimensional manganite. For example, at the same Mn^3+:Mn^4+ ratio (2:1) as its fully spin-polarized 3D manganite counterpart, this two dimensional analog at x=1/3 only displays a spin glass phase below 20K in bulk. This is believed to result from a competition between superexchange and double exchange, as well as disordered Jahn-Teller distortions. However, in our films we find weak ferromagnetic order up to much higher temperatures in addition to a low temperature spin glass phase. We will discuss how strain and cation order effect the presence of this weak ferromagnetism.
Time-Resolved Structural Analysis of Cation Exchange Reactions in Birnessite Using Synchrotron XRD
NASA Astrophysics Data System (ADS)
Lopano, C. L.; Heaney, P. J.; Post, J. E.; Hanson, J. C.; Lee, Y.; Komarneni, S.
2002-12-01
Birnessite ((Na,Ca,Mn2+) Mn7O142.8H2O) is a layered Mn-oxide with a 7.2Å spacing between the Mn octahedral sheets. Since birnessite is an abundant phase in soils, desert varnishes, and ocean nodules, it plays a significant role in soil and groundwater chemistry. Experiments by Golden et al. (1986,1987) have demonstrated that Na-buserite (hydrated birnessite) readily exchanges Na+ for a variety of other cations, including K+, Mg2+, Ca2+, Ba2+, Ni2+, and Sr2+. In light of its high cation exchange capacity, birnessite is industrially important for ion and molecular sieves and cathodic materials. In addition, birnessite serves as a precursor in the synthesis of todorokite, which has a 3x3 tunnel structure and is used as an octahedral sieve. We monitored cation-exchange reactions in birnessite by time-resolved X-ray powder diffraction with a simple flow-through cell at the National Synchrotron Light Source. The flow-through cell was developed by Lee and Parise at SUNY-Stony Brook, and this work represents its first application to Mn oxides. A series of synthetic Na-birnessite samples were saturated with chloride solutions containing dissolved K+, Mg2+, and Ba2+, ranging from 0.1M to 0.001M. Powder X-ray diffraction patterns were collected every ~ 3 minutes. The synchrotron experiments revealed that complete cation exchange occurs within three hours, and significant modifications of the arrangements of interlayer cations and water molecules accompany the exchange. Specifically, the replacement of Na by Mg resulted in the continuous growth of a discrete buserite-like phase with a 10Å layer spacing, while replacement of Na by K and Ba retained the 7Å spacing. K replacement of Na resulted in gradually decreasing peak intensity and peak merging. The Ba exchange yielded an abrupt decrease in diffraction intensities followed by a more gradual lattice change over the last 2 hours. Rietveld analysis led to the first determination of the structure of Ba-birnessite in space group C-1. With a final chi-squared parameter of 1.540, the refined lattice parameters were a = 5.178(2)Å, b = 2.850(3)Å, c = 7.320(5)Å, α = 89.512(1)°, β = 102.989(6)°, and γ = 89.893(6)°. However, the lattice parameters of the fully exchanged Ba-birnessite indicate that Ba substitution causes the unit cell to be more monoclinic.
Extraction of cesium and strontium from nuclear waste
Davis, M.W. Jr.; Bowers, C.B. Jr.
1988-06-07
Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5[prime]) [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution. 3 figs.
Cation Exchange in Dynamic 3D Porous Magnets: Improvement of the Physical Properties.
Grancha, Thais; Acosta, Alvaro; Cano, Joan; Ferrando-Soria, Jesús; Seoane, Beatriz; Gascon, Jorge; Pasán, Jorge; Armentano, Donatella; Pardo, Emilio
2015-11-16
We report two novel three-dimensional porous coordination polymers (PCPs) of formulas Li4{Mn4[Cu2(Me3mpba)2]3}·68H2O (2) and K4{Mn4[Cu2(Me3mpba)2]3}·69H2O (3) obtained-via alkali cation exchange in a single-crystal to single-crystal process-from the earlier reported anionic manganese(II)-copper(II) PCP of formula Na4{Mn4[Cu2(Me3mpba)2]3}·60H2O (1) [Me3mpba(4-) = N,N'-2,4,6-trimethyl-1,3-phenylenebis(oxamate)]. This postsynthetic process succeeds where the direct synthesis in solution from the corresponding building blocks fails and affords significantly more robust PCPs with enhanced magnetic properties [long-range 3D magnetic ordering temperatures for the dehydrated phases (1'-3') of 2.0 (1'), 12.0 (2'), and 20.0 K (3')]. Changes in the adsorptive properties upon postsynthetic exchange suggest that the nature, electrostatic properties, mobility, and location of the cations within the framework are crucial for the enhanced structural stability. Overall, these results further confirm the potential of postsynthetic methods (including cation exchange) to obtain PCPs with novel or enhanced physical properties while maintaining unaltered their open-framework structures.
Ga for Zn Cation Exchange Allows for Highly Luminescent and Photostable InZnP-Based Quantum Dots
2017-01-01
In this work, we demonstrate that a preferential Ga-for-Zn cation exchange is responsible for the increase in photoluminescence that is observed when gallium oleate is added to InZnP alloy QDs. By exposing InZnP QDs with varying Zn/In ratios to gallium oleate and monitoring their optical properties, composition, and size, we conclude that Ga3+ preferentially replaces Zn2+, leading to the formation of InZnP/InGaP core/graded-shell QDs. This cation exchange reaction results in a large increase of the QD photoluminescence, but only for InZnP QDs with Zn/In ≥ 0.5. For InP QDs that do not contain zinc, Ga is most likely incorporated only on the quantum dot surface, and a PL enhancement is not observed. After further growth of a GaP shell and a lattice-matched ZnSeS outer shell, the cation-exchanged InZnP/InGaP QDs continue to exhibit superior PL QY (over 70%) and stability under long-term illumination (840 h, 5 weeks) compared to InZnP cores with the same shells. These results provide important mechanistic insights into recent improvements in InP-based QDs for luminescent applications. PMID:28706347
Erionite-Na upon heating: dehydration dynamics and exchangeable cations mobility
NASA Astrophysics Data System (ADS)
Ballirano, Paolo; Pacella, Alessandro
2016-03-01
Erionite is a fibrous zeolite significantly more tumorigenic than crocidolite asbestos upon inhalation. In recent years, several papers have been published aimed at characterizing from the crystal-chemical point of view erionite fibres. As their toxicity has been ascribed to Fe acquired within the human body, studies aimed at characterizing the iron topochemistry have also been published, suggesting a possible important role played by the ionic exchange properties and cations mobility of this zeolite on developing carcinogenicity. Here we report the analysis results of the thermal behaviour of erionite-Na, which has been found to deviate significantly from that of erionite-K. This result is in contrast with the current scientific view that differences in weighted ionic potential, Si/Al ratio and size of exchangeable cations result in significantly different thermal behaviours, all those parameters being nearly identical or very similar in both species. The different mobility of the extraframework cations observed in erionite samples with dissimilar chemistry is of particular interest within the frame of the hypothesis that their biological activity could depend, apart from surface interactions, also on bulk effects.
Shamaeli, Ehsan; Alizadeh, Naader
2012-01-01
A nanostructure fiber based on conducting polypyrrole synthesized by an electrochemical method has been developed, and used for electrochemically switching solid-phase microextraction (ES-SPME). The ES-SPME was prepared by the doping of eriochrome blue in polypyrrole (PPy-ECB) and used for selectively extracting the Ni(II) cation in the presence of some transition and heavy metal ions. The cation-exchange behavior of electrochemically prepared polypyrrole on stainless-steel with and without eriochrome blue (ECB) dye was characterized using ICP-OES analysis. The effects of the scan rate for electrochemical synthesis, uptake and the release potential on the extraction behavior of the PPy-ECB conductive fiber were studied. Uptake and release time profiles show that the process of electrically switched cation exchange could be completed within 250 s. The results of the present study point concerning the possibility of developing a selective extraction process for Ni(II) from waste water was explored using such a nanostructured PPy-ECB film through an electrically switched cation exchange. 2012 © The Japan Society for Analytical Chemistry
Geochemical controls on lead concentrations in stream water and sediments
Hem, J.D.
1976-01-01
The equilibrium distribution of lead in solution and adsorbed on cation exchange sites in sediment theoretically may be calculated from equations representing selectivities of substrate for lead over H+, Ca2+ and Na+, and the stabilities of lead solute species. Such calculations include consideration of total concentrations of major ions, cation exchange capacity (CEC) of substrate, and pH, at values expected in various natural systems. Measurements of CEC and selectivity coefficients were made for synthetic halloysite, a finely divided amorphous 1:1 clay prepared by precipitation from a mixture of solutions of aluminum and silica. Where suspended sediment having the same properties is present in concentrations of 10-1,000 mg/1 at pH 6-8, more than 90% of the lead present can be adsorbed on sediment surfaces. The cation exchange behavior of lead and other minor cationic species in natural systems could be predicted by this type of model if enough other supporting information were available. Information of the type needed describing natural stream sediments, however, is presently inadequate for accurate predictions. ?? 1976.
Polyimide-Clay Composite Materials for Space Application
NASA Technical Reports Server (NTRS)
Orwoll, Robert A.; Connell, John W. (Technical Monitor)
2005-01-01
The introduction of nanometer-sized clay particles into a polyimide matrix has been shown to enhance the physical properties of specific polymer systems. The clay comprises large stacked platelets of the oxides of aluminum and silicon. These sheets have long dimensions on the order of tenths of a micrometer and thicknesses of several nanometers. Homogeneous dispersion of the clay platelets in the polymer matrix is necessary to achieve those enhancements in polymer properties. Natural montmorillonite with the empirical formula Na0.33Mg0.33Al1.67(OH)2(Si4O10) contains exchangeable inorganic cations. The clay lamellae stack together with the positive sodium ions situated between the surfaces of the individual sheets to balance negatively charged oxygen atoms that are on the surfaces of the sheets. These surface charges contribute to strong electrostatic forces which hold the sheets together tightly. Exfoliation can be accomplished only with unusual measures. In preparing clay nanocomposites, we have taken two steps to try to reduce these interlamellar forces in order to promote the separation (exfoliation) of the sheets and the dispersion of the individual clay particles throughout the organic polymer matrix. In the first step, some of the surface Na(+) ions are replaced with Li(+) ions. Unlike sodium cations, the lithium cations migrate into the interior of the lamellae when the system is heated. Their departure from the surface reduces the surface charge and therefore the attractive forces between the sheets. The loss of alkali metal cations from the surface can be measured as the cation exchange capacity (CEC) of the clay. For example, we found that the CEC of montmorillonite clay was reduced by almost two thirds by treating it with lithium ions and heating to 250 C for 24 hr. Lesser heating has a smaller effect on the CEC. X-ray diffraction measurements show that the d-spacing decreased from ca. 1.34 to 0.97 nm, apparently a consequence of a collapse of the clay layers. We observed that the d-spacing can be varied by altering the heat treatment. In the second part of our effort to reduce the interlamellar forces, the remaining inorganic surface cations were replaced by the trimethylphenylammonium ion (TMPA), the biphenyltrimethylammonium ion (BTMA), or the tetraphenylphosphonium ion (TPP).
Polymide gas separation membranes
Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz
2004-09-14
Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.
Effects of exchanged cation on the microporosity of montmorillonite
Rutherford, David W.; Chiou, Cary T.; Eberl, Dennis D.
1997-01-01
The micropore volumes of 2 montmorillonites (SAz-1 and SWy-1), each exchanged with Ca, Na, K, Cs and tetramethylammonium (TMA) ions, were calculated from the measured vapor adsorption data of N2 and neo-hexane by use of t- and αs-plots. The corresponding surface areas of the exchanged clays were determined from Brunauer-Emmett-Teller (BET) plots of N2 adsorption data. Micropore volumes and surface areas of the samples increased with the size of exchanged cation: TMA > Cs > K > Ca > Na. The SAz-1 exchanged clays showed generally greater micropore volumes and surface areas than the corresponding SWy-1 clays. The vapor adsorption data and d(001) measurements for dry clay samples were used together to evaluate the likely locations and accessibility of clay micropores, especially the relative accessibility of their interlayer spacing. For both source clays exchanged with Na, Ca and K ions, the interlayer spacing appeared to be too small to admit nonpolar gases and the accessible micropores appeared to have dimensions greater than 5.0 Å, the limiting molecular dimension of neo-hexane. In these systems, there was a good consistency of micropore volumes detected by N2 and neo-hexane. When the clays were intercalated with relatively large cations (TMA and possibly Cs), the large layer expansion created additional microporosity, which was more readily accessible to small N2 than to relatively large neo-hexane. Hence, the micropore volume as detected by N2 was greater than that detected by neo-hexane. The micropore volumes with pore dimensions greater than 5 Å determined for clays exchanged with Na, Ca and K likely resulted from the pores on particle edges and void created by overlap regions of layers. The increase in micropore volumes with pore dimensions less than 5 Å determined for clays exchanged with TMA and possibly Cs could be caused by opening of the interlayer region by the intercalation of these large cations.
Pigga, Joseph M; Teprovich, Joseph A; Flowers, Robert A; Antonio, Mark R; Liu, Tianbo
2010-06-15
The interaction between water-soluble Keplerate polyoxometalate {Mo(72)Fe(30)} macroions and small countercations is explored by laser light scattering, anomalous small-angle X-ray scattering (ASAXS), and isothermal titration calorimetry (ITC) techniques. The macroions are found to be able to select the type of associated counterions based upon the counterions' valence state and hydrated size, when multiple types of additional cations are present in solution (even among different monovalent cations). The preference goes to the cations with higher valences or smaller hydrated sizes if the valences are identical. This counterion exchange process changes the magnitude of the macroion-counterion interaction and, thus, is reflected in the dimension of the self-assembled {Mo(72)Fe(30)} blackberry supramolecular structures. The hydrophilic macroions exhibit a competitive recognition of various monovalent counterions in dilute solutions. A critical salt concentration (CSC) for each type of cation exists for the blackberry formation of {Mo(72)Fe(30)} macroions, above which the blackberry size increases significantly with the increasing total ionic strength in solution. The CSC values are much smaller for cations with higher valences and also decrease with the cations' hydrated size for various monovalent cations. The change of blackberry size corresponding to the change of ionic strength in solution is reversible.
Electrochemically Switchable Polymeric Membrane Ion-Selective Electrodes.
Zdrachek, Elena; Bakker, Eric
2018-06-07
We present here for the first time a solid contact ion-selective electrode suitable for the simultaneous sensing of cations (tetrabutylammonium) and anions (hexafluorophosphate), achieved by electrochemical switching. The membrane is based on a thin plasticized polyurethane membrane deposited on poly(3-octylthiophene) (POT) and contains a cation exchanger and lipophilic electrolyte (ETH 500). The cation exchanger is initially in excess; the ion-selective electrode exhibits an initial potentiometric response to cations. During an oxidative current pulse, POT is converted into POT + , which results in the expulsion of cations from the membrane followed by the extraction of anions from the sample solution to fulfill the electroneutrality condition. This creates a defined excess of lipophilic cation in the membrane, resulting in a potentiometric anion response. A reductive current pulse restores the original cation response by triggering the conversion of POT + back into POT, which is accompanied by the expulsion of anions from the membrane and the extraction of cations from the sample solution. Various current pulse magnitudes and durations are explored, and the best results in terms of response slope values and signal stability were observed with an oxidation current pulse of 140 μA cm -2 applied for 8 s and a reduction current pulse of -71 μA cm -2 applied for 8 s.
Nakatani, Nobutake; Kozaki, Daisuke; Tanaka, Kazuhiko
2012-04-01
In this study, our recent work on advanced ion chromatographic methods for the simultaneous determination of inorganic ionic species such as common anions (SO4(2-), Cl(-) and NO3(-)) and cations (Na+, NH4+, K+, Mg2+, and Ca2+), nutrients (phosphate and silicate) and hydrogen ion/alkalinity are summarized first. Then, the applications using these methods for monitoring environmental water quality are also presented. For the determination of common anions and cations with nutrients, the separation was successfully performed by a polymethacrylate-based weakly acidic cation-exchange column of TSKgel Super IC-A/C (Tosoh, 150 mm x 6.0 mm i. d.) and a mixture solution of 100 mmol/L ascorbic acid and 4 mmol/L 18-crown-6 as acidic eluent with dual detection of conductivity and spectrophotometry. For the determination of hydrogen ion/alkalinity, the separation was conducted by TSKgel ODS-100Z column (Tosoh, 150 mm x 4.5 mm i. d.) modified with lithium dodecylsulfate and an eluent of 40 mmol/L LiCl/0.1 mmol/L lithium dodecylsulfate/0.05 mmol/L H2SO4 with conductivity detector. The differences of ion concentration between untreated and treated wastewater showed the variation of ionic species during biological treatment process in a sewage treatment plant. Occurrence and distribution of water-quality conditions were related to the bioavailability and human activity in watershed. From these results, our advanced ion chromatographic methods have contributed significantly for water quality monitoring of environmental waters.
Duda, Jeffrey J.; Freeman, D. Carl; Emlen, John M.; Belnap, Jayne; Kitchen, Stanley G.; Zak, John C.; Sobek, Edward; Tracy, Mary; Montante, James
2003-01-01
Various biotic and abiotic components of soil ecology differed significantly across an area whereHalogeton glomeratus is invading a native winterfat, [ Krascheninnikovia (= Ceratoides) lanata] community. Nutrient levels were significantly different among the native, ecotone, and exotic-derived soils. NO3, P, K, and Na all increased as the cover of halogeton increased. Only Ca was highest in the winterfat area. A principal components analysis, conducted separately for water-soluble and exchangeable cations, revealed clear separation between halogeton- and winterfat-derived soils. The diversity of soil bacteria was highest in the exotic, intermediate in the ecotone, and lowest in the native community. Although further studies are necessary, our results offer evidence that invasion by halogeton alters soil chemistry and soil ecology, possibly creating conditions that favor halogeton over native plants.
Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona
2012-07-01
Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.
Bacterio-electric leaching of metals
Lazaroff, Norman; Dugan, Patrick R.
1992-07-07
The separation of cationic materials from an ore body is assisted by the application of an electric potential, and resulting current, to the ore body, in association with iron or sulphur oxidizing bacteria. The combined process induces migration of cationic metals to a cathode suspended within the ore body so that the cationic metal can be preferentially separated from the ore body.
Bacterio-electric leaching of metals
Lazaroff, Norman; Dugan, Patrick R.
1992-01-01
The separation of cationic materials from an ore body is assisted by the application of an electric potential, and resulting current, to the ore body, in association with iron or sulphur oxidizing bacteria. The combined process induces migration of cationic metals to a cathode suspended within the ore body so that the cationic metal can be preferentially separated from the ore body.
Arges, Christopher G.; Ramani, Vijay
2013-01-01
Anion exchange membranes (AEMs) find widespread applications as an electrolyte and/or electrode binder in fuel cells, electrodialysis stacks, flow and metal-air batteries, and electrolyzers. AEMs exhibit poor stability in alkaline media; their degradation is induced by the hydroxide ion, a potent nucleophile. We have used 2D NMR techniques to investigate polymer backbone stability (as opposed to cation stability) of the AEM in alkaline media. We report the mechanism behind a peculiar, often-observed phenomenon, wherein a demonstrably stable polysulfone backbone degrades rapidly in alkaline solutions upon derivatization with alkaline stable fixed cation groups. Using COSY and heteronuclear multiple quantum correlation spectroscopy (2D NMR), we unequivocally demonstrate that the added cation group triggers degradation of the polymer backbone in alkaline via quaternary carbon hydrolysis and ether hydrolysis, leading to rapid failure. This finding challenges the existing perception that having a stable cation moiety is sufficient to yield a stable AEM and emphasizes the importance of the often ignored issue of backbone stability. PMID:23335629
Letter Report for Characterization of Biochar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amonette, James E.
2013-04-09
On 27 November 2012, a bulk biochar sample was received for characterization of selected physical and chemical properties. The main purpose of the characterization was to help determine the degree to which biochar would be suitable as a soil amendment to aid in growth of plants. Towards this end, analyses to determine specific surface, pH, cation-exchange capacity, water retention, and wettability (i.e. surface tension) were conducted. A second objective was to determine how uniform these properties were in the sample. Towards this end, the sample was separated into fractions based on initial particle size and on whether the material wasmore » from the external surface or the internal portion of the particle. Based on the results, the biochar has significant liming potentials, significant cation-retention capacities, and highly variable plant-available moisture retention properties that, under the most favorable circumstances, could be helpful to plants. As a consequence, it would be quite suitable for addition to acidic soils and should enhance the fertility of those soils.« less
Xu, Qun; Mori, Masanobu; Tanaka, Kazuhiko; Ikedo, Mikaru; Hu, Wenzhi; Haddad, Paul R
2004-07-02
The determination of hydroxide by ion chromatography (IC) is demonstrated using a monolithic octadecylsilyl (ODS)-silica gel column coated first with a nonionic surfactant (polyoxyethylene (POE)) and then with a cationic surfactant (cetyltrimethylammonium bromide (CTAB)). This stationary phase, when used in conjunction with a 10 mmol/l sodium sulfate eluent at pH 8.2, was found to be suitable for the rapid and efficient separation of hydroxide from some other anions, based on a conventional ion-exchange mechanism. The peak directions and detection responses for these ions were in agreement with their known limiting equivalent ionic conductance values. Under these conditions, a linear calibration plot was obtained for hydroxide ion over the range 16 micromol/l to 15 mmol/l, and the detection limit determined at a signal-to-noise ratio of 3 was 6.4 micromol/l. The double-coated stationary phase described above was shown to be superior to a single coating of cetyltrimethylammonium bromide alone, in terms of separation efficiency and stability of the stationary phase. A range of samples comprising solutions of some strong and weak bases was analyzed by the proposed method and the results obtained were in good agreement with those obtained by conventional potentiometric pH measurement.
Küsters, Markus; Gerhartz, Michael
2010-04-01
For the determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water, different procedures of enrichment and cleanup were examined using anion exchange or SPE. In many cases interactions of, e.g. alkaline earth metal ions especially calcium could be observed during enrichment and cleanup resulting in loss of analytes. For that reason, a novel cleanup and enrichment procedure for the determination of these phosphonic acid herbicides has been developed in drinking water using cation-exchange resin. In summary, the cleanup procedure with cation-exchange resin developed in this study avoids interactions as described above and is applicable to calcium-rich drinking water samples. After derivatization with 9-fluorenylmethylchloroformate followed by LC with fluorescence detection, LOD of 12, 14 and 12 ng/L and mean recoveries from real-world drinking water samples of 98+/-9, 100+/-16 and 101+/-11% were obtained for glyphosate, aminomethylphosphonic acid and glufosinate, respectively. The low LODs and the high precision permit the analysis of these phosphonic acid herbicides according to the guidelines of the European Commission.
Metzner, Ralf; Schneider, Heike Ursula; Breuer, Uwe; Thorpe, Michael Robert; Schurr, Ulrich; Schroeder, Walter Heinz
2010-01-01
Fluxes of mineral nutrients in the xylem are strongly influenced by interactions with the surrounding stem tissues and are probably regulated by them. Toward a mechanistic understanding of these interactions, we applied stable isotope tracers of magnesium, potassium, and calcium continuously to the transpiration stream of cut bean (Phaseolus vulgaris) shoots to study their radial exchange at the cell and tissue level with stem tissues between pith and phloem. For isotope localization, we combined sample preparation with secondary ion mass spectrometry in a completely cryogenic workflow. After 20 min of application, tracers were readily detectable to various degrees in all tissues. The xylem parenchyma near the vessels exchanged freely with the vessels, its nutrient elements reaching a steady state of strong exchange with elements in the vessels within 20 min, mainly via apoplastic pathways. A slow exchange between vessels and cambium and phloem suggested that they are separated from the xylem, parenchyma, and pith, possibly by an apoplastic barrier to diffusion for nutrients (as for carbohydrates). There was little difference in these distributions when tracers were applied directly to intact xylem via a microcapillary, suggesting that xylem tension had little effect on radial exchange of these nutrients and that their movement was mainly diffusive. PMID:19965970
Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication
NASA Astrophysics Data System (ADS)
Philamore, Hemma; Rossiter, Jonathan; Walters, Peter; Winfield, Jonathan; Ieropoulos, Ioannis
2015-09-01
We present novel solutions to a key challenge in microbial fuel cell (MFC) technology; greater power density through increased relative surface area of the ion exchange membrane that separates the anode and cathode electrodes. The first use of a 3D printed polymer and a cast latex membrane are compared to a conventionally used cation exchange membrane. These new techniques significantly expand the geometric versatility available to ion exchange membranes in MFCs, which may be instrumental in answering challenges in the design of MFCs including miniaturisation, cost and ease of fabrication. Under electrical load conditions selected for optimal power transfer, peak power production (mean 10 batch feeds) was 11.39 μW (CEM), 10.51 μW (latex) and 0.92 μW (Tangoplus). Change in conductivity and pH of anolyte were correlated with MFC power production. Digital and environmental scanning electron microscopy show structural changes to and biological precipitation on membrane materials following long term use in an MFC. The cost of the novel membranes was lower than the conventional CEM. The efficacy of two novel membranes for ion exchange indicates that further characterisation of these materials and their fabrication techniques, shows great potential to significantly increase the range and type of MFCs that can be produced.
Moyna, Áine; Connolly, Damian; Nesterenko, Ekaterina; Nesterenko, Pavel N; Paull, Brett
2013-03-01
Lauryl methacrylate-co-ethylene dimethacrylate monoliths were polymerised within fused silica capillaries and subsequently photo-grafted with varying amounts of glycidyl methacrylate (GMA). The grafted monoliths were then further modified with iminodiacetic acid (IDA), resulting in a range of chelating ion-exchange monoliths of increasing capacity. The IDA functional groups were attached via ring opening of the epoxy group on the poly(GMA) structure. Increasing the amount of attached poly(GMA), via photo-grafting with increasing concentrations of GMA, from 15 to 35%, resulted in a proportional and controlled increase in the complexation capacity of the chelating monoliths. Scanning capacitively coupled contactless conductivity detection (sC(4)D) was used to characterise and verify homogenous distribution of the chelating ligand along the length of the capillaries non-invasively. Chelation ion chromatographic separations of selected transition and heavy metals were carried out, with retention factor data proportional to the concentration of grafted poly(GMA). Average peak efficiencies of close to 5,000 N/m were achieved, with the isocratic separation of Na, Mg(II), Mn(II), Co(II), Cd(II) and Zn(II) possible on a 250-mm-long monolith. Multiple monolithic columns produced to the same recipes gave RSD data for retention factors of <15% (averaged for several metal ions). The monolithic chelating ion-exchanger was applied to the separation of alkaline earth and transition metal ions spiked in natural and potable waters.
The dynamical behavior of the s-trioxane radical cation-A low-temperature EPR and theoretical study.
Naumov, Sergej S; Knolle, Wolfgang; Naumov, Sergej P; Pöppl, Andreas; Janovský, Igor
2014-10-28
The radical cation of s-trioxane, radiolytically generated in a freon (CF3CCl3) matrix, was studied in the 10-140 K temperature region. Reversible changes of the EPR spectra were observed, arising from both ring puckering and ring inversion through the molecular plane. The ESREXN program based on the Liouville density matrix equation, allowing the treatment of dynamical exchange, has been used to analyze the experimental results. Two limiting conformer structures of the s-trioxane radical cation were taken into account, namely "rigid" half-boat and averaged planar ones, differing strongly in their electron distribution. The spectrum due to the "rigid" half-boat conformer can be observed only at very low (<60 K) temperatures, when the exchange of conformers is very slow. Two transition states for interconversion by puckering and ring-inversion were identified, close in activation energy (2.3 and 3.0 kJ/mol calculated). Since the energy difference is very small, both processes set on at a comparable temperature. In the case of nearly complete equilibration (fast exchange) between six energetically equivalent structures at T > 120 K in CF3CCl3, a septet due to six equivalent protons (hfs splitting constant 5.9 mT) is observed, characteristic of the dynamically averaged planar geometry of the radical cation. DFT quantum chemical calculations and spectral simulation including intramolecular dynamical exchange support the interpretation.
Lerch, R.N.; Thurman, E.M.; Kruger, E.L.
1997-01-01
This study tested the hypothesis that sorption of hydroxylated atrazine degradation products (HADPs: hydroxyatrazine, HA; deethylhydroxyatrazine, DEHA; and deisopropylhydroxyatrazine, DIHA) to soils occurs by mixed-mode binding resulting from two simultaneous mechanisms: (1) cation exchange and (2) hydrophobic interaction. The objective was to use liquid chromatography and soil extraction experiments to show that mixed-mode binding is the mechanism controlling HADP sorption to soils and is also a mechanism for bound residue. Overall, HADP binding to solid-phase extraction (SPE) sorbents occurred in the order: cation exchange >> octadecyl (C18) >> cyanopropyl. Binding to cation exchange SPE and to a high-performance liquid chromatograph octyl (C8) column showed evidence for mixed-mode binding. Comparison of soil extracted by 0.5 M KH2P04, pH 7.5, or 25% aqueous CH3CN showed that, for HA and DIHA, cation exchange was a more important binding mechanism to soils than hydrophobic interaction. Based on differences between several extractants, the extent of HADP mixed-mode binding to soil occurred in the following order: HA > DIHA > DEHA. Mixed-mode extraction recovered 42.8% of bound atrazine residues from aged soil, and 88% of this fraction was identified as HADPs. Thus, a significant portion of bound atrazine residues in soils is sorbed by the mixed-mode binding mechanisms.
Using an FPLC to promote active learning of the principles of protein structure and purification.
Robinson, Rebekah L; Neely, Amy E; Mojadedi, Wais; Threatt, Katie N; Davis, Nicole Y; Weiland, Mitch H
2017-01-02
The concepts of protein purification are often taught in undergraduate biology and biochemistry lectures and reinforced during laboratory exercises; however, very few reported activities allow students to directly gain experience using modern protein purification instruments, such as Fast Protein Liquid Chromatography (FPLC). This laboratory exercise uses size exclusion chromatography (SEC) and ion exchange (IEX) chromatography to separate a mixture of four different proteins. Students use an SEC chromatogram and corresponding SDS-PAGE gel to understand how protein conformations change under different conditions (i.e. native and non-native). Students explore strategies to separate co-eluting proteins by IEX chromatography. Using either cation or anion exchange, one protein is bound to the column while the other is collected in the flow-through. In this exercise, undergraduate students gain hands-on experience with experimental design, buffer and sample preparation, and implementation of instrumentation that is commonly used by experienced researchers while learning and applying the fundamental concepts of protein structure, protein purification, and SDS-PAGE. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):60-68, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.
Suzuki, Takao; Muto, Shigeaki; Miyata, Yukio; Maeda, Takao; Odate, Takayuki; Shimanaka, Kimio; Kusano, Eiji
2015-06-01
A K(+) -adsorption filter was developed to exchange K(+) in the supernatant of stored irradiated red blood cells with Na(+) . To date, however, the filter's adsorption capacity for K(+) has not been fully evaluated. Therefore, we characterized the cation-binding capacity of this filter. Artificial solutions containing various cations were continuously passed through the filter in 30 mL of sodium polystyrene sulfonate at 10 mL/min using an infusion pump at room temperature. The cation concentrations were measured before and during filtration. When a single solution containing K(+) , Li(+) , H(+) , Mg(2+) , Ca(2+) , or Al(3+) was continuously passed through the filter, the filter adsorbed K(+) and the other cations in exchange for Na(+) in direct proportion to the valence number. The order of affinity for cation adsorption to the filter was Ca(2+) >Mg(2+) >K(+) >H(+) >Li(+) . In K(+) -saturated conditions, the filter also adsorbed Na(+) . After complete adsorption of these cations on the filter, their concentration in the effluent increased in a sigmoidal manner over time. Cations that were bound to the filter were released if a second cation was passed through the filter, despite the different affinities of the two cations. The ability of the filter to bind cations, especially K(+) , should be helpful when it is used for red blood cell transfusion at the bedside. The filter may also be useful to gain a better understanding of the pharmacological properties of sodium polystyrene sulfonate. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.
Yb3O(OH)6Cl·2H2O: an anion-exchangeable hydroxide with a cationic inorganic framework structure.
Goulding, Helen V; Hulse, Sarah E; Clegg, William; Harrington, Ross W; Playford, Helen Y; Walton, Richard I; Fogg, Andrew M
2010-10-06
The first anion-exchangeable framework hydroxide, Yb(3)O(OH)(6)Cl·2H(2)O, has been synthesized hydrothermally. This material has a three-dimensional cationic ytterbium oxyhydroxide framework with one-dimensional channels running through the structure in which the chloride anions and water molecules are located. The framework is thermally stable below 200 °C and can be reversibly dehydrated and rehydrated with no loss of crystallinity. Additionally, it is able to undergo anion-exchange reactions with small ions such as carbonate, oxalate, and succinate with retention of the framework structure.
Jee, Eun Hye; Kim, So Ra; Jang, Young Pyo
2012-08-17
A2E, known to be involved in the pathogenesis of age-related macular degeneration (AMD), is one of the major compounds that accumulate as fluorescent pigments in retinal pigment epithelial (RPE) cells with age and in some retinal disorders. While the biomimetic synthesis of A2E and its cis-isomer, iso-A2E is as simple as 'one-pot' reaction, the purification of these amphiphillic compounds has been a bottleneck for the mass production of these pathophysiologically important eye pigments. In order to provide a new method of rapid purification of A2E and iso-A2E, we employed a cation exchange resin for the separation of these pigments from crude reaction mixture. The reaction mixture was loaded on a weak acid resin and was eluted with 80% methanol with sodium hydroxide (pH 12), 100% methanol, and 100% methanol with 0.1% trifluoroacetic acid (TFA) in sequence. A2E and isoA2E were eluted only with 100% methanol solution containing TFA. Most of unreacted starting materials and intermediates were removed with 80% methanol containing sodium hydroxide. The new method can be used as a relatively simple and economic way to purify A2E and iso-A2E compared to conventional HPLC technique. Copyright © 2012 Elsevier B.V. All rights reserved.
Boles, Tammy H; Wells, Martha J M
2016-12-01
Amphetamine and methamphetamine are emerging contaminants-those for which no regulations currently require monitoring or public reporting of their presence in our water supply. In this research, a protocol for weak cation-exchange (WCX) SPE coupled with LC-MS/MS was developed for determination of emerging contaminants amphetamine and methamphetamine in a complex wastewater matrix. Gradient LC parameters were adjusted to yield baseline separation of methamphetamine from other contaminants. Methamphetamine-D5 was used as the internal standard (IS) to compensate for sample loss during SPE and for signal loss during MS (matrix effects). Recoveries were 102.1 ± 7.9% and 99.4 ± 4.0% for amphetamine and methamphetamine, respectively, using WCX sorbent. Notably, methamphetamine was determined to be present in wastewater influent at each sampling date tested. Amphetamine was present in wastewater influent on two of four sampling dates. Amphetamine concentrations ranged from undetectable to 86.4 ng/L in influent, but it was undetectable in wastewater effluent. Methamphetamine was detected in influent at concentrations ranging from 27.0-60.3 ng/L. Methamphetamine concentration was reduced but incompletely removed at this facility. Although absent in one post-UV effluent sample, concentrations of methamphetamine ranged from 10.8-14.8 ng/L. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ando, Masaki; Imadzu, Sakiyo; Kitagawa, Shinya; Ohtani, Hajime
2010-08-06
A particulate formation-laser scattering detector (PFLSD) was developed and used for evaluating the crystallization efficiency of inorganic polyphosphates (PPs) that reacted with either magnesium or calcium cations. As the solutions for reactive crystallization, 0.5 M ammonium buffer (pH 9.6) containing either 0.15 M MgCl(2) or 0.15 M CaCl(2) (MAP: magnesium ammonium phosphate and HAP: hydroxyapatite solution) were used. In the case of mono- and diphosphate (P1 and P2), the significant dependences of the particulate formation efficiency on various types of both P1/P2 and MAP/HAP reaction solutions were observed with the direct sample injection mode. The PFLSD was hyphenated with the anion-exchange chromatography and the dependence of the particulate formation efficiency on the polymerization degree (n(p)) of PP oligomers, separated chromatographically, was evaluated sequentially. The significant suppression of the particulate formation for PP oligomers was clearly confirmed, i.e., the MAP and HAP reaction solutions did not produce the particulates of the PP oligomers having an n(p) value of more than 3 and 5, respectively. As the overall tendency, the particulate formation efficiency in the case of the HAP solution was superior to that in the case of the MAP solution. Copyright 2010 Elsevier B.V. All rights reserved.
Nibel, Olga; Rojek, Tomasz; Schmidt, Thomas J; Gubler, Lorenz
2017-07-10
All-vanadium redox flow batteries (VRBs) have attracted considerable interest as promising energy-storage devices that can allow the efficient utilization of renewable energy sources. The membrane, which separates the porous electrodes in a redox flow cell, is one of the key components in VRBs. High rates of crossover of vanadium ions and water through the membrane impair the efficiency and capacity of a VRB. Thus, membranes with low permeation rate of vanadium species and water are required, also characterized by low resistance and stability in the VRB environment. Here, we present a new design concept for amphoteric ion-exchange membranes, based on radiation-induced grafting of vinylpyridine into an ethylene tetrafluoroethylene base film and a two-step functionalization to introduce cationic and anionic exchange sites, respectively. During long-term cycling, redox flow cells containing these membranes showed higher efficiency, less pronounced electrolyte imbalance, and significantly reduced capacity decay compared to the cells with the benchmark material Nafion 117. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selective Gas Capture Ability of Gas-Adsorbent-Incorporated Cellulose Nanofiber Films.
Shah, Kinjal J; Imae, Toyoko
2016-05-09
The 2,2,6,6-tetramethylpiperidine-1-oxyl radical-oxidized cellulose nanofibers (TOCNF) were hybridized with cation and anion-exchange organoclays, where poly(amido amine) dendrimers were loaded to enhance the functionality of gas adsorption, since dendrimers have the high adsorbability and the enough selectivity on the gas adsorption. The thin films were prepared from the organoclay-TOCNF hybrids and supplied to the gas adsorption. The adsorption of CO2 and NH3 gases increased with an increasing amount of organoclays in TOCNF films, but the behavior of the increase depended on gases, clays, and dendrimers. The hydrotalcite organoclay-TOCNF films displayed the highest adsorption of both gases, but the desorption of CO2 gas from hydrotalcite organoclay-TOCNF films was drastically high in comparison with the other systems. While the CO2 gas is adsorbed and remained on cationic dendrimer sites in cation-exchange organoclay-TOCNF films, the CO2 gas is adsorbed on cationic clay sites in anion exchange organoclay-TOCNF films, and it is easily desorbed from the films. The NH3 adsorption is inversive to the CO2 adsorption. Then the CO2 molecules adsorbed on the cationic dendrimers and the NH3 molecules adsorbed on the anionic dendrimers are preferably captured in these adsorbents. The present research incorporated dendrimers will be contributing to the development of gas-specialized adsorbents, which are selectively storable only in particular gases.
Rare-earth element fractionation in uranium ore and its U(VI) alteration minerals
Balboni, Enrica; Spano, T; Cook, N; ...
2017-10-20
We developed a cation exchange chromatography method employing sulfonated polysterene cation resin (DOWEX AG50-X8) in order to separate rare-earth elements (REEs) from uranium-rich materials. The chemical separation scheme is designed to reduce matrix effects and consequently yield enhanced ionization efficiencies for concentration determinations of REEs without significant fractionation using solution mode-inductively coupled plasma mass spectrometry (ICP-MS) analysis. This method was then applied to determine REE abundances in four uraninite (ideally UO 2) samples and their associated U(VI) alteration minerals. In three of the samples analyzed, the concentration of REEs for primary uraninite are higher than those for their corresponding secondarymore » uranium alteration phases. The results for U(VI) alteration minerals of two samples indicate enrichment of the light REEs (LREEs) over the heavy REEs (HREEs). This differential mobilization is attributed to differences in the mineralogical composition of the U(VI) alteration. There is a lack of fractionation of the LREEs in the uraninite alteration rind that is composed of U(VI) minerals containing Ca 2+ as the interlayer cation (uranophane and bequerelite); contrarily, U(VI) alteration minerals containing K + and Pb 2+ as interlayer cations (fourmarierite, dumontite) indicate fractionation (enrichment) of the LREEs. Our results have implications for nuclear forensic analyses since a comparison is reported between the REE abundances for the CUP-2 (processed uranium ore) certified reference material and previously determined values for uranium ore concentrate (UOC) produced from the same U deposit (Blind River/Elliott Lake, Canada). UOCs represent the most common form of interdicted nuclear material and consequently is material frequently targeted for forensic analysis. The comparison reveals similar chondrite normalized REE signatures but variable absolute abundances. Based on the results reported here, the latter may be attributed to the differing REE abundances between primary ore and associated alteration phases, and/or is related to varying fabrication processes adopted during production of UOC.« less
Rare-earth element fractionation in uranium ore and its U(VI) alteration minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balboni, Enrica; Spano, T; Cook, N
We developed a cation exchange chromatography method employing sulfonated polysterene cation resin (DOWEX AG50-X8) in order to separate rare-earth elements (REEs) from uranium-rich materials. The chemical separation scheme is designed to reduce matrix effects and consequently yield enhanced ionization efficiencies for concentration determinations of REEs without significant fractionation using solution mode-inductively coupled plasma mass spectrometry (ICP-MS) analysis. This method was then applied to determine REE abundances in four uraninite (ideally UO 2) samples and their associated U(VI) alteration minerals. In three of the samples analyzed, the concentration of REEs for primary uraninite are higher than those for their corresponding secondarymore » uranium alteration phases. The results for U(VI) alteration minerals of two samples indicate enrichment of the light REEs (LREEs) over the heavy REEs (HREEs). This differential mobilization is attributed to differences in the mineralogical composition of the U(VI) alteration. There is a lack of fractionation of the LREEs in the uraninite alteration rind that is composed of U(VI) minerals containing Ca 2+ as the interlayer cation (uranophane and bequerelite); contrarily, U(VI) alteration minerals containing K + and Pb 2+ as interlayer cations (fourmarierite, dumontite) indicate fractionation (enrichment) of the LREEs. Our results have implications for nuclear forensic analyses since a comparison is reported between the REE abundances for the CUP-2 (processed uranium ore) certified reference material and previously determined values for uranium ore concentrate (UOC) produced from the same U deposit (Blind River/Elliott Lake, Canada). UOCs represent the most common form of interdicted nuclear material and consequently is material frequently targeted for forensic analysis. The comparison reveals similar chondrite normalized REE signatures but variable absolute abundances. Based on the results reported here, the latter may be attributed to the differing REE abundances between primary ore and associated alteration phases, and/or is related to varying fabrication processes adopted during production of UOC.« less
Development of a High-Throughput Ion-Exchange Resin Characterization Workflow.
Liu, Chun; Dermody, Daniel; Harris, Keith; Boomgaard, Thomas; Sweeney, Jeff; Gisch, Daryl; Goltz, Bob
2017-06-12
A novel high-throughout (HTR) ion-exchange (IEX) resin workflow has been developed for characterizing ion exchange equilibrium of commercial and experimental IEX resins against a range of different applications where water environment differs from site to site. Because of its much higher throughput, design of experiment (DOE) methodology can be easily applied for studying the effects of multiple factors on resin performance. Two case studies will be presented to illustrate the efficacy of the combined HTR workflow and DOE method. In case study one, a series of anion exchange resins have been screened for selective removal of NO 3 - and NO 2 - in water environments consisting of multiple other anions, varied pH, and ionic strength. The response surface model (RSM) is developed to statistically correlate the resin performance with the water composition and predict the best resin candidate. In case study two, the same HTR workflow and DOE method have been applied for screening different cation exchange resins in terms of the selective removal of Mg 2+ , Ca 2+ , and Ba 2+ from high total dissolved salt (TDS) water. A master DOE model including all of the cation exchange resins is created to predict divalent cation removal by different IEX resins under specific conditions, from which the best resin candidates can be identified. The successful adoption of HTR workflow and DOE method for studying the ion exchange of IEX resins can significantly reduce the resources and time to address industry and application needs.
Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures
NASA Technical Reports Server (NTRS)
Allen, E. R.; Hossner, L. R.; Ming, D. W.; Henninger, D. L.
1993-01-01
Mixtures of zeolite and phosphate rock (PR) have the potential to provide slow-release fertilization of plants in synthetic soils by dissolution and ion-exchange reactions. This study was conducted to examine solubility and cation-exchange relationships in mixtures of PR and NH4- and K-saturated clinoptilolite (Cp). Batch-equilibration experiments were designed to investigate the effect of PR source, the proportion of exchangeable K and NH4, and the Cp to PR ratio on solution N, P, K, and Ca concentrations. The dissolution and cation-exchange reactions that occurred after mixing NH4- and K-saturated Cp with PR increased the solubility of the PR and simultaneously released NH4 and K into solution. The more reactive North Carolina (NC) PR rendered higher solution concentrations of NH4 and K when mixed with Cp than did Tennessee (TN) PR. Solution P concentrations for the Cp-NC PR mixture and the Cp-TN PR mixture were similar. Solution concentrations of N, P, K, and Ca and the ratios of these nutrients in solution varied predictably with the type of PR, the Cp/PR ratio, and the proportions of exchangeable K and NH4 on the Cp. Our research indicated that slow-release fertilization using Cp/PR media may provide adequate levels of N, P, and K to support plant growth. Solution Ca concentrations were lower than optimum for plant growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, M.; Schaefer, H.F. III
1999-07-21
Various possible reaction pathways between ethene and butadiene radical cation (cis- and trans-), have been investigated at different levels of theory up to UCCSD(T)/DZP/UMP2(fc)/DZP and with density functional theory at B3LYP/DZP. A stepwise addition involving open chain intermediates and leading to the Diels-Alder product, the cyclohexene radical cation, was found to have a total activation barrier {Delta}G{sup 298{ne}} = 6.3 kcal mol{sup {minus}1} and a change in free Gibbs energy, {Delta}G{sup 298}, of {minus}33.5 kcal mol{sup {minus}1}. On the E{degree} potential energy surface, all transition states are lower in energy than separated ethene and butadiene, the exothermicity {Delta}E = -45.6more » kcal mol{sup {minus}1}. A more direct path could be characterized as stepwise with one intermediate only at the SCF level but not at electron-correlated levels and hence might actually be a concerted strongly asynchronous addition with a very small or no activation barrier (UCCSD(T)/DZP/UHF/6-31G* gives a {Delta}G{sup 298{ne}} of 0.8 kcal mol{sup {minus}1}). The critical step for another alternative, the cyclobutanation-vinylcyclobutane/cyclohexene rearrangement, is a 1,3-alkyl shift which involves a barrier ({Delta}G{sup 298{ne}}) only 1.7 kcal mol{sup {minus}1} higher than that of stop use addition for both cis-, and trans-butadiene radical cation. However, from the (ethene and trans-butadiene) reactions, ring expansion of the vinylcyclobutane radical cation intermediate, to a methylene cyclopentane radical cation, requires an activation only 1.3 kcal mol{sup {minus}1} larger than for (trans-butadiene radical). While cis/trans isomerization of free butadiene radical cation requires a high activation (24.9 kcal mol{sup {minus}1}), a reaction sequence involving addition of ethene (to stepwise give an open chain intermediate and vinyl cyclobutane radical cation) has a barrier of only 3.5 kcal mol{sup {minus}1} ({Delta}G{sup 298{ne}}). This sequence also makes ethene and butadiene radical cations to exchange terminal methylene groups.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menes, F.
1961-12-01
A process is given for the separation of isotopes by reflux electromigration of fused salts. The process is carried out in a countercurrent manner on a fused mixture of a salt containing the isotopic cations with a salt having the same anion and a cation with a mobility as near as possible to that of the isotopic cations. An electrolytic cell for carrying out the process is described. Examples are presented of the process in which lithium-6 and lithium-7 are separated in a LiBr-KBr mixture, and calcium isotopes are separated in CaBr/sub 2/-KBr and CaBr/sub 2/- LiBr systems. (N.W.R.)
Jiříček, Tomáš; De Schepper, Wim; Lederer, Tomáš; Cauwenberg, Peter; Genné, Inge
2015-01-01
Ion-exchange tap water demineralization for process water preparation results in a saline regeneration wastewater (20-100 mS cm(-1)) that is increasingly problematic in view of discharge. A coupled nanofiltration-membrane distillation (NF-MD) process is evaluated for the recovery of water and sodium chloride from this wastewater. NF-MD treatment of mixed regeneration wastewater is compared to NF-MD treatment of separate anion- and cation-regenerate fractions. NF on mixed regeneration wastewater results in a higher flux (30 L m(-2) h(-1) at 7 bar) compared to NF on the separate fractions (6-9 L m(-2) h(-1) at 30 bar). NF permeate recovery is strongly limited by scaling (50% for separate and 60% for mixed, respectively). Physical signs of scaling were found during MD treatment of the NF permeates but did not result in flux decline for mixed regeneration wastewater. Final salt composition is expected to qualify as a road de-icing salt. NF-MD is an economically viable alternative compared to external disposal of wastewater for larger-scale installations (1.4 versus 2.5 euro m(-3) produced demineralized water for a 10 m3 regenerate per day plant). The cost benefits of water re-use and salt recuperation are small when compared to total treatment costs for mixed regenerate wastewater.
Impact of monovalent cations on soil structure. Part I. Results of an Iranian soil
NASA Astrophysics Data System (ADS)
Farahani, Elham; Emami, Hojat; Keller, Thomas; Fotovat, Amir; Khorassani, Reza
2018-01-01
This study investigated the impact of monovalent cations on clay dispersion, aggregate stability, soil pore size distribution, and saturated hydraulic conductivity on agricultural soil in Iran. The soil was incubated with treatment solutions containing different concentrations (0-54.4 mmol l-1) of potassium and sodium cations. The treatment solutions included two levels of electrical conductivity (EC=3 or 6 dS m-1) and six K:Na ratios per electrical conductivity level. At both electrical conductivity levels, spontaneously dispersible clay increased with increasing K concentration, and with increasing K:Na ratio. A negative linear relationship between percentage of water-stable aggregates and spontaneously dispersible clay was observed. Clay dispersion generally reduced the mean pore size, presumably due to clogging of pores, resulting in increased water retention. At both electrical conductivity levels, hydraulic conductivity increased with increasing exchangeable potassium percentage at low exchangeable potassium percentage values, but decreased with further increases in exchangeable potassium percentage at higher exchangeable potassium percentage. This is in agreement with earlier studies, but seems in conflict with our data showing increasing spontaneously dispersible clay with increasing exchangeable potassium percentage. Our findings show that clay dispersion increased with increasing K concentration and increasing K:Na ratio, demonstrating that K can have negative impacts on soil structure.
UTILITY OF ZEOLITES IN ARSENIC REMOVAL FROM WATER
Zeolites are well known for their ion exchange and adsorption properties. So far the cation exchanger properties of zeolites have been extensively studied and utilized. The anion exchanger properties of zeolites are less studied. Zeolite Faujasite Y has been used to remove arseni...
2009-09-01
solvents. Similar behavior was observed for Nafion -117 (also a polymer with ionic SO3H clusters) by other researchers (14). Results shown in this...pattern was only valid for ionic S-SIBS membranes exchanged with cations; neither acid form of SIBS-97-H nor Nafion -117 fell on this line. In order...10 vi INTENTIONALLY LEFT BLANK. 1 1. Introduction Research in ionic polymers has been gaining popularity in the scientific community
NASA Astrophysics Data System (ADS)
White, Nicholas
Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is <2. However, water-splitting at strongly overlimiting current densities may lead to a local pH increase close to the membrane surface and alter film permeability or allow passage of Mg(OH)x species to decrease selectivity. When the source phase contains high salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000 because the diffusion-limited K+ or Li+ currents exceed the applied current. However, ED selectivities gradually decline with time. Thus, future research should aim to increase membrane stability and limiting currents to fully exploit the remarkable selectivity of these membranes. PEMs deposited on commercial ultrafiltration (UF) membranes also show high rejections of organic dyes. Coating the surface of polyethersulfone (PES) membranes imparts a selective barrier to dye molecules used in textile production. These films achieve dye rejections >98% and may be useful for wastewater treatment and dye recovery. Other studies in microfluidic channels exploit ion transport phenomena in the vicinity of ion-selective junctions, such as cation-exchange membranes. These studies suggest that ion concentration polarization (ICP) could remove charged species from feed streams.
Use of cationic polymers to reduce pathogen levels during dairy manure separation.
Liu, Zong; Carroll, Zachary S; Long, Sharon C; Gunasekaran, Sundaram; Runge, Troy
2016-01-15
Various separation technologies are used to deal with the enormous amounts of animal waste that large livestock operations generate. When the recycled waste stream is land applied, it is essential to lower the pathogen load to safeguard the health of livestock and humans. We investigated whether cationic polymers, used as a flocculent in the solid/liquid separation process, could reduce the pathogen indicator load in the animal waste stream. The effects of low charge density cationic polyacrylamide (CPAM) and high charge density cationic polydicyandiamide (PDCD) were investigated. Results demonstrated that CPAM was more effective than PDCD for manure coagulation and flocculation, while PDCD was more effective than CPAM in reducing the pathogen indicator loads. However, their combined use, CPAM followed by PDCD, resulted in both improved solids separation and pathogen indicator reduction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Pengfei; Kreft, Iris; Jackson, Glen P.
2018-02-01
Top-down analyses of protonated insulin cations of charge states of 4+, 5+, or 6+ were performed by exposing the isolated precursor ions to a beam of helium cations with kinetic energy of more than 6 keV, in a technique termed charge transfer dissociation (CTD). The 100 ms charge transfer reaction resulted in approximately 20% conversion efficiency to other intact charge exchange products (CTnoD), and a range of low abundance fragment ions. To increase backbone and sulfide cleavages, and to provide better structural information than straightforward MS2 CTD, the CTnoD oxidized products were isolated and subjected to collisional activation at the MS3 level. The MS3 CTD/CID reaction effectively broke the disulfide linkages, separated the two chains, and yielded more structurally informative fragment ions within the inter-chain cyclic region. CTD also provided doubly oxidized intact product ions at the MS2 level, and resonance ejection of the singly oxidized product ion revealed that the doubly oxidized product originates directly from the isolated precursor ion and not from consecutive CTD reactions of a singly oxidized intermediate. MS4 experiments were employed to help identify potential radical cations and diradical cations, but the results were negative or inconclusive. Nonetheless, the two-electron oxidation process is a demonstration of the very large potential energy (>20 eV) available through CTD, and is a notable capability for a 3D ion trap platform.
Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same
Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato
2001-01-01
A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.
Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same
Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.
2002-01-01
A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.
Evaluation of Zeolite Permeable Treatment Wall for the Removal of Strontium-90 from Groundwater
NASA Astrophysics Data System (ADS)
Seneca, S. M.; Bandilla, K.; Rabideau, A. J.; Ross, E.; Bronner, C. E.
2009-12-01
Experimental and modeling studies are in progress to evaluate the potential performance of a permeable treatment wall comprised of zeolite-rich rock for the removal of strontium-90 from groundwater. Column studies were performed using a synthetic groundwater referenced to anticipate field conditions, with a focus on quantifying the competitive ion exchange among five cations (Na+, K+, Ca2+, Mg2+, and Sr2+). Ongoing studies are focused on the comparison of zeolites obtained from two sources: Teague Mineral Products (Adrian, OR) and Bear River Zeolite (Preston, UT), and on the possible influence of native soil that is mixed with treatment wall material during construction. The data obtained from the column studies is used to support robust estimation of zeolite cation exchange parameters producing a five-solute cation exchange model describing the removal efficiency of the zeolite. The field-scale transport model provides flexibility to explore design parameters to support the possible deployment of a full scale treatment wall at a Western New York nuclear facility.
pH profile of the adsorption of nucleotides onto montmorillonite. I - Selected homoionic clays
NASA Technical Reports Server (NTRS)
Lawless, J. G.; Church, F. M.; Mazzurco, J.; Banin, A.; Huff, R.; Kao, J.; Cook, A.; Lowe, T.; Orenberg, J. B.; Edelson, E.
1985-01-01
The effect of pH and adsorbed ions on the adsorption of purine and pyrimidine nucleotides on montmorillonite clay was studied experimentally. The specific nucleotides examined were: 5 prime-AMP; 3-prime AMP; and 5 prime-CMP. The pH of the clay samples was adjusted to various levels in the 2-12 pH range using microliter volumes of concentrated acid (1N HCl) and base (1NHNaOH). It was found that preferential adsorption among nulceotides was dependent on the pH level and on the characteristics of the substituted metal cation and anion exchange mechanisms. Below pH 4, adsorption was attributed to cation and anion exchange mechanisms. Above pH 4, however, adsorption was attributed to the complexation mechanisms occurring between the metal cations in the clay exchange site and in the biomolecule. The possible role of homoionic clays in the concentration mechanisms of biomonomers in the prebiotic environment is discussed.
First Cationic Uranyl-Organic Framework with Anion-Exchange Capabilities.
Bai, Zhuanling; Wang, Yanlong; Li, Yuxiang; Liu, Wei; Chen, Lanhua; Sheng, Daopeng; Diwu, Juan; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao
2016-07-05
By controlling the extent of hydrolysis during the self-assembly process of a zwitterionic-based ligand with uranyl cations, we observed a structural evolution from the neutral uranyl-organic framework [(UO2)2(TTTPC)(OH)O(COOH)]·1.5DMF·7H2O (SCU-6) to the first cationic uranyl-organic framework with the formula of [(UO2)(HTTTPC)(OH)]Br·1.5DMF·4H2O (SCU-7). The crystal structures of SCU-6 and SCU-7 are layers built with tetranuclear and dinuclear uranyl clusters, respectively. Exchangeable halide anions are present in the interlaminar spaces balancing the positive charge of layers in SCU-7. Therefore, SCU-7 is able to effectively remove perrhenate anions from aqueous solution. Meanwhile, the H2PO4(-)-exchanged SCU-7 material exhibits a moderate proton conductivity of 8.70 × 10(-5) S cm(-1) at 50 °C and 90% relative humidity, representing nearly 80 times enhancement compared to the original material.
A Cation-containing Polymer Anion Exchange Membrane based on Poly(norbornene)
NASA Astrophysics Data System (ADS)
Beyer, Frederick; Price, Samuel; Ren, Xiaoming; Savage, Alice
Cation-containing polymers are being studied widely for use as anion exchange membranes (AEMs) in alkaline fuel cells (AFCs) because AEMs offer a number of potential benefits including allowing a solid state device and elimination of the carbonate poisoning problem. The successful AEM will combine high performance from several orthogonal properties, having robust mechanical strength even when wet, high hydroxide conductivity, and the high chemical stability required for long device lifetimes. In this study, we have synthesized a model cationic polymer that combines three of the key advantages of Nafion. The polymer backbone based on semicrystalline atactic poly(norbornene) offers good mechanical properties. A flexible, ether-based tether between the backbone and fixed cation charged species (quaternary ammonium) should provide the low-Tg, hydrophilic environment required to facilitate OH- transport. Finally, methyl groups have been added at the beta position relative to the quaternary ammonium cation to prevent Hoffman elimination, one mechanism by which AEMs are neutralized in a high pH environment. In this poster, we will present our findings on mechanical properties, morphology, charge transport, and chemical stability of this material.
Chen, Ligang; Zeng, Qinglei; Du, Xiaobo; Sun, Xin; Zhang, Xiaopan; Xu, Yang; Yu, Aimin; Zhang, Hanqi; Ding, Lan
2009-11-01
In this work, a new method was developed for the determination of melamine (MEL) in animal feed. The method was based on the on-line coupling of dynamic microwave-assisted extraction (DMAE) to strong cation-exchange (SCX) resin clean-up. The MEL was first extracted by 90% acidified methanol aqueous solution (v/v, pH = 3) under the action of microwave energy, and then the extract was cooled and passed through the SCX resin. Thus, the protonated MEL was retained on the resin through ion exchange interaction and the sample matrixes were washed out. Some obvious benefits were achieved, such as acceleration of analytical process, together with reduction in manual handling, risk of contamination, loss of analyte, and sample consumption. Finally, the analyte was separated by a liquid chromatograph with a SCX analytical column, and then identified and quantitatived by a tandem mass spectrometry with positive ionization mode and multiple-reaction monitoring. The DMAE parameters were optimized by the Box-Behnken design. The linearity of quantification obtained by analyzing matrix-matched standards is in the range of 50-5,000 ng g(-1). The limit of detection and limit of quantification obtained are 12.3 and 41.0 ng g(-1), respectively. The mean intra- and inter-day precisions expressed as relative standard deviations with three fortified levels (50, 250, and 500 ng g(-1)) are 5.1% and 7.3%, respectively, and the recoveries of MEL are in the range of 76.1-93.5%. The proposed method was successfully applied to determine MEL in different animal feeds obtained from the local market. MEL was detectable with the contents of 279, 136, and 742 ng g(-1) in three samples.
Unfolding of a model protein on ion exchange and mixed mode chromatography surfaces.
Gospodarek, Adrian M; Hiser, Diana E; O'Connell, John P; Fernandez, Erik J
2014-08-15
Recent studies with proteins indicate that conformational changes and aggregation can occur during ion exchange chromatography (IEC). Such behavior is not usually expected, but could lead to decreased yield and product degradation from both IEC and multi mode chromatography (MMC) that has ligands of both hydrophobic and charged functionalities. In this study, we used hydrogen exchange mass spectrometry to investigate unfolding of the model protein BSA on IEC and MMC surfaces under different solution conditions at 25°C. Increased solvent exposure, indicating greater unfolding relative to that in solution, was found for protein adsorbed on cationic IEC and MMC surfaces in the pH range of 3.0 to 4.5, where BSA has decreased stability in solution. There was no effect of anionic surfaces at pH values in the range from 6.0 to 9.0. Differences of solvent exposure of whole molecules when adsorbed and in solution suggest that adsorbed BSA unfolds at lower pH values and may show aggregation, depending upon pH and the surface type. Measurements on digested peptides showed that classifications of stability can be made for various regions; these are generally retained as pH is changed. When salt was added to MMC systems, where electrostatic interactions would be minimized, less solvent exposure was seen, implying that it is the cationic moieties, rather than the hydrophobic ligands, which cause greater surface unfolding at low salt concentrations. These results suggest that proteins of lower stability may exhibit unfolding and aggregation during IEC and MMC separations, as they can with hydrophobic interaction chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.
Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange
Binetti, Enrico; Striccoli, Marinella; Sibillano, Teresa; Giannini, Cinzia; Brescia, Rosaria; Falqui, Andrea; Comparelli, Roberto; Corricelli, Michela; Tommasi, Raffaele; Agostiano, Angela; Curri, M Lucia
2015-01-01
Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices. PMID:27877842
Ion transport in the microporous titanosilicate ETS-10.
Wei, Ta-Chen; Hillhouse, Hugh W
2006-07-20
Impedance spectroscopy was used to investigate ion transport in the microporous crystalline framework titanosilicate ETS-10 in the frequency range from 1 Hz to 10 MHz. These data were compared to measured data from the microporous aluminosilicate zeolite X. Na-ETS-10 was found to have a lower activation energy for ion conduction than that of NaX, 58.5 kJ/mol compared to 66.8 kJ/mol. However, the dc conductivity and ion hopping rate for Na-ETS-10 were also lower than NaX. This was found to be due to the smaller entropy contribution in Na-ETS-10 because of its high cation site occupancy. This was verified by ion exchanging Na(+) with Cu(2+) in both microporous frameworks. This exchange decreases the cation site occupancy and reduces correlation effects. The exchanged Cu-ETS-10 was found to have both lower activation energy and higher ionic conductivity than CuX. Zeolite X has the highest ion conductivity among the zeolites, and thus the data shown here indicate that ETS-10 has more facile transport of higher valence cations which may be important for ion-exchange, environmental remediation of radionucleotides, and nanofabrication.
NASA Technical Reports Server (NTRS)
Liang, Maggie
2004-01-01
Polymer-clay nanocomposites have exhibited superior strength and thermo- oxidative properties as compared to pure polymers for use in air and space craft; however, there has often been difficulty completely dispersing the clay within the matrices of the polymer. In order to improve this process, the cation exchange capacity of lithium clay is first lowered using twenty-four hour heat treatments of no heat, 130 C, 150 C, or 170 C to fixate the lithium ions within the clay layers so that they are unexchangeable. Generally, higher temperatures have generated lower cation exchange capacities. An ion exchange involving dodecylamine, octadecylamine, or dimethyl benzidine (DMBZ) is then employed to actually expand the clay galleries. X-ray diffraction and transmission electron microscopy can be used to determine whether the clay has been successfully exfoliated. Finally, resins of DMBZ with clay are then pressed into disks for characterization using dynamic mechanical analyzer and oven- aging techniques in order to evaluate their glass transition, modulus strength, and thermal-oxidative stability in comparison to neat DMBZ. In the future, they may also be tested as composites for flexural and laminar shear strength.
Tackling capacity fading in vanadium flow batteries with amphoteric membranes
NASA Astrophysics Data System (ADS)
Oldenburg, Fabio J.; Schmidt, Thomas J.; Gubler, Lorenz
2017-11-01
Capacity fading and poor electrolyte utilization caused by electrolyte imbalance effects are major drawbacks for the commercialization of vanadium flow batteries (VFB). The influence of membrane type (cationic, anionic, amphoteric) on these effects is studied by determining the excess and net flux of each vanadium ion in an operating VFB assembled with a cation exchange membrane (CEM), Nafion® NR212, an anion exchange membrane (AEM), Fumatech FAP-450, and an amphoteric ion exchange membrane (AIEM) synthesized in-house. It is shown that the net vanadium flux, accompanied by water transport, is directed towards the positive side for the CEM and towards the negative side for the AEM. The content of cation and anion exchange groups in the AIEM is adjusted via radiation grafting to balance the vanadium flux between the two electrolyte sides. With the AIEM the net vanadium flux is significantly reduced and capacity fading due to electrolyte imbalances can be largely eliminated. The membrane's influence on electrolyte imbalance effects is characterized and quantified in one single charge-discharge cycle by analyzing the content of the four different vanadium species in the two electrolytes. The experimental data recorded herewith conclusively explains the electrolyte composition after 80 cycles.
Chatterjee, Ritushree; Laird, David A; Thompson, Michael L
2008-12-15
The fate of organic contaminants in soils and sediments is influenced by sorption of the compounds to surfaces of soil materials. We investigated the interaction among sorption of an organic compound, cation exchange reactions, and both the size and swelling of smectite quasicrystals. Two reference smectites that vary in location and amount of layer charge, SPV (a Wyoming bentonite) and SAz-1 were initially Ca- and K-saturated and then equilibrated with mixed 0.01 M KCl and 0.005 M CaCl2 salt solutions both with and without the presence of 200 mg L(-1) m-dinitrobenzene (m-DNB). In general, sorption of m-DNB increased with the amount of K+ in the system for both clays, and the SPV sorbed more m-DNB than the SAz-1. Sorption of m-DNB increased the preference of Ca-SPV for K+ relative to Ca2+ but had little effect on K+-Ca2+ selectivity for K-SPV. Selectivity for K+ relative to Ca2+ was slightly higher for both K-SAz-1 and Ca-SAz-1 in the presence of m-DNB than in its absence. Distinct hysteresis loops were observed for the K+-Ca2+ cation exchange reactions for both clays, and the legacy of having been initially Ca- or K-saturated influenced sorption of m-DNB by SPV but had little effect for SAz-1. Suspension X-ray diffraction was used to measure changes in d-spacing and the relative thickness of smectite quasicrystals during the cation exchange and m-DNB sorption reactions. The results suggest that interactions among cation exchange and organic sorption reactions are controlled byan inherently hysteretic complex feedback process that is regulated by changes in the size and extent of swelling of smectite quasicrystals.
Zhao, Yangyang; Dong, Xiaoyan; Yu, Linling; Liu, Yang; Sun, Yan
2018-05-18
Previously, we have studied protein adsorption and chromatographic behaviors on poly(ethylenimine) (PEI)-grafted Sepharose FF anion-exchange resins, and found that protein uptake rates increased greatly when PEI grafting density reached over a critical ionic capacity (cIC) due to the occurrence of the "chain delivery" effect. Moreover, by partial charge neutralization of starting resin FF-PEI-L740 (IC = 740 mmol/L, larger than the cIC) with sodium acetate to FF-PEI-R440, it exhibited a three-fold increase in uptake rate over FF-PEI-L740. In this work, to take the advantages of PEI and extend the applications of the PEI-grafted resins in cation-exchange chromatography, a series of cation exchangers of five different ICs were developed. First, the charged of FF-PEI-L740 was reversed from positive to negative by reaction with excess succinic anhydride, which created a cation-exchanger with an IC of 970 mmol/L (FF-FEI-C970). FF-PEI-C970 was further modified with ethanolamine for partial charge neutralizations, leading to the preparation of four charge-reduced cation exchangers with IC values (in mmol/L) of 780, 630, 560 and 430, which were denoted as FF-PEI-CR780, -CR630 -CR560 and -CR430, respectively. Protein adsorption and chromatographic behaviors were investigated using lysozyme (Lys) as the model protein. It was found that, the resins of high and moderate IC values (IC ≥ 560 mmol/L) afforded adsorption capacities up to over 230 mg/mL. Besides, the uptake rate, represented by the effective pore diffusivity (D e/ D 0 ), exhibited significant increase from 0.067 (FF-PEI-C970 and FF-PEI-CR780) to 0.343 (FF-PEI-CR630 and FF-PEI-CR560) and then to 1.035 (FF-PEI-CR430) with decreasing IC. It was considered that decreasing IC led to the decreased protein binding sites (binding strength), which encouraged the occurrence of the "chain delivery" effect. Moreover, the resins of high and moderate IC values, particularly, the resins of moderate IC values (FF-PEI-CR630 and FF-PEI-CR560), presented both high adsorption capacities and uptake kinetics at 0-100 mmol/L NaCl. Besides, dynamic binding capacity achieved 150 mg/mL for the resins of moderate IC values at 0 mmol/L NaCl concentration, and afforded >110 mg/mL for the resin of high IC values at 0-100 mmol/L NaCl concentration. The results proved the excellent IEC performance of the PEI-derived cation exchangers. Copyright © 2018 Elsevier B.V. All rights reserved.
Crystal structure and cation exchanging properties of a novel open framework phosphate of Ce (IV)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevara, Samatha; Achary, S. N., E-mail: sachary@barc.gov.in; Tyagi, A. K.
2016-05-23
Herein we report preparation, crystal structure and ion exchanging properties of a new phosphate of tetravalent cerium, K{sub 2}Ce(PO{sub 4}){sub 2}. A monoclinic structure having framework type arrangement of Ce(PO{sub 4}){sub 6} units formed by C2O{sub 8} square-antiprism and PO{sub 4} tetrahedra is assigned for K{sub C}e(PO{sub 4}){sub 2}. The K{sup +} ions are occupied in the channels formed by the Ce(PO{sub 4})6 and provide overall charge neutrality. The unique channel type arrangements of the K+ make them exchangeable with other cations. The ion exchanging properties of K2Ce(PO4)2 has been investigated by equilibrating with solution of 90Sr followed by radiometricmore » analysis. In optimum conditions, significant exchange of K+ with Sr2+ with Kd ~ 8000 mL/g is observed. The details of crystal structure and ion exchange properties are explained and a plausible mechanism for ion exchange is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubart, M.A.; Dor Koch, J.F.; Pignolet, L.H.
The authors developed a homogeneous catalytic system for exchange of deuterium onto water. Platinum-gold phosphine cations catylze this exchange in pyridine. The authors probed these reactions kinetically and studied the catalysts by NMR allowing them to propose a reaction mechanism.
Concentration of perrhenate and pertechnetate solutions
Knapp, F.F.; Beets, A.L.; Mirzadeh, S.; Guhlke, S.
1998-03-17
A method is described for preparing a concentrated solution of a carrier-free radioisotope which includes the steps of: (a) providing a generator column loaded with a composition containing a parent radioisotope; (b) eluting the generator column with an eluent solution which includes a salt of a weak acid to elute a target daughter radioisotope from the generator column in a first eluate; (c) eluting a cation-exchange column with the first eluate to exchange cations of the salt for hydrogen ions and to elute the target daughter radioisotope and a weak acid in a second eluate; (d) eluting an anion-exchange column with the second eluate to trap and concentrate the target daughter radioisotope and to elute the weak acid solution therefrom; and (e) eluting the concentrated target daughter radioisotope from the anion-exchange column with a saline solution. 1 fig.
Concentration of perrhenate and pertechnetate solutions
Knapp, Furn F.; Beets, Arnold L.; Mirzadeh, Saed; Guhlke, Stefan
1998-01-01
A method of preparing a concentrated solution of a carrier-free radioisotope which includes the steps of: a. providing a generator column loaded with a composition containing a parent radioisotope; b. eluting the generator column with an eluent solution which includes a salt of a weak acid to elute a target daughter radioisotope from the generator column in a first eluate. c. eluting a cation-exchange column with the first eluate to exchange cations of the salt for hydrogen ions and to elute the target daughter radioisotope and a weak acid in a second eluate; d. eluting an anion-exchange column with the second eluate to trap and concentrate the target daughter radioisotope and to elute the weak acid solution therefrom; and e. eluting the concentrated target daughter radioisotope from the anion-exchange column with a saline solution.
A Simplified Representation of the Chemical Nature and Reactions of Soil Humus.
ERIC Educational Resources Information Center
Stevenson, F. J.; Olsen, R. A.
1989-01-01
Presented is a comprehensible structural representation of humic substances. A number of important roles of soil organic matter, including contribution to the cation-exchange capacity, binding of pesticides, and formation of complexes with micronutrient cations, are illustrated. (Author/CW)
Mirzazadeh, Roghieh; Khatami, Shohreh; Bayat, Parastoo; Zamani, Zahra; Sadeghi, Sedigheh; Roohi, Soghra; Saidi, Parinaz
2005-01-01
The diagnosis of the different forms of thalassemia is one of the important applications of analysis of globin chains. These analyses are done by high performance liquid chromatography (HPLC) using a MONO-S cation exchange column and ether is used for washing the globin powder in the final step. The presence of peroxide impurities in ether could change the structure of the globin chains. In the chromatograms, these modified globins appear as separated peaks next to the unmodified globin peaks. In these cases, the alpha/beta ratio exceed by artifact the correct value. Our study demonstrates that diagnostic centers should ensure that the ether they use is pure.
Removal of diphenhydramine from water by swelling clay minerals.
Li, Zhaohui; Chang, Po-Hsiang; Jiang, Wei-Teh; Jean, Jiin-Shuh; Hong, Hanlie; Liao, Libing
2011-08-01
Frequent detection of pharmaceuticals in surface water and wastewater attracted renewed attention on studying interactions between pharmaceuticals and sludge or biosolids generated from wastewater treatment. Less attention was focused on studying interactions between pharmaceuticals and clay minerals, important soil and sediment components. This research targeted on investigating interactions between diphenhydramine (DPH), an important antihistamine drug, and a montmorillonite, a swelling clay, in aqueous solution. Stoichiometric desorption of exchangeable cations accompanying DPH adsorption confirmed that cation exchange was the most important mechanism of DPH uptake by the swelling clay. When the solution pH was below the pK(a) of DPH, its adsorption on the swelling clay was less affected by pH. Increasing solution pH above the pK(a) value resulted in a decrease in DPH adsorption by the clay. An increase in d(001) spacing at a high DPH loading level suggested interlayer adsorption, thus, intercalation of DPH. The results from this study showed that swelling clays are a good environmental sink for weak acidic drugs like DPH. In addition, the large cation exchange capacity and surface area make the clay a good candidate to remove cationic pharmaceuticals from the effluent of wastewater treatment facilities. Copyright © 2011 Elsevier Inc. All rights reserved.
Cation-exchanged zeolites for the selective oxidation of methane to methanol
Kulkarni, Ambarish R.; Zhao, Zhi-Jian; Siahrostami, Samira; ...
2017-10-19
Motivated by the increasing availability of cheap natural gas resources, considerable experimental and computational research efforts have focused on identifying selective catalysts for the direct conversion of methane to methanol. One promising class of catalysts are cation-exchanged zeolites, which have steadily increased in popularity over the past decade. Here, in this article, we first present a broad overview of this field from a conceptual perspective, and highlight the role of theory in developing a molecular-level understanding of the reaction. Next, by performing and analyzing a large database of density functional theory (DFT) calculations for a wide range of transition metalmore » cations, zeolite topologies and active site motifs, we present a unifying picture of the methane activation process in terms of active site stability, C–H bond activation and methanol extraction. Based on the trade-offs of active site stability and reactivity, we propose a framework for identifying new, promising active site motifs in these systems. Further, we show that the high methanol selectivity arises due to the strong binding nature of the C–H activation products. Lastly, using the atomistic and mechanistic insight obtained from these analyses, we summarize the key challenges and future strategies for improving the performance of cation-exchanged zeolites for this industrially relevant conversion.« less
Cation-exchanged zeolites for the selective oxidation of methane to methanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Ambarish R.; Zhao, Zhi-Jian; Siahrostami, Samira
Motivated by the increasing availability of cheap natural gas resources, considerable experimental and computational research efforts have focused on identifying selective catalysts for the direct conversion of methane to methanol. One promising class of catalysts are cation-exchanged zeolites, which have steadily increased in popularity over the past decade. Here, in this article, we first present a broad overview of this field from a conceptual perspective, and highlight the role of theory in developing a molecular-level understanding of the reaction. Next, by performing and analyzing a large database of density functional theory (DFT) calculations for a wide range of transition metalmore » cations, zeolite topologies and active site motifs, we present a unifying picture of the methane activation process in terms of active site stability, C–H bond activation and methanol extraction. Based on the trade-offs of active site stability and reactivity, we propose a framework for identifying new, promising active site motifs in these systems. Further, we show that the high methanol selectivity arises due to the strong binding nature of the C–H activation products. Lastly, using the atomistic and mechanistic insight obtained from these analyses, we summarize the key challenges and future strategies for improving the performance of cation-exchanged zeolites for this industrially relevant conversion.« less
Caban, Magda; Stepnowski, Piotr
2017-05-15
The main advantage of alkylimidazolium cation-based ionic liquids (ILs) as phase additives in RP-HPLC is believed to be the suppression of deleterious residual free silanols in chemically modified silica stationary phases. However, up to now, the influence of ILs was usually evaluated having in mind a particular IL salt as one compound, not as a specific mixture of cations and anions. This in fact led to some misinterpretation of observed results, very often related to the suppression effect, while in fact caused by the nature of IL anions, which contribute to the elevated chaotropicity of the separation phases. In the present study, we have attempted to consider the effect gained due to the presence of both ionic liquid entities in the mobile phase used for the separation of basic compounds. Tri-cyclic antidepressants (TCAs) were taken as representative analytes. The effect of ILs on the chromatographic separation of TCAs was investigated in comparison to common mobile phase additives and by the presentation of retention factors, tailing factors and theoretical plates. In addition, an overloading study was performed for the IL-based phases for the first time. In general, it was found that the effect of chaotropic hexafluorophosphate anions in ILs is much stronger and opposite to that caused by imidazolium cations. The overloading study gives interesting information on how imidazolium cations affect the separation of cationic analytes. Finally, the usefulness of imidazolium-based ILs as mobile phase modifiers in the RP-HPLC separation of basic compounds was discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of a stable cation modified graphene oxide membrane for water treatment
NASA Astrophysics Data System (ADS)
Yu, Wenzheng; (Yet Yu, Tong; Graham, Nigel
2017-12-01
Membranes prepared from layers of graphene oxide (GO) offer substantial advantages over conventional materials for water treatment (e.g. greater flux), but the stability of GO membranes in water has not been achieved until now. In this study the behavior of GO membranes prepared with different quantities and species of cations has been investigated to establish the feasibility of their application in water treatment. A range of cation-modified GO membranes were prepared and exposed to aqueous solutions containing specific chemical constituents. In pure water, unmodified and Na-modified GO membranes were highly unstable, while GO membranes modified with multivalent cations were stable provided there were sufficient quantities of cations present; their relative capability to achieve GO stability was as follows: Al3+ > Ca2+ > Mg2+ > Na+. It is believed that the mechanism of cross-linking, and membrane stability, is via metal-carboxylate chelates and cation-graphite surface interactions (cation-π interaction), and that the latter appears to increase with increasing cation valency. The instability of cation (Ca or Al)-modified GO membranes by NaCl solutions during permeation occurred as Na+ exchanged with the incorporated multivalent cations, but a high content of Al3+ in the GO membrane impeded Al3+/Na+ exchange and thus retained membrane stability. In solutions containing biopolymers representative of surface waters or seawater (protein and polysaccharide solutions), Ca-GO membranes (even with high Ca2+ content) were not stable, while Al-GO membranes were stable if the Al3+ content was sufficiently high; Al-formed membranes also had a greater flux than Ca-GO membranes.
2017-08-01
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6360--17-9743 Extraction of Carbon Dioxide and Hydrogen from Seawater by an Electrolytic...Cation Exchange Module (E-CEM) Part V: E-CEM Effluent Discharge Composition as a Function of Electrode Water Composition August 1, 2017 Approved for...Office of Naval Research Arlington, Virginia Dennis r. HarDy Nova Research Inc. Alexandria, Virginia i REPORT DOCUMENTATION PAGE Form
NASA Astrophysics Data System (ADS)
Fu, Yao-Tsung
The experimental analysis of nanometer-scale separation processes and mechanical properties at buried interfaces in nanocomposites has remained difficult. We have employed molecular dynamics simulation in relation to available experimental data to alleviate such limitations and gain insight into the dispersion and mechanical stability of organically modified layered silicates in hydrophobic polymer matrices. We analyzed cleavage energies of various organically modified silicates as a function of the cation exchange capacity, surfactant head group chemistry, and chain length using MD simulations with the PCFF-PHYLLOSILICATE force field. The range of the cleavage energy is between 25 and 210 mJ/m2 upon the molecular structures and packing of surfactants. As a function of chain length, the cleavage energy indicates local minima for interlayer structures comprised of loosely packed layers of alkyl chains and local maxima for interlayer structures comprised of densely packed layers of alkyl chains between the layers. In addition, the distribution of cationic head groups between the layers in the equilibrium state determines whether large increases in cleavage energy due to Coulomb attraction. We have also examined mechanical bending and failure mechanisms of layered silicates on the nanometer scale using molecular dynamics simulation in comparison to a library of TEM data of polymer nanocomposites. We investigated the energy of single clay lamellae as a function of bending radius and different cation density. The layer energy increases particularly for bending radii below 20 nm and is largely independent of cation exchange capacity. The analysis of TEM images of agglomerated and exfoliated aluminosilicates of different CEC in polymer matrices at small volume fractions showed bending radii in excess of 100 nm due to free volumes in the polymer matrix. At a volume fraction >5%, however, bent clay layers were found with bending radii <20 nm and kinks as a failure mechanism in good agreement with simulation results. We have examined thermal conductivity of organically modified layered silicates using molecular dynamics simulation in comparison to experimental results by laser measurement. The thermal conductivity slightly increased from 0.08 to 0.14 Wm-1K-1 with increasing chain length, related to the gallery spacing and interlayer density of the organic material.
NASA Astrophysics Data System (ADS)
Schaumann, Gabriele E.; Conte, Pellegrino; Jäger, Alexander; Alonzo, Giuseppe; Bertmer, Marko
2010-05-01
The molecular size of humic substances is still under debate and is believed to range up to several hundred thousands Dalton, although a number of recent studies suggest much lower molecular weights. Nowadays an increasing number of authors suggest a model of molecular aggregates. One explanation why results on the molecular mass of humic materials are contradictory, may be that individual OM molecules are linked via intermolecular interactions, by bridges of water molecules or by cations bridging cation exchange sites (Schaumann, 2006a, b). Properties of such cross-linked systems can be similar to macromolecular systems revealing covalent cross-links. In this context, multivalent cations play an important ecological role, serving as reversible cross-linking agent. Formation and disruption of such cation bridges may close or open sorption sites in soil organic matter. Although cross-linking by multivalent cations has been proposed in many studies, the cross-linking effect has not yet been demonstrated on the molecular scale. The objective of this study was to investigate the interactions between cations and peat organic matter using NMR wideline techniques as well as static and fast field cycling (FFC) NMR relaxometry. Peat treated with solutions containing either Na+, Ca2+ or Al3+ was investigated in air-dried state for longitudinal relaxation times (T1) and NMR wideline characteristics. T1 distributions were separated into two Gaussian functions which were interpreted to represent two proton populations belonging to two environments of differing mobility. The relaxation rates (R1 = T1-1) in the cation treated samples spread over a range of 87-123 s-1 (R1a: fast component) and 32-42 s-1 (R1b: slow component). The rates in all treatments are significantly different from each other. and decrease in the order conditioned sample > desalinated sample > Na-treated sample. The treatment with multivalent cations affects R1a and R1b in different ways and needs more detailed explanation. Wideline proton NMR spectra can be used to quantify proton containing material, mainly water, based on their mobility. Spectra were decomposed into a Gaussian and Lorentzian line and changes to mobility after heat treatment indicate the water binding strength. In this study, differences in the various NMR parameters on the cation treatments will be presented and discussed with respect to the crosslinking hypothesis.
Li, Yanqing; Liu, Qian; Yao, Shouzhuo
2008-05-15
The cationic double-chained surfactant didodecyldimethylammonium bromide (DDAB) was used as pseudostationary phase (PSP) in micellar electrokinetic capillary chromatography (MEKC). Its performance on the three kinds of drugs, i.e., basic, acidic, and neutral drugs, was systematically investigated. Nicotine, cotinine, caffeine, lidocaine, and procaine were selected as the model basic drugs. Good baseline separation and high efficiency were obtained under the optimal separation condition that consisted of 50mM phosphate (pH 4.0) and 0.08 mM DDAB. Three basic phenylenediamine isomers can also be well separated with DDAB in buffer. In addition, DDAB can form cationic bilayer on the capillary wall, thus the wall adsorption of basic analytes was greatly suppressed. Compared with commonly used CTAB, the separation of basic drugs was significantly improved with a much lower amount of DDAB present in the buffer. The DDAB-involved MEKC also showed superiority to CTAB upon the separation of acidic drugs, amoxicillin and ampicillin. In the case of neutral compounds, a good separation of resorcinol, 1-naphthol and 2-naphthol was achieved with 0.1mM DDAB and 30% (v/v) acetonitrile (ACN) present in buffer. Hence, it was concluded that the double-chained cationic surfactant DDAB can be a good substitute for traditional single-chained surfactant CTAB in MEKC.
NASA Astrophysics Data System (ADS)
Tournassat, Christophe; Gailhanou, Hélène; Crouzet, Catherine; Braibant, Gilles; Gautier, Anne; Lassin, Arnault; Blanc, Philippe; Gaucher, Eric C.
2007-03-01
Na/K, Na/Ca and Na/Mg exchange isotherms were performed on the fine fraction (<2 μm) of Imt-2 illite samples at a total normality of about 0.005 mol/L in anionic chloride medium. The derived selectivity coefficients for Na/K, Na/Ca and Na/Mg were found to vary as a function of the exchanger composition and compared well with the data collected in the literature for similar experimental conditions. Two models were built to reproduce the data: the first was a multi(2)-site model with constant Gaines and Thomas selectivity coefficients; the second was a one-site model taking into account surface species activity coefficients. The results of the models were in rather good agreement with both our data and literature data. The multi-site model proved to be efficient in predicting the exchanger composition as a function of the Na/Ca/Mg/K concentrations in solution, whereas the one-site model proved to be a better approach to derive the Na/Ca/Mg/K concentrations in solution based on the knowledge of the exchanger composition and the total normality of the solution. The interest of this approach is illustrated by the need for major cation solute concentration predictions in compacted clay for the characterization of nuclear deep disposal host rock repositories.
NASA Astrophysics Data System (ADS)
Boumaiza, Hella; Coustel, Romain; Despas, Christelle; Ruby, Christian; Bergaoui, Latifa
2018-02-01
The ammonium cation interaction with Na-birnessite in aqueous alkaline medium was studied. Solution and solid analysis give evidence that birnessite is not only acting as a cationic exchanger toward NH4+. The surface analysis performed by XPS showed that N1s spectra are characterized by the existence of two different environments: one assignable to an interlayer NH4+ and the second to a chemisorbed N-species. Structural and chemical transformations were observed on birnessite with nitrogen mass balance deficit. The monitoring of NH4+, Na+, Mn2+, NO3- and NO2- and solid changes (average oxidation state of Mn, cation exchange capacity, solid nitrogen content and symmetry evolution identified by XRD and FTIR) indicate unambiguously that NH4+ reacts chemically with the birnessite.
Barragán, V. M.; Bauzá, C. Ruíz
2001-08-01
The effect of an ac sinusoidal perturbation of known amplitude and frequency superimposed on the usual dc applied electric voltage difference on the electroosmotic flow through a typical cation-exchange membrane has been studied using different monovalent electrolytes. As a general trend, the presence of the ac perturbation increases the value of the electroosmotic flow with respect to the value in the absence of ac perturbation. A dispersion of the electroosmotic permeability on the frequency of the applied ac signal has been found for the three studied electrolytes, observing that the electroosmotic permeability reaches maximum values for some characteristic values of the frequency. This behavior may be related to the different relaxation processes in heterogeneous mediums. Copyright 2001 Academic Press.
Clay-catalyzed reactions of coagulant polymers during water chlorination
Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.
2004-01-01
The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.
Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates
NASA Astrophysics Data System (ADS)
Lee, Min-Hong
The purpose of this work was to increase the reactivity of Faujasite X (NaX) zeolite toward the reactive decontamination of materials subject to nucleophilic attack by means of zeolite cation optimization and by means of the synthesis of mesoporous Faujasite X. Primary alkyl halides and trialkyl phosphates have been the test materials on which the cation-optimized and mesoporous zeolites have been tested. In the alkali cation optimization work, reactions of methyl iodide and 1-chloropropane with alkali metal cation exchanged Faujasite zeolite X were investigated at room temperature. The reactivity of the framework and the product formation were shown to depend on zeolite framework counter-cation. A quantitative study of zeolite product formation has been carried out, primarily using solid-state NMR spectroscopy. Large alkali cations showed preference toward substitution chemistry. In contrast, alkyl halide exposed LiX and NaX zeolites underwent both substitution and elimination. Subsequently introduced water molecules led to hydrolysis of framework species that was sensitive to framework counter-cation. The mesoporous NaX zeolites work undertakes to test whether an improvement in surface chemical reactivity can be achieved by introducing mesopores into the already reactive nucleophilic microporous NaX zeolite. Incorporation of the polydiallyl dimethyl ammonium chloride (PDADMAC) template and the formation of mesopores in Faujasite X zeolite (NaX) were successful and well-characterized. The mesopores are proposed to have occurred from incorporation of the cationic PDADMAC polymer into the zeolite by compensating zeolite framework charge. Subsequent sodium cation exchange of calcined mesoporous NaX was shown to restore the chemical reactivity characteristic of as-synthesized NaX. Trialkyl organophosphorous compounds underwent substitution reactions. The reactivity of both microporous and mesoporous Faujasite zeolite X and the product formation was shown to depend on the length of the alkyl chain. Although introduced mesopores alleviated the limited reagent diffusion to reactive sites due to the microporosity of the NaX zeolites, no marked improvement in the product yields was achieved with either the 1-chloroalkanes or the trialkyl phosphates test compounds, regardless of alkyl chain length. The disappointing results have been attributed to lack of substantial net increase in the numbers of zeolite nucleophilic sites accompanying mesopore introduction.
CATION TRANSPORT AND PARTITIONING DURING A FIELD TEST OF ELECTROOSMOSIS
Field experiments were conducted to evaluate the effects of soil properties, such as the cation exchange capacity and mineral content, on pH, soluble ion concentrations, and electrical conductivity during electroosmosis in a silty clay soil. The soil is composed mainly of quartz ...
Liu, Jun; Jiang, Yan; Chen, Hong; Mao, Shi Zhen; Du, You Ru; Liu, Mai Li
2012-12-27
In this Article, we investigated effects of different types of conventional surfactants on exchange dynamics of quaternary ammonium dimeric surfactants, with chemical formula C(14)H(29)N(+)(CH(3))(2)- (CH(2))(s)-N(+)(CH(3))(2)C(14)H(29)·2Br(-), or 14-s-14 for short. Two nonionic surfactants, TritonX-100 (TX-100) and polyethylene glycol (23) laurylether (Brij-35), and one cationic surfactant, n-tetradecyltrimethyl ammonium bromide (TTAB), and one ionic surfactant, sodium dodecyl sulfate (SDS) were chosen as typical conventional surfactants. Exchange rates of 14-s-14 (s = 2, 3, and 4) between the micelle form and monomer in solution were detected by two NMR methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). Results show that the nonionic surfactants (TX-100 and Brij-35), the cationic surfactant (TTAB), and the ionic surfactant (SDS) respectively accelerated, barely influenced, and slowed the exchange rate of 14-s-14. The effect mechanism was investigated by the self-diffusion experiment, relaxation time measurements (T(2)/T(1)), the fluorescence experiment (I(1)/I(3)) and observed chemical shift variations. Results reveal that, nonionic conventional surfactants (TX-100 and Brij-35) loosened the molecule arrangement and decreased hydrophobic interactions in the micelle, and thus accelerated the exchange rate of 14-s-14. The cationic conventional surfactant (TTAB) barely changed the molecule arrangement and thus barely influenced the exchange rate of 14-s-14. The ionic conventional surfactant (SDS) introduced the electrostatic attraction effect, tightened the molecule arrangement, and increased hydrophobic interactions in the micelle, and thus slowed down the exchange rate of 14-s-14. Additionally, the two-step exchange mechanism of 14-s-14 in the mixed solution was revealed through interesting variation tendencies of exchange rates of 14-s-14.
Hubicki, Zbigniew; Wołowicz, Anna
2009-05-30
The increasing demand for palladium for technological application requires the development of ion exchange chromatography. Recently ion exchange chromatography has developed largely as a result of new types of ion exchangers available on the market of which two types are widely applied. One of them are selective (chelating) and modified ion exchangers and the other one are liquid exchangers. Two types of ion exchange resins such as chelating (Lewatit TP 214, Purolite S 920) and cationic (Chelite S, Duolite GT 73) ion exchangers are used for the recovery of palladium(II) complexes from chloride media (0.1-2.0M HCl-1.0M NaCl-0.0011 M Pd(II); 0.1-2.0M HCl-2.0M NaCl-0.0011M Pd(II)). The influence of concentration of hydrochloric acid, sodium chloride as well as the phase contact time on the degree of recovery of palladium(II) complexes was studied. Moreover, the amount of palladium(II) chlorocomplexes sorbed onto ion exchangers, the working ion exchange capacities and the weight and bed distribution coefficients were calculated in order to judge which of two types of resins possesses the best performance towards palladium(II) complexes.
Wittkopp, Felix; Peeck, Lars; Hafner, Mathias; Frech, Christian
2018-04-13
Process development and characterization based on mathematic modeling provides several advantages and has been applied more frequently over the last few years. In this work, a Donnan equilibrium ion exchange (DIX) model is applied for modelling and simulation of ion exchange chromatography of a monoclonal antibody in linear chromatography. Four different cation exchange resin prototypes consisting of weak, strong and mixed ligands are characterized using pH and salt gradient elution experiments applying the extended DIX model. The modelling results are compared with the results using a classic stoichiometric displacement model. The Donnan equilibrium model is able to describe all four prototype resins while the stoichiometric displacement model fails for the weak and mixed weak/strong ligands. Finally, in silico chromatogram simulations of pH and pH/salt dual gradients are performed to verify the results and to show the consistency of the developed model. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of ionophores on the rate of intramolecular cation exchange in durosemiquinone ion pairs
NASA Technical Reports Server (NTRS)
Eastman, M. P.; Bruno, G. V.; Mcguyer, C. A.; Gutierrez, A. R.; Shannon, J. M.
1979-01-01
The effects of the ionophores 15-crown-5 (15C5), 18-crown-6 (18C6), dibenzo-18-crown-6 (DBC) and cryptand 222 (C222) on intramolecular cation exchange in ion pairs of the sodium salt of the durosemiquinone anion in benzene solution are investigated. Electron paramagnetic resonance spectra of the 18C6 and 15C5 complexes with durosemiquinone reduced by contact with a sodium mirror show an alternating line width which indicates that the sodium ion is being exchanged between equivalent sites near the oxygens of the semiquinone with activation energies of 8.7 and 6.0 kcal/mole and Arrhenius preexponential factors of 9 x 10 to the 12th/sec and 10 to the 12th/sec, respectively. Spectra obtained for the DBC complexes show no evidence of exchange, while those of C222 indicate rapid exchange. It is also noted that the hyperfine splitting constants measured do not change over the 50-K temperature interval studied.
Adsorption coefficients for TNT on soil and clay minerals
NASA Astrophysics Data System (ADS)
Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen
2007-04-01
To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.
Removal of Carbon Dioxide from Gas Mixtures Using Ion-Exchanged Silicoaluminophosphates
NASA Technical Reports Server (NTRS)
Hernandez-Maldonado, Arturo J (Inventor); Rivera-Ramos, Milton E (Inventor); Arevalo-Hidalgo, Ana G (Inventor)
2017-01-01
Na+-SAPO-34 sorbents were ion-exchanged with several individual metal cations for CO2 absorption at different temperatures (273-348 K) and pressures (<1 atm). In general, the overall adsorption performance of the exchanged materials increased as follows: Ce3+
USDA-ARS?s Scientific Manuscript database
Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+) exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recen...
Landscape determinants of exchangeable calcium and magnesium in Ozark Highland forest soils
John M. Kabrick; Keith W. Goyne; Zhaofei Fan; Dennis Meinert
2011-01-01
Exchangeable base cations, particularly Ca and Mg, largely govern soil acidity and, consequently, plant species composition in temperate forests. Although studies have identified soil and terrain characteristics affecting exchangeable Ca and Mg, few studies have identified the relative importance of factors affecting Ca and Mg distribution across landscapes. Objectives...
NASA Astrophysics Data System (ADS)
Chen, Guojian; Zhou, Yu; Wang, Xiaochen; Li, Jing; Xue, Shuang; Liu, Yangqing; Wang, Qian; Wang, Jun
2015-06-01
In fields of materials science and chemistry, ionic-type porous materials attract increasing attention due to significant ion-exchanging capacity for accessing diversified applications. Facing the fact that porous cationic materials with robust and stable frameworks are very rare, novel tactics that can create new type members are highly desired. Here we report the first family of polyhedral oligomeric silsesquioxane (POSS) based porous cationic frameworks (PCIF-n) with enriched poly(ionic liquid)-like cationic structures, tunable mesoporosities, high surface areas (up to 1,025 m2 g-1) and large pore volumes (up to 0.90 cm3 g-1). Our strategy is designing the new rigid POSS unit of octakis(chloromethyl)silsesquioxane and reacting it with the rigid N-heterocyclic cross-linkers (typically 4,4‧-bipyridine) for preparing the desired porous cationic frameworks. The PCIF-n materials possess large surface area, hydrophobic and special anion-exchanging property, and thus are used as the supports for loading guest species PMo10V2O405- the resultant hybrid behaves as an efficient heterogeneous catalyst for aerobic oxidation of benzene and H2O2-mediated oxidation of cyclohexane.
Chen, Guojian; Zhou, Yu; Wang, Xiaochen; Li, Jing; Xue, Shuang; Liu, Yangqing; Wang, Qian; Wang, Jun
2015-01-01
In fields of materials science and chemistry, ionic-type porous materials attract increasing attention due to significant ion-exchanging capacity for accessing diversified applications. Facing the fact that porous cationic materials with robust and stable frameworks are very rare, novel tactics that can create new type members are highly desired. Here we report the first family of polyhedral oligomeric silsesquioxane (POSS) based porous cationic frameworks (PCIF-n) with enriched poly(ionic liquid)-like cationic structures, tunable mesoporosities, high surface areas (up to 1,025 m2 g−1) and large pore volumes (up to 0.90 cm3 g−1). Our strategy is designing the new rigid POSS unit of octakis(chloromethyl)silsesquioxane and reacting it with the rigid N-heterocyclic cross-linkers (typically 4,4′-bipyridine) for preparing the desired porous cationic frameworks. The PCIF-n materials possess large surface area, hydrophobic and special anion-exchanging property, and thus are used as the supports for loading guest species PMo10V2O405−; the resultant hybrid behaves as an efficient heterogeneous catalyst for aerobic oxidation of benzene and H2O2-mediated oxidation of cyclohexane. PMID:26062725
Chen, Guojian; Zhou, Yu; Wang, Xiaochen; Li, Jing; Xue, Shuang; Liu, Yangqing; Wang, Qian; Wang, Jun
2015-06-11
In fields of materials science and chemistry, ionic-type porous materials attract increasing attention due to significant ion-exchanging capacity for accessing diversified applications. Facing the fact that porous cationic materials with robust and stable frameworks are very rare, novel tactics that can create new type members are highly desired. Here we report the first family of polyhedral oligomeric silsesquioxane (POSS) based porous cationic frameworks (PCIF-n) with enriched poly(ionic liquid)-like cationic structures, tunable mesoporosities, high surface areas (up to 1,025 m(2) g(-1)) and large pore volumes (up to 0.90 cm(3) g(-1)). Our strategy is designing the new rigid POSS unit of octakis(chloromethyl)silsesquioxane and reacting it with the rigid N-heterocyclic cross-linkers (typically 4,4'-bipyridine) for preparing the desired porous cationic frameworks. The PCIF-n materials possess large surface area, hydrophobic and special anion-exchanging property, and thus are used as the supports for loading guest species PMo10V2O40(5-); the resultant hybrid behaves as an efficient heterogeneous catalyst for aerobic oxidation of benzene and H2O2-mediated oxidation of cyclohexane.
Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto
2016-08-01
The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Cai, Jiangping; Luo, Wentao; Liu, Heyong; Feng, Xue; Zhang, Yongyong; Wang, Ruzhen; Xu, Zhuwen; Zhang, Yuge; Jiang, Yong
2017-12-01
Atmospheric nitrogen (N) deposition can result in soil acidification and reduce soil acid buffering capacity. However, it remains poorly understood how changes in precipitation regimes with elevated atmospheric N deposition affect soil acidification processes in a water-limited grassland. Here, we conducted a 9-year split-plot experiment with water addition as the main factor and N addition as the second factor. Results showed that soil acid buffering capacity significantly decreased with increased N inputs, mainly due to the decline of soil effective cation exchange capacity (ECEC) and exchangeable basic cations (especially Ca2+), indicating an acceleration of soil acidification status in this steppes. Significant interactive N and water effects were detected on the soil acid buffering capacity. Water addition enhanced the soil ECEC and exchangeable base cations and thus alleviated the decrease of soil acid buffering capacity under N addition. Our findings suggested that precipitation can mitigate the impact of increased N deposition on soil acidification in semi-arid grasslands. This knowledge should be used to improve models predicting soil acidification processes in terrestrial ecosystems under changing environmental conditions.
Quality improvement of acidic soils by biochar derived from renewable materials.
Moon, Deok Hyun; Hwang, Inseong; Chang, Yoon-Young; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Ji, Won Hyun; Park, Jeong-Hun
2017-02-01
Biochar derived from waste plant materials and agricultural residues was used to improve the quality of an acidic soil. The acidic soil was treated for 1 month with both soy bean stover-derived biochar and oak-derived biochar in the range of 1 to 5 wt% for pH improvement and exchangeable cation enhancement. Following 1 month of treatment, the soil pH was monitored and exchangeable cations were measured. Moreover, a maize growth experiment was performed for 14 days with selected treated soil samples to confirm the effectiveness of the treatment. The results showed that the pH of the treated acidic soil increased by more than 2 units, and the exchangeable cation values were greatly enhanced upon treatment with 5 wt% of both biochars, after 1 month of curing. Maize growth was superior in the 3 wt% biochar-treated samples compared to the control sample. The presented results demonstrate the effective use of biochar derived from renewable materials such as waste plant materials and agricultural residues for quality improvement of acidic soils.
NASA Astrophysics Data System (ADS)
Seneca, S. M.; Rabideau, A. J.; Bandilla, K.
2010-12-01
Experimental and modeling studies are in progress to evaluate the long-term performance of a permeable treatment wall comprised of zeolite-rich rock for the removal of strontium-90 from groundwater. Multiple column tests were performed at the University at Buffalo and on-site West Valley Environmental Services; columns were supplied with synthetic groundwater referenced to anticipate field conditions and radioactive groundwater on-site WVES. The primary focus in this work is on quantifying the competitive ion exchange among five cations (Na+, K+, Ca2+, Mg2+, and Sr2+); the data obtained from the column studies is used to support the robust estimation of zeolite cation exchange parameters. This research will produce a five-solute cation exchange model describing the removal efficiency of the zeolite, using the various column tests to calibrate and validate the geochemical transport model. The field-scale transport model provides flexibility to explore design parameters and potential variations in groundwater geochemistry to investigate the long-term performance of a full scale treatment wall at the Western New York nuclear facility.
B-Site Metal Cation Exchange in Halide Perovskites
Eperon, Giles E.; Ginger, David S.
2017-05-02
Here, we demonstrate exchange of the B-site metal cation in hybrid organic-inorganic halide perovskite thin films. We exchange tin in formamidinium tin triiodide (NH 2) 2SnI 3' or FASnI 3) with lead at controllable levels, forming (CH- (NH 2) 2SnI xPB 1-xI 3 alloys with partial substitution and fully converting the film to CH(NH 2) 2PbI 3 with a large excess of Pb 2+. We observe no evidence for phase segregation or bilayered films, indicating that conversion is uniform throughout the film. This facile technique provides a new way to control composition independently from the crystallization processes, allowing formation ofmore » the black phase of CH(NH 2) 2PbI 3 at much lower temperatures than those previously reported while also opening the door to new morphology-composition combinations. The surprising observation that the B-site metal cations are mobile may also provide insight into the nature of transient processes in these materials, suggesting that they may be involved in ionic conduction, and will be a critical consideration for long-term stability.« less
B-Site Metal Cation Exchange in Halide Perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eperon, Giles E.; Ginger, David S.
Here, we demonstrate exchange of the B-site metal cation in hybrid organic-inorganic halide perovskite thin films. We exchange tin in formamidinium tin triiodide (NH 2) 2SnI 3' or FASnI 3) with lead at controllable levels, forming (CH- (NH 2) 2SnI xPB 1-xI 3 alloys with partial substitution and fully converting the film to CH(NH 2) 2PbI 3 with a large excess of Pb 2+. We observe no evidence for phase segregation or bilayered films, indicating that conversion is uniform throughout the film. This facile technique provides a new way to control composition independently from the crystallization processes, allowing formation ofmore » the black phase of CH(NH 2) 2PbI 3 at much lower temperatures than those previously reported while also opening the door to new morphology-composition combinations. The surprising observation that the B-site metal cations are mobile may also provide insight into the nature of transient processes in these materials, suggesting that they may be involved in ionic conduction, and will be a critical consideration for long-term stability.« less
Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes.
Havrila, Marek; Stadlbauer, Petr; Islam, Barira; Otyepka, Michal; Šponer, Jiří
2017-08-08
G-quadruplexes (GQs) are key noncanonical DNA and RNA architectures stabilized by desolvated monovalent cations present in their central channels. We analyze extended atomistic molecular dynamics simulations (∼580 μs in total) of GQs with 11 monovalent cation parametrizations, assessing GQ overall structural stability, dynamics of internal cations, and distortions of the G-tetrad geometries. Majority of simulations were executed with the SPC/E water model; however, test simulations with TIP3P and OPC water models are also reported. The identity and parametrization of ions strongly affect behavior of a tetramolecular d[GGG] 4 GQ, which is unstable with several ion parametrizations. The remaining studied RNA and DNA GQs are structurally stable, though the G-tetrad geometries are always deformed by bifurcated H-bonding in a parametrization-specific manner. Thus, basic 10-μs-scale simulations of fully folded GQs can be safely done with a number of cation parametrizations. However, there are parametrization-specific differences and basic force-field errors affecting the quantitative description of ion-tetrad interactions, which may significantly affect studies of the ion-binding processes and description of the GQ folding landscape. Our d[GGG] 4 simulations indirectly suggest that such studies will also be sensitive to the water models. During exchanges with bulk water, the Na + ions move inside the GQs in a concerted manner, while larger relocations of the K + ions are typically separated. We suggest that the Joung-Cheatham SPC/E K + parameters represent a safe choice in simulation studies of GQs, though variation of ion parameters can be used for specific simulation goals.
Savary, B J
2001-08-01
A rapid and simple method was developed, using perfusion chromatography media, to separate the fruit-specific pectin methylesterase (PME) isoform from the depolymerizing enzyme polygalacturonase (PG) and other contaminating pectinases present in a commercial tomato enzyme preparation. Pectinase activities were adsorbed onto a Poros HS (a strong cation exchanger) column in 20 M HEPES buffer at pH 7.5. The fruit-specific PME was eluted from the column with 80 mM NaCl, followed by a step to 300 mM NaCl to elute PG activity. Rechromatography of the PME activity peak with a linear gradient further resolved two PME isoenzymes and removed residual traces of PG activity. The PG activity peak was further treated with lectin affinity chromatography to provide purified PG enzyme, which was separated from a salt-dependent PME (tentatively identified as a "ubiquitous-type" isoform), and a pectin acetylesterase. The later enzyme has not been reported previously in tomato. This method provides monocomponent enzymes that will be useful for studying enzyme mechanisms and for modifying pectin structure and functional properties.
Zhang, Rui; Yu, Zhenchuan; Wang, Lei; Shen, Qizhe; Hou, Xiaoyan; Guo, Xuhong; Wang, Junwei; Zhu, Xuedong; Yao, Yuan
2017-10-04
Dye-containing wastewater has caused serious environmental pollution. Herein, rationally designed spherical polyelectrolyte brushes (SPBs) with cationic charges, polystyrene-poly(2-aminoethylmethacrylate hydrochloride) (PS-PAEMH) as the absorbent, and compressed carbon dioxide as the antisolvent are proposed for the separation of the anionic dye eosin Y (EY) from a solution of mixed dyes. The adsorption behavior of EY onto PS-PAEMH was highly dependent on CO 2 pressure, contact time, and initial concentration. The maximum adsorption capacity of PS-PAEMH was 335.20 mg g -1 . FTIR and UV/Vis measurements proved that the electrostatic interactions between EY and PS-PAEMH played an important role in the absorbance process. The adsorption process fitted the pseudo-second-order kinetic model and Freundlich isotherm model very well. The combined dye and polymer brush could be easily separated through ion exchange by adding an aqueous solution of NaCl. Recovered PS-PAEMH retained a high adsorption capacity even after ten cycles of regeneration. This method provides a simple and effective way to separate ionic materials for environmental engineering. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Jie; Huang, Chaozhang; Hu, Bin; Jiang, Zucheng
2004-11-17
A technique using a flow injection microcolumn separation coupled with ICP-MS detection has been developed for the speciation of Al in drink samples. The retention behaviors of different Al species were studied with 8-hydroxyquinoline (8-HQ) loaded silylanization silica gel as the packing material and inorganic acid (HNO3) as the elution. The results indicated that in a pH range of 5.0 to 8.0, all labile monomeric Al species were retained on the microcolumn while nonlabile monomeric Al species were directly passed through the column. Various Al species after separation were detected by ICP-MS. The detection limit of 0.2 ng mL(-1) and a relative standard deviation (RSD) of 4.2% at 10 ng mL(-1) (n = 11) were achieved, and the recoveries for the spiked samples were 95-108%. The proposed method has been applied to the analysis of Al species in tea infusions, coffee, and tap waters with satisfactory results. The results obtained by this method were compared with that obtained by the cation exchange microcolumn separation and ICP-MS detection system, and some valuable conclusions were drawn.
Zhou, Qin; Liu, Zhao-dong; Liu, Yuan; Jiang, Jun; Xu, Ren-kou
2016-01-01
Little information is available on chemical forms of heavy metals on integrate plant roots. KNO3 (1 M), 0.05M EDTA at pH6 and 0.01 M HCl were used sequentially to extract the exchangeable, complexed and precipitated forms of Cu(II) and Cd(II) from soybean roots and then to investigate chemical form distribution of Cu(II) and Cd(II) on soybean roots. Cu(II) and Cd(II) adsorbed on soybean roots were mainly exchangeable form, followed by complexed form, while their precipitated forms were very low under acidic conditions. Soybean roots had a higher adsorption affinity to Cu(II) than Cd(II), leading to higher toxic of Cu(II) than Cd(II). An increase in solution pH increased negative charge on soybean and thus increased exchangeable Cu(II) and Cd(II) on the roots. Ca2+, Mg2+ and NH4+ reduced exchangeable Cu(II) and Cd(II) levels on soybean roots and these cations showed greater effects on Cd(II) than Cu(II) due to greater adsorption affinity of the roots to Cu(II) than Cd(II). L-malic and citric acids decreased exchangeable and complexed Cu(II) on soybean roots. In conclusion, Cu(II) and Cd(II) mainly existed as exchangeable and complexed forms on soybean roots. Ca2+ and Mg2+ cations and citric and L-malic acids can potentially alleviate Cu(II) and Cd(II) toxicity to plants. PMID:27805020
Interaction between tetracycline and smectite in aqueous solution.
Li, Zhaohui; Chang, Po-Hsiang; Jean, Jiin-Shuh; Jiang, Wei-Teh; Wang, Chih-Jen
2010-01-15
The fate and transport of commonly used antibiotics in soil and groundwater have attracted renewed studies due to increased sensitivities of analytical instruments and thus frequent detections of these compounds even in treated wastewater. Smectite, an important soil component, has large surface area and high cation exchange capacity, while tetracycline (TC) can exist in different forms and charges under different pH conditions. Thus, the interaction between smectite and TC in aqueous systems is of great importance. This research focused on elucidating the mechanisms of TC uptake by smectite, in terms of TC adsorption, cation desorption, and pH changes associated with TC adsorption by smectite and intercalation in smectite. TC adsorption onto smectite was a relatively fast process even though most of the adsorption sites were in the interlayer position involved in intercalation as confirmed by the expansion of d(001) spacing. The TC adsorption capacity was equivalent to 0.74-1.11 times the cation exchange capacity for three of the four smectite minerals studied. Accompanying TC adsorption was simultaneous adsorption of H(+), resulting in protonation of TC on the dimethylamine group. At higher TC input concentrations further adsorption of H(+) resulted in the ratio of H(+) adsorbed to TC adsorbed greater than one, suggesting that additionally adsorbed H(+) could serve as counterions to partially offset the negative charges on the tricarbonyl or phenolic diketone functional groups. The positive correlations between cations desorbed and TC adsorbed, as well as TC adsorbed and H(+) adsorbed, provided a first time evidence to confirm cation exchange as the main mechanism of TC uptake, even under neutral pH conditions.
Gruba, Piotr; Mulder, Jan
2015-04-01
Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oak
Jennifer D. Knoepp; Leonard F. DeBano; Daniel G. Neary
2005-01-01
The chemical properties of the soil that are affected by fire include individual chemical characteristics, chemical reactions, and chemical processes (DeBano and others 1998). The soil chemical characteristics most commonly affected by fire are organic matter, carbon (C), nitrogen (N), phosphorus (P), sulfur (S), cations, cation exchange capacity, pH, and buffer power...
The role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed
USDA-ARS?s Scientific Manuscript database
The ability to alter nutrient partitioning within plant cells is poorly understood. In Arabidopsis (Arabidopsis thaliana), a family of endomembrane cation exchangers (CAXs) transports Ca(2+) and other cations. However, experiments have not focused on how the distribution and partitioning of calcium ...
Steefel, Carl I; Carroll, Susan; Zhao, Pihong; Roberts, Sarah
2003-12-01
Cs+ transport experiments carried out in columns packed with uncontaminated Hanford formation sediment from the SX tank farm provide strong support for the use of a multisite, multicomponent cation exchange model to describe Cs+ migration in the Hanford vadose zone. The experimental results indicate a strong dependence of the effective Cs+ Kd on the concentrations of other cations, including Na+ that is present at high to extremely high concentrations in fluids leaking from the Hanford SX tanks. A strong dependence of the Cs+ Kd on the aqueous Cs+ concentration is also apparent, with retardation of Cs+ increasing from a value of 41 at a Cs+ concentration of 10(-4) M in the feed solution to as much as 282 at a Cs+ concentration of 5x10(-7) M, all in a background of 1 M NaNO3. The total cation exchange capacity (CEC) of the Hanford sediment was determined using 22Na isotopic equilibrium exchange in a flow-through column experiment. The value for the CEC of 120 microeq/g determined with this method is compatible with a value of 121.9 microeq/g determined by multi-cation elution. While two distinct exchange sites were proposed by Zachara et al. [Geochim. Cosmochim. Acta 66 (2002) 193] based on binary batch exchange experiments, a third site is proposed in this study to improve the fit of the Cs+-Na+ and Cs+-Ca+ exchange data and to capture self-sharpened Cs+ breakthrough curves at low concentrations of Cs+. Two of the proposed exchange sites represent frayed edge sites (FES) on weathered micas and constitute 0.02% and 0.22% of the total CEC. Both of the FES show a very strong selectivity for Cs+ over Na+ (K(Na-Cs)=10(7.22) and 10(4.93), respectively). The third site, accounting for over 99% of the total CEC, is associated with planar sites on expansible clays and shows a smaller Na+-Cs+ selectivity coefficient of 10(1.99). Parameters derived from a fit of binary batch experiments alone tend to under predict Cs+ retardation in the column experiments. The transport experiments indicate 72-90% of the Cs+ sorbed in experiments targeting exchange on FES was desorbed over a 10- and 24-day period, respectively. At high Cs+ concentrations, where sorption is controlled primarily by exchange on planar sites, 95% of the Cs+ desorption was desorbed. Most of the difficulty in desorbing Cs+ from FES is a result of the extremely high selectivity of these sites for Cs+, although truly irreversible sorption as high as 23% was suggested in one experiment. The conclusion that Cs+ exchange is largely reversible in a thermodynamic sense is supported by the ability to match Cs+ desorption curves almost quantitatively with an equilibrium reactive transport simulation. The model for Cs+ retardation developed here qualitatively explains the behavior of Cs+ in the Hanford vadose zone underneath a variety of leaking tanks with differing salt concentrations. The high selectivity of FES for Cs+ implies that future desorption and migration is very unlikely to occur under natural recharge conditions.
Singh, A V; Sharma, Naresh Kumar; Rathore, Abhay S
2012-01-01
A new composite cation exchanger, tamarind sulphonic acid (TSA) resin has been synthesized. The chemically modified TSA ion exchange resin has been used for the removal and preconcentration of Zn2+, Cd2+, Fe2+, Co2+ and Cu2+ ions in aqueous solution and effluent from the Laxmi steel plant in Jodhpur, India. This type of composite represents a new class of hybrid ion exchangers with good ion exchange capacity, stability, reproducibility and selectivity for toxic metal ions found in effluent from the steel industry. The characterization of the resin was carried out by determining the ion-exchange capacity, elemental analysis, pH titration, Fourier transform infrared spectra and thermal analysis. The distribution coefficients (K(d)) of toxic metal ions were determined in a reference aqueous solution and the steel plant effluent at different pH values; the absorbency of different metal ions on the TSA resin was studied for up to 10 cycles. The adsorption of different metal ions on TSA resin follows the order: Co2+ > Cu2+ > Zn2+ > Fe2+ > Cd2+. The ion exchange capacity of TSA resin is 2.87%.
Banerjee, Swagata; Bright, Sandra A; Smith, Jayden A; Burgeat, Jeremy; Martinez-Calvo, Miguel; Williams, D Clive; Kelly, John M; Gunnlaugsson, Thorfinnur
2014-10-03
The synthesis and photophysical studies of two cationic Tröger's base (TB)-derived bis-naphthalimides 1 and 2 and the TB derivative 6, characterized by X-ray crystallography, are presented. The enantiomers of 1 and 2 are separated by cation-exchange chromatography on Sephadex C25 using sodium (-)-dibenzoyl-l-tartarate as the chiral mobile phase. The binding of enantiomers with salmon testes (st)-DNA and synthetic polynucleotides are studied by a variety of spectroscopic methods including UV/vis absorbance, circular dichroism, linear dichroism, and ethidium bromide displacement assays, which demonstrated binding of these compounds to the DNA grooves with very high affinity (K ∼ 10(6) M(-1)) and preferential binding of (-)-enantiomer. In all cases, binding to DNA resulted in a significant stabilization of the double-helical structure of DNA against thermal denaturation. Compound (±)-2 and its enantiomers possessed significantly higher binding affinity for double-stranded DNA compared to 1, possibly due to the presence of the methyl group, which allows favorable hydrophobic and van der Waals interactions with DNA. The TB derivatives exhibited marked preference for AT rich sequences, where the binding affinities follow the order (-)-enantiomer > (±) > (+)-enantiomer. The compounds exhibited significant photocleavage of plasmid DNA upon visible light irradiation and are rapidly internalized into malignant cell lines.
NASA Technical Reports Server (NTRS)
Lawless, J. G.; Levi, N.
1979-01-01
The effect of the exchangeable cation on the condensation of glycine and alanine was investigated using a series of homoionic bentonites. A cycling procedure of drying, warming and wetting was employed. Peptide bond formation was observed, and the effectiveness of metal ions to catalyze the condensation was Cu(2+) greater than Ni(2) approximately equals Zn(2+) greater than Na(+). Glycine showed 6% of the monomer incorporated into oligomers with the largest detected being the pentamer. Alanine showed less peptide bond formation (a maximum of 2%) and only the dimer was observed.
Bath, B D; White, H S; Scott, E R
2000-02-01
Electrically facilitated molecular transport in an ion-exchange membrane (Nafion, 1100 equiv wt) has been studied using a scanning electrochemical microscope. The transport rates of ferrocenylmethyltrimethylammonium (a cation), acetaminophen (a neutral molecule), and ascorbate (an anion) through approximately 120-micron-thick membranes were measured as a function of the iontophoretic current passed across the membrane (-1.0 to +1.0 A/cm2). Transport rates were analyzed by employing the Nernst-Planck equation, modified to account for electric field-driven convective transport. Excellent agreement between experimental and theoretical values of the molecular flux was obtained using a single fitting parameter for each molecule (electroosmotic drag coefficient). The electroosmotic velocity of the neutral molecule, acetaminophen, was shown to be a factor of approximately 500 larger than that of the cation ferrocenylmethyltrimethylammonium, a consequence of the electrostatic interaction of the cation with the negatively charged pore walls of the ion-exchange membrane. Electroosmotic transport of ascorbate occurred at a negligible rate due to repulsion of the anion by the cation-selective membrane. These results suggest that electroosmotic velocities of solute molecules are determined by specific chemical interactions of the permeant and membrane and may be very different from the average solution velocity. The efficiency of electroosmotic transport was also shown to be a function of the membrane thickness, in addition to membrane/solute interactions.
Pullen, Anthony E.; Faulmann, Christophe; Pokhodnya, Konstantin I.; Cassoux, Patrick; Tokumoto, Madoka
1998-12-28
A series of metal bis-mnt complexes (mnt = 1,2-dithiolatomaleonitrile) with the trimethylammonium methylferrocene cation have been synthesized and characterized using X-ray diffraction, magnetic susceptibility, and differential scanning calorimetry measurements. The complexes have the formulas (FcCH(2)NMe(3))[Ni(mnt)(2)] (2), (FcCH(2)NMe(3))[Pt(mnt)(2)] (3), and (FcCH(2)NMe(3))(2)[Cu(mnt)(2)] (4) (where Fc = ferrocene). At 300 K, the crystal structures of 1:1 complexes 2 and 3 are very similar. They consist of pairs of [M(mnt)(2)](-) in a slipped configuration packed in stacks. Each [M(mnt)(2)](-) stack is separated from adjacent stacks by two columns of cations. Within the pairs, the [M(mnt)(2)](-) anions interact via short M.S contacts, while there are no short contacts between the pairs. Complex 4, which has a 2:1 stoichiometry, exhibits a markedly different packing arrangement of the anionic units. Due to the special position of the Cu atom in the asymmetric unit cell, [Cu(mnt)(2)](2)(-) dianions are completely isolated from each other. The magnetic susceptibility behavior of the nickel complex is consistent with the presence of magnetically isolated, antiferromagnetically (AF) coupled [Ni(mnt)(2)](-) pairs with the AF exchange parameter, J = -840 cm(-)(1). The platinum complex undergoes an endothermic structural phase transition (T(p)) at 247 K. Below T(p) its structure is characterized by the formation of magnetically isolated [Pt(mnt)(2)](2)(2)(-) dimers in an eclipsed configuration with short Pt.Pt and S.S contacts between monomers. In the magnetic properties, the structural changes reveal themselves as an abrupt susceptibility drop implying a substantial increase of the AF exchange parameter. A mechanism of the phase transition in the platinum compound is proposed. For compound 4, paramagnetic behavior is observed.
Rapid determination of 226Ra in emergency urine samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.
2014-02-27
A new method has been developed at the Savannah River National Laboratory (SRNL) that can be used for the rapid determination of 226Ra in emergency urine samples following a radiological incident. If a radiological dispersive device event or a nuclear accident occurs, there will be an urgent need for rapid analyses of radionuclides in urine samples to ensure the safety of the public. Large numbers of urine samples will have to be analyzed very quickly. This new SRNL method was applied to 100 mL urine aliquots, however this method can be applied to smaller or larger sample aliquots as needed.more » The method was optimized for rapid turnaround times; urine samples may be prepared for counting in <3 h. A rapid calcium phosphate precipitation method was used to pre-concentrate 226Ra from the urine sample matrix, followed by removal of calcium by cation exchange separation. A stacked elution method using DGA Resin was used to purify the 226Ra during the cation exchange elution step. This approach combines the cation resin elution step with the simultaneous purification of 226Ra with DGA Resin, saving time. 133Ba was used instead of 225Ra as tracer to allow immediate counting; however, 225Ra can still be used as an option. The rapid purification of 226Ra to remove interferences using DGA Resin was compared with a slightly longer Ln Resin approach. A final barium sulfate micro-precipitation step was used with isopropanol present to reduce solubility; producing alpha spectrometry sources with peaks typically <40 keV FWHM (full width half max). This new rapid method is fast, has very high tracer yield (>90 %), and removes interferences effectively. The sample preparation method can also be adapted to ICP-MS measurement of 226Ra, with rapid removal of isobaric interferences.« less
Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.
Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A
2014-10-21
Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity.
Ion-exchange material and method of storing radioactive wastes
Komarneni, S.; Roy, D.M.
1983-10-31
A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.
Liu, Yong-Qiang; Yu, Hong
2017-04-01
A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg 2+ , Ca 2+ , and Sr 2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg 2+ , Ca 2+ , and Sr 2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg 2+ , Ca 2+ , and Sr 2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Treatment of acrylate wastewater by electrocatalytic reduction process].
Yu, Li-Na; Song, Yu-Dong; Zhou, Yue-Xi; Zhu, Shu-Quan; Zheng, Sheng-Zhi; Ll, Si-Min
2011-10-01
High-concentration acrylate wastewater was treated by an electrocatalytic reduction process. The effects of the cation exchange membrane (CEM) and cathode materials on acrylate reduction were investigated. It indicated that the acrylate could be reduced to propionate acid efficiently by the electrocatalytic reduction process. The addition of CEM to separator with the cathode and anode could significantly improve current efficiency. The cathode materials had significant effect on the reduction of acrylate. The current efficiency by Pd/Nickel foam, was greater than 90%, while those by nickel foam, the carbon fibers and the stainless steel decreased successively. Toxicity of the wastewater decreased considerably and methane production rate in the biochemical methane potential (BMP) test increased greatly after the electrocatalytic reduction process.
DEMINERALIZER BUILDING, TRA608. CAMERA IS ON RAW WATER TOWER AND ...
DEMINERALIZER BUILDING, TRA-608. CAMERA IS ON RAW WATER TOWER AND FACES WEST. STEAM PLANT, TRA-609, AT UPPER EDGE OF VIEW. ABSENCE OF ROOF EXPOSES FIVE-BAY STRUCTURE AND INTERIOR DIVISION OF SPACE. CORRIDOR AT WEST END OF BUILDING WILL SEPARATE LABORATORY AND OFFICE SPACE FROM POTABLE WATER TANKS. ALONG NORTH WALL ARE SPACES FOR CATION AND ANION EXCHANGE UNITS. PENTHOUSE WILL ENCLOSE DEGASSIFIER. TANK AT LEFT (SOUTH) OF BUILDING STORES DEMINERALIZED WATER. NOTE BRINE STORAGE PIT, TRA-631, AT RIGHT OF VIEW, ABOVE PAIR OF CAUSTIC STORAGE TANKS. NOTE TRENCHES FOR BURIED WATER PIPES. INL NEGATIVE NO. 2732. Unknown Photographer, 6/29/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Concentration and purification of plutonium or thorium
Hayden, John A.; Plock, Carl E.
1976-01-01
In this invention a first solution obtained from such as a plutonium/thorium purification process or the like, containing plutonium (Pu) and/or thorium (Th) in such as a low nitric acid (HNO.sub.3) concentration may have the Pu and/or Th separated and concentrated by passing an electrical current from a first solution having disposed therein an anode to a second solution having disposed therein a cathode and separated from the first solution by a cation permeable membrane, the Pu or Th cation permeating the cation membrane and forming an anionic complex within the second solution, and electrical current passage affecting the complex formed to permeate an anion membrane separating the second solution from an adjoining third solution containing disposed therein an anode, thereby effecting separation and concentration of the Pu and/or Th in the third solution.
2015-01-01
Synthesis approaches to colloidal Cu3P nanocrystals (NCs) have been recently developed, and their optical absorption features in the near-infrared (NIR) have been interpreted as arising from a localized surface plasmon resonance (LSPR). Our pump–probe measurements on platelet-shaped Cu3-xP NCs corroborate the plasmonic character of this absorption. In accordance with studies on crystal structure analysis of Cu3P dating back to the 1970s, our density functional calculations indicate that this material is substoichiometric in copper, since the energy of formation of Cu vacancies in certain crystallographic sites is negative, that is, they are thermodynamically favored. Also, thermoelectric measurements point to a p-type behavior of the majority carriers from films of Cu3-xP NCs. It is likely that both the LSPR and the p-type character of our Cu3-xP NCs arise from the presence of a large number of Cu vacancies in such NCs. Motivated by the presence of Cu vacancies that facilitate the ion diffusion, we have additionally exploited Cu3-xP NCs as a starting material on which to probe cation exchange reactions. We demonstrate here that Cu3-xP NCs can be easily cation-exchanged to hexagonal wurtzite InP NCs, with preservation of the anion framework (the anion framework in Cu3-xP is very close to that of wurtzite InP). Intermediate steps in this reaction are represented by Cu3-xP/InP heterostructures, as a consequence of the fact that the exchange between Cu+ and In3+ ions starts from the peripheral corners of each NC and gradually evolves toward the center. The feasibility of this transformation makes Cu3-xP NCs an interesting material platform from which to access other metal phosphides by cation exchange. PMID:25960605
Deposition, Alteration, and Resuspension of Colorado River Delta Sediments, Lake Powell, Utah
NASA Astrophysics Data System (ADS)
Kramer, N. M.; Parnell, R.
2002-12-01
Current drought conditions in the southwest United States have resulted in lowering water levels in Lake Powell, Utah. Delta sediments forming at the Colorado River inflow for the past 39 years are becoming exposed and reworked as lake levels continue to fall to over 22 meters below full pool level. Fine sediments act as a sink for pollutants by adsorbing contaminants to their surfaces. Reworking these sediments may pose a risk to water quality in the lake. We examine whether burial and time have sufficiently altered fine sediments in the delta and affected materials adsorbed on their surfaces. Fifteen lake cores and six sediment traps were collected from the sediment delta forming at the Colorado River inflow in Lake Powell. This research characterizes fine sediment mineralogy, the composition of exchangeable materials, and organic matter content within delta sediments to determine the type and amount of alteration of these sediments with cycles of burial and resuspension. We hypothesize that as sediments are reworked, organic carbon is degraded and organic nitrogen is released forming ammonium in these reducing conditions. Sediment trap samples will be used to test this hypothesis. Trap samples will be compared to subsamples from sediment cores to determine the amount of alteration of fine sediments. All samples are analyzed for organic carbon, organic nitrogen, ammonium, cation exchange capacity, exchangeable cation composition, and clay mineralogy. Organic carbon and nitrogen are analyzed using a Leco CN analyzer. Ammonium is analyzed using a Lachet ion chromatograph. Clay mineralogy is characterized using a Siemens D500 powder X-ray diffractometer. Cation exchange capacity and exchangeable cations are measured using standard soil chemical techniques. Clay mineral analyses indicate significant spatial and temporal differences in fine sediment entering the Lake Powell delta which complicates the use of a simple deposition/alteration/resuspension model using a single starting material.
Hugar, Kristina M.; Kostalik, IV, Henry A.; Coates, Geoffrey W.
2015-06-11
Highly base-stable cationic moieties are a critical component of anion exchange membranes (AEMs) in alkaline fuel cells (AFCs); however, the commonly employed organic cations have limited alkaline stability. To address this problem, we synthesized and characterized the stability of a series of imidazolium cations in 1, 2, or 5 M KOH/CD 3OH at 80 °C, systematically evaluating the impact of substitution on chemical stability. The substituent identity at each position of the imidazolium ring has a dramatic effect on the overall cation stability. In conclusion, we report imidazolium cations that have the highest alkaline stabilities reported to date, >99% cationmore » remaining after 30 days in 5 M KOH/CD 3OH at 80 °C.« less
Alkalinity generation in snowmelt and rain runoff during short distance flow over rock
James L. Clayton
1998-01-01
High-elevation ecosystems in the western United States typically have patchy, discontinuous areas of surficial soils surrounded by large areas of rock outcrop, talus, and scree. Snowmelt and precipitation that percolate through soil increase in alkalinity, principally by increasing base cation concentration through cation exchange, and by decreasing acid anion...
CAX-ing a wide net: Cation/H(+) transporters in metal remediation and abiotic stress signalling
USDA-ARS?s Scientific Manuscript database
Cation/proton exchangers (CAXs) are a class of secondary energised ion transporter that are being implicated in an increasing range of cellular and physiological functions. CAXs are primarily Ca(2+) efflux transporters that mediate the sequestration of Ca(2+) from the cytosol, usually into the vacuo...
Marras, S I; Tsimpliaraki, A; Zuburtikudis, I; Panayiotou, C
2007-11-15
The modification of sodium montmorillonite (NaMMT) through the insertion of amphiphilic hexadecylammonium cations into the clay's interlayer spaces has been studied. Alkylammonium concentrations equivalent to 0.15-3.00 times the cation exchange capacity of the clay were used. The conformation of the surfactant cations in the confined space of the silicate galleries was investigated by X-ray diffraction analysis and scanning electron microscopy, while the organoclay's thermal stability was examined by thermogravimetric analysis. The clay's surface properties induced by the ion-exchange process were followed by measurements of the mineral's zeta potential as a function of pH and surfactant concentration, while the coagulation rates of organoclay suspensions in water and in chloroform were examined using dynamic light scattering. All the results are consistent with showing that the overall characteristics and thus the behavior of the modified MMT particles strongly depend on the alkylammonium surfactant concentration used in the modification process. This, however, has very important implications for any attempt to incorporate the organomodified MMT particles into different media for various applications such as polymer nanocomposite preparation.
Adsorption of dissymmetric cationic gemini surfactants at silica/water interface
NASA Astrophysics Data System (ADS)
Sun, Yuhai; Feng, Yujun; Dong, Hongwei; Chen, Zhi
2007-05-01
Adsorption of a series of cationic gemini surfactants 12-2- m ( m = 8, 12, 16) on the surface of silica was investigated. The critical micelle concentrations, cmcs, of cationic gemini surfactants in the initial solutions and in the supernatants were measured by conductometry and tensiometer. The changes in cmc values indicate that the ion exchanges take place between polar groups of gemini surfactants adsorbed and ions bound on the surface of silica. The adsorption isotherms of cationic gemini surfactants were obtained by a solution depletion method. Based on the driving force, the adsorption includes two steps, one of which is ion exchange, and the other is hydrophobic interaction. In each step, the tendency of surfactant molecules in the solution to form aggregates or to be adsorbed on the silica varies with their structures. The maximum adsorption amount of gemini surfactants on the silica, τmax, decreases as increasing in the length of one alkyl chain, m, from 8, 12 to 16. So the results show that the adsorption behaviors of gemini surfactants are closely related to the dissymmetry of gemini molecules.
Pittaway, P A; Melland, A R; Antille, D L; Marchuk, S
2018-05-01
The progressive decline of soil organic matter (SOM) threatens the sustainability of arable cropping worldwide. Residue removal and burning, destruction of protected microsites, and the acceleration of microbial decomposition are key factors. Desorption of SOM by ammonia-based fertilizers from organomineral complexes in soil may also play a role. A urea- and molasses-based liquid fertilizer formulation and a urea-based granular formulation were applied at recommended and district practice rates, respectively, to soil leaching columns, with unfertilized columns used as controls. The chemistry of leachate collected from the columns, filled with two sandy soils differing in recent cropping history, was monitored over eight successive wet-dry drainage events. The pH, electrical conductivity, and concentration and species of N in leachate was compared with the concentration and aromaticity of dissolved organic C (DOC) to indicate if salt solutions derived from the two fertilizers extracted SOM from clay mineral sites. Cation exchange capacity and exchangeable cations in the soil were monitored at the start and end of the trial. Fertilizer application increased DOC in leachate up to 40 times above the control, but reduced aromaticity (specific ultraviolet light absorbance at 253.7 nm). Dissolved organic C was linearly proportional to leachate NH-N concentration. Exchangeable Ca and Mg in soil from fertilized columns at the end of both trials were significantly lower than in unfertilized soil, indicating that ammonium salt solutions derived from the fertilizers extracted cations and variably charged organic matter from soil mineral exchange sites. Desorption of organic matter and divalent cations from organomineral sites by ammonia-based fertilizers may be implicated in soil acidification. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Pharmaceuticals' sorptions relative to properties of thirteen different soils.
Kodešová, Radka; Grabic, Roman; Kočárek, Martin; Klement, Aleš; Golovko, Oksana; Fér, Miroslav; Nikodem, Antonín; Jakšík, Ondřej
2015-04-01
Transport of human and veterinary pharmaceuticals in soils and consequent ground-water contamination are influenced by many factors, including compound sorption on soil particles. Here we evaluate the sorption isotherms for 7 pharmaceuticals on 13 soils, described by Freundlich equations, and assess the impact of soil properties on various pharmaceuticals' sorption on soils. Sorption of ionizable pharmaceuticals was, in many cases, highly affected by soil pH. The sorption coefficient of sulfamethoxazole was negatively correlated to soil pH, and thus positively related to hydrolytic acidity and exchangeable acidity. Sorption coefficients for clindamycin and clarithromycin were positively related to soil pH and thus negatively related to hydrolytic acidity and exchangeable acidity, and positively related to base cation saturation. The sorption coefficients for the remaining pharmaceuticals (trimethoprim, metoprolol, atenolol, and carbamazepine) were also positively correlated with the base cation saturation and cation exchange capacity. Positive correlations between sorption coefficients and clay content were found for clindamycin, clarithromycin, atenolol, and metoprolol. Positive correlations between sorption coefficients and organic carbon content were obtained for trimethoprim and carbamazepine. Pedotransfer rules for predicting sorption coefficients of various pharmaceuticals included hydrolytic acidity (sulfamethoxazole), organic carbon content (trimethoprimand carbamazepine), base cation saturation (atenolol and metoprolol), exchangeable acidity and clay content (clindamycin), and soil active pH and clay content (clarithromycin). Pedotransfer rules, predicting the Freundlich sorption coefficients, could be applied for prediction of pharmaceutical mobility in soils with similar soil properties. Predicted sorption coefficients together with pharmaceutical half-lives and other imputes (e.g., soil-hydraulic, geological, hydro-geological, climatic) may be used for assessing potential ground-water contamination. Copyright © 2014 Elsevier B.V. All rights reserved.
Isosteric heat of water adsorption and desorption in homoionic alkaline-earth montmorillonites
NASA Astrophysics Data System (ADS)
Belhocine, M.; Haouzi, A.; Bassou, G.; Phou, T.; Maurin, D.; Bantignies, J. L.; Henn, F.
2018-02-01
The aim of the present work is to study by means of thermodynamic measurements and Infrared spectroscopy, the effect of the interlayer cations on the adsorption-desorption of water in the case of a montmorillonite exchanged with alkaline-earth metals. For the first time, the net isosteric heat of water adsorption and desorption is determined from isotherms recorded at three temperatures. The net isosteric heat is a very useful parameter for getting more insights into the sorption mechanism since it provides information about the sorption energy evolution which can be complementary to that obtained from structural or gravimetric measurements. The homoionic montmorillonite samples are prepared from purification and cationic exchanged in aqueous solution of the raw material, i.e. the reference SWy-2 Wyoming material. XRD at the dry state and elemental chemical analysis confirm that the treatment does not deteriorate the clay structure and yield the expected homoionic composition. The sorption isotherms measured at various temperatures show that the nature of the interlayer, i.e. exchangeable, cation changes the adsorbed/desorbed amount of water molecules for a given water relative pressure. The total amount of water adsorbed at P/P∘ = 0.5 follows the cation sequence Ca ∼ Mg>Ba while the sorption isosteric heats follow a slightly different sequence, i.e. Ca > Mg>Ba. This discrepancy between the adsorption and desorption heat is due to the higher irreversibility of water sorption process in the Ca exchanged montmorillonite. Finally, analysis of the IR spectra recorded at room temperature and under a primary vacuum reveals that the amount of adsorbed water follows the same sequence as that of the isosteric heat of adsorption and shows the coexistence of liquid-like and solid-like water confined in the interlayer space.
Beneito-Cambra, M; Ripoll-Seguer, L; Herrero-Martínez, J M; Simó-Alfonso, E F; Ramis-Ramos, G
2011-11-25
A method for the separation, characterization and determination of fatty alcohol ethoxylates (FAE) and alkylether sulfates (AES) in industrial and environmental samples is described. Separation of the two surfactant classes was achieved in a 50:50 methanol-water medium by retaining AES on a strong anionic exchanger (SAX) whereas most FAE were eluted. After washing the SAX cartridges to remove cations, the residual hydrophobic FAE were eluted by increasing methanol to 80%. Finally, AES were eluted using 80:20 and 95:5 methanol-concentrated aqueous HCl mixtures. Methanol and water were removed from the FAE and AES fractions, and the residues were dissolved in 1,4-dioxane. In this medium, esterification of FAE and transesterification of AES with a cyclic anhydride was performed. Phthalic and diphenic anhydrides were used to derivatizate the surfactants in industrial samples and seawater extracts, respectively. Separation of the derivatized oligomers was achieved by gradient elution on a C8 column with acetonitrile/water in the presence of 0.1% acetic acid. Good resolution between both the hydrocarbon series and the successive oligomers within the series was achieved. Cross-contamination of FAE with AES and vice versa was not observed. Using dodecyl alcohol as calibration standard, and correction of the peak areas of the derivatized oligomers by their respective UV-vis response factors, both FAE and AES were evaluated. After solid-phase extraction on C18, the proposed method was successfully applied to the characterization and determination of the two surfactant classes in industrial samples and in seawater. Copyright © 2011 Elsevier B.V. All rights reserved.
A lysozyme and magnetic bead based method of separating intact bacteria.
Diler, Ebru; Obst, Ursula; Schmitz, Katja; Schwartz, Thomas
2011-07-01
As a response to environmental stress, bacterial cells can enter a physiological state called viable but noncultivable (VBNC). In this state, bacteria fail to grow on routine bacteriological media. Consequently, standard methods of contamination detection based on bacteria cultivation fail. Although they are not growing, the cells are still alive and are able to reactivate their metabolism. The VBNC state and low bacterial densities are big challenges for cultivation-based pathogen detection in drinking water and the food industry, for example. In this context, a new molecular-biological separation method for bacteria using point-mutated lysozymes immobilised on magnetic beads for separating bacteria is described. The immobilised mutated lysozymes on magnetic beads serve as bait for the specific capture of bacteria from complex matrices or water due to their remaining affinity for bacterial cell wall components. Beads with bacteria can be separated using magnetic racks. To avoid bacterial cell lysis by the lysozymes, the protein was mutated at amino acid position 35, leading to the exchange of the catalytic glutamate for alanine (LysE35A) and glutamine (LysE35Q). As proved by turbidity assay with reference bacteria, the muramidase activity was knocked out. The mutated constructs were expressed by the yeast Pichia pastoris and secreted into expression medium. Protein enrichment and purification were carried out by SO(3)-functionalised nanoscale cationic exchanger particles. For a proof of principle, the proteins were biotinylated and immobilised on streptavidin-functionalised, fluorescence dye-labelled magnetic beads. These constructs were used for the successful capture of Syto9-marked Microccocus luteus cells from cell suspension, as visualised by fluorescence microscopy, which confirmed the success of the strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonitemore » edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites (‘spillover’ effect).« less
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; ...
2017-10-06
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonitemore » edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites (‘spillover’ effect).« less
NASA Astrophysics Data System (ADS)
Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A.; Landero-Figueroa, Julio
2014-10-01
The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV-VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag+) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg- 1 detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm.
Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes
NASA Astrophysics Data System (ADS)
Zhu, Liang; Yu, Xuedi; Hickner, Michael A.
2018-01-01
In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.
Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming
2014-01-01
Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug-fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug-fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid.
Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming
2014-01-01
Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug–fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug–fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid. PMID:25114504
Intracellular acidification-induced alkali metal cation/H+ exchange in human neutrophils
1987-01-01
Pretreatment of isolated human neutrophils (resting pHi congruent to 7.25 at pHo 7.40) with 30 mM NH4Cl for 30 min leads to an intracellular acidification (pHi congruen to 6.60) when the NH4Cl prepulse is removed. Thereafter, in 140 mM Na+ medium, pHi recovers exponentially with time (initial rate, approximately 0.12 pH/min) to reach the normal resting pHi by approximately 20 min, a process that is accomplished mainly, if not exclusively, though an exchange of internal H+ for external Na+. This Na+/H+ countertransport is stimulated by external Na+ (Km congruent to 21 mM) and by external Li+ (Km congruent to 14 mM), though the maximal transport rate for Na+ is about twice that for Li+. Both Na+ and Li+ compete as substrates for the same translocation sites on the exchange carrier. Other alkali metal cations, such as K+, Rb+, or Cs+, do not promote pHi recovery, owing to an apparent lack of affinity for the carrier. The exchange system is unaffected by ouabain or furosemide, but can be competitively inhibited by the diuretic amiloride (Ki congruent to 8 microM). The influx of Na+ or Li+ is accompanied by an equivalent counter-reflux of H+, indicating a 1:1 stoichiometry for the exchange reaction, a finding consistent with the lack of voltage sensitivity (i.e., electroneutrality) of pHi recovery. These studies indicate that the predominant mechanism in human neutrophils for pHi regulation after intracellular acidification is an amiloride-sensitive alkali metal cation/H+ exchange that shares a number of important features with similar recovery processes in a variety of other mammalian cell types. PMID:3694176
Wehr, J Bernhard; Blamey, F Pax C; Menzies, Neal W
2010-04-28
The determination of the cation exchange capacity (CEC) of plant cell walls is important for many physiological studies. We describe the determination of cell wall CEC by cation binding, using either copper (Cu) or lanthanum (La) ions, and by colorimetry. Both cations are strongly bound by cell walls, permitting fast and reproducible determinations of the CEC of small samples. However, the dye binding methods using two cationic dyes, Methylene Blue and Toluidine Blue, overestimated the CEC several-fold. Column and centrifugation methods are proposed for CEC determination by Cu or La binding; both provide similar results. The column method involves packing plant material (2-10 mg dry mass) in a chromatography column (10 mL) and percolating with 20 bed volumes of 1 mM La or Cu solution, followed by washing with deionized water. The centrifugation method uses a suspension of plant material (1-2 mL) that is centrifuged, and the pellet is mixed three times with 10 pellet volumes of 1 mM La or Cu solution followed by centrifugation and final washing with deionized water. In both methods the amount of La or Cu bound to the material was determined by spectroscopic methods.
Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes
2015-04-29
1 1.1.2 Proton exchange membrane fuel cells ( PEMFCs ) ......................... 3 1.1.3 Alkaline fuel cells (AFCs...160 xi LIST OF FIGURES Figure 1.1: Schematic diagram of a PEMFC ...according to the type of electrolyte they use. Nowadays, there are six major types of fuel cells: proton-exchange membrane fuel cells ( PEMFCs ), hydroxide
Ion exchange of H+, Na+, Mg2+, Ca2+, Mn2+, and Ba2+, on wood pulp
Alan W. Rudie; Alan Ball; Narendra Patel
2006-01-01
Ion exchange selectivity coefficients were measured for the partition of metals between solution and pulp fibers. The method accurately models the ion exchange isotherms for all cation pairs evaluated and is accurate up to approximately 0.05 molar concentrations. Selectivity coefficients were determined for calcium and magnesium with each other and with hydrogen....
Ion-exchange and iontophoresis-controlled delivery of apomorphine.
Malinovskaja, Kristina; Laaksonen, Timo; Kontturi, Kyösti; Hirvonen, Jouni
2013-04-01
The objective of this study was to test a drug delivery system that combines iontophoresis and cation-exchange fibers as drug matrices for the controlled transdermal delivery of antiparkinsonian drug apomorphine. Positively charged apomorphine was bound to the ion-exchange groups of the cation-exchange fibers until it was released by mobile counter-ions in the external solution. The release of the drug was controlled by modifying either the fiber type or the ionic composition of the external solution. Due to high affinity of apomorphine toward the ion-exchanger, a clear reduction in the in vitro transdermal fluxes from the fibers was observed compared to the respective fluxes from apomorphine solutions. Changes in the ionic composition of the donor formulations affected both the release and iontophoretic flux of the drug. Upon the application of higher co-ion concentrations or co-ions of higher valence in the donor formulation, the release from the fibers was enhanced, but the iontophoretic steady-state flux was decreased. Overall, the present study has demonstrated a promising approach using ion-exchange fibers for controlling the release and iontophoretic transdermal delivery of apomorphine. Copyright © 2012 Elsevier B.V. All rights reserved.
Moruno, Francisco Lopez; Rubio, Juan E; Atanassov, Plamen; Cerrato, José M; Arges, Christopher G; Santoro, Carlo
2018-06-01
Microbial desalination cell (MDC) is a bioelectrochemical system capable of oxidizing organics, generating electricity, while reducing the salinity content of brine streams. As it is designed, anion and cation exchange membranes play an important role on the selective removal of ions from the desalination chamber. In this work, sulfonated sodium (Na + ) poly(ether ether ketone) (SPEEK) cation exchange membranes (CEM) were tested in combination with quaternary ammonium chloride poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membrane (AEM). Non-patterned and patterned (varying topographical features) CEMs were investigated and assessed in this work. The results were contrasted against a commercially available CEM. This work used real seawater from the Pacific Ocean in the desalination chamber. The results displayed a high desalination rate and power generation for all the membranes, with a maximum of 78.6±2.0% in salinity reduction and 235±7mWm -2 in power generation for the MDCs with the SPEEK CEM. Desalination rate and power generation achieved are higher with synthesized SPEEK membranes when compared with an available commercial CEM. An optimized combination of these types of membranes substantially improves the performances of MDC, making the system more suitable for real applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Separation of organic cations using novel background electrolytes by capillary electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, S.; Fritz, J.
2008-02-12
A background electrolyte for capillary electrophoresis containing tris(-hydroxymethyl) aminomethane (THAM) and ethanesulfonic acid (ESA) gives excellent efficiency for separation of drug cations with actual theoretical plate numbers as high as 300,000. However, the analyte cations often elute too quickly and consequently offer only a narrow window for separation. The best way to correct this is to induce a reverse electroosmotic flow (EOF) that will spread out the peaks by slowing their migration rates, but this has always been difficult to accomplish in a controlled manner. A new method for producing a variable EOF is described in which a low variablemore » concentration of tributylammonium- or triethylammonium ESA is added to the BGE. The additive equilibrates with the capillary wall to give it a positive charge and thereby produce a controlled opposing EOF. Excellent separations of complex drug mixtures were obtained by this method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Michelle
Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis.more » An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.« less
PROCESS OF PRODUCING Cm$sup 244$ AND Cm$sup 24$$sup 5$
Manning, W.M.; Studier, M.H.; Diamond, H.; Fields, P.R.
1958-11-01
A process is presented for producing Cm and Cm/sup 245/. The first step of the process consists in subjecting Pu/sup 2339/ to a high neutron flux and subsequently dissolving the irradiated material in HCl. The plutonium is then oxidized to at least the tetravalent state and the solution is contacted with an anion exchange resin, causing the plutonium values to be absorbed while the fission products and transplutonium elements remain in the effluent solution. The effluent solution is then contacted with a cation exchange resin causing the transplutonium, values to be absorbed while the fission products remain in solution. The cation exchange resin is then contacted with an aqueous citrate solution and tbe transplutonium elements are thereby differentially eluted in order of decreasing atomic weight, allowing collection of the desired fractions.