Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao
2017-03-01
An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C 18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D
2002-10-25
Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.
2016-04-01
QUANTIFICATION OF VX NERVE AGENT IN VARIOUS FOOD MATRICES BY SOLID-PHASE EXTRACTION ULTRA-PERFORMANCE...TITLE AND SUBTITLE Quantification of VX Nerve Agent in Various Food Matrices by Solid-Phase Extraction Ultra-Performance Liquid Chromatography... food matrices. The mixed-mode cation exchange (MCX) sorbent and Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods were used for
Shamaeli, Ehsan; Alizadeh, Naader
2012-01-01
A nanostructure fiber based on conducting polypyrrole synthesized by an electrochemical method has been developed, and used for electrochemically switching solid-phase microextraction (ES-SPME). The ES-SPME was prepared by the doping of eriochrome blue in polypyrrole (PPy-ECB) and used for selectively extracting the Ni(II) cation in the presence of some transition and heavy metal ions. The cation-exchange behavior of electrochemically prepared polypyrrole on stainless-steel with and without eriochrome blue (ECB) dye was characterized using ICP-OES analysis. The effects of the scan rate for electrochemical synthesis, uptake and the release potential on the extraction behavior of the PPy-ECB conductive fiber were studied. Uptake and release time profiles show that the process of electrically switched cation exchange could be completed within 250 s. The results of the present study point concerning the possibility of developing a selective extraction process for Ni(II) from waste water was explored using such a nanostructured PPy-ECB film through an electrically switched cation exchange. 2012 © The Japan Society for Analytical Chemistry
Alkaloid profiles of Mimosa tenuiflora and associated methods of analysis
USDA-ARS?s Scientific Manuscript database
The alkaloid contents of the leaves and seeds of M. tenuiflora collected from northeastern Brazil were studied. Alkaloids were isolated by classical acid/base extraction procedures and by cation exchange solid phase extraction. The crude alkaloid fractions were then analysed by thin layer chromatogr...
Kanaujia, Pankaj K; Tak, Vijay; Pardasani, Deepak; Gupta, A K; Dubey, D K
2008-03-28
The analysis of nitrogen containing amino alcohols, which are the precursors and degradation products of nitrogen mustards and nerve agent VX, constitutes an important aspect for verifying the compliance to the CWC (Chemical Weapons Convention). This work devotes on the development of solid-phase extraction method using silica- and polymer-based SCX (strong cation-exchange) and MCX (mixed-mode strong cation-exchange) cartridges for N,N-dialkylaminoethane-2-ols and alkyl N,N-diethanolamines, from water. The extracted analytes were analyzed by GC-MS (gas chromatography-mass spectrometry) in the full scan and selected ion monitoring modes. The extraction efficiencies of SCX and MCX cartridges were compared, and results revealed that SCX performed better. Extraction parameters, such as loading capacity, extraction solvent, its volume, and washing solvent were optimized. Best recoveries were obtained using 2 mL methanol containing 10% NH(4)OH and limits of detection could be achieved up to 5 x 10(-3) microg mL(-1) in the selected ion monitoring mode and 0.01 microg mL(-1) in full scan mode. The method was successfully employed for the detection and identification of amino alcohol present in water sample sent by Organization for Prohibition of Chemical Weapons (OPCW) in the official proficiency tests. The method was also applied to extract the analytes from human plasma. The SCX cartridge showed good recoveries of amino alcohols from human plasma after protein precipitation.
Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.
Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela
2010-02-19
The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition. Copyright 2009. Published by Elsevier B.V.
Mills, M.S.; Thurman, E.M.; Pedersen, M.J.
1993-01-01
Silica- and styrene-divinylbenzene-based mixed-mode resins that contain C8, C18 and sulphonated cation-exchange groups were compared for their efficiency in isolation of neutral triazine compounds from water and of the basic drug, benzoylecgonine, from urine. The triazine compounds were isolated by a combination of Van der Waals and hydrogen-bonding interactions, and benzoylecgonine was isolated by Van der Waals interactions and cation exchange. All analytes were eluted with a polar organic solvent contaning 2% ammonium hydroxide. Larger recoveries (95%) were achieved on copolymerized mixed-mode resins where C18 and sulfonic acid are in closer proximity than on 'blended' mixed-mode resins (60-70% recovery).
Scott, Peter M; Niedzwiadek, Barbara; Rawn, Dorothea F K; Lau, Ben P-Y
2009-08-01
Beta-N-Methylamino-L-alanine (BMAA) is a neurotoxin originally found in cycad seeds and now known to be produced by many species of freshwater and marine cyanobacteria. We developed a method for its determination in blue-green algae (BGA) food supplements, freshwater fish, and bottled water by using a strong cation-exchange, solid-phase extraction column for cleanup after 0.3 M trichloroacetic acid extraction of BGA supplements and fish. Bottled water was applied directly onto the solid-phase extraction column. For analysis of carbonated water, sonication and pH adjustment to 1.5 were needed. To determine protein-bound BMAA, the protein pellet left after extraction of the BGA supplement and fish was hydrolyzed by boiling with 6 M hydrochloric acid; BMAA was cleaned up on a C18 column and a strong cation-exchange, solid-phase extraction column. Determination of BMAA was by liquid chromatography of the fluorescent derivative formed with 9-fluorenylmethyl chloroformate. The method was validated by recovery experiments using spiking levels of 1.0 to 10 microg/g for BGA supplements, 0.5 to 5.0 microg/g for fish, and 0.002 microg/g for bottled water; mean recoveries were in the range of 67 to 89% for BGA supplements and fish, and 59 to 92% for bottled water. Recoveries of BMAA from spiked extracts of hydrolyzed protein from BGA supplements and fish ranged from 66 to 83%. The cleanup developed provides a useful method for surveying foods and supplements for BMAA and protein-bound BMAA.
Lerch, R.N.; Thurman, E.M.; Kruger, E.L.
1997-01-01
This study tested the hypothesis that sorption of hydroxylated atrazine degradation products (HADPs: hydroxyatrazine, HA; deethylhydroxyatrazine, DEHA; and deisopropylhydroxyatrazine, DIHA) to soils occurs by mixed-mode binding resulting from two simultaneous mechanisms: (1) cation exchange and (2) hydrophobic interaction. The objective was to use liquid chromatography and soil extraction experiments to show that mixed-mode binding is the mechanism controlling HADP sorption to soils and is also a mechanism for bound residue. Overall, HADP binding to solid-phase extraction (SPE) sorbents occurred in the order: cation exchange >> octadecyl (C18) >> cyanopropyl. Binding to cation exchange SPE and to a high-performance liquid chromatograph octyl (C8) column showed evidence for mixed-mode binding. Comparison of soil extracted by 0.5 M KH2P04, pH 7.5, or 25% aqueous CH3CN showed that, for HA and DIHA, cation exchange was a more important binding mechanism to soils than hydrophobic interaction. Based on differences between several extractants, the extent of HADP mixed-mode binding to soil occurred in the following order: HA > DIHA > DEHA. Mixed-mode extraction recovered 42.8% of bound atrazine residues from aged soil, and 88% of this fraction was identified as HADPs. Thus, a significant portion of bound atrazine residues in soils is sorbed by the mixed-mode binding mechanisms.
Singh, Varoon; Garg, Prabhat; Chinthakindi, Sridhar; Tak, Vijay; Dubey, Devendra Kumar
2014-02-14
Analysis and identification of nitrogen containing aminoalcohols is an integral part of the verification analysis of chemical weapons convention (CWC). This study was aimed to develop extraction and derivatization of aminoalcohols of CWC relevance by using magnetic dispersive solid-phase extraction (MDSPE) in combination with on-resin derivatization (ORD). For this purpose, sulfonated magnetic cation-exchange resins (SMRs) were prepared using magnetite nanoparticles as core, styrene and divinylbenzene as polymer coat and sulfonic acid as acidic cation exchanger. SMRs were successfully employed as extractant for targeted basic analytes. Adsorbed analytes were derivatized with hexamethyldisilazane (HMDS) on the surface of extractant. Derivatized (silylated) compounds were analyzed by GC-MS in SIM and full scan mode. The linearity of the method ranged from 5 to 200ngmL(-1). The LOD and LOQ ranged from 2 to 6ngmL(-1) and 5 to 19ngmL(-1) respectively. The relative standard deviation for intra-day repeatability and inter-day intermediate precision ranged from 5.1% to 6.6% and 0.2% to 7.6% respectively. Recoveries of analytes from spiked water samples from different sources varied from 28.4% to 89.3%. Copyright © 2014 Elsevier B.V. All rights reserved.
da Silva, Letícia Flores; Guerra, Celito Crivellaro; Klein, Diandra; Bergold, Ana Maria
2017-07-15
Bioactive phenols (BPs) are often targets in red wine analysis. However, other compounds interfere in the liquid chromatography methods used for this analysis. Here, purification procedures were tested to eliminate anthocyanin interference during the determination of 19 red-wine BPs. Liquid chromatography, coupled to a diode array detector (HPLC-DAD) and a mass spectrometer (UPLC-MS), was used to compare the direct injection of the samples with solid-phase extractions: reversed-phase (C18) and strong cation-exchange (SCX). The HPLC-DAD method revealed that, out of 13BPs, only six are selectively analyzed with or without C18 treatment, whereas SCX enabled the detection of all BPs. The recovery with SCX was above 86.6% for eight BPs. Moreover, UPLC-MS demonstrated the potential of SCX sample preparation for the determination of 19BPs. The developed procedure may be extended to the analysis of other red wine molecules or to other analytical methods where anthocyanins may interfere. Copyright © 2017 Elsevier Ltd. All rights reserved.
Semenistaya, Ekaterina; Zvereva, Irina; Krotov, Grigory; Rodchenkov, Grigory
2016-09-01
Currently liquid chromatography - mass spectrometry (LC-MS) analysis after solid-phase extraction (SPE) on weak cation-exchange cartridges is a method of choice for anti-doping analysis of small bioactive peptides such as growth hormone releasing peptides (GHRPs), desmoporessin, LHRH, and TB-500 short fragment. Dilution of urine samples with phosphate buffer for pH adjustment and SPE on weak cation exchange microelution plates was tested as a means to increase throughput of this analysis. Dilution using 200 mM phosphate buffer provides good buffering capacity without affecting the peptides recoveries. SPE on microelution plates was performed on Waters Positive Pressure-96 Processor with subsequent evaporation of eluates in nitrogen flow. Though the use of smaller sample volume decreases the pre-concentration factor and increases the limits of detection of 5 out of 17 detected peptides, the recovery, linearity, and reproducibility of the microelution extraction were comparable with cartridge SPE. The effectiveness of protocols was confirmed by analysis of urine samples containing ipamorelin, and GHRP-6 and its metabolites. SPE after urine sample dilution with buffer can be used for faster sample preparation. The use of microelution plates decreases consumption of solvents and allows processing of up to 96 samples simultaneously. Cartridge SPE with manual рН adjustment remains the best option for confirmation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Barzen-Hanson, Krista A; Davis, Shannon E; Kleber, Markus; Field, Jennifer A
2017-11-07
During fire-fighter training, equipment testing, and emergency responses with aqueous film-forming foams (AFFFs), milligrams per liter concentrations of anionic, zwitterionic, and cationic per- and polyfluoroalkyl substances (PFASs) enter the environment. Because the behavior of zwitterionic and cationic PFASs in the subsurface is unknown, batch sorption experiments were conducted using National Foam AFFF, which contains anionic fluorotelomer sulfonates (FtSs), zwitterionic fluorotelomer sulfonamido betaines (FtSaBs), and cationic 6:2 fluorotelomer sulfonamido amine (FtSaAm). Sorption of the FtSs, FtSaBs, and 6:2 FtSaAm to six soils with varying organic carbon, effective cation-exchange capacity, and anion-exchange capacity was evaluated to determine sorption mechanisms. Due to the poor recovery of the FtSaBs and 6:2 FtSaAm with published PFAS soil extraction methods, a new soil extraction method was developed to achieve good (90-100%) recoveries. The 6:2 FtSaAm was depleted from the aqueous phase in all but one soil, which is attributed to electrostatic and hydrophobic interactions. Sorption of the FtSs was driven by hydrophobic interactions, while the FtSaBs behave more like cations that strongly associate with the solid phase relative to groundwater. Thus, the sorption mechanisms of the FtSs, FtSaBs, and 6:2 FtSaAm are more complex than expected and cannot be predicted by bulk soil properties.
Measurement of bromate in bread by liquid chromatography with post-column flow reactor detection.
Himata, K; Noda, M; Ando, S; Yamada, Y
2000-01-01
This method is suitable for the determination of bromate residues in a variety of baked goods. The peer-verified method trial was performed on white bread, multigrain bread, and coffee cake spiked with known levels of potassium bromate. The analytical portion is extracted with deionized water to remove bromate from the bulk of the baked product. The aqueous extract is carried through a series of steps to remove co-extractives that would interfere with the liquid chromatography (LC) in the determinative step or hasten the deterioration of the LC column. The extract is filtered before passing it through a reversed-phase solid-phase extraction (SPE) column and a cation-exchange column in the silver form to remove lipids and chloride, respectively. Ultrafiltration is then used to remove proteins with molecular weights of >30,000 daltons. Finally, a cation-exchange column in the sodium form is used to remove silver ions from the extract. The determinative step uses LC with a reversed-phase column and an ion-pairing agent in the mobile phase. Detection is based on the post-column reaction of bromate with o-dianisidine to form an oxidation product that is quantitated spectrophotometrically at 450 nm. Overall agreement between the submitting and peer laboratories was quite good. For bromate levels of 10-52 ppb, overall mean recoveries were 76.9 and 78.8% for the submitting and peer laboratories, respectively. The standard deviations were higher for the results of the peer laboratory, probably because of the generally higher level of baseline noise present in the chromatograms. The results demonstrate that the method provides adequate accuracy with low-fat as well as high-fat foods. Bromate at levels as low as 5 ppb (ng/g) can be detected with the method.
Selective retention of basic compounds by metal aquo-ion affinity chromatography.
Asakawa, Yoshiki; Yamamoto, Eiichi; Asakawa, Naoki
2014-10-01
A novel metal aquo-ion affinity chromatography has been developed for the analysis of basic compounds using heat-treated silica gel containing hydrated metal cations (metal aquo-ions) as the packing material. The packing materials of the metal aquo-ion affinity chromatography were prepared by the immobilization of a single metal component such as Fe(III), Al(III), Ag(I), and Ni(II) on silica gel followed by extensive heat treatment. The immobilized metals form aquo-ions to present cation-exchange ability for basic analytes and the cation-exchange ability for basic analytes depends on pKa of the immobilized metal species. In the present study, to evaluate the retention characteristics of metal aquo-ion affinity chromatography, the on-line solid-phase extraction of drugs was investigated. Obtained data clearly evidence the selective retention capability of metal aquo-ion affinity chromatography for basic analytes with sufficient capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A novel technique to determine cobalt exchangeability in soils using isotope dilution.
Wendling, Laura A; Kirby, Jason K; McLaughlin, Michael J
2008-01-01
The environmental risk posed by Co contamination is largely a function of its oxidation state. Our objective was to assess the potential biological availability of Co and the reactions and fate of soluble Co(II) after addition to soils with varying physical and chemical characteristics. A potential risk in quantifying exchangeable Co in soils using isotope dilution techniques is the possible presence of two species of Co in soil solution and adsorbed on soil solid phases [Co(II) and Co(III)], coupled with the possibility that when an isotope of Co is added it may undergo a change in oxidation state during the measurement phase. In this study, we have utilized an isotope dilution technique with cation exchange and high-performance liquid chromatography-inductively coupled plasma-mass spectrometry to determine the isotopically exchangeable Co fraction in several soils with varying characteristics such as differing Al, Fe, and Mn oxide content; pH; and organic carbon content. The application of the cation exchange procedure adjusts measurements of isotopically exchangeable Co to correct for the presence of non-exchangeable 57Co not in equilibrium with the solution phase. Results indicated that oxidation of added 57Co(II) to 57Co(III) or precipitation of 57Co(II) may occur on the surfaces of some soils, particularly those with a high pH or substantial quantities of Mn oxide minerals. No detectable Co(III)(aq) was found in the aqueous extracts of the soils examined.
Determination of tylosin residues in pig tissues using high-performance liquid chromatography.
De Liguoro, M; Anfossi, P; Angeletti, R; Montesissa, C
1998-06-01
In accordance with the maximum residue limit of 100 micrograms kg-1 established by EU legislation, a simple and sensitive high-performance liquid chromatographic (HPLC) method was developed for the measurement of tylosin residues in pig tissues (fat, kidney, liver and muscle). Tylosin, a macrolide antibiotic, is extracted with water-methanol and cleaned-up by solid-phase extraction (SPE) on cation-exchange cartridges using methanol elution. Tylosin was determined by reversed-phase HPLC with UV detection at 280 nm and the mean recovery from pig tissues fortified in the range 50-200 micrograms kg-1 was 70-85%, with intra- and inter-day RSDs in the ranges 3.4-9.1 and 3.9-10.1% respectively.
Casado, Natalia; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel
2017-04-01
A SBA-15 type mesoporous silica was synthesized and bi-functionalized with octadecylsilane (C18) or octylsilane (C8), and sulfonic acid (SO 3 - ) groups in order to obtain materials with reversed-phase/strong cation-exchange mixed-mode retention mechanism. The resulting hybrid materials (SBA-15-C18-SO 3 - and SBA-15-C8-SO 3 - ) were comprehensively characterized. They showed high surface area, high pore volume and controlled porous size. Elemental analysis of the materials revealed differences in the amount of C18 and C8. SBA-15-C18-SO 3 - contained 0.19mmol/g of C18, while SBA-15-C8-SO 3 - presented 0.54mmol/g of C8. The SO 3 - groups anchored to the silica surface of the pore walls were 0.20 and 0.09mmol/g, respectively. The bi-functionalized materials were evaluated as SPE sorbents for the multi-residue extraction of 26 veterinary drug residues in meat samples using ultra-high-performance liquid chromatography coupled to mass spectrometry detector (UHPLC-MS/MS). Different sorbent amounts (100 and 200mg) and organic solvents were tested to optimize the extraction procedure. Both silicas showed big extraction potential and were successful in the extraction of the target analytes. The mixed-mode retention mechanism was confirmed by comparing both silicas with SBA-15 mesoporous silica mono-functionalized with C18 and C8. Best results were achieved with 200mg of SBA-15-C18-SO 3 - obtaining recoveries higher than 70% for the majority of analytes. Copyright © 2016 Elsevier B.V. All rights reserved.
Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry
NASA Technical Reports Server (NTRS)
Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.
2000-01-01
Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, Andrew H.; Ha, Don-Hyung; Ding, Xiaoyue
2014-10-28
Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu 1.81S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tunedmore » from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ~8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.« less
NASA Astrophysics Data System (ADS)
Caldwell, Andrew H.; Ha, Don-Hyung; Ding, Xiaoyue; Robinson, Richard D.
2014-10-01
Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu1.81S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tuned from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ˜8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.
Humic Acid Isolations from Lignite by Ion Exchange Method
NASA Astrophysics Data System (ADS)
Kurniati, E.; Muljani, S.; Virgani, D. G.; Neno, B. P.
2018-01-01
The humic liquid is produced from lignite extraction using alkali solution. Conventional humic acid is obtained by acidifying a humic solution using HCl. The purpose of this research is the formation of solid humic acid from lignite by ion exchange method using cation resin. The results showed that the addition of cation resin was able to reduce the pH from 14 to pH 2 as well as the addition of acid (HCl), indicating the exchange of Na + ions with H + ions. The reduction of pH in the humic solution is influenced by the concentration of sodium ions in the humic solution, the weight of the cation resin, and the ion exchange time. The IR spectra results are in good agreement for humic acid from lignite characterization.
Solid-support substrates for plant growth at a lunar base
NASA Technical Reports Server (NTRS)
Ming, D. W.; Galindo, C.; Henninger, D. L.
1990-01-01
Zeoponics is only in its developmental stages at the Johnson Space Center and is defined as the cultivation of plants in zeolite substrates that contain several essential plant growth cations on their exchange sites, and have minor amounts of mineral phases and/or anion-exchange resins that supply essential plant growth anions. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations with the ability to exchange most of their constituent exchange cations as well as hydrate/dehydrate without change to their structural framework. Because zeolites have extremely high cation exchange capabilities, they are very attractive media for plant growth. It is possible to partially or fully saturate plant-essential cations on zeolites. Zeoponic systems will probably have their greatest applications at planetary bases (e.g., lunar bases). Lunar raw materials will have to be located that are suited for the synthesis of zeolites and other exchange resings. Lunar 'soil' simulants have been or are being prepared for zeolite/smectite synthesis and 'soil' dissolution studies.
Chen, Dawei; Zhang, Yiping; Miao, Hong; Zhao, Yunfeng; Wu, Yongning
2015-11-11
A novel dispersive micro solid phase extraction (DMSPE) method based on a polymer cation exchange material (PCX) was applied to the simultaneous determination of the 30 triazine herbicides in drinking water with ultrahigh-performance liquid chromatography-high-resolution mass spectrometric detection. Drinking water samples were acidified with formic acid, and then triazines were adsorbed by the PCX sorbent. Subsequently, the analytes were eluted with ammonium hydroxide/acetonitrile. The chromatographic separation was performed on an HSS T3 column using water (4 mM ammonium formate and 0.1% formic acid) and acetonitrile (0.1% formic acid) as the mobile phase. The method achieved LODs of 0.2-30.0 ng/L for the 30 triazines, with recoveries in the range of 70.5-112.1%, and the precision of the method was better than 12.7%. These results indicated that the proposed method had the advantages of convenience and high efficiency when applied to the analysis of the 30 triazines in drinking water.
Deng, Fenfang; Yu, Hong; Pan, Xinhong; Hu, Guoyuan; Wang, Qiqin; Peng, Rongfei; Tan, Lei; Yang, Zhicong
2018-02-23
This paper demonstrated the development and validation of an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of five glycopeptide antibiotics in food and biological samples. The target glycopeptide antibiotics were isolated from the samples by solvent extraction, and the extracts were cleaned with a tandem solid-phase extraction step using mixed strong cation exchange and hydrophilic/lipophilic balance cartridges. Subsequently, the analytes were eluted with different solvents, and then quantified by UHPLC-MS/MS in the positive ionization mode with multiple reaction monitoring. Under optimal conditions, good linear correlations were obtained for the five glycopeptide antibiotics in the concentration range of 1.0 μg/L to 20.0 μg/L, and with linear correlation coefficients >0.998. Employing this method, the target glycopeptide antibiotics in food and biological samples were identified with a recovery of 83.0-102%, and a low quantitation limit of 1.0 μg/kg in food and 2.0 μg/L in biological samples with low matrix effects. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Reddy, B. Ramachandra; Priya, D. Neela
Studies are conducted on the leaching and solvent extraction separation of metals from chloride leach liquor of spent nickel-cadmium batteries with Cyanex 923 and 272 diluted in kerosene as the extractants. Dissolution of the metals increases with increase in acid concentration and time but decreases with the solids-to-liquid ratio. Complete dissolution of Cd, Co and Ni can be achieved with 1.5 M HCl at 85 °C for 8 h and a solids-to-liquid ratio of 4. Treatment of leach liquor for the separation of metals with Cyanex 923 shows that increase of extractant and chloride ion concentration increases the percentage extraction of cadmium. The plot of log[distribution coefficient] versus log[extractant]/[Cl -] is linear with a slope of 2, which indicates that the extraction follows a solvation mechanism with the extracted species as CdCl 2·2S (S, Cyanex 923). Moreover, Cyanex 923 enables a clear separation of Cd from Co and Ni. Extraction of cobalt with Cyanex 272 involves a cation-exchange mechanism with the formation of a 1:2 metal-to-ligand complex in the organic phase. Based on the distribution data, extractant concentration and equilibrium pH of the aqueous phase, a possible separation process is proposed for the recovery of cadmium, cobalt and nickel with >99% efficiency.
Analysis of psilocin, bufotenine and LSD in hair.
Martin, Rafaela; Schürenkamp, Jennifer; Gasse, Angela; Pfeiffer, Heidi; Köhler, Helga
2015-03-01
A method for the simultaneous extraction of the hallucinogens psilocin, bufotenine, lysergic acid diethylamide (LSD) as well as iso-LSD, nor-LSD and O-H-LSD from hair with hydrochloride acid and methanol is presented. Clean-up of the hair extracts is performed with solid phase extraction using a mixed-mode cation exchanger. Extracts are measured with liquid chromatography coupled with electrospray tandem mass spectrometry. The method was successfully validated according to the guidelines of the 'Society of Toxicological and Forensic Chemistry' (GTFCh). To obtain reference material hair was soaked in a solution of the analytes in dimethyl sulfoxide/methanol to allow incorporation into the hair. These fortified hair samples were used for method development and can be employed as quality controls. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chen, Y C; Tsai, M F
2000-01-01
Previous work has demonstrated that a combination of solid-phase extraction with surface-assisted laser desorption/ionization (SPE-SALDI) mass spectrometry can be applied to the determination of trace nitrophenols in water. An improved method to lower the detection limit of this hyphenated technique is described in this present study. Activated carbon powder is used as both the SPE adsorbent and the SALDI solid in the analysis by SPE-SALDI. The surface of the activated carbon is modified by passing an aqueous solution of a cationic surfactant through the SPE cartridge. The results demonstrate that the sensitivity for nitrophenols in the analysis by SPE-SALDI can be improved by using cationic surfactants to modify the surface of the activated carbon. The detection limit for nitrophenols is about 25 ppt based on a signal-to-noise ratio of 3 by sampling from 100 mL of solution. Copyright 2000 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, Andrew H.; Ha, Don-Hyung; Robinson, Richard D., E-mail: rdr82@cornell.edu
2014-10-28
Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu{sub 1.81}S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tunedmore » from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ∼8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.« less
Baharfar, Mahroo; Yamini, Yadollah; Seidi, Shahram; Arain, Muhammad Balal
2018-05-30
A new design of electromembrane extraction (EME) as a lab on-a-chip device was proposed for the extraction and determination of phenazopyridine as the model analyte. The extraction procedure was accomplished by coupling of EME and the packing of a sorbent. The analyte was extracted under the applied electrical field across a membrane sheet impregnated by nitrophenyl octylether (NPOE) into an acceptor phase. It was followed by the absorption of the analyte on strong cation exchanger as a sorbent. The designed chip contained separate spiral channels for donor and acceptor phases featuring embedded platinum electrodes to enhance extraction efficiency. The selected donor and acceptor phases were 0 mM HCl and 100 mM HCl, respectively. The on-chip electromembrane extraction was carried out under the voltage level of 70 V for 50 min. The analysis was carried out by two modes of a simple Red-Green-Blue (RGB) image analysis tool and a conventional HPLC-UV system. After the absorption of the analyte on the solid phase, its color changed and a digital picture of the sorbent was taken for the RGB analysis. The effective parameters on the performance of the chip device, comprising the EME and solid phase microextraction steps, were distinguished and optimized. The accumulation of the analyte on the solid phase showed excellent sensitivity and a limit of detection (LOD) lower than 1.0 μg L-1 achieved by an image analysis using a smartphone. This device also offered acceptable intra- and inter-assay RSD% (<10%). The calibration curves were linear within the range of 10-1000 μg L-1 and 30-1000 μg L-1 (r2 > 0.9969) for HPLC-UV and RGB analysis, respectively. To investigate the applicability of the method in complicated matrices, urine samples of patients being treated with phenazopyridine were analyzed.
Electrochemically Switchable Polymeric Membrane Ion-Selective Electrodes.
Zdrachek, Elena; Bakker, Eric
2018-06-07
We present here for the first time a solid contact ion-selective electrode suitable for the simultaneous sensing of cations (tetrabutylammonium) and anions (hexafluorophosphate), achieved by electrochemical switching. The membrane is based on a thin plasticized polyurethane membrane deposited on poly(3-octylthiophene) (POT) and contains a cation exchanger and lipophilic electrolyte (ETH 500). The cation exchanger is initially in excess; the ion-selective electrode exhibits an initial potentiometric response to cations. During an oxidative current pulse, POT is converted into POT + , which results in the expulsion of cations from the membrane followed by the extraction of anions from the sample solution to fulfill the electroneutrality condition. This creates a defined excess of lipophilic cation in the membrane, resulting in a potentiometric anion response. A reductive current pulse restores the original cation response by triggering the conversion of POT + back into POT, which is accompanied by the expulsion of anions from the membrane and the extraction of cations from the sample solution. Various current pulse magnitudes and durations are explored, and the best results in terms of response slope values and signal stability were observed with an oxidation current pulse of 140 μA cm -2 applied for 8 s and a reduction current pulse of -71 μA cm -2 applied for 8 s.
Chen, Dawei; Miao, Hong; Zou, Jianhong; Cao, Pei; Ma, Ning; Zhao, Yunfeng; Wu, Yongning
2015-01-21
This paper presents a new analytical method for the determination of morpholine residues in citrus and apples using a novel dispersive micro-solid-phase extraction (DMSPE), followed by ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). Samples were extracted with 1% formic acid in acetonitrile/water (1:1, v/v) and then cleaned up using the DMSPE procedure. Morpholine from the extract was adsorbed to a polymer cation exchange sorbent and eluted with ammonium hydroxide/acetonitrile (3:97, v/v) through a 1 mL syringe with a 0.22 μm nylon syringe filter. All of the samples were analyzed by UHPLC-HRMS/MS on a Waters Acquity BEH hydrophilic interaction chromatography column using 0.1% formic acid and 4 mM ammonium formate in water/acetonitrile as the mobile phase with gradient elution. The method showed good linearity (R(2) > 0.999) in the range of 1-100 μg/L for the analyte. The limit of detection and limit of quantitation values of morpholine were 2 and 5 μg/kg, respectively. The average recoveries of morpholine from the citrus and apple samples spiked at three different concentrations (5, 20, and 100 μg/kg) were in a range from 78.4 to 102.7%.
Chiap, P; Rbeida, O; Christiaens, B; Hubert, Ph; Lubda, D; Boos, K S; Crommen, J
2002-10-25
A new kind of silica-based restricted-access material (RAM) has been tested in pre-columns for the on-line solid-phase extraction (SPE) of basic drugs from directly injected plasma samples before their quantitative analysis by reversed-phase liquid chromatography (LC), using the column switching technique. The outer surface of the porous RAM particlescontains hydrophilic diol groups while sulphonic acid groups are bound to the internal surface, which gives the sorbent the properties of a strong cation exchanger towards low molecular mass compounds. Macromolecules such as proteins have no access to the internal surface of the pre-column due to their exclusion from the pores and are then flushed directly out. The retention capability of this novel packing material has been tested for some hydrophilic basic drugs, such as atropine, fenoterol, ipratropium, procaine, sotalol and terbutaline, used as model compounds. The influence of the composition of the washing liquid on the retention of the analytes in the pre-column has been investigated. The elution profiles of the different compounds and the plasma matrix as well as the time needed for the transfer of the analytes from the pre-column to the analytical column were determined in order to deduce the most suitable conditions for the clean-up step and develop on-line methods for the LC determination of these compounds in plasma. The cationic exchange sorbent was also compared to another RAM, namely RP-18 ADS (alkyl diol silica) sorbent with respect to retention capability towards basic analytes.
Salas, Daniela; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa Maria
2018-01-01
The aim of the present study is to broaden the applications of mixed-mode ion-exchange solid-phase extraction sorbents to extract both basic and acidic compounds simultaneously by combining the sorbents in a single cartridge and developing a simplified extraction procedure. Four different cartridges containing negative and positive charges in the same configuration were evaluated and compared to extract a group of basic, neutral, and acidic pharmaceuticals selected as model compounds. After a thorough optimization of the extraction conditions, the four different cartridges showed to be capable of retaining basic and acidic pharmaceuticals simultaneously through ionic interactions, allowing the introduction of a washing step with 15 mL methanol to eliminate interferences retained by hydrophobic interactions. Using the best combined cartridge, a method was developed, validated, and further applied to environmental waters to demonstrate that the method is promising for the extraction of basic and acidic compounds from very complex samples.
Royer, A; Laporte, F; Bouchonnet, S; Communal, P-Y
2006-03-03
An analytical method has been developed for the determination of residues of ethephon (2-chloroethyl phosphonic acid) in drinking and surface water. The procedure is based on de-ionisation with an anion/cation-exchange resin, solid phase extraction by means of anion-exchange polystyrene-divinylbenzene extraction disks, elution with a mixture of methanol and 10 M hydrochloric acid (98/2, v/v), redisolution into acetonitrile after evaporation and silylation with N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA). Quantification is performed by gas chromatography with ion-trap cubic mass spectrometric detection in the electron impact mode (GC-EI-MS3). Method validation was conducted using samples of mineral, tap, and river water that were fortified with ethephon at concentration levels ranging from 0.1 to 1.0 microg/L. The mean recovery from all the fortified samples (n = 36) amounted to 88% with a relative standard deviation of 17%. The method, therefore, was shown to allow accurate determination of ethephon residues in drinking and surface water with a limit of quantification of 0.1 microg/L.
Process for removal of ammonia and acid gases from contaminated waters
King, C. Judson; MacKenzie, Patricia D.
1985-01-01
Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.
Process for removal of ammonia and acid gases from contaminated waters
King, C.J.; Mackenzie, P.D.
1982-09-03
Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.
Zhang, Wenzhong; Hietala, Sami; Khriachtchev, Leonid; Hatanpää, Timo; Doshi, Bhairavi; Koivula, Risto
2018-06-21
The lanthanides (Ln) are an essential part of many advanced technologies. Our societal transformation toward renewable energy drives their ever-growing demand. The similar chemical properties of the Ln pose fundamental difficulties in separating them from each other, yet high purity elements are crucial for specific applications. Here, we propose an intralanthanide separation method utilizing a group of titanium(IV) butyl phosphate coordination polymers as solid-phase extractants. These materials are characterized, and they contain layered structures directed by the hydrophobic interaction of the alkyl chains. The selective Ln uptake results from the transmetalation reaction (framework metal cation exchange), where the titanium(IV) serves as sacrificial coordination centers. The "tetrad effect" is observed from a dilute Ln 3+ mixture. However, smaller Ln 3+ ions are preferentially extracted in competitive binary separation models between adjacent Ln pairs. The intralanthanide ion-exchange selectivity arises synergistically from the coordination and steric strain preferences, both of which follow the reversed Ln contraction order. A one-step aqueous separation of neodymium (Nd) and dysprosium (Dy) is quantitatively achievable by simply controlling the solution pH in a batch mode, translating into a separation factor of greater than 2000 and 99.1% molar purity of Dy in the solid phase. Coordination polymers provide a versatile platform for further exploring selective Ln separation processes via the transmetalation process.
Qi, Ping; Liang, Zhi-An; Wang, Yu; Xiao, Jian; Liu, Jia; Zhou, Qing-Qiong; Zheng, Chun-Hao; Luo, Li-Ni; Lin, Zi-Hao; Zhu, Fang; Zhang, Xue-Wu
2016-03-11
In this study, mixed hemimicelles solid-phase extraction (MHSPE) based on sodium dodecyl sulfate (SDS) coated nano-magnets Fe3O4 was investigated as a novel method for the extraction and separation of four banned cationic dyes, Auramine O, Rhodamine B, Basic orange 21 and Basic orange 22, in condiments prior to HPLC detection. The main factors affecting the extraction of analysts, such as pH, surfactant and adsorbent concentrations and zeta potential were studied and optimized. Under optimized conditions, the proposed method was successful applied for the analysis of banned cationic dyes in food samples such as chili sauce, soybean paste and tomato sauce. Validation data showed the good recoveries in the range of 70.1-104.5%, with relative standard deviations less than 15%. The method limits of determination/quantification were in the range of 0.2-0.9 and 0.7-3μgkg(-1), respectively. The selective adsorption and enrichment of cationic dyes were achieved by the synergistic effects of hydrophobic interactions and electrostatic attraction between mixed hemimicelles and the cationic dyes, which also resulted in the removal of natural pigments interferences from sample extracts. When applied to real samples, RB was detected in several positive samples (chili powders) within the range from 0.042 to 0.177mgkg(-1). These results indicate that magnetic MHSPE is an efficient and selective sample preparation technique for the extraction of banned cationic dyes in a complex matrix. Copyright © 2016 Elsevier B.V. All rights reserved.
Resolving Confined 7Li Dynamics of Uranyl Peroxide Capsule U 24
Xie, Jing; Neal, Harrison A.; Szymanowski, Jennifer; ...
2018-04-18
Here, we obtained a kerosene-soluble form of the lithium salt [UO 2(O 2)(OH) 2] 24 phase (Li-U 24), by adding cetyltrimethylammonium bromide surfactant to aqueous Li-U 24. Interestingly, its variable-temperature solution 7Li NMR spectroscopy resolves two narrowly spaced resonances down to –10 °C, which shift upfield with increasing temperature, and finally coalesce at temperatures > 85 °C. Comparison with solid-state NMR demonstrates that the Li dynamics in the Li-U 24-CTA phase involves only exchange between different local encapsulated environments. This behavior is distinct from the rapid Li exchange dynamics observed between encapsulated and external Li environments for Li-U 24 inmore » both the aqueous and the solid-state phases. Density functional theory calculations suggest that the two experimental 7Li NMR chemical shifts are due to Li cations coordinated within the square and hexagonal faces of the U 24 cage, and they can undergo exchange within the confined environment, as the solution is heated. Very different than U 24 in aqueous media, there is no evidence that the Li cations exit the cage, and therefore, this represents a truly confined space.« less
Resolving Confined 7Li Dynamics of Uranyl Peroxide Capsule U 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jing; Neal, Harrison A.; Szymanowski, Jennifer
Here, we obtained a kerosene-soluble form of the lithium salt [UO 2(O 2)(OH) 2] 24 phase (Li-U 24), by adding cetyltrimethylammonium bromide surfactant to aqueous Li-U 24. Interestingly, its variable-temperature solution 7Li NMR spectroscopy resolves two narrowly spaced resonances down to –10 °C, which shift upfield with increasing temperature, and finally coalesce at temperatures > 85 °C. Comparison with solid-state NMR demonstrates that the Li dynamics in the Li-U 24-CTA phase involves only exchange between different local encapsulated environments. This behavior is distinct from the rapid Li exchange dynamics observed between encapsulated and external Li environments for Li-U 24 inmore » both the aqueous and the solid-state phases. Density functional theory calculations suggest that the two experimental 7Li NMR chemical shifts are due to Li cations coordinated within the square and hexagonal faces of the U 24 cage, and they can undergo exchange within the confined environment, as the solution is heated. Very different than U 24 in aqueous media, there is no evidence that the Li cations exit the cage, and therefore, this represents a truly confined space.« less
Identifying and Quantifying Chemical Forms of Sediment-Bound Ferrous Iron.
NASA Astrophysics Data System (ADS)
Kohler, M.; Kent, D. B.; Bekins, B. A.; Cozzarelli, I.; Ng, G. H. C.
2015-12-01
Aqueous Fe(II) produced by dissimilatory iron reduction comprises only a small fraction of total biogenic Fe(II) within an aquifer. Most biogenic Fe(II) is bound to sediments on ion exchange sites; as surface complexes and, possibly, surface precipitates; or incorporated into solid phases (e.g., siderite, magnetite). Different chemical forms of sediment-bound Fe(II) have different reactivities (e.g., with dissolved oxygen) and their formation or destruction by sorption/desorption and precipitation/dissolution is coupled to different solutes (e.g., major cations, H+, carbonate). We are quantifying chemical forms of sediment-bound Fe(II) using previously published extractions, novel extractions, and experimental studies (e.g., Fe isotopic exchange). Sediments are from Bemidji, Minnesota, where biodegradation of hydrocarbons from a burst oil pipeline has driven extensive dissimilatory Fe(III) reduction, and sites potentially impacted by unconventional oil and gas development. Generally, minimal Fe(II) was mobilized from ion exchange sites (batch desorption with MgCl2 and repeated desorption with NH4Cl). A < 2mm sediment fraction from the iron-reducing zone at Bemidji had 1.8umol/g Fe(II) as surface complexes or carbonate phases (sodium acetate at pH 5) of which ca. 13% was present as surface complexes (FerroZine extractions). Total bioavailable Fe(III) and biogenic Fe(II) (HCl extractions) was 40-50 umole/g on both background and iron-reducing zone sediments . Approximately half of the HCl-extractable Fe from Fe-reducing zone sediments was Fe(II) whereas 12 - 15% of Fe extracted from background sediments was present as Fe(II). One-third to one-half of the total biogenic Fe(II) extracted from sediments collected from a Montana prairie pothole located downgradient from a produced-water disposal pit was present as surface-complexed Fe(II).
Stout, Peter R; Horn, Carl K; Klette, Kevin L
2002-01-01
To facilitate analysis of high sample volumes, an extraction, derivatization and gas chromatographic-mass spectrometric analysis method was developed to simultaneously determine amphetamine (AMP), methamphetamine (MAMP), 3,4-methylenedioxyamphetamine (MDA) 3,4-methylenedioxymethamphetamine (MDMA), and 3,4-methylenedioxyethylamphetamine (MDEA) in urine. This method utilized a positive-pressure manifold cation-exchange polymer-based solid-phase extraction followed by elution directly into automated liquid sampler (ALS) vials. Rapid derivatization was accomplished using heptafluorobutyric anhydride (HFBA). Recoveries averaged 90% or greater for each of the compounds. Limits of detection were 62.5 ng/mL (AMP and MDEA), 15.6 ng/mL (MAMP), and 31.3 ng/mL (MDA and MDMA) using a 2-mL sample volume. The method was linear to 5000 ng/mL for all compounds using MDMA-d5 and MAMP-d14 as internal standards. Over 200 human urine samples previously determined to contain the target analytes were analyzed using the method. Excellent agreement was seen with previous quantitations. The method was challenged with 75 potentially interfering compounds and no interferences were seen. These interfering compounds included ephedrine, pseudoephedrine, phenylpropanolamine, and phenethylamine. The method resulted in dramatic reductions in processing time and waste production.
Zhao, Miao; Wu, Xiao-Jie; Fan, Ya-Xin; Guo, Bei-Ning; Zhang, Jing
2016-05-30
A rapid ultra high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) assay method was developed for determination of CMS and formed colistin in human plasma and urine. After extraction on a 96-well SPE Supra-Clean Weak Cation Exchange (WCX) plate, the eluents were mixed and injected into the UHPLC-MS/MS system directly. A Phonomenex Kinetex XB-C18 analytical column was employed with a mobile phase consisting of solution "A" (acetonitrile:methanol, 1:1, v/v) and solution "B" (0.1% formic acid in water, v/v). The flow rate was 0.4 mL/min with gradient elution over 3.5 min. Ions were detected in ESI positive ion mode and the precursor-product ion pairs were m/z 390.7/101.3 for colistin A, m/z 386.0/101.2 for colistin B, and m/z 402.3/101.2 for polymyxin B1 (IS), respectively. The lower limit of quantification (LLOQ) was 0.0130 and 0.0251 mg/L for colistin A and colistin B in both plasma and urine with accuracy (relative error, %) <± 12.6% and precision (relative standard deviation, %) <± 10.8%. Stability of CMS was demonstrated in biological samples before and during sample treatment, and in the extract. This new analytical method provides high-throughput treatment and optimized quantification of CMS and colistin, which offers a highly efficient tool for the analysis of a large number of clinical samples as well as routine therapeutic drug monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Shuo; Li, Shuming; Zhang, Xiangming; Wei, Yunfang; Zhang, Meiyun; Zhang, Jing
2015-07-01
To develop a comprehensive method for simultaneous analysis of sulfonamides and their metabolites in drinking water by high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Different solid-phase extraction columns were compared with respect to the recovery of target drugs from drinking water. The drinking water samples were adjusted to 3 by HCl and purified by a mix mode cation-ion exchange solid-phase extraction (SPE), following determination using LG-MS/MS. A total of 21 sulfonamides were separated by a C15 column (2.1 mm x 100 mm, 1.7 µm) and analyzed under positive ion mode with multi-reaction monitoring. The matrix-matched external standard calibration was used for quantification. The method quantification limits for 21 analytes were 0.03-0.63 ng/L with overall recoveries of 50.1%-114.9%, and the relative standard deviations less than 20%. The method was finally used to analyze sulfonamides in drinking water in Beijing, and 5 target compounds (sulfadiazine, sulfathiazole, sulfapyridine, trimethoprim and sulfamethazine) were detected at a concentration range of 0.08-32.54 ng/L. This method could be applied in simultaneous analysis of sulfonamides and their metabolites in drinking water samples.
Nahar, Limon Khatun; Cordero, Rosa Elena; Nutt, David; Lingford-Hughes, Anne; Turton, Samuel; Durant, Claire; Wilson, Sue; Paterson, Sue
2016-01-01
Abstract A highly sensitive and fully validated method was developed for the quantification of baclofen in human plasma. After adjusting the pH of the plasma samples using a phosphate buffer solution (pH 4), baclofen was purified using mixed mode (C8/cation exchange) solid-phase extraction (SPE) cartridges. Endogenous water-soluble compounds and lipids were removed from the cartridges before the samples were eluted and concentrated. The samples were analyzed using triple-quadrupole liquid chromatography–tandem mass spectrometry (LC–MS-MS) with triggered dynamic multiple reaction monitoring mode for simultaneous quantification and confirmation. The assay was linear from 25 to 1,000 ng/mL (r2 > 0.999; n = 6). Intraday (n = 6) and interday (n = 15) imprecisions (% relative standard deviation) were <5%, and the average recovery was 30%. The limit of detection of the method was 5 ng/mL, and the limit of quantification was 25 ng/mL. Plasma samples from healthy male volunteers (n = 9, median age: 22) given two single oral doses of baclofen (10 and 60 mg) on nonconsecutive days were analyzed to demonstrate method applicability. PMID:26538544
A transferable force field for CdS-CdSe-PbS-PbSe solid systems
NASA Astrophysics Data System (ADS)
Fan, Zhaochuan; Koster, Rik S.; Wang, Shuaiwei; Fang, Changming; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; van Huis, Marijn A.; Vlugt, Thijs J. H.
2014-12-01
A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., "Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth," Nano Lett. 14, 3661-3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.
Bortolomeazzi, Renzo; Munari, Marina; Anese, Monica; Verardo, Giancarlo
2012-12-15
In this work, a rapid and reliable purification method based on a single mixed solid phase extraction (SPE) column, for the determination of acrylamide in roasted coffee by liquid chromatography-tandem mass spectrometry, was developed. Deuterium labelled d(3)-acrylamide was used as internal standard. Acrylamide was extracted by 10 mL of water and the extract purified by a single SPE column consisting of 0.5 g of an in-house prepared mixture of C18, strong cation (SCX) and anion exchange (SAX) sorbents in the ratio 2/1.5/1.5 (w/w/w). The amount of the three sorbents was optimised in order to eliminate the main interfering compounds present in coffee extracts, such as melanoidins, trigonelline, chlorogenic acids and caffeine. The SPE procedure was very simple and consisted of pushing 1 mL of an aqueous coffee extract through the SPE column followed by 1 mL of water which was collected for the analysis. The method was tested on six samples of roasted coffee of different composition and roasting level. The repeatability of the method, expressed as relative standard deviation (n=6), was lower than 5%. The recovery of acrylamide at three spiked levels ranged from 92% to 95%. The limits of detection (LOD) and quantitation (LOQ) were 5 and 16 μg kg(-1), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui
2017-02-01
A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu2 +), cobalt ions (Co2 +) and nickel ions (Ni2 +) mixture was 0.10 μg L- 1, 0.15 μg L- 1 and 0.13 μg L- 1, respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field.
Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui
2017-02-15
A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu 2+ ), cobalt ions (Co 2+ ) and nickel ions (Ni 2+ ) mixture was 0.10μgL -1 , 0.15μgL -1 and 0.13μgL -1 , respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field. Copyright © 2016 Elsevier B.V. All rights reserved.
Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek
2013-11-15
A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry). Copyright © 2013 Elsevier B.V. All rights reserved.
A review on solid phase extraction of actinides and lanthanides with amide based extractants.
Ansari, Seraj A; Mohapatra, Prasanta K
2017-05-26
Solid phase extraction is gaining attention from separation scientists due to its high chromatographic utility. Though both grafted and impregnated forms of solid phase extraction resins are popular, the later is easy to make by impregnating a given organic extractant on to an inert solid support. Solid phase extraction on an impregnated support, also known as extraction chromatography, combines the advantages of liquid-liquid extraction and the ion exchange chromatography methods. On the flip side, the impregnated extraction chromatographic resins are less stable against leaching out of the organic extractant from the pores of the support material. Grafted resins, on the other hand, have a higher stability, which allows their prolong use. The goal of this article is a brief literature review on reported actinide and lanthanide separation methods based on solid phase extractants of both the types, i.e., (i) ligand impregnation on the solid support or (ii) ligand functionalized polymers (chemically bonded resins). Though the literature survey reveals an enormous volume of studies on the extraction chromatographic separation of actinides and lanthanides using several extractants, the focus of the present article is limited to the work carried out with amide based ligands, viz. monoamides, diamides and diglycolamides. The emphasis will be on reported applied experimental results rather than on data pertaining fundamental metal complexation. Copyright © 2017 Elsevier B.V. All rights reserved.
Ferrar, Imma; Barceló, Damià; Thurman, E.M.
1999-01-01
Phenylurea and triazine herbicides, including some metabolites, were isolated from water and soil extracts by solid-phase extraction using a layered system of two extraction disks, a method called double-disk solid-phase extraction. The first disk consisted of strong anion exchange (SAX) of 10-μm styrene divinylbenzene (SDB) particles embedded in Teflon, and the second disk was a C18 disk of 10-μm particles also embedded in Teflon. A volume of 500 mL of water or aqueous soil extract is passed through the layered system with the SAX disk first. The purpose of the SAX disk is to remove the humic and fulvic acids from the water or aqueous soil extract by ion exchange through their carboxyl groups. Even during methanol elution of herbicides, the humic substances remain bound to the SAX disk with >85% retention. Elution with methanol results in more than 90% recovery of the herbicides from the layered extraction disks. Removal of the humic and fulvic acids results in greater sensitivity for diode array detection quantitation (0.05 μg/L for herbicides) by substantially reducing the absorbance of the humic peak on the LC chromatogram. The herbicides adsorb to the SAX disk either through hydrogen bonding to the anion-exchange sites or by hydrophobic interaction with the SDB surface of the anion-exchange disk. The method was tested for the analysis of natural water samples from the Mississippi Embayment, a cotton-growing area of the southeastern United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makrlik, Emanuel; Toman, Petr; Vanura, Petr
2013-01-01
From extraction experiments and -activity measurements, the exchange extraction constant corresponding to the equilibrium Tl+ (aq) + 1 Cs+ (org) 1 Tl+ (org) + Cs+ (aq) taking place in the two-phase water phenyltrifluoromethyl sulfone (abbrev. FS 13) system (1 = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, org = FS 13 phase) was evaluated as log Kex (Tl+, 1 Cs+) = 1.7 0.1. Further, the extraordinarily high stability constant of the 1 Tl+ complex in FS 13 saturated with water was calculated for a temperature of 25 C: log org(1 Tl+) = 13.1 0.2. Finally, by using quantum mechanical DFT calculations, themore » most probable structure of the cationic complex species 1 Tl+ was derived. In the resulting 1 Tl+ complex, the central cation Tl+ is bound by eight bond interactions to six oxygen atoms from the respective 18-crown-6 moiety and to two carbons of the corresponding two benzene rings of the parent receptor 1 via cation interaction.« less
Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein
2013-01-01
The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 - 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study.
Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein
2013-01-01
Objective(s): The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. Materials and Methods: The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. Results: The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 – 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. Conclusion: The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study. PMID:23638292
Sun, Hanwen; Wang, Fengchi; Ai, Lianfeng; Guo, Chunhai; Chen, Ruichun
2009-01-01
A sensitive method based on solid-phase extraction-liquid chromatography-tandem mass spectrometry interfaced with electrospray ionization (SPE-LC-MS/MS-ESI) was developed for the simultaneous determination of 8 banned nitroimidazole (NOZ) drugs including metronidazole (MNZ), ronidazole (RNZ), dimetridazole (DMZ), tinidazole, ornidazole, secnidazole, metronidazole-OH (MNZOH, the metabolite of MNZ), and 2-hydroxymethyl-1-methyl-5-nitroimidazole (HMMNI, the metabolite of RNZ and DMZ) in natural casings. After extraction with ethyl acetate and evaporation, the NOZs were reconstituted in ethyl acetate and purified on a strong cation-exchange SPE column, and then LC/MS/MS analysis was performed by positive ESI applying multiple reaction monitoring of 2 transition reactions for each compound. The method was validated according to the European Union requirements (Commission Decision 2002/657/EC). Specificity, linearity, decision limit (CCalpha), detection capability (CCbeta), accuracy, and precision were determined. Average recoveries of the 8 NOZs from natural animal casing fortified at 3 levels (0.1, 0.5, and 1 microg/kg) ranged from 87.3 to 116.5%. The calculated CCalpha for NOZs ranged from 0.029 to 0.049 microg/kg, and CCbeta ranged from 0.049 to 0.083 microg/kg. Repeatability was in the range of 3.35-10.1%, and within-laboratory reproducibility was <10.3%.
Parisis, Nikolaos A; Giokas, Dimosthenis L; Vlessidis, Athanasios G; Evmiridis, Nicholaos P
2005-12-02
The ability of vesicle-coated silica to aid the extraction of organic compounds from water prior to liquid chromatographic analysis is presented for the first time. The method is based on the formation of silica supported cationic multi-lamellar vesicles of gemini surfactants inherently ensuring the presence of hydrophilic and hydrophobic sites for the partitioning of analytes bearing different properties. Method development is illustrated by studying the adsolubilization of UV absorbing chemicals from swimming pool water. Due to the requirement for external energy input (intense shearing) a method based on solid-phase dispersion (SPD) was applied producing better results than off-line solid-phase extraction (SPE). Meticulous investigation of the experimental parameters was conducted in order to elucidate the mechanisms behind the proposed extraction pattern. Analyte recoveries were quantitative under the optimum experimental conditions offering recoveries higher than 96% with RSD values below 5%.
Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis.
Masuda, Akiko; Dohmae, Naoshi
2010-11-01
In this study, we developed an automatic protein hydrolysis system using strong cation-exchange resins as solid acid catalysts. Examining several kinds of inorganic solid acids and cation-exchange resins, we found that a few cation-exchange resins worked as acid catalysts for protein hydrolysis when heated in the presence of water. The most efficient resin yielded amounts of amino acids that were over 70% of those recovered after conventional hydrolysis with hydrochloric acid and resulted in amino acid compositions matching the theoretical values. The solid-acid hydrolysis was automated by packing the resin into columns, combining the columns with a high-performance liquid chromatography system, and heating them. The amino acids that constitute a protein can thereby be determined, minimizing contamination from the environment.
Nahar, Limon Khatun; Cordero, Rosa Elena; Nutt, David; Lingford-Hughes, Anne; Turton, Samuel; Durant, Claire; Wilson, Sue; Paterson, Sue
2016-03-01
A highly sensitive and fully validated method was developed for the quantification of baclofen in human plasma. After adjusting the pH of the plasma samples using a phosphate buffer solution (pH 4), baclofen was purified using mixed mode (C8/cation exchange) solid-phase extraction (SPE) cartridges. Endogenous water-soluble compounds and lipids were removed from the cartridges before the samples were eluted and concentrated. The samples were analyzed using triple-quadrupole liquid chromatography-tandem mass spectrometry (LC-MS-MS) with triggered dynamic multiple reaction monitoring mode for simultaneous quantification and confirmation. The assay was linear from 25 to 1,000 ng/mL (r(2) > 0.999; n = 6). Intraday (n = 6) and interday (n = 15) imprecisions (% relative standard deviation) were <5%, and the average recovery was 30%. The limit of detection of the method was 5 ng/mL, and the limit of quantification was 25 ng/mL. Plasma samples from healthy male volunteers (n = 9, median age: 22) given two single oral doses of baclofen (10 and 60 mg) on nonconsecutive days were analyzed to demonstrate method applicability. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Okumura, M; Tong, L; Fujinaga, K; Seike, Y
2001-05-01
A simple and rapid in situ preconcentration method for the determination of phosphate in environmental waters has been developed for field analysis. This method is based on solid-phase extraction on a zirconium-loaded Sep-Pack Accell CM cartridge (Zr-SP) and is applicable to studies in which sampling is performed by use of a graduated syringe to prevent contamination and to ensure easy operation at sampling sites. The Zr-SP cartridge was prepared by passing 0.1 mol L(-1) zirconium solution through a Sep-Pak Accell CM cartridge, packed with cation exchange sorbent based on a silica matrix. The adsorption of phosphate and its desorption depend only on the pH of the solution. A water sample containing phosphate was adjusted to pH 2 and passed through the Zr-SP cartridge to collect it. The retained phosphate was quantitatively eluted with 0.5 mol L(-1) sodium hydroxide solution. The phosphate retained in the Zr-SP cartridge was stable for at least one month. The established preconcentration method was successfully applied to brackish lake waters to investigate seasonal changes in the distribution and behavior of phosphate in a brackish lake.
Solid Phase Luminescence of Several Rare Earth Ions on Ion-Exchange Films
NASA Technical Reports Server (NTRS)
Tanner, Stephen P.; Street, Kenneth W., Jr.
1999-01-01
The development and characterization of a novel ion-exchange film for solid-phase fluorometry and phosphorimetry is reported. This new cation-exchange material is suitable for spectroscopic applications in the ultraviolet and visible regions. It is advantageous because it, as a single entity, is easily recovered from solution and mounted in the spectrofluorometers. After preconcentration on the film, the luminescence intensity of lanthanide ions is several orders of magnitude greater than that of the corresponding solution, depending on the volume of solution and the amount of film. This procedure allows emission spectral measurements and determination of lanthanide ions at solution concentrations of < 5 (micro)g/L. The film may be stored for subsequent reuse or as a permanent record of the analysis. The major drawback to the use of the film is slow uptake of analyte due to diffusion limitations.
Di Sabatino, Marcello; Di Pietra, Anna Maria; Benfenati, Luigi; Di Simone, Bruno
2007-01-01
A liquid chromatography (LC) method is described for the simultaneous determination of 10 commonly used sulfonamide drug residues in meat. The 10 sulfonamide drugs of interest were sulfadiazine, sulfathiazole, sulfamerazine, sulfadimidine, sulfamethizole, sulfamonomethoxine, sulfachloropyridazine, sulfadoxine, sulfadimethoxine, and sulfaquinoxaline. The residues were extracted with acetone-chloroform (1 + 1). Sulfonamides were quantitatively retained in the extracting solution and afterwards eluted from a cation-exchanger solid-phase extraction cartridge with a solution of methanol-aqueous ammonia. The solution was dried, reconstituted with 5 mL methanol and filtered before analysis by LC-ultraviolet using a C18 column with a mobile phase gradient of potassium dihydrogen phosphate buffer, pH 2.5, and methanol-acetonitrile (30 + 70, v/v). The method was applied to cattle, swine, chicken, and sheep muscle tissues. The validation was performed with a fortified cattle meat sample at level of 100 ppb, which is the administrative maximum residue limit for sulfonamides in the European Union. The limit of quantitation for all sulfonamides was between 3 and 14 ppb. Recovery was evaluated for different meat matrixes. The mean recovery values were between 66.3% for pork meat samples and 71.5% for cattle meat samples.
Kamaruddin, Amirah Farhan; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Md Shukri, Dyia S; Abdul Keyon, Aemi S
2017-11-01
Polypyrrole-magnetite dispersive micro-solid-phase extraction method combined with ultraviolet-visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole-magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro-solid-phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole-magnetite dispersive micro-solid phase-extraction conditions were sample pH 8, 60 mg polypyrrole-magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole-magnetite dispersive micro-solid-phase extraction with ultraviolet-visible method showed good linearity in the range of 0.05-7 mg/L (R 2 > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4-111.3%) with relative standard deviations < 10%. The method was successfully applied to the analysis of dyes in textile wastewater samples where the concentration found was 1.03 mg (RSD ±7.9%) and 1.13 mg/L (RSD ± 4.6%) for Rhodamine 6G and crystal violet, respectively. It can be concluded that this method can be adopted for the rapid extraction and determination of dyes at trace concentration levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makrlik, Emanuel; Selucky, P.; Vanura, Petr
2013-01-01
From extraction experiments and c-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + NaL+ (nb) , ML+ (nb) + Na+ (aq) taking place in the two-phase water nitrobenzene system (M+ = Li+, H3O+, NH+4; L = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: zH3O+ < Li+ < NH+4.
Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz
2013-12-15
A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid-liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L(-1)) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid-liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L(-1), and a relative standard deviation of 4.1% (n=6) at 400 ng L(-1) were obtained. The method was successfully applied to the determination of uranium in mineral water, river water, well water, spring water and sea water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhou, Shi-ping; Duan, Chang-qun; Liu, Hong-cheng; Hu, Qiu-fen
2005-10-01
A highly sensitive, selective and rapid method for the determination of zinc based on the rapid reaction of zinc(II) with 2-(2-quinolylazo)-5-dimthylaminophenol (QADMAP) and the solid phase extraction of zinc ion with anion exchange resin cartridge was developed. In the presence of pH 8.5 buffer solution and Triton X-100 medium, QADMAP can react with zinc(II) to form a stable 2 :1 complex (QADMAP:Zn(II)). The molar absorptivity is 1.22 x 10(5)L x moL(-1) x cm(-1) at 590 nm. Beer's law is obeyed in the range of 0-1.0 microg x mL(-1). The zinc ions in the samples can be enriched and separated by solid phase extraction with anion exchange resincartridge. Testing results show that recovery for zinc(II) was from 95% to 104%, and RSD was below 3%. This method was applied to the determination of zinc in water and food with good results.
Li, Jiaxiao; Zhu, Marcel
2018-02-01
A simple, selective, and accurate ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was established and validated for the efficient separation and quantification of polyurethane amine catalysts in polyether polyols. Amine catalysts were primarily separated in polyether polyol-based sample by solid-phase extraction, and further baseline separated on a reversed-phase/cation-exchange mixed-mode column (SiELC Primesep™ 200) using 0.1% trifluoroacetic acid/acetonitrile as a mobile phase in gradient elution mode at a flow rate of 0.2 mL/min. High-resolution quadrupole time-of-flight mass spectrometry analysis in electrospray ionization positive mode allowed the identification as N,N'-bis[3-(dimethylamino)propyl]urea, N-[2-(2-dimethylaminoethoxy)ethyl]-N-methyl-1,3-propanediamine, and N,N,N',N'-tetramethyldipropylenetriamine. The method was validated and presented good linearity for all the analytes in blank matrices within the concentration range of 0.20-5.0 or 0.1-2.0 μg/mL with the correlation coefficients (R 2 ) ranging from 0.986 to 0.997. Method recovery ranged within 81-105% at all three levels (80, 100, and 120% of the original amount) with relative standard deviations of 1.0-6.2%. The limits of detection were in the range of 0.007-0.051 μg/mL. Good precision was obtained with relative standard deviation below 3.2 and 0.72% for peak area and retention time of three amines, respectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gao, Li; Wei, Yinmao
2016-08-01
A novel mixed-mode adsorbent was prepared by functionalizing silica with tris(2-aminoethyl)amine and 3-phenoxybenzaldehyde as the main mixed-mode scaffold due to the presence of the plentiful amino groups and benzene rings in their molecules. The adsorption mechanism was probed with acidic, natural and basic compounds, and the mixed hydrophobic and ion-exchange interactions were found to be responsible for the adsorption of analytes. The suitability of dispersive solid-phase extraction was demonstrated in the determination of chlorophenols in environmental water. Several parameters, including sample pH, desorption solvent, ionic strength, adsorbent dose, and extraction time were optimized. Under the optimal extraction conditions, the proposed dispersive solid-phase extraction coupled with high-performance liquid chromatography showed good linearity range and acceptable limits of detection (0.22∽0.54 ng/mL) for five chlorophenols. Notably, the higher extraction recoveries (88.7∽109.7%) for five chlorophenols were obtained with smaller adsorbent dose (10 mg) and shorter extraction time (15 min) compared with the reported methods. The proposed method might be potentially applied in the determination of trace chlorophenols in real water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yu, Chunhai; Cai, Qiantao; Guo, Zhong-Xian; Yang, Zhaoguang; Khoo, Soo Beng
2003-07-01
Inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate the retention behavior of arsenite, arsenate, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), arsenocholine (AsC), trimethylarsine oxide (TMAO) and tetramethylarsonium ion (TMAI) on various silica-based solid phase extraction (SPE) cartridges. A method for arsenic speciation is then developed on the basis of selective SPE separation of arsenic species and highly sensitive ICP-MS detection. Factors affecting the retention and elution of arsenic species were examined. Results showed that the retention of arsenic species depended on the chemical characteristics of arsenic species and the types of sorbent materials. Change of pH in the range of 2.0-9.0 did not show significant effects on the retention of DMA, AsB, AsC, TMAI and TMAO on an ethylbenzene sulfonic acid-based strong cation exchange (SCX-3) cartridge. pH also did not influence the retention of AsB, AsC, TMAI and TMAO on a mixed-mode (M-M) cartridge containing non-polar, strong cation exchange and strong anion exchange (SAX) functional groups. However, the retentions of As(V) and MMA on the SAX and the M-M cartridge changed with pH. As(V) and MMA were completely retained on the SAX cartridge and sequentially selectively eluted with 1.0 mol l -1 acetic acid (for MMA). DMA, AsB, AsC, TMAI and TMAO were completely retained on the SCX-3 cartridge and sequentially selectively eluted with 1.0 mol l -1 HNO 3 (for DMA). As(V), MMA, AsB, AsC, TMAI and TMAO were completely retained on the M-M cartridge. As(III) was not retained on either cartridge and remained in solution. Arsenic species in solution and those eluted from the cartridges were subsequently determined by ICP-MS. A detection limit of 8 ng l -1 arsenic in water sample was obtained. This method was successfully applied to arsenic speciation in various sources of water samples (drinking water, waste water, raw water, etc.) and US National Institute of Standards and Technology standard reference materials with good precision and accuracy.
Zheng, Haimei; Sadtler, Bryce; Habenicht, Carsten; Freitag, Bert; Alivisatos, A Paul; Kisielowski, Christian
2013-11-01
The atomic structure and interfaces of CdS/Cu2S heterostructured nanorods are investigated with the aberration-corrected TEAM 0.5 electron microscope operated at 80 kV and 300 kV applying in-line holography and complementary techniques. Cu2S exhibits a low-chalcocite structure in pristine CdS/Cu2S nanorods. Under electron beam irradiation the Cu2S phase transforms into a high-chalcocite phase while the CdS phase maintains its wurtzite structure. Time-resolved experiments reveal that Cu(+)-Cd(2+) cation exchange at the CdS/Cu2S interfaces is stimulated by the electron beam and proceeds within an undisturbed and coherent sulfur sub-lattice. A variation of the electron beam current provides an efficient way to control and exploit such irreversible solid-state chemical processes that provide unique information about system dynamics at the atomic scale. Specifically, we show that the electron beam-induced copper-cadmium exchange is site specific and anisotropic. A resulting displacement of the CdS/Cu2S interfaces caused by beam-induced cation interdiffusion equals within a factor of 3-10 previously reported Cu diffusion length measurements in heterostructured CdS/Cu2S thin film solar cells with an activation energy of 0.96 eV. © 2013 Elsevier B.V. All rights reserved.
Zhang, Zhenbin; Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J
2015-04-21
A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary.
Mueller, Dirk; Klette, Ingo; Baum, Richard P; Gottschaldt, M; Schultz, Michael K; Breeman, Wouter A P
2012-08-15
A simple sodium chloride (NaCl) based (68)Ga eluate concentration and labeling method that enables rapid, high-efficiency labeling of DOTA conjugated peptides in high radiochemical purity is described. The method utilizes relatively few reagents and comprises minimal procedural steps. It is particularly well-suited for routine automated synthesis of clinical radiopharmaceuticals. For the (68)Ga generator eluate concentration step, commercially available cation-exchange cartridges and (68)Ga generators were used. The (68)Ga generator eluate was collected by use of a strong cation exchange cartridge. 98% of the total activity of (68)Ga was then eluted from the cation exchange cartridge with 0.5 mL of 5 M NaCl solution containing a small amount of 5.5 M HCl. After buffering with ammonium acetate, the eluate was used directly for radiolabeling of DOTATOC and DOTATATE. The (68)Ga-labeled peptides were obtained in higher radiochemical purity compared to other commonly used procedures, with radiochemical yields greater than 80%. The presence of (68)Ge could not be detected in the final product. The new method obviates the need for organic solvents, which eliminates the required quality control of the final product by gas chromatography, thereby reducing postsynthesis analytical effort significantly. The (68)Ga-labeled products were used directly, with no subsequent purification steps, such as solid-phase extraction. The NaCl method was further evaluated using an automated fluid handling system and it routinely facilitates radiochemical yields in excess of 65% in less than 15 min, with radiochemical purity consistently greater than 99% for the preparation of (68)Ga-DOTATOC.
Coping with effects of high dissolved salt samples on the inductively coupled plasma spectrometer
Jane E. Hislop; James W. Hornbeck; James W. Hornbeck
2002-01-01
Research on acidic forest soils typically uses unbuffered salt solutions as extractants for exchangeable cations. Our lab uses 1 M NH4C1 extractant for exchangeable cations (Ca, K, Mg, and Na) and 1 M KC1 for exchangeable aluminum. The resulting high dissolved salt solutions presented chronic analytical problems on flame atomic absorption spectrophotometer (AAS) and...
Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando
2018-01-26
The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Hong; Wang, Chenchen; Li, Huidong; Nie, Yan; Fang, Liping; Chen, Zilei
2018-03-01
Two polar aminoglycosides, kasugamycin and validamycin-A, were determined in cereals (brown rice, wheat and corn) by high-performance liquid chromatography-tandem mass spectrometry. The analytes were extracted from samples using methanol and water (70:30, v/v) at pH 5.5, purified using both a hydrophilic-hydrophobic-balanced cartridge and a strong cation-exchange cartridge, and then analysed using multiple reaction monitoring in positive electrospray ionisation mode with a special ReproSil 100 C 18 high-performance liquid chromatography column. This newly proposed method yielded good sensitivity and excellent chromatographic performance. The limits of quantification for kasugamycin and validamycin-A were 4.1 µg/kg and 1.0 µg/kg, respectively. The recoveries for both compounds at three fortification levels (4, 100 and 500 µg/kg for kasugamycin; 1, 10 and 100 µg/kg for validamycin-A) ranged from 75% to 110%, and the relative standard deviations were below 15%.
Extraction of cesium and strontium from nuclear waste
Davis, Jr., Milton W.; Bowers, Jr., Charles B.
1988-01-01
Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.
Dash, K; Thangavel, S; Krishnamurthy, N V; Rao, S V; Karunasagar, D; Arunachalam, J
2005-04-01
The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.
Zhang, Yu-ge; Xiao, Min; Dong, Yi-hua; Jiang, Yong
2012-08-01
A method to determine soil exchangeable calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) by using atomic absorption spectrophotometer (AAS) and extraction with ammonium acetate was developed. Results showed that the accuracy of exchangeable base cation data with AAS method fits well with the national standard referential soil data. The relative errors for parallel samples of exchangeable Ca and Mg with 66 pair samples ranged from 0.02%-3.14% and 0.06%-4.06%, and averaged to be 1.22% and 1.25%, respectively. The relative errors for exchangeable K and Na with AAS and flame photometer (FP) ranged from 0.06%-8.39% and 0.06-1.54, and averaged to be 3.72% and 0.56%, respectively. A case study showed that the determination method for exchangeable base cations by using AAS was proven to be reliable and trustable, which could reflect the real situation of soil cation exchange properties in farmlands.
Wei, Liang-Liang; Wang, Kun; Zhao, Qing-Liang; Jiang, Jun-Qiu; Kong, Xiang-Juan; Lee, Duu-Jong
2012-09-15
Correlation between fractional, biodegradable and spectral characteristics of sludge extracellular polymeric substances (EPS) by different protocols has not been well established. This work extracted sludge EPS using alkaline extractants (NH₄OH and formaldehyde + NaOH) and physical protocols (ultrasonication, heating at 80 °C or cation exchange resin (CER)) and then fractionated the extracts using XAD-8/XAD-4 resins. The alkaline extractants yielded more sludge EPS than the physical protocols. However, the physical protocols extracted principally the hydrophilic components which were readily biodegradable by microorganisms. The alkaline extractants dissolved additional humic-like substances from sludge solids which were refractory in nature. Different extraction protocols preferably extracted EPS with distinct fractional, biodegradable and spectral characteristics which could be applied in specific usages. Copyright © 2012 Elsevier Ltd. All rights reserved.
Brown, Alistair K; Wong, Charles S
2017-11-24
A solids extraction method, using sonication in combination with weak anion exchange solid phase extraction, was created to extract thyroxine (T4) and thyroxine-O-β-d-glucuronide (T4-Glc) simultaneously from wastewaters and sludges, and to quantify these compounds via reversed-phase ultra-high performance liquid chromatography-tandem mass spectrometry. The method limits of quantification were all in the low ng/g (dry weight solids) range for both T4 and T4-Glc: 2.13 and 2.63ng/g respectively in primary wastewater, 4.3 and 28.3ng/g for primary suspended solids, for 1.1 and 3.7ng/g for return activated sludge. Precision for measurements of T4 and T4-Glc were 2.6 and 6.5% (intraday) and 9.6 and 5.7% (interday) respectively, while linearity was 0.9967 and 0.9943 respectively. Overall recoveries for T4 and T4-Glc in primary suspended solids were 94% and 95%, and 86 and 101% in primary wastewater, respectively. Extraction efficiency tests using primary sludge determined that one methanol aliquot was sufficient during the extraction process as opposed to 2 or 3 aliquots. Mass loadings at the North Main Wastewater Treatment Plant in Winnipeg, Canada showed 316%, 714%, and 714% greater T4-Glc than T4 associated with the suspended solids of the primary, secondary, and final effluent respectively, yet 765% more T4 than T4-Glc associated with the solids of the mixed liquor. Moreover, 26% of T4 and 49% of T4-Glc were associated with the suspended solids during the treatment process. This method demonstrates the need to assess accurately both metabolite conjugates of contaminants of emerging concern, as well as the sorbed levels of particle-reactive analytes such as T4 in the aquatic environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Rey, M A
2001-06-22
One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.
Extraction of cesium and strontium from nuclear waste
Davis, M.W. Jr.; Bowers, C.B. Jr.
1988-06-07
Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5[prime]) [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution. 3 figs.
Kang, Min-Gu; Yi, Sung-Hun
2013-01-01
An α-glucosidase inhibitor was developed from Aspergillus oryzae N159-1, which was screened from traditional fermented Korean foods. The intracellular concentration of the inhibitor reached its highest level when the fungus was cultured in tryptic soy broth medium at 27℃ for five days. The inhibitor was purified using a series of purification steps involving ultrafiltration, Sephadex G-25 gel permeation chromatography, strong cation exchange solid phase extraction, reverse-phase high performance liquid chromatography, and size exclusion chromatography. The final yield of the purification was 1.9%. Results of the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis indicated that the purified α-glucosidase inhibitor was a tri-peptide, Pro-Phe-Pro, with the molecular weight of 360.1 Da. The IC50 value of the peptide against α-glucosidase activity was 3.1 mg/mL. Using Lineweaver-Burk plot analysis, the inhibition pattern indicated that the inhibitor acts as a mixed type inhibitor. PMID:24198670
Regueiro, Jorge; Wenzl, Thomas
2015-11-27
Facing growing restrictions on the use of bisphenol A in food contact materials, several bisphenol analogs are arising as major alternatives to replace this chemical in most of its applications. This work reports a simple and robust method based on mixed-mode solid-phase extraction and stable-isotope dilution liquid chromatography-tandem mass spectrometry for the analysis of bisphenol A and its main analogs - bisphenol S, 4,4'-sulfonylbis(2-methylphenol), bisphenol F, bisphenol E, bisphenol B, bisphenol Z, bisphenol AF, bisphenol AP, tetrabromobisphenol A and bisphenol P - in alcoholic and non-alcoholic beverages. Mixed-mode solid-phase extraction, combining cationic exchange and reversed-phase mechanisms, was optimized to provide a selective extraction and purification of the target analytes. Derivatization of bisphenols with pyridine-3-sulfonyl chloride allowed increasing their ionization efficiency by electrospray ionization. Validation of the proposed method was performed in terms of selectivity, matrix effects, linearity, precision, measurement uncertainty, trueness and limits of detection. Satisfactory repeatability and intermediate precision were obtained; the related relative standard deviations were ≤9% and ≤12%, respectively. The relative expanded uncertainty (k=2) was below 20% for all bisphenol analogs and the trueness of the method was demonstrated by recovery experiments. Limits of detection (LOD) ranged from 1.6ngL(-1) to 27.9ngL(-1) for all compounds. Finally, several canned and non-canned beverages were analyzed to demonstrate the applicability of the method. Only bisphenol A and three bisphenol F isomers were detected in any of the samples. Bisphenol A concentration ranged from
Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua
2008-11-01
Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.
Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A
2017-06-06
With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (K d ). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (K d ) decreasing as follows: K d Na + > K d NH 4 + ≥ K d K + > K d Ca 2+ ≥ K d Mg 2+ > K d Al 3+ . This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium K d values, allowed for estimation of K d values for more structurally complex organic cations to homoionic montmorillonites and to heteroionic soils (mean absolute error of 0.27 log unit). Accordingly, we concluded that the use of phenyltrimethylammonium as a probe compound was a promising means to account for the identity, affinity, and abundance of natural exchange ions in the prediction of organic cation sorption coefficients for environmental solids.
Semiautomated solid-phase extraction manifold with a solvent-level sensor.
Orlando, R M; Rath, S; Rohwedder, J J R
2013-11-15
A semiautomated solid-phase extraction manifold for multiple extractions is presented. The manifold utilizes commercial solid-phase syringe cartridges and automatically introduces and elutes all the solvents during the extraction, reducing the typical workload and stress of the analyst. The manifold consists of a peristaltic pump with solenoid valves in a flow circuit that contains transmissive photomicrosensors. The photomicrosensors were used to control the solvent dispenser and the solvent level inside the cartridge. As solvent-level sensors, the photomicrosensors determined the exact time the solvent reached the top frit to avoid sorbent drying and accurately perform the solvent exchange. The repeatability of the manifold to introduce a particular volume of solvent into the cartridges was measured, and the precisions were between 0.05 and 2.89% (RSD). To evaluate the manifold, the amount of two fluoroquinolones in a fortified blank milk sample was determined. The results of the intra- and inter-day precision of multiple extractions from the fortified milk samples resulted in precisions better than 9.0% (RSD) and confirmed that the arrangement of the semiautomated manifold could adequately be used in solid-phase extraction with commercial cartridges. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Hyun-Ah; Engle, Nancy L.; Bonnesen Peter V.
2004-03-29
In the present work, it has been the aim to examine extraction efficiencies of nine proton-ionizable alcohols (HAs) in 1-octanol and to identify both the controlling equilibria and predominant species involved in the extraction process within a thermochemical model. Distribution ratios for sodium (DNa) extraction were measured as a function of organic-phase HA and aqueous-phase NaOH molarity at 25 °C. Extraction efficiency follows the expected order of acidity of the HAs, 4-(tert-octyl) phenol (HA 1a) and 4-noctyl- a,a-bis-(trifluoromethyl)benzyl alcohol (HA 2a) being the most efficient extractants among the compounds tested. By use of the equilibrium-modeling program SXLSQI, a model formore » the extraction of NaOH has been advanced based on an ion-pair extraction by the diluent to give organic-phase Na+OH- and corresponding free ions and cation exchange by the weak acids to form monomeric organic-phase Na+A- and corresponding free organic-phase ions.« less
Solliec, Morgan; Massé, Daniel; Sauvé, Sébastien
2014-10-01
A new extraction method coupled to a high throughput sample analysis technique was developed for the determination of four veterinary antibiotics. The analytes belong to different groups of antibiotics such as chemotherapeutics, sulfonamides, lincosamides and macrolides. Trimethoprim (TMP), sulfadoxin (SFX), lincomycin (LCM) and tylosin (TYL) were extracted from lyophilized manure using a sonication extraction. McIlvaine buffer and methanol (MeOH) were used as extraction buffers, followed by cation-exchange solid phase extraction (SPE) for clean-up. Analysis was performed by laser diode thermal desorption-atmospheric pressure chemical-ionization (LDTD-APCI) tandem mass spectrometry (MS/MS) with selected reaction monitoring (SRM) detection. The LDTD is a high throughput sample introduction method that reduces total analysis time to less than 15s per sample, compared to minutes when using traditional liquid chromatography (LC). Various SPE parameters were optimized after sample extraction: the stationary phase, the extraction solvent composition, the quantity of sample extracted and sample pH. LDTD parameters were also optimized: solvent deposition, carrier gas, laser power and corona discharge. The method limit of detection (MLD) ranged from 2.5 to 8.3 µg kg(-1) while the method limit of quantification (MLQ) ranged from 8.3 to 28µgkg(-1). Calibration curves in the manure matrix showed good linearity (R(2)≥ 0.996) for all analytes and the interday and intraday coefficients of variation were below 14%. Recoveries of analytes from manure ranged from 53% to 69%. The method was successfully applied to real manure samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Boumaiza, Hella; Coustel, Romain; Despas, Christelle; Ruby, Christian; Bergaoui, Latifa
2018-02-01
The ammonium cation interaction with Na-birnessite in aqueous alkaline medium was studied. Solution and solid analysis give evidence that birnessite is not only acting as a cationic exchanger toward NH4+. The surface analysis performed by XPS showed that N1s spectra are characterized by the existence of two different environments: one assignable to an interlayer NH4+ and the second to a chemisorbed N-species. Structural and chemical transformations were observed on birnessite with nitrogen mass balance deficit. The monitoring of NH4+, Na+, Mn2+, NO3- and NO2- and solid changes (average oxidation state of Mn, cation exchange capacity, solid nitrogen content and symmetry evolution identified by XRD and FTIR) indicate unambiguously that NH4+ reacts chemically with the birnessite.
Qin, Wen-xia; Gong, Qi; Li, Min; Deng, Li-xin; Mo, Li-shu; Li, Yan-lin
2015-04-01
Determination of arsenic in pure aluminum by inductively coupled plasma atomic emission spectrometry was interfered by aluminum matrix. The experiment showed that when the mass concentration of Al was greater than or equal to 5 000 times the As in the test solution, the measurement error was greater than 5%. In order to eliminate the interference, strong acid cation exchange fiber (SACEF) was used as solid phase extraction agent to adsorb Al(3+). The extraction conditions included amount of SACEF, extraction time, temperature and pH were investigated. The optimal extraction conditions were that 0.9000 g SACEF was used to extract the aluminum from the sample solution of pH 2.0 at 55 °C for 5 min with the ultrasonic assist, and in this case, the arsenic in the form of arsenic acid was not extracted and left in the solution for the determination. The results showed that after treating 10. 00 mL test solution containing 1.00 µg arsenic and 20.0 mg aluminum, arsenic did not lose. The mass concentration of residual aluminum in the raffinate was about 2,000 times the As, which had not interfered the determination of arsenic. The detection limit (3 s) was 0.027 µg · mL(-1) and quantification limit (10 s) was 0.0091 µg · mL(-1). The proposed method was successfully applied to the separation and determination of arsenic in the synthetic samples, the aluminum cans and the barbecue aluminum foil. Recovery was in the range of 98.3%-105% and RSD (n = 3) was in the range of 0.1%-4.3%. The results showed that the content of arsenic in the aluminum cans and the aluminum barbecue foil was below the limited value of national standard (GB/T 3190-2008).
Martin, Rafaela; Schürenkamp, Jennifer; Gasse, Angela; Pfeiffer, Heidi; Köhler, Helga
2013-05-01
A validated method for the simultaneous determination of psilocin, bufotenine, lysergic acid diethylamide and its metabolites in serum, plasma and urine using liquid chromatography-electrospray ionization/tandem mass spectrometry was developed. During the solid-phase extraction procedure with polymeric mixed-mode cation exchange columns, the unstable analytes were protected by ascorbic acid, drying with nitrogen and exclusion of light. The limits of detection and quantitation for all analytes were low. Recovery was ≥86 % for all analytes and no significant matrix effects were observed. Interday and intraday imprecisions at different concentrations ranged from 1.1 to 8.2 % relative standard deviation, bias was within ±5.3 %. Processed samples were stable in the autosampler for at least 2 days. Furthermore, freeze/thaw and long-term stability were investigated. The method was successfully applied to authentic serum and urine samples.
Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin; ...
2016-06-13
Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO 3 ) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H 2 O and CO 2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, Sr La ') by the positively charged oxygen vacancies (Vmore » $$••\\atop{o}$$) enriched at the surface. Here we show that reducing the surface V $$••\\atop{o}$$ concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O 2 molecules. We take La 0.8 Sr 0.2 CoO 3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of V $$••\\atop{o}$$ and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin
Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO 3 ) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H 2 O and CO 2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, Sr La ') by the positively charged oxygen vacancies (Vmore » $$••\\atop{o}$$) enriched at the surface. Here we show that reducing the surface V $$••\\atop{o}$$ concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O 2 molecules. We take La 0.8 Sr 0.2 CoO 3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of V $$••\\atop{o}$$ and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.« less
Hagiwara, Kenta; Inui, Tetsuo; Koike, Yuya; Aizawa, Mamoru; Nakamura, Toshihiro
2015-03-01
A rapid and simple method using wavelength-dispersive X-ray fluorescence (WDXRF) spectrometry after in situ solid-phase extraction (SPE) was developed for the speciation and evaluation of the concentration of inorganic arsenic (As) in drinking water. The method involves the simultaneous collection of As(III) and As(V) using 13 mm ϕ SPE miniature disks. The removal of Pb(2+) from the sample water was first conducted to avoid the overlapping PbLα and AsKα spectra on the XRF spectrum. To this end, a 50 mL aqueous sample (pH 5-9) was passed through an iminodiacetate chelating disk. The filtrate was adjusted to pH 2-3 with HCl, and then ammonium pyrrolidine dithiocarbamate solution was added. The solution was passed through a hydrophilic polytetrafluoroethylene filter placed on a Zr and Ca loaded cation-exchange disk at a flow rate of 12.5 mL min(-1) to separate As(III)-pyrrolidine dithiocarbamate complex and As(V). Each SPE disk was affixed to an acrylic plate using adhesive cellophane tape, and then examined by WDXRF spectrometry. The detection limits of As(III) and As(V) were 0.8 and 0.6 μg L(-1), respectively. The proposed method was successfully applied to screening for As speciation and concentration evaluation in spring water and well water. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhu, Hailiang; Wu, Zhigang; Gadi, Madhusudhan Reddy; Wang, Shuaishuai; Guo, Yuxi; Edmunds, Garrett; Guan, Wanyi; Fang, Junqiang
2017-09-15
A cation exchange assisted binding-elution (BE) strategy for enzymatic synthesis of human milk oligosaccharides (HMOs) was developed. An amino linker was used to provide the cation ion under acidic condition which can be readily bound to cation exchange resin and then eluted off by saturated ammonium bicarbonate. Ammonium bicarbonate in the collections was easily removed by vacuum evaporation. This strategy circumvented the incompatible issue between glycosyltransferases and solid support or large polymers, and no purification was needed for intermediate products. With current approach, polyLacNAc backbones of HMOs and fucosylated HMOs were synthesized smoothly. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Samadi, A.; Amjadi, M.
2016-07-01
Halloysite nanotubes (HNTs) have been introduced as a new solid phase extraction adsorbent for preconcentration of iron(II) as a complex with 2,2-bipyridine. The cationic complex is effectively adsorbed on the sorbent in the pH range of 3.5-6.0 and efficiently desorbed by trichloroacetic acid. The eluted complex has a strong absorption around 520 nm, which was used for determination of Fe(II). After optimizing extraction conditions, the linear range of the calibration graph was 5.0-500 μg/L with a detection limit of 1.3 μg/L. The proposed method was successfully applied for the determination of trace iron in various water and food samples, and the accuracy was assessed through the recovery experiments and analysis of a certified reference material (NIST 1643e).
Liao, Xiaobin; Bei, Er; Li, Shixiang; Ouyang, Yueying; Wang, Jun; Chen, Chao; Zhang, Xiaojian; Krasner, Stuart W; Suffet, I H Mel
2015-12-15
Some N-nitrosamines (NAs) have been identified as emerging disinfection by-products during water treatment. Thus, it is essential to understand the characteristics of the NA precursors. In this study, the polarity rapid assessment method (PRAM) and the classical resin fractionation method were studied as methods to fractionate the NA precursors during drinking water treatment. The results showed that PRAM has much higher selectivity for NA precursors than the resin approach. The normalized N-nitrosodimethylamine formation potential (NDMA FP) and N-nitrosodiethylamine (NDEA) FP of four resin fractions was at the same level as the average yield of the bulk organic matter whereas that of the cationic fraction by PRAM showed 50 times the average. Thus, the cationic fraction was shown to be the most important NDMA precursor contributor. The PRAM method also helped understand which portions of the NA precursor were removed by different water treatment processes. Activated carbon (AC) adsorption removed over 90% of the non-polar PRAM fraction (that sorbs onto the C18 solid phase extraction [SPE] cartridge) of NDMA and NDEA precursors. Bio-treatment removed 80-90% of the cationic fraction of PRAM (that is retained on the cation exchange SPE cartridge) and 40-60% of the non-cationic fractions. Ozonation removed 50-60% of the non-polar PRAM fraction of NA precursors and transformed part of them into the polar fraction. Coagulation and sedimentation had very limited removal of various PRAM fractions of NA precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ion exchange of Group I metals by hydrous crystalline silicotitanates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Z.; Philip, C.V.; Anthony, R.G.
1996-11-01
A new hydrous crystalline silicotitanate, labeled TAM-5 or CST, was developed for removing radioactive Cs{sup +} from aqueous nuclear waste. This material is stable to radiation, highly selective for cesium relative to sodium, potassium, rubidium, and protons, and performs well in acidic, neutral, and basic solutions. Various experiments were conducted to determine the ion exchange properties of TAM-5. Two kinds of ion exchange sites exist in the solid, and cation exchange in one site affects the ion exchange properties of the other site. These two types of sites have different thermal effects: with increasing temperature the pH of one increasesmore » and the pH of the other one decreases. The total ion exchange capacity is 4.6 mequiv/g, but the cesium ion exchange capacity was less, which shows that not all of the ion exchange sites are available for cesium exchange. Step changes were observed in the ion exchange isotherms. The solid phase behaved ideally prior to the step changes. The apparent capacities within the ideal solid region were 0.57 mequiv/g for Cs{sup +}, 1.18 mequiv/g for Rb{sup +}, and 1.2 mequiv/g for K{sup +}. Both direct competition by rubidium and protons and indirect competition by protons and potassium were observed. The rational selectivities, which were measured from binary ion exchange data, can be used in different solutions including the multicomponent ion exchange systems, because they are constant for an ideal solid. Binary ion exchange isotherms were also developed using the rational selectivity as the parameter for the isotherms of cesium, rubidinium, and potassium.« less
Sorption mechanism of enrofloxacin on humic acids extracted from Brazilian soils.
Martínez-Mejía, Mónica J; Sato, Isabela; Rath, Susanne
2017-07-01
Veterinary antimicrobials are emerging environmental contaminants of concern. In this study, the sorption of enrofloxacin (ENR) onto humic acids (HAs) extracted from three Brazilian soils was evaluated. HAs were characterized by elemental analysis and solid 13 C nuclear magnetic resonance spectroscopy. The sorption of ENR onto HAs was at least 20-fold higher than onto the soils from which they were separated. Ionic and cation bridging are the primary interactions involved. The interactions driven by cation exchange are predominant on HAs, which appear to have abundant carboxylic groups and a relatively high proportion of H-bond donor moieties with carbohydrate-like structures. Interactions explained by cation bridging and/or surface complexation on HAs are facilitated by moieties containing conjugated ligands, significant content of oxygen-containing functional groups, such as phenolic-OH or lignin-like structures. HAs containing electron-donating phenolic moieties and carboxylic acid ligand groups exhibit a sorption mechanism that is primarily driven by strong metal binding, favoring the formation of ternary complexes between functional groups of the organic matter and drugs.
Cation Exchange in the Presence of Oil in Porous Media
2017-01-01
Cation exchange is an interfacial process during which cations on a clay surface are replaced by other cations. This study investigates the effect of oil type and composition on cation exchange on rock surfaces, relevant for a variety of oil-recovery processes. We perform experiments in which brine with a different composition than that of the in situ brine is injected into cores with and without remaining oil saturation. The cation-exchange capacity (CEC) of the rocks was calculated using PHREEQC software (coupled to a multipurpose transport simulator) with the ionic composition of the effluent histories as input parameters. We observe that in the presence of crude oil, ion exchange is a kinetically controlled process and its rate depends on residence time of the oil in the pore, the temperature, and kinetic rate of adsorption of the polar groups on the rock surface. The cation-exchange process occurs in two stages during two phase flow in porous media. Initially, the charged sites of the internal surface of the clays establish a new equilibrium by exchanging cations with the aqueous phase. At later stages, the components of the aqueous and oleic phases compete for the charged sites on the external surface or edges of the clays. When there is sufficient time for crude oil to interact with the rock (i.e., when the core is aged with crude oil), a fraction of the charged sites are neutralized by the charged components stemming from crude oil. Moreover, the positively charged calcite and dolomite surfaces (at the prevailing pH environment of our experiments) are covered with the negatively charged components of the crude oil and therefore less mineral dissolution takes place when oil is present in porous media. PMID:28580442
Ramírez Fernández, María del Mar; Van Durme, Filip; Wille, Sarah M R; di Fazio, Vincent; Kummer, Natalie; Samyn, Nele
2014-06-01
The aim of this work was to automate a sample preparation procedure extracting morphine, hydromorphone, oxymorphone, norcodeine, codeine, dihydrocodeine, oxycodone, 6-monoacetyl-morphine, hydrocodone, ethylmorphine, benzoylecgonine, cocaine, cocaethylene, tramadol, meperidine, pentazocine, fentanyl, norfentanyl, buprenorphine, norbuprenorphine, propoxyphene, methadone and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine from urine samples. Samples were extracted by solid-phase extraction (SPE) with cation exchange cartridges using a TECAN Freedom Evo 100 base robotic system, including a hydrolysis step previous extraction when required. Block modules were carefully selected in order to use the same consumable material as in manual procedures to reduce cost and/or manual sample transfers. Moreover, the present configuration included pressure monitoring pipetting increasing pipetting accuracy and detecting sampling errors. The compounds were then separated in a chromatographic run of 9 min using a BEH Phenyl analytical column on a ultra-performance liquid chromatography-tandem mass spectrometry system. Optimization of the SPE was performed with different wash conditions and elution solvents. Intra- and inter-day relative standard deviations (RSDs) were within ±15% and bias was within ±15% for most of the compounds. Recovery was >69% (RSD < 11%) and matrix effects ranged from 1 to 26% when compensated with the internal standard. The limits of quantification ranged from 3 to 25 ng/mL depending on the compound. No cross-contamination in the automated SPE system was observed. The extracted samples were stable for 72 h in the autosampler (4°C). This method was applied to authentic samples (from forensic and toxicology cases) and to proficiency testing schemes containing cocaine, heroin, buprenorphine and methadone, offering fast and reliable results. Automation resulted in improved precision and accuracy, and a minimum operator intervention, leading to safer sample handling and less time-consuming procedures.
Adsorption of the Three-phase Emulsion on Various Solid Surfaces.
Enomoto, Yasutaka; Imai, Yoko; Tajima, Kazuo
2017-07-01
The present study investigates the adsorption of the three-phase emulsion on various solid/water interfaces. Vesicles can be used as emulsifiers in the three-phase emulsions and act as an independent phase unlike the surfactant used in conventional emulsions; therefore, it is expected that the three-phase emulsion formed by the adhesion of vesicles to the oil/water interface will adsorb on various solid/water interfaces. The cationic three-phase emulsion was prepared to encourage emulsion adsorption on negatively charged solid substrates in water. The emulsifier polyoxyethylene-(10) hydrogenated castor oil was rendered cationic by mixing with the surfactant cetyltrimethylammonium bromide and then used to prepare the cationic three-phase emulsion of hexadecane-in-water. Three solid substrates (silicon, glass, and copper) were dipped in the cationic emulsion and the emulsion was found to adsorb on the solid substrates while maintaining its structure. The amount of hexadecane adsorbed on the various surfaces was investigated by gas chromatography and found to increase with increasing hexadecane concentration in the emulsion and eventually plateaued just like molecular adsorption. The maximum surface coverage of the emulsion on the substrates was approximately 80%. However, even the equivalent nonionic three-phase emulsion was found to adsorb on the three solid surfaces. This was attributed to a novel mechanism of irreversible adhesion via the van der Waals attractive force.
Kołacińska, Kamila; Chajduk, Ewelina; Dudek, Jakub; Samczyński, Zbigniew; Łokas, Edyta; Bojanowska-Czajka, Anna; Trojanowicz, Marek
2017-07-01
90 Sr is a widely determined radionuclide for environmental purposes, nuclear waste control, and can be also monitored in coolants in nuclear reactor plants. In the developed method, the ICP-MS detection was employed together with sample processing in sequential injection analysis (SIA) setup, equipped with a lab-on-valve with mechanized renewal of sorbent bed for solid-phase extraction. The optimized conditions of determination included preconcentration of 90 Sr on cation-exchange column and removal of different type of interferences using extraction Sr-resin. The limit of detection of the developed procedure depends essentially on the configuration of the employed ICP-MS spectrometer and on the available volume of the sample to be analyzed. For 1L initial sample volume, the method detection limit (MDL) value was evaluated as 2.9ppq (14.5BqL -1 ). The developed method was applied to analyze spiked river water samples, water reference materials, and also simulated and real samples of the nuclear reactor coolant. Copyright © 2016 Elsevier B.V. All rights reserved.
Prearo, Marino; Stella, Paola; Ostorero, Federica; Abete, Maria Cesarina
2014-01-01
The use of veterinary drugs may cause the presence of residues in food of animal origin if appropriate withdrawal periods are not respected. A high-performance liquid chromatography (HPLC) method has been developed for the simultaneous detection of 11 benzimidazole residues, including metabolites – albendazole, albendazole sulphoxide, albendazole sulphone, fenbendazole, fenbendazole sulphoxide (oxfendazole), fenbendazole sulphone, flubendazole, mebendazole, oxibendazole, thiabendazole, 5-hydroxythiabendazole – in bovine, ovine, equine, swine, rabbit and poultry liver and in bovine, swine and fish muscle. After extraction with a dicloromethane/acetonitrile solution (35/65 v/v) containing 5% ammonium hydroxide, the solvent was evaporated to dryness, the residue was dissolved in HCl 0.1 M, defatted with hexane, purified on a strong cation exchange solid-phase extraction cartridge and analysed in HPLC with diode array and fluorescence detectors. The method was validated as screening qualitative method evaluating, according to Commission Decision 2002/657/EC criteria, specificity, CCβ and β error at cut off level of 25 μg/kg and ruggedness. PMID:27800310
Oxytetracycline analysis in honey using a specific portable analyzer
NASA Astrophysics Data System (ADS)
Chen, Guoying; Schwartz, Daniel; Braden, S.; Nunez, Alberto
2007-09-01
Oxytetracycline (OTC) residue in honey is detected using a portable analyzer designed to specifically target tetracycline (TC) drugs based on europium-sensitized luminescence (ESL). A 385 nm light emitting diode (LED) is used as the excitation source and a photomultiplier tube as the light detector. OTC is extracted from honey and cleaned up by solid phase extraction (SPE) using Strata X-WC weak cation exchange cartridges. To the eluate Eu(III) is added to form a Eu-TC chelate at pH 8.5. Efficient intrachelate energy transfer allows sensitive OTC detection at λ ex=385 nm and λ em=610 nm. After a 25-µs time delay, the ESL signal is integrated over a 25-1000 µs interval. The signal intensity reveals a linear relationship (R2=0.972) to OTC concentrations in the 10-200 ng/g range. The limit-of-detection is 6.7 ng/g with an average 5.8% relative standard deviation. The background signal corresponds to ~10 ppb. This instrumentation and method combination enables field analysis that is especially useful for beekeeping industry.
Feng, Juanjuan; Sun, Min; Xu, Lili; Wang, Shuai; Liu, Xia; Jiang, Shengxiang
2012-12-14
Because of the occurrence of ion exchange between high-ionic-strength solution and anions of polymeric ionic liquids (PILs), PILs based solid-phase microextraction (SPME) fibers were rarely used in direct immersion mode to high-salt-added samples. In this work, a novel double-confined PIL sorbent was prepared by co-polymerization of cation and anion of 1-vinyl-3-octylimidzaolium p-styrenesulfonate (VOIm(+)SS(-)). The poly(VOIm(+)-SS(-)) was chemically bonded onto functionalized stainless steel wire via surface radical chain-transfer reaction. Stability of poly(VOIm(+)-SS(-)) in high-ionic-strength solution was investigated and compared with that of poly(1-vinyl-3-octylimidzaolium benzenesulfonate) (poly(VOIm(+)BS(-))) by elemental analysis of sulfur element, and results turned out that the poly(VOIm(+)-SS(-)) was more stable. Coupled to gas chromatography (GC), the poly(VOIm(+)-SS(-)) fiber was used to extract three sorts of compounds including anilines, phenols and phthalate esters in aqueous solution. The as-established method showed good linearity, low detection limits, and acceptable repeatability. The direct immersion SPME-GC method was applied to determine the model phthalate esters in bottled mineral water. The determination results were satisfactory. Copyright © 2012 Elsevier B.V. All rights reserved.
Jakomin, L M; Marbán, L; Grondona, S; Glok Galli, M; Martínez, D E
2015-09-01
The prediction about metals behaviour in soil requires knowledge on their solid-liquid partitioning. Usually it is expressed with an empirical distribution coefficient or Kd, which gives the ratio of the metal concentration in the solid phase to that in the solution. Kd values have been determined for Zn, Pb and Cd from samples representing the two most exploited aquifers in Argentina, Pampeano and Puelche, at three different locations in the province of Buenos Aires. The Pampeano aquifer presented higher Kd values than the Puelche aquifer. Comparing Kd values, different relationships could be observed: (a) Pampeano aquifer: Pb > Zn > Cd, and (b) Puelche aquifer: Pb > Cd > Zn. Kd for Cd seems to be linked to cationic exchange capacity, but solid phases precipitation can be more determining for Pb and Zn.
Mills, M.S.; Thurman, E.M.
1992-01-01
Reversed-phase isolation and ion-exchange purification were combined in the automated solid-phase extraction of two polar s-triazine metabolites, 2-amino-4-chloro-6-(isopropylamino)-s-triazine (deethylatrazine) and 2-amino-4-chloro-6-(ethylamino)-s-triazine (deisopropylatrazine) from clay-loam and slit-loam soils and sandy aquifer sediments. First, methanol/ water (4/1, v/v) soil extracts were transferred to an automated workstation following evaporation of the methanol phase for the rapid reversed-phase isolation of the metabolites on an octadecylresin (C18). The retention of the triazine metabolites on C18 decreased substantially when trace methanol concentrations (1%) remained. Furthermore, the retention on C18 increased with decreasing aqueous solubility and increasing alkyl-chain length of the metabolites and parent herbicides, indicating a reversed-phase interaction. The analytes were eluted with ethyl acetate, which left much of the soil organic-matter impurities on the resin. Second, the small-volume organic eluate was purified on an anion-exchange resin (0.5 mL/min) to extract the remaining soil pigments that could foul the ion source of the GC/MS system. Recoveries of the analytes were 75%, using deuterated atrazine as a surrogate, and were comparable to recoveries by soxhlet extraction. The detection limit was 0.1 ??g/kg with a coefficient of variation of 15%. The ease and efficiency of this automated method makes it viable, practical technique for studying triazine metabolites in the environment.
Method of purifying neutral organophosphorus extractants
Horwitz, E. Philip; Gatrone, Ralph C.; Chiarizia, Renato
1988-01-01
A method for removing acidic contaminants from neutral mono and bifunctional organophosphorous extractants by contacting the extractant with a macroporous cation exchange resin in the H.sup.+ state followed by contact with a macroporous anion exchange resin in the OH.sup.- state, whereupon the resins take up the acidic contaminants from the extractant, purifying the extractant and improving its extraction capability.
Methods and apparatus for using gas and liquid phase cathodic depolarizers
NASA Technical Reports Server (NTRS)
Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)
1998-01-01
The invention provides methods for using gas and liquid phase cathodic depolarizers in an electrochemical cell having a cation exchange membrane in intimate contact with the anode and cathode. The electrochemical conversion of cathodic depolarizers at the cathode lowers the cell potential necessary to achieve a desired electrochemical conversion, such as ozone evolution, at the anode. When gaseous cathodic depolarizers, such as oxygen, are used, a gas diffusion cathode having the cation exchange membrane bonded thereto is preferred. When liquid phase cathodic depolarizers are used, the cathode may be a flow-by electrode, flow-through electrode, packed-bed electrode or a fluidized-bed electrode in intimate contact with the cation exchange membrane.
Nardin, Tiziana; Barnaba, Chiara; Abballe, Franco; Trenti, Gianmaria; Malacarne, Mario; Larcher, Roberto
2017-10-01
A fast separation based on cation-exchange liquid chromatography coupled with high-resolution mass spectrometry is proposed for simultaneous determination of chlormequat, difenzoquat, diquat, mepiquat and paraquat in several food and beverage commodities. Solid samples were extracted using a mixture of water/methanol/formic acid (69.6:30:0.4, v/v/v), while liquid samples were ten times diluted with the same solution. Separation was carried out on an experimental length-modified IonPac CS17 column (2 × 15 mm 2 ) that allowed the use of formic acid and acetonitrile as mobile phase. Detection limits for food and beverage matrices were established at 1.5 μg/L for chlormequat, difenzoquat and mepiquat, and 3 μg/L for diquat and paraquat, while for drinking water a pre-analytical sample concentration allowed detection limits of 9 and 20 ng/L, respectively. Precision, as repeatability (RSD%), ranged from 0.2 to 24%, with a median value of 6%, and trueness, as recovery, ranged from 64 to 118%, with a median value of 96%. The method developed was successfully applied to investigate the presence of herbicide residues in commercial commodities (mineral water, orange juice, beer, tea, green coffee bean, toasted coffee powder, cocoa bean, white corn flour, rice and sugar samples). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Zheng; Hao, Yan-Hong; Ding, Jun; Xu, Sheng-Nan; Yuan, Bi-Feng; Feng, Yu-Qi
2015-10-16
A newly improved one-pot method, based on "thiol-ene" click chemistry and sol-gel approach in microemulsion system, was developed for the preparation of C8/PO(OH)2-silica hybrid monolithic capillary column. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The monolithic column was demonstrated to have cation exchange/reversed-phase (CX/RP) mixed-mode retention for analytes on nano-liquid chromatography (nano-LC). On the basis of the developed nano-LC system with MS detector coupled to pipette tip solid phase extraction (PT-SPE) and derivatization process, we then realized simultaneous determination of 10 gibberellins (GAs) with low limits of detection (LODs, 0.003-0.025 ng/mL). Furthermore, 6 endogenous GAs in only 5mg rice leaves (fresh weight) were successfully detected and quantified. The developed PT-SPE-nano-LC-MS strategy may offer promising applications in the determination of low abundant bioactive molecules from complex matrix. Copyright © 2015 Elsevier B.V. All rights reserved.
Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano
2012-07-01
A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses onmore » developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ß?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-ß?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-ß?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-ß?-Al2O3 samples. Microfocus X-ray Diffraction (µ-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-ß?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ß?-Al2O3 phase after annealing was verified by µ-XRD. Preliminary sensor tests with different assembly designs will also be presented.« less
Cao, Zhao-Yun; Sun, Li-Hua; Mou, Ren-Xiang; Zhang, Lin-Ping; Lin, Xiao-Yan; Zhu, Zhi-Wei; Chen, Ming-Xue
2016-06-17
A high-throughput method was developed using liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) for the profiling and quantification of 43 phytohormones and their major metabolites, including auxins, abscisic acid, jasmonic acid, salicylic acid, cytokinins and gibberellins in a single sample extract. Considerable matrix effects (MEs) were observed (with most ME values in the range of 29%-84%, but maximum MEs of more than 115%, even up to 206%, existed) in sample extracts for most of the compounds studied. The application of the proposed binary solid-phase extraction using polymer anion and polymer cation exchange resins, was performed to purify 25 acidic and 18 alkaline phytohormones and their major metabolites prior to the LC-MS/MS analysis, which markedly reduced the MEs to acceptable levels, with ME values in the range of ±15%. Moreover, all of the isomers of cytokinins and their metabolites were fully separated on a sub-2μm particle C18 reverse-phase column with the optimized mobile phase consisting of methanol and 5mM ammonium formate. The method showed good linearity for all 43 analytes with regression coefficients (R(2))>0.991. Limits of detection ranged from 0.19 to 7.57 fmol for auxin, gibberellins, abscisic acid and their metabolites, 29.7 fmol for jasmonic acid, 18.1 fmol for salicylic acid, and from 0.03 to 0.31 fmol for cytokinins and their metabolites. The mean recoveries for all of the analytes were from 70.7 to 118.5%, and the inter-day precisions (n=6) were less than 18.7%, with intra-day precisions (n=6) within 25.4%. Finally, 20 compounds were successfully quantified in rice sample profiles using the proposed method, which will greatly facilitate the understanding of hormone-related regulatory networks that influence rice growth and development. To our knowledge, there are limited reports that measure this level of phytohormone species in rice samples using a single analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Ionic liquids for metal extraction from chalcopyrite: solid, liquid and gas phase studies.
Kuzmina, O; Symianakis, E; Godfrey, D; Albrecht, T; Welton, T
2017-08-16
We studied leaching of Cu and Fe from naturally occurring chalcopyrite ore using aqueous solutions of ionic liquids (ILs) based on imidazolium and ethylammonium cations and hydrogensulfate, nitrate, acetate or dicyanamide anions. Liquid, solid and gas phases of the leaching systems were characterised. We have shown that nonoxidative leaching is greatly dependant not only on temperature and pH, but on the anion species of the IL. Solutions of 1-butylimidazolium hydrogen sulfate exhibited the best leaching performance among hydrogen sulphate ILs. We have suggested that the formation of an oxide layer in some ILs may be responsible for a reduced leaching ability. The analysis of the gas phase showed the production of CO 2 and CS 2 in all leached samples. Our results suggested that the CS 2 produced upon leaching could be responsible for decreasing the sulfur, but not oxide, layer on the surface of chalcopyrite samples and therefore more efficient leaching. This is the first study, to our knowledge, to provide a systematic comparison of the leaching performance of ILs composed of different anions and cations and without added oxidants.
Möller, Kristina; Crescenzi, Carlo; Nilsson, Ulrika
2004-01-01
Diphenyl phosphate is a hydrolysis product and possible metabolite of the flame retardant and plasticiser additive triphenyl phosphate. A molecularly imprinted polymer solid-phase extraction (MISPE) method for extracting diphenyl phosphate from aqueous solutions has been developed and compared with SPE using a commercially available mixed-mode anion exchanger. The imprinted polymer was prepared using 2-vinylpyridine (2-Vpy) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, and a structural analogue of the analyte as the template molecule. The imprinted polymer was evaluated for use as a SPE sorbent, in tests with both aqueous standards and spiked urine samples, by comparing recovery and breakthrough data obtained using the imprinted form of the polymer and a non-imprinted form (NIP). Extraction from aqueous solutions resulted in more than 80% recovery. Adsorption by the molecularly imprinted polymer (MIP) was non-selective, but selectivity was achieved by selective desorption in the wash steps. Diphenyl phosphate could also be selectively extracted from urine samples, although the urine matrix reduced the capacity of the MISPE cartridges. Recoveries from urine extraction were higher than 70%. It was important to control pH during sample loading. The MISPE method was found to yield a less complex LC-ESI-MS chromatogram of the urine extracts compared with the mixed-mode anion-exchanger method. An LC-ESI-MS method using a Hypercarb LC column with a graphitised carbon stationary phase was also evaluated for organophosphate diesters. LC-ESI-MS using negative-ion detection in selected ion monitoring (SIM) mode was shown to be linear for diphenyl phosphate in the range 0.08-20 ng microL(-1).
Shakeri Yekta, Sepehr; Gustavsson, Jenny; Svensson, Bo H; Skyllberg, Ulf
2012-01-30
The effect of sequential extraction of trace metals on sulfur (S) speciation in anoxic sludge samples from two lab-scale biogas reactors augmented with Fe was investigated. Analyses of sulfur K-edge X-ray absorption near edge structure (S XANES) spectroscopy and acid volatile sulfide (AVS) were conducted on the residues from each step of the sequential extraction. The S speciation in sludge samples after AVS analysis was also determined by S XANES. Sulfur was mainly present as FeS (≈ 60% of total S) and reduced organic S (≈ 30% of total S), such as organic sulfide and thiol groups, in the anoxic solid phase. Sulfur XANES and AVS analyses showed that during first step of the extraction procedure (the removal of exchangeable cations), a part of the FeS fraction corresponding to 20% of total S was transformed to zero-valent S, whereas Fe was not released into the solution during this transformation. After the last extraction step (organic/sulfide fraction) a secondary Fe phase was formed. The change in chemical speciation of S and Fe occurring during sequential extraction procedure suggests indirect effects on trace metals associated to the FeS fraction that may lead to incorrect results. Furthermore, by S XANES it was verified that the AVS analysis effectively removed the FeS fraction. The present results identified critical limitations for the application of sequential extraction for trace metal speciation analysis outside the framework for which the methods were developed. Copyright © 2011 Elsevier B.V. All rights reserved.
Cuervo, Darío; Loli, Cynthia; Fernández-Álvarez, María; Muñoz, Gloria; Carreras, Daniel
2017-10-15
A complete analytical protocol for the determination of 25 doping-related peptidic drugs and 3 metabolites in urine was developed by means of accurate-mass quadrupole time-of-flight (Q-TOF) LC-MS analysis following solid-phase extraction (SPE) on microplates and conventional SPE pre-treatment for initial testing and confirmation, respectively. These substances included growth hormone releasing factors, gonadotropin releasing factors and anti-diuretic hormones, with molecular weights ranging from 540 to 1320Da. Optimal experimental conditions were stablished after investigation of different parameters concerning sample preparation and instrumental analysis. Weak cation exchange SPE followed by C18 HPLC chromatography and accurate mass detection provided the required sensitivity and selectivity for all the target peptides under study. 2mg SPE on 96-well microplates can be used in combination with full scan MS detection for the initial testing, thus providing a fast, cost-effective and high-throughput protocol for the processing of a large batch of samples simultaneously. On the other hand, extraction on 30mg SPE cartridges and subsequent target MS/MS determination was the protocol of choice for confirmatory purposes. The methodology was validated in terms of selectivity, recovery, matrix effect, precision, sensitivity (limit of detection, LOD), cross contamination, carryover, robustness and stability. Recoveries ranged from 6 to 70% (microplates) and 17-95% (cartridges), with LODs from 0.1 to 1ng/mL. The suitability of the method was assessed by analyzing different spiked or excreted urines containing some of the target substances. Copyright © 2017 Elsevier B.V. All rights reserved.
Lewis, Nathan S.; Spurgeon, Joshua M.
2016-10-25
The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.
Anion-exchange behavior of several alkylsilica reversed-phase columns.
Marchand, D H; Snyder, L R
2008-10-31
Some alkylsilica columns carry a positive charge at low pH, as determined by anion-exchange with nitrate ion. In the present study, the relative positive charge for 14 alkylsilica columns was measured for a mobile-phase pH 3.0. All but 3 of these columns were found to carry a significant positive charge under these conditions. The relative positive charge on these columns was found to correlate approximately with two other column characteristics: relative cation-exchange behavior as measured by the hydrophobic-subtraction model (values of C-2.8), and slow equilibration of the column to changes in the mobile-phase-as evidenced by a slow change in the retention of anionic and cationic solutes with time. The origin of this positive charge may arise from the bonding process, with incorporation of some cationic entity into the stationary phase.
Analysis of coffee for the presence of acrylamide by LC-MS/MS.
Andrzejewski, Denis; Roach, John A G; Gay, Martha L; Musser, Steven M
2004-04-07
A variety of popular instant, ground, and brewed coffees were analyzed using a modified liquid chromatography-tandem mass spectrometry (LC-MS/MS) method specifically developed for the determination of acrylamide in foods. Coffee test portions were spiked with 13C3-labeled acrylamide as an internal standard prior to their extraction and cleanup. Ground coffees (1 g) and instant coffees (0.5 g) were extracted by shaking with 9 mL of water for 20 min. Brewed coffee test portions (9 mL) were taken through the cleanup procedure without further dilution with extraction solvent. Coffee test portions were cleaned up by passing 1.5 mL first through an Oasis HLB (hydrophilic/lipophilic copolymer sorbent) solid phase extraction (SPE) cartridge and then a Bond Elut-Accucat (cation and anion exchange sorbent) SPE cartridge. The cleaned up extracts were analyzed by positive ion electrospray LC-MS/MS. The MS/MS data was used to detect, confirm, and quantitate acrylamide. The limit of quantitation of the method was 10 ng/g for ground and instant coffees and 1.0 ng/mL for brewed coffee. The levels of acrylamide ranged from 45 to 374 ng/g in unbrewed coffee grounds, from 172 to 539 ng/g in instant coffee crystals, and from 6 to 16 ng/mL in brewed coffee.
Nezirević, Dzeneta; Arstrand, Kerstin; Kågedal, Bertil
2007-09-07
Malignant melanomas are more often seen in subjects with light colored skin who tan poorly than in persons who tan more rapidly. This has been attributed to the structure of their pigment, pheomelanin, which differs markedly from the eumelanin of persons with darker skin. To study the hydrolysis products of pheomelanin pigments a new method was developed for analysis of 4-amino-3-hydroxyphenylalanine (4-AHP) and 3-amino-4-hydroxyphenylalanine (3-AHP). Pheomelanin samples were hydrolyzed and extracted with solid-phase extraction columns using strong cation-exchange (SCX) cartridges. Separation of 4-AHP and 3-AHP was achieved on a ZIC-HILIC column (150 mm x 2.1mm I.D.) with a mobile phase consisting of acetonitrile: 0.1 M ammonium acetate buffer, pH 4.5 (82:18, v/v). Detection was performed with an electrochemical detector at +400 mV. Run time was 30 min. The limits of detection were 73 pg and 51 pg for 4-AHP and 3-AHP respectively, using 2 microl injections. Good linearity was found within the range 0.05-5.0 microg/ml. Absolute recovery was 70% and relative recovery was 100%. The AHPs were stable for 1 year in the hydrolyzed samples, for 4 days in the eluates from solid-phase sorbents stored in the refrigerator, and for 2 days diluted with mobile phase and stored in the autosampler at 10 degrees C. The within-day imprecision was <5% and the between-day imprecision was <7% for the two analytes. The method, applied to the analysis of pheomelanin in urine from human melanoma patients, allows the analysis of 30 samples in one set and is suitable for routine work with human hair and melanoma cells. By using the ZIC-HILIC stationary phase, ion-pairing reagents could be avoided, which makes the method suitable to further analysis of degradation products from pheomelanins using mass spectrometric detection.
Li, Jingyi; Shao, Shan; Jaworsky, Markian S; Kurtulik, Paul T
2008-03-28
A novel mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography (HPLC) method is described to simultaneously determine four related impurities of cations, zwitterions and neutral compounds in developmental Drug A. The commercial column is Primesep 200 containing hydrophobic alkyl chains with embedded acidic groups in H(+) form on a silica support. The mobile phase variables of acid additives, contents of acetonitrile and concentrations of potassium chloride have been thoroughly investigated to optimize the separation. The retention factors as a function of the concentrations of potassium chloride and the percentages of acetonitrile in the mobile phases are investigated to get an insight into the retention and separation mechanisms of each related impurity and Drug A. Furthermore, the elution orders of the related impurities and Drug A in an ion-pair chromatography (IPC) are compared to those in the mixed-mode HPLC to further understand the chromatographic retention behaviors of each related impurity and Drug A. The study found that the positively charged Degradant 1, Degradant 2 and Drug A were retained by both ion-exchange and reversed-phase partitioning mechanisms. RI2, a small ionic compound, was primarily retained by ion-exchange. RI4, a neutral compound, was retained through reversed-phase partitioning without ion-exchange. Moreover, the method performance characteristics of selectivity, sensitivity and accuracy have been demonstrated to be suitable to determine the related impurities in the capsules of Drug A.
NASA Astrophysics Data System (ADS)
Yang, Gang-Ting; Yu, Chi-Wen; Yang, Hsiao-Ming; Chiao, Chung-Hui; Yang, Ming-Wei
2015-04-01
To relief the high concentration of carbon dioxide in the atmosphere, carbon capture and storage (CCS) is gradually becoming an important concept to reduce greenhouse gas emissions. In IPCC Special Report on CCS, the storage mechanisms for geological formations are categorized into structural/stratigraphic, hydrodynamic and geochemical trappings. Geochemical trapping is considered as a storage mechanism, which can further increase storage capacity, effectiveness and security in terms of permanent CO2 sequestration. The injected CO2 can have geochemical interactions with pore fluid and reservoir rocks and transform into minerals. It is important to evaluate the capacity of reservoir rock for sequestrating CO2. In this study, sedimentary rock samples were collected from a 2-km-deep well in Midwestern Taiwan; and, the BCR sequential extraction experiments developed by European Union Measurement and Testing Programme were conducted. BCR was designed for extracting three major phases from soil, including exchangeable phase and carbonates (the first stage), reducible phase (the second stage) and oxidizable phase (the third stage). The chemistry of extracted solutions and rock residues were measured with ICP-MS and XRF, respectively. According to the results of XRF, considerable amounts of calcium and iron can be extracted by BCR procedures but other cations are negligible. In general, shale has a higher capacity of CO2 sequestration than sandstone. The first stage of extraction can release about 6 (sandstone) to 18.5 (shale) g of calcium from 1 kg rock, which are equivalent to 6.6 and 20.4 g CO2/kg rock, respectively. In the second stage extraction, 0.71 (sandstone) to 1.38 (shale) g/kg rock of iron can be released and can mineralized 0.56 to 1.08 g CO2/kg rock. However, there are no considerable cations extracted in the third stage of BCR as shown by the XRF analysis. In addition, the results of ICP-MS show that Mg can be released in the order of 10-3 g from 1 kg rock while cations of Zn, Co, Ni, Cd, Pb, Cu and Ba are in the order of 10-4 g.
Yang, Xiang-Jun; Wang, Shi-Xiong; Zou, An-Qin; Chen, Jing; Guo, Hong
2014-02-01
Trialkyphosphine oxides (TRPO) was successfully used for the impregnation of D3520 resin to prepare an extractant-impregnated resin (EIR). Solid extraction of Au(I) from alkaline cyanide solution was studied using this extractant-impregnated resin (EIR), with addition of cetyltrimethylammonium bromide (CTMAB), directly into the aurous aqueous phase in advance. The mechanism of solid extraction was further investigated by means of FTIR, XPS and SEM. The column separation studies have shown that cationic surfactant CTMAB played a key role in the solid phase extraction, and the resin containing TRPO were effective for the extraction of gold when the molar ratio of CTMAB: Au( I ) reached 1:1. FTIR spectroscopy of gold loaded EIR showed that the frequency of C[triple bond]N stretching vibration was at 2144 cm(-1), and the frequency of P=O stretching vibration shifted to lower frequency from 1153 to 1150 cm(-1). The XPS spectrum of N(1s), Au(4f7/2) and Au(4f5/2) sugges- ted that the coordination environment of gold did not change before and after extraction, and gold was still as the form of Au (CN)2(-) anion exiting in the loaded resin; O(1s) spectrum showed that the chemically combined water significantly increased after solid extraction from 30.74% to 42.34%; Comparing to the P(2p) spectrum before and after extraction, the binding energy increased from 132. 15 to 132. 45 eV, indicating there maybe existing hydrogen-bond interaction between P=O and water molecule, such as P=O...H-O-H. The above results obtained established that in the solid extraction process, the hydrophobic ion association [CTMA+ x Au(CN)] diffused from the bulk solution into the pores of the EIR, and then be solvated by TRPO adsorbed in the pores through hydrogen bonding bridged by the water molecules.
Erny, Guillaume L; Gonçalves, Bruna M; Esteves, Valdemar I
2013-09-06
In this work, humic substances (HS) immobilized, as a thin layer or as aggregates, on silica gel were tested as material for solid phase extraction. Some triazines (simazine, atrazine, therbutylazine, atrazine-desethyl-desisopropyl-2-hydroxy, ametryn and terbutryn), have been selected as test analytes due to their environmental importance and to span a large range of solubility and octanol/water partition coefficient (logP). The sorbent was obtained immobilizing a thin layer of HS via physisorption on a pre-coated silica gel with a cationic polymer (polybrene). While the sorbent could be used as it is, it was demonstrated that additional HS could be immobilized, via weak interactions, to form stable humic aggregates. However, while a higher quantity of HS could be immobilized, no significant differences were observed in the sorption parameters. This sorbent have been tested for solid phase extraction to concentrate triazines from aqueous matrixes. The sorbent demonstrated performances equivalent to commercial alternatives as a concentration factor between 50 and 200, depending on the type of triazines, was obtained. Moreover the low cost and the high flow rate of sample through the column allowed using high quantity of sorbent. The analytical procedure was tested with different matrixes including tap water, river water and estuarine water. Copyright © 2013 Elsevier B.V. All rights reserved.
Fukushi, Keisuke; Sakai, Haruka; Itono, Taeko; Tamura, Akihiro; Arai, Shoji
2014-09-16
Fine clay particles have functioned as transport media for radiocesium in terrestrial environments after nuclear accidents. Because radiocesium is expected to be retained in clay minerals by a cation-exchange reaction, ascertaining trace cesium desorption behavior in response to changing solution conditions is crucially important. This study systematically investigated the desorption behavior of intrinsic Cs (13 nmol/g) in well-characterized Na-montmorillonite in electrolyte solutions (NaCl, KCl, CaCl2, and MgCl2) under widely differing cation concentrations (0.2 mM to 0.2 M). Batch desorption experiments demonstrated that Cs(+) desorption was inhibited significantly in the presence of the environmental relevant concentrations of Ca(2+) and Mg(2+) (>0.5 mM) and high concentrations of K(+). The order of ability for Cs desorption was Na(+) = K(+) > Ca(2+) = Mg(2+) at the highest cation concentration (0.2 M), which is opposite to the theoretical prediction based on the cation-exchange selectivity. Laser diffraction grain-size analyses revealed that the inhibition of Cs(+) desorption coincided with the increase of the clay tactoid size. Results suggest that radiocesium in the dispersed fine clay particles adheres on the solid phase when the organization of swelling clay particles occurs because of changes in solution conditions caused by both natural processes and artificial treatments.
NASA Astrophysics Data System (ADS)
Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana
2016-12-01
The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34-80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics.
Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana
2016-01-01
The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34–80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics. PMID:28000704
Andersen, Wendy C; Turnipseed, Sherri B; Karbiwnyk, Christine M; Clark, Susan B; Madson, Mark R; Gieseker, Charles M; Miller, Ron A; Rummel, Nathan G; Reimschuessel, Renate
2008-06-25
Pet and food animal (hogs, chicken, and fish) feeds were recently found to be contaminated with melamine (MEL). A quantitative and confirmatory method is presented to determine MEL residues in edible tissues from fish fed this contaminant. Edible tissues were extracted with acidic acetonitrile, defatted with dichloromethane, and cleaned up using mixed-mode cation exchange solid-phase extraction cartridges. Extracts were analyzed by liquid chromatography with tandem mass spectrometry with hydrophilic interaction chromatography and electrospray ionization in positive ion mode. Fish and shrimp tissues were fortified with 10-500 microg/kg (ppb) of MEL with an average recovery of 63.8% (21.5% relative standard deviation, n = 121). Incurred fish tissues were generated by feeding fish up to 400 mg/kg of MEL or a combination of MEL and the related triazine cyanuric acid (CYA). MEL and CYA are known to form an insoluble complex in the kidneys, which may lead to renal failure. Fifty-five treated catfish, trout, tilapia, and salmon were analyzed after withdrawal times of 1-14 days. MEL residues were found in edible tissues from all of the fish with concentrations ranging from 0.011 to 210 mg/kg (ppm). Incurred shrimp and a survey of market seafood products were also analyzed as part of this study.
Ludewig, Ronny; Nietzsche, Sandor; Scriba, Gerhard K E
2011-01-01
A CEC weak cation-exchange monolith has been prepared by in situ polymerization of acrylamide, methylenebisacrylamide and 4-acrylamidobutyric acid in a decanol-dimethylsulfoxide mixture as porogen. The columns were evaluated by SEM and characterized with regard to the separation of diastereomers and α/β-isomers of aspartyl peptides. Column preparation was reproducible as evidenced by comparison of the analyte retention times of several columns prepared simultaneously. Analyte separation was achieved using mobile phases consisting of acidic phosphate buffer and ACN. Under these conditions the peptides migrated due to their electrophoretic mobility but the EOF also contributed as driving force as a function of the pH of the mobile phase due to increasing dissociation of the carboxyl groups of the polymer. Raising the pH of the mobile phase also resulted in deprotonation of the peptides reducing analyte mobility. Due to these mechanisms each pair of diastereomeric peptides displayed the highest resolution at a different pH of the buffer component of the mobile phase. Comparing the weak-cation exchange monolith to an RP monolith and a strong cation-exchange monolith different elution order of some peptide diastereomers was observed, clearly illustrating that interactions with the stationary phase contribute to the CEC separations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chromium speciation in environmental samples using a solid phase spectrophotometric method
NASA Astrophysics Data System (ADS)
Amin, Alaa S.; Kassem, Mohammed A.
2012-10-01
A solid phase extraction technique is proposed for preconcentration and speciation of chromium in natural waters using spectrophotometric analysis. The procedure is based on sorption of chromium(III) as 4-(2-benzothiazolylazo)2,2'-biphenyldiol complex on dextran-type anion-exchange gel (Sephadex DEAE A-25). After reduction of Cr(VI) by 0.5 ml of 96% concentrated H2SO4 and ethanol, the system was applied to the total chromium. The concentration of Cr(VI) was calculated as the difference between the total Cr and the Cr(III) content. The influences of some analytical parameters such as: pH of the aqueous solution, amounts of 4-(2-benzothiazolylazo)2,2'-biphenyldiol (BTABD), and sample volumes were investigated. The absorbance of the gel, at 628 and 750 nm, packed in a 1.0 mm cell, is measured directly. The molar absorptivities were found to be 2.11 × 107 and 3.90 × 107 L mol-1 cm-1 for 500 and 1000 ml, respectively. Calibration is linear over the range 0.05-1.45 μg L-1 with RSD of <1.85% (n = 8.0). Using 35 mg exchanger, the detection and quantification limits were 13 and 44 ng L-1 for 500 ml sample, whereas for 1000 ml sample were 8.0 and 27 ng L-1, respectively. Increasing the sample volume can enhance the sensitivity. No considerable interferences have been observed from other investigated anions and cations on the chromium speciation. The proposed method was applied to the speciation of chromium in natural waters and total chromium preconcentration in microwave digested tobacco, coffee, tea, and soil samples. The results were simultaneously compared with those obtained using an ET AAS method, whereby the validity of the method has been tested.
Al-Sammak, Maitham Ahmed; Hoagland, Kyle D; Snow, Daniel D; Cassada, David
2013-12-15
Blue-green algae, also known as cyanobacteria, can produce several different groups of toxins in the environment including hepatotoxins (microcystins), neurotoxic non-protein amino acids β-methylamino-l-alanine (BMAA), and 2,4-diaminobutyric (DABA), as well as the bicyclic amine alkaloid anatoxin-a. Few studies have addressed the methods necessary for an accurate determination of cyanotoxins in environmental samples, and none have been published that can detect these cyanotoxins together in a single sample. Cyanotoxins occur in a wide range of environmental samples including water, fish, and aquatic plant samples. Using polymeric cation exchange solid phase extraction (SPE) coupled with liquid chromatography and fluorescence detection (HPLC/FD), and liquid chromatography ion trap tandem mass spectrometry (LC/MS/MS), these compounds can for the first time be simultaneously quantified in a variety of environmental sample types. The extraction method for biological samples can distinguish bound and free cyanotoxins. Detection limits for water ranged from 5 to 7 μg/L using HPLC/FD, while detection limits for and LC/MS were in the range of 0.8-3.2 μg/L. Copyright © 2013 Elsevier Ltd. All rights reserved.
Haftka, Joris J-H; Scherpenisse, Peter; Oetter, Günter; Hodges, Geoff; Eadsforth, Charles V; Kotthoff, Matthias; Hermens, Joop L M
2016-09-01
The amphiphilic nature of surfactants drives the formation of micelles at the critical micelle concentration (CMC). Solid-phase microextraction (SPME) fibers were used in the present study to measure CMC values of 12 nonionic, anionic, cationic, and zwitterionic surfactants. The SPME-derived CMC values were compared to values determined using a traditional surface tension method. At the CMC of a surfactant, a break in the relationship between the concentration in SPME fibers and the concentration in water is observed. The CMC values determined with SPME fibers deviated by less than a factor of 3 from values determined with a surface tension method for 7 out of 12 compounds. In addition, the fiber-water sorption isotherms gave information about the sorption mechanism to polyacrylate-coated SPME fibers. A limitation of the SPME method is that CMCs for very hydrophobic cationic surfactants cannot be determined when the cation exchange capacity of the SPME fibers is lower than the CMC value. The advantage of the SPME method over other methods is that CMC values of individual compounds in a mixture can be determined with this method. However, CMC values may be affected by the presence of compounds with other chain lengths in the mixture because of possible mixed micelle formation. Environ Toxicol Chem 2016;35:2173-2181. © 2016 SETAC. © 2016 SETAC.
Ding, Xueqin; Wang, Yuzhi; Wang, Ying; Pan, Qi; Chen, Jing; Huang, Yanhua; Xu, Kaijia
2015-02-25
A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been synthesized, and then magnetic chitosan graphene oxide (MCGO) composite has been prepared and coated with these functional guanidinium ionic liquids to extract protein by magnetic solid-phase extraction. MCGO-functional guanidinium ionic liquid has been characterized by vibrating sample magnetometer, field emission scanning electron microscopy, X-ray diffraction spectrometer and Fourier transform infrared spectrometer. After extraction, the concentrations of protein were determined by measuring the absorbance at 278 nm using an ultra violet visible spectrophotometer. The advantages of MCGO-functional guanidinium ionic liquid in protein extraction were compared with magnetic chitosan, graphene oxide, MCGO and MCGO-ordinary imidazolium ionic liquid. The proposed method has been applied to extract trypsin, lysozyme, ovalbumin and bovine serum albumin. A comprehensive study of the adsorption conditions such as the concentration of protein, the amount of MCGO-functional guanidinium ionic liquid, the pH, the temperature and the extraction time were also presented. Moreover, the MCGO-functional guanidinium ionic liquid can be easily regenerated, and the extraction capacity was about 94% of the initial one after being used three times. Copyright © 2015 Elsevier B.V. All rights reserved.
2017-08-01
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6360--17-9743 Extraction of Carbon Dioxide and Hydrogen from Seawater by an Electrolytic...Cation Exchange Module (E-CEM) Part V: E-CEM Effluent Discharge Composition as a Function of Electrode Water Composition August 1, 2017 Approved for...Office of Naval Research Arlington, Virginia Dennis r. HarDy Nova Research Inc. Alexandria, Virginia i REPORT DOCUMENTATION PAGE Form
Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange
2013-01-01
For three types of colloidal magnetic nanocrystals, we demonstrate that postsynthetic cation exchange enables tuning of the nanocrystal’s magnetic properties and achieving characteristics not obtainable by conventional synthetic routes. While the cation exchange procedure, performed in solution phase approach, was restricted so far to chalcogenide based semiconductor nanocrystals, here ferrite-based nanocrystals were subjected to a Fe2+ to Co2+ cation exchange procedure. This allows tracing of the compositional modifications by systematic and detailed magnetic characterization. In homogeneous magnetite nanocrystals and in gold/magnetite core shell nanocrystals the cation exchange increases the coercivity field, the remanence magnetization, as well as the superparamagnetic blocking temperature. For core/shell nanoheterostructures a selective doping of either the shell or predominantly of the core with Co2+ is demonstrated. By applying the cation exchange to FeO/CoFe2O4 core/shell nanocrystals the Neél temperature of the core material is increased and exchange-bias effects are enhanced so that vertical shifts of the hysteresis loops are obtained which are superior to those in any other system. PMID:23362940
Månsson, Maria; Phipps, Richard K; Gram, Lone; Munro, Murray H G; Larsen, Thomas O; Nielsen, Kristian F
2010-06-25
Microbial natural products (NP) cover a high chemical diversity, and in consequence extracts from microorganisms are often complex to analyze and purify. A distribution analysis of calculated pK(a) values from the 34390 records in Antibase2008 revealed that within pH 2-11, 44% of all included compounds had an acidic functionality, 17% a basic functionality, and 9% both. This showed a great potential for using ion-exchange chromatography as an integral part of the separation procedure, orthogonal to the classic reversed-phase strategy. Thus, we investigated the use of an "explorative solid-phase extraction" (E-SPE) protocol using SAX, Oasis MAX, SCX, and LH-20 columns for targeted exploitation of chemical functionalities. E-SPE provides a minimum of fractions (15) for chemical and biological analyses and implicates development into a preparative scale methodology. Overall, this allows fast extract prioritization, easier dereplication, mapping of biological activities, and formulation of a purification strategy.
Peltenburg, Hester; Droge, Steven T J; Hermens, Joop L M; Bosman, Ingrid J
2015-04-17
A solid-phase microextraction (SPME) method based on a sampler coating that includes strong cation groups (C18/SCX) is explored as a rapid direct sampling tool to detect and quantify freely dissolved basic drugs. Sampling kinetics, sorption isotherms and competitive effects on extraction yields in mixtures were tested for amphetamine and the relatively large/hydrophobic tricyclic antidepressant amitriptyline. Both compounds are >99% ionized at pH 7.4 but their affinity for the C18/SCX fiber is markedly different with distribution coefficients (Dfw values) of 2.49±0.02 for amphetamine and 4.72±0.10 for amitriptyline. Typical changes in electrolyte homeostasis that may occur in biomedical samples were simulated by altering pH and ionic composition (Na(+) and K(+) concentrations). These changes were shown to affect C18/SCX sorption affinities of the tested drugs with less than 0.2log units. At relatively low fiber loadings (<10mmol/L coating) and at all tested exposure times, linear sorption isotherms were obtained for both compounds but at aqueous concentrations of the individual drugs corresponding to concentrations in blood that are lethal, sorption isotherms became strongly nonlinear. Competition effects within binary mixtures occurred only if combinations of aqueous concentrations resulted in total fiber loadings that were in the nonlinear range of the SPME sorption isotherm for the individual compounds. We also compared sorption to the (prototype) C18/SCX SPME coating with analogue (biocompatible) C18 coated SPME fibers. C18/SCX fibers show increased sorption affinity for cationic compounds compared to C18 fibers, as tested using amitriptyline, amphetamine and trimethoprim. Surprisingly, sorption affinity of these ionized compounds for the C18 SPME fibers were within 1log unit of the C18/SCX SPME fibers. This shows that the strong cation exchange groups within the C18/SCX coating only has a relatively small contribution to the total sorption affinity of cationic compounds. Also the role of negatively charged silanol groups in both the C18 and C18/SCX coating seems small, as anionic diclofenac species sorbed strongly to the C18 fiber. Ionized organic species seem to be substantially adsorbed to the high surface area of C18 in SPME types using porous silica based coatings. Copyright © 2015 Elsevier B.V. All rights reserved.
The Chemistry of Separations Ligand Degradation by Organic Radical Cations
Mezyk, Stephen P.; Horne, Gregory P.; Mincher, Bruce J.; ...
2016-12-01
Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexants and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normalmore » alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R •+), carbon-centered radicals (R •), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R •+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with various ligands. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved.« less
The Chemistry of Separations Ligand Degradation by Organic Radical Cations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezyk, Stephen P.; Horne, Gregory P.; Mincher, Bruce J.
Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexants and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normalmore » alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R •+), carbon-centered radicals (R •), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R •+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with various ligands. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved.« less
Applications for special-purpose minerals at a lunar base
NASA Technical Reports Server (NTRS)
Ming, Douglas W.
1992-01-01
Maintaining a colony on the Moon will require the use of lunar resources to reduce the number of launches necessary to transport goods from the Earth. It may be possible to alter lunar materials to produce minerals or other materials that can be used for applications in life support systems at a lunar base. For example, mild hydrothermal alteration of lunar basaltic glasses can produce special-purpose minerals (e.g., zeolites, smectites, and tobermorites) that in turn may be used in life support, construction, waste renovation, and chemical processes. Zeolites, smectites, and tobermorites have a number of potential applications at a lunar base. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations that possess infinite, three-dimensional crystal structures. They are further characterized by an ability to hydrate and dehydrate reversibly and to exchange some of their constituent cations, both without major change of structure. Based on their unique absorption, cation exchange, molecular sieving, and catalytic properties, zeolites may be used as a solid support medium for the growth of plants, as an adsorption medium for separation of various gases (e.g., N2 from O2), as catalysts, as molecular sieves, and as a cation exchanger in sewage-effluent treatment, in radioactive waste disposal, and in pollution control. Smectites are crystalline, hydrated 2:1 layered aluminosilicates that also have the ability to exchange some of their constituent cations. Like zeolites, smectites may be used as an adsorption medium for waste renovation, as adsorption sites for important essential plant growth cations in solid support plant growth mediums (i.e., 'soils'), as cation exchangers, and in other important application. Tobermorites are cystalline, hydrated single-chained layered silicates that have cation-exchange and selectivity properties between those of smectites and most zeolites. Tobermorites may be used as a cement in building lunar base structures, as catalysts, as media for nuclear and hazardous waste disposal, as exchange media for waste-water treatment, and in other potential applications. Special-purpose minerals synthesized at a lunar base may also have important applications at a space station and for other planetary missions. New technologies will be required at a lunar base to develop life support systems that are self-sufficient, and the use of special-purpose minerals may help achieve this self-sufficiency.
Han, Yehong; Yang, Chunliu; Zhou, Yang; Han, Dandan; Yan, Hongyuan
2017-03-01
A new method involving ionic liquid-hybrid molecularly imprinted material-filter solid-phase extraction coupled to high-performance liquid chromatography (IL-HIM-FSPE-HPLC) was developed for the simultaneous isolation and determination of 6-benzyladenine (6-BA) and 4-chlorophenoxyacetic acid (4-CPA) in bean sprouts. Sample preconcentration was performed using a modified filter, with the new IL-HIM as the adsorbent, which shows double adsorption. The first adsorption involves special recognition of molecular imprinting, and the second involves ion exchange and electrostatic attraction caused by the ionic liquid. This method combines the advantages of ionic liquids, hybrid materials, and molecularly imprinted polymers and was successfully applied to determine 6-BA and 4-CPA in bean sprouts. The adsorption of 6-BA to IL-HIM is based on selective imprinted recognition, whereas the adsorption of 4-CPA is mainly dependent on ion-exchange interactions.
Rousseva, Michaela; Kontoudakis, Nikolaos; Schmidtke, Leigh M; Scollary, Geoffrey R; Clark, Andrew C
2016-07-15
Copper and iron in wine can influence oxidative, reductive and colloidal stability. The current study utilises a solid phase extraction technique to fractionate these metals into hydrophobic, cationic and residual forms, with quantification by ICP-OES. The impact of aspects of wine production on the metal fractions was examined, along with the relationship between metal fractions and oxygen decay rates. Addition of copper and iron to juice, followed by fermentation, favoured an increase in all of their respective metal fractions in the wine, with the largest increase observed for the cationic form of iron. Bentonite fining of the protein-containing wines led to a significant reduction in the cationic fraction of copper and an increase in the cationic form of iron. Total copper correlated more closely with oxygen consumption in the wine compared to total iron, and the residual and cationic forms of copper provided the largest contribution to this impact. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structural Studies of NH4-exchanged Natrolites at Ambient Conditions and High Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Lee; D Seoung; Y Jang
2011-12-31
We report here for the first time that fully and partially NH{sub 4}-exchanged natrolites can be prepared in hydrated states using the solution exchange method with potassium-natrolite. The structural models of the as-prepared hydrated phases and their dehydrated forms at elevated temperature were refined in space group Fdd2 using in situ synchrotron X-ray powder diffraction data and Rietveld methods. The unit-cell volumes of the hydrated NH{sub 4}-exchanged natrolites at ambient conditions, (NH{sub 4}){sub 16(2)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}14.1(9)H{sub 2}O and (NH{sub 4}){sub 5.1(1)}K{sub 10.9(1)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}15.7(3)H{sub 2}O, are found to be larger than that the original sodium-natrolite by ca. 15.6%more » and 12.8%, respectively. Upon temperature increase, the fully NH{sub 4}-exchanged natrolite undergoes dehydration at ca. 150 C with ca. 16.4% contraction in the unit-cell volume. The dehydrated phase of the fully NH{sub 4}-exchanged natrolite exhibits marginal volume expansion up to 425 C and then becomes amorphized during temperature decrease and exposure to atmospheric condition. In the case of the partially NH{sub 4}-exchanged natrolite, the dehydration starts from ca. 175 C with {approx}15.1% volume contraction and leads to a partial phase separation to show a phase related to the dehydrated K-natrolite. The degree of the phase separation decreases with temperature increase up to 475 C, concomitant to the gradual volume contraction occurring in the partially NH{sub 4}-exchanged natrolite in the dehydrared state. Upon temperature decrease and exposure to atmospheric condition, only the dehydrated K-natrolite is recovered as a crystalline phase from the partially NH{sub 4}-exchanged natrolite. In the hydrated model of the fully NH{sub 4}-exchanged natrolite, the ammonium cations and water molecules are statistically distributed along the elliptical channels, similar to the disordered pattern observed in natrolites exchanged with larger alkali metal cations such as the K-, Rb-, and Cs-forms. The dehydrated model of the fully NH{sub 4}-exchanged natrolite at 400 C is essentially same as the one reported previously from the sample prepared by direct melt exchange method using sodium-natrolite. Both the hydrated and dehydrated structures of the partially NH{sub 4}-exchanged natrolite at RT and at 400 C, respectively, are characterized by having two separate sites for the ammonium and potassium cations. Comparing the structural models of the monovalent cation forms studied so far, we find that the rotation angle of the natrolite chain is inversely proportional to the cation radius both in the hydrated and dehydrated phases. The distribution pattern of the non-framework species along the natrolite channel also seems to be related to the non-framework cation radius and hence to the chain rotation angle.« less
Sn Cation Valency Dependence in Cation Exchange Reactions Involving Cu2-xSe Nanocrystals
2014-01-01
We studied cation exchange reactions in colloidal Cu2-xSe nanocrystals (NCs) involving the replacement of Cu+ cations with either Sn2+ or Sn4+ cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu2-xSe NCs remains cubic regardless of the degree of copper deficiency (that is, “x”) in the NC lattice. Also, Sn4+ ions are comparable in size to the Cu+ ions, while Sn2+ ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn4+ cations are used, alloyed Cu2–4ySnySe NCs (with y ≤ 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu+ cations with Sn4+ cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn2+ cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu2-xSe/SnSe heterostructures, with no Cu–Sn–Se alloys. PMID:25340627
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Robert W.; Fujita, Yoshiko; Hubbard, Susan S.
2013-11-15
Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE's greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent ions, such as the short-lived radionuclide 90Sr, is co-precipitation in calcite. We have previously found that nutrient addition can stimulate microbial ureolytic activity, that this activity accelerates calcite precipitation and co-precipitation of Sr, and that higher calcite precipitation rates can result in increased Sr partitioning. We have conducted integrated field, laboratory, and computational research to evaluate the relationships between ureolysis and calcite precipitation rates and trace metal partitioning under environmentally relevant conditions,more » and investigated the coupling between flow/flux manipulations and precipitate distribution. A field experimental campaign conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO was based on a continuous recirculation design; water extracted from a down-gradient well was amended with urea and molasses (a carbon and electron donor) and re-injected into an up-gradient well. The goal of the recirculation design and simultaneous injection of urea and molasses was to uniformly accelerate the hydrolysis of urea and calcite precipitation over the entire inter-wellbore zone. The urea-molasses recirculation phase lasted, with brief interruptions for geophysical surveys, for 12 days and was followed by long-term monitoring which continued for 13 months. A post experiment core located within the inter-wellbore zone was collected on day 321 and characterized with respect to cation exchange capacity, mineral carbonate content, urease activity, ureC gene abundance, extractable ammonium (a urea hydrolysis product) content, and the 13C isotopic composition of solid carbonates. It was also subjected to selective extractions for strontium and uranium. Result of the core characterization suggest that urea hydrolysis occurred primarily within the upper portion of the inter-wellbore zone and that strontium was mobilized from cation exchange sites and subsequently co-precipitated with new calcium carbonate.« less
Chen, Hsin-Chang; Ding, Wang-Hsien
2006-03-10
A comprehensive method for the determination of four stilbene-type disulfonate and one distyrylbiphenyl-type fluorescent whitening agents (FWAs) in paper materials (napkin and paper tissue) and infant clothes was developed. FWAs were extracted from paper material and cloth samples using a hot-water extraction, and the aqueous extracts were then preconcentrated with the newly developed Oasis WAX (mixed-mode of weak anion exchange and reversed-phase sorbent) solid-phase extraction cartridge. The analytes were unequivocal determined by ion pair chromatography coupled with negative electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS-MS), applying a di-n-hexyl-ammonium acetate (DHAA) as the ion-pairing reagent in mobile phase. Limits of quantitation (LOQ) were established between 0.2 and 0.9 ng/g in 2 g of samples. Recovery of five FWAs in spiked commercial samples was between 42 and 95% and RSD (n = 3) ranging from 2 to 11%. The method was finally applied to commercial samples, showing that two stilbene-type disulfonates were predominant FWAs detected in napkin and infant cloth samples.
Polymorphic phase transitions and molecular motion in pyridinium chlorochromate
NASA Astrophysics Data System (ADS)
Pajaķ, Z.; Szafrańska, B.; Czarnecki, P.; Mayer, J.; Kozak, A.
1997-08-01
DTA, DSC, NMR and dielectric studies have been performed for pyridinium chlorochromate over a wide temperature range. A sequence of four solid-solid phase transitions was discovered. The in-plane complex reorientation of the cation is described by a three-well potential model with two correlation times. At higher temperatures one observes simultaneous cation tumbling and diffusion. Thus existence of a new ionic plastic phase is revealed. The domain structure observed suggests ferroelastic properties of the compound.
Qi, Feifei; Jian, Ningge; Qian, Liangliang; Cao, Weixin; Xu, Qian; Li, Jian
2017-09-01
A simple and efficient three-step sample preparation method was developed and optimized for the simultaneous analysis of illegal anionic and cationic dyes (acid orange 7, metanil yellow, auramine-O, and chrysoidine) in food samples. A novel solid-phase extraction (SPE) procedure based on nanofibers mat (NFsM) was proposed after solvent extraction and freeze-salting out purification. The preferred SPE sorbent was selected from five functionalized NFsMs by orthogonal experimental design, and the optimization of SPE parameters was achieved through response surface methodology (RSM) based on the Box-Behnken design (BBD). Under the optimal conditions, the target analytes could be completely adsorbed by polypyrrole-functionalized polyacrylonitrile NFsM (PPy/PAN NFsM), and the eluent was directly analyzed by high-performance liquid chromatography-diode array detection (HPLC-DAD). The limits of detection (LODs) were between 0.002 and 0.01 mg kg -1 , and satisfactory linearity with correlation coefficients (R > 0.99) for each dye in all samples was achieved. Compared with the Chinese standard method and the published methods, the proposed method was simplified greatly with much lower requirement of sorbent (5.0 mg) and organic solvent (2.8 mL) and higher sample preparation speed (10 min/sample), while higher recovery (83.6-116.5%) and precision (RSDs < 7.1%) were obtained. With this developed method, we have successfully detected illegal ionic dyes in three common representative foods: yellow croaker, soybean products, and chili seasonings. Graphical abstract Schematic representation of the process of the three-step sample preparation.
Clay-catalyzed reactions of coagulant polymers during water chlorination
Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.
2004-01-01
The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.
Zhang, Yulin; Mason, Sean; McNeill, Ann; McLaughlin, Michael J
2014-09-09
The utilization of Amberlite (IRP-69 ion-exchange resin, 100-500 wet mesh) as the binding phase in the diffusive gradients in thin films (DGT) technique has shown potential to improve the assessment of plant-available K in soils. The binding phase has recently been optimized by using a mixed Amberlite and ferrihydrite (MAF) gel which results in linear K uptake over extended deployment periods and in solutions with higher K concentrations. As restriction of K uptake by Ca on the Amberlite based resin gel has been previously proposed, potential competing effects of Ca(2+), Mg(2+) and NH(4+) on K uptake by the MAF gel were investigated. These cations had no effect on K elution efficiency which was 85%. However, K uptake by the MAF gel was restricted in the presence of competing cations in solution. Consequently, the diffusion coefficient of K decreased in the presence of cations compared to previous studies but was stable at 1.12×10(-5)cm(2)s(-1) at 25°C regardless of cation concentrations. Uptake of K by the DGT device was affected by the presence of excessive Ca in more than 30% of twenty typical Australian agricultural soils. However, this problem could be circumvented by using a shorter deployment time than the normal 24 h. Moderate correlation of concentrations of K extracted by DGT with Colwell K (extracted by NaHCO(3), R(2)=0.69) and NH4OAc K (R(2)=0.61) indicates that DGT measures a different pool of K in soils than that measured by the standard extractants used. In addition, the MAF gel has the ability to measure Ca and Mg simultaneously. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, Z.; Wen, H.; Li, L.
2017-12-01
Accidental release of Marcellus Shale waters (MSW) can release high concentrations of chemicals that can deteriorate groundwater quality. It is important to understand the reactive transport and fate of chemicals from MSW. Natural aquifers typically have complex mineralogical compositions and are heterogeneous with large spatial variation in terms of physical and geochemical properties. To investigate the effects of mineralogical compositions, flow-through experiments and reactive transport modeling were carried out using 3 large columns (5 cm×50 cm, Quartz, Calcite, and Vermiculite). Results indicate calcite immobilizes heavy metals by precipitation and solid solution partitioning (coprecipitation). Vermiculite retards heavy metals through ion exchange. The sorbed chemicals however slowly release back to the groundwater. Na and Ca transport similarly to Br in Qtz and Cal columns however become sorbed in Vrm column during release through ion exchange by 27.8% and 46.5%, respectively and later slowly release back to aqueous phase. To understand the role of mineral spatial patterns, three 2D flow-cell (40 cm×12 cm×1 cm) experiments were carried out. All flow cells have the same clay mass within quartz matrix but different spatial patterns characterized by the relative length of the clay zone ( 0, ¼, ½) of the domain length (L). Results show that in the uniform column, ion exchange dominates and most Ba sorbs to the solid phase, to an extent Ba cannot precipitate out with SO4 as barite. In 1/2-Zone, however, most Ba precipitates as barite. In 1/4-Zone, both ion exchange and mineral precipitation occur. In general, the 1/2-Zone has the smallest ion exchange capacity for other species including Na, Ca, Mg, K and heavy metals (Mn, Cu, Zn, Cd and Pb) as well. Our flow cell experiment emphasizes the importance of mineral spatial patterns in regulating not only reaction rates but also the type of reactions in controlling the reactive transport of MSW chemicals. The column study suggests in carbonate rich aquifers, carbonate facilitate natural attenuation. In clay-rich aquifers, such as sandstone aquifers, clay helps alleviate the cation during MSW release however these sorbed cations will ultimately release back to the aqueous phase. In sand and gravel aquifers, mixing process primarily controls the concentration level.
Ezoddin, Maryam; Majidi, Behrooz; Abdi, Khosrou
2015-01-01
A simple and rapid ultrasound-assisted in situ sorbent formation solid-phase extraction (UAISFSPE) coupled with electrothermal atomic absorption spectrometry detection (ET-AAS) was developed for preconcentration and determination of arsenic (As) in various samples. A small amount of cationic surfactant is dissolved in the aqueous sample containing As ions, which were complexed by ammonium pyrrolidinedithiocarbamate After shaking, a little volume of hexafluorophosphate (NaPF6) as an ion-pairing agent was added into the solution by a microsyringe. Due to the interaction between surfactant and ion-pairing agent, solid particles are formed. The alkyl groups of the surfactant in the solid particles strongly interact with the hydrophobic groups of analytes and become bound. Sonication aids the dispersion of the sorbent into the sample solution and mass transfer of the analyte into the sorbent, thus reducing the extraction time. The solid particles are centrifuged, and the sedimented particles can be dissolved in an appropriate solvent to recover the absorbed analyte. After separation, total arsenic (As(III) and As(V)) was determined by ET-AAS. Several experimental parameters were investigated and optimized. A detection limit of 7 ng L(-1) with preconcentration factor of 100 and relative standard deviation for 10 replicate determinations of 0.1 µg L(-1) As(III) were 4.5% achieved. Consequently, the method was applied to the determination of arsenic in certified reference materials, water, food and biological samples with satisfactory results.
Method of separating and recovering uranium and related cations from spent Purex-type systems
Mailen, J.C.; Tallent, O.K.
1987-02-25
A process for separating uranium and related cations from a spent Purex-type solvent extraction system which contains degradation complexes of tributylphosphate wherein the system is subjected to an ion-exchange process prior to a sodium carbonate scrubbing step. A further embodiment comprises recovery of the separated uranium and related cations. 5 figs.
Alkaline degradation studies of anion exchange polymers to enable new membrane designs
NASA Astrophysics Data System (ADS)
Nunez, Sean Andrew
Current performance targets for anion-exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 hours at temperatures up to 120 °C. Using this target temperature of 120 °C, an incisive 1H NMR-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogs. Herein, the degradation mechanisms and rates of benzyltrimethylammonium-, n-alkyl interstitial spacer- and n-alkyl terminal pendant-cations are studied on several architectures. These findings demonstrate that benzyltrimethylammonium- and n-alkyl terminal pendant cations are more labile than an n-alkyl interstitial spacer cation and conclude that Hofmann elimination is not the predominant mechanism of alkaline degradation. Additionally, the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when combined with an n-alkyl terminal pendant. Interestingly, at 120 °C, an inverse trend was found in the overall alkaline stability of AEM poly(styrene) and AEM poly(phenylene oxide) samples than was previously shown at 80 °C. Successive small molecule studies suggest that at 120 °C, an anion-induced 1,4-elimination degradation mechanism may be activated on styrenic AEM polymers bearing an acidic alpha-hydrogen. In addition, an ATR-FTIR based method was developed to assess the alkaline stability of solid membranes and any added resistance to degradation that may be due to differential solubilities and phase separation. To increase the stability of anion exchange membranes, Oshima magnesate--halogen exchange was demonstrated as a method for the synthesis of new anion exchange membranes that typically fail in the presence of organolithium or Grignard reagents alone. This new chemistry, applied to non-resinous polymers for the first time, proved effective for the n-akyl interstitial spacer functionalization of poly(phenylene oxide) and poly(styrene- co-ethylene-co-butylene-co-styrene) polymer backbones. The comprehensive methodologies for the assessment of alkaline stability in AEMs as well as the new synthetic methodologies are intended as a guide toward robust AEM synthetic designs that approach current performance standards.
Zeng, Jingbin; Chen, Jinmei; Song, Xinhong; Wang, Yiru; Ha, Jaeho; Chen, Xi; Wang, Xiaoru
2010-03-12
In this paper, we proposed an approach using a multi-walled carbon nanotubes (MWCNTs)/Nafion composite coating as a working electrode for the electrochemically enhanced solid-phase microextraction (EE-SPME) of charged compounds. Suitable negative and positive potentials were applied to enhance the extraction of cationic (protonated amines) and anionic compounds (deprotonated carboxylic acids) in aqueous solutions, respectively. Compared to the direct SPME mode (DI-SPME) (without applying potential), the EE-SPME presented more effective and selective extraction of charged analytes primarily via electrophoresis and complementary charge interaction. The experimental parameters relating to extraction efficiency of the EE-SPME such as applied potentials, extraction time, ionic strength, sample pH were studied and optimized. The linear dynamic range of developed EE-SPME-GC for the selected amines spanned three orders of magnitude (0.005-1mugmL(-1)) with R(2) larger than 0.9933, and the limits of detection were in the range of 0.048-0.070ngmL(-1). All of these characteristics demonstrate that the proposed MWCNTs/Nafion EE-SPME is an efficient, flexible and versatile sampling and extraction tool which is ideally suited for use with chromatographic methods. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Stout, Peter R; Gehlhausen, Jay M; Horn, Carl K; Klette, Kevin L
2002-10-01
A novel extraction and derivatization procedure for the cocaine metabolite benzoylecgonine (BZE) was developed and evaluated for use in a high-volume forensic urine analysis laboratory. Extractions utilized a Speedisk 48 positive pressure extraction manifold and polymer-based cation-exchange extraction columns. Samples were derivatized by the addition of pentafluoropropionic anhydride and pentafluoropropanol. All analyses were performed in selected ion monitoring mode; ions included m/z 421, 300, 272, 429, and 303 with m/z 421 to 429 ratio used for quantitation. The average extraction efficiency was 80%. Seventy-five common over-the-counter products, including prescription drugs, drug metabolites, and other drugs of abuse, demonstrated no significant interference with respect to chromatography or quantitation. The limit of detection and limit of quantitation were calculated at 12.5 ng/mL, and the assay was linear from 12.5 to 20,000 ng/mL with an r2 of 0.99932. A series of 20 precision samples (100 ng/mL) produced an average response of 97.8 ng/mL and a percent coefficient of variation of 4.1%. A set of 79 archived human urine samples that had previously been found to contain BZE were analyzed by 3 separate laboratories. The results did not differ significantly from prior quantitation or between laboratories. The Speedisk has proven viable for a high-volume production facility reducing overall cost of analysis by decreasing analysis time and minimizing waste production while meeting strict forensic requirements.
Wernisch, Stefanie; Pell, Reinhard; Lindner, Wolfgang
2012-07-01
The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases facilitating reversal of elution orders for all analytes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, J; Ashley, K; Marlow, D; England, E C; Carlton, G
1999-03-01
A simple, fast, sensitive, and economical field method was developed and evaluated for the determination of hexavalent chromium (CrVI) in environmental and workplace air samples. By means of ultrasonic extraction in combination with a strong anion-exchange solid-phase extraction (SAE-SPE) technique, the filtration, isolation, and determination of CrVI in the presence of trivalent chromium (CrIII) and potential interferents was achieved. The method entails (1) ultrasonication in basic ammonium buffer solution to extract CrVI from environmental matrixes; (2) SAE-SPE to separate CrVI from CrIII and interferences; (3) elution/acidification of the eluate; (4) complexation of chromium with 1,5-diphenylcarbazide; and (5) spectrophotometric determination of the colored chromium-diphenylcarbazone complex. Several critical parameters were optimized in order to effect the extraction of both soluble (K2CrO4) and insoluble (PbCrO4) forms of CrVI without inducing CrIII oxidation or CrVI reduction. The method allowed for the dissolution and purification of CrVI from environmental and workplace air sample matrixes for up to 24 samples simultaneously in less than 90 min (including ultrasonication). The results demonstrated that the method was simple, fast, quantitative, and sufficiently sensitive for the determination of occupational exposures of CrVI. The method is applicable for on-site monitoring of CrVI in environmental and industrial hygiene samples.
All-inorganic Germanium nanocrystal films by cationic ligand exchange
Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; ...
2016-01-21
In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less
Concheiro, Marta; Castaneto, Marisol; Kronstrand, Robert; Huestis, Marilyn A.
2015-01-01
The emergence of novel psychoactive substances is an ongoing challenge for analytical toxicologists. Different analogs are continuously introduced in the market to circumvent legislation and to enhance their pharmacological activity. Although detection of drugs in blood indicates recent exposure and link intoxication to the causative agent, urine is still the most preferred testing matrix in clinical and forensic settings. We developed a method for the simultaneous quantification of 8 piperazines, 4 designer amphetamines and 28 synthetic cathinones and 4 metabolites, in urine by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Data were acquired in full scan and data dependent MS2 mode. Compounds were quantified by precursor ion exact mass, and confirmed by product ion spectra library matching, taking into account product ions’ exact mass and intensities. One-hundred μL urine was subjected to solid phase cation exchange extraction (SOLA SCX). The chromatographic reverse-phase separation was achieved with gradient mobile phase of 0.1% formic acid in water and in acetonitrile in 20 min. The assay was linear from 2.5 or 5 to 500μg/L. Imprecision (n=15) was <15.4%, and accuracy (n=15) 84.2-118.5%. Extraction efficiency was 51.2-111.2%, process efficiency 57.7-104.9% and matrix effect ranged from -41.9 to 238.5% (CV<23.3%, except MDBZP CV<34%). Authentic urine specimens (n=62) were analyzed with the method that provides a comprehensive confirmation for 40 new stimulant drugs with specificity and sensitivity. PMID:25931378
Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha
2014-01-01
Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.
Adsorption and mobility of metals in build-up on road surfaces.
Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha
2015-01-01
The study investigated the adsorption and bioavailability characteristics of traffic generated metals common to urban land uses, in road deposited solids particles. To validate the outcomes derived from the analysis of field samples, adsorption and desorption experiments were undertaken. The analysis of field samples revealed that metals are selectively adsorbed to different charge sites on solids. Zinc, copper, lead and nickel are adsorbed preferentially to oxides of manganese, iron and aluminium. Lead is adsorbed to organic matter through chemisorption. Cadmium and chromium form weak bonding through cation exchange with most of the particle sizes. Adsorption and desorption experiments revealed that at high metal concentrations, chromium, copper and lead form relatively strong bonds with solids particles while zinc is adsorbed through cation exchange with high likelihood of being released back into solution. Outcomes from this study provide specific guidance for the removal of metals from stormwater based on solids removal. Copyright © 2014 Elsevier Ltd. All rights reserved.
Uteng, Marianne; Hauge, Håvard Hildeng; Brondz, Ilia; Nissen-Meyer, Jon; Fimland, Gunnar
2002-01-01
A rapid and simple two-step procedure suitable for both small- and large-scale purification of pediocin-like bacteriocins and other cationic peptides has been developed. In the first step, the bacterial culture was applied directly on a cation-exchange column (1-ml cation exchanger per 100-ml cell culture). Bacteria and anionic compounds passed through the column, and cationic bacteriocins were subsequently eluted with 1 M NaCl. In the second step, the bacteriocin fraction was applied on a low-pressure, reverse-phase column and the bacteriocins were detected as major optical density peaks upon elution with propanol. More than 80% of the activity that was initially in the culture supernatant was recovered in both purification steps, and the final bacteriocin preparation was more than 90% pure as judged by analytical reverse-phase chromatography and capillary electrophoresis. PMID:11823243
Lehmann, Sabrina; Kieliba, Tobias; Beike, Justus; Thevis, Mario; Mercer-Chalmers-Bender, Katja
2017-10-01
A detailed description is given of the development and validation of a fully automated in-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) method capable of detecting 90 central-stimulating new psychoactive substances (NPS) and 5 conventional amphetamine-type stimulants (amphetamine, 3,4-methylenedioxy-methamphetamine (MDMA), 3,4-methylenedioxy-amphetamine (MDA), 3,4-methylenedioxy-N-ethyl-amphetamine (MDEA), methamphetamine) in serum. The aim was to apply the validated method to forensic samples. The preparation of 150μL of serum was performed by an Instrument Top Sample Preparation (ITSP)-SPE with mixed mode cation exchanger cartridges. The extracts were directly injected into an LC-MS/MS system, using a biphenyl column and gradient elution with 2mM ammonium formate/0.1% formic acid and acetonitrile/0.1% formic acid as mobile phases. The chromatographic run time amounts to 9.3min (including re-equilibration). The total cycle time is 11min, due to the interlacing between sample preparation and analysis. The method was fully validated using 69 NPS and five conventional amphetamine-type stimulants, according to the guidelines of the Society of Toxicological and Forensic Chemistry (GTFCh). The guidelines were fully achieved for 62 analytes (with a limit of detection (LOD) between 0.2 and 4μg/L), whilst full validation was not feasible for the remaining 12 analytes. For the fully validated analytes, the method achieved linearity in the 5μg/L (lower limit of quantification, LLOQ) to 250μg/L range (coefficients of determination>0.99). Recoveries for 69 of these compounds were greater than 50%, with relative standard deviations≤15%. The validated method was then tested for its capability in detecting a further 21 NPS, thus totalling 95 tested substances. An LOD between 0.4 and 1.6μg/L was obtained for these 21 additional qualitatively-measured substances. The method was subsequently successfully applied to 28 specimens from routine forensic case work, of which 7 samples were determined to be positive for NPS consumption. Copyright © 2017 Elsevier B.V. All rights reserved.
Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water
NASA Astrophysics Data System (ADS)
Han, Sanyang; Qin, Xian; An, Zhongfu; Zhu, Yihan; Liang, Liangliang; Han, Yu; Huang, Wei; Liu, Xiaogang
2016-10-01
Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.
Detection and in vitro metabolism of the confiscated peptides BPC 157 and MGF R23H.
Cox, Holly D; Miller, Geoff D; Eichner, Daniel
2017-10-01
A new peptide, body protecting compound (BPC), BPC 157, and a variant of mechano-growth factor (MGF), MGF R23H, were identified in confiscated vials. BPC 157 has the amino acid sequence, GEPPPGKPADDAGLV, and is currently under investigation for the promotion of healing and recovery in a variety of tissues. In vitro metabolism experiments in plasma demonstrate that MGF R23H has good stability and should be detectable in urine, while BPC 157 forms a stable metabolite that should be detectable in urine. A weak cation exchange solid phase extraction method was validated for detection of BPC 157 in urine. The method has a limit of detection of 0.1 ng/mL, precision of less than 20%, and good linearity, r 2 0.998. BPC 157 was stable in urine for at least 4 days. The specificity of the method is improved by measurement of a potential BPC metabolite along with the parent peptide. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Vosough, Maryam; Mohamedian, Hadi; Salemi, Amir; Baheri, Tahmineh
2015-02-01
In the present study, a simple strategy based on solid-phase extraction (SPE) with a cation exchange sorbent (Finisterre SCX) followed by fast high-performance liquid chromatography (HPLC) with diode array detection coupled with chemometrics tools has been proposed for the determination of methamphetamine and pseudoephedrine in ground water and river water. At first, the HPLC and SPE conditions were optimized and the analytical performance of the method was determined. In the case of ground water, determination of analytes was successfully performed through univariate calibration curves. For river water sample, multivariate curve resolution and alternating least squares was implemented and the second-order advantage was achieved in samples containing uncalibrated interferences and uncorrected background signals. The calibration curves showed good linearity (r(2) > 0.994).The limits of detection for pseudoephedrine and methamphetamine were 0.06 and 0.08 μg/L and the average recovery values were 104.7 and 102.3% in river water, respectively. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
[Study on the extraction of the total alkaloids from Caulopyhllum robustum].
Li, Yi-ping; Yang, Guang-de; He, Lang-chong
2007-02-01
To study the technological parameters of the extraction process of the total alkaloids from Caulopyhllum robstum. Taspine, whiVh is main component of the total alkaloids from Caulopyhllum robustum, was selected as an evaluating marker and determined by HPLC. The orthogonal test was used to optimize extracting conditions in the process of acid water extraction. Then the optimized conditions for purification using cation exchange resin were investigated. The optimized conditions in the process of acid water extraction were 1% hydrochloric acid as much as seven times of the medicine amount for 24hs and three times. Then the extraction of acid water was purified with a column of macroporous cation exchange resin LSD001 at 2 ml/min of flow rate, then eluted with 10BV of 4% aqueous ammonia ethanol. The extraction ratio of the total alkaloids was 1. 35% and the content of taspine of the total alkaloids was 6. 80%. This technology is simply, cheap effective and feasible for manufacture in great scale.
Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste.
Bi, Wentao; Tian, Minglei; Zhou, Jun; Row, Kyung Ho
2010-08-15
Astaxanthin, as an outstanding antioxidant reagent, was successfully extracted from shrimp waste by the ionic liquids based ultrasonic-assisted extraction. Seven kinds of imidazolium ionic liquids with different cations and anions were investigated in this work and one task-specific ionic liquid in ethanol with 0.50molL(-1) was selected as the solvent. At the optimized ultrasonic extraction conditions, the extraction amount of astaxanthin increased 98% (92.7microg g(-1)) compared to the conventional method (46.7microg g(-1)). Furthermore, the extracted solution was isolated through the solid-phase extraction with a molecularly imprinted polymer sorbent. After loading the samples on molecularly imprinted polymer cartridge, the different washing and elution solvents, such as water, methanol, n-hexane, acetone and dichloromethane, were evaluated, and finally, astaxanthin was separated from the shrimp waste extract. Copyright 2010 Elsevier B.V. All rights reserved.
Meischl, Florian; Kirchler, Christian Günter; Jäger, Michael Andreas; Huck, Christian Wolfgang; Rainer, Matthias
2018-02-01
We present a novel method for the quantitative determination of the clean-up efficiency to provide a calculated parameter for peak purity through iterative fitting in conjunction with design of experiments. Rosemary extracts were used and analyzed before and after solid-phase extraction using a self-fabricated mixed-mode sorbent based on poly(N-vinylimidazole/ethylene glycol dimethacrylate). Optimization was performed by variation of washing steps using a full three-level factorial design and response surface methodology. Separation efficiency of rosmarinic acid from interfering compounds was calculated using an iterative fit of Gaussian-like signals and quantifications were performed by the separate integration of the two interfering peak areas. Results and recoveries were analyzed using Design-Expert® software and revealed significant differences between the washing steps. Optimized parameters were considered and used for all further experiments. Furthermore, the solid-phase extraction procedure was tested and compared with commercial available sorbents. In contrast to generic protocols of the manufacturers, the optimized procedure showed excellent recoveries and clean-up rates for the polymer with ion exchange properties. Finally, rosemary extracts from different manufacturing areas and application types were studied to verify the developed method for its applicability. The cleaned-up extracts were analyzed by liquid chromatography with tandem mass spectrometry for detailed compound evaluation to exclude any interference from coeluting molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Davis, R.E.; Dodge, K.A.
1986-01-01
Batch-mixing experiments using spoils water and coal from the West Decker and Big Sky Mines were conducted to determine possible chemical changes in water moving from coal-mine spoils through a coal aquifer. The spoils water was combined with air-dried and oven-dried chunks of coal and air-dried and oven-dried crushed coal at a 1:1 weight ratio, mixed for 2 hr, and separated after a total contact time of 24 hr. The dissolved-solids concentration in water used in the experiments decreased an average 210 mg/liter (5-10%). Other chemical changes included general decreases in the concentrations of magnesium, potassium, and bicarbonate, and general increases in the concentrations of barium and boron. The magnitude of the changes increased as the surface area of the coal increased. The quantity of extractable cations and exchangeable cations on the post-mixing coal was larger than on the pre-mixing coal. Equilibrium and mass-transfer relations indicate that adsorption reactions or ion-exchange and precipitation reactions, or both, probably are the major reactions responsible for the chemical changes observed in the experiments. (Authors ' abstract)
New Metal Niobate and Silicotitanate Ion Exchangers: Development and Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandra Navrotsky; Mary Lou Balmer; Tina M. Nenoff
2003-12-05
This renewal proposal outlines our current progress and future research plans for ion exchangers: novel metal niobate and silicotitanate ion exchangers and their ultimate deployment in the DOE complex. In our original study several forms (including Cs exchanged) of the heat treated Crystalline Silicotitanates (CSTs) were fully characterized by a combination of high temperature synthesis and phase identification, low temperature synthesis and phase identification, and thermodynamics. This renewal proposal is predicated on work completed in our current EMSP program: we have shown preliminary data of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionallymore » high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), in addition to novel silicotitanate phases which are also selective for divalent cations. Furthermore, these materials are easily converted by a high temperature in-situ heat treatment into a refractory ceramic waste form with low cation leachability. The new waste form is a perovskite phase, which is also a major component of Synroc, a titanate ceramic waste form used for sequestration of HLW wastes from reprocessed, spent nuclear fuel. These new niobate ion exchangers also shown orders of magnitude better selectivity for Sr2+ under acid conditions than any other material. The goal of the program is to reduce the costs associated with divalent cation waste removal and disposal, to minimize the risk of contamination to the environment during ion exchanger processing, and to provide DOE with materials for near-term lab-bench stimulant testing, and eventual deployment. The proposed work will provide information on the structure/property relationship between ion exchanger frameworks and selectivity for specific ions, allowing for the eventual ''tuning'' of framework for specific ion exchange needs. To date, DOE sites have become interested in on-site testing of these materials; ongoing discussions and initial experiments are occurring with Dr. Dean Peterman, Idaho National Engineering and Environmental Laboratory (INEEL) (location of the DOE/EM Waste Treatment Focus Area), and Dr. John Harbour, Savannah River Site (SRS). Yet the materials have not been optimized, and further research and development of the novel ion exchangers and testing conditions with simulants are needed. In addition, studies of the ion exchanger composition versus ion selectivity, ion exchange capacity and durability of final waste form are needed. This program will bring together three key institutions to address scientific hurdles of the separation process associated with metal niobate and silicotitanate ion exchangers, in particular for divalent cations (e.g., Sr2+). The program involves a joint effort between researchers at Pacific Northwest National Laboratory, who are leaders in structure/property relations in silicotitanates and in waste form development and performance assessment, Sandia National Laboratories, who discovered and developed crystalline silicotitanate ion exchangers (with Texas A&M and UOP) and also the novel class of divalent metal niobate ion exchangers, and the Thermochemistry Facility at UC Davis, who are world renowned experts in calorimetry and have already performed extensive thermodynamic studies on silicotitanate materials. In addition, Dr. Rodney Ewing of University of Michigan, an expert in radiation effects on materials, and Dr. Robert Roth of the National Institute of Standards and Technology and The Viper Group, a leader in phase equilibria development, will be consultants for radiation and phase studies. The research team will focus on three tasks that will provide both the basic research necessary for the development of highly selective ion exchange materials and also materials for short-term deployment within the DOE complex: (1) Structure/property relationships of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionally high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), (2) the role of ion exchanger structure change (both niobates and silicotitanates) on the exchange capacity (for elements such as Sr and actinide-surrogates) which results from exposure to DOE complex waste simulants, (3) thermodynamic stability of metal niobates and silicotitanate ion exchangers.« less
Antimicrobial activity of buttermilk and lactoferrin peptide extracts on poultry pathogens.
Jean, Catherine; Boulianne, Martine; Britten, Michel; Robitaille, Gilles
2016-11-01
Antibiotics are commonly used in poultry feed as growth promoters. This practice is questioned given the arising importance of antibiotic resistance. Antimicrobial peptides can be used as food additives for a potent alternative to synthetic or semi-synthetic antibiotics. The objective of this study was to develop a peptide production method based on membrane adsorption chromatography in order to produce extracts with antimicrobial activity against avian pathogens (Salmonella enterica var. Enteritidis, Salmonella enterica var. Typhimurium, and two Escherichia coli strains, O78:H80 and TK3 O1:K1) as well as Staphylococcus aureus. To achieve this, buttermilk powder and purified lactoferrin were digested with pepsin. The peptide extracts (<10 kDa) were fractionated depending on their charges through high-capacity cation-exchange and anion-exchange adsorptive membranes. The yields of cationic peptide extracts were 6·3 and 15·4% from buttermilk and lactoferrin total peptide extracts, respectively. Antimicrobial activity was assessed using the microdilution technique on microplates. Our results indicate that the buttermilk cationic peptide extracts were bactericidal at less than 5 mg/ml against the selected avian strains, with losses of 1·7 log CFU/ml (Salm. Typhimurium) to 3 log CFU/ml (E. coli O78:H80); viability decreased by 1·5 log CFU/ml for Staph. aureus, a Gram-positive bacterium. Anionic and non-adsorbed peptide extracts were inactive at 5 mg/ml. These results demonstrate that membrane adsorption chromatography is an effective way to prepare a cationic peptide extract from buttermilk that is active against avian pathogens.
Single-stage separation and esterification of cation salt carboxylates using electrodeionization
Lin, YuPo J.; Henry, Michael; Hestekin, Jamie; Snyder, Seth W.; St. Martin, Edward J.
2006-11-28
A method of and apparatus for continuously making an organic ester from a lower alcohol and an organic acid is disclosed. An organic acid or salt is introduced or produced in an electrode ionization (EDI) stack with a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and a cation exchange membrane or an anion exchange membrane and a bipolar exchange membranes. At least some reaction chambers are esterification chambers and/or bioreactor chambers and/or chambers containing an organic acid or salt. A lower alcohol in the esterification chamber reacts with an anion to form an organic ester and water with at least some of the water splitting with the ions leaving the chamber to drive the reaction.
Properties and applications of zeolites.
Rhodes, Christopher J
2010-01-01
Zeolites are aluminosilicate solids bearing a negatively charged honeycomb framework of micropores into which molecules may be adsorbed for environmental decontamination, and to catalyse chemical reactions. They are central to green-chemistry since the necessity for organic solvents is minimised. Proton-exchanged (H) zeolites are extensively employed in the petrochemical industry for cracking crude oil fractions into fuels and chemical feedstocks for other industrial processes. Due to their ability to perform cation-exchange, in which the cations that are originally present to counterbalance the framework negative charge may be exchanged out of the zeolite by cations present in aqueous solution, zeolites are useful as industrial water-softeners, in the removal of radioactive Cs+ and Sr2+ cations from liquid nuclear waste and in the removal of toxic heavy metal cations from groundwaters and run-off waters. Surfactant-modified zeolites (SMZ) find particular application in the co-removal of both toxic anions and organic pollutants. Toxic anions such as arsenite, arsenate, chromate, cyanide and radioactive iodide can also be removed by adsorption into zeolites that have been previously loaded with co-precipitating metal cations such as Ag+ and Pb2+ which form practically insoluble complexes that are contained within the zeolite matrix.
Ceazan, M.L.; Thurman, E.M.; Smith, R.L.
1989-01-01
The role of cation exchange in the retardation of ammonium (NH4+) and potassium (K+) transport in a shallow sand and gravel aquifer was evaluated by use of observed distributions of NH4+ and K+ within a plume of sewage-contaminated groundwater, small-scale tracer injection tests, and batch sorption experiments on aquifer material. Both NH4+ and K+ were transported ???2 km in the 4-km-long contaminant plume (retardation factor, Rf = 2.0). Sediments from the NH4+-containing zone of the plume contained significant quantities of KCl-extractable NH4+ (extraction distribution coefficient, Kd,extr = 0.59-0.87 mL/g of dry sediment), and when added to uncontaminated sediments, NH4+ sorption followed a linear isotherm. Small-scale tracer tests demonstrated that NH4+ and K+ were retarded (Rf =3.5) relative to a nonreactive tracer (Br-). Sorption of dissolved NH4+ was accompanied by concomitant release of calcium (Ca2+), magnesium (Mg2+), and sodium (Na+) from aquifer sediments, suggesting involvement of cation exchange. In contrast, nitrate (NO3-) was not retarded and cleanly separated from NH4+ and K+ in the small-scale tracer tests. This study demonstrates that transport of NH4+ and K+ through a sand and gravel aquifer can be markedly affected by cation-exchange processes even at a clay content less than 0.1%.
Tryptic digests of human serum albumin (HSA) and human lung epithelial cell lysates were used as test samples in a novel proteomics study. Peptides were separated and analyzed using 2D-nano-LC/MSMS with strong cation exchange (SCX) and reverse phase (RP) chromatography and contin...
Niobate-based octahedral molecular sieves
Nenoff, Tina M.; Nyman, May D.
2006-10-17
Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
Niobate-based octahedral molecular sieves
Nenoff, Tina M.; Nyman, May D.
2003-07-22
Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
McAdams, Brandon C; Aiken, George R; McKnight, Diane M; Arnold, William A; Chin, Yu-Ping
2018-01-16
We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA 280 ) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA 280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA 280 .
Guo, C; Hu, J-Y; Chen, X-Y; Li, J-Z
2008-02-01
An analytical method for the determination imazaquin residues in soybeans was developed. The developed liquid/liquid partition and strong anion exchange solid-phase extraction procedures provide the effective cleanup, removing the greatest number of sample matrix interferences. By optimizing mobile-phase pH water/acetonitrile conditions with phosphoric acid, using a C-18 reverse-phase chromatographic column and employing ultraviolet detection, excellent peak resolution was achieved. The combined cleanup and chromatographic method steps reported herein were sensitive and reliable for determining the imazaquin residues in soybean samples. This method is characterized by recovery >88.4%, precision <6.7% CV, and sensitivity of 0.005 ppm, in agreement with directives for method validation in residue analysis. Imazaquin residues in soybeans were further confirmed by high performance liquid chromatography-mass spectrometry (LC-MS). The proposed method was successfully applied to the analysis of imazaquin residues in soybean samples grown in an experimental field after treatments of imazaquin formulation.
Sarenqiqige; Maeda, Akihiro; Yoshimura, Kazuhisa
2014-01-01
A sensitive, simple and low-cost determination method for the total iron concentration in boiler water systems of power generation plants was developed by solid phase spectrometry (SPS) using 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ) as a coloring agent. The reagents and 0.08 cm(3) of a cation exchanger were added to a 50-cm(3) boiler water sample, then mixed for 30 min to adsorb/concentrate the produced Fe(TPTZ)2(2+) colored complex on the solid beads, resulting in a 625 times concentration of the target analyte without any other procedure. The detection limit of 0.1 μg dm(-3) was obtained, and the optimum conditions for the digestion procedure and color developing reaction was investigated and reported. According to the application of this method to real samples, the present SPS method is the best one because of the shorter analysis time, simpler operation and use of very low-cost equipment compared to the conventional methods, such as TPTZ solution spectrophotometric method after a 16 times concentration, ICP-MS and AAS.
Bhaskar, M; Surekha, M; Suma, N
2018-02-01
The liquid phase esterification of phenyl acetic acid with p -cresol over different metal cation exchanged montmorillonite nanoclays yields p -cresyl phenyl acetate. Different metal cation exchanged montmorillonite nanoclays (M n + = Al 3+ , Zn 2+ , Mn 2+ , Fe 3+ , Cu 2+ ) were prepared and the catalytic activity was studied. The esterification reaction was conducted by varying molar ratio of the reactants, reaction time and catalyst amount on the yield of the ester. Among the different metal cation exchanged catalysts used, Al 3+ -montmorillonite nanoclay was found to be more active. The characterization of the material used was studied under different techniques, namely X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The product obtained, p -cresyl phenyl acetate, was identified by thin-layer chromotography and confirmed by Fourier transform infrared, 1 H NMR and 13 C NMR. The regeneration activity of used catalyst was also investigated up to fourth generation.
Cation exchange in a glacial till drumlin at a road salt storage facility
NASA Astrophysics Data System (ADS)
Ostendorf, David W.; Xing, Baoshan; Kallergis, Niki
2009-05-01
We use laboratory and field data to calibrate existing geochemical and transport models of cation exchange induced by contamination of an unconfined aquifer at a road salt storage facility built upon a glacial till drumlin in eastern Massachusetts. A Gaines and Thomas selectivity coefficient K models the equilibrium sodium and divalent cation distribution in the groundwater and solid matrix, while an existing method of characteristics model describes the advective transport of total dissolved cations and sorbed sodium. Laboratory isotherms of split spoon soil samples from the drumlin calibrate K with an average value of 0.0048 (L/g) 1/2 for a measured cation exchange capacity of 0.057 meq/g dry soil. Ten years of monitoring well data document groundwater flow and the advection of conservative chloride due to outdoor storage and handling of road salt at the site. The monitoring well cation data and retarded transport model offer an independent K calibration of 0.0040 to 0.0047 (L/g) 1/2: the consistency of the field and laboratory selectivity coefficient calibrations endorse this application of the Gaines and Thomas and method of characteristics models. The advancing deicing agent plume releases divalent cations from the till into the groundwater, so that monitoring well samples do not reflect the chemical composition of the road salt. In this regard, dissolved divalent cation milliequivalent concentrations are as high as 80% of the total dissolved cationic concentrations in the salt contaminated monitoring well samples, far greater than their 2.5% level in the road salt stored at the site. Cation exchange can thus obscure attempts to hindcast stored road salt sodium water table concentration from monitoring well sample stoichiometry, or to predict sodium impacts on groundwater or receiving stream quality downgradient of the well.
Cation exchange in a glacial till drumlin at a road salt storage facility.
Ostendorf, David W; Xing, Baoshan; Kallergis, Niki
2009-05-12
We use laboratory and field data to calibrate existing geochemical and transport models of cation exchange induced by contamination of an unconfined aquifer at a road salt storage facility built upon a glacial till drumlin in eastern Massachusetts. A Gaines and Thomas selectivity coefficient K models the equilibrium sodium and divalent cation distribution in the groundwater and solid matrix, while an existing method of characteristics model describes the advective transport of total dissolved cations and sorbed sodium. Laboratory isotherms of split spoon soil samples from the drumlin calibrate K with an average value of 0.0048 (L/g)(1/2) for a measured cation exchange capacity of 0.057 meq/g dry soil. Ten years of monitoring well data document groundwater flow and the advection of conservative chloride due to outdoor storage and handling of road salt at the site. The monitoring well cation data and retarded transport model offer an independent K calibration of 0.0040 to 0.0047 (L/g)(1/2): the consistency of the field and laboratory selectivity coefficient calibrations endorse this application of the Gaines and Thomas and method of characteristics models. The advancing deicing agent plume releases divalent cations from the till into the groundwater, so that monitoring well samples do not reflect the chemical composition of the road salt. In this regard, dissolved divalent cation milliequivalent concentrations are as high as 80% of the total dissolved cationic concentrations in the salt contaminated monitoring well samples, far greater than their 2.5% level in the road salt stored at the site. Cation exchange can thus obscure attempts to hindcast stored road salt sodium water table concentration from monitoring well sample stoichiometry, or to predict sodium impacts on groundwater or receiving stream quality downgradient of the well.
Emptying and filling a tunnel bronze
Marley, Peter M.; Abtew, Tesfaye A.; Farley, Katie E.; ...
2015-01-13
The classical orthorhombic layered phase of V 2O 5 has long been regarded as the thermodynamic sink for binary vanadium oxides and has found great practical utility as a result of its open framework and easily accessible redox states. Herein, we exploit a cation-exchange mechanism to synthesize a new stable tunnel-structured polymorph of V 2O 5 (ζ-V 2O 5) and demonstrate the subsequent ability of this framework to accommodate Li and Mg ions. The facile extraction and insertion of cations and stabilization of the novel tunnel framework is facilitated by the nanometer-sized dimensions of the materials, which leads to accommodationmore » of strain without amorphization. The topotactic approach demonstrated here indicates not just novel intercalation chemistry accessible at nanoscale dimensions but also suggests a facile synthetic route to ternary vanadium oxide bronzes (MxV 2O 5) exhibiting intriguing physical properties that range from electronic phase transitions to charge ordering and superconductivity.« less
Chromium speciation in environmental samples using a solid phase spectrophotometric method.
Amin, Alaa S; Kassem, Mohammed A
2012-10-01
A solid phase extraction technique is proposed for preconcentration and speciation of chromium in natural waters using spectrophotometric analysis. The procedure is based on sorption of chromium(III) as 4-(2-benzothiazolylazo)2,2'-biphenyldiol complex on dextran-type anion-exchange gel (Sephadex DEAE A-25). After reduction of Cr(VI) by 0.5 ml of 96% concentrated H(2)SO(4) and ethanol, the system was applied to the total chromium. The concentration of Cr(VI) was calculated as the difference between the total Cr and the Cr(III) content. The influences of some analytical parameters such as: pH of the aqueous solution, amounts of 4-(2-benzothiazolylazo)2,2'-biphenyldiol (BTABD), and sample volumes were investigated. The absorbance of the gel, at 628 and 750 nm, packed in a 1.0 mm cell, is measured directly. The molar absorptivities were found to be 2.11×10(7) and 3.90×10(7) L mol(-1)cm(-1) for 500 and 1000 ml, respectively. Calibration is linear over the range 0.05-1.45 μg L(-1) with RSD of <1.85% (n=8.0). Using 35 mg exchanger, the detection and quantification limits were 13 and 44 ng L(-1) for 500 ml sample, whereas for 1000 ml sample were 8.0 and 27 ng L(-1), respectively. Increasing the sample volume can enhance the sensitivity. No considerable interferences have been observed from other investigated anions and cations on the chromium speciation. The proposed method was applied to the speciation of chromium in natural waters and total chromium preconcentration in microwave digested tobacco, coffee, tea, and soil samples. The results were simultaneously compared with those obtained using an ET AAS method, whereby the validity of the method has been tested. Copyright © 2012 Elsevier B.V. All rights reserved.
Evaluation of soils for use as liner materials: a soil chemistry approach.
DeSutter, Tom M; Pierzynski, Gary M
2005-01-01
Movement of NH(4)(+) below animal waste lagoons is generally a function of the whole-lagoon seepage rate, soil mineralogy, cations in the lagoon liquor, and selectivity for NH(4)(+) on the soil-exchange sites. Binary exchange reactions (Ca(2+)-K(+), Ca(2+)-NH(4)(+), and K(+)-NH(4)(+)) were conducted on two soils from the Great Plains and with combinations of these soils with bentonite or zeolite added. Binary exchanges were used to predict ternary exchanges Ca(2+)-K(+)-NH(4)(+) following the Rothmund-Kornfeld approach and Gaines-Thomas convention. Potassium and NH(4)(+) were preferred over Ca(2+), and K(+) was preferred over NH(4)(+) in all soils and soils with amendments. Generally, the addition of bentonite did not change cation selectivity over the native soils, whereas the addition of zeolite did. The Rothmund-Kornfeld approach worked well for predicting equivalent fractions of cations on the exchanger phase when only ternary-solution phase compositions were known. Actual swine- and cattle-lagoon solution compositions and the Rothmund-Kornfeld approach were used to project that native soils are predicted to retain 53 and 23%, respectively, of the downward-moving NH(4)(+) on their exchange sites. Additions of bentonite or zeolite to soils under swine lagoons may only slightly improve the equivalent fraction of NH(4)(+) on the exchange sites. Although additions of bentonite or zeolite may not help increase the NH(4)(+) selectivity of a liner material, increases in the overall cation exchange capacity (CEC) of a soil will ultimately decrease the amount of soil needed to adsorb downward-moving NH(4)(+).
Fang, Zhi; He, Chen; Li, Yongyong; Chung, Keng H; Xu, Chunming; Shi, Quan
2017-01-01
Although the progress of high resolution mass spectrometry in the past decade has enabled the molecular characterization of dissolved organic matter (DOM) in water as a whole, fractionation of DOM is necessary for a comprehensive characterization due to its super-complex nature. Here we proposed a method for the fractionation of DOM in a wastewater based on solubility and acidic-basic properties. Solid phase extraction (SPE) cartridges with reversed phase retention and ion-exchange adsorption capacities, namely MAX and MCX, were used in succession to fractionate a petroleum refinery wastewater into four fractions: hydrophobic acid (HOA), hydrophobic neutral (HON), hydrophobic base (HOB), and hydrophilic substance (HIS) fractions. According to the total organic carbon (TOC) analysis, 72.6% (in term of TOC) of DOM was extracted in hydrophobic fractions, in which HON was the most abundant. Hydrophobic extracts were characterized by negative and positive ion electrospray (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), respectively. Compounds with multiple oxygen atoms were predominant in the HOA, which were responded strongly in the negative ESI MS. Nitrogen containing compounds were the major detected species by positive ion ESI in all hydrophobic fractions. The molecular composition of the DOM were discussed based on the FT-ICR MS results. The fractionation provided salt free samples which enables the direct analysis of the fractions by ESI and a deep insight into the molecular composition of DOM in the wastewater. The method is potential for routine evaluation of DOM in industry wastewaters, as well as environmental water samples. Copyright © 2016. Published by Elsevier B.V.
Yamamoto, K; Matsumoto, A
1997-11-01
The solvent extraction of an ion associate of tetrabromoindate(III) ion, InBr(-)(4), with quaternary ammonium cations (Q(+)) has been studied. The extraction constant (K(ex)) were determined for the ion associates of InBr(-)(4) with Q(+) between an aqueous phase and several organic phases (chloroform, chlorobenzene, benzene and toluene). A linear relationship was found between log K(ex) and the total number of carbon atoms in Q(+); from the slope of the lines, the contribution of a methylene group to log K(ex) was calculated to be 0.91 for the chloroform extraction system and 0.52 for the other extraction systems. The extractability with alkyltrimethylammonium cations was larger than that with symmetrical tetraalkylammonium cations and the mean difference in log K(ex) for two cations (one of each type) with the same number of carbon atoms was about 1.3. From the extraction constant obtained, the extractability of InBr(-)(4) among metal-halogeno complex anions was in the order TlBr(-)(4) > BiI(-)(4) > AuBr(-)(4) > AuCl(-)(4) > TlCl(-)(4) > InBr(-)(4) > CuCl(-)(2).
Boisvert, Michel; Fayad, Paul B; Sauvé, Sébastien
2012-11-19
A new solid phase extraction (SPE) method coupled to a high throughput sample analysis technique was developed for the simultaneous determination of nine selected emerging contaminants in wastewater (atrazine, desethylatrazine, 17β-estradiol, ethynylestradiol, norethindrone, caffeine, carbamazepine, diclofenac and sulfamethoxazole). We specifically included pharmaceutical compounds from multiple therapeutic classes, as well as pesticides. Sample pre-concentration and clean-up was performed using a mixed-mode SPE cartridge (Strata ABW) having both cation and anion exchange properties, followed by analysis by laser diode thermal desorption atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). The LDTD interface is a new high-throughput sample introduction method, which reduces total analysis time to less than 15s per sample as compared to minutes with traditional liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS). Several SPE parameters were evaluated in order to optimize recovery efficiencies when extracting analytes from wastewater, such as the nature of the stationary phase, the loading flow rate, the extraction pH, the volume and composition of the washing solution and the initial sample volume. The method was successfully applied to real wastewater samples from the primary sedimentation tank of a municipal wastewater treatment plant. Recoveries of target compounds from wastewater ranged from 78% to 106%, the limit of detection ranged from 30 to 122ng L(-1) while the limit of quantification ranged from 90 to 370ng L(-1). Calibration curves in the wastewater matrix showed good linearity (R(2)≥0.991) for all target analytes and the intraday and interday coefficient of variation was below 15%, reflecting a good precision. Copyright © 2012 Elsevier B.V. All rights reserved.
Ionic liquids: solvents and sorbents in sample preparation.
Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L
2018-01-01
The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Datta, Kaustuv; Neder, Reinhard B.; Chen, Jun; ...
2017-03-28
Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here in this paper we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reportedmore » properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Finally, altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.« less
Ordóñez, Edgar Y; Quintana, José Benito; Rodil, Rosario; Cela, Rafael
2012-09-21
The development and performance evaluation of an analytical method for the determination of six artificial sweeteners in environmental waters using solid-phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry are presented. To this end, different SPE alternatives have been evaluated: polymeric reversed-phase (Oasis HLB, Env+, Plexa and Strata X), and mixed-mode with either weak (Oasis WAX) or strong anionic-exchange (Oasis MAX and Plexa PAX) sorbents. Among them, reversed-phase sorbents, particularly Oasis HLB and Strata X, showed the best performance. Oasis HLB provided good trueness (recoveries: 73-112%), precision (RSD<10%) and limits of quantification (LOQ: 0.01-0.5 μg/L). Moreover, two LC separation mechanisms were evaluated: reversed-phase (RPLC) and hydrophilic interaction (HILIC), with RPLC providing better performance than HILIC. The final application of the method showed the presence of acesulfame, cyclamate, saccharin and sucralose in the wastewater and surface water samples analyzed at concentrations up to 54 μg/L. Copyright © 2012 Elsevier B.V. All rights reserved.
Kutzner, Susann; Schaffer, Mario; Licha, Tobias; Worch, Eckhard; Börnick, Hilmar
2016-12-15
The fundamental understanding of organic cation-solid phase interactions is essential for improved predictions of the transport and ultimate environmental fates of widely used substances (e.g., pharmaceutical compounds) in the aquatic environment. We report sorption experiments of two cationic model compounds using two silica gels and a natural aquifer sediment. The sorbents were extensively characterized and the results of surface titrations under various background electrolyte concentrations were discussed. The salt dependency of sorption was systematically studied in batch experiments over a wide concentration range (five orders of magnitude) of inorganic ions in order to examine the influence of increasing competition on the sorption of organic cations. The organic cation uptake followed the Freundlich isotherm model and the sorption capacity decreases with an increase in the electrolyte concentration due to the underlying cation exchange processes. However, the sorption recovers considerably at high ionic strength (I>1M). To our knowledge, this effect has not been observed before and appears to be independent from the sorbent characteristics and sorbate structure. Furthermore, the recovery of sorption was attributed to specific, non-ionic interactions and a connection between the sorption coefficient and activity coefficient of the medium is presumed. Eventually, the reasons for the differing sorption affinities of both sorbates are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Determination of copper in tap water using solid-phase spectrophotometry
NASA Technical Reports Server (NTRS)
Hill, Carol M.; Street, Kenneth W.; Philipp, Warren H.; Tanner, Stephen P.
1994-01-01
A new application of ion exchange films is presented. The films are used in a simple analytical method of directly determining low concentrations of Cu(2+) in aqueous solutions, in particular, drinking water. The basis for this new test method is the color and absorption intensity of the ion when adsorbed onto the film. The film takes on the characteristic color of the adsorbed cation, which is concentrated on the film by many orders of magnitude. The linear relationship between absorbance (corrected for variations in film thickness) and solution concentration makes the determinations possible. These determinations agree well with flame atomic absorption determinations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezhov, E.A.; Reimarov, G.A.; Rubisov, V.N.
1987-05-01
On the basis of a statistical treatment of the entire set of published data on anion exchange extraction constants, the authors have refined and expanded the scale of the hydration parameters for the anions ..delta..G/sub hydr/ (the effective free energies of hydration for the anions). The authors have estimated the parameters ..delta..G for 93 anions and the coefficients % for 94 series of extraction systems, which are distinguished within each series only by the nature of the exchanging anions. The series are distinguished from one another by the nature of the cation extraction agent and the diluent.
Cation Exchange Reactions for Improved Quality and Diversity of Semiconductor Nanocrystals
NASA Astrophysics Data System (ADS)
Beberwyck, Brandon James
Observing the size and shape dependent physical properties of semiconductor nanocrystals requires synthetic methods capable of not only composition and crystalline phase control but also molecular scale uniformity for a particle consisting of tens to hundreds of thousands of atoms. The desire for synthetic methods that produce uniform nanocrystals of complex morphologies continues to increase as nanocrystals find roles in commercial applications, such as biolabeling and display technologies, that are simultaneously restricting material compositions. With these constraints, new synthetic strategies that decouple the nanocrystal's chemical composition from its morphology are necessary. This dissertation explores the cation exchange reaction of colloidal semiconductor nanocrystals, a template-based chemical transformation that enables the interconversion of nanocrystals between a variety of compositions while maintaining their size dispersity and morphology. Chapter 1 provides an introduction to the versatility of this replacement reaction as a synthetic method for semiconductor nanocrystals. An overview of the fundamentals of the cation exchange reaction and the diversity of products that are achievable is presented. Chapter 2 examines the optical properties of nanocrystal heterostructures produced through cation exchange reactions. The deleterious impact of exchange on the photoluminescence is correlated to residual impurities and a simple annealing protocol is demonstrated to achieve photoluminescence yields comparable to samples produced by conventional methods. Chapter 3 investigates the extension of the cation exchange reaction beyond ionic nanocrystals. Covalent III-V nanocrystal of high crystallinity and low size dispersity are synthesized by the cation exchange of cadmium pnictide nanocrystals with group 13 ions. Lastly, Chapter 4 highlights future studies to probe cation exchange reactions in colloidal semiconductor nanocrystals and progress that needs to be made for its adoption as a routine synthetic approach.
Kanaujia, Pankaj K; Pardasani, Deepak; Gupta, A K; Kumar, Rajesh; Srivastava, R K; Dubey, D K
2007-08-17
The analysis of alkyl alkylphosphonic acids (AAPAs) and alkylphosphonic acids (APAs), the hydrolyzed products of nerve agents, constitutes an important aspect for verifying the compliance to the Chemical weapons convention (CWC). This work devotes on the development of solid-phase extraction method using polymeric mixed-mode strong anion-exchange (Oasis MAX) cartridges for extraction of AAPAs and APAs from water. The extracted analytes were analyzed by GC-MS under full scan and selected ion monitoring mode. The extraction efficiencies of MAX and silica-based anion-exchange cartridges were compared, and results revealed that MAX sorbents yielded better recoveries. Extraction parameters, such as loading capacity, extraction solvent, its volume, and washing solvent were optimized. Best recoveries were obtained using 1 mL of acidic methanol (0.1 M), and limits of detection could be achieved up to 5 x 10(-4) microg mL(-1) (in SIM) and 0.05 microg mL(-1) in full scan mode. The method was successfully employed for the detection and identification of alkylphosphonic acids present in soil sample sent by the Organization for Prohibition of Chemical Weapons (OPCW) in the official proficiency tests.
Anion-exchange resins (AERs) separate As(V) and As(lIl) in solution by retaining As(V) and allowing As(lIl) to pass through. AERs offer several advantages including portability, ease of use, and affordability (relative to other As speciation methods). The use of AERs for the inst...
Zhao, Zhiyong; Zhang, Yanmei; Xuan, Yanfang; Song, Wei; Si, Wenshuai; Zhao, Zhihui; Rao, Qinxiong
2016-06-01
The analysis of veterinary drugs in organic fertilizers is crucial for an assessment of potential risks to soil microbial communities and human health. We develop a robust and sensitive method to quantitatively determine 19 veterinary drugs (amantadine, sulfonamides and fluoroquinolones) in organic fertilizers. The method involved a simple solid-liquid extraction step using the combination of acetonitrile and McIlvaine buffer as extraction solvent, followed by cleanup with a solid-phase extraction cartridge containing polymeric mixed-mode anion-exchange sorbents. Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to separate and detect target analytes. We particularly focused on the optimization of sample clean-up step: different diluents and dilution factors were tested. The developed method was validated in terms of linearity, recovery, precision, sensitivity and specificity. The recoveries of all the drugs ranged from 70.9% to 112.7% at three concentration levels, with the intra-day and inter-day relative standard deviation lower than 15.7%. The limits of quantification were between 1.0 and 10.0μg/kg for all the drugs. Matrix effect was minimized by matrix-matched calibration curves. The analytical method was successfully applied for the survey of veterinary drugs contamination in 20 compost samples. The results indicated that fluoroquinolones had higher incidence rate and mean concentration levels ranging from 31.9 to 308.7μg/kg compared with other drugs. We expect the method will provide the basis for risk assessment of veterinary drugs in organic fertilizers. Copyright © 2016 Elsevier B.V. All rights reserved.
Application of phase-trafficking methods to natural products research.
Araya, Juan J; Montenegro, Gloria; Mitscher, Lester A; Timmermann, Barbara N
2010-09-24
A novel simultaneous phase-trafficking approach using spatially separated solid-supported reagents for rapid separation of neutral, basic, and acidic compounds from organic plant extracts with minimum labor is reported. Acidic and basic ion-exchange resins were physically separated into individual sacks ("tea bags") for trapping basic and acidic compounds, respectively, leaving behind in solution neutral components of the natural mixtures. Trapped compounds were then recovered from solid phase by appropriate suspension in acidic or basic solutions. The feasibility of the proposed separation protocol was demonstrated and optimized with an "artificial mixture" of model compounds. In addition, the utility of this methodology was illustrated with the successful separation of the alkaloid skytanthine from Skytanthus acutus Meyen and the main catechins and caffeine from Camellia sinensis L. (Kuntze). This novel approach offers multiple advantages over traditional extraction methods, as it is not labor intensive, makes use of only small quantities of solvents, produces fractions in adequate quantities for biological assays, and can be easily adapted to field conditions for bioprospecting activities.
Application of Phase-Trafficking Methods to Natural Products Research
Araya, Juan J.; Montenegro, Gloria; Mitscher, Lester A.; Timmermann, Barbara N.
2010-01-01
A novel simultaneous phase-trafficking approach using spatially separated solid-supported reagents (SSR) for rapid separation of neutral, basic, and acidic compounds from organic plant extracts with minimum labor is reported. Acidic and basic ion exchange resins were physically separated into individual sacks (“teabags”) for trapping basic and acidic compounds respectively, leaving behind in solution neutral components of the natural mixtures. Trapped compounds were then recovered from solid phase by appropriate suspension in acidic or basic solutions. The feasibility of the proposed separation protocol was demonstrated and optimized with an “artificial mixture” of model compounds. In addition, the utility of this methodology was illustrated with the successful separation of the alkaloid skytanthine from Skytanthus acutus Meyen and the main catechins and caffeine from Camellia sinensis L. (Kuntze). This novel approach offers multiple advantages over traditional extraction methods, as it is not labor intensive, makes use of only small quantities of solvents, produces fractions in adequate quantities for biological assays, and can be easily adapted to field conditions for bioprospecting activities. PMID:20704309
Moorhead-Rosenberg, Zach; Huq, Ashfia; Goodenough, John B.; ...
2015-10-05
The electronic and electrochemical properties of the high-voltage spinel LiMn 1.5Ni 0.5O 4 as a function of cation ordering and lithium content have been investigated. Conductivity and activation energy measurements confirm that charge transfer occurs by small polaron hopping and the charge carrier conduction is easier in the Ni:3d band than in the in Mn:3d band. Seebeck coefficient data reveal that the Ni 2+/ 3+. and Ni 3+/ 4+ redox couples are combined in a single,3d band, and that maximum charge carrier concentration occurs where the average Ni oxidation state is close to 3+, corresponding to x = 0.5 inmore » Li Li 1-xMn 1.5Ni 0.5O 4. Furthermore, maximum electronic conductivity is found at x = 0.5, regardless of cation ordering. The thermodynamically stable phases formed during cycling were investigated by recording the X-ray diffraction (XRD) of chemically delithiated powders. The more ordered spinels maintained two separate two-phase regions upon lithium extraction, while the more disordered samples exhibited a solid-solubility region from LiMn 1.5Ni 0.5O 4 to Li 0.5Mn 1.5Ni 0.5O 4. The conductivity and phase-transformation data of four samples with varying degrees of cation ordering were compared to the electrochemical data collected with lithium cells. Only the most ordered spinel showed inferior rate performance, while the sample annealed for a shorter time performed comparable to the unannealed or disordered samples. Our results challenge the most common beliefs about high-voltage spinel: (i) low Mn 3+ content is responsible for poor rate performance and (ii) thermodynamically stable solid-solubility is critical for fast kinetics.« less
Zhang, Daping; Wu, Lei; Chow, Diana S-L; Tam, Vincent H; Rios, Danielle R
2016-01-05
The determination of dopamine facilitates better understanding of the complex brain disorders in the central nervous system and the regulation of endocrine system, cardiovascular functions and renal functions in the periphery. The purpose of this study was to develop a highly sensitive and reliable assay for the quantification of dopamine in human neonate plasma. Dopamine was extracted from human plasma by strong cation exchange (SCX) solid phase extraction (SPE), and subsequently derivatized with propionic anhydride. The derivatized analyte was separated by a Waters Acquity UPLC BEH C18 column using gradient elution at 0.4 ml/min with mobile phases A (0.2% formic acid in water [v/v]) and B (MeOH-ACN [v/v, 30:70]). Analysis was performed under positive electrospray ionization tandem mass spectrometer (ESI-MS/MS) in the multiple reaction monitoring (MRM) mode. The stable and relatively non-polar nature of the derivatized analyte enables reliable quantification of dopamine in the range of 10-1000 pg/ml using 200 μl of plasma sample. The method was validated with intra-day and inter-day precision less than 7%, and the intra-day and inter-day accuracy of 91.9-101.9% and 92.3-102.6%, respectively. The validated assay was applied to quantify dopamine levels in two preterm neonate plasma samples. In conclusion, a sensitive and selective LC-MS/MS method has been developed and validated, and successfully used for the determination of plasma dopamine levels in preterm neonates. Copyright © 2015 Elsevier B.V. All rights reserved.
Bhaskar, M.; Surekha, M.; Suma, N.
2018-01-01
The liquid phase esterification of phenyl acetic acid with p-cresol over different metal cation exchanged montmorillonite nanoclays yields p-cresyl phenyl acetate. Different metal cation exchanged montmorillonite nanoclays (Mn+ = Al3+, Zn2+, Mn2+, Fe3+, Cu2+) were prepared and the catalytic activity was studied. The esterification reaction was conducted by varying molar ratio of the reactants, reaction time and catalyst amount on the yield of the ester. Among the different metal cation exchanged catalysts used, Al3+-montmorillonite nanoclay was found to be more active. The characterization of the material used was studied under different techniques, namely X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The product obtained, p-cresyl phenyl acetate, was identified by thin-layer chromotography and confirmed by Fourier transform infrared, 1H NMR and 13C NMR. The regeneration activity of used catalyst was also investigated up to fourth generation. PMID:29515855
Boner, Pamela L; Liu, Dave D W; Feely, William F; Robinson, Robert A; Wu, Jinn
2003-12-17
An accurate, reliable, and reproducible assay was developed and validated to determine flunixin in bovine liver, kidney, muscle, and fat. The overall recovery and percent coefficient of variation (%CV) of twenty-eight determinations in each tissue for flunixin free acid were 85.9% (5.9% CV) for liver, 94.6% (9.9% CV) for kidney, 87.4% (4.7% CV) for muscle, and 87.6% (4.4% CV) for fat. The theoretical limit of detection was 0.1 microg/kg (ppb, ng/g) for liver and kidney, and 0.2 ppb for muscle and fat. The theoretical limit of quantitation was 0.3, 0.2, 0.6, and 0.4 ppb for liver, kidney, muscle, and fat, respectively. The validated lower limit of quantitation was 1 ppb for edible tissues with the upper limit of 400 ppb for liver and kidney, 100 ppb for fat, and 40 ppb for muscle. Accuracy, precision, linearity, specificity, ruggedness, and storage stability were demonstrated. Briefly, the method involves an initial acid hydrolysis, followed by pH adjustment ( approximately 9.5) and partitioning with ethyl acetate. A portion of the ethyl acetate extract was purified by solid-phase extraction using a strong cation exchange cartridge. The eluate was then evaporated to dryness, reconstituted, and analyzed using LC/MS/MS. The validated method is sensitive and specific for flunixin in edible bovine tissue.
Savateev, Aleksandr; Pronkin, Sergey; Willinger, Marc Georg; Antonietti, Markus; Dontsova, Dariya
2017-07-04
Highly crystalline potassium (heptazine imides) were prepared by the thermal condensation of substituted 1,2,4-triazoles in eutectic salt melts. These semiconducting salts are already known to be highly active photocatalysts, for example, for the visible-light-driven generation of hydrogen from water. Herein, we show that within the solid-state structure, potassium ions can be exchanged to other metal ions while the crystal habitus is essentially preserved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Beneito-Cambra, M; Ripoll-Seguer, L; Herrero-Martínez, J M; Simó-Alfonso, E F; Ramis-Ramos, G
2011-11-25
A method for the separation, characterization and determination of fatty alcohol ethoxylates (FAE) and alkylether sulfates (AES) in industrial and environmental samples is described. Separation of the two surfactant classes was achieved in a 50:50 methanol-water medium by retaining AES on a strong anionic exchanger (SAX) whereas most FAE were eluted. After washing the SAX cartridges to remove cations, the residual hydrophobic FAE were eluted by increasing methanol to 80%. Finally, AES were eluted using 80:20 and 95:5 methanol-concentrated aqueous HCl mixtures. Methanol and water were removed from the FAE and AES fractions, and the residues were dissolved in 1,4-dioxane. In this medium, esterification of FAE and transesterification of AES with a cyclic anhydride was performed. Phthalic and diphenic anhydrides were used to derivatizate the surfactants in industrial samples and seawater extracts, respectively. Separation of the derivatized oligomers was achieved by gradient elution on a C8 column with acetonitrile/water in the presence of 0.1% acetic acid. Good resolution between both the hydrocarbon series and the successive oligomers within the series was achieved. Cross-contamination of FAE with AES and vice versa was not observed. Using dodecyl alcohol as calibration standard, and correction of the peak areas of the derivatized oligomers by their respective UV-vis response factors, both FAE and AES were evaluated. After solid-phase extraction on C18, the proposed method was successfully applied to the characterization and determination of the two surfactant classes in industrial samples and in seawater. Copyright © 2011 Elsevier B.V. All rights reserved.
Liquid-like cationic sub-lattice in copper selenide clusters
NASA Astrophysics Data System (ADS)
White, Sarah L.; Banerjee, Progna; Jain, Prashant K.
2017-02-01
Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, `liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.
Wawrzynczyk, J; Szewczyk, E; Norrlöw, O; Dey, E Szwajcer
2007-06-30
The study describes extraction of extracellular polymeric substances (EPS) from sewage sludge by applying enzymes and enzymes combined with sodium tripolyphosphate (STPP). Additionally, a systematic study of two non-enzymatic extraction agents is described. The assessment of the released products is made by colorimetrical methods and polysaccharides/glycoconjugates identification by the interaction with four immobilized lectins. Bio-sludge from Helsingborg (Sweden) and Damhusåen (Denmark) were used as two case studies for testing enzymatic extractability and thereby to make useful prediction of sludge bio-digestibility. From Helsingborg sludge the enzymes extracted about 40% more of EPS than from Damhusåen. The polysaccharides/glycoconjugates in both sludges maintained the same level, and showed substantial different interaction motifs with lectins panel. Damhusåen enzymatic extracted EPS had an enhanced amount of suspended material that was post-hydrolysed by the use of polygalacturonase and lysozyme resulting in pectin like polymers and petiptidoglycans. Petiptidoglycan is a marker from bacterial cell debris. STPP and cation exchange resin (CER) released different quantities of EPS. The CER released polysaccharides/glycoconjugates had higher molecular weight and stronger affinity towards Concanavalin A than the one released by the action of STPP. Independent of the extraction conditions, STPP released elevated amounts of polyvalent cations and humic substances in contrast to the very low amounts of released by CER.
A batch adsorption study on bentonite clay Pertinence to transport modeling?
NASA Astrophysics Data System (ADS)
BOURG, I.; BOURG, A. C.; SPOSITO, G.
2001-12-01
Bentonite clay is often used as a component of engineered barriers for the isolation of high-level toxic wastes. This swelling clay is used for its physical (impermeability, self-healing) but also for its chemical properties, mostly a high cation exchange capacity (CEC). The adsorbed cations being temporarily immobilized, this should slow down the release of cations from the waste to the surrounding environment. In order to assess the performance of the engineered barrier, the partitioning of solutes between the liquid and solid phases needs to be quantified for use in transport models. The usual method for characterizing the adsorption is through batch adsorption experiments on dispersed suspensions of the solid, yielding an adsorption isotherm (adsorbed concentration vs. dissolved concentration). This isotherm however should be a function of various environmental variables (e.g., pH, ionic strength, concentrations of various ligands and competing adsorbents), so that extrapolation of lab data to performance assessment in the field is problematic. We present results from a study of the adsorption of cesium, strontium, cadmium and lead on dispersed suspensions of the standard BX-80 bentonite. Through a wide range of experimental parameters (pH, ionic strength, reaction time, reactor open or closed to the atmosphere, study of a range of cations of differing properties), we seek a mechanistic interpretation of the results instead of an empirical determination of adsorption parameters. Depending on the mechanisms that control the adsorption in different experimental ranges, we discuss the degree to which the partitioning coefficient (Kd) obtained in the lab can be extrapolated to a transport model through compacted bentonite in a natural environment.
Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Lund, Walter
2009-05-15
A simple and versatile solid phase extraction (SPE) method has been developed to determine the anionic species of As, Cr, Mo, Sb, Se and V in leachates of cement mortar and concrete materials in the pH range 3-13. The anionic fractions of these elements were extracted using a strong anion exchanger (SAX) and their concentrations were determined as the difference in element concentration between the sample and the SAX effluent. Inductively coupled plasma mass spectrometry (ICP-MS) was used off-line to analyse solutions before and after passing through the SAX. The extraction method has been developed by optimizing sorbent type, sorbent conditioning and sample percolation rate. Breakthrough volumes and effect of matrix constituents were also studied. It was found that a polymer-based SAX conditioned with a buffer close to the sample pH or in some cases deionised water gave the best retention of the analytes. Optimal conditions were also determined for the quantitative elution of analytes retained on the SAX. Extraction of the cement mortar and concrete leachates showed that most of the elements had similar distribution of anions in both leachate types, and that the distribution was strongly pH dependent. Cr, Mo and V exist in anionic forms in strongly basic leachates (pH>12), and significant fractions of anionic Se were also detected in these solutions. Cr, Mo, Se and V were not determined as anions by the present method in the leachates of pH<12. Anionic As and Sb were found in small fractions in most of the leachates.
Xue, Shu-Wen; Li, Jing; Xu, Li
2017-05-01
Magnetic melamine-formaldehyde resin was prepared via water-in-oil emulsification approach by entrapping Fe 3 O 4 magnetic nanoparticles as the core. The preparation of the magnetic resin was optimized by investigating the amount of polyethylene glycol 20000 and Fe 3 O 4 nanoparticles, the concentration of the catalyst (hydrochloric acid), as well as the mechanical stirring rate. The prepared material was characteristic of excellent anion-exchange capacity, good water wettability, and proper magnetism. Its application was demonstrated by magnetic solid-phase extraction of nonsteroidal anti-inflammatory drugs coupled to high performance liquid chromatography-UV analysis. Under the optimal conditions, the proposed method showed broad linear range of 1-5000 ng mL -1 of milk and urine samples, satisfactory reproducibility with intra-day and inter-day relative standard deviations less than 12.4% and 9.7%, respectively, and low limits of detection of 0.2 ng mL -1 for the studied nonsteroidal anti-inflammatory drugs. The developed method was successfully used for the determination of the nonsteroidal anti-inflammatory drugs in spiked urine and milk samples. The magnetic melamine-formaldehyde resin was promising for the sample pretreatment of acidic analytes via anion-exchange interaction with convenient operation from complex sample matrix. Graphical abstract Magnetic solid-phase extraction based on melamine-formaldehyde resin.
Błaszczyk, Urszula; Janoszka, Beata
2008-07-01
A method for analysis of six azaarenes (benzo[h]quinoline, benzo[a]acridine, benzo[c]acridine, dibenzo[a,c]acridine, dibenzo[a,j]acridine and dibenzo[a,h]acridine) in thermally treated high-protein food has been described. The clean-up procedure used based on alkaline hydrolysis, tandem solid phase extraction on columns filled with Extrelut - diatomaceous earth and cation exchanger (propyl sulfonic acid), enabled a selective isolation of carcinogenic compounds belonging to benzoacridines and dibenzoacridines from samples of cooked meat and its gravy. The isolated fractions of aza-PAHs were analysed by high-performance liquid chromatography with fluorescence detection. The detection limits for the azaarenes were between 0.0001ng and 0.005ng loaded on column. The recoveries for the four-ring and five-ring azaarenes were from 55% to 67%. Two types of dishes prepared from pork by pan-frying were investigated. Total contents of the benzoacridines and dibenzoacridines determined in cooked meat were 1.57 and 2.50ng/g in collar and chop samples, respectively; their gravies contained 0.34 and 0.59ng of these azaarenes per g of cooked meat. Copyright © 2007 Elsevier Ltd. All rights reserved.
Mesoporous titanium phosphate molecular sieves with ion-exchange capacity.
Bhaumik, A; Inagaki, S
2001-01-31
Novel open framework molecular sieves, titanium(IV) phosphates named, i.e., TCM-7 and -8 (Toyota Composite Materials, numbers 7 and 8), with new mesoporous cationic framework topologies obtained by using both cationic and anionic surfactants are reported. The (31)P MAS NMR, UV-visible absorption, and XANES data suggest the tetrahedral state of P and Ti, and stabilization of the tetrahedral state of Ti in TCM-7/8 is due to the incorporation of phosphorus (at Ti/P = 1:1) vis-à-vis the most stable octahedral state of Ti in the pure mesoporous TiO(2). Mesoporous TCM-7 and -8 show anion exchange capacity due to the framework phosphonium cation and cation exchange capacity due to defective P-OH groups. The high catalytic activity in the liquid-phase partial oxidation of cyclohexene with a dilute H(2)O(2) oxidant supports the tetrahedral coordination of Ti in these materials.
NASA Astrophysics Data System (ADS)
Mohamed, N.; Ariffin, N. A. N.; Mohamed, C. A. R.
2016-07-01
Distribution of 226Ra and 228Ra radioactive in marine have been studied at Kapar coastal area that closed to Sultan Salahudin Abdul Aziz Shah (SJSSAS) power station. The concentration level of 226Ra and 228Ra were measured in seawater include total suspended solids (TSSrw) and dissolved phases from September 2006 to February 2008. The measurement technique used for 226Ra and 228Ra was using cation exchange column and counted using Liquid Scintillator Ciunter (LSC). The radioactivities of 226Rasw and 228Rasw in the dissolved phase of seawater ranged from 1.29 ± 0.52 mBq/L - 3.69 ± 1.29 mBq/L and 2.12 ± 0.71 mbq/L - 17.07 ± 6.03 mBq/L respectively. The measurement of radioactivities of radium isotopes in the particulate phase of seawater ranged from 15.62 ± 1.99 Bq/kg - 241.76 ± 100.23 Bq/kg (226Ratsw) and 7.19 ± 3.21 Bq/kg - 879.66 ± 365.74 Bq/kg (228Ratsw). Radium isotopes inventory in this study showed that suspended solid have higher inventory value than seawater and sediment. Study also found that suspended solid play an important role for flux contribution at seawater. Based on the finding, the radioactivity concentration of 226Ra and 228Ra is higher in particulate phase than in dissolved phase.
Zereshki, Sina; Daraei, Parisa; Shokri, Amin
2018-05-18
Using an emulsion liquid membrane based on edible oils is investigated for removing cationic dyes from aqueous solutions. There is a great potential for using edible oils in food industry extraction processes. The parameters affecting the stability of the emulsion and the extraction rate were studied. These parameters were the emulsification time, the stirring speed, the surfactant concentration, the internal phase concentration, the feed phase concentration, the volume ratio of internal phase to organic phase and the treat ratio. In order to stabilize the emulsion without using a carrier, edible paraffin oil and heptane are used at an 80:20 ratio. The optimum conditions for the extraction of methylene blue (MB), crystal violet and methyl violet (CV and MV) cationic dyes using edible paraffin oil as an environment friendly solvent are represented. A removal percentage of 95% was achieved for a mixture of dyes. The optimum concentration of sodium hydroxide in the internal phase, which results a stabile emulsion with a high stripping efficiency of 96%, was 0.04 M. An excellent membrane recovery was observed and the extraction of dyes did not decrease up to seven run cycles. Copyright © 2018 Elsevier B.V. All rights reserved.
Razaq, Aamir; Nyström, Gustav; Strømme, Maria; Mihranyan, Albert; Nyholm, Leif
2011-01-01
Highly porous polypyrrole (PPy)-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg−1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30–50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m2 g−1) of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT)6, (dT)20, and (dT)40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules. PMID:22195031
Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.
Wang, Fangjun; Dong, Jing; Jiang, Xiaogang; Ye, Mingliang; Zou, Hanfa
2007-09-01
A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 microL/min with a back pressure of approximately 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 microg of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54,780 peptides) at the false positive rate only 0.46%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makrlik, Emanuel; Toman, Petr; Vanura, Petr
2013-01-01
From extraction experiments and c-activity measurements, the extraction constant corresponding to the equilibrium Cs+ (aq) + I (aq) + 1 (org),1Cs+ (org) + I (org) taking place in the two-phase water-phenyltrifluoromethyl sulfone (abbrev. FS 13) system (1 = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, org = FS 13 phase) was evaluated as logKex (1Cs+, I) = 2.1 0.1. Further, the stability constant of the 1Cs+ complex in FS 13 saturated with water was calculated for a temperature of 25 C: log borg (1Cs+) = 9.9 0.1. Finally, by using quantum mechanical DFT calculations, the most probable structure of the cationic complexmore » species 1Cs+ was derived. In the resulting 1Cs+ complex, the central cation Cs+ is bound by eight bond interactions to six oxygen atoms of the respective 18-crown-6 moiety and to two carbons of the corresponding two benzene rings of the parent ligand 1 via cation p interaction.« less
McAdams, Brandon C.; Aiken, George R.; McKnight, Diane M.; Arnold, William A.; Chin, Yu-Ping
2018-01-01
We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA280) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA280.
Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua
2015-08-04
Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, R.; Orr, W.C.; Katz, L.
Cerium(III) ion in a barium chloride flux does not readily exchangs with any of the ions in solid BaZrO/sub 3/ or BaTiO/sub 3/. It reacts to form new solid phases, which are identified, and does not enter the original crystal lattices at an appreciable rate. The strontium was found to exchange at a measurable rate with barium in BaTiO/sub 3/ and with the corresponding ions in alkaline-earth zirconates. Results of a series of equilibrium and rate measurements were interpreted to ahow that the exchange produces an additional solid phase, SrTiO/sub 3/, rather than the mixed phase, or solid solution, thatmore » ndght have been expected. The significance of this observation is discussed. The self-exchange of yttnium ions between a solid compound of yttrium and an alkali chloride flux in which yttrium chloride is dissolved appears in the systems studied to depend primaaily on the solubility of the solid. Exchange is rapid and complete in the case of yttrium oxychlonide, which is soluble to the extent of 0.6%, but is limited to the surface of yttrium chromium oxide, which has no measurable solubility in the flux. The introduction of yttrium ion vacancies in the lattice of yttrium chromium oxide has no detectable effect in promoting exchange. (For preceding period see NYO-3279.) (auth)« less
Tomková, Jana; Ondra, Peter; Válka, Ivo
2015-06-01
This paper presents a method for the simultaneous determination of α-amanitin, β-amanitin and muscarine in human urine by solid-phase extraction (SPE) and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. The method can be used for a diagnostics of mushroom poisonings. Different SPE cartridges were tested for sample preparation, namely hydrophilic modified reversed-phase (Oasis HLB) and polymeric weak cation phase (Strata X-CW). The latter gave better results and therefore it was chosen for the subsequent method optimization and partial validation. In the course of validation, limits of detection, linearity, intraday and interday precisions and recoveries were evaluated. The obtained LOD values of α-amanitin and β-amanitin were 1ng/mL and of muscarine 0.09ng/mL. The intraday and interday precisions of human urine spiked with α-amanitin (10ng/mL), β-amanitin (10ng/mL) and muscarine (1ng/mL) ranged from 6% to 10% and from 7% to 13%, respectively. The developed method was proved to be a relevant tool for the simultaneous determination of the studied mushroom toxins in human urine after mushroom poisoning. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Manufactured soils for plant growth at a lunar base
NASA Technical Reports Server (NTRS)
Ming, Douglas W.
1989-01-01
Advantages and disadvantages of synthetic soils are discussed. It is pointed out that synthetic soils may provide the proper physical and chemical properties necessary to maximize plant growth, such as a toxic-free composition and cation exchange capacities. The importance of nutrient retention, aeration, moisture retention, and mechanical support as qualities for synthetic soils are stressed. Zeoponics, or the cultivation of plants in zeolite substrates that both contain essential plant-growth cations on their exchange sites and have minor amounts of mineral phases and/or anion-exchange resins that supply essential plant growth ions, is discussed. It is suggested that synthetic zeolites at lunar bases could provide adsorption media for separation of various gases, act as catalysts and as molecular sieves, and serve as cation exchangers in sewage-effluent treatment, radioactive-waste disposal, and pollution control. A flow chart of a potential zeoponics system illustrates this process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J.; Torres, M.; Verba, C.
The accurate quantification of the rare earth element (REE) dissolved concentrations in natural waters are often inhibited by their low abundances in relation to other dissolved constituents such as alkali, alkaline earth elements, and dissolved solids. The high abundance of these constituents can suppress the overall analytical signal as well as create isobaric interferences on the REEs during analysis. Waters associated with natural gas operations on black shale plays are characterized by high salinities and high total dissolved solids (TDS) contents >150,000 mg/L. Methods used to isolate and quantify dissolved REEs in seawater were adapted in order to develop themore » capability of analyzing REEs in waters that are high in TDS. First, a synthetic fluid based on geochemical modelling of natural brine formation fluids was created within the Marcellus black shale with a TDS loading of 153,000 mg/L. To this solution, 1,000 ng/mL of REE standards was added based on preliminary analyses of experimental fluids reacted at high pressure and temperature with Marcellus black shale. These synthetic fluids were then run at three different dilution levels of 10, 100, and 1,000–fold dilutions through cation exchange columns using AG50-X8 exchange resin from Eichrom Industries. The eluent from the cation columns were then sent through a seaFAST2 unit directly connected to an inductively coupled plasma mass spectrometer (ICP-MS) to analyze the REEs. Percent recoveries of the REEs ranged from 80–110% and fell within error for the external reference standard used and no signal suppression or isobaric interferences on the REEs were observed. These results demonstrate that a combined use of cation exchange columns and seaFAST2 instrumentation are effective in accurately quantifying the dissolved REEs in fluids that are >150,000 mg/L in TDS and have Ba:Eu ratios in excess of 380,000.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, M.W. Jr.; Van Brunt, V.
1984-09-14
Purex process compatible organic systems which selectively and reversibly extract cesium, strontium, and palladium from synthetic mixed fission product solutions containing 3M HNO/sub 3/ have been developed. This advance makes the development of continuous solvent extraction processes for their recovery more likely. The most favorable cesium and strontium complexing solutions have been tested for radiation stability to 10/sup 7/ rad using a 0.4 x 10/sup 7/ rad/h /sup 60/Co source. The distribution coefficients dropped somewhat but remained above unity. For cesium the complexing organic solution is 5 vol % (0.1M) NNS, 27 vol % TBP and 68 vol % kerosenemore » containing 0.05m Bis 4,4',(5')(1-hydroxy 2-ethylhexyl)-benzo 18-crown-6 (Crown XVII). The NNS is a sulfonic acid cation exchanger. With an aqueous phase containing 0.006M Cs/sup +1/ in contact with an equal volume of extractant the D org/aq = 1.6 at a temperature of 25 to 35/sup 0/C. For strontium the complexing organic solution is 5 vol % (0.1M) NNS, 27 vol % TBP and 68 vol % Kerosene containing 0.02M Bis 4,4'(5') (1-hydroxyheptyl)cyclohexo 18-crown-6 (Crown XVI). With an aqueous phase containing 0.003M Sr/sup +2/ in contact with an equal volume of extractant the D org/aq = 1.98 at a temperature of 25 to 35/sup 0/C. For palladium the complexing organic solution consisted of a ratio of TBP/kerosene of 0.667 containing 0.3M Alamine 336 which is a tertiary amine anion exchanger. With an aqueous phase containing 0.0045M Pd/sup +/ in contact with an equal volume of extractant the D org/aq = 1.95 at a temperature of 25 to 35/sup 0/C.« less
Metal fate and partitioning in soils under bark beetle-killed trees.
Bearup, Lindsay A; Mikkelson, Kristin M; Wiley, Joseph F; Navarre-Sitchler, Alexis K; Maxwell, Reed M; Sharp, Jonathan O; McCray, John E
2014-10-15
Recent mountain pine beetle infestation in the Rocky Mountains of North America has killed an unprecedented acreage of pine forest, creating an opportunity to observe an active re-equilibration in response to widespread land cover perturbation. This work investigates metal mobility in beetle-impacted forests using parallel rainwater and acid leaches to estimate solid-liquid partitioning coefficients and a complete sequential extraction procedure to determine how metals are fractionated in soils under trees experiencing different phases of mortality. Geochemical model simulations analyzed in consideration with experimental data provide additional insight into the mechanisms controlling metal complexation. Metal and base-cation mobility consistently increased in soils under beetle-attacked trees relative to soil under healthy trees. Mobility increases were more pronounced on south facing slopes and more strongly correlated to pH under attacked trees than under healthy trees. Similarly, soil moisture was significantly higher under dead trees, related to the loss of transpiration and interception. Zinc and cadmium content increased in soils under dead trees relative to living trees. Cadmium increases occurred predominantly in the exchangeable fraction, indicating increased mobilization potential. Relative increases of zinc were greatest in the organic fraction, the only fraction where increases in copper were observed. Model results reveal that increased organic complexation, not changes in pH or base cation concentrations, can explain the observed differences in metal partitioning for zinc, nickel, cadmium, and copper. Predicted concentrations would be unlikely to impair human health or plant growth at these sites; however, higher exchangeable metals under beetle-killed trees relative to healthy trees suggest a possible decline in riverine ecosystem health and water quality in areas already approaching criteria limits and drinking water standards. Impairment of water quality in important headwater streams from the increased potential for metal mobilization and storage will continue to change as beetle-killed trees decompose and forests begin to recover. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Jing; Liu, Zhaojin; An, Baochao; Lu, Yan; Xu, Qun
2012-10-01
An on-line solid phase extraction (SPE) system was used to eliminate the interferences sufficiently and fulfill the simple and sensitive determination of diquat and paraquat in tap and pond water. This on-line SPE system used two SPE cartridges. One was an Acclaim Mixed-Mode WAX-1 cartridge for the elimination of anionic interferences; the other one was an Acclaim Mixed-Mode WCX-1 cartridge for the enrichment of diquat and paraquat and the elimination of co-enriched cationic interferences. The baseline separation of diquat and paraquat was achieved on an Acclaim Trinity P1 column. A dual-gradient high performance liquid chromatographic (HPLC) system provided an efficient platform to fulfill the on-line SPE and separation, and the system operated under automatic control of chromatography data system software. The complete analysis only required 16 min, and the detection limits of the method were 0.12 microg/L for diquat and 0.10 microg/L for paraquat. The method is simple, rapid and sensitive, and can be applied to the determination of diquat and paraquat in drinking water and environmental water.
Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J. A.; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen
2013-01-01
It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al3+, Ca2+ or Na+, respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for CaB and aging-induced structural reorganisation can enhance cross-link formation. PMID:23750256
Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J A; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen
2013-01-01
It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+), Ca(2+) or Na(+), respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for CaB and aging-induced structural reorganisation can enhance cross-link formation.
Long, Zhen; Zhang, Yanhai; Gamache, Paul; Guo, Zhimou; Steiner, Frank; Du, Nana; Liu, Xiaoda; Jin, Yan; Liu, Xingguo; Liu, Lvye
2018-01-01
Current Chinese Pharmacopoeia (ChP) standards apply liquid extraction combined with one dimensional liquid chromatography (1DLC) method for determining alkaloids in herbal medicines. The complex pretreatments lead to a low analytical efficiency and possible component loss. In this study, a heart cutting reversed phase - strong cation exchange two dimensional liquid chromatography (RP - SCX 2DLC) approach was optimized for simultaneously quantifying tropane alkaloids (anisodine, scopolamine and hyoscyamine) in herbal medicines and herbal medicine tablets without further treatment of the filtered extract. The chromatographic conditions were systematically optimized in terms of column type, mobile phase composition and flow rate. To improve peak capacity and obtain symmetric peak shape of alkaloids, a polar group embedded C18 column combined with chaotropic salts was used in the first dimension. To remove the disturbance of non-alkaloids, achieve unique selectivity and acquire symmetric peak shape of alkaloids, an SCX column combined with phosphate buffer was used in the second dimension. Method validation was performed in terms of linearity, precision (0.54-0.82%), recovery (94.1-105.2%), limit of detection (LOD) and limit of quantification (LOQ) of the three analytes varied between 0.067-0.115mgL -1 and 0.195-0.268mgL -1 , respectively. The method demonstrated superiority over 1DLC method in respect of resolution (less alkaloid co-eluted), sample preparation (no pretreatment procedure) and transfer rate (minimum component loss). The optimized RP - SCX 2DLC approach was subsequently applied to quantify target alkaloids in five herbal medicines and herbal medicine tablets from three different manufactures. The results demonstrated that the developed heart cutting RP - SCX 2DLC approach represented a new, strategically significant methodology for the quality evaluation of tropane alkaloid in related herbal medicines that involve complex chemical matrix. Copyright © 2017. Published by Elsevier B.V.
Fast chemical and isotopic exchange of nitrogen during reaction with hot molybdenum
NASA Astrophysics Data System (ADS)
Yokochi, Reika; Marty, Bernard
2006-07-01
Molybdenum crucibles are commonly used to extract nitrogen from geological samples by induction heating. Because nitrogen is known to be reactive with certain metals (e.g., Ti and Fe), we have tested the reactivity of gaseous nitrogen with a Mo crucible held at 1800°C. The consumption of nitrogen, determined by monitoring the N2/40Ar ratio of the gas phase, varied between 25 and 100%, depending on the reaction duration. Nitrogen of the reacted gas was found to be systematically enriched in 15N relative to 14N by 10‰ compared to the initial isotopic composition, without any correlation with nitrogen consumption. We propose that a rapid isotopic exchange occurs between nitrogen originally trapped in the crucible and nitrogen from the gas phase, which modifies the isotopic composition of the reacted gas. This process can significantly bias the isotopic determination of nitrogen in rocks and minerals when a Mo furnace is used for gas extraction. Meanwhile, the rate of N-Mo chemical bonding may be controlled by the formation of nitride (rather than solid solution), a process slower than the isotopic exchange. The use of a Mo furnace for the extraction of trace nitrogen from rocks and minerals should therefore be avoided.
A Cation-containing Polymer Anion Exchange Membrane based on Poly(norbornene)
NASA Astrophysics Data System (ADS)
Beyer, Frederick; Price, Samuel; Ren, Xiaoming; Savage, Alice
Cation-containing polymers are being studied widely for use as anion exchange membranes (AEMs) in alkaline fuel cells (AFCs) because AEMs offer a number of potential benefits including allowing a solid state device and elimination of the carbonate poisoning problem. The successful AEM will combine high performance from several orthogonal properties, having robust mechanical strength even when wet, high hydroxide conductivity, and the high chemical stability required for long device lifetimes. In this study, we have synthesized a model cationic polymer that combines three of the key advantages of Nafion. The polymer backbone based on semicrystalline atactic poly(norbornene) offers good mechanical properties. A flexible, ether-based tether between the backbone and fixed cation charged species (quaternary ammonium) should provide the low-Tg, hydrophilic environment required to facilitate OH- transport. Finally, methyl groups have been added at the beta position relative to the quaternary ammonium cation to prevent Hoffman elimination, one mechanism by which AEMs are neutralized in a high pH environment. In this poster, we will present our findings on mechanical properties, morphology, charge transport, and chemical stability of this material.
LeBlanc, Kelly L; Ruzicka, Josef; Wallschläger, Dirk
2016-02-01
A new anion-exchange chromatographic separation method was used for the simultaneous speciation analysis of selenoamino acids and the more ubiquitous inorganic selenium oxyanions, selenite and selenate. For quantification, this separation was coupled to inductively coupled plasma-mass spectrometry to achieve an instrumental detection limit of 5 ng Se L(-1) for all species. This chromatographic method was also coupled to electrospray tandem mass spectrometry to observe the negative ion mode fragmentation of selenomethionine and one of its oxidation products. Low detection limits were achieved, which were similar to those obtained using inductively coupled plasma-mass spectrometry. An extensive preconcentration and cleanup procedure using cation-exchange solid-phase extraction was developed for the identification and quantification of trace levels of selenomethionine in environmental samples. Preconcentration factors of up to five were observed for selenomethionine, which in addition to the removal of high concentrations of sulphate and chloride from industrial process waters, allowed for an unambiguous analysis that would have been impossible otherwise. Following these methods, selenomethionine was identified at an original concentration of 3.2 ng Se L(-1) in samples of effluent collected at a coal-fired power plant's biological remediation site. It is the first time that this species has been identified in the environment, outside of a biological entity. Additionally, oxidation products of selenomethionine were identified in river water and laboratory algal culture samples. High-resolution mass spectrometry was employed to postulate the chemical structures of these species.
Guzzinati, Roberta; Sarti, Elena; Catani, Martina; Costa, Valentina; Pagnoni, Antonella; Martucci, Annalisa; Rodeghero, Elisa; Capitani, Donatella; Pietrantonio, Massimiliana; Cavazzini, Alberto; Pasti, Luisa
2018-05-18
The adsorption behavior of neodymium (Nd3+) and yttrium (Y3+) cations on synthetic FAU zeolite 13X in its sodium form (Na13X) has been investigated by means of an approach based on both macroscopic (namely, adsorption isotherm determination and thermal analysis) and microscopic measurements (including solid-state NMR spectroscopy and X-ray powder diffraction). The multidisciplinary study has revealed some unexpected features. Firstly, adsorption constants of cations are not correlated to their ionic radii (or hydration enthalpy). The adsorption constant of Y3+ on Na13X was indeed about twice that of Nd3+, which is the opposite of what could be expected based on the size of the cations. In addition, adsorption was accompanied by partial dealumination of the zeolite framework. The extent of dealumination changed depending on exchanged cations. It was more significant on the Nd-exchanged zeolite than on the Y-exchanged one. The most interesting finding of this study, however, is the presence of supramolecular clusters composed of water, Nd3+, residual sodium ions and extraframework aluminum at the interface of Nd-exchanged zeolite. The hypothesis that these host-guest complexes are responsible of the significantly different behavior exhibited by Na13X towards the adsorption/desorption of Nd3+ and Y3+ has been formulated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tuan Nha, Vi; Phung, Le Thi Kim; Dat, Lai Quoc
2017-09-01
Rice bran is one of the significant byproducts of rice processing with 10 %w/w of constitution of whole rice grain. It is rich in nutrient compounds, including glutamic acid. Thus, it could be utilized for the fermentation with Lactobateria for synthesis of GABA, a valuable bioactive for antihypertensive effects. However, the concentration and purity of GABA in fermentation broth of defatted rice bran extract is low for production of GABA drug. This research focused on the purification of GABA from the fermentation broth of defatted rice bran extract by using cation exchange resin. The results indicate that, the adsorption isotherm of GABA by Purelite C100 showed the good agreement with Freundlich model, with high adsorption capacity. The effects of pH and concentration of NaCl in eluent on the elution were also investigated. The obtained results show that, at the operating conditions of elution as follows: pH 6.5, 0.8 M of NaCl in eluent, 0.43 of bed volume; concentration of GABA in accumulative eluent, the purity and recovery yield of GABA were 743.8 ppm, 44.0% and 84.2%, respectively. Results imply that, it is feasible to apply cation exchange resin for purification of GABA from fermentation broth of defatted rice bran extract.
Bauer, Gerald; Neouze, Marie-Alexandra; Limbeck, Andreas
2013-01-15
A novel sample pre-treatment method for multi trace element enrichment from environmental waters prior to optical emission spectrometry analysis with inductively coupled plasma (ICP-OES) is proposed, based on dispersed particle extraction (DPE). This method is based on the use of silica nanoparticles functionalized with strong cation exchange ligands. After separation from the investigated sample solution, the nanoparticles used for the extraction are directly introduced in the ICP for measurement of the adsorbed target analytes. A prerequisite for the successful application of the developed slurry approach is the use of sorbent particles with a mean size of 500 nm instead of commercially available μm sized beads. The proposed method offers the known advantages of common bead-injection (BI) techniques, and further circumvents the elution step required in conventional solid phase extraction procedures. With the use of 14.4 mL sample and addition of ammonium acetate buffer and particle slurry limits of detection (LODs) from 0.03 μg L(-1) for Be to 0.48 μg L(-1) for Fe, with relative standard deviations ranging from 1.7% for Fe and 5.5% for Cr and an average enrichment factor of 10.4 could be achieved. By implementing this method the possibility to access sorbent materials with irreversible bonding mechanisms for sample pre-treatment is established, thus improvements in the selectivity of sample pre-treatment procedures can be achieved. The presented procedure was tested for accuracy with NIST standard reference material 1643e (fresh water) and was applied to drinking water samples from the vicinity of Vienna. Copyright © 2012 Elsevier B.V. All rights reserved.
B-Site Metal Cation Exchange in Halide Perovskites
Eperon, Giles E.; Ginger, David S.
2017-05-02
Here, we demonstrate exchange of the B-site metal cation in hybrid organic-inorganic halide perovskite thin films. We exchange tin in formamidinium tin triiodide (NH 2) 2SnI 3' or FASnI 3) with lead at controllable levels, forming (CH- (NH 2) 2SnI xPB 1-xI 3 alloys with partial substitution and fully converting the film to CH(NH 2) 2PbI 3 with a large excess of Pb 2+. We observe no evidence for phase segregation or bilayered films, indicating that conversion is uniform throughout the film. This facile technique provides a new way to control composition independently from the crystallization processes, allowing formation ofmore » the black phase of CH(NH 2) 2PbI 3 at much lower temperatures than those previously reported while also opening the door to new morphology-composition combinations. The surprising observation that the B-site metal cations are mobile may also provide insight into the nature of transient processes in these materials, suggesting that they may be involved in ionic conduction, and will be a critical consideration for long-term stability.« less
B-Site Metal Cation Exchange in Halide Perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eperon, Giles E.; Ginger, David S.
Here, we demonstrate exchange of the B-site metal cation in hybrid organic-inorganic halide perovskite thin films. We exchange tin in formamidinium tin triiodide (NH 2) 2SnI 3' or FASnI 3) with lead at controllable levels, forming (CH- (NH 2) 2SnI xPB 1-xI 3 alloys with partial substitution and fully converting the film to CH(NH 2) 2PbI 3 with a large excess of Pb 2+. We observe no evidence for phase segregation or bilayered films, indicating that conversion is uniform throughout the film. This facile technique provides a new way to control composition independently from the crystallization processes, allowing formation ofmore » the black phase of CH(NH 2) 2PbI 3 at much lower temperatures than those previously reported while also opening the door to new morphology-composition combinations. The surprising observation that the B-site metal cations are mobile may also provide insight into the nature of transient processes in these materials, suggesting that they may be involved in ionic conduction, and will be a critical consideration for long-term stability.« less
Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Luo, Chuannan; Sun, Min
2017-12-01
An in-tube solid-phase microextraction device was developed by packing poly(ionic liquids)-coated stainless-steel wires into a polyether ether ketone tube. An anion-exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)-coated stainless-steel wires were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. The extraction device was connected to high-performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03-20 μg/L, detection limits of 0.010-0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1-118.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Durst, Julien; Chatenet, Marian; Maillard, Frédéric
2012-10-05
Proton-exchange membrane fuel cells (PEMFCs) use carbon-supported nanoparticles based on platinum and its alloys to accelerate the rate of the sluggish oxygen-reduction reaction (ORR). The most common metals alloyed to Pt include Co, Ni and Cu, and are thermodynamically unstable in the PEMFC environment. Their dissolution yields the formation and redistribution of metal cations (M(y+)) within the membrane electrode assembly (MEA). Metal cations can also contaminate the MEA when metallic bipolar plates are used as current collectors. In each case, the electrical performance of the PEMFC severely decreases, an effect that is commonly attributed to the poisoning of the sulfonic acid groups of the perfluorosulfonated membrane (PEM) and the resulting decrease of the proton transport properties. However, the impact of metal cations on the kinetics of electrochemical reactions involving adsorption/desorption and bond-breaking processes remains poorly understood. In this paper, we use model electrodes to highlight the effect of metal cations on Pt/C nanoparticles coated or not with a perfluorosulfonated ionomer for the CO electrooxidation reaction and the oxygen reduction reaction. We show that metal cations negatively impact the ORR kinetics and the mass-transport resistance of molecular oxygen. However, the specific adsorption of sulfonate groups of the Nafion® ionomer locally modifies the double layer structure and increases the tolerance to metal cations, even in the presence of sulphate ions in the electrolyte. The survey is extended by using an ultramicroelectrode with cavity and a solid state cell (SSC) specifically developed for this study.
Synthesis and characterization of a new microporous cesium silicotitanate (SNL-B) molecular sieve
DOE Office of Scientific and Technical Information (OSTI.GOV)
NYMAN,MAY D.; GU,B.X.; WANG,L.M.
2000-03-20
Ongoing hydrothermal Cs-Ti-Si-O-H{sub 2}O phase investigations has produced several new ternary phases including a novel microporous Cs-silicotitanate molecular sieve, SNL-B with the approximate formula of Cs{sub 3}TiSi{sub 3}O{sub 9.5}{center_dot}3H{sub 2}O. SNL-B is only the second molecular sieve Cs-silicotitanate phase reported to have been synthesized by hydrothermal methods. Crystallites are very small (0.1 x 2 microns) with a blade-like morphology. SNL-B is confirmed to be a 3-dimensional molecular sieve by a variety of characterization techniques (N{sub 2} adsorption, ion exchange, water adsorption/desorption, solid state CP-MAS NMR). SNL-B is able to desorb and adsorb water from its pores while retaining its crystalmore » structure and exchanges Cs cations readily. Additional techniques were used to describe fundamental properties (powder X-ray diffraction, FTIR, {sup 29}Si and {sup 133}/Cs MAS NMR, DTA, SEM/EDS, ion selectivity, and radiation stability). The phase relationships of metastable SNL-B to other hydrothermally synthesized Cs-Ti-Si-O-H{sub 2}O phases are discussed, particularly its relationship to a Cs-silicotitanate analogue of pharmacosiderite, and a novel condensed phase, a polymorph of Cs{sub 2}TiSi{sub 6}O{sub 15}(SNL-A).« less
Needham, Shane R; Ye, Binying; Smith, J Richard; Korte, William D
2003-11-05
An HPLC/MS/MS method was validated for the low level analysis of pyridostigmine bromide (PB) from guinea pig plasma. An advantage of this strong-cation exchange HPLC/MS/MS method was the enhancement of the ESI-MS signal by providing good retention and good peak shape of PB with a mobile phase of 70% acetonitrile. In addition, the use of 70% acetonitrile in the mobile phase allowed the direct injection of the supernant from the protein precipitated extracted sample. The assay was linear from the range of 0.1 to 50 ng/ml using only 25 microl of sample. The precision and accuracy of the assay was better than 9.1 and 113%, respectively.
Huang, Chaonan; Li, Yun; Yang, Jiajia; Peng, Junyu; Jin, Jing; Dhanjai; Wang, Jincheng; Chen, Jiping
2017-10-27
The present work represents a simple and effective preparation of a novel mixed-mode anion-exchange (MAX) sorbent based on porous poly[2-(diethylamino)ethyl methacrylate-divinylbenzene] (poly(DEAEMA-DVB)) spherical particles synthesized by one-step Pickering emulsion polymerization. The poly(DEAEMA-DVB) particles were quaternized with 1,4-butanediol diglycidyl ether (BDDE) followed by triethylamine (TEA) via epoxy-amine reaction to offer strong anion exchange properties. The synthesized MAX sorbent was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, nitrogen adsorption-desorption measurements and elemental analysis. The MAX sorbent possessed regular spherical shape and narrow diameter distribution (15-35μm), a high IEC of 0.54meq/g, with carbon and nitrogen contents of 80.3% and 1.62%, respectively. Compared to poly(DEAEMA-DVB), the MAX sorbent exhibited decreased S BET (390.5 vs. 515.3m 2 g -1 ), pore volume (0.74 vs. 0.85cm 3 g -1 ) and pore size (16.8 vs. 17.3nm). Moreover, changes of N content for producing the MAX sorbent reveal a successful two-step quaternization, which can be highly related to such a high IEC. Finally, the MAX sorbent was successfully evaluated for selective isolation and purification of some selected acidic pharmaceuticals (ketoprofen, KEP; naproxen, NAP; and ibuprofen, IBP) from neutral (hydrocortisone, HYC), basic (carbamazepine, CAZ; amitriptyline, AMT) pharmaceuticals and other interferences in water samples using solid phase extraction (SPE). An efficient analytical method based on the MAX-based mixed-mode SPE coupled with HPLC-UV was developed for highly selective extraction and cleanup of acidic KEP, NAP and IBP in spiked wastewater samples. The developed method exhibited good sensitivity (0.009-0.085μgL -1 limit of detection), satisfactory recoveries (82.1%-105.5%) and repeatabilities (relative standard deviation < 7.9%, n=3). Copyright © 2017 Elsevier B.V. All rights reserved.
Rahman, Md Musfiqur; Abd El-Aty, A M; Kim, Sung-Woo; Shin, Sung Chul; Shin, Ho-Chul; Shim, Jae-Han
2017-01-01
In pesticide residue analysis, relatively low-sensitivity traditional detectors, such as UV, diode array, electron-capture, flame photometric, and nitrogen-phosphorus detectors, have been used following classical sample preparation (liquid-liquid extraction and open glass column cleanup); however, the extraction method is laborious, time-consuming, and requires large volumes of toxic organic solvents. A quick, easy, cheap, effective, rugged, and safe method was introduced in 2003 and coupled with selective and sensitive mass detectors to overcome the aforementioned drawbacks. Compared to traditional detectors, mass spectrometers are still far more expensive and not available in most modestly equipped laboratories, owing to maintenance and cost-related issues. Even available, traditional detectors are still being used for analysis of residues in agricultural commodities. It is widely known that the quick, easy, cheap, effective, rugged, and safe method is incompatible with conventional detectors owing to matrix complexity and low sensitivity. Therefore, modifications using column/cartridge-based solid-phase extraction instead of dispersive solid-phase extraction for cleanup have been applied in most cases to compensate and enable the adaptation of the extraction method to conventional detectors. In gas chromatography, the matrix enhancement effect of some analytes has been observed, which lowers the limit of detection and, therefore, enables gas chromatography to be compatible with the quick, easy, cheap, effective, rugged, and safe extraction method. For liquid chromatography with a UV detector, a combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction was found to reduce the matrix interference and increase the sensitivity. A suitable double-layer column/cartridge-based solid-phase extraction might be the perfect solution, instead of a time-consuming combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction. Therefore, replacing dispersive solid-phase extraction with column/cartridge-based solid-phase extraction in the cleanup step can make the quick, easy, cheap, effective, rugged, and safe extraction method compatible with traditional detectors for more sensitive, effective, and green analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hou, Xiudan; Liu, Shujuan; Zhou, Panpan; Li, Jin; Liu, Xia; Wang, Licheng; Guo, Yong
2016-07-22
A solid-phase extraction method for the efficient analysis of the excretion-dynamics of flavonoids in urine was established and described. In this work, in situ surface radical chain-transfer polymerization and in situ anion exchange were utilized to tune the extraction performance of poly(1-vinyl-3-hexylimidazolium bromide)-graphene oxide-grafted silica (poly(VHIm(+)Br(-))@GO@Sil). Graphene oxide (GO) was first coated onto the silica using a layer-by-layer fabrication method, and then the anion of poly(VHIm(+)Br(-))@GO@Sil was changed into hexafluorophosphate (PF6(-)) by in situ anion exchange. The interaction energies between two PILs and four flavonoids were calculated with the Gaussian09 suite of programs. A Box-Behnken design was used for the optimization of four greatly influential parameters after single-factor experiments to obtain more accurate and precise results. Coupled to high performance liquid chromatography, the poly(VHIm(+)PF6(-))@GO@Sil method showed acceptable extraction recoveries for the four flavonoids, with limits of detection in the range of 0.1-0.5μgL(-1), and wide linear ranges with correlation coefficients (R) ranging from 0.9935 to 0.9987. Under the optimum conditions, the proposed method was applied to analyze the urines collected from a healthy volunteer. The excretion amount-time profiles revealed that 4-15h was the main excretion time for the detected flavonoids. The results indicated that the newly developed method offered the advantages of being feasible, green and cost-effective, and could be successfully applied to the extraction and enrichment of flavonoids in human body systems allowing the study of the metabolic kinetics. Copyright © 2016. Published by Elsevier B.V.
Pittaway, P A; Melland, A R; Antille, D L; Marchuk, S
2018-05-01
The progressive decline of soil organic matter (SOM) threatens the sustainability of arable cropping worldwide. Residue removal and burning, destruction of protected microsites, and the acceleration of microbial decomposition are key factors. Desorption of SOM by ammonia-based fertilizers from organomineral complexes in soil may also play a role. A urea- and molasses-based liquid fertilizer formulation and a urea-based granular formulation were applied at recommended and district practice rates, respectively, to soil leaching columns, with unfertilized columns used as controls. The chemistry of leachate collected from the columns, filled with two sandy soils differing in recent cropping history, was monitored over eight successive wet-dry drainage events. The pH, electrical conductivity, and concentration and species of N in leachate was compared with the concentration and aromaticity of dissolved organic C (DOC) to indicate if salt solutions derived from the two fertilizers extracted SOM from clay mineral sites. Cation exchange capacity and exchangeable cations in the soil were monitored at the start and end of the trial. Fertilizer application increased DOC in leachate up to 40 times above the control, but reduced aromaticity (specific ultraviolet light absorbance at 253.7 nm). Dissolved organic C was linearly proportional to leachate NH-N concentration. Exchangeable Ca and Mg in soil from fertilized columns at the end of both trials were significantly lower than in unfertilized soil, indicating that ammonium salt solutions derived from the fertilizers extracted cations and variably charged organic matter from soil mineral exchange sites. Desorption of organic matter and divalent cations from organomineral sites by ammonia-based fertilizers may be implicated in soil acidification. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Effects of ammonium on uranium partitioning and kaolinite mineral dissolution.
Emerson, Hilary P; Di Pietro, Silvina; Katsenovich, Yelena; Szecsody, Jim
2017-02-01
Ammonia gas injection is a promising technique for the remediation of uranium within the vadose zone. It can be used to manipulate the pH of a system and cause co-precipitation processes that are expected to remove uranium from the aqueous phase and decrease leaching from the solid phase. The work presented in this paper explores the effects of ammonium and sodium hydroxide on the partitioning of uranium and dissolution of the kaolinite mineral in simplified synthetic groundwaters using equilibrium batch sorption and sequential extraction experiments. It shows that there is a significant increase in uranium removal in systems with divalent cations present in the aqueous phase but not in sodium chloride synthetic groundwaters. Further, the initial conditions of the aqueous phase do not affect the dissolution of kaolinite. However, the type of base treatment does have an effect on mineral dissolution. Published by Elsevier Ltd.
Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers
Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.
1972-01-01
A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264
Zhang, Yiping; Chen, Dawei; Hong, Zhuan
2015-01-01
In this study, we developed a self-assembly pipette tip solid-phase extraction (PTSPE) method using a high molecular weight polymer material (PAX) as the adsorbent for the determination of domoic acid (DA) in human urine samples by liquid chromatography high-resolution mass spectrometry (LC-HRMS) analysis. The PTSPE cartridge, assembled by packing 9.1 mg of PAX as sorbent into a 200 μL pipette tip, showed high adsorption capacity for DA owing to the strong cationic properties of PAX. Compared with conventional SPE, the PTSPE is simple and fast, and shows some advantages in the aspects of less solvent consumption, low cost, the absence of the evaporation step, and short time requirement. All the parameters influencing the extraction efficiency such as pH, the amount of sorbent, the number of aspirating/dispensing cycles, and the type and volume of eluent in PTSPE were carefully investigated and optimized. Under the optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) values of DA were 0.12 μg/L and 0.37 μg/L respectively. The extraction recoveries of DA from the urine samples spiked at four different concentrations were in a range from 88.4% to 102.5%. The intra- and inter-day precisions varied from 2.1% to 7.6% and from 2.6% to 12.7%, respectively. The accuracy ranged from −1.9% to −7.4%. PMID:26729165
Gao, Jun; Manard, Benjamin Thomas; Castro, Alonso; ...
2017-02-02
Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of ninemore » materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. Finally, the microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jun; Manard, Benjamin Thomas; Castro, Alonso
Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of ninemore » materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. Finally, the microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.« less
Zhou, Xi; Cui, Kunyan; Zeng, Feng; Li, Shoucong; Zeng, Zunxiang
2016-06-01
In the present study, solid-phase extraction cartridges including silica reversed-phase Isolute C18, polymeric reversed-phase Oasis HLB and mixed-mode anion-exchange Oasis MAX, and liquid-liquid extractions with ethyl acetate, n-hexane, dichloromethane and its mixtures were compared for clean-up of phthalate monoesters from vegetable samples. Best recoveries and minimised matrix effects were achieved using ethyl acetate/n-hexane liquid-liquid extraction for these target compounds. A simple and selective method, based on sample preparation by ultrasonic extraction and liquid-liquid extraction clean-up, for the determination of phthalate monoesters in vegetable samples by liquid chromatography/electrospray ionisation-tandem mass spectrometry was developed. The method detection limits for phthalate monoesters ranged from 0.013 to 0.120 ng g(-1). Good linearity (r(2)>0.991) between MQLs and 1000× MQLs was achieved. The intra- and inter-day relative standard deviation values were less than 11.8%. The method was successfully used to determine phthalate monoester metabolites in the vegetable samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shamsayei, Maryam; Yamini, Yadollah; Asiabi, Hamid; Safari, Meysam
2018-02-22
The authors describe a 3-component nanoparticle system composed of a silica-coated magnetite (Fe 3 O 4 ) core and a layered double (Cu-Cr) hydroxide nanoplatelet shell. The sorbent has a high anion exchange capacity for extraction anionic species. A simple online system, referred to as "on-line packed magnetic-in-tube solid phase microextraction" was designed. The nanoparticles were placed in a stainless steel cartridge via dry packing. The cartridge was then applied to the preconcentration acidic drugs including naproxen and indomethacin from urine and plasma. Extraction and desorption times, pH values of the sample solution and flow rates of sample solution and eluent were optimized. Analytes were then quantified by HPLC with UV detection. Under optimal conditions, the limits of detection range from 70 to 800 ng L -1 , with linear responses from 0.1-500 μg L -1 (water samples), 0.6-500 μg L -1 (spiked urine), and 0.9-500 μg L -1 (spiked plasma). The inter- and intra-assay precisions (RSDs, for n = 5) are in the range of 2.2-5.4%, 2.8-4.9%, and 2.0-5.2% at concentration levels of 5, 25 and 50 μg L -1 , respectively. The method was applied to the analysis of the drugs in spiked human urine and plasma, and good results were achieved. Graphical abstract Fe 3 O 4 @SiO 2 @CuCr-LDH magnetic nanoparticles were synthesized and packed in to a stainless steel column. The column was applied to solid phase microextraction of acidic drugs from biological samples.
Zou, Jianhua; Dai, Qiu; Wang, Jinhai; Liu, Xiong; Huo, Qun
2007-07-01
A solid phase modification method using anionic exchange resin as polymer support was developed for the synthesis of monofunctional gold nanoparticles. Based on a "catch and release" mechanism to control the number of functional groups attached to the nanoparticle surface, bifunctional thiol ligands with a carboxylic acid end group were first immobilized at a controlled density on anionic exchange resin through electrostatic interactions. Gold nanoparticles were then immobilized to the anionic exchange resin by a one-to-one place exchange reaction between resin-bound thiol ligands and butanethiol-protected gold nanoparticles in solution. After cleaving off from the resin under mild conditions, gold nanoparticles with a single carboxyl group attached to the surface were obtained as the major product. Experimental conditions such as the solvents used for ligand loading and solid phase place exchange reaction, and the loading density of the ligands, were found to play a critical role towards the successful synthesis of monofunctional nanoparticles. Overall, the noncovalent bond-based ligand immobilization technique reported here greatly simplified the process of solid phase monofunctionalization of nanoparticles compared to a previously reported covalent bond-based ligand immobilization technique.
Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors
Yu, Zhenhai; Wang, Lin; Wang, Luhong; ...
2014-11-24
Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram ofmore » the iron-based superconductor AFe 2As 2 (A = Ca, Sr, Eu, and Ba). As a result, the cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.« less
Gasper, J.D.; Aiken, G.R.; Ryan, J.N.
2007-01-01
Three experimental techniques - ion exchange, liquid-liquid extraction with competitive ligand exchange, and solid-phase extraction with competitive ligand exchange (CLE-SPE) - were evaluated as methods for determining conditional stability constants (K) for the binding of mercury (Hg2+) to dissolved organic matter (DOM). To determine the utility of a given method to measure stability constants at environmentally relevant experimental conditions, experimental results should meet three criteria: (1) the data must be experimentally valid, in that they were acquired under conditions that meet all the requirements of the experimental method, (2) the Hg:DOM ratio should be determined and it should fall within levels that are consistent with environmental conditions, and (3) the stability constants must fall within the detection window of the method. The ion exchange method was found to be limited by its detection window, which constrains the method to stability constants with log K values less than about 14. The liquid-liquid extraction method was found to be complicated by the ability of Hg-DOM complexes to partition into the organic phase. The CLE-SPE method was found to be the most suitable of these methods for the measurement of Hg-DOM stability constants. Stability constants for DOM isolates measured using the CLE-SPE method at environmentally relevant Hg:DOM ratios were log K = 25-30 (M-1). These values are consistent with the strong Hg2+ binding expected for reduced S-containing binding sites. ?? 2007 Elsevier Ltd. All rights reserved.
Interactions of organic contaminants with mineral-adsorbed surfactants
Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.
2003-01-01
Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.
Synthesis and Characterization of Novel Nonlinear Optical Materials
NASA Astrophysics Data System (ADS)
Liang, Cheryl Shuang
1992-01-01
Nonlinear optic materials are becoming increasingly important because of their many technological applications, such as second harmonic generation (SHG), optical switching, and waveguides for optical transmission. Currently, there is a demand for crystals transparent in the UV region, which would make the third and higher harmonic generations feasible. Compounds with the general stoichiometry ABCO _4 structural systems have shown to be promising candidates for frequency doubling into the UV region. The stuffed tridymite structure in which these ABCO_4 compounds crystallize is very tolerant to substitution, and over two hundred compounds have been synthesized up to date. While the presently available theories of optical nonlinearity have been applied to many inorganic solids, the threatened structure theory applied for ferroelectric properties can also be used to describe the structure/property relationship in the ABCO_4 structural family. Compounds synthesized for this study, ALiPO_4 (A = Sr, Ba, Pb) have shown that the SHG of these materials can be maximized by bringing each system close to its structural phase transition or by inducing stress in the pure phase structure. Studies have shown that the dielectric coefficients of KNbO_3 increase by more than tenfold with tantalum doping. This prompted the investigation of a mixed niobium/tantalum containing channelled tetrahedra/octahedra open framework, K_{2/3}Li _{1/3}Nb_ {rm 2-x}Ta_{ rm x}PO_8. These compounds are capable of ion exchange, where other cations are used to replace potassium. The cation-framework interaction mimics the guest-host relationship characteristic of many traditional zeolitic materials. This interaction also enables us to determine the role of the cation in framework polarizability, which can be measured by SHG intensities. Through ion exchange, many isostructural compounds can be made at low temperatures. A family of layered rubidium niobium/tantalum oxide compounds have been synthesized in an extension of the investigation of the above host-guest interaction. X -ray diffraction data have shown successful incorporation of n-butyl ammonium chloride followed by exchange of an organic salt which has very large SHG intensity, N-methylstilbazolium chloride, into the layers.
Jin, Liyu; Nairn, Kate M; Forsyth, Craig M; Seeber, Aaron J; MacFarlane, Douglas R; Howlett, Patrick C; Forsyth, Maria; Pringle, Jennifer M
2012-06-13
Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P(1,2,2,4)][PF(6)]). This material displays rich phase behavior and advantageous ionic conductivities, with three solid-solid phase transitions and a highly "plastic" and conductive final solid phase in which the conductivity reaches 10(-3) S cm(-1). The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the (1)H, (19)F, and (31)P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P(1,2,2,4)][PF(6)]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.
Anderson, M A; Wachs, T; Henion, J D
1997-02-01
A method based on ionspray liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed for the determination of reserpine in equine plasma. A comparison was made of the isolation of reserpine from plasma by liquid-liquid extraction and by solid-phase extraction. A structural analog, rescinnamine, was used as the internal standard. The reconstituted extracts were analyzed by ionspray LC/MS/MS in the selected reaction monitoring (SRM) mode. The calibration graph for reserpine extracted from equine plasma obtained using liquid-liquid extraction was linear from 10 to 5000 pg ml-1 and that using solid-phase extraction from 100 to 5000 pg ml-1. The lower level of quantitation (LLQ) using liquid-liquid and solid-phase extraction was 50 and 200 pg ml-1, respectively. The lower level of detection for reserpine by LC/MS/MS was 10 pg ml-1. The intra-assay accuracy did not exceed 13% for liquid-liquid and 12% for solid-phase extraction. The recoveries for the LLQ were 68% for liquid-liquid and 58% for solid-phase extraction.
Role of bond adaptability in the passivation of colloidal quantum dot solids.
Thon, Susanna M; Ip, Alexander H; Voznyy, Oleksandr; Levina, Larissa; Kemp, Kyle W; Carey, Graham H; Masala, Silvia; Sargent, Edward H
2013-09-24
Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum CQD device performance.
Piatak, N.M.; Seal, R.R.; Sanzolone, R.F.; Lamothe, P.J.; Brown, Z.A.; Adams, M.
2007-01-01
We report results from sequential extraction experiments and the quantitative mineralogy for samples of stream sediments and mine wastes collected from metal mines. Samples were from the Elizabeth, Ely Copper, and Pike Hill Copper mines in Vermont, the Callahan Mine in Maine, and the Martha Mine in New Zealand. The extraction technique targeted the following operationally defined fractions and solid-phase forms: (1) soluble, adsorbed, and exchangeable fractions; (2) carbonates; (3) organic material; (4) amorphous iron- and aluminum-hydroxides and crystalline manganese-oxides; (5) crystalline iron-oxides; (6) sulfides and selenides; and (7) residual material. For most elements, the sum of an element from all extractions steps correlated well with the original unleached concentration. Also, the quantitative mineralogy of the original material compared to that of the residues from two extraction steps gave insight into the effectiveness of reagents at dissolving targeted phases. The data are presented here with minimal interpretation or discussion and further analyses and interpretation will be presented elsewhere.
Poirier Larabie, S; Houde, M; Gagnon, C
2017-11-03
Aquatic systems near major urban centers are constantly contaminated with effluent from wastewater treatment plants. Pharmaceuticals are part of the contamination and several classes of drugs have been detected in surface waters in the last decade. To better understand the impact of those pharmaceuticals in ecosystems, the exposure to aquatic species needs to be investigated. This study presents a new simple and rugged quantitative method for the determination of several classes of drugs using 100μL of plasma from fish environmentally exposed to a major but highly diluted urban effluent. Six common drugs (i.e., diclofenac, ibuprofen, naproxen, salbutamol, sulfamethoxazole and trimethoprim) and one major metabolite (2-hydroxy-ibuprofen), present in significant amount in impacted waterways have been selected for the development and validation of the method. First, all drugs were extracted using cation exchange solid phase extraction (SPE) and eluted with two solvent mixtures. Then, the extracts were analyzed using a reverse-phase analytical column Waters ® CORTECS C 18 + (150×2.1mm, 2.7μm) within 14min. MS/MS was performed with an electrospray (ESI) interface in positive ion mode, with multiple reaction monitoring (MRM) experiment acquiring two product ions per drugs. Quantification has been made with standard curves for each analyte using isotopically labeled internal standards. This method has high sensitivity with limits of quantification of 1ngmL -1 for each drug, except for ibuprofen and its metabolite 2-hydroxy-ibuprofen at 2ngmL -1 . The precision of the method was below 11%, the accuracy between 94 and 105% and overall recovery between 94 and 111% for all drugs, with high selectivity. Application of the method to plasma samples from wild northern pike inhabiting the St. Lawrence River collected over a three-year period showed the presence of naproxen, diclofenac, trimethoprim and salbutamol at very low concentrations (around 1ngmL -1 ). Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Yang, Yanqin; Chu, Guohai; Zhou, Guojun; Jiang, Jian; Yuan, Kailong; Pan, Yuanjiang; Song, Zhiyu; Li, Zuguang; Xia, Qian; Lu, Xinbo; Xiao, Weiqiang
2016-03-01
An ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid-phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method was compared with the microwave-assisted extraction coupled to headspace solid-phase microextraction and headspace solid-phase microextraction methods. More types of volatile components were obtained by using the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction technique was a simple, time-saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Stolarczyk, Mateusz
2016-04-01
Wetland ecosystems, including raised peat bogs are characterized by a specific water conditions and unique vegetation, which makes peatland highly important habitats due to protection of biodiversity. Transformation of peat bog areas is particularly related to changes in the environment e.g. according to reclamation works. Drainage of peatlands is directly associated to the decrease of groundwater levels and lead to a number of changes in the chemical and physical properties of peat material, included contents of exchangeable cations in the surface layers of peat soils in the decession phase of peat development and release above compounds from the soil to ground or surface waters. The aim of the research was to determine the impact of extended drainage works on chemical composition of sorption complex of raised peat bog organic soils and identification the potential environmental effects of alkaline cations leaching to the surface waters. Research was carried out on the peat bogs located in the Upper San valley in Polish Bieszczady Mts. (Eastern Carpathians). Soil samples used in this study were collected from 3 soil profiles in 10 or 20 cm intervals to the approximately 130 cm depth. Laboratory analyses included determination of basic properties of organic material such as the degree of peat decomposition, ash content, soil pH and carbon, hydrogen, nitrogen concentrations. Additionally the amount of alkaline cations, exchangeable and extractable acidity was determined. Furthermore, the degree of saturation of the sorption complex with alkaline cations (V) and cation exchange capacity (CEC) are calculated. In order to evaluate the impact of the examined peat bog to the environment, also water samples were collected and ions composition was measured. The obtained results show that studied organic soils are oligotrophic and strongly acidic. In the case of organic material related to decession phase of peat development, as a result of the lengthy drainage works, increased pH values, changes in the morphology of the peat, high nitrogen contents and lower values of C/N ratios are noticed. The increased contents of calcium, occurred in soil layers comprised of moorsh forming process are probably the effect of peat mineralization process or changes in the chemistry and fluctuations of groundwater levels. As a result of above factors, increased calcium and magnesium concentrations in surface waters in the immediate vicinity of investigated bogs are observed.
Charlton, Andrew J A; Stuckey, Vicki; Sykes, Mark D
2009-06-01
An analytical method was developed to determine the phenoxyacid herbicides 2,4-D, MCPA and mecoprop in kidney tissue from animals where poisoning is suspected. Samples were Soxhlet extracted using diethyl ether and the extracts cleaned-up using anion exchange solid phase extraction cartridges. Analysis was performed using liquid chromatography with negative-ion electrospray tandem mass spectrometry (LC-MS/MS). The method was evaluated by analysing control kidney samples fortified at 1 and 5 mg/kg. Mean recoveries ranged from 82 to 93% with relative standard deviations from 3.2 to 19%. The limit of detection was estimated to be 0.02 mg/kg.
Separations by supported liquid membrane cascades
Danesi, P.R.
1983-09-01
The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solution and the supported liquid membranes are arranged to provide a continuous process.
NASA Astrophysics Data System (ADS)
Bjerg, Poul L.; Ammentorp, Hans C.; Christensen, Thomas H.
1993-04-01
A large-scale and long-term field experiment on cation exchange in a sandy aquifer has been modelled by a three-dimensional geochemical transport model. The geochemical model includes cation-exchange processes using a Gaines-Thomas expression, the closed carbonate system and the effects of ionic strength. Information on geology, hydrogeology and the transient conservative solute transport behaviour was obtained from a dispersion study in the same aquifer. The geochemical input parameters were carefully examined. CEC and selectivity coefficients were determined on the actual aquifer material by batch experiments and by the composition of the cations on the exchange complex. Potassium showed a non-ideal exchange behaviour with KCa selectivity coefficients indicating dependency on equivalent fraction and K + concentration in the aqueous phase. The model simulations over a distance of 35 m and a period of 250 days described accurately the observed attenuation of Na and the expelled amounts of Ca and Mg. Also, model predictions of plateau zones, formed by interaction with the background groundwater, in general agreed satisfactorily with the observations. Transport of K was simulated over a period of 800 days due to a substantially attenuation in the aquifer. The observed and the predicted breakthrough curves showed a reasonable accordance taking the duration of the experiment into account. However, some discrepancies were observed probably caused by the revealed non-ideal exchange behaviour of K +.
Illitization of Potassium, Cesium, and Ammonium Exchanged Smectite
NASA Astrophysics Data System (ADS)
Mills, M. M.; Wang, Y.; Payne, C.; Sanchez, A. C.; Boisvert, L.; Matteo, E. N.
2017-12-01
Bentonite clay is a primary choice for engineered barrier systems within geologic repositories for disposal of radioactive wastes due to its low permeability at saturated states, warranting diffusion as the dominant transport mechanism, and large swelling pressures that promote sealing. In order to predict how well the barrier will function over time at repository relevant temperatures, it is important to understand thermal alteration effects on montmorillonite, better known as smectite, a main constituent of bentonite. One type of thermal alteration is the conversion to illite, when exposed to elevated temperatures and a sufficient amount of potassium ions, thereby weakening barrier functions. To facilitate the conversion of smectite to illite and examine the influence of interlayer cations, illitization experiments on cation exchanged smectite were performed within hydrothermal reaction vessels over one week timescales. The <2um fraction of a Na-rich smectite clay was first exchanged with 1M Cs, K, and NH4 salt solutions and further exposed to hydrous pyrolysis using a 1M KCl solution with various solid to liquid ratios at 200°C. Multiple analysis techniques were used to characterize the altered clay and identify extent of conversion, such as XRD, cation exchange capacity, and morphology changes by SEM. The pore-water chemistry was also analyzed by ICP-OES to detect any dissolved products and silica content. Results suggest the conversion rate is relatively fast, occurring within days, and is dependent on not only the amount of K, but also dissolved silica concentration related to total solid in solution. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-7856A
Time-Resolved Structural Analysis of Cation Exchange Reactions in Birnessite Using Synchrotron XRD
NASA Astrophysics Data System (ADS)
Lopano, C. L.; Heaney, P. J.; Post, J. E.; Hanson, J. C.; Lee, Y.; Komarneni, S.
2002-12-01
Birnessite ((Na,Ca,Mn2+) Mn7O142.8H2O) is a layered Mn-oxide with a 7.2Å spacing between the Mn octahedral sheets. Since birnessite is an abundant phase in soils, desert varnishes, and ocean nodules, it plays a significant role in soil and groundwater chemistry. Experiments by Golden et al. (1986,1987) have demonstrated that Na-buserite (hydrated birnessite) readily exchanges Na+ for a variety of other cations, including K+, Mg2+, Ca2+, Ba2+, Ni2+, and Sr2+. In light of its high cation exchange capacity, birnessite is industrially important for ion and molecular sieves and cathodic materials. In addition, birnessite serves as a precursor in the synthesis of todorokite, which has a 3x3 tunnel structure and is used as an octahedral sieve. We monitored cation-exchange reactions in birnessite by time-resolved X-ray powder diffraction with a simple flow-through cell at the National Synchrotron Light Source. The flow-through cell was developed by Lee and Parise at SUNY-Stony Brook, and this work represents its first application to Mn oxides. A series of synthetic Na-birnessite samples were saturated with chloride solutions containing dissolved K+, Mg2+, and Ba2+, ranging from 0.1M to 0.001M. Powder X-ray diffraction patterns were collected every ~ 3 minutes. The synchrotron experiments revealed that complete cation exchange occurs within three hours, and significant modifications of the arrangements of interlayer cations and water molecules accompany the exchange. Specifically, the replacement of Na by Mg resulted in the continuous growth of a discrete buserite-like phase with a 10Å layer spacing, while replacement of Na by K and Ba retained the 7Å spacing. K replacement of Na resulted in gradually decreasing peak intensity and peak merging. The Ba exchange yielded an abrupt decrease in diffraction intensities followed by a more gradual lattice change over the last 2 hours. Rietveld analysis led to the first determination of the structure of Ba-birnessite in space group C-1. With a final chi-squared parameter of 1.540, the refined lattice parameters were a = 5.178(2)Å, b = 2.850(3)Å, c = 7.320(5)Å, α = 89.512(1)°, β = 102.989(6)°, and γ = 89.893(6)°. However, the lattice parameters of the fully exchanged Ba-birnessite indicate that Ba substitution causes the unit cell to be more monoclinic.
Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; ...
2015-11-16
The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to comparemore » the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm –1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba 2+ and Mg 2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs + and Na +), which have relatively small hydration enthalpies.« less
Wang, Jiang; Pavurala, Naresh; Xu, Xiaoming; Krishnaiah, Yellela S R; Faustino, Patrick J
2018-05-04
To evaluate the bioavailability and pharmacokinetic profiles of two novel galantamine formulations as medical countermeasure products, an ultra-performance liquid chromatography-single quadrupole mass spectrometry (UPLC-MS) method was developed and validated for quantifying galantamine in guinea pig plasma using solid-phase extraction with a mixed mode strong cation exchange reversed-phase cartridge. Chromatographic separation was achieved on a Waters Acquity UPLC BEH C 18 column maintained at 40°C. The mobile phases were solution A, acetonitrile-water, 5:95 (v/v) and solution B, acetonitrile-water 90:10 (v/v), both containing 2 mM ammonium formate and 0.2% formic acid. The mobile phase was delivered utilizing a 3 min gradient program start with 95%A-5%B at a flow rate of 0.6 mL/min. The analyte and internal standard, galantamine-d3, were detected by selected ion monitoring mode on a Waters 3100 single quadrupole mass spectrometer with positive electrospray ionization. The method was validated according to the US Food and Drug Administration bioanalytical guidance. The method was selective and was linear over the analytical range of 2-2000 ng/mL. Accuracy and precision were acceptable with intra- and inter-day accuracies between 96.8 and 101% and precisions (RSD) <4.88%. The method was successfully implemented to measure galantamine plasma levels in a series of pre-clinical bioavailability studies for the evaluation of novel galantamine formulations. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Paumier, S; Pantet, A; Monnet, P
2008-09-01
Smectites are swelling clay materials with pronounced colloidal properties that are widely used in industry. These properties originate in the electrokinetic properties of the smectite layers and their linkage capacities. Thin layers may be dispersed or aggregated according to many parameters, such as concentration, particle size and morphology, exchangeable cation nature and chemical environment (pH, ionic strength). The literature usually provides general rules, like the sodium dispersion contains a lot of small units whereas the calcium dispersion contains a few large units. A volume of water molecules bound to the clay surface is considered as the immobile water phase that behaves like the solid phase obstructing the flow. The water immobilized around layers and trapped inside aggregates cannot participate to the flow. In this study, we evaluated the volume occupied by calcium and sodium units inside the dispersion containing the immobile water phase. First, the smectite was cautiously extracted from a raw bentonite and its physicochemical properties were determined. A large quantity of extracted and saturated smectite (Na-smectite and Ca-smectite) was obtained. Second, the unit size and a shape factor for each sample were evaluated using granulometry and scanning transmission electron microscopy on wet samples (Wet STEM) and some flow curves. Na-smectite dispersions contain 0.13 microm(2) surface units with a shape factor of 50. Ca-smectite dispersions contain 0.32 microm(2) surface units with a shape factor of 3.3. Finally, rheometry allowed us to evaluate the unit occupancy using an adaptation of the Krieger-Dougherty law. We used shape factors and evaluated the concentration from which the entire immobile volume was connected (6.4% for Na-smectite and 11.9% for Ca-smectite). This study explains the evolution of flow properties with increasing concentrations by the evolution of layer interactions at the microscopic scale for homoionic smectite particles in diluted dispersions.
Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill
2003-05-16
The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.
NASA Astrophysics Data System (ADS)
Biswas, Ranjit Kumar; Karmakar, Aneek Krishna; Mottakin, Mohammad
2017-10-01
The liquid-liquid extraction of V(V) from a nitrate medium by tri- n-Octylamine [( n-C8H17)3N; abbreviated as TOA] dissolved in distilled colorless kerosene has been investigated as a function of various experimental parameters. The equilibration time is less than 10 min. It is observed that the extraction ratio increases with increasing [V(V)] in the aqueous phase, which is possibly a result of the formation of V10O26(OH) 2 4- (via reaction: 10 VO2 + + 8 H2O → V10O26(OH) 2 4- + 14 H+) with increasing concentration in the aqueous phase. The nature of the species extracted into the organic phase depends on the existing aqueous species prevailing at a certain pH. At lower pH values, the extraction of VO2 + occurs via cation (H+) exchange of (C8H17)3NHNO3. On the other hand, at higher pH values, anionic V(V) species such as V10O26(OH) 2 4- , V10O27(OH)5-, V10O28 6- etc. are extracted by solvated ion-pair formation mechanism. The TOA concentration dependence varies from 2 at a lower pH region ( 2.3) to 1 at a higher pH region ( 5.7). The extraction is also found to be favored by a rise of nitrate concentration in the aqueous phase. Temperature has a pronounced effect with Δ H < -58 kJ/mol. Kerosene is demonstrated as the best diluent for this system. Increased organic to aqueous phase volume ratio (O/A) enhances extraction ratio. The extracted species can be stripped by 0.75 mol/L NH4OH solution to the extent of 72% in a single stage. But stage-wise stripping is not so effective. It is observed a very high loading, of the order of 2.3 mol V(V) per mol TOA.
Ren, Xiulian; Wei, Qifeng; Chen, Yongxing; Guo, Jingjing; Wei, Sijie; Wang, Xiaofei
2015-12-15
The pollution risk of dilute acidic sulfate effluent (DASE),which is discharged from titanium dioxide factories heavily every year, has sparked the recycling of sulfuric acid, iron and water. In this study, a new green recovery process for the DASE is proposed based on coupling solventextraction-oxidation-hydrolysis. Compared to the conventional ways, this innovative method allows the effective extraction of sulfuric acid and the precipitation of FexOy·nH2O in onestep without adding inorganic neutralizer or precipitant. Trioctylamine (TOA) in kerosene (20-50%) was used as an organic phase for solvent extraction. The hydrolytic productions and the raffinate purified by a cation exchange were evaluated using XRD and ICP-OES, respectively. The initial pH of 0.63 and Fe(II) concentration of 0.1 mol/L in the DASE, the volume ratio of organic toaqueous phase (O/A) of 3/1, and reaction temperature of 25 °C were determined as the optimal conditions. Under this conditions, Fe(II) was transformed as yellow precipitation which was characterized as α-FeOOH, and pH of raffinate was in the range of 3.6-3.8. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Hong-Chang; Yu, Xue-jun; Yang, Wen-chao; Peng, Jin-feng; Xu, Ting; Yin, Da-Qiang; Hu, Xia-lin
2011-10-15
A novel analytical method employing MCX (mixed-mode cationic exchange) based solid phase extraction (SPE) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed to detect 31 endocrine-disrupting compounds (EDCs) in surface water samples simultaneously. The target EDCs belong to five classes, including seven estrogens, eight androgens, six progesterones, five adrenocortical hormones and five industrial compounds. In order to simultaneously concentrate the target EDCs and eliminate matrix interferences in the water samples, MCX SPE cartridges were employed for SPE, and then followed by a simple and highly efficient three-step sequential elution procedure. Two electrospray ionization (ESI) detection modes, positive (ESI+) and (ESI-), were optimized for HPLC-MS/MS analysis to obtain the highest sensitivity for all the EDCs. The limits of detection (LODs) were 0.02-1.9 ng L(-1), which are lower than or comparable to these reported in references. Wide linear ranges (LOD-100 ng L(-1) for ESI+ mode, and LOD-200 ng L(-1) for ESI- mode) were obtained with determination coefficients (R(2)) higher than 0.99 for all the compounds. With five internal standards, good recoveries (84.4-103.0%) of all the target compounds were obtained in selected surface water samples. The developed method was successfully applied to investigate the EDCs occurrence in the surface water of Shanghai by analyzing surface water samples from 11 sites. The results showed that nearly all the target compounds (30 in 31) were present in the surface water samples of Shanghai, of which three industrial compounds (4-t-OP, BPA, and BPF) showed the highest concentrations (median concentrations were 11.88-23.50 ng L(-1)), suggesting that industrial compounds were the dominating EDCs in the surface water of Shanghai, and much more attention should be paid on these compounds. Our present research demonstrated that SPE with MCX cartridges combined with HPLC-MS/MS was convenient, efficient and reliable for multiclass analysis of EDCs in surface water. Copyright © 2011 Elsevier B.V. All rights reserved.
Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol
2015-05-01
A relatively rapid, accurate and precise solid phase extraction method is presented for the determination of cadmium(II) and lead(II) in various food and water samples. Quantitation is carried out by flame atomic absorption spectrometry (FAAS). The method is based on the retention of the trace metal ions on Dowex Marathon C, a strong acid cation exchange resin. Some important parameters affecting the analytical performance of the method such as pH, flow rate and volume of the sample solution; type, concentration, volume, flow rate of the eluent; and matrix effects on the retention of the metal ions were investigated. Common coexisting ions did not interfere on the separation and determination of the analytes. The detection limits (3 σb) for Cd(II) and Pb(II) were found as 0.13 and 0.18 μg L(-1), respectively, while the limit of quantification values (10 σb) were computed as 0.43 and 0.60 μg L(-1) for the same sequence of the analytes. The precision (as relative standard deviation was lower than 4% at 5 μg L(-1) Cd(II) and 10 μg L(-1) Pb(II) levels, and the preconcentration factor was found to be 250. The accuracy of the proposed procedure was verified by analysing the certified reference materials, SPS-WW2 Batch 108 wastewater level 2 and INCT-TL-1 tea leaves, with the satisfactory results. In addition, for the accuracy of the method the recovery studies (⩾ 95%) were carried out. The method was applied to the determination of the analytes in the various natural waters (lake water, tap water, waste water with boric acid, waste water with H2SO4) and food samples (pomegranate flower, organic pear, radish leaf, lamb meat, etc.), and good results were obtained. While the food samples almost do not contain cadmium, they have included lead at low levels of 0.13-1.12 μg g(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.
Song, Yang; Swain, Greg M
2007-06-12
An accurate method for total inorganic arsenic determination in real water samples was developed using differential pulse anodic stripping voltammetry (DPASV) and a Au-coated boron-doped diamond thin-film electrode. Keys to the method are the use of a conducting diamond platform and solid phase extraction for sample preparation. In the method, the As(III) present in the sample is first detected by DPASV. The As(V) present is then reduced to As(III) by reaction with Na2SO3 and this is followed by a second detection of As(III) by DPASV. Interfering metal ions (e.g., Cu(II)) that cause decreased electrode response sensitivity for arsenic in real samples are removed by solid phase extraction as part of the sample preparation. For example, Cu(II) caused a 30% decrease in the As stripping peak current at a solution concentration ratio of 3:1 (Cu(II)/As(III)). This loss was mitigated by passage of the solution through a Chelex 100 cation exchange resin. After passage, only a 5% As stripping current response loss was seen. The effect of organic matter on the Au-coated diamond electrode response for As(III) was also evaluated. Humic acid at a 5 ppm concentration caused only a 9% decrease in the As stripping peak charge for Au-coated diamond. By comparison, a 50% response decrease was observed for Au foil. Clearly, the chemical properties of the diamond surface in the vicinity of the metal deposits inhibit molecular adsorption on at least some of the Au surface. The method provided reproducible and accurate results for total inorganic arsenic in two contaminated water samples provided by the U.S. Bureau of Reclamation. The total inorganic As concentration in the two samples, quantified by the standard addition method, was 23.2+/-2.9 ppb for UV plant influent water and 16.4+/-0.9 ppb for Well 119 water (n=4). These values differed from the specified concentrations by less than 4%.
Phase diagram of two-dimensional hard ellipses.
Bautista-Carbajal, Gustavo; Odriozola, Gerardo
2014-05-28
We report the phase diagram of two-dimensional hard ellipses as obtained from replica exchange Monte Carlo simulations. The replica exchange is implemented by expanding the isobaric ensemble in pressure. The phase diagram shows four regions: isotropic, nematic, plastic, and solid (letting aside the hexatic phase at the isotropic-plastic two-step transition [E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011)]). At low anisotropies, the isotropic fluid turns into a plastic phase which in turn yields a solid for increasing pressure (area fraction). Intermediate anisotropies lead to a single first order transition (isotropic-solid). Finally, large anisotropies yield an isotropic-nematic transition at low pressures and a high-pressure nematic-solid transition. We obtain continuous isotropic-nematic transitions. For the transitions involving quasi-long-range positional ordering, i.e., isotropic-plastic, isotropic-solid, and nematic-solid, we observe bimodal probability density functions. This supports first order transition scenarios.
Contribution of calcium oxalate to soil-exchangeable calcium
Dauer, Jenny M.; Perakis, Steven S.
2013-01-01
Acid deposition and repeated biomass harvest have decreased soil calcium (Ca) availability in many temperate forests worldwide, yet existing methods for assessing available soil Ca do not fully characterize soil Ca forms. To account for discrepancies in ecosystem Ca budgets, it has been hypothesized that the highly insoluble biomineral Ca oxalate might represent an additional soil Ca pool that is not detected in standard measures of soil-exchangeable Ca. We asked whether several standard method extractants for soil-exchangeable Ca could also access Ca held in Ca oxalate crystals using spike recovery tests in both pure solutions and soil extractions. In solutions of the extractants ammonium chloride, ammonium acetate, and barium chloride, we observed 2% to 104% dissolution of Ca oxalate crystals, with dissolution increasing with both solution molarity and ionic potential of cation extractant. In spike recovery tests using a low-Ca soil, we estimate that 1 M ammonium acetate extraction dissolved sufficient Ca oxalate to contribute an additional 52% to standard measurements of soil-exchangeable Ca. However, in a high-Ca soil, the amount of Ca oxalate spike that would dissolve in 1 M ammonium acetate extraction was difficult to detect against the large pool of exchangeable Ca. We conclude that Ca oxalate can contribute substantially to standard estimates of soil-exchangeable Ca in acid forest soils with low soil-exchangeable Ca. Consequently, measures of exchangeable Ca are unlikely to fully resolve discrepancies in ecosystem Ca mass balance unless the contribution of Ca oxalate to exchangeable Ca is also assessed.
Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite
Boyd, Stephen A.; Mortland, Max M.; Chiou, Cary T.
1988-01-01
When hexadedyltrimethylammonium (HDTMA) ion is exchanged for metal cations like calcium in smectite, the sorptive properties of the clay are greatly modified. The resultant HDTMA-smectite complex behaves as a dual sorbent, in the sorption of organic compounds, in which the mineral fraction functions as a solid adsorbent and the organic (HDTMA) phase as a partition medium. Capacities of mineral adsorption and partition uptake by HDTMA in the HDTMA-smectites are illustrated by sorption of benzene, trichloroethene (TCE), and water as vapors on the dry sample and by sorption of benzene and TCE from water. The exchanged HDTMA in clay is found to be a much more powerful partition medium than ordinary soil organic matter in the uptake of benzene and TCE. Based on this finding, HDTMA-smectite appears to be an effective sorbent for removing organic contaminants from water. It is suggested that such sorptive organo-clay complexes could be used to enhance the containment capabilities of clay landfill liners and bentonite slurry walls.
A new route of oxygen isotope exchange in the solid phase: demonstration in CuSO4.5H2O.
Danon, Albert; Saig, Avraham; Finkelstein, Yacov; Koresh, Jacob E
2005-11-10
Temperature-programmed desorption mass spectrometry (TPD-MS) measurements on [(18)O]water-enriched copper sulfate pentahydrate (CuSO(4).5H(2)(18)O) reveal an unambiguous occurrence of efficient oxygen isotope exchange between the water of crystallization and the sulfate in its CuSO(4) solid phase. To the best of our knowledge, the occurrence of such an exchange was never observed in a solid phase. The exchange process was observed during the stepwise dehydration (50-300 degrees C) of the compound. Specifically, the exchange promptly occurs somewhere between 160 and 250 degrees C; however, the exact temperature could not be resolved conclusively. It is shown that only the fifth, sulfate-associated, anionic H(2)O molecule participates in the exchange process and that the exchange seems to occur in a preferable fashion with, at the most, one oxygen atom in SO(4). Such an exchange, occurring below 250 degrees C, questions the common conviction of unfeasible oxygen exchange under geothermic conditions. This new oxygen exchange phenomenon is not exclusive to copper sulfate but is unambiguously observed also in other sulfate- and nitrate-containing minerals.
Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang
2008-11-15
In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.
Kabytaev, Kuanysh; Durairaj, Anita; Shin, Dmitriy; Rohlfing, Curt L; Connolly, Shawn; Little, Randie R; Stoyanov, Alexander V
2016-02-01
A liquid chromatography with mass spectrometry on-line platform that includes the orthogonal techniques of ion exchange and reversed phase chromatography is applied for C-peptide analysis. Additional improvement is achieved by the subsequent application of cation- and anion-exchange purification steps that allow for isolating components that have their isoelectric points in a narrow pH range before final reversed-phase mass spectrometry analysis. The utility of this approach for isolating fractions in the desired "pI window" for profiling complex mixtures is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural and ferroelectric phase evolution in [KNbO3]1-x[BaNi1/2Nb1/2O3 -δ] x (x =0 ,0.1 )
NASA Astrophysics Data System (ADS)
Hawley, Christopher J.; Wu, Liyan; Xiao, Geoffrey; Grinberg, Ilya; Rappe, Andrew M.; Davies, Peter K.; Spanier, Jonathan E.
2017-08-01
The phase transition evolution for [KNbO3]1-x[BaNi1/2Nb1/2O3 -δ] x(x =0 ,0.1 ) is determined via complementary dielectric permittivity and Raman-scattering measurements. Raman scattering by optical phonons over the range of 100-1000 cm-1 for 83 K
Sharma, Satish K; Juyal, Shashibala; Rao, V K; Yadav, V K; Dixit, A K
2014-07-01
A study was conducted to standardize the technology for the removal of amino acids (one of the browning reaction substrates) from sweet orange cv. Malta Common juice to reduce colour and quality deterioration in single strength juice and during subsequent concentration. Juice of sweet orange (Citrus sinensis) cv. Malta Common fruits was extracted by screw type juice extractor, preserved in 500 ppm SO2 and clarified by using "Pectinase CCM" enzyme (0.2% for 2 h at 50 ± 2 °C). For removal of amino acids juice was passed under gravity through a glass column packed with an acidic cation exchange resin (CER), Dowex-50 W and quantity to be treated in one lot was standardized. The CER treated and untreated juices were concentrated to 15 and 30°Brix in a rotary vacuum evaporator. Results indicate that 121 ml of orange juice when passed through a glass column (5 cm internal diameter) packed with cation exchange resin (Dowex-50 W) upto a height of 8 cm, could remove about 98.4% of the amino acids with minimum losses in other juice constituents. With cation exchange resin treatment, the non-enzymatic browning and colour deterioration of orange juice semi-concentrates was reduced to about 3 folds in comparison to untreated counterparts. The retention of vitamin C and sugars was also better in semi-concentrates prepared from cation exchange resin treated juice. Thus, cation exchange resin treatment of orange juice prior to concentration and storage is highly beneficial in reduction of non-enzymatic browning, colour deterioration and retention of nutritional, sensory quality of product during preparation and storage.
Backe, Will J; Day, Thomas C; Field, Jennifer A
2013-05-21
A new analytical method was developed to quantify 26 newly-identified and 21 legacy (e.g. perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and fluorotelomer sulfonates) per and polyfluorinated alkyl substances (PFAS) in groundwater and aqueous film forming foam (AFFF) formulations. Prior to analysis, AFFF formulations were diluted into methanol and PFAS in groundwater were micro liquid-liquid extracted. Methanolic dilutions of AFFF formulations and groundwater extracts were analyzed by large-volume injection (900 μL) high-performance liquid chromatography tandem mass spectrometry. Orthogonal chromatography was performed using cation exchange (silica) and anion exchange (propylamine) guard columns connected in series to a reverse-phase (C18) analytical column. Method detection limits for PFAS in groundwater ranged from 0.71 ng/L to 67 ng/L, and whole-method accuracy ranged from 96% to 106% for analytes for which matched authentic analytical standards were available. For analytes without authentic analytical standards, whole-method accuracy ranged from 78 % to 144 %, and whole-method precision was less than 15 % relative standard deviation for all analytes. A demonstration of the method on groundwater samples from five military bases revealed eight of the 26 newly-identified PFAS present at concentrations up to 6900 ng/L. The newly-identified PFAS represent a minor fraction of the fluorinated chemicals in groundwater relative to legacy PFAS. The profiles of PFAS in groundwater differ from those found in fluorotelomer- and electrofluorination-based AFFF formulations, which potentially indicates environmental transformation of PFAS.
Clark, D.W.
1995-01-01
A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.
NASA Astrophysics Data System (ADS)
Makrlík, Emanuel; Böhm, Stanislav; Kvíčala, Jaroslav; Vaňura, Petr; Ruzza, Paolo
2018-03-01
On the basis of extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Ag+(aq) + 1.Na+(nb) ⇄ 1.Ag+ (nb) + Na+(aq) occurring in the two-phase water - nitrobenzene system (1 = [Gly6]-antamanide; aq = aqueous phase, nb = nitrobenzene phase) was determined as log Kex (Ag+,1·Na+) = 1.5 ± 0.1. Further, the stability constant of the 1·Ag+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (1·Ag+) = 4.5 ± 0.2. Finally, by using quantum chemical DFT calculations, the most probable structure of the cationic complex species 1·Ag+ was derived. In the resulting complex, the "central" cation Ag+ is coordinated by four noncovalent interactions to the corresponding four carbonyl oxygen atoms of the parent ligand 1. Besides, the whole 1·Ag+ complex structure is stabilized by two intramolecular hydrogen bonds. The interaction energy of the considered 1·Ag+ complex was found to be -465.5 kJ/mol, confirming also the formation of this cationic species.
Krüger, Hans
2010-05-01
A new method for complete separation of steam-volatile organic compounds is described using the example of chamomile flowers. This method is based on the direct combination of hydrodistillation and solid-phase extraction in a circulation apparatus. In contrast to hydrodistillation and simultaneous distillation extraction (SDE), an RP-18 solid phase as adsorptive material is used rather than a water-insoluble solvent. Therefore, a prompt and complete fixation of all volatiles takes place, and the circulation of water-soluble bisabololoxides as well as water-soluble and thermolabile en-yne-spiroethers is inhibited. This so-called simultaneous distillation solid-phase extraction (SD-SPE) provides extracts that better characterise the real composition of the vapour phase, as well as the composition of inhalation vapours, than do SDE extracts or essential oils obtained by hydrodistillation. The data indicate that during inhalation therapy with chamomile, the bisabololoxides and spiroethers are more strongly involved in the inhaling activity than so far assumed. Georg Thieme Verlag KG Stuttgart New York.
Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto
2016-08-01
The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.
Boron-Based Hydrogen Storage: Ternary Borides and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vajo, John J.
DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slowmore » rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Z.; Anthony, R.G.; Miller, J.E.
1997-06-01
An equilibrium multicomponent ion exchange model is presented for the ion exchange of group I metals by TAM-5, a hydrous crystalline silicotitanate. On the basis of the data from ion exchange and structure studies, the solid phase is represented as Na{sub 3}X instead of the usual form of NaX. By using this solid phase representation, the solid can be considered as an ideal phase. A set of model ion exchange reactions is proposed for ion exchange between H{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, and Cs{sup +}. The equilibrium constants for these reactions were estimated from experiments with simplemore » ion exchange systems. Bromley`s model for activity coefficients of electrolytic solutions was used to account for liquid phase nonideality. Bromley`s model parameters for CsOH at high ionic strength and for NO{sub 2}{sup {minus}} and Al(OH){sub 4}{sup {minus}} were estimated in order to apply the model for complex waste simulants. The equilibrium compositions and distribution coefficients of counterions were calculated for complex simulants typical of DOE wastes by solving the equilibrium equations for the model reactions and material balance equations. The predictions match the experimental results within 10% for all of these solutions.« less
NASA Astrophysics Data System (ADS)
Larsen, Erik H.
1998-02-01
Achievement of optimum selectivity, sensitivity and robustness in speciation analysis using high performance liquid chromatography (HPLC) with inductively coupled mass spectrometry (ICP-MS) detection requires that each instrumental component is selected and optimized with a view to the ideal operating characteristics of the entire hyphenated system. An isocratic HPLC system, which employs an aqueous mobile phase with organic buffer constituents, is well suited for introduction into the ICP-MS because of the stability of the detector response and high degree of analyte sensitivity attained. Anion and cation exchange HPLC systems, which meet these requirements, were used for the seperation of selenium and arsenic species in crude extracts of biological samples. Furthermore, the signal-to-noise ratios obtained for these incompletely ionized elements in the argon ICP were further enhanced by a factor of four by continously introducing carbon as methanol via the mobile phase into the ICP. Sources of error in the HPLC system (column overload), in the sample introduction system (memory by organic solvents) and in the ICP-MS (spectroscopic interferences) and their prevention are also discussed. The optimized anion and cation exchange HPLC-ICP-MS systems were used for arsenic speciation in contaminated ground water and in an in-house shrimp reference sample. For the purpose of verification, HPLC coupled with tandem mass spectrometry with electrospray ionization was additionally used for arsenic speciation in the shrimp sample. With this analytical technique the HPLC retention time in combination with mass analysis of the molecular ions and their collision-induced fragments provide almost conclusive evidence of the identity of the analyte species. The speciation methods are validated by establishing a mass balance of the analytes in each fraction of the extraction procedure, by recovery of spikes and by employing and comparing independent techniques. The urgent need for reference materials certified for elemental species is stressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Guoping; Luo, Wensui; Brooks, Scott C
We conducted batch and recirculating column titration tests with contaminated acidic sediments with controlled CO2 in the headspace, and extended the geochemical model by Gu et al. (2003, GCA) to better understand and quantify the reactions governing trace metal fate in the subsurface. The sediment titration curve showed slow pH increase due to strong buffering by Al precipitation and CO2 uptake. Assuming precipitation of basaluminite at low saturation index (SI=-4), and decreasing cation exchange selectivity coefficient (kNa\\Al=0.3), the predictions are close to the observed pH and Al; and the model explains 1) the observed Ca, Mg, and Mn concentration decreasemore » by cation exchange with sorbed Al, and 2) the decrease of U by surface complexation with Fe hydroxides at low pH, and precipitation as liebigite (Ca2UO2(CO3)3:10H2O) at pH>5.5. Without further adjustment geochemical parameters, the model describes reasonably well previous sediment and column titration tests without CO2 in the headspace, as well as the new large column test. The apparent inhibition of U and Ni decrease in the large column can be explained by formation of aqueous carbonate complexes and/or competition with carbonate for surface sites. These results indicated that ignoring labile solid phase Al would underestimate base requirement in titration of acidic aquifers.« less
Agnolet, Sara; Wiese, Stefanie; Verpoorte, Robert; Staerk, Dan
2012-11-02
Here, proof-of-concept of a new analytical platform used for the comprehensive analysis of a small set of commercial willow bark products is presented, and compared with a traditional standardization solely based on analysis of salicin and salicin derivatives. The platform combines principal component analysis (PCA) of two chemical fingerprints, i.e., HPLC and (1)H NMR data, and a pharmacological fingerprint, i.e., high-resolution 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS(+)) reduction profile, with targeted identification of constituents of interest by hyphenated HPLC-solid-phase extraction-tube transfer NMR, i.e., HPLC-SPE-ttNMR. Score plots from PCA of HPLC and (1)H NMR fingerprints showed the same distinct grouping of preparations formulated as capsules of Salix alba bark and separation of S. alba cortex. Loading plots revealed this to be due to high amount of salicin in capsules and ampelopsin, taxifolin, 7-O-methyltaxifolin-3'-O-glucoside, and 7-O-methyltaxifolin in S. alba cortex, respectively. PCA of high-resolution radical scavenging profiles revealed clear separation of preparations along principal component 1 due to the major radical scavengers (+)-catechin and ampelopsin. The new analytical platform allowed identification of 16 compounds in commercial willow bark extracts, and identification of ampelopsin, taxifolin, 7-O-methyltaxifolin-3'-O-glucoside, and 7-O-methyltaxifolin in S. alba bark extract is reported for the first time. The detection of the novel compound, ethyl 1-hydroxy-6-oxocyclohex-2-enecarboxylate, is also described. Copyright © 2012 Elsevier B.V. All rights reserved.
Breit, G.N.; Simmons, E.C.; Goldhaber, M.B.
1985-01-01
A simple procedure for preparing barite samples for chemical and isotopic analysis is described. Sulfate ion, in barite, in the presence of high concentrations of aqueous sodium carbonate, is replaced by carbonate. This replacement forms insoluble carbonates with the cations commonly in barite: Ba, Sr, Ca and Pb. Sulfate is released into the solution by the carbonate replacement and is separated by filtration. The aqueous sulfate can then be reprecipitated for analysis of the sulfur and oxygen isotopes. The cations in the carbonate phase can be dissolved by acidifying the solid residue. Sr can be separated from the solution for Sr isotope analysis by ion-exchange chromatography. The sodium carbonate used contains amounts of Sr which will affect almost all barite 87Sr 86Sr ratios by less than 0.00001 at 1.95?? of the mean. The procedure is preferred over other techniques used for preparing barite samples for the determination of 87Sr 86Sr ratios because it is simple, rapid and enables simultaneous determination of many compositional parameters on the same material. ?? 1985.
Hui, Boon Yih; Raoov, Muggundha; Zain, Nur Nadhirah Mohamad; Mohamad, Sharifah; Osman, Hasnah
2017-09-03
The growth in driving force and popularity of cyclodextrin (CDs) and ionic liquids (ILs) as promising materials in the field of analytical chemistry has resulted in an exponentially increase of their exploitation and production in analytical chemistry field. CDs belong to the family of cyclic oligosaccharides composing of α-(1,4) linked glucopyranose subunits and possess a cage-like supramolecular structure. This structure enables chemical reactions to proceed between interacting ions, radical or molecules in the absence of covalent bonds. Conversely, ILs are an ionic fluids comprising of only cation and anion often with immeasurable vapor pressure making them as green or designer solvent. The cooperative effect between CD and IL due to their fascinating properties, have nowadays contributed their footprints for a better development in analytical chemistry nowadays. This comprehensive review serves to give an overview on some of the recent studies and provides an analytical trend for the application of CDs with the combination of ILs that possess beneficial and remarkable effects in analytical chemistry including their use in various sample preparation techniques such as solid phase extraction, magnetic solid phase extraction, cloud point extraction, microextraction, and separation techniques which includes gas chromatography, high-performance liquid chromatography, capillary electrophoresis as well as applications of electrochemical sensors as electrode modifiers with references to recent applications. This review will highlight the nature of interactions and synergic effects between CDs, ILs, and analytes. It is hoped that this review will stimulate further research in analytical chemistry.
Complex conductivity of oil-contaminated clayey soils
NASA Astrophysics Data System (ADS)
Deng, Y.; Revil, A.; Shi, X.
2017-12-01
Non-intrusive hydrogeophysical techniques have been wildly applied to detect organic contaminants because of the difference of electrical properties for contaminated soil. Among them, spectral induced polarization (SIP) has emerged as a promising tool for the identification of contamination due to its sensitivity to the chemistry of pore water, solid-fluid interfaces and fluid content. Previous works have investigated the influences of oil on the electrical signatures of porous media, which demonstrated the potentials of SIP in the detection of hydrocarbon contamination. However, few works have done on the SIP response of oil in clayey soils. In this study, we perform a set of SIP measurements on the clayey samples under different water saturations. These clayey soils are characterized by relatively high cation exchange capacity. The objective in this work is to test the empirical relationships between the three exponents, including the cementation exponent (m), the saturation exponent (n) and the quadrature conductivity exponent (p), which is expected to reduce the model parameters needed in geophysical and hydraulic properties predictions. Our results show that the complex conductivity are saturation dependent. The magnitude of both in-phase and quadrature conductivities generally decrease with decreasing water saturation. The shape of quadrature conductivity spectra slightly changes when water saturation decreases in some cases. The saturation exponent slightly increases with cation exchange capacity, specific surface area and clay content, with an average value around 2.05. Compared to saturation exponent, the quadrature conductivity exponent apparently increases with cation exchange capacity and specific surface area while has little to do with the clay content. Further, the results indicate that the quadrature conductivity exponent p does not strictly obey to p=n-1 as proposed by Vinegar and Waxman (1984). Instead, it mostly ranges between p=n-1.5 and p=n-0.5. The relationship between the saturation exponent n and the cementation exponent m is comprised between m=n and m=n-0.5.
Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T
2001-12-01
The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.
Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Leigh R.
This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, “Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems.” This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N’,N’-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extractionmore » experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.« less
Eisenman, G; Ciani, S; Szabo, G
1969-12-01
In order to clarify the mechanism by which neutral molecules such as the macrotetralide actin antibiotics make phospholipid bilayer membranes selectively permeable to cations, we have studied, both theoretically and experimentally, the extraction by these antibiotics of cations from aqueous solutions into organic solvents. The experiments involve merely shaking an organic solvent phase containing the antibiotic with aqueous solutions containing various cationic salts of a lipid-soluble colored anion. The intensity of color of the organic phase is then measured spectrophotometrically to indicate how much salt has been extracted. From such measurements of the equilibrium extraction of picrate and dinitrophenolate salts of Li, Na, K, Rb, Cs, and NH4 into n-hexane, dichloromethane, and hexane-dichloromethane mixtures, we have verified that the chemical reactions are as simple as previously postulated, at least for nonactin, monactin, dinactin, and trinactin. The equilibrium constant for the extraction of each cation by a given macrotetralide actin antibiotic was also found to be measurable with sufficient precision for meaningful differences among the members of this series of antibiotics to be detected. It is noteworthy that the ratios of selectivities among the various cations were discovered to be characteristic of a given antibiotic and to be completely independent of the solvent used. This finding and others reported here indicate that the size and shape of the complex formed between the macrotetralide and a given cation is the same, regardless of the species of cation bound. For such "isosteric" complexes, notable simplifications of the theory become possible which enable us to predict not only the electrical properties of a membrane made of the same solvent and having the thinness of the phospholipid bilayer but also, and more importantly, the electrical properties of the phospholipid bilayer membrane itself. These predictions will be compared with experimental data for phospholipid bilayer membranes in the accompanying paper.
Cation Exchange in Dynamic 3D Porous Magnets: Improvement of the Physical Properties.
Grancha, Thais; Acosta, Alvaro; Cano, Joan; Ferrando-Soria, Jesús; Seoane, Beatriz; Gascon, Jorge; Pasán, Jorge; Armentano, Donatella; Pardo, Emilio
2015-11-16
We report two novel three-dimensional porous coordination polymers (PCPs) of formulas Li4{Mn4[Cu2(Me3mpba)2]3}·68H2O (2) and K4{Mn4[Cu2(Me3mpba)2]3}·69H2O (3) obtained-via alkali cation exchange in a single-crystal to single-crystal process-from the earlier reported anionic manganese(II)-copper(II) PCP of formula Na4{Mn4[Cu2(Me3mpba)2]3}·60H2O (1) [Me3mpba(4-) = N,N'-2,4,6-trimethyl-1,3-phenylenebis(oxamate)]. This postsynthetic process succeeds where the direct synthesis in solution from the corresponding building blocks fails and affords significantly more robust PCPs with enhanced magnetic properties [long-range 3D magnetic ordering temperatures for the dehydrated phases (1'-3') of 2.0 (1'), 12.0 (2'), and 20.0 K (3')]. Changes in the adsorptive properties upon postsynthetic exchange suggest that the nature, electrostatic properties, mobility, and location of the cations within the framework are crucial for the enhanced structural stability. Overall, these results further confirm the potential of postsynthetic methods (including cation exchange) to obtain PCPs with novel or enhanced physical properties while maintaining unaltered their open-framework structures.
Tsonev, Latchezar I; Hirsh, Allen G
2008-07-25
pISep is a major new advance in low ionic strength ion exchange chromatography. It enables the formation of externally controlled pH gradients over the very broad pH range from 2 to 12. The gradients can be generated on either cationic or anionic exchangers over arbitrary pH ranges wherein the stationary phases remain totally charged. Associated pISep software makes possible the calculation of either linear, nonlinear or combined, multi-step, multi-slope pH gradients. These highly reproducible pH gradients, while separating proteins and glycoproteins in the order of their electrophoretic pIs, provide superior chromatographic resolution compared to salt. This paper also presents a statistical mechanical model for protein binding to ion exchange stationary phases enhancing the electrostatic interaction theory for the general dependence of retention factor k, on both salt and pH simultaneously. It is shown that the retention factors computed from short time isocratic salt elution data of a model protein can be used to accurately predict its salt elution concentration in varying slope salt elution gradients formed at varying isocratic pH as well as the pH at which it will be eluted from an anionic exchange column by a pISep pH gradient in the absence of salt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borman, Christopher J.; Custelcean, Radu; Hay, Ben P.
Here, meso-Octamethylcalix[4]pyrrole (C4P) enhances sulfate selectivity in solvent extraction by Aliquat 336N, an effect ascribed to the supramolecular preorganization and thermodynamic stability imparted by insertion of the methyl group of the Aliquat cation into the cup of C4P in its cone conformation.
Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina
2016-08-15
Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction. Copyright © 2016 Elsevier B.V. All rights reserved.
Extraction of tryptophan with ionic liquids studied with molecular dynamics simulations.
Seduraman, Abirami; Wu, Ping; Klähn, Marco
2012-01-12
Extraction of amino acids from aqueous solutions with ionic liquids (ILs) in biphasic systems is analyzed with molecular dynamics (MD) simulations. Extraction of tryptophan (TRP) with the imidazolium-based ILs [C(4)mim][PF(6)], [C(8)mim][PF(6)], and [C(8)mim][BF(4)] are considered as model cases. Solvation free energies of TRP are calculated with MD simulations and thermodynamic integration in combination with an empirical force field, whose parametrization is based on the liquid-phase charge distribution of the ILs. Calculated solvation free energies reproduce successfully all observed experimental trends according to the previously reported partition of TRP between water and IL phases. Water is present in ILs as a cosolvent, due to direct contact with the aqueous phase during extraction, and is found to play a major role in the extraction of TRP. Water improves solvation of cationic TRP by 7.8 and 5.1 kcal/mol in [C(4)mim][PF(6)] and [C(8)mim][PF(6)], respectively, which is in the case of [C(4)mim][PF(6)] sufficient to extract TRP. Extraction in [C(8)mim][PF(6)] is not feasible, since the hydrophobic octyl groups of the cations limit the water concentration in the IL. The solvation of cationic TRP is 2.4 kcal/mol less favorable in [C(8)mim][PF(6)] than in [C(4)mim][PF(6)]. Water improves the solvation of TRP in ILs mostly through dipole-dipole interactions with the polar backbone of TRP. Extraction is most efficient with [C(8)mim][BF(4)], where hydrophilic BF(4)(-) anions substantially increase the water concentration in the IL. Additionally, stronger direct electrostatic interactions of TRP with BF(4)(-) anions improve its solvation in the IL further. The solvation of cationic TRP in [C(8)mim][BF(4)] is 3.4 kcal/mol more favorable than in [C(8)mim][PF(6)]. Overall, the extractive power of the ILs correlates with the water saturation concentration of the IL phase, which in turn is determined by the hydrophilicity of the constituting ions. The results of this work identify relations between the extraction performance of ILs and the basic chemical properties of the ions, which provide guidelines that could contribute to the design of improved novel ILs for amino acid extraction.
Determination of labile copper, cobalt, and chromium in textile mill wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crain, J.S.; Essling, A.M.; Kiely, J.T.
1997-01-01
Copper, chromium, and cobalt species present in filtered wastewater effluent were separated by cation exchange and reverse phase chromatography. Three sample fractions were obtained: one containing metal cations (i.e., trivalent Cr, divalent Cu, and divalent Co), one containing organic species (including metallized dyes), and one containing other unretained species. The metal content of each fraction was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The sum of the corrected data was compared to the metal content of a filtered effluent aliquot digested totally with fuming sulfuric acid. Other aliquots of the filtered effluent were spiked with the metals ofmore » interest and digested to confirm chemical yield and accuracy. Method detection limits were consistently below 20 {mu}g L{sup -1} for Cu, 30 {mu}g L{sup -1} for Co, and 10 {mu}g L{sup -1} for Cr. Spike recoveries for undifferentiated Cu and Cr were statistically indistinguishable from unity; although Co spike recoveries were slightly low ({approximately}95%), its chemical yield was 98%. Copper retention on the sodium sulfonate cation exchange resin was closely correlated with the [EDTA]/[Cu] ratio, suggesting that metals retained upon the cation exchange column were assignable to labile metal species; however, mass balances for all three elements, though reasonable ({approximately}90%), were significantly different from unity. Mechanical factors may have contributed to the material loss, but other data suggest that some metal species reacted irreversibly with the reverse phase column. 3 refs., 2 figs., 4 tabs.« less
Cation-exchanged zeolites for the selective oxidation of methane to methanol
Kulkarni, Ambarish R.; Zhao, Zhi-Jian; Siahrostami, Samira; ...
2017-10-19
Motivated by the increasing availability of cheap natural gas resources, considerable experimental and computational research efforts have focused on identifying selective catalysts for the direct conversion of methane to methanol. One promising class of catalysts are cation-exchanged zeolites, which have steadily increased in popularity over the past decade. Here, in this article, we first present a broad overview of this field from a conceptual perspective, and highlight the role of theory in developing a molecular-level understanding of the reaction. Next, by performing and analyzing a large database of density functional theory (DFT) calculations for a wide range of transition metalmore » cations, zeolite topologies and active site motifs, we present a unifying picture of the methane activation process in terms of active site stability, C–H bond activation and methanol extraction. Based on the trade-offs of active site stability and reactivity, we propose a framework for identifying new, promising active site motifs in these systems. Further, we show that the high methanol selectivity arises due to the strong binding nature of the C–H activation products. Lastly, using the atomistic and mechanistic insight obtained from these analyses, we summarize the key challenges and future strategies for improving the performance of cation-exchanged zeolites for this industrially relevant conversion.« less
Cation-exchanged zeolites for the selective oxidation of methane to methanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Ambarish R.; Zhao, Zhi-Jian; Siahrostami, Samira
Motivated by the increasing availability of cheap natural gas resources, considerable experimental and computational research efforts have focused on identifying selective catalysts for the direct conversion of methane to methanol. One promising class of catalysts are cation-exchanged zeolites, which have steadily increased in popularity over the past decade. Here, in this article, we first present a broad overview of this field from a conceptual perspective, and highlight the role of theory in developing a molecular-level understanding of the reaction. Next, by performing and analyzing a large database of density functional theory (DFT) calculations for a wide range of transition metalmore » cations, zeolite topologies and active site motifs, we present a unifying picture of the methane activation process in terms of active site stability, C–H bond activation and methanol extraction. Based on the trade-offs of active site stability and reactivity, we propose a framework for identifying new, promising active site motifs in these systems. Further, we show that the high methanol selectivity arises due to the strong binding nature of the C–H activation products. Lastly, using the atomistic and mechanistic insight obtained from these analyses, we summarize the key challenges and future strategies for improving the performance of cation-exchanged zeolites for this industrially relevant conversion.« less
A new approach to evaluate natural zeolite ability to sorb lead (Pb) from aqueous solutions
NASA Astrophysics Data System (ADS)
Drosos, Evangelos I. P.; Karapanagioti, Hrissi K.
2013-04-01
Lead (Pb) is a hazardous pollutant commonly found in aquatic ecosystems. Among several methods available, the addition of sorbent amendments to soils or sediments is attractive, since its application is relatively simple, while it can also be cost effective when a low cost and re-usable sorbent is used; e.g. natural zeolites. Zeolites are crystalline aluminosilicates with a three-dimensional structure composed of a set of cavities occupied by large ions and water molecules. Zeolites can accommodate a wide variety of cations, such as Na+, K+, Ca2+, Mg2+, which are rather loosely held and can readily be exchanged for others in an aqueous solution. Natural zeolites are capable of removing cations, such as lead, from aqueous solutions by ion exchange. There is a wide variation in the cation exchange capacity (CEC) of natural zeolites because of the different nature of various zeolites cage structures, natural structural defects, adsorbed ions, and their associated gangue minerals. Naturally occurring zeolites are rarely pure and are contaminated to varying degrees by other minerals, such as clays and feldspars, metals, quartz, or other zeolites as well. These impurities affect the CEC even for samples originated from the same region but from a different source. CEC of the material increases with decreasing impurity content. Potentially exchangeable ions in such impurities do not necessarily participate in ion exchange mechanism, while, in some cases, impurities may additionally block the access to active sites. For zeoliferous rocks having the same percentage of a zeolitic phase, the CEC increases with decreasing Si/Al ratio, as the more Si ions are substituted by Al ions, the more negative the valence of the matrix becomes. Sodium seems to be the most effective exchangeable ion for lead. On the contrary, it is unlikely that the potassium content of the zeolite would be substituted. A pretreatment with high concentration solutions of Na, such as 2 M NaCl, can significantly improve zeolite CEC by bringing the material to near homoionic form. pH and temperature are the critical parameters for using natural zeolites as sorbents. Zeolites should not be used in extremely acidic, neither in extremely basic pH conditions, except for very short times. The exchange of Pb, requires low solution pH, to avoid precipitation but not too low because the H+ are competitive ions for ion exchange; as a result the zeolite CEC related to Pb removal may be downgraded. If pH enters the basic range (e.g. pH>8), more aquatic complexes with lower positive valence than those prevailing in lower pH are produced; these complexes are less attracted by the negative charged zeolitic matrix. Pb uptake is favored at higher temperatures as ion exchange (including the diffusion of exchangeable ions inside the material and the medium, and vice versa) is an endothermic process. With the increase of temperature there is a decrease in hydration of all available exchangeable cations that eases the movement within the channels of the solid matrix. Additionally, the mobility of the potassium ions, present in the zeolitic material, also increases with the temperature resulting in enhanced CEC.
Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko
2016-04-01
Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.
Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun
2017-02-01
Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Time dependent calibration of a sediment extraction scheme.
Roychoudhury, Alakendra N
2006-04-01
Sediment extraction methods to quantify metal concentration in aquatic sediments usually present limitations in accuracy and reproducibility because metal concentration in the supernatant is controlled to a large extent by the physico-chemical properties of the sediment that result in a complex interplay between the solid and the solution phase. It is suggested here that standardization of sediment extraction methods using pure mineral phases or reference material is futile and instead the extraction processes should be calibrated using site-specific sediments before their application. For calibration, time dependent release of metals should be observed for each leachate to ascertain the appropriate time for a given extraction step. Although such an approach is tedious and time consuming, using iron extraction as an example, it is shown here that apart from quantitative data such an approach provides additional information on factors that play an intricate role in metal dynamics in the environment. Single step ascorbate, HCl, oxalate and dithionite extractions were used for targeting specific iron phases from saltmarsh sediments and their response was observed over time in order to calibrate the extraction times for each extractant later to be used in a sequential extraction. For surficial sediments, an extraction time of 24 h, 1 h, 2 h and 3 h was ascertained for ascorbate, HCl, oxalate and dithionite extractions, respectively. Fluctuations in iron concentration in the supernatant over time were ubiquitous. The adsorption-desorption behavior is possibly controlled by the sediment organic matter, formation or consumption of active exchange sites during extraction and the crystallinity of iron mineral phase present in the sediments.
A porous flow approach to model thermal non-equilibrium applicable to melt migration
NASA Astrophysics Data System (ADS)
Schmeling, Harro; Marquart, Gabriele; Grebe, Michael
2018-01-01
We develop an approach for heat exchange between a fluid and a solid phase of a porous medium where the temperatures of the fluid and matrix are not in thermal equilibrium. The formulation considers moving of the fluid within a resting or deforming porous matrix in an Eulerian coordinate system. The approach can be applied, for example, to partially molten systems or to brine transport in porous rocks. We start from an existing theory for heat exchange where the energy conservation equations for the fluid and the solid phases are separated and coupled by a heat exchange term. This term is extended to account for the full history of heat exchange. It depends on the microscopic geometry of the fluid phase. For the case of solid containing hot, fluid-filled channels, we derive an expression based on a time-dependent Fourier approach for periodic half-waves. On the macroscopic scale, the temporal evolution of the heat exchange leads to a convolution integral along the flow path of the solid, which simplifies considerably in case of a resting matrix. The evolution of the temperature in both phases with time is derived by inserting the heat exchange term into the energy equations. We explore the effects of thermal non-equilibrium between fluid and solid by considering simple cases with sudden temperature differences between fluid and solid as initial or boundary conditions, and by varying the fluid velocity with respect to the resting porous solid. Our results agree well with an analytical solution for non-moving fluid and solid. The temperature difference between solid and fluid depends on the Peclet number based on the Darcy velocity. For Peclet numbers larger than 1, the temperature difference after one diffusion time reaches 5 per cent of \\tilde{T} or more (\\tilde{T} is a scaling temperature, e.g. the initial temperature difference). Thus, our results imply that thermal non-equilibrium can play an important role for melt migration through partially molten systems where melt focuses into melt channels near the transition to melt ascent by dykes. Our method is based on solving the convolution integration for the heat exchange over the full flow history, which is numerically expensive. We tested to replace the heat exchange term by an instantaneous, approximate term. We found considerable errors on the short timescale, but a good agreement on the long timescale if appropriate parameters for the approximate terms are used. We derived these parameters which may be implemented in fully dynamical two-phase flow formulations of melt migration in the Earth.
Quantitative and Qualitative Analysis of Biomarkers in Fusarium verticillioides
USDA-ARS?s Scientific Manuscript database
In this study, a combination HPLC-DART-TOF-MS system was utilized to identify and quantitatively analyze carbohydrates in wild type and mutant strains of Fusarium verticillioides. Carbohydrate fractions were isolated from F. verticillioides cellular extracts by HPLC using a cation-exchange size-excl...
Method for dissolving plutonium oxide with HI and separating plutonium
Vondra, Benedict L.; Tallent, Othar K.; Mailen, James C.
1979-01-01
PuO.sub.2 -containing solids, particularly residues from incomplete HNO.sub.3 dissolution of irradiated nuclear fuels, are dissolved in aqueous HI. The resulting solution is evaporated to dryness and the solids are dissolved in HNO.sub.3 for further chemical reprocessing. Alternatively, the HI solution containing dissolved Pu values, can be contacted with a cation exchange resin causing the Pu values to load the resin. The Pu values are selectively eluted from the resin with more concentrated HI.
WKB calculation of multiple spin exchange in monolayer solid 3He
NASA Astrophysics Data System (ADS)
Ashizawa, Hisayuki; Hirashima, D. S.
2000-10-01
An insight is given into the multiple spin exchange in the registered 3×3 phase of solid 3He adsorbed on graphite with a WKB calculation taking account of the corrugation of the substrate potential. The corrugation is essential for this phase to be realized, and is found to suppress the exchange processes of many (>=4) particles to make only the two- and the three-spin exchanges relevant. When the magnitude of the corrugation is modest, the exchange can be ferromagnetic, in agreement with the experiment by Ikegami et al. [Phys. Rev. Lett. 81, 2478 (1998)]. Validity and limitation of the WKB approximation are also discussed.
Cation exchange concentraion of the Americium product from TRUEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barney, G.S.; Cooper, T.D.; Fisher, F.D.
1991-06-01
A transuranic extraction (TRUEX) process has been developed to separate and recover plutonium, americium, and other transuranic (TRU) elements from acid wastes. The main objective of the process is to reduce the effluent to below the TRU limit for actinide concentrations (<100 nCi/g of material) so it can be disposed of inexpensively. The process yields a dilute nitric acid stream containing low concentrations of the extracted americium product. This solution also contains residual plutonium and trace amounts of iron. The americium will be absorbed into a cation exchange resin bed to concentrate it for disposal or for future use. Themore » overall objective of these laboratory tests was to determine the performance of the cation exchange process under expected conditions of the TRUEX process. Effects of acid, iron, and americium concentrations on americium absorption on the resin were determined. Distribution coefficients for americium absorption from acide solutions on the resin were measured using batch equilibrations. Batch equilibrations were also used to measure americium absorption in the presence of complexants. This data will be used to identify complexants and solution conditions that can be used to elute the americium from the columns. The rate of absorption was measured by passing solutions containing americium through small columns of resin, varying the flowrates, and measuring the concentrations of americium in the effluent. The rate data will be used to estimate the minimum bed size of the columns required to concentrate the americium product. 11 refs. , 10 figs., 2 tabs.« less
Jiang, Ling-Feng; Chen, Bo-Cheng; Chen, Ben; Li, Xue-Jian; Liao, Hai-Lin; Zhang, Wen-Yan; Wu, Lin
2017-07-01
The extraction adsorbent was fabricated by immobilizing the highly specific recognition and binding of aptamer onto the surface of Fe 3 O 4 magnetic nanoparticles, which not only acted as recognition elements to recognize and capture the target molecule berberine from the extract of Cortex phellodendri, but also could favor the rapid separation and purification of the bound berberine by using an external magnet. The developed solid-phase extraction method in this work was useful for the selective extraction and determination of berberine in Cortex phellodendri extracts. Various conditions such as the amount of aptamer-functionalized Fe 3 O 4 magnetic nanoparticles, extraction time, temperature, pH value, Mg 2+ concentration, elution time and solvent were optimized for the solid-phase extraction of berberine. Under optimal conditions, the purity of berberine extracted from Cortex phellodendri was as high as 98.7% compared with that of 4.85% in the extract, indicating that aptamer-functionalized Fe 3 O 4 magnetic nanoparticles-based solid-phase extraction method was very effective for berberine enrichment and separation from a complex herb extract. The applicability and reliability of the developed solid-phase extraction method were demonstrated by separating berberine from nine different concentrations of one Cortex phellodendri extract. The relative recoveries of the spiked solutions of all the samples were between 95.4 and 111.3%, with relative standard deviations ranging between 0.57 and 1.85%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kwon, Yeon Hye; Min, Byunghyun; Yang, Shaowei; ...
2018-01-29
Separation of radioisotope 85Kr from 136Xe is of importance in used nuclear fuel reprocessing. Membrane separation based on zeolite molecular sieves such as chabazite SAPO- 34 is an attractive alternative to energy-intensive cryogenic distillation. We report the synthesis of SAPO-34 membranes with considerably enhanced performance, via thickness reduction based upon control of a steam-assisted vapor-solid conversion technique followed by ion exchange with alkali metal cations. The reduction of membrane thickness leads to a large increase in Kr permeance from 7.5 gas permeation units (GPU) to 26.3 GPU with ideal Kr/Xe selectivities > 20 at 298 K. Cation-exchanged membranes show largemore » (>50%) increases in selectivity at ambient or slight sub-ambient conditions. The adsorption, diffusion, and permeation characteristics of ionexchanged SAPO-34 materials and membranes are investigated in detail, with potassium exchanged SAPO-34 membranes showing particularly attractive performance. Lastly, we then demonstrate the fabrication of selective SAPO-34 membranes on α-alumina hollow fibers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Yeon Hye; Min, Byunghyun; Yang, Shaowei
Separation of radioisotope 85Kr from 136Xe is of importance in used nuclear fuel reprocessing. Membrane separation based on zeolite molecular sieves such as chabazite SAPO- 34 is an attractive alternative to energy-intensive cryogenic distillation. We report the synthesis of SAPO-34 membranes with considerably enhanced performance, via thickness reduction based upon control of a steam-assisted vapor-solid conversion technique followed by ion exchange with alkali metal cations. The reduction of membrane thickness leads to a large increase in Kr permeance from 7.5 gas permeation units (GPU) to 26.3 GPU with ideal Kr/Xe selectivities > 20 at 298 K. Cation-exchanged membranes show largemore » (>50%) increases in selectivity at ambient or slight sub-ambient conditions. The adsorption, diffusion, and permeation characteristics of ionexchanged SAPO-34 materials and membranes are investigated in detail, with potassium exchanged SAPO-34 membranes showing particularly attractive performance. Lastly, we then demonstrate the fabrication of selective SAPO-34 membranes on α-alumina hollow fibers.« less
NASA Astrophysics Data System (ADS)
van der Heijden, Gregory; Legout, Arnaud; Mareschal, Louis; Ranger, Jacques; Dambrine, Etienne
2017-07-01
In terrestrial ecosystems, plant-available pools of magnesium and calcium are assumed to be stored in the soil as exchangeable cations adsorbed on the surface of mineral and/or organic particles. The pools of exchangeable magnesium and calcium are measured by ion-exchange soil extractions. These pools are sustained in the long term by the weathering of primary minerals in the soil and atmospheric inputs. This conceptual model is the base of input-output budgets from which soil acidification and the sustainability of soil chemical fertility is inferred. However, this model has been questioned by data from long-term forest ecosystem monitoring sites, particularly for calcium. Quantifying the contribution of atmospheric inputs, ion exchange and weathering of both primary, secondary and non-crystalline phases to tree nutrition in the short term is challenging. In this study, we developed and applied a novel isotopic dilution technique using the stable isotopes of magnesium and calcium to study the contribution of the different soil phases to soil solution chemistry in a very acidic soil. The labile pools of Mg and Ca in the soil (pools in equilibrium with the soil solution) were isotopically labeled by spraying a solution enriched in 26Mg and 44Ca on the soil. Labeled soil columns were then percolated with a dilute acid solution during a 3-month period and the isotopic dilution of the tracers was monitored in the leaching solution, in the exchangeable (2 sequential 1 mol L-1 ammonium acetate extractions) and non-crystalline (2 sequential soil digestions: oxalic acid followed by nitric acid) phases. Significant amounts of Mg and Ca isotope tracer were recovered in the non-crystalline soil phases. These phases represented from 5% to 25% and from 24% to 50%, respectively, of the Mg and Ca labile pools during the experiment. Our results show that non-crystalline phases act as both a source and a sink of calcium and magnesium in the soil, and contribute directly to soil solution chemistry on very short-term time scales. These phases are very abundant in acid soils and, in the present study, represent a substantial calcium pool (equivalent in size to the Ca exchangeable pool). The gradual isotopic dilution of Mg and Ca isotope ratios in the leaching solution during the experiment evidenced an input flux of Mg and Ca originating from a pool other than the labile pool. While the Mg input flux originated primarily from the weathering of primary minerals and secondarily from the non-crystalline phases, the Ca input flux originated primarily from the non-crystalline phases. Our results also show that the net calcium release flux from these phases may represent a significant source of calcium in forest ecosystems and actively contribute to compensating the depletion of Ca exchangeable pools in the soil. Non-crystalline phases therefore should be taken into account when computing input-output nutrient budgets and soil acid neutralizing capacity.
Magnetic properties and energy-mapping analysis.
Xiang, Hongjun; Lee, Changhoon; Koo, Hyun-Joo; Gong, Xingao; Whangbo, Myung-Hwan
2013-01-28
The magnetic energy levels of a given magnetic solid are closely packed in energy because the interactions between magnetic ions are weak. Thus, in describing its magnetic properties, one needs to generate its magnetic energy spectrum by employing an appropriate spin Hamiltonian. In this review article we discuss how to determine and specify a necessary spin Hamiltonian in terms of first principles electronic structure calculations on the basis of energy-mapping analysis and briefly survey important concepts and phenomena that one encounters in reading the current literature on magnetic solids. Our discussion is given on a qualitative level from the perspective of magnetic energy levels and electronic structures. The spin Hamiltonian appropriate for a magnetic system should be based on its spin lattice, i.e., the repeat pattern of its strong magnetic bonds (strong spin exchange paths), which requires one to evaluate its Heisenberg spin exchanges on the basis of energy-mapping analysis. Other weaker energy terms such as Dzyaloshinskii-Moriya (DM) spin exchange and magnetocrystalline anisotropy energies, which a spin Hamiltonian must include in certain cases, can also be evaluated by performing energy-mapping analysis. We show that the spin orientation of a transition-metal magnetic ion can be easily explained by considering its split d-block levels as unperturbed states with the spin-orbit coupling (SOC) as perturbation, that the DM exchange between adjacent spin sites can become comparable in strength to the Heisenberg spin exchange when the two spin sites are not chemically equivalent, and that the DM interaction between rare-earth and transition-metal cations is governed largely by the magnetic orbitals of the rare-earth cation.
Formation of ion-pairs in aqueous solutions of diclofenac salts.
Fini, A; Fazio, G; Gonzalez-Rodriguez, M; Cavallari, C; Passerini, N; Rodriguez, L
1999-10-05
In this work we studied the ability of the diclofenac anion to form ion-pairs in aqueous solution in the presence of organic and inorganic cations: ion-pairs have a polarity and hydrophobicity more suitable to the partition than each ion considered separately and can be extracted by a lipid phase. The cations considered were those of the organic bases diethylamine, diethanolamine, pyrrolidine, N-(2-hydroxyethyl) pyrrolidine and N-(2-hydroxyethyl) piperidine; the inorganic cations studied were Li(+), Na(+), K(+), Rb(+), Cs(+). Related to each cation we determined the equilibrium constant (K(XD)) for the ion-pair formation with the diclofenac anion in aqueous solution and the water/n-octanol partition coefficient (P(XD)) for each type of ion-pair formed. Among the alkali metal cations, only Li(+) shows some interaction with the diclofenac anion, in agreement with its physiological behaviour of increasing clearance during the administration of diclofenac. The influence of the ionic radius and desolvation enthalpy of the alkali metal cations on the ion-pair formation and partition was briefly discussed. Organic cations promote the formation of ion-pairs with the diclofenac anion better than the inorganic ones, and improve the partition of the ion-pair according to their hydrophobicity. The values of the equilibrium parameters for the formation and partition of ion-pairs are not high enough to allow the direct detection of their presence in the aqueous solution. Their formation can be appreciated in the presence of a lipid phase that continuously extracts the ion-pair. Extraction constants (E(XD)=P(XD) times K(XD)) increase passing from inorga to organic cations. This study could help to clarify the mechanism of the percutaneous absorption of diclofenac in the form of a salt, a route where the formation of ion-pairs appears to play an important role.
Isolation and reversible dimerization of a selenium-selenium three-electron σ-bond.
Zhang, Senwang; Wang, Xingyong; Su, Yuanting; Qiu, Yunfan; Zhang, Zaichao; Wang, Xinping
2014-06-11
Three-electron σ-bonding that was proposed by Linus Pauling in 1931 has been recognized as important in intermediates encountered in many areas. A number of three-electron bonding systems have been spectroscopically investigated in the gas phase, solution and solid matrix. However, X-ray diffraction studies have only been possible on simple noble gas dimer Xe∴Xe and cyclic framework-constrained N∴N radical cations. Here, we show that a diselena species modified with a naphthalene scaffold can undergo one-electron oxidation using a large and weakly coordinating anion, to afford a room-temperature-stable radical cation containing a Se∴Se three-electron σ-bond. When a small anion is used, a reversible dimerization with phase and marked colour changes is observed: radical cation in solution (blue) but diamagnetic dimer in the solid state (brown). These findings suggest that more examples of three-electron σ-bonds may be stabilized and isolated by using naphthalene scaffolds together with large and weakly coordinating anions.
Single Sublattice Endotaxial Phase Separation Driven by Charge Frustration in a Complex Oxide
2013-01-01
Complex transition-metal oxides are important functional materials in areas such as energy and information storage. The cubic ABO3 perovskite is an archetypal example of this class, formed by the occupation of small octahedral B-sites within an AO3 network defined by larger A cations. We show that introduction of chemically mismatched octahedral cations into a cubic perovskite oxide parent phase modifies structure and composition beyond the unit cell length scale on the B sublattice alone. This affords an endotaxial nanocomposite of two cubic perovskite phases with distinct properties. These locally B-site cation-ordered and -disordered phases share a single AO3 network and have enhanced stability against the formation of a competing hexagonal structure over the single-phase parent. Synergic integration of the distinct properties of these phases by the coherent interfaces of the composite produces solid oxide fuel cell cathode performance superior to that expected from the component phases in isolation. PMID:23750709
NASA Astrophysics Data System (ADS)
Moon, J. W.; Paradis, C. J.; von Netzer, F.; Dixon, E.; Majumder, E.; Joyner, D.; Zane, G.; Fitzgerald, K.; Xiaoxuan, G.; Thorgersen, M. P.; Lui, L.; Adams, B.; Brewer, S. S.; Williams, D.; Lowe, K. A.; Rodriguez, M., Jr.; Mehlhorn, T. L.; Pfiffner, S. M.; Chakraborty, R.; Arkin, A. P.; Terry, A. Y.; Wall, J. D.; Stahl, D. A.; Elias, D. A.; Hazen, T. C.
2017-12-01
Conventional monitoring wells have produced useful long-term data about the contaminants, carbon flux, microbial population and their evolution. The averaged homogenized groundwater matrix from these wells is insufficient to represent all media properties in subsurface. This pilot study investigated the solid, liquid and gas phases from soil core samples from both uncontaminated and contaminated areas of the ENIGMA field research site at Oak Ridge, Tennessee. We focused on a site-specific assessment with depth perspective that included soil structure, soil minerals, major and trace elements and biomass for the solid phase; centrifuged soil pore water including cations, anions, organic acid, pH and conductivity for the liquid phase; and gas (CO2, CH4, N2O) evolution over a 4 week incubation with soil and unfiltered groundwater. Pore water from soil core sections showed a correlation between contamination levels with depth and the potential abundance of sulfate- and nitrate-reducing bacteria based on the 2-order of magnitude decreased concentration. A merged interpretation with mineralogical consideration revealed a more complicated correlation among contaminants, soil texture, clay minerals, groundwater levels, and biomass. This sampling campaign emphasized that subsurface microbial activity and metabolic reactions can be influenced by a variety of factors but can be understood by considering the influence of multiple geochemical factors from all subsurface phases including water, air, and solid along depth rather than homogenized groundwater.
[Determination of lead in edible salt with solid-phase extraction and GFAAS].
Zhao, Xin; Zhou, Shuang; Ma, Lan; Yang, Dajin
2013-01-01
Establishing a method for determination of lead in salt with solid-phase extraction and GFAAS. Salt sample was diluted to a certain volume directly with ammonium acetate, then the sample solution was filtered through the solid phase extraction column which has been pre-activated. Lead ions were retained, and the sodium chloride matrix was removed. After elution, the collected lead ions was determined by graphite furnace atomic absorption spectrometry in 257.4 nm. This method can be used effectively to wipe off the sodium chloride in matrix. The limit of detection was 0.7 microg/kg and the limit of quantification was 2 microg/kg. Solid phase extraction technique can be used effectively to reduce the interference in matrix and improves the accuracy and reproducibility of detection.
Complexation of the calcium cation with antamanide: an experimental and theoretical study
NASA Astrophysics Data System (ADS)
Makrlík, Emanuel; Böhm, Stanislav; Vaňura, Petr; Ruzza, Paolo
2015-06-01
By using extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Ca2+(aq) + 1 .Sr2+(nb) ? 1 .Ca2+(nb) + Sr2+(aq) occurring in the two-phase water-nitrobenzene system (1 = antamanide; aq = aqueous phase, nb = nitrobenzene phase) was determined as log Kex (Ca2+, 1 .Sr2+) = 1.6 ± 0.1. Further, the stability constant of the 1 .Ca2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (1 .Ca2+) = 10.9 ± 0.2. Finally, applying quantum mechanical density functional level of theory calculations, the most probable structure of the cationic complex species 1 .Ca2+ was derived. In the resulting complex, the 'central' cation Ca2+ is bound by six strong bonding interactions to the corresponding six carbonyl oxygen atoms of the parent ligand 1. Besides, the whole 1 .Ca2+ complex structure is stabilised by two intramolecular hydrogen bonds. The interaction energy of the considered 1 .Ca2+ complex, involving the Boys-Bernardi counterpoise corrections of the basis set superposition error, was found to be -1219.3 kJ/mol, confirming the formation of this cationic species.
Mashile, Geaneth Pertunia; Nomngongo, Philiswa N
2017-03-04
Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.
Self-regenerating column chromatography
Park, Woo K.
1995-05-30
The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.
Multiplexed Colorimetric Solid-Phase Extraction
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.
2009-01-01
Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).
Lü, Weichao; Shen, Shuchang; Wang, Chao
2017-11-08
With magnesium silicate, silica gel, diatomite and calcium sulfate as raw materials, a new solid phase extraction column was prepared through a series of processes of grinding to ethanol homogenate, drying and packing into polypropylene tube. The sample was hydrolyzed by pectinase, extracted by acetonitrile and purified by solid phase extraction. The target compounds were separated on a C18 column (100 mm×2.1 mm, 1.8 μm), using 0.8% (v/v) tetrahydrofuran solution as mobile phase with a flow rate of 0.5 mL/min. The detection wavelength was 276 nm. The effect of pectinase on extraction yield and purification effect of solid-phase extraction column were investigated. The optimum chromatographic conditions were selected. There was a good linear relationship between the peak heights and the mass concentrations of patulin in the range of 0.1 to 10 mg/L with the correlation coefficient ( R 2 ) of 1. The limit of detection for this method was 10.22 μg/kg. The spiked recoveries of samples were 86.58%-94.84% with the relative standard deviations (RSDs) of 1.45%-2.28%. The results indicated that the self-made solid phase extraction column had a good purification efficiency, and the UPLC had a high separation efficiency. The method is simple, accurate and of great significance for the quality and safety control of fruit products.
Cation exchange properties of zeolites in hyper alkaline aqueous media.
Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric
2015-02-03
Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.
Geochemical phase and particle size relationships of metals in urban road dust.
Jayarathne, Ayomi; Egodawatta, Prasanna; Ayoko, Godwin A; Goonetilleke, Ashantha
2017-11-01
Detailed knowledge of the processes that metals undergo during dry weather periods whilst deposited on urban surfaces and their environmental significance is essential to predict the potential influence of metals on stormwater quality in order to develop appropriate stormwater pollution mitigation measures. However, very limited research has been undertaken in this area. Accordingly, this study investigated the geochemical phase and particle size relationships of seven metals which are commonly associated with urban road dust, using sequential extraction in order to assess their mobility characteristics. Metals in the sequentially extracted fractions of exchangeable, reducible, oxidisable and residual were found to follow a similar trend for different land uses even though they had variable accumulation loads. The high affinity of Cd and Zn for exchangeable reactions in both, bulk and size-fractionated solid samples confirmed their high mobility, while the significant enrichment of Ni and Cr in the stable residual fraction indicated a low risk of mobility. The study results also confirmed the availability of Cu, Pb and Mn in both, stable and mobile fractions. The fine fraction of solids (<150 μm) and antecedent dry days can be highlighted as important parameters when determining the fate of metals associated with urban road dust. The outcomes from this study are expected to contribute to the development of effective stormwater pollution mitigation strategies by taking into consideration the metal-particulate relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.
Su, Chong; Sun, Hui; Yang, Hong; Yin, Lei; Zhang, Jiwen; Fawcett, John Paul; Gu, Jingkai
2017-11-01
Porcine relaxin is a 6 kDa peptide hormone of pregnancy with important physiological and pharmacological effects. It contains a number of analogs of which porcine relaxin B29 is one of the most important. To support the development of porcine relaxin B29 as a new drug, we established an UPLC-MS/MS method for its quantitation in dog plasma. Sample preparation by protein precipitation and ion exchange solid phase extraction was followed by UPLC on an XBridge™ BEH300 C18 column at 40 °C in a run time of only 5.5 min. Detection was performed on a Qtrap 6500 mass spectrometer using ESI in the positive ion mode with MRM of the transitions at m/z 831.7 [M+7H] 7+ → 505.4 and m/z 1162.4 [M+5H] 5+ → 226 for pRLX B29 and internal standard (recombinant human insulin), respectively. The method was linear over the concentration range 30-2000 ng/mL with no matrix effects. Intra- and inter-day precisions were < 15% with accuracies in the range 98.8-100.6%. The method was successfully applied to a pharmacokinetic study in beagle dogs after administration of a 0.15 mg/kg intravenous dose. Graphical abstract Sample preparation and detection procedure.
Analysis of Mineral Assemblages Containing Unstable Hydrous Phases
NASA Astrophysics Data System (ADS)
Vaniman, D. T.; Wilson, S. A.; Bish, D. L.; Chipera, S.
2011-12-01
Minerals in many environments can be treated as durable phases that preserve a record of their formation. However many minerals, especially those with hydrogen-bonded H2O molecules as part of their structure, are ephemeral and are unlikely to survive disturbance let alone removal from their environment of formation. Minerals with exceptionally limited stability such as meridianiite (Mg-sulfate 11 hydrate), ikaite (Ca-carbonate 6 hydrate), and mirabilite (Na-sulfate 10 hydrate) are very susceptible to destabilization during analysis, and even modest changes in temperature or relative humidity can lead to change in hydration state or deliquescence. The result may be not only loss of the salt hydrate but dissolution of other salts present, precipitation of new phases, and ion exchange between the concentrated solution and otherwise unaffected phases. Exchange of H2O molecules can also occur in solid-vapor systems without any liquid involvement; moreover, recent work has shown that cation exchange between smectite and sulfate hydrates can occur without any liquid phase present other than a presumed thin film at the salt-silicate interface. Among hydrous silicates, clay minerals are susceptible to cation exchange and similar alteration can be expected for zeolites, palagonite, and possibly other hydrous silicate alteration products. Environmentally sensitive phases on Mars, such as meridianiite, may occur at higher latitudes or in the subsurface where permafrost may be present. Accurate determination of the presence and paragenesis of such minerals will be important for understanding the near-surface hydrogeology of Mars, and in situ analysis may be the only way to obtain this information. Access to the subsurface may be required, yet the act of exposure by excavation or drilling can itself lead to rapid degradation as the sample is exposed or brought to the surface for analysis. Mars is not the only body with which to be concerned, for similar concerns can be raised for sampling cold-environment deposits at the lunar poles, at the poles of Mercury, on icy satellites, and on many other bodies that may host hydrous minerals. The problem of adequate in situ analysis of such mutable assemblages extends to Earth as well, for example in the need for improved understanding of polar and permafrost regions, deep sea clathrates, cave minerals, and mine dump efflorescence. Advanced methods of in situ analysis are needed, including but not limited to contact instruments and instrumentation that can be inserted by probe or operated within a borehole that could be advanced with minimal thermal disturbance. One of the lessons of robotic analysis is that field instruments, which by necessity are less capable than laboratory equivalents, provide greatly improved interpretations if data from several different instruments can be compared.
Paluch, Justyna; Mesquita, Raquel B R; Cerdà, Víctor; Kozak, Joanna; Wieczorek, Marcin; Rangel, António O S S
2018-08-01
A sequential injection (SI) system equipped with in-line solid phase extraction column and in-line soil mini-column is proposed for determination of zinc and copper in soil leachates. The spectrophotometric determination (560 nm) is based on the reaction of both analytes with 1-(2-Pyridylazo)-2-naphthol (PAN). Zinc is determined after retaining copper on a cationic resin (Chelex100) whereas copper is determined from the difference of the absorbance measured for both analytes, introduced into the system with the use of a different channel, and zinc absorbance. The influence of several potential interferences was studied. Using the developed method, zinc and copper were determined within the concentration ranges of 0.005-0.300 and 0.011-0.200 mg L -1 , and with a relative standard deviation lower than 6.0% and 5.1%, respectively. The detection limits are 1.4 and 3.0 µg/L for determination of zinc and copper, respectively. The developed SI method was verified by the determination of both analytes in synthetic and certified reference materials of water samples, and applied to the determination of the analytes in rain water and soil leachates from laboratory scale soil core column and in-line soil mini-column. Copyright © 2018 Elsevier B.V. All rights reserved.
Garada, Mohammed B; Kabagambe, Benjamin; Amemiya, Shigeru
2015-01-01
Cation-exchange extraction of polypeptide protamine from water into an ionophore-based polymeric membrane has been hypothesized as the origin of a potentiometric sensor response to this important heparin antidote. Here, we apply ion-transfer voltammetry not only to confirm protamine extraction into ionophore-doped polymeric membranes but also to reveal protamine adsorption at the membrane/water interface. Protamine adsorption is thermodynamically more favorable than protamine extraction as shown by cyclic voltammetry at plasticized poly(vinyl chloride) membranes containing dinonylnaphthalenesulfonate as a protamine-selective ionophore. Reversible adsorption of protamine at low concentrations down to 0.038 μg/mL is demonstrated by stripping voltammetry. Adsorptive preconcentration of protamine at the membrane/water interface is quantitatively modeled by using the Frumkin adsorption isotherm. We apply this model to ensure that stripping voltammograms are based on desorption of all protamine molecules that are transferred across the interface during a preconcentration step. In comparison to adsorption, voltammetric extraction of protamine requires ∼0.2 V more negative potentials, where a potentiometric super-Nernstian response to protamine is also observed. This agreement confirms that the potentiometric protamine response is based on protamine extraction. The voltammetrically reversible protamine extraction results in an apparently irreversible potentiometric response to protamine because back-extraction of protamine from the membrane extremely slows down at the mixed potential based on cation-exchange extraction of protamine. Significantly, this study demonstrates the advantages of ion-transfer voltammetry over potentiometry to quantitatively and mechanistically assess protamine transfer at ionophore-based polymeric membranes as foundation for reversible, selective, and sensitive detection of protamine.
Impact of Saw Dust Application on the Distribution of Potentially Toxic Metals in Contaminated Soil.
Awokunmi, Emmmanuel E
2017-12-01
The need to develop an approach for the reclamation of contaminated site using locally available agricultural waste has been considered. The present study investigated the application of sawdust as an effective amendment in the immobilization of potentially toxic metals (PTMs) by conducting a greenhouse experiment on soil collected from an automobile dumpsite. The amended and non-amended soil samples were analyzed for their physicochemical parameters and sequential extraction of PTMs. The results revealed that application of amendment had positive impact on the physicochemical parameters as organic matter content and cation exchange capacity increased from 12.1% to 12.8% and 16.4 to 16.8 meq/100 g respectively. However, the mobility and bioavalability of these metals was reduced as they were found to be distributed mostly in the non-exchangeable phase of soil. Therefore, application of sawdust successfully immobilized PTMs and could be applied for future studies in agricultural soil reclamation.
Dombrowski, T.R.; Wilson, G.S.; Thurman, E.M.
1998-01-01
Anion-exchange and immunoaffinity particle loaded membranes (PLMs) were investigated as a mechanism for the isolation of charged organic analytes from water. Kinetic properties determined theoretically included dynamic capacity, pressure drop (??P), residence and diffusion times (Tr, Td), and total membrane porosity (???T). These properties were confirmed through experimental evaluation, and the PLM method showed significant improvement over conventional solid-phase extraction (SPE) and ion-exchange formats. Recoveries of more than 90% were observed for a variety of test compounds at flow rates up to 70 mL/min (equipment-limited maximum flow rate). A fast-flow immunoaffinity column was developed using antibodies (Abs) attached to the PLMs. Reproducible recoveries (88% ?? 4%) were observed at flow rates up to 70 mL/min for the antibody (Ab)-loaded PLMs. Findings indicate increased selectivity over anion-exchange PLMs and conventional SPE or ion-exchange methods and rapid Ab-antigen binding rates given the excellent mass-transfer characteristics of the PLMs.
Carpinteiro, I; Abuín, B; Ramil, M; Rodríguez, I; Cela, R
2012-01-01
A cost-effective and low solvent consumption method, based on the matrix solid-phase dispersion (MSPD) technique, for the determination of six benzotriazole UV absorbers in sediments is presented. Sieved samples (0.5 g) were first mixed in a mortar with a solid sorbent and then transferred to a polypropylene syringe containing a layer of clean-up co-sorbent. Analytes were eluted with a suitable solvent and further determined by gas chromatography with tandem mass spectrometry (GC-MS/MS). Under final conditions, diatomaceous earth and silica, deactivated to 10%, were used as inert dispersant and clean-up co-sorbent, respectively. Analytes were recovered using just 5 mL of dichloromethane, and this extract was concentrated and exchanged to 1 mL of isooctane. Further removal of co-extracted sulphur was achieved adding activated copper powder to final extracts, which were stored overnight, before injection in the GC-MS/MS system. The accuracy of the method was assessed with river and marine sediment samples showing different carbon contents and spiked at different concentrations in the range from 40 to 500 ng g(-1). Recoveries varied between 78% and 110% with associated standard deviations below 14%. The limits of quantification of the method stayed between 3 and 15 ng g(-1). Levels of target compounds in sediment samples ranged from not detected up to a maximum of 56 ng g(-1) for Tinuvin 328.
Fiscal-Ladino, Jhon A; Obando-Ceballos, Mónica; Rosero-Moreano, Milton; Montaño, Diego F; Cardona, Wilson; Giraldo, Luis F; Richter, Pablo
2017-02-08
Montmorillonite (MMT) clays were modified by the intercalation into their galleries of ionic liquids (IL) based on imidazolium quaternary ammonium salts. This new eco-materials exhibited good features for use as a sorptive phase in the extraction of low-polarity analytes from aqueous samples. Spectroscopic analyses of the modified clays were conducted and revealed an increase in the basal spacing and a shifting of the reflection plane towards lower values as a consequence of the effective intercalation of organic cations into the MMT structure. The novel sorbent developed herein was assayed as the sorptive phase in rotating-disk sorptive extraction (RDSE), using polychlorinated biphenyls (PCBs), representative of low-polarity pollutants, as model analytes. The final determination was made by gas chromatography with electron capture detection. Among the synthetized sorptive phases, the selected system for analytical purposes consisted of MMT modified with the 1-hexadecyl-3-methylimidazolium bromide (HDMIM-Br) IL. Satisfactory analytical features were achieved using a sample volume of 5 mL: the relative recoveries from a wastewater sample were higher than 80%, the detection limits were between 3 ng L -1 and 43 ng L -1 , the precision (within-run precision) expressed as the relative standard deviation ranged from 2% to 24%, and the enrichment factors ranged between 18 and 28. Using RDSE, the extraction efficiency achieved for the selected MMT-HDMIM-Br phase was compared with other commercial solid phases/supports, such as polypropylene, polypropylene with 1-octanol (as a supported liquid membrane), octadecyl (C18) and octyl (C8), and showed the highest response for all the studied analytes. Under the optimized extraction conditions, this new device was applied in the analysis of the influent of a wastewater treatment plant in Santiago (Chile), demonstrating its applicability through the good recoveries and precision achieved with real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Rost, Christina M.; Sachet, Edward; Borman, Trent; Moballegh, Ali; Dickey, Elizabeth C.; Hou, Dong; Jones, Jacob L.; Curtarolo, Stefano; Maria, Jon-Paul
2015-01-01
Configurational disorder can be compositionally engineered into mixed oxide by populating a single sublattice with many distinct cations. The formulations promote novel and entropy-stabilized forms of crystalline matter where metal cations are incorporated in new ways. Here, through rigorous experiments, a simple thermodynamic model, and a five-component oxide formulation, we demonstrate beyond reasonable doubt that entropy predominates the thermodynamic landscape, and drives a reversible solid-state transformation between a multiphase and single-phase state. In the latter, cation distributions are proven to be random and homogeneous. The findings validate the hypothesis that deliberate configurational disorder provides an orthogonal strategy to imagine and discover new phases of crystalline matter and untapped opportunities for property engineering. PMID:26415623
Ion adsorption-induced wetting transition in oil-water-mineral systems.
Mugele, Frieder; Bera, Bijoyendra; Cavalli, Andrea; Siretanu, Igor; Maestro, Armando; Duits, Michel; Cohen-Stuart, Martien; van den Ende, Dirk; Stocker, Isabella; Collins, Ian
2015-05-27
The relative wettability of oil and water on solid surfaces is generally governed by a complex competition of molecular interaction forces acting in such three-phase systems. Herein, we experimentally demonstrate how the adsorption of in nature abundant divalent Ca(2+) cations to solid-liquid interfaces induces a macroscopic wetting transition from finite contact angles (≈ 10°) with to near-zero contact angles without divalent cations. We developed a quantitative model based on DLVO theory to demonstrate that this transition, which is observed on model clay surfaces, mica, but not on silica surfaces nor for monovalent K(+) and Na(+) cations is driven by charge reversal of the solid-liquid interface. Small amounts of a polar hydrocarbon, stearic acid, added to the ambient decane synergistically enhance the effect and lead to water contact angles up to 70° in the presence of Ca(2+). Our results imply that it is the removal of divalent cations that makes reservoir rocks more hydrophilic, suggesting a generalizable strategy to control wettability and an explanation for the success of so-called low salinity water flooding, a recent enhanced oil recovery technology.
Jung, Jae-Woong; Nam, Kyoungphile
2014-06-30
In this study, the effect of monopotassium phosphate (MKP) on the reduction in mobility and bioavailability of 2,4,6-trinitrotoluene (TNT) was tested. In the test soil, collected from an active firing range, of which cation binding sites were mostly exchanged with H(+) or Al(3+), potassium ions in MKP exchanged the existing cations and hence significantly increased TNT sorption. In addition, a competitive sorption experiment with hexafluorobenzene and 2,4-dinitrotoluene suggests that TNT was specifically sorbed through cation-polar interaction in the test soil. The unit-equivalent Freundlich sorption coefficient of TNT in MKP-amended soil (1370.96 mg-TNT/kg-soil) was about 13 times higher than that in untreated soil (106.23 mg-TNT/kg-soil). Finally, modified synthetic precipitation leaching procedure and hydroxypropyl-β-cyclodextrin extraction result revealed that MKP application could reduce both the leachability and bioavailability of soil TNT. The leachable and extractable fraction of TNT in untreated soil were 87.63% and 94.47% of the initial TNT, respectively, whereas these fractions decreased to 49.15% and 54.85% of the initial TNT in the presence of MKP, respectively. MKP application can be a benign technology which can reduce both mobility and bioavailability of TNT in soil. Copyright © 2014. Published by Elsevier B.V.
Al-Abed, S. R.; Hageman, P.L.; Jegadeesan, G.; Madhavan, N.; Allen, D.
2006-01-01
Evaluation of metal leaching using a single leach test such as the Toxicity Characteristic Leaching Procedure (TCLP) is often questionable. The pH, redox potential (Eh), particle size and contact time are critical variables in controlling metal stability, not accounted for in the TCLP. This paper compares the leaching behavior of metals in mineral processing waste via short-term extraction tests such as TCLP, Field Leach Test (FLT) used by USGS and deionized water extraction tests. Variation in the extracted amounts was attributed to the use of different particle sizes, extraction fluid and contact time. In the controlled pH experiments, maximum metal extraction was obtained at acidic pH for cationic heavy metals such as Cu, Pb and Zn, while desorption of Se from the waste resulted in high extract concentrations in the alkaline region. Precipitation of iron, caused by a pH increase, probably resulted in co-precipitation and immobilization of Cu, Pb and Zn in the alkaline pH region. A sequential extraction procedure was performed on the original waste and the solid residue from the Eh-pH experiments to determine the chemical speciation and distribution of the heavy metals. In the as-received waste, Cu existed predominantly in water soluble or sulfidic phases, with no binding to carbonates or iron oxides. Similar characteristics were observed for Pb and Zn, while Se existed mostly associated with iron oxides or sulfides. Adsorption/co-precipitation of Cu, Se and Pb on precipitated iron hydroxides was observed in the experimental solid residues, resulting in metal immobilization above pH 7.
Applications of reversible covalent chemistry in analytical sample preparation.
Siegel, David
2012-12-07
Reversible covalent chemistry (RCC) adds another dimension to commonly used sample preparation techniques like solid-phase extraction (SPE), solid-phase microextraction (SPME), molecular imprinted polymers (MIPs) or immuno-affinity cleanup (IAC): chemical selectivity. By selecting analytes according to their covalent reactivity, sample complexity can be reduced significantly, resulting in enhanced analytical performance for low-abundance target analytes. This review gives a comprehensive overview of the applications of RCC in analytical sample preparation. The major reactions covered include reversible boronic ester formation, thiol-disulfide exchange and reversible hydrazone formation, targeting analyte groups like diols (sugars, glycoproteins and glycopeptides, catechols), thiols (cysteinyl-proteins and cysteinyl-peptides) and carbonyls (carbonylated proteins, mycotoxins). Their applications range from low abundance proteomics to reversible protein/peptide labelling to antibody chromatography to quantitative and qualitative food analysis. In discussing the potential of RCC, a special focus is on the conditions and restrictions of the utilized reaction chemistry.
Meng, Hong-Bo; Wang, Tian-Ran; Guo, Bao-Yuan; Hashi, Yuki; Guo, Can-Xiong; Lin, Jin-Ming
2008-07-15
A non-suppressed ion chromatographic method by connecting anion-exchange and cation-exchange columns directly was developed for the separation and determination of five inorganic anions (sulfate, nitrate, chloride, nitrite, and chlorate) and three cations (sodium, ammonium, and potassium) simultaneously in explosive residues. The mobile phase was composed of 3.5mM phthalic acid with 2% acetonitrile and water at flow rate of 0.2 mL/min. Under the optimal conditions, the eight inorganic ions were completely separated and detected simultaneously within 16 min. The limits of detection (S/N=3) of the anions and cations were in the range of 50-100 microg/L and 150-320 microg/L, respectively, the linear correlation coefficients were 0.9941-0.9996, and the R.S.D. of retention time and peak area were 0.10-0.29% and 5.65-8.12%, respectively. The method was applied successfully to the analysis of the explosive samples with satisfactory results.
Zepeda-Ruiz, L. A.; Sadigh, B.; Chernov, A. A.; ...
2017-11-21
Molecular dynamics simulations of an embedded atom copper system in the NPH ensemble are used to study the e ective solid-liquid interfacial free energy of quasispherical solid crystals within a liquid. This is within the larger context of MD simulations of this system undergoing solidi cation, where single individually-prepared crystallites of di erent sizes grow until they reach a thermodynamically stable nal state. The resulting equilibrium shapes possess the full structural details expected for solids with weakly anisotropic surface free energies (in these cases, ~5 % radial attening and rounded [111] octahedral faces). The simplifying assumption of sphericity and perfectmore » isotropy leads to an e ective interfacial free energy as appearing in the Gibbs-Thomson equation, which we determine to be ~179 erg/cm 2, roughly independent of crystal size for radii in the 50 - 250 A range. This quantity may be used in atomistically-informed models of solidi cation kinetics for this system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zepeda-Ruiz, L. A.; Sadigh, B.; Chernov, A. A.
Molecular dynamics simulations of an embedded atom copper system in the NPH ensemble are used to study the e ective solid-liquid interfacial free energy of quasispherical solid crystals within a liquid. This is within the larger context of MD simulations of this system undergoing solidi cation, where single individually-prepared crystallites of di erent sizes grow until they reach a thermodynamically stable nal state. The resulting equilibrium shapes possess the full structural details expected for solids with weakly anisotropic surface free energies (in these cases, ~5 % radial attening and rounded [111] octahedral faces). The simplifying assumption of sphericity and perfectmore » isotropy leads to an e ective interfacial free energy as appearing in the Gibbs-Thomson equation, which we determine to be ~179 erg/cm 2, roughly independent of crystal size for radii in the 50 - 250 A range. This quantity may be used in atomistically-informed models of solidi cation kinetics for this system.« less
la Marca, Giancarlo; Rizzo, Cristiano
2011-01-01
The analysis of organic acids in urine is commonly included in routine procedures for detecting many inborn errors of metabolism. Many analytical methods allow for both qualitative and quantitative determination of organic acids, mainly in urine but also in plasma, serum, whole blood, amniotic fluid, and cerebrospinal fluid. Liquid-liquid extraction and solid-phase extraction using anion exchange or silica columns are commonly employed approaches for sample treatment. Before analysis can be carried out using gas chromatography-mass spectrometry, organic acids must be converted into more thermally stable, volatile, and chemically inert forms, mainly trimethylsilyl ethers, esters, or methyl esters.
Svegl, I G; Ogorevc, B
2000-08-01
Carbon paste electrodes (CPEs) modified with different soils in their native form were prepared to create a soil-like solid phase suitable for application in studies of heavy metal ion uptake and binding interactions. The preparation of CPEs modified with five different soils was examined and their heavy metal ion uptake behavior investigated using a model Cu(II) aqueous solution. Metal ions were accumulated under open circuit conditions and were determined after a medium exchange using differential pulse anodic stripping voltammetry, applying preelectrolysis at -0.7 V. The soil-modified CPE accumulation behavior, including the linearity of the current response versus Cu(II) concentration, the influence of the pH on the solution, and the uptake kinetics, was thoroughly investigated. The correlation between the soil-modified CPE uptake capability and the standard soil parameters, such as ion exchange capacity, soil pH, organic matter and clay content, were evaluated for all five examined soils. The influence of selected endogenous cations (K(I), Ca(II), Fe(III)) on the transfer of Cu(II) ions from a solution to the simulated soil solid phase was examined and is discussed. Preliminary examinations of the soil-modified CPE uptake behavior with some exogenous heavy metal ions of strong environmental interest (Pb(II), Hg(II), Cd(II) and Ag(I)) are also presented. This work demonstrates some attractive possibilities for the application of a soil-modified CPE in studying soil-heavy metal ion binding interactions, with a further potential use as a new environmental sensor appropriate for fist on-site testing of polluted soils.
Xian, Yanping; Wu, Yuluan; Dong, Hao; Guo, Xindong; Wang, Bin; Wang, Li
2017-09-29
The present work presents a novel and rapid analytical method for the simultaneous analysis of bisphenol A (BPA), bisphenol B (BPB), bisphenol F (BPF) and bisphenol S (BPS) in edible oil based on dispersive micro solid phase extraction (DMSPE) for the first time followed by isotope dilution-ultra high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The edible oil sample was dispersed by n-hexane and extracted with ammoniated methanol-water solution. Then the target analytes were dispersedly absorbed using the polymer anion exchange (PAX) as the sorbent and eluted by acidic methanol. After that, four bisphenols were separated on a C18 column by gradient elution with methanol and 0.05% ammonium hydroxide in water as mobile phase, detected by MS/MS under multiple reactions monitoring (MRM) mode and quantified by internal standard method. The PAX amounts, adsorption time, concentrations of formic acid in the elution solvent and volume of elution solvent for the DMSPE technique were optimized. The limit of detection and quantitation (LOD and LOQ), matrix effect, recovery and precision of the developed method were investigated. Results indicated that BPS and the rest three bisphenols displayed excellent linearity in the concentration ranges of 0.1-50μg/L and 0.5-250μg/L, respectively, with correlation coefficients (R 2 ) all larger than 0.998. Achieved MLODs (S/N=3) varied between 0.1-0.4μg/kg for all bisphenols. The mean recoveries at three spiked levels in edible oil were in the range of 87.3-108%. Intra-day precision (n=6) and inter-day precision (n=5) were <9% and <11%, respectively. This method is of rapid-and-simple pretreatment, accurate and sensitive, and suitable for the simultaneous determination of bisphenols in edible oil. Copyright © 2017. Published by Elsevier B.V.
Giner Casares, Juan José; Camacho, Luis; Martín-Romero, Maria Teresa; López Cascales, José Javier
2008-12-01
Studying the effect of alkali and alkaline-earth metal cations on Langmuir monolayers is relevant from biophysical and nanotechnological points of view. In this work, the effect of Na(+) and Ca(2+) on a model of an anionic Langmuir lipid monolayer of dimyristoylphosphatidate (DMPA(-)) is studied by molecular dynamics simulations. The influence of the type of cation on lipid structure, lipid-lipid interactions, and lipid ordering is analyzed in terms of electrostatic interactions. It is found that for a lipid monolayer in its solid phase, the effect of the cations on the properties of the lipid monolayer can be neglected. The influence of the cations is enhanced for the lipid monolayer in its gas phase, where sodium ions show a high degree of dehydration compared with calcium ions. This loss of hydration shell is partly compensated by the formation of lipid-ion-lipid bridges. This difference is ascribed to the higher charge-to-radius ratio q/r for Ca(2+), which makes ion dehydration less favorable compared to Na(+). Owing to the different dehydration behavior of sodium and calcium ions, diminished lipid-lipid coordination, lipid-ion coordination, and lipid ordering are observed for Ca(2+) compared to Na(+). Furthermore, for both gas and solid phases of the lipid Langmuir monolayers, lipid conformation and ion dehydration across the lipid/water interface are studied.
USDA-ARS?s Scientific Manuscript database
A polygalacturonase (PG) was extracted and purified from decayed tissue of ‘Anjou’ pear fruit inoculated with Penicillium expansum. Ammonium sulfate precipitation, gel filtration and cation exchange chromatography were used to purify the enzyme. Both chromatographic methods revealed a single peak co...
SEQUENTIAL EXTRACTIONS FOR PARTITIONING OF ARSENIC ON HYDROUS IRON OXIDES AND IRON SULFIDES
The objective of this study was to use model solids to test solutions designed to extract arsenic from relatively labile solid phase fractions. The use of sequential extractions provides analytical constraints on the identification of mineral phases that control arsenic mobility...
NASA Astrophysics Data System (ADS)
Falter, Christoph; Sizmann, Andreas; Pitz-Paal, Robert
2017-06-01
A modular reactor model is presented for the description of solar thermochemical syngas production involving counter-flow heat exchangers that recuperate heat from the solid phase. The development of the model is described including heat diffusion within the reactive material as it travels through the heat exchanger, which was previously identified to be a possibly limiting factor in heat exchanger design. Heat transfer within the reactive medium is described by conduction and radiation, where the former is modeled with the three-resistor model and the latter with the Rosseland diffusion approximation. The applicability of the model is shown by the analysis of heat exchanger efficiency for different material thicknesses and porosities in a system with 8 chambers and oxidation and reduction temperatures of 1000 K and 1800 K, respectively. Heat exchanger efficiency is found to rise strongly for a reduction of material thickness, as the element mass is reduced and a larger part of the elements takes part in the heat exchange process. An increase of porosity enhances radiation heat exchange but deteriorates conduction. The overall heat exchange in the material is improved for high temperatures in the heat exchanger, as radiation dominates the energy transfer. The model is shown to be a valuable tool for the development and analysis of solar thermochemical reactor concepts involving heat exchange from the solid phase.
Amin, Alaa S
2014-01-01
Solid-phase spectrophotometry was applied to determination of trace amounts of selenium (Se) in water, soil, plant materials, human hair, and a cosmetic preparation (lipstick). Se(IV) was sorbed in a dextran type lipophilic gel as a complex with 2,3-dichloro-6-(2,7-dihydroxy-naphthylazo)quinoxaline (DCDHNAQ), whereas Se(VI) was determined after boiling in HCI for 10 min to convert Se(VI) to Se(IV). Resin phase absorbances at 588 and 800 nm were measured directly, which allowed the determination of Se in the range of 0.2-3.3 microg/L with an RSD of 1.22%. The influences of analytical parameters including pH of the aqueous solution, amounts of DCDHNAQ, and sample volume were investigated. The molar absorptivities were found to be 1.09 x 10(6), 4.60 x 10(6), and 1.23 x 10(7) L/mol cm for 100, 500, and 1000 mL, respectively. The LOD and LOQ of the 500 mL sample method were 110 and 360 ng/L, respectively, when using 50 mg dextran type lipophilic gel. For a 1000 mL sample, the LOD and LOQ were 60 and 200 ng/L, respectively, using 50 mg of the exchanger. Increasing the sample volume enhanced the sensitivity. No considerable interferences were observed from other investigated anions and cations on the Se determination.
Baggiani, C; Giovannoli, C; Anfossi, L; Tozzi, C
2001-12-14
A molecularly imprinted polymer (MIP) was synthesized using the herbicide 2,4,5-trichlorophenoxyacetic acid as a template, 4-vinylpyridine as an interacting monomer, ethylendimethacrylate as a cross-linker and a methanol-water mixture as a porogen. The binding properties and the selectivity of the polymer towards the template were investigated by frontal and zonal liquid chromatography. The polymer was used as a solid-phase extraction material for the clean-up of the template molecule and some related herbicides (2,4-dichlorophenoxyacetic acid, fenoprop, dichlorprop) from river water samples at a concentration level of ng/ml with quantitative recoveries comparable with those obtained with a traditional C18 reversed-phase column when analyzed by capillary electrophoresis. The results obtained show that the MIP-based approach to the solid-phase extraction is comparable with the more traditional solid-phase extraction with C18 reversed-phase columns in terms of recovery, but it is superior in terms of sample clean-up.
Khoeini Sharifabadi, Malihe; Saber-Tehrani, Mohammad; Waqif Husain, Syed; Mehdinia, Ali; Aberoomand-Azar, Parviz
2014-01-01
A simple and sensitive solid-phase extraction method for separation and preconcentration of trace amount of four nonsteroidal anti-inflammatory drugs (naproxen, indomethacin, diclofenac, and ibuprofen) using Fe3O4 magnetic nanoparticles modified with cetyltrimethylammonium bromide has been developed. For this purpose, the surface of MNPs was modified with cetyltrimethylammonium bromide (CTAB) as a cationic surfactant. Effects of different parameters influencing the extraction efficiency of drugs including the pH, amount of salt, shaking time, eluent type, the volume of solvent, amount of adsorbent, sample volume, and the time of desorption were investigated and optimized. Methanol has been used as desorption solvent and the extracts were analysed on a reversed-phase octadecyl silica column using 0.02 M phosphate-buffer (pH = 6.02) acetonitrile (65 : 35 v/v) as the mobile phase and the effluents were measured at 202 nm with ultraviolet detector. The relative standard deviation (RSD%) of the method was investigated at three concentrations (25, 50, and 200 ng/mL) and was in the range of 3.98-9.83% (n = 6) for 50 ng/mL. The calibration curves obtained for studied drugs show reasonable linearity (R (2) > 0.99) and the limit of detection (LODs) ranged between 2 and 7 ng/mL. Finally, the proposed method has been effectively employed in extraction and determination of the drugs in biological and environmental samples.
Lakade, Sameer S; Zhou, Qing; Li, Aimin; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa M
2018-04-01
This work presents a new extraction material, namely, Q-100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid-phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q-100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid-phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q-100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid-phase extraction using Q-100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study of groundwater arsenic pollution in Lanyang Plain using multivariate statistical analysis
NASA Astrophysics Data System (ADS)
chan, S.
2013-12-01
The study area, Lanyang Plain in the eastern Taiwan, has highly developed agriculture and aquaculture, which consume over 70% of the water supplies. Groundwater is frequently considered as an alternative water source. However, the serious arsenic pollution of groundwater in Lanyan Plain should be well studied to ensure the safety of groundwater usage. In this study, 39 groundwater samples were collected. The results of hydrochemistry demonstrate two major trends in Piper diagram. The major trend with most of groundwater samples is determined with water type between Ca+Mg-HCO3 and Na+K-HCO3. This can be explained with cation exchange reaction. The minor trend is obviously corresponding to seawater intrusion, which has water type of Na+K-Cl, because the localities of these samples are all in the coastal area. The multivariate statistical analysis on hydrochemical data was conducted for further exploration on the mechanism of arsenic contamination. Two major factors can be extracted with factor analysis. The major factor includes Ca, Mg and Sr while the minor factor includes Na, K and As. This reconfirms that cation exchange reaction mainly control the groundwater hydrochemistry in the study area. It is worth to note that arsenic is positively related to Na and K. The result of cluster analysis shows that groundwater samples with high arsenic concentration can be grouped into that with high Na, K and HCO3. This supports that cation exchange would enhance the release of arsenic and exclude the effect of seawater intrusion. In other words, the water-rock reaction time is key to obtain higher arsenic content. In general, the major source of arsenic in sediments include exchangeable, reducible and oxidizable phases, which are adsorbed ions, Fe-Mn oxides and organic matters/pyrite, respectively. However, the results of factor analysis do not show apparent correlation between arsenic and Fe/Mn. This may exclude Fe-Mn oxides as a major source of arsenic. The other sources will be evaluated by more trace elements, such as rare earth elements.
Process and apparatus for the production of BI-213 cations
Horwitz, E. Philip; Hines, John J.; Chiarizia, Renato; Dietz, Mark
1998-01-01
A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed.
Process and apparatus for the production of Bi-213 cations
Horwitz, E.P.; Hines, J.J.; Chiarizia, R.; Dietz, M.
1998-12-29
A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed. 7 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Mathew S.; Snyder, Darin C.; Mann, Nick R.
2015-05-01
135Cs/ 137Cs isotope ratios can provide the age, origin and history of environmental Cs contamination. Relatively high precision 135Cs/ 137Cs isotope ratio measurements from samples containing femtogram quantities of 137Cs are needed to accurately track contamination resuspension and redistribution following environmental 137Cs releases; however, mass spectrometric analyses of environmental samples are limited by the large quantities of ionization inhibitors and isobaric interferences which are present at relatively high concentrations in the environment. We report a new approach for Cs purification from environmental samples. An initial ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) column provides a robust method for extracting Cs under a wide varietymore » of sample matrices and mass loads. Cation exchange separations using a second AMP-PAN column result in more than two orders of magnitude greater Cs/Rb separation factors than commercially available strong cation exchangers. Coupling an AMP-PAN cation exchanging step to a microcation column (AG50W resin) enables consistent 2-4% (2σ) measurement errors for samples containing 3-6,000 fg 137Cs, representing the highest precision 135Cs/ 137Cs ratio measurements currently reported for soil samples at the femtogram level.« less
Lian, Ziru; Li, Hai-Bei; Wang, Jiangtao
2016-08-01
An innovative and effective extraction procedure based on molecularly imprinted solid-phase extraction (MISPE) was developed for the isolation of gonyautoxins 2,3 (GTX2,3) from Alexandrium minutum sample. Molecularly imprinted polymer microspheres were prepared by suspension polymerization and and were employed as sorbents for the solid-phase extraction of GTX2,3. An off-line MISPE protocol was optimized. Subsequently, the extract samples from A. minutum were analyzed. The results showed that the interference matrices in the extract were obviously cleaned up by MISPE procedures. This outcome enabled the direct extraction of GTX2,3 in A. minutum samples with extraction efficiency as high as 83 %, rather significantly, without any need for a cleanup step prior to the extraction. Furthermore, computational approach also provided direct evidences of the high selective isolation of GTX2,3 from the microalgal extracts.
NASA Astrophysics Data System (ADS)
Mogolodi Dimpe, K.; Mpupa, Anele; Nomngongo, Philiswa N.
2018-01-01
This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5 μg L- 1 and 1.7 μg L- 1, respectively, and intraday and interday precision expressed in terms of relative standard deviation were > 6%.The maximum adsorption capacity was 138 mg g- 1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water.
Park, Chul; Helm, Richard F; Novak, John T
2008-12-01
The fate of activated sludge extracellular proteins in sludge digestion was investigated using three different cation-associated extraction methods and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Extraction methods used were the cation exchange resin (CER) method for extracting calcium (Ca2+) and magnesium (Mg2+), sulfide extraction for removing iron, and base treatment (pH 10.5) for dissolving aluminum. Extracellular polymeric substances extracted were then subjected to SDS-PAGE, and the resultant protein profiles were examined before and after sludge digestion. The SDS-PAGE results showed that three methods led to different SDS-PAGE profiles for both undigested and digested sludges. The results further revealed that CER-extracted proteins remained mainly undegraded in anaerobic digestion, but were degraded in aerobic digestion. While the fate of sulfide- and base-extracted proteins was not clear for aerobic digestion, their changes in anaerobic digestion were elucidated. Most sulfide-extracted proteins were removed by anaerobic digestion, while the increase in protein band intensity and diversity was observed for base-extracted proteins. These results suggest that activated sludge flocs contain different fractions of proteins that are distinguishable by their association with certain cations and that each fraction undergoes different fates in anaerobic and aerobic digestion. The proteins that were resistant to degradation and generated during anaerobic digestion were identified by liquid chromatography tandem mass spectrometry. Protein identification results and their putative roles in activated sludge and anaerobic digestion are discussed in this study.
Pappu, Venkata K S; Kanyi, Victor; Santhanakrishnan, Arati; Lira, Carl T; Miller, Dennis J
2013-02-01
The liquid phase esterification of butyric acid with a series of linear and branched alcohols is examined. Four strong cation exchange resins, Amberlyst™ 15, Amberlyst™ 36, Amberlyst™ BD 20, and Amberlyst™ 70, were used along with para-toluenesulfonic acid as a homogeneous catalyst. The effect of increasing alcohol carbon chain length and branching on esterification rate at 60°C is presented. For all catalysts, the decrease in turnover frequency (TOF) with increasing carbon chain length of the alcohol is described in terms of steric hindrance, alcohol polarity, and hydroxyl group concentration. The kinetics of butyric acid esterification with 2-ethylhexanol using Amberlyst™ 70 catalyst is described with an activity-based, pseudo-homogeneous kinetic model that includes autocatalysis by butyric acid. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sequential extractions can provide analytical constraints on the identification of mineral phases that control arsenic speciation in sediments. Model solids were used in this study to evaluate different solutions designed to extract arsenic from relatively labile solid phases. ...
Loconto, Paul R; Isenga, David; O'Keefe, Michael; Knottnerus, Mark
2008-01-01
Polybrominated diphenyl ethers (PBDEs) are isolated and recovered with acceptable percent recoveries from human serum via liquid-liquid extraction and column chromatographic cleanup and fractionation with quantitation using capillary gas chromatography-mass spectrometry with electron capture negative ion and selected ion monitoring. PBDEs are found in unspiked serum. An alternative sample preparation approach is developed using sheep serum that utilizes a formic acid pre-treatment followed by reversed-phase solid-phase disk extraction and normal-phase solid-phase cleanup using acidified silica gel that yields>50% recoveries. When these percent recoveries are combined with a minimized phase ratio for human serum and very low instrument detection limits, method detection limits below 500 parts-per-trillion are realized.
Design and Development of Mixed-Metal Oxide Photocatalysts: the Band Engineering Approach
NASA Astrophysics Data System (ADS)
Boltersdorf, Jonathan Andrew
The design and development of mixed-metal oxides incorporating Ag(I), Pb(II), Sn(II), and Bi(III), i.e., with filled d10 or d10s2 electron configurations, have yielded new approaches to tune optical and photocatalytic properties for solar energy conversion. My research efforts in the area of solid-state photochemistry have focused on utilizing flux-mediated ion-exchange methods in conjunction with the band engineering approach to synthesize new materials for solar energy driven total water splitting. Layered perovskite phases and the polysomatic family of tantalate/niobate structures, with the general formula Am+ ( n+1)/mB(3 n+1)O(8n +3) (A = Na, Ag; B = Ta, Nb), have received increasing attention owing to their synthetic flexibility, tunable optical band gaps, and photocatalytic activities for total water splitting. Structures in the family of A m+ (n+1)/ mB(3n +1)O(8n+3) structures are based on the stacking of pentagonal bipyramidal layers, where n defines the average thickness (1 ≤ n ≤ 2) of the BO7 layers that alternate with isolated BO6 octahedra surrounded by A-site cations. Synthetic limitations in the discovery of new phases within the layered perovskites and the Am + (n+1)/mB(3 n+1)O(8n +3) structural families can be addressed with the aid of a metal-salt solvent, known as the molten-salt flux method. The flux synthetic route requires the use of an inorganic salt heated above its melting temperature in order to serve as a solvent system for crystallization. Molten fluxes allow for synthetic modification of particle characteristics and can enable the low temperature stabilization of new compositions and phases with limited stability using ion-exchange reactions (e.g., PbTa4O11, AgLaNb 2O7). Solid-state and flux-mediated exchange methods were utilized in order to synthetically explore and investigate the layered perovskites ALaNb2O7, AA2Nb3O 10, A'2La2Ti3O10 (A' = Rb, Ag; A = Ca, Sr), the Am+ (n+1)/mB 3n+1O(8 n+3) structural family (Am + = Na(I), Ag(I), Pb(II), Sn(II), Bi(III); B = Ta, Nb), Pb3Ta 4O13, PbTa2O6, Bi7Ta 3O18, and Sn2TiO4. The impact of the dimensionality of the structural features on the photocatalytic activities of the metal-oxides will be examined. A comparison of the influence of Ag(I), Pb(II), Sn(II), and Bi(III) cations in combination with Ti(IV), Nb(V), and Ta(V) cations on the optical properties and photocatalytic rates of the mixed-metal oxides will be presented. The results of these investigations have led to new insights into synthetic strategies for the development of new metal-oxide photocatalysts, which have aided in understanding the effects of transition and post-transition metals, structural features, and flux-mediated synthesis methods on the optical and photocatalytic properties of metal oxides for solar fuel production.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Liu, Q.; Li, Y.
2012-03-01
Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with the standard wall function model might be the best approach, by which, the simulation data seems to be closest to the experimental results.
Li, Ji; Hu, Xiaoling; Guan, Ping; Zhang, Xiaoyan; Qian, Liwei; Zhang, Nan; Du, Chunbao; Song, Renyuan
2016-05-01
A novel l-phenylalanine molecularly imprinted solid-phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion-pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid-phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l-phenylalanine. Under the optimized conditions of the procedure, an analytical method for l-phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse-phase silica gel, the obtained molecularly imprinted polymer as an solid-phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L(-1) ) for the isolation of l-phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion-pair dummy template imprinting is effective for preparing selective solid-phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Baggiani, Claudio; Baravalle, Patrizia; Giovannoli, Cristina; Anfossi, Laura; Giraudi, Gianfranco
2010-05-01
Superporous monolithic hydrogels (cryogel monoliths) are elastic, sponge-like materials that can be prepared in an aqueous medium through a cryotropic gelation technique. These monoliths show interesting properties for the development of high-throughput solid-phase extraction supports to treat large volumes of aqueous samples. In this work, a cryogel-supported molecularly imprinted solid-phase extraction approach for the endocrine disruptor bisphenol A (BPA) from river water and wine samples is presented. An imprinted polymer with molecular recognition properties for BPA was prepared in acetonitrile by thermal polymerization of a mixture of 4,4'-dihydroxy-2,2-diphenyl-1,1,1,3,3,3-trifluoropropane as a mimic template of BPA, 4-vinylpyridine and trimethylolpropane trimethacrylate in a molar ratio of 1 + 6 + 6. Fine imprinted particles (<10 microm) were embedded in a poly-acrylamide-co-N,N'-methylenbisacrylamide cryogel obtained by ammonium persulfate-induced cryopolymerization at -18 degrees C. The resulting monolithic gel was evaluated for its use as a sorbent support in an off-line solid-phase extraction approach to recover BPA from dilute aqueous samples with minimum pre-loading work-up. The optimized extraction protocol resulted in a reliable MISPE method suitable to selectively extract and preconcentrate BPA from river water and red wine samples, demonstrating the practical feasibility of cryogel-trapped imprinted polymers as solid-phase extraction materials.
Schaner, Angela; Konecny, Jaclyn; Luckey, Laura; Hickes, Heidi
2007-01-01
The method presented uses reversed-phase liquid chromatography with negative electrospray ionization and tandem mass spectrometry to analyze 9 chlorinated acid herbicides in soil and vegetation matrixes: clopyralid, dicamba, MCPP, MCPA, 2,4-DP, 2,4-D, triclopyr, 2,4-DB, and picloram. A 20 g portion is extracted with a basic solution and an aliquot acidified and micropartitioned with 3 mL chloroform. Vegetation samples are subjected to an additional cleanup with a mixed-mode anion exchange solid-phase extraction cartridge. Two precursor product ion transitions per analyte are measured and evaluated to provide the maximum degree of confidence in results. Average recoveries for 3 different soil types tested ranged from 72 to 107% for all compounds with the exception of 2,4-DB at 56-99%. Average recoveries for the 3 different vegetation types studied were lower and ranged from 53 to 80% for all compounds.
Isosteric heat of water adsorption and desorption in homoionic alkaline-earth montmorillonites
NASA Astrophysics Data System (ADS)
Belhocine, M.; Haouzi, A.; Bassou, G.; Phou, T.; Maurin, D.; Bantignies, J. L.; Henn, F.
2018-02-01
The aim of the present work is to study by means of thermodynamic measurements and Infrared spectroscopy, the effect of the interlayer cations on the adsorption-desorption of water in the case of a montmorillonite exchanged with alkaline-earth metals. For the first time, the net isosteric heat of water adsorption and desorption is determined from isotherms recorded at three temperatures. The net isosteric heat is a very useful parameter for getting more insights into the sorption mechanism since it provides information about the sorption energy evolution which can be complementary to that obtained from structural or gravimetric measurements. The homoionic montmorillonite samples are prepared from purification and cationic exchanged in aqueous solution of the raw material, i.e. the reference SWy-2 Wyoming material. XRD at the dry state and elemental chemical analysis confirm that the treatment does not deteriorate the clay structure and yield the expected homoionic composition. The sorption isotherms measured at various temperatures show that the nature of the interlayer, i.e. exchangeable, cation changes the adsorbed/desorbed amount of water molecules for a given water relative pressure. The total amount of water adsorbed at P/P∘ = 0.5 follows the cation sequence Ca ∼ Mg>Ba while the sorption isosteric heats follow a slightly different sequence, i.e. Ca > Mg>Ba. This discrepancy between the adsorption and desorption heat is due to the higher irreversibility of water sorption process in the Ca exchanged montmorillonite. Finally, analysis of the IR spectra recorded at room temperature and under a primary vacuum reveals that the amount of adsorbed water follows the same sequence as that of the isosteric heat of adsorption and shows the coexistence of liquid-like and solid-like water confined in the interlayer space.
Watfa, Nancy; Floquet, Sébastien; Terazzi, Emmanuel; Haouas, Mohamed; Salomon, William; Korenev, Vladimir S; Taulelle, Francis; Guénée, Laure; Hijazi, Akram; Naoufal, Daoud; Piguet, Claude; Cadot, Emmanuel
2015-02-14
A series of compounds resulting from the ionic association of a nanoscopic inorganic cluster of formula [K2NaxLiy{Mo4O4S4(OH)2(H2O)3}2(HzP8W48O184)]((34-x-y-z)-), 1, with several organic cations such as dimethyldioctadecylammonium DODA(+), trimethylhexadecylammonium TMAC16(+), alkylmethylimidazoliums mimCn(+) (n = 12-20) and alkyl-dimethylimidazoliums dmimCn(+) (n = 12 and 16) was prepared and characterized in the solid state by FT-IR, EDX, Elemental analysis, TGA and solid state NMR. The solid state NMR experiments performed on (1)H, (13)C and (31)P nuclei evidenced the interactions between the cations and 1 as well as the organization of the alkyl chains of the cations within the solid. Polarized optical microscopy, DSC and SA-XRD experiments implicated mesomorphic phases for DODA(+) and mimCn(+) salts of 1. The crystallographic parameters were determined and demonstrated that the inter-lamellar spacing could be controlled upon changing the length of the alkyl chain, a very interesting result if we consider the huge size of the inorganic cluster 1 and the simple nature of the cations.
Bosco, Renato; Caser, Matteo; Vanara, Francesca; Scariot, Valentina
2013-11-20
Plant hormones play a crucial role in controlling plant growth and development. These groups of naturally occurring substances trigger physiological processes at very low concentrations, which mandate sensitive techniques for their quantitation. This paper describes a method to quantify endogenous (±)-2-cis-4-trans-abscisic acid, indole-3-acetic acid, indole-3-propionic acid, and indole-3-butyric acid. The method combines high-performance liquid chromatography (HPLC) with diode array and fluorescence detection in a single run. Hybrid tea rose 'Monferrato' matrices (leaves, petals, roots, seeds, androecium, gynoecium, and pollen) were used as references. Rose samples were separated and suspended in extracting methanol, after which (±)-2-cis-4-trans-abscisic acid and auxins were extracted by solvent extraction. Sample solutions were added first to cation solid phase extraction (SPE) cartridges and the eluates to anion SPE cartridges. The acidic hormones were bound to the last column and eluted with 5% phosphoric acid in methanol. Experimental results showed that this approach can be successfully applied to real samples and that sample preparation and total time for routine analysis can be greatly reduced.
Three-phase flow? Consider helical-coil heat exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haraburda, S.S.
1995-07-01
In recent years, chemical process plants are increasingly encountering processes that require heat exchange in three-phase fluids. A typical application, for example, is heating liquids containing solid catalyst particles and non-condensable gases. Heat exchangers designed for three-phase flow generally have tubes with large diameters (typically greater than two inches), because solids can build-up inside the tube and lead to plugging. At the same time, in order to keep heat-transfer coefficients high, the velocity of the process fluid within the tube should also be high. As a result, heat exchangers for three-phase flow may require less than five tubes -- eachmore » having a required linear length that could exceed several hundred feet. Given these limitations, it is obvious that a basic shell-and-tube heat exchanger is not the most practical solution for this purpose. An alternative for three-phase flow is a helical-coil heat exchanger. The helical-coil units offer a number of advantages, including perpendicular, counter-current flow and flexible overall dimensions for the exchanger itself. The paper presents equations for: calculating the tube-side heat-transfer coefficient; calculating the shell-side heat-transfer coefficient; calculating the heat-exchanger size; calculating the tube-side pressure drop; and calculating shell-side pressure-drop.« less
Performance Evaluations of Ion Exchanged Zeolite Membranes on Alumina Supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhave, Ramesh R.; Jubin, Robert Thomas; Spencer, Barry B.
2017-08-27
This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. In the first phase of this effort, several monovalent and divalent cation-exchanged silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized on disk supports and characterized with gas and vapor permeation measurements. In the second phase, Linde Type A (LTA) zeolite membranes were synthesized in disk and tubular supports. The pervaporation process performance was evaluated for the separation and concentration of tritiated water.
NASA Astrophysics Data System (ADS)
Kolchanova, Kseniia; Barsova, Natalia; Motuzova, Galina; Stepanov, Andrey; Karpukhin, Mikhail
2017-04-01
The aim of this study was to investigate the forms of copper and transformation of organic matter in the soil under the influence of humic substances (potassium humate, which was obtained from coal). The object of research was the top layer of soil model field experience. Field experiments were carried out in 10-liter plastic containers.The upper layers were constructed artificially as mixture of loam, sand and peat. Below it was a layer of loam, then gravel and under it we installed lysimeters. The experiment was conducted in 3 settings: 1) control, 2) control + Cu, and 3) control + Cu + potassium humate . Copper was deposited into upper layer at soil column construction as dry powder (CuSO4*5H2O), which is 1000mg per kg. Humic substance was introduced on surface as liquid form. The focus was the state of the copper and organic matter of solid and liquid phase. In the solid phase pH, carbon content, the molecular-mass distributions for the organic matter, total (HNO3 conc.+ H2O2; decomposition in a microwave oven) and acid-soluble (1H HNO3) copper content, sequential extraction of copper (1 M MgCl2, acetate buffer pH 4,8 (AAB), 1% EDTA) were determined. For liquid phase characteristics aqueous extract was obtained and identified therein: pH, total activity and copper content and water-soluble organic matter(WOM) amphiphilic properties. The introduction of copper is accompanied by a decrease in pH in soils from 7 to 6,3. The introduction of the humic substance softens this effect. Introducing humic preparation gives an increase in carbon at 0.5%. HS and copper has no significant effect on the molecular-mass distribution of solid organic matter. Only about 4% introduced copper accounted for the exchangeable form (MgCl2) for the variant only copper contaminated. Copper, mainly precipitated as hydroxides, moved in an AAB extract. And compared with the exchangeable forms its quantity increases by 10 times. Still more copper goes into an extract of EDTA, about half of the total. That is, the introduction of humic substances increases the amount of copper associated with organic matter in complexes with high stability constants. The total amount of copper of the results of extraction is 88-96% of the all total content. Water-soluble copper contains only 0.5% of the total. But the introduction of humic substances increases the amount of water-soluble copper is 3 times. This is due to the increase in the content of the WOM by 2.5-3 times, both due to the hydrophobic and hydrophilic factions of WOM. And this leads to a sharp reduction in the activity of copper in the liquid phase. Dual effect of introducing humic substances was obtained on the results of the work. On the one hand the introduction of humic substances contributes the immobilization of copper by increasing the fraction associated with organic matter in the solid phase. On the other hand the introduction of humic substances contributes the mobilization of copper in the liquid phase due to the increase of WOM.
Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene
2015-10-01
Previously (Kostyukevich et al. Anal Chem 2014, 86, 2595), we have reported that oligosaccharides anions are produced in the electrospray in two different conformations, which differ by the rate of gas phase hydrogen/deuterium (H/D) exchange reaction. In the present paper, we apply the in-electrospray ionization (ESI) source H/D exchange approach for the investigation of the oligosaccharides cations formed by attaching of metal ions (Na, K) to the molecule. It was observed that the formation of different conformers can be manipulated by varying the temperature of the desolvating capillary of the ESI interphase. Separation of the conformers was performed using gas phase H/D approach. Because the conformers have different rates of the H/D exchange reaction, the deuterium distribution spectrum becomes bimodal. It was found that the conformation corresponding to the slow H/D exchange rate dominates in the spectrum when the capillary temperature is low (~200 °C), and the conformation corresponding to the fast H/D exchange rate dominates at high (~400 °C) temperatures. In the intermediate temperature region, two conformers are present simultaneously. It was also observed that large oligosaccharide requires higher temperature for the formation of another conformer. It was found that the presence of the conformers considerably depends on the solvent used for ESI and the pH. We have compared these results with the previously performed in-ESI source H/D exchange experiments with peptides and proteins. Copyright © 2015 John Wiley & Sons, Ltd.
Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie
2014-11-01
A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Edelmann, Mariola J.
2011-01-01
Strong cation exchange (SCX) chromatography has been utilized as an excellent separation technique that can be combined with reversed-phase (RP) chromatography, which is frequently used in peptide mass spectrometry. Although SCX is valuable as the second component of such two-dimensional separation methods, its application goes far beyond efficient fractionation of complex peptide mixtures. Here I describe how SCX facilitates mapping of the protein posttranslational modifications (PTMs), specifically phosphorylation and N-terminal acetylation. The SCX chromatography has been mainly used for enrichment of these two PTMs, but it might also be beneficial for high-throughput analysis of other modifications that alter the net charge of a peptide. PMID:22174558
Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Sawicki, Jan; Staniak, Michał; Dresler, Sławomir; Szwerc, Wojciech; Mołdoch, Jarosław; Latalski, Michał
2018-01-01
Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples. PMID:29565297
Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianbing; Chernomordik, Boris D.; Crisp, Ryan W.
2015-07-28
We developed a strategy for producing quasi-spherical nanocrystals of anisotropic heterostructures of Cd/Pb chalcogenides. The nanostructures are fabricated via a controlled cation exchange reaction where the Cd2+ cation is exchanged for the Pb2+ cation. The cation exchange reaction is thermally activated and can be controlled by adjusting the reaction temperature or time. We characterized the particles using TEM, XPS, PL, and absorption spectroscopy. With complete exchange, high quality Pb-chalcogenide quantum dots are produced. In addition to Cd2+, we also find suitable conditions for the exchange of Zn2+ cations for Pb2+ cations. The cation exchange is anisotropic starting at one edgemore » of the nanocrystals and proceeds along the <111> direction producing a sharp interface at a (111) crystallographic plane. Instead of spherical core/shell structures, we produced and studied quasi-spherical CdS/PbS and CdSe/PbSe Janus-type heterostructures. Nontrivial PL behavior was observed from the CdS(e)/PbS(e) heterostructures as the Pb:Cd ratio is increased.« less
Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange.
Zhang, Jianbing; Chernomordik, Boris D; Crisp, Ryan W; Kroupa, Daniel M; Luther, Joseph M; Miller, Elisa M; Gao, Jianbo; Beard, Matthew C
2015-07-28
We developed a strategy for producing quasi-spherical nanocrystals of anisotropic heterostructures of Cd/Pb chalcogenides. The nanostructures are fabricated via a controlled cation exchange reaction where the Cd(2+) cation is exchanged for the Pb(2+) cation. The cation exchange reaction is thermally activated and can be controlled by adjusting the reaction temperature or time. We characterized the particles using TEM, XPS, PL, and absorption spectroscopy. With complete exchange, high quality Pb-chalcogenide quantum dots are produced. In addition to Cd(2+), we also find suitable conditions for the exchange of Zn(2+) cations for Pb(2+) cations. The cation exchange is anisotropic starting at one edge of the nanocrystals and proceeds along the ⟨111⟩ direction producing a sharp interface at a (111) crystallographic plane. Instead of spherical core/shell structures, we produced and studied quasi-spherical CdS/PbS and CdSe/PbSe Janus-type heterostructures. Nontrivial PL behavior was observed from the CdS(e)/PbS(e) heterostructures as the Pb:Cd ratio is increased.
Bahrani, Sonia; Ghaedi, Mehrorang; Dashtian, Kheibar; Ostovan, Abbas; Mansoorkhani, Mohammad Javad Khoshnood; Salehi, Amin
2017-11-01
In present work, facile method is developed for determination of colchicine in human plasma sample, autumn and spring root of colchicium extracts by ultrasound assisted dispersive magnetic solid phase microextraction followed by HPLC-UV method (UAD-MSPME-HPLC-UV). Magnetic (Fe 2 O 4 -nanoparticles) metal organic framework-5, (MOF-5(Zn)-Fe 2 O 4 NPs) was synthesized by dispersing MOF-5 and Fe(NO 3 ) 3 .9H 2 O in ethylene glycol (as capping agent) and NaOH (pH adjustment agent) by hydrothermal method. The prepared sorbent was characterized via XRD and SEM analysis and applied as magnetic solid phase in UAD-MSPME-HPLC-UV method. In this method, colchicine molecules were sorbed on MOF-5(Zn)-Fe 2 O 4 NPs sorbent by various mechanisms like ion exchange, hydrogen bonding and electrostatic, ᴨ-ᴨ, hard-hard and dipole-ion interaction followed by exposing sonication waves as incremental mass transfer agent and then the sorbent was separated from the sample matrix by an external magnetic fields. Subsequently, accumulated colchicine were eluted by small volume of desorption organic solvent. Influence of operational variables such as MOF-5(Zn)-Fe 2 O 4 NPs mass, volume of extracting solvent and sonication time on response property (recovery) were studied and optimized by central composite design (CCD) combined with desirability function (DF) approach. Under optimum condition, the method has wide linear calibration rang (0.5-1700ngmL -1 ) with reasonable detection limit (0.13ngmL -1 ) and R 2 =0.9971. Finally, the UAD-MSPME-HPLC-UV method was successfully applied for determination of colchicine autumn and spring root of colchicium extracts and plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Polymers in separation processes
NASA Astrophysics Data System (ADS)
Wieszczycka, Karolina; Staszak, Katarzyna
2017-05-01
Application of polymer materials as membranes and ion-exchange resins was presented with a focus on their use for the recovery of metal ions from aqueous solutions. Several membrane techniques were described including reverse osmosis, nanofiltration, ultrafiltration, diffusion and Donnan dialysis, electrodialysis and membrane extraction system (polymer inclusion and supported membranes). Moreover, the examples of using ion-exchange resins in metal recovery were presented. The possibility of modification of the resin was discussed, including hybrid system with metal cation or metal oxide immobilized on polymer matrices or solvent impregnated resin.
Zhou, Qin; Liu, Zhao-dong; Liu, Yuan; Jiang, Jun; Xu, Ren-kou
2016-01-01
Little information is available on chemical forms of heavy metals on integrate plant roots. KNO3 (1 M), 0.05M EDTA at pH6 and 0.01 M HCl were used sequentially to extract the exchangeable, complexed and precipitated forms of Cu(II) and Cd(II) from soybean roots and then to investigate chemical form distribution of Cu(II) and Cd(II) on soybean roots. Cu(II) and Cd(II) adsorbed on soybean roots were mainly exchangeable form, followed by complexed form, while their precipitated forms were very low under acidic conditions. Soybean roots had a higher adsorption affinity to Cu(II) than Cd(II), leading to higher toxic of Cu(II) than Cd(II). An increase in solution pH increased negative charge on soybean and thus increased exchangeable Cu(II) and Cd(II) on the roots. Ca2+, Mg2+ and NH4+ reduced exchangeable Cu(II) and Cd(II) levels on soybean roots and these cations showed greater effects on Cd(II) than Cu(II) due to greater adsorption affinity of the roots to Cu(II) than Cd(II). L-malic and citric acids decreased exchangeable and complexed Cu(II) on soybean roots. In conclusion, Cu(II) and Cd(II) mainly existed as exchangeable and complexed forms on soybean roots. Ca2+ and Mg2+ cations and citric and L-malic acids can potentially alleviate Cu(II) and Cd(II) toxicity to plants. PMID:27805020
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Kaustuv; Neder, Reinhard B.; Chen, Jun
Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here in this paper we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reportedmore » properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Finally, altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.« less
Sound velocity measurement of nuclear-ordered U2D2 solid 3He along the melting curve
NASA Astrophysics Data System (ADS)
Nomura, R.; Suzuki, M.; Yamaguchi, M.; Sasaki, Y.; Mizusaki, T.
2000-05-01
The sound velocity of a single-domain 3He crystal was measured in the nuclear-ordered low-field phase and the paramagnetic phase along the melting curve, using 10.98 MHz longitudinal sound. The temperature dependence of the sound velocity along the melting curve was explained by a nuclear spin contribution and the molar volume change along the melting curve. By comparing the measured velocity with thermodynamic quantities, we extracted the Grüneizen constant for the exchange energy. The anisotropy of the velocity in the ordered phase was investigated for three samples and was found to be smaller than 2×10 -5 in Δ v/ v. The attenuation coefficient of the sound was much smaller than 0.2 cm-1.
Mogolodi Dimpe, K; Mpupa, Anele; Nomngongo, Philiswa N
2018-01-05
This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5μgL -1 and 1.7μgL -1 , respectively, and intraday and interday precision expressed in terms of relative standard deviation were >6%.The maximum adsorption capacity was 138mgg -1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water. Copyright © 2017 Elsevier B.V. All rights reserved.
Katharopoulos, Efstathios; Touloupi, Katerina; Touraki, Maria
2016-08-01
The present study describes the development of a simple and efficient screening system that allows identification and quantification of nine bacteriocins produced by Lactococcus lactis. Cell-free L. lactis extracts presented a broad spectrum of antibacterial activity, including Gram-negative bacteria, Gram-positive bacteria, and fungi. The characterization of their sensitivity to pH, and heat, showed that the extracts retained their antibacterial activity at extreme pH values and in a wide temperature range. The loss of antibacterial activity following treatment of the extracts with lipase or protease suggests a lipoproteinaceous nature of the produced antimicrobials. The extracts were subjected to a purification protocol that employs a two phase extraction using ammonium sulfate precipitation and organic solvent precipitation, followed by ion exchange chromatography, solid phase extraction and HPLC. In the nine fractions that presented antimicrobial activity, bacteriocins were quantified by the turbidometric method using a standard curve of nisin and by the HPLC method with nisin as the external standard, with both methods producing comparable results. Turbidometry appears to be unique in the qualitative determination of bacteriocins but the only method suitable to both separate and quantify the bacteriocins providing increased sensitivity, accuracy, and precision is HPLC. Copyright © 2016 Elsevier B.V. All rights reserved.
Hubicki, Zbigniew; Wołowicz, Anna
2009-05-30
The increasing demand for palladium for technological application requires the development of ion exchange chromatography. Recently ion exchange chromatography has developed largely as a result of new types of ion exchangers available on the market of which two types are widely applied. One of them are selective (chelating) and modified ion exchangers and the other one are liquid exchangers. Two types of ion exchange resins such as chelating (Lewatit TP 214, Purolite S 920) and cationic (Chelite S, Duolite GT 73) ion exchangers are used for the recovery of palladium(II) complexes from chloride media (0.1-2.0M HCl-1.0M NaCl-0.0011 M Pd(II); 0.1-2.0M HCl-2.0M NaCl-0.0011M Pd(II)). The influence of concentration of hydrochloric acid, sodium chloride as well as the phase contact time on the degree of recovery of palladium(II) complexes was studied. Moreover, the amount of palladium(II) chlorocomplexes sorbed onto ion exchangers, the working ion exchange capacities and the weight and bed distribution coefficients were calculated in order to judge which of two types of resins possesses the best performance towards palladium(II) complexes.
The Solid Phase Curing Time Effect of Asbuton with Texapon Emulsifier at the Optimum Bitumen Content
NASA Astrophysics Data System (ADS)
Sarwono, D.; Surya D, R.; Setyawan, A.; Djumari
2017-07-01
Buton asphalt (asbuton) could not be utilized optimally in Indonesia. Asbuton utilization rate was still low because the processed product of asbuton still have impracticable form in the term of use and also requiring high processing costs. This research aimed to obtain asphalt products from asbuton practical for be used through the extraction process and not requiring expensive processing cost. This research was done with experimental method in laboratory. The composition of emulsify asbuton were 5/20 grain, premium, texapon, HCl, and aquades. Solid phase was the mixture asbuton 5/20 grain and premium with 3 minutes mixing time. Liquid phase consisted texapon, HCl and aquades. The aging process was done after solid phase mixing process in order to reaction and tie of solid phase mixed become more optimal for high solubility level of asphalt production. Aging variable time were 30, 60, 90, 120, and 150 minutes. Solid and liquid phase was mixed for emulsify asbuton production, then extracted for 25 minutes. Solubility level of asphalt, water level, and asphalt characteristic was tested at extraction result of emulsify asbuton with most optimum ashphal level. The result of analysis tested data asphalt solubility level at extract asbuton resulted 94.77% on 120 minutes aging variable time. Water level test resulted water content reduction on emulsify asbuton more long time on occurring of aging solid phase. Examination of asphalt characteristic at extraction result of emulsify asbuton with optimum asphalt solubility level, obtain specimen that have rigid and strong texture in order that examination result have not sufficient ductility and penetration value.
Selection of optimum ionic liquid solvents for flavonoid and phenolic acids extraction
NASA Astrophysics Data System (ADS)
Rahman, N. R. A.; Yunus, N. A.; Mustaffa, A. A.
2017-06-01
Phytochemicals are important in improving human health with their functions as antioxidants, antimicrobials and anticancer agents. However, the quality of phytochemicals extract relies on the efficiency of extraction process. Ionic liquids (ILs) have become a research phenomenal as extraction solvent due to their unique properties such as unlimited range of ILs, non-volatile, strongly solvating and may become either polarity. In phytochemical extraction, the determination of the best solvent that can extract highest yield of solute (phytochemical) is very important. Therefore, this study is conducted to determine the best IL solvent to extract flavonoids and phenolic acids through a property prediction modeling approach. ILs were selected from the imidazolium-based anion for alkyl chains ranging from ethyl > octyl and cations consisting of Br, Cl, [PF6], BF4], [H2PO4], [SO4], [CF3SO3], [TF2N] and [HSO4]. This work are divided into several stages. In Stage 1, a Microsoft Excel-based database containing available solubility parameter values of phytochemicals and ILs including its prediction models and their parameters has been established. The database also includes available solubility data of phytochemicals in IL, and activity coefficient models, for solid-liquid phase equilibrium (SLE) calculations. In Stage 2, the solubility parameter values of the flavonoids (e.g. kaempferol, quercetin and myricetin) and phenolic acids (e.g. gallic acid and caffeic acid) are determined either directly from database or predicted using Stefanis and Marrero-Gani group contribution model for the phytochemicals. A cation-anion contribution model is used for IL. In Stage 3, the amount of phytochemicals extracted can be determined by using SLE relationship involving UNIFAC-IL model. For missing parameters (UNIFAC-IL), they are regressed using available solubility data. Finally, in Stage 4, the solvent candidates are ranked and five ILs, ([OMIM] [TF2N], [HeMIM] [TF2N], [HMIM] [TF2N], [HeMIM] [CF3SO3] and [HMIM] [CF3SO3]) were identified and selected.
Fluidics platform and method for sample preparation
Benner, Henry W.; Dzenitis, John M.
2016-06-21
Provided herein are fluidics platforms and related methods for performing integrated sample collection and solid-phase extraction of a target component of the sample all in one tube. The fluidics platform comprises a pump, particles for solid-phase extraction and a particle-holding means. The method comprises contacting the sample with one or more reagents in a pump, coupling a particle-holding means to the pump and expelling the waste out of the pump while the particle-holding means retains the particles inside the pump. The fluidics platform and methods herein described allow solid-phase extraction without pipetting and centrifugation.
Al-Ghobashy, Medhat A; Hassan, Said A; Abdelaziz, Doaa H; Elhosseiny, Noha M; Sabry, Nirmeen A; Attia, Ahmed S; El-Sayed, Manal H
2016-12-01
Individualized therapy is a recent approach aiming to specify dosage regimen for each patient according to its genetic state. Cancer chemotherapy requires continuous monitoring of the plasma concentration levels of active forms of cytotoxic drugs and subsequent dose adjustment. In order to attain optimum therapeutic efficacy, correlation to pharmacogenetics data is crucial. In this study, a specific, accurate and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) has been developed for determination of methotrexate (MTX), 6-mercaptopurine (MP) and its metabolite 6-thioguanine nucleotide (TG) in human plasma. Based on the basic character of the studied compounds, solid phase extraction using a strong cation exchanger was found the optimum approach to achieve good extraction recovery. Chromatographic separation was carried out using RP-HPLC and isocratic elution by acetonitrile: 0.1% aqueous formic acid (85:15v/v) with a flow rate of 0.8mL/min at 40°C. The detection was performed by tandem mass spectrometry in MRM mode via electrospray ionization source in positive ionization mode. Analysis was carried out within 1.0min over a concentration range of 6.25-200.00ng/mL for the studied analytes. Validation was carried out according to FDA guidelines for bioanalytical method validation and satisfactory results were obtained. The applicability of the assay for the monitoring of the MTX, MP and TG and subsequent application to personalized therapy was demonstrated in a clinical study on children with acute lymphoblastic leukemia (ALL). Results confirmed the need for implementation of reliable analysis tools for therapeutic dose adjustment. Copyright © 2016 Elsevier B.V. All rights reserved.
Alexandrou, Lydon D; Spencer, Michelle J S; Morrison, Paul D; Meehan, Barry J; Jones, Oliver A H
2015-04-15
Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten
2015-11-01
Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
UTCHEM is a three-dimensional chemical flooding simulator. The solution scheme is analogous to IMPES, where pressure is solved for implicitly, but concentrations rather than saturations are then solved for explicitly. Phase saturations and concentrations are then solved in a flash routine. An energy balance equation is solved explicitly for reservoir temperature. The energy balance equation includes heat flow between the reservoir and the over-and under-burden rocks. The major physical phenomena modeled in the simulator are: dispersion; dilution effects; adsorption; interfacial tension; relative permeability; capillary trapping; cation exchange; phase density; compositional phase viscosity; phase behavior (pseudoquaternary); aqueous reactions; partitioning of chemicalmore » species between oil and water; dissolution/precipitation; cation exchange reactions involving more than two cations; in-situ generation of surfactant from acidic crude oil; pH dependent adsorption; polymer properties: shear thinning viscosity; inaccessible pore volume; permeability reduction; adsorption; gel properties: viscosity; permeability reduction; adsorption; tracer properties: partitioning; adsorption; radioactive decay; reaction (ester hydrolization); temperature dependent properties: viscosity; tracer reaction; gel reactions The following options are available with UTCHEM: isothermal or non-isothermal conditions, a constant or variable time-step, constant pressure or constant rate well conditions, horizontal and vertical wells, and a radial or Cartesian geometry. Please refer to the dissertation {open_quotes}Field Scale Simulation of Chemical Flooding{close_quotes} by Naji Saad, August, 1989, for a more detailed discussion of the UTCHEM simulator and its formulation.« less
Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek
2013-12-20
Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.
Discovery and structural elucidation of the illegal azo dye Basic Red 46 in sumac spice.
Ruf, J; Walter, P; Kandler, H; Kaufmann, A
2012-01-01
An unknown red dye was discovered in a sumac spice sample during routine analysis for Sudan dyes. LC-DAD and LC-MS/MS did not reveal the identity of the red substance. Nevertheless, using LC-high-resolution MS and isotope ratio comparisons the structure was identified as Basic Red 46. The identity of the dye was further confirmed by comparison with a commercial hair-staining product and two textile dye formulations containing Basic Red 46. Analogous to the Sudan dyes, Basic Red 46 is an azo dye. However, some of the sample clean-up methodology utilised for the analysis of Sudan dyes in food prevents its successful detection. In contrast to the Sudan dyes, Basic Red 46 is a cation. Its cationic properties make it bind strongly to gel permeation columns and silica solid-phase extraction cartridges and prevent elution with standard eluents. This is the first report of Basic Red 46 in food. The structure elucidation of this compound as well as the disadvantages of analytical methods focusing on a narrow group of targeted analytes are discussed.
Physico-Chemical Properties and Phase Behaviour of Pyrrolidinium-Based Ionic Liquids
Domańska, Urszula
2010-01-01
A review of the relevant literature on 1-alkyl-1-methylpyrrolidinium-based ionic liquids has been presented. The phase diagrams for the binary systems of {1-ethyl-1-methylpyrrolidinium trifluoromethanesulfonate (triflate) [EMPYR][CF3SO3] + water, or + 1-butanol} and for the binary systems of {1-propyl-1-methylpyrrolidinium trifluoromethanesulfonate (triflate) [PMPYR][CF3SO3] + water, or + an alcohol (1-butanol, 1-hexanol, 1-octanol, 1-decanol)} have been determined at atmospheric pressure using a dynamic method. The influence of alcohol chain length was discussed for the [PMPYR][CF3SO3]. A systematic decrease in the solubility was observed with an increase of the alkyl chain length of an alcohol. (Solid + liquid) phase equilibria with complete miscibility in the liquid phase region were observed for the systems involving water and alcohols. The solubility of the ionic liquid increases as the alkyl chain length on the pyrrolidinium cation increases. The correlation of the experimental data has been carried out using the Wilson, UNIQUAC and the NRTL equations. The phase diagrams reported here have been compared to the systems published earlier with the 1-alkyl-1-methylpyrrolidinium-based ionic liquids. The influence of the cation and anion on the phase behaviour has been discussed. The basic thermal properties of pure ILs, i.e., melting temperature and the enthalpy of fusion, the solid-solid phase transition temperature and enthalpy have been measured using a differential scanning microcalorimetry technique. PMID:20480044
Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange
Binetti, Enrico; Striccoli, Marinella; Sibillano, Teresa; Giannini, Cinzia; Brescia, Rosaria; Falqui, Andrea; Comparelli, Roberto; Corricelli, Michela; Tommasi, Raffaele; Agostiano, Angela; Curri, M Lucia
2015-01-01
Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices. PMID:27877842
Surowiec, Malgorzata A.; Custelcean, Radu; Surowiec, Kazimierz; ...
2014-04-23
Alkali metal cation extraction behavior for two series of 1,3-alternate, mono-ionizable calix[4]arene-benzocrown-6 compounds is examined. In Series 1, the proton-ionizable group is a substituent on the benzo group of the polyether ring that directs it away from the crown ether cavity. In Series 2, the proton-ionizable group is attached to one para position in the calixarene framework, thus positioning it over the crown ether ring. Competitive solvent extraction of alkali metal cations from aqueous solutions into chloroform shows high Cs+ efficiency and selectivity. Single-species extraction pH profiles of Cs+ for Series 1 and 2 ligands with the same proton-ionizable groupmore » are very similar. Thus, association of Cs+ with the calixcrown ring is more important than the the proton-ionizable group’s position in relation to the crown ether cavity. Solid-state structures are presented for two unionized ligands from Series 2, as is a crystal containing two different ionized ligand–Cs+ complexes.« less
Chemistry of alkali cation exchanged faujasite and mesoporous NaX using alkyl halides and phosphates
NASA Astrophysics Data System (ADS)
Lee, Min-Hong
The purpose of this work was to increase the reactivity of Faujasite X (NaX) zeolite toward the reactive decontamination of materials subject to nucleophilic attack by means of zeolite cation optimization and by means of the synthesis of mesoporous Faujasite X. Primary alkyl halides and trialkyl phosphates have been the test materials on which the cation-optimized and mesoporous zeolites have been tested. In the alkali cation optimization work, reactions of methyl iodide and 1-chloropropane with alkali metal cation exchanged Faujasite zeolite X were investigated at room temperature. The reactivity of the framework and the product formation were shown to depend on zeolite framework counter-cation. A quantitative study of zeolite product formation has been carried out, primarily using solid-state NMR spectroscopy. Large alkali cations showed preference toward substitution chemistry. In contrast, alkyl halide exposed LiX and NaX zeolites underwent both substitution and elimination. Subsequently introduced water molecules led to hydrolysis of framework species that was sensitive to framework counter-cation. The mesoporous NaX zeolites work undertakes to test whether an improvement in surface chemical reactivity can be achieved by introducing mesopores into the already reactive nucleophilic microporous NaX zeolite. Incorporation of the polydiallyl dimethyl ammonium chloride (PDADMAC) template and the formation of mesopores in Faujasite X zeolite (NaX) were successful and well-characterized. The mesopores are proposed to have occurred from incorporation of the cationic PDADMAC polymer into the zeolite by compensating zeolite framework charge. Subsequent sodium cation exchange of calcined mesoporous NaX was shown to restore the chemical reactivity characteristic of as-synthesized NaX. Trialkyl organophosphorous compounds underwent substitution reactions. The reactivity of both microporous and mesoporous Faujasite zeolite X and the product formation was shown to depend on the length of the alkyl chain. Although introduced mesopores alleviated the limited reagent diffusion to reactive sites due to the microporosity of the NaX zeolites, no marked improvement in the product yields was achieved with either the 1-chloroalkanes or the trialkyl phosphates test compounds, regardless of alkyl chain length. The disappointing results have been attributed to lack of substantial net increase in the numbers of zeolite nucleophilic sites accompanying mesopore introduction.
Determination of opiates and cocaine in urine by high pH mobile phase reversed phase UPLC-MS/MS.
Berg, Thomas; Lundanes, Elsa; Christophersen, Asbjørg S; Strand, Dag Helge
2009-02-01
A fast and selective ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of opiates (morphine, codeine, 6-monoacetylmorphine (6-MAM), pholcodine, oxycodone, ethylmorphine), cocaine and benzoylecgonine in urine has been developed and validated. Sample preparation was performed by solid phase extraction (SPE) on a mixed mode cation exchange (MCX) cartridge. For optimized chromatographic performance with repeatable retention times, narrow and symmetrical peaks, and focusing of all analytes at the column inlet at gradient start, a basic mobile phase consisting of 5mM ammonium bicarbonate, pH 10.2, and methanol (MeOH) was chosen. Positive electrospray ionization (ESI(+)) MS/MS detection was performed with a minimum of two multiple reaction monitoring (MRM) transitions for each analyte. Deuterium labelled-internal standards were used for six of the analytes. Between-assay retention time repeatabilities (n=10 series, 225 injections in total) had relative standard deviation (RSD) values within 0.1-0.6%. Limit of detection (LOD) and limit of quantification (LOQ) values were in the range 0.003-0.05 microM (0.001-0.02 microg/mL) and 0.01-0.16 microM (0.003-0.06 microg/mL), respectively. The RSD values of the between-assay repeatabilities of concentrations were
Buechler, Jochen; Schwab, Matthias; Mikus, Gerd; Fischer, Beate; Hermle, Leo; Marx, Claudia; Grön, Georg; Spitzer, Manfred; Kovar, Karl Artur
2003-08-15
An enantioselective HPLC method has been developed and validated for the stereospecific analysis of N-ethyl-3,4-methylenedioxyamphetamine (MDE) and its major metabolites N-ethyl-4-hydroxy-3-methoxyamphetamine (HME) and 3,4-methylenedioxyamphetamine (MDA). These compounds have been analyzed both from human plasma and urine after administration of 70 mg pure MDE-hydrochloride enantiomers to four subjects. The samples were prepared by hydrolysis of the o-glucuronate and sulfate conjugates using beta-glucuronidase/arylsulfatase and solid-phase extraction with a cation-exchange phase. A chiral stationary protein phase (chiral-CBH) was used for the stereoselective determination of MDE, HME and MDA in a single HPLC run using sodium dihydrogenphosphate, ethylendiaminetetraacetic acid disodium salt and isopropanol as the mobile phase (pH 6.44) and fluorimetric detection (lambda(ex) 286 nm, lambda(em) 322 nm). Moreover, a suitable internal standard (N-ethyl-3,4-methylenedioxybenzylamine) was synthesized and qualified for quantitation purposes. The method showed high recovery rates (>95%) and limits of quantitation for MDE and MDA of 5 ng/ml and for HME of 10 ng/ml. The RSDs for all working ranges of MDE, MDA and HME in plasma and urine, respectively, were less than 1.5%. After validation of the analytical methods in plasma and urine samples pharmacokinetic parameters were calculated. The plasma concentrations of (R)-MDE exceeded those of the S-enantiomer (ratio R:S of the area under the curve, 3.1) and the plasma half time of (R)-MDE was longer than that of (S)-MDE (7.9 vs. 4.0 h). In contrast, the stereochemical disposition of the MDE metabolites HME and MDA was reversed. Concentrations of the (S)-metabolites in plasma of volunteers were much higher than those of the (R)-enantiomers.
Molecularly imprinted solid-phase extraction in the analysis of agrochemicals.
Yi, Ling-Xiao; Fang, Rou; Chen, Guan-Hua
2013-08-01
The molecular imprinting technique is a highly predeterminative recognition technology. Molecularly imprinted polymers (MIPs) can be applied to the cleanup and preconcentration of analytes as the selective adsorbent of solid-phase extraction (SPE). In recent years, a new type of SPE has formed, molecularly imprinted polymer solid-phase extraction (MISPE), and has been widely applied to the extraction of agrochemicals. In this review, the mechanism of the molecular imprinting technique and the methodology of MIP preparations are explained. The extraction modes of MISPE, including offline and online, are discussed, and the applications of MISPE in the analysis of agrochemicals such as herbicides, fungicides and insecticides are summarized. It is concluded that MISPE is a powerful tool to selectively isolate agrochemicals from real samples with higher extraction and cleanup efficiency than commercial SPE and that it has great potential for broad applications.
Solvent extraction: the coordination chemistry behind extractive metallurgy.
Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B
2014-01-07
The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, R.J.; Benson, L.V.; Yee, A.W.
1979-09-30
The objective of the program is to establish a basis for the prediction of radionuclide sorption in geologic environments. In FY 79, experimental and theoretical efforts were concentrated on a study of the sorption of cesium on the solid substrates Min-u-sil (quartz) and Belle Fourche clay (montmorillonite). Cesium sorption isotherms were obtained for the two substrates at 26/sup 0/C as a function of initial Cs concentration in solution (10/sup -3/M to 10/sup -9/M), pH (5 to 10) and supporting electrolyte concentration (0.002M, 0.01M, 0.1M, and 1M) NaCl and a simulated basalt groundwater in batch-type experiments using crushed material. Characterization ofmore » the solid phases included measurements of chemical compositions, particle sizes, surface areas, and cation-exchange capacities. In addition, potentiometric acid/base titrations of the solid phases were conducted in order to determine the acid dissociation and electrolyte exchange constants of the surfaces. Preliminary analysis of the sorption data indicate that while the clay data could be explained by simple mass-action expressions, the quartz data could not. Theoretical efforts were aimed at developing and testing an electrolyte binding electrical double-layer model to predict sorption isotherms. A computerized version of the model, MINEQL, which simultaneously considers surface and solution chemical equilibria, was brought to operational status. Input parameters required by MINEQL were determined and sorption isotherms for Cs on the Belle Fourche clay were calculated over the same range of parameters as the experimental measurements. Comparisons showed that the model was able to simulate the isotherms quite well except at the lowest pH values for the 0.002M and 0.01M NaCl solutions.« less
Detection and measurement of organic lampricide residues
Daniels, Stacy L.; Kempe, Lloyd L.; Billy, Thomas J.; Beeton, Alfred M.
1965-01-01
The selective lampricide, 3-trifluoromethyl-4-nitrophenol (TFM), and its synergist, 5,2'-dichloro-4'-nitrosalicylanilide (DCN), are separable from natural waters by anion exchange. The adsorbed compounds can then be recovered from the resin as concentrates by elution with selective solvent mixtures. Measurements of the amounts of lampricides in the final concentrates can be made colorimetrically at 395 mI? for TFM and at 530 mI? for the safranin complex of DCN. TFM has also been separated for quantitative determination from homogenates of whole fish. The fish is first macerated in a blender and then hydrolyzed in hot, 3 N hydrochloric acid. The amount of background color, due to certain components of the fish in the hydrolysate, is reduced by one or a combination of three methods: (1) a series of three extractions with ether, methylene chloride, and benzene; (2) cation exchange followed by methylene chloride extraction; or (3) ether extraction followed by anion exchange and subsequent desorption with amyl acetate-acetic acid.
Stout, P R; Horn, C K; Klette, K L
2001-10-01
In order to facilitate the confirmation analysis of large numbers of urine samples previously screened positive for delta9-tetrahydrocannabinol (THC), an extraction, derivitization, and GC-MS analysis method was developed. This method utilized a positive pressure manifold anion-exchange polymer-based solid-phase extraction followed by elution directly into the automated liquid sampling (ALS) vials. Rapid derivitization was accomplished using pentafluoropropionic anhydride/pentafluoropropanol (PFPA/PFPOH). Recoveries averaged 95% with a limit of detection of 0.875 ng/mL with a 3-mL sample volume. Performance of 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH)-d3 and THC-COOH-d9 internal standards were evaluated. The method was linear to 900 ng/mL THC-COOH using THC-COOH-d9 with negligible contribution from the internal standard to very weak samples. Excellent agreement was seen with previous quantitations of human urine samples. More than 1000 human urine samples were analyzed using the method with 300 samples analyzed using an alternate qualifier ion (m/z 622) after some interference was observed with a qualifier ion (m/z 489). The 622 ion did not exhibit any interference even in samples with interfering peaks present in the 489 ion. The method resulted in dramatic reductions in processing time, waste production, and exposure hazards to laboratory personnel.
Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands
Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.
2016-01-01
Cation exchange is a powerful tool for the synthesis of nanostructures such as core–shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core–shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals. PMID:27160371
Su, Rihui; Ruan, Guihua; Chen, Zhengyi; Du, Fuyou; Li, Jianping
2015-12-01
A new class of solid-phase extraction column prepared with grafted mercapto-silica polymerized high internal phase emulsion particles was used for the preconcentration of trace lead. First, mercapto-silica polymerized high internal phase emulsion particles were synthesized by using high internal phase emulsion polymerization and carefully assembled in a polyethylene syringe column. The influences of various parameters including adsorption pH value, adsorption and desorption solvents, flow rate of the adsorption and desorption procedure were optimized, respectively, and the suitable uploading sample volumes, adsorption capacity, and reusability of solid phase extraction column were also investigated. Under the optimum conditions, Pb(2+) could be preconcentrated quantitatively over a wide pH range (2.0-5.0). In the presence of foreign ions, such as Na(+) , K(+) , Ca(2+) , Zn(2+) , Mg(2+) , Cu(2+) , Fe(2+) , Cd(2+) , Cl(-) and NO3 (-) , Pb(2+) could be recovered successfully. The prepared solid-phase extraction column performed with high stability and desirable durability, which allowed more than 100 replicate extractions without measurable changes of performance. The feasibility of the developed method was further validated by the extraction of Pb(2+) in rice samples. At three spiked levels of 40.0, 200 and 800 μg/kg, the average recoveries for Pb(2+) in rice samples ranged from 87.3 to 105.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes.
Kamcev, Jovan; Paul, Donald R; Manning, Gerald S; Freeman, Benny D
2017-02-01
This study presents a framework for predicting salt permeability coefficients in ion exchange membranes in contact with an aqueous salt solution. The model, based on the solution-diffusion mechanism, was tested using experimental salt permeability data for a series of commercial ion exchange membranes. Equilibrium salt partition coefficients were calculated using a thermodynamic framework (i.e., Donnan theory), incorporating Manning's counterion condensation theory to calculate ion activity coefficients in the membrane phase and the Pitzer model to calculate ion activity coefficients in the solution phase. The model predicted NaCl partition coefficients in a cation exchange membrane and two anion exchange membranes, as well as MgCl 2 partition coefficients in a cation exchange membrane, remarkably well at higher external salt concentrations (>0.1 M) and reasonably well at lower external salt concentrations (<0.1 M) with no adjustable parameters. Membrane ion diffusion coefficients were calculated using a combination of the Mackie and Meares model, which assumes ion diffusion in water-swollen polymers is affected by a tortuosity factor, and a model developed by Manning to account for electrostatic effects. Agreement between experimental and predicted salt diffusion coefficients was good with no adjustable parameters. Calculated salt partition and diffusion coefficients were combined within the framework of the solution-diffusion model to predict salt permeability coefficients. Agreement between model and experimental data was remarkably good. Additionally, a simplified version of the model was used to elucidate connections between membrane structure (e.g., fixed charge group concentration) and salt transport properties.
Ramírez-Rigo, María V; Olivera, María E; Rubio, Modesto; Manzo, Ruben H
2014-05-13
The low bioavailability of enalapril maleate associated to its instability in solid state motivated the development of a polyelectrolyte-drug complex between enalapril maleate and the cationic polymethacrylate Eudragit E100. The solid complexes were characterized by DSC-TG, FT-IR and X-ray diffraction. Their aqueous dispersions were evaluated for drug delivery in bicompartimental Franz cells and electrokinetic potentials. Stability in solid state was also evaluated using an HPLC-UV stability indicating method. Absorption of enalapril maleate was assessed thorough the rat everted gut sac model. In addition, urinary recovery after oral administration in rats was used as an indicator of systemic exposition. The solid materials are stable amorphous solids in which both moieties of enalapril maleate are ionically bonded to the polymer. Their aqueous dispersions exhibited controlled release over more than 7h in physiologic saline solution, being ionic exchange the fundamental mechanism that modified the extent and rate of drug release. Intestinal permeation of enalapril maleate was 1.7 times higher in the presence of the cationic polymer. This increase can be related with the capacity to adhere the mucosa due to the positive zeta potential of the complexes. As a consequence bioavailability was significantly improved (1.39 times) after oral administration of the complexes. In addition, no signs of chemical decomposition were observed after a 14months period. The results indicated that the products are new chemical entities that improve unfavorable properties of a useful drug. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Ligang; Zeng, Qinglei; Du, Xiaobo; Sun, Xin; Zhang, Xiaopan; Xu, Yang; Yu, Aimin; Zhang, Hanqi; Ding, Lan
2009-11-01
In this work, a new method was developed for the determination of melamine (MEL) in animal feed. The method was based on the on-line coupling of dynamic microwave-assisted extraction (DMAE) to strong cation-exchange (SCX) resin clean-up. The MEL was first extracted by 90% acidified methanol aqueous solution (v/v, pH = 3) under the action of microwave energy, and then the extract was cooled and passed through the SCX resin. Thus, the protonated MEL was retained on the resin through ion exchange interaction and the sample matrixes were washed out. Some obvious benefits were achieved, such as acceleration of analytical process, together with reduction in manual handling, risk of contamination, loss of analyte, and sample consumption. Finally, the analyte was separated by a liquid chromatograph with a SCX analytical column, and then identified and quantitatived by a tandem mass spectrometry with positive ionization mode and multiple-reaction monitoring. The DMAE parameters were optimized by the Box-Behnken design. The linearity of quantification obtained by analyzing matrix-matched standards is in the range of 50-5,000 ng g(-1). The limit of detection and limit of quantification obtained are 12.3 and 41.0 ng g(-1), respectively. The mean intra- and inter-day precisions expressed as relative standard deviations with three fortified levels (50, 250, and 500 ng g(-1)) are 5.1% and 7.3%, respectively, and the recoveries of MEL are in the range of 76.1-93.5%. The proposed method was successfully applied to determine MEL in different animal feeds obtained from the local market. MEL was detectable with the contents of 279, 136, and 742 ng g(-1) in three samples.
Capability of cation exchange technology to remove proven N-nitrosodimethylamine precursors.
Li, Shixiang; Zhang, Xulan; Bei, Er; Yue, Huihui; Lin, Pengfei; Wang, Jun; Zhang, Xiaojian; Chen, Chao
2017-08-01
N-nitrosodimethylamine (NDMA) precursors consist of a positively charged dimethylamine group and a non-polar moiety, which inspired us to develop a targeted cation exchange technology to remove NDMA precursors. In this study, we tested the removal of two representative NDMA precursors, dimethylamine (DMA) and ranitidine (RNTD), by strong acidic cation exchange resin. The results showed that pH greatly affected the exchange efficiency, with high removal (DMA>78% and RNTD>94%) observed at pH
He, Jinxing; Wang, Shuo; Fang, Guozhen; Zhu, Huaping; Zhang, Yan
2008-05-14
A selective imprinted amino-functionalized silica gel sorbent was prepared by combining a surface molecular imprinting technique with a sol-gel process for online solid-phase extraction-HPLC determination of three trace sulfonamides in pork and chicken muscle. The imprinted functionalized silica gel sorbent exhibited selectivity and fast kinetics for the adsorption and desorption of sulfonamides. With a sample loading flow rate of 4 mL min (-1) for 12.5 min, enhancement factors and detection limits for three sulfonamides ( S/ N = 3) were achieved. The precision (RSD) for nine replicate online sorbent extractions of 5 microg L (-1) sulfonamides was less than 4.5%. The sorbent also offered good linearity ( r (2) > 0.99) for online solid-phase extraction of trace levels of sulfonamides. The method was applied to the determination of sulfonamides in pork and chicken muscle samples. The prepared polymer sorbent shows promise for online solid-phase extraction for HPLC determination of trace levels of sulfonamides in pork and chicken samples.
Huang, Guangguang; Wang, Chunlei; Xu, Shuhong; Zong, Shenfei; Lu, Ju; Wang, Zhuyuan; Lu, Changgui; Cui, Yiping
2017-08-01
Unlike widely used postsynthetic halide exchange for CsPbX 3 (X is halide) perovskite nanocrystals (NCs), cation exchange of Pb is of a great challenge due to the rigid nature of the Pb cationic sublattice. Actually, cation exchange has more potential for rendering NCs with peculiar properties. Herein, a novel halide exchange-driven cation exchange (HEDCE) strategy is developed to prepare dually emitting Mn-doped CsPb(Cl/Br) 3 NCs via postsynthetic replacement of partial Pb in preformed perovskite NCs. The basic idea for HEDCE is that the partial cation exchange of Pb by Mn has a large probability to occur as a concomitant result for opening the rigid halide octahedron structure around Pb during halide exchange. Compared to traditional ionic exchange, HEDCE is featured by proceeding of halide exchange and cation exchange at the same time and lattice site. The time and space requirements make only MnCl 2 molecules (rather than mixture of Mn and Cl ions) capable of doping into perovskite NCs. This special molecular doping nature results in a series of unusual phenomenon, including long reaction time, core-shell structured mid states with triple emission bands, and dopant molecules composition-dependent doping process. As-prepared dual-emitting Mn-doped CsPb(Cl/Br) 3 NCs are available for ratiometric temperature sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Jianling; Xiao, Xiaofeng; Chen, Tong; Liu, Tingfei; Tao, Huaming; He, Jun
2016-06-17
The glyceride in oil food simulant usually causes serious interferences to target analytes and leads to failure of the normal function of the RP-HPLC column. In this work, a convenient HPLC-UV method for the determination of the total specific migration of nine ultraviolet (UV) absorbers in food simulants was developed based on 1,1,3,3-tetramethylguanidine (TMG) and organic phase anion exchange (OPAE) SPE to efficiently remove glyceride in olive oil simulant. In contrast to the normal ion exchange carried out in an aqueous solution or aqueous phase environment, the OPAE SPE was performed in the organic phase environments, and the time-consuming and challenging extraction of the nine UV absorbers from vegetable oil with aqueous solution could be readily omitted. The method was proved to have good linearity (r≥0.99992), precision (intra-day RSD≤3.3%), and accuracy(91.0%≤recoveries≤107%); furthermore, the lower limit of quantifications (0.05-0.2mg/kg) in five types of food simulants(10% ethanol, 3% acetic acid, 20% ethanol, 50% ethanol and olive oil) was observed. The method was found to be well suited for quantitative determination of the total specific migration of the nine UV absorbers both in aqueous and vegetable oil simulant according to Commission Regulation (EU) No. 10/2011. Migration levels of the nine UV absorbers were determined in 31 plastic samples, and UV-24, UV-531, HHBP and UV-326 were frequently detected, especially in olive oil simulant for UV-326 in PE samples. In addition, the OPAE SPE procedure was also been applied to efficiently enrich or purify seven antioxidants in olive oil simulant. Results indicate that this procedure will have more extensive applications in the enriching or purification of the extremely weak acidic compounds with phenol hydroxyl group that are relatively stable in TMG n-hexane solution and that can be barely extracted from vegetable oil. Copyright © 2016 Elsevier B.V. All rights reserved.
Roman, Mark C
2004-01-01
An international collaborative study was conducted of a high-performance liquid chromatography (HPLC)-UV method for the determination of the major (ephedrine [EP] and pseudoephedrine [PS]) and minor (norephedrine [NE], norpseudoephedrine [NP], methylephedrine [ME], and methylpseudoephedrine [MP]) alkaloids in selected dietary supplements representative of the commercially available products. Ten collaborating laboratories determined the ephedrine-type alkaloid content in 8 blind replicate samples. Five products contained ephedra ground herb or ephedra extract. These 5 products included ground botanical raw material of Ephedra sinica, a common powdered extract of Ephedra sinica, a finished product containing only Ephedra sinica ground botanical raw material, a complex multicomponent dietary supplement containing Ma Huang, and a high-protein chocolate flavored drink mix containing Ma Huang extract. In addition, collaborating laboratories received a negative control and negative control spiked with ephedrine alkaloids at high and low levels for recovery studies. Test extracts were treated to solid-phase extraction using a strong-cation exchange column to help remove interferences. The HPLC analyses were performed on a polar-embedded phenyl column using UV detection at 210 nm. Repeatability relative standard deviations (RSDr) ranged from 0.64-3.0% for EP and 2.0-6.6% for PS, excluding the high protein drink mix. Reproducibility relative standard deviations (RSDR) ranged from 2.1-6.6% for EP and 9.0-11.4% for PS, excluding the high protein drink mix. Recoveries ranged from 84.7-87.2% for EP and 84.6-98.2% for PS. The data developed for the minor alkaloids are more variable with generally unsatisfactory HORRATS (i.e., >2). However, since these alkaloids generally add little to the total alkaloid content of the products, the method gives satisfactory results in measuring total alkaloid content (RSDr 0.85-3.13%; RSDR 2.03-10.97%, HORRAT 0.69-3.23, exclusive of the results from the high protein drink). On the basis of these results, the method is recommended for Official First Action for determination of EP and PS in dietary supplements exclusive of the high protein drinks.
Stojanovic, Anja; Lämmerhofer, Michael; Kogelnig, Daniel; Schiesel, Simone; Sturm, Martin; Galanski, Markus; Krachler, Regina; Keppler, Bernhard K; Lindner, Wolfgang
2008-10-31
Several hydrophobic ionic liquids (ILs) based on long-chain aliphatic ammonium- and phosphonium cations and selected aromatic anions were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) employing trifluoroacetic acid as ion-pairing additive to the acetonitrile-containing mobile phase and adopting a step-gradient elution mode. The coupling of charged aerosol detection (CAD) for the non-chromophoric aliphatic cations with diode array detection (DAD) for the aromatic anions allowed their simultaneous analysis in a set of new ILs derived from either tricaprylmethylammonium chloride (Aliquat 336) and trihexyltetradecylphosphonium chloride as precursors. Aliquat 336 is a mix of ammonium cations with distinct aliphatic chain lengths. In the course of the studies it turned out that CAD generates an identical detection response for all the distinct aliphatic cations. Due to lack of single component standards of the individual Aliquat 336 cation species, a unified calibration function was established for the quantitative analysis of the quaternary ammonium cations of the ILs. The developed method was validated according to ICH guidelines, which confirmed the validity of the unified calibration. The application of the method revealed molar ratios of cation to anion close to 1 indicating a quantitative exchange of the chloride ions of the precursors by the various aromatic anions in the course of the synthesis of new ILs. Anomalies of CAD observed for the detection of some aromatic anions (thiosalicylate and benzoate) are discussed.
Ye, Shi; Sun, Jiayi; Yi, Xiong; Wang, Yonggang; Zhang, Qinyuan
2017-01-01
Luminescent zeolites exchanged with two distinct and interacted emissive ions are vital but less-studied for the potential applications in white light emitting diodes, solar cells, optical codes, biomedicine and so on. Typical transition metal ion Mn2+ and lanthanide ion Yb3+ are adopted as a case study via their characteristic transitions and the interaction between them. The option is considered with that the former with d-d transition has a large gap between the first excited state 4T1 and the ground state 6A1 (normally >17,000 cm−1) while the latter with f-f transition has no metastable excited state above 10,000 cm−1, which requires the vicinity of these two ions for energy transfer. The results of various characterizations, including BET measurement, photoluminescence spectroscopy, solid-state NMR, and X-ray absorption spectroscopy, etc., show that Yb3+ would preferably enter into the zeolite-Y pores and introduction of Mn2+ would cause aggregation of each other. Herein, cation-cation repulsion may play a significant role for the high valence of Mn2+ and Yb3+ when exchanging the original cations with +1 valence. Energy transfer phenomena between Mn2+ and Yb3+ occur only at elevated contents in the confined pores of zeolite. The research would benefit the design of zeolite composite opto-functional materials. PMID:28393920
NASA Astrophysics Data System (ADS)
Ye, Shi; Sun, Jiayi; Yi, Xiong; Wang, Yonggang; Zhang, Qinyuan
2017-04-01
Luminescent zeolites exchanged with two distinct and interacted emissive ions are vital but less-studied for the potential applications in white light emitting diodes, solar cells, optical codes, biomedicine and so on. Typical transition metal ion Mn2+ and lanthanide ion Yb3+ are adopted as a case study via their characteristic transitions and the interaction between them. The option is considered with that the former with d-d transition has a large gap between the first excited state 4T1 and the ground state 6A1 (normally >17,000 cm-1) while the latter with f-f transition has no metastable excited state above 10,000 cm-1, which requires the vicinity of these two ions for energy transfer. The results of various characterizations, including BET measurement, photoluminescence spectroscopy, solid-state NMR, and X-ray absorption spectroscopy, etc., show that Yb3+ would preferably enter into the zeolite-Y pores and introduction of Mn2+ would cause aggregation of each other. Herein, cation-cation repulsion may play a significant role for the high valence of Mn2+ and Yb3+ when exchanging the original cations with +1 valence. Energy transfer phenomena between Mn2+ and Yb3+ occur only at elevated contents in the confined pores of zeolite. The research would benefit the design of zeolite composite opto-functional materials.
USDA-ARS?s Scientific Manuscript database
This study demonstrated the application of an automated high-throughput mini-cartridge solid-phase extraction (mini-SPE) cleanup for the rapid low-pressure gas chromatography – tandem mass spectrometry (LPGC-MS/MS) analysis of pesticides and environmental contaminants in QuEChERS extracts of foods. ...
USDA-ARS?s Scientific Manuscript database
Stir bar sorptive extraction (SBSE) is a technique for extraction and analysis of organic compounds in aqueous matrices, similar in theory to solid phase microextraction (SPME). SBSE has been successfully used to analyze several organic compounds, including food matrices. When compared with SPME, ...
A method was developed for the confirmed identification and quantitation of 17B-estradiol, estrone, 17B-ethynylestrodial and 16a-hydroxy-17B-estradiol (estriol) in ground water and swine lagoon samples. Centrifuged and filtered samples were extracted using solid phase extraction...
High-performance cation-exchange chromatofocusing of proteins.
Kang, Xuezhen; Frey, Douglas D
2003-03-28
Chromatofocusing using high-performance cation-exchange column packings, as opposed to the more commonly used anion-exchange column packings, is investigated with regard to the performance achieved and the range of applications possible. Linear or convex gradients in the range from pH 2.6 to 9 were formed using a variety of commercially available column packings that provide a buffering capacity in different pH ranges, and either polyampholytes or simple mixtures having a small number (three or fewer) of buffering species as the elution buffer. The resolutions achieved using cation-exchange or anion-exchange chromatofocusing were in general comparable, although for certain pairs of proteins better resolution could be achieved using one type of packing as compared to the other, evidently due to the way electrostatic charges are distributed on the protein surface. Several chromatofocusing methods were investigated that take advantage of the acid-base properties of commercially available cation-exchange column packings. These include the use of gradients with a composite shape, the use of very low pH ranges, and the use of elution buffers containing a single buffering species. The advantages of chromatofocusing over ion-exchange chromatography using a salt gradient at constant pH were illustrated by employing the former method and a cation-exchange column packing to separate beta-lactoglobulins A and B, which is a separation reported to be impossible using the latter method and a cation-exchange column packing. Trends in the apparent isoelectric points determined using cation- and anion-exchange chromatofocusing were interpreted using applicable theories. Results of this study indicate that cation-exchange chromatofocusing is a useful technique which is complementary to anion-exchange chromatofocusing and isoelectric focusing for separating proteins at both the analytical and preparative scales.
Solvent Extraction Separation of Trivalent Americium from Curium and the Lanthanides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Mark P.; Chiarizia, Renato; Ulicki, Joseph S.
2015-02-27
The sterically constrained, macrocyclic, aqueous soluble ligand N,N'-bis[(6-carboxy-2-pyridyl)methyl]-1,10-diaza-18-crown-6 (H2BP18C6) was investigated for separating americium from curium and all the lanthanides by solvent extraction. Pairing H2BP18C6, which favors complexation of larger f-element cations, with acidic organophosphorus extractants that favor extraction of smaller f-element cations, such as bis-(2-ethylhexyl)phosphoric acid (HDEHP) or (2-ethylhexyl)phosphonic acid mono(2-ethylhexyl) ester (HEH[EHP]), created solvent extraction systems with good Cm/Am selectivity, excellent trans-lanthanide selectivity (Kex,Lu/Kex,La = 108), but poor selectivity for Am against the lightest lanthanides. However, using an organic phase containing both a neutral extractant, N,N,N’,N’-tetra(2-ethylhexyl)diglycolamide (TEHDGA), and HEH[EHP] enabled rejection of the lightest lanthanides during loading ofmore » the organic phase from aqueous nitric acid, eliminating their interference in the americium stripping stages. In addition, although it is a macrocyclic ligand, H2BP18C6 does not significantly impede the mass transfer kinetics of the HDEHP solvent extraction system« less
Titanate-based adsorbents for radioactive ions entrapment from water.
Yang, Dongjiang; Liu, Hongwei; Zheng, Zhanfeng; Sarina, Sarina; Zhu, Huaiyong
2013-03-21
This feature article reviews some titanate-based adsorbents for the removal of radioactive wastes (cations and anions) from water. At the beginning, we discuss the development of the conventional ion-exchangeable titanate powders for the entrapment of radioactive cations, such as crystalline silicotitanate (CST), monosodium titanate (MST), peroxotitanate (PT). Then, we specially emphasize the recent progress in the uptake of radioactive ions by one-dimensional (1D) sodium titanate nanofibers and nanotubes, which includes the synthesis and phase transformation of the 1D nanomaterials, adsorption ability (capacity, selectivity, kinetics, etc.) of radioactive cations and anions, and the structural evolution during the adsorption process.
Bourdat-Deschamps, Marjolaine; Leang, Sokha; Bernet, Nathalie; Daudin, Jean-Jacques; Nélieu, Sylvie
2014-07-04
The aim of this study was to develop and optimise an analytical method for the quantification of a bactericide and 13 pharmaceutical products, including 8 antibiotics (fluoroquinolones, tetracyclines, sulfonamides, macrolide), in various aqueous environmental samples: soil water and aqueous fractions of pig slurry, digested pig slurry and sewage sludge. The analysis was performed by online solid-phase extraction coupled to ultra-high performance liquid chromatography with tandem mass spectrometry (online SPE-UHPLC-MS-MS). The main challenge was to minimize the matrix effects observed in mass spectrometry, mostly due to ion suppression. They depended on the dissolved organic carbon (DOC) content and its origin, and ranged between -22% and +20% and between -38% and -93% of the signal obtained without matrix, in soil water and slurry supernatant, respectively. The very variable levels of these matrix effects suggested DOC content cut-offs above which sample purification was required. These cut-offs depended on compounds, with concentrations ranging from 30 to 290mgC/L for antibiotics (except tylosine) up to 600-6400mgC/L for the most apolar compounds. A modified Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) extraction procedure was therefore optimised using an experimental design methodology, in order to purify samples with high DOC contents. Its performance led to a compromise, allowing fluoroquinolone and tetracycline analysis. The QuEChERS extraction salts consisted therefore of sodium acetate, sodium sulfate instead of magnesium sulfate, and sodium ethylenediaminetetraacetate (EDTA) as a ligand of divalent cations. The modified QuEChERS procedure employed for the extraction of pharmaceuticals in slurry and digested slurry liquid phases reduced the matrix effects for almost all the compounds, with extraction recoveries generally above 75%. The performance characteristics of the method were evaluated in terms of linearity, intra-day and inter-day precision, accuracy and limits of quantification, which reached concentration ranges of 5-270ng/L in soil water and sludge supernatant, and 31-2400ng/L in slurry and digested slurry supernatants, depending on the compounds. The new method was then successfully applied for the determination of the target compounds in environmental samples. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.
1987-11-10
The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.
NASA Astrophysics Data System (ADS)
Evans, A.
2015-12-01
Soil solution anionic composition can impact both plant and microbial activity in alpine tundra soils by altering biochemical cycling within the soil, either through base cation leaching, or shifts in aluminum controlling solid phases. Although anions play a critical role in the aqueous speciation of metals, relatively few high altitude field studies have examined their impact on aluminum controlling solid phases and aluminum speciation in soil water. For this study, thirty sampling sites were selected on Trail Ridge Road in Rocky Mountain National Park, Estes Park, CO, and sampled during July, the middle of the growing season. Sampling elevations ranged from approximately 3560 - 3710 m. Soil samples were collected to a depth of 15.24 cm, and the anions were extracted using a 2:1 D.I. water to soil ratio. Filtered extracts were analyzed using IC and ICP-MS. Soil solution NO3- concentrations were significantly higher for sampling locations east of Iceberg Pass (EIBP) (mean = 86.94 ± 119.8 mg/L) compared to locations west of Iceberg Pass (WIBP) (mean 1.481 ± 2.444 mg/L). Both F- and PO43- soil solution concentrations, 0.533 and 0.440 mg/L, respectively, were substantially lower, for sampling sites located EIBP, while locations WIBP averaged 0.773 and 0.829 mg/L respectively, for F- and PO43-. Sulfate concentration averaged 3.869 ± 3.059 mg/L for locations EIBP, and 3.891 ± 3.1970 for locations WIBP. Geochemical modeling of Al3+ in the soil solution indicated that a suite of aluminum hydroxyl sulfate minerals controlled Al3+ activity in the alpine tundra soil, with shifts between controlling solid phases occurring in the presence of elevated F- concentrations.
Wang, Chaoli; Hu, Xiaoling; Guan, Ping; Wu, Danfeng; Qian, Liwei; Li, Ji; Song, Renyuan
2015-01-01
The synthesis and performance of molecularly imprinted membranes (MIMs) as a solid phase extraction packing materials for the separation and purification of thymopentin from crude samples was described. In order to increase structural selectivity and imprinting efficiency, surface-initiated ATRP and ionic liquid (1-vinyl-3-ethyl acetate imidazolium chloride) were used to prepare molecularly imprinting membranes. The results demonstrated that solid phase extraction disks stuffed by MIMs with ionic liquids as functional monomer demonstrated high isolation and purification of performance to the thymopentin. The molecular recognition of thymopentin was analyzed by using molecular modeling software. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Mei-Ratliff, Yuan
2012-01-01
Trace levels of oxytetracylcine spiked into commercial milk samples are extracted, cleaned up, and preconcentrated using a C[subscript 18] solid-phase extraction column. The extract is then analyzed by a high-performance liquid chromatography (HPLC) instrument equipped with a UV detector and a C[subscript 18] column (150 mm x 4.6 mm x 3.5 [mu]m).…
Aytar, Burcu S.; Muller, John P. E.; Kondo, Yukishige; Abbott, Nicholas L.; Lynn, David M.
2013-01-01
We report principles for active, user-defined control over the locations and timing with which DNA is expressed in cells. Our approach exploits unique properties of a ferrocenyl cationic lipid that is inactive when oxidized, but active when chemically reduced. We show that methods that exert spatial control over the administration of reducing agents can lead to local activation of lipoplexes and spatial control over gene expression. The versatility of this approach is demonstrated using both soluble and solid-phase reducing agents. These methods provide control over cell transfection, including methods for remote activation and the patterning of expression using solid-phase redox agents, that are difficult to achieve using conventional lipoplexes. PMID:23965341
Aytar, Burcu S; Muller, John P E; Kondo, Yukishige; Abbott, Nicholas L; Lynn, David M
2013-09-11
We report principles for active, user-defined control over the locations and timing with which DNA is expressed in cells. Our approach exploits unique properties of a ferrocenyl cationic lipid that is inactive when oxidized, but active when chemically reduced. We show that methods that exert spatial control over the administration of reducing agents can lead to local activation of lipoplexes and spatial control over gene expression. The versatility of this approach is demonstrated using both soluble and solid-phase reducing agents. These methods provide control over cell transfection, including methods for remote activation and the patterning of expression using solid-phase redox agents, that are difficult to achieve using conventional lipoplexes.
Zeng, Honglian; Liu, Zhenli; Zhao, Siyu; Shu, Yisong; Song, Zhiqian; Wang, Chun; Dong, Yunzhuo; Ning, Zhangchi; He, Dan; Wang, Menglei; Lu, Cheng; Liu, Yuanyan; Lu, Aiping
2016-10-01
Citrus fruit is an important health-promoting food that is rich in dietary phenolic metabolites. Traditional Chinese medicines, such as Zhishi and Zhiqiao, come from young and immature fruits of Citrus cultivars. The preparation of diversified bioactive phenolic products and establishment of the corresponding quality control methodology are challenging and necessary. In the current study, four types of solid-phase extraction sorbents for the enrichment and clean-up of the phenolic matrix were evaluated. A solid-phase extraction column coated with Strata-X was finally used in the procedure. Twenty phenolic compounds were selected to evaluate the extraction performances of the sorbents using high-performance liquid chromatography analysis. Under the optimized conditions, good linearities were obtained with R 2 more than 0.9996 for all analytes with LODs of 0.04-1.012 μg/g. Intra- and interday relative standard deviation values were less than 3%, and the recovery was equal to or higher than 90.02%. Compared to non-solid-phase extraction process, the content of total phenolic products was elevated 35.55-68.48% with solid-phase extraction. Finally, the developed and validated method was successfully applied to the discrimination of Zhishi samples from different species as well as Zhishi and Zhiqiao samples in different development stages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peake, Roy W A; Zhang, Victoria Y; Azcue, Nina; Hartigan, Christina E; Shkreta, Aida; Prabhakara, Jasmina; Berde, Charles B; Kellogg, Mark D
2016-11-15
Neosaxitoxin, a member of the saxitoxin family of paralytic shellfish poisoning toxins, has shown potential as an effective, long-acting, anesthetic. We describe the development and validation of a highly sensitive method for measurement of neosaxitoxin in human plasma using liquid chromatography tandem mass spectrometry (LC-MS/MS) and provide evidence for its use in a human pharmacokinetic study. Samples were prepared using cation exchange solid phase extraction followed by hydrophilic interaction liquid chromatography and MS/MS detection in positive electrospray ionization mode. Multiple reaction monitoring was used to monitor neosaxitoxin (m/z 316.17>220.07) and the internal standard analogue decarbamoylneosaxitoxin (m/z 273.12>180.00). The method was validated for lower limit of quantification, precision, accuracy, linearity and matrix effect. The stability of neosaxitoxin in plasma matrix at various storage conditions was also investigated. Standard curves for calibration were linear (r>0.995) across the assay calibration range, 10 to 1000pg/mL. The analytical measurable range of the assay was 10-10,000pg/mL in plasma matrix. This method has demonstrated excellent sensitivity demonstrating a lower limit of quantification in human plasma of 10pg/mL. The mean, inter-batch variation was <5.2% across the concentration range 30 to 800pg/mL. This method was successfully used in a phase 1 trial to investigate the pharmacokinetic profile of neosaxitoxin in humans following the intravenous administration of the drug at a range of doses up to 40μg. We conclude that our high-sensitivity method for measurement of neosaxitoxin in human plasma is capable of supporting future clinical trials. Copyright © 2016 Elsevier B.V. All rights reserved.
Quantification of 4 antidepressants and a metabolite by LC-MS for therapeutic drug monitoring.
Choong, Eva; Rudaz, Serge; Kottelat, Astrid; Haldemann, Sophie; Guillarme, Davy; Veuthey, Jean-Luc; Eap, Chin B
2011-06-01
A liquid chromatography method coupled to mass spectrometry was developed for the quantification of bupropion, its metabolite hydroxy-bupropion, moclobemide, reboxetine and trazodone in human plasma. The validation of the analytical procedure was assessed according to Société Française des Sciences et Techniques Pharmaceutiques and the latest Food and Drug Administration guidelines. The sample preparation was performed with 0.5 mL of plasma extracted on a cation-exchange solid phase 96-well plate. The separation was achieved in 14 min on a C18 XBridge column (2.1 mm×100 mm, 3.5 μm) using a 50 mM ammonium acetate pH 9/acetonitrile mobile phase in gradient mode. The compounds of interest were analysed in the single ion monitoring mode on a single quadrupole mass spectrometer working in positive electrospray ionisation mode. Two ions were selected per molecule to increase the number of identification points and to avoid as much as possible any false positives. Since selectivity is always a critical point for routine therapeutic drug monitoring, more than sixty common comedications for the psychiatric population were tested. For each analyte, the analytical procedure was validated to cover the common range of concentrations measured in plasma samples: 1-400 ng/mL for reboxetine and bupropion, 2-2000 ng/mL for hydroxy-bupropion, moclobemide, and trazodone. For all investigated compounds, reliable performance in terms of accuracy, precision, trueness, recovery, selectivity and stability was obtained. One year after its implementation in a routine process, this method demonstrated a high robustness with accurate values over the wide concentration range commonly observed among a psychiatric population. Copyright © 2011 Elsevier B.V. All rights reserved.
Bi, Wentao; Tian, Minglei; Row, Kyung Ho
2012-01-01
This study highlighted the application of a two-stepped extraction method for extraction and separation of oxymatrine from Sophora flavescens Ait. extract by utilizing silica-confined ionic liquids as sorbent. The optimized silica-confined ionic liquid was firstly mixed with plant extract to adsorb oxymatrine. Simultaneously, some interference, such as matrine, was removed. The obtained suspension was then added to a cartridge for solid phase extraction. Through these two steps, target compound was adequately separated from interferences with 93.4% recovery. In comparison with traditional solid phase extraction, this method accelerates loading and reduces the use of organic solvents during washing. Moreover, the optimization of loading volume was simplified as optimization of solid/liquid ratio. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua
2016-12-01
Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavan, M.A.; Bingham, F.T.; Pratt, P.F.
A greenhouse experiment was carried out with 16 columns of an undisturbed Oxisol that had sufficient subsoil acidity to restrict root growth of a wide variety of crop plants. The objective was to determine the effects of surface applied CaCO/sub 3/, CaSO/sub 4/ x 2H/sup 2/O, and water on subsoil pH and exchangeable Al, Ca, and Mg. Eight soil columns were treated with CaCO/sub 3/ or CaSO/sub 4/ x 2H/sup 2/O at rates equal to 0.25 and 1.50 x the lime equivalent (KCL-extractable Al). The irrigation treatments consisted of trickle irrigation applied at 8.94 and 17.88 mm day/sup -1/ formore » 6 months. These treatments were superimposed on the amendment treatments. Observations included volume and composition of drainage water during the course of the experiment and chemical composition of the soil column by depth increments once the irrigation treatments were completed. Soil analysis included pH, cation exchange capacity (CEC), exchangeable cations, and composition of saturation extracts of soil. Effects of CaCO/sub 3/ treatments were observed only in the upper 20 cm of the profiles irrespective of irrigation and fertilizer treatments. The CaCO/sub 3/ treatments increased soil pH, CEC, and exchangeable Al; and CaSO/sub 4/ x 2H/sup 2/O treatments reduced the level of exchangeable Al and Mg throughout the 100-cm depth profiles while increasing the level of exhangeable Ca. Soil pH and CEC were unaffected by the latter treatment. Based on the effectiveness of CaSO/sup 4/ x 2H/sup 2/O in reducing exchangeable Al and Mg while increasing exchangeable Ca, the combination of dolomitic lime and gypsum appears to be an appropriate amendment treatment for Oxisols with toxic concentrations of available Al.« less
Yang, Feiyu; Zou, Yun; Ni, Chunfang; Wang, Rong; Wu, Min; Liang, Chen; Zhang, Jiabin; Yuan, Xiaoliang; Liu, Wenbin
2017-11-01
An easy-to-handle magnetic dispersive solid-phase extraction procedure was developed for preconcentration and extraction of cocaine and cocaine metabolites in human urine. Divinyl benzene and vinyl pyrrolidone functionalized silanized Fe 3 O 4 nanoparticles were synthesized and used as adsorbents in this procedure. Scanning electron microscopy, vibrating sample magnetometry, and infrared spectroscopy were employed to characterize the modified adsorbents. A high-performance liquid chromatography with mass spectrometry method for determination of cocaine and its metabolites in human urine sample has been developed with pretreatment of the samples by magnetic dispersive solid-phase extraction. The obtained results demonstrated the higher extraction capacity of the prepared nanoparticles with recoveries between 75.1 to 105.7% and correlation coefficients higher than 0.9971. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.10 ng/mL. The proposed magnetic dispersive solid-phase extraction method provided a rapid, environmentally friendly and magnetic stuff recyclable approach and it was confirmed that the prepared adsorbents material was a kind of highly effective extraction materials for the trace cocaine and cocaine metabolites analyses in human urine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alsharaa, Abdulnaser; Sajid, Muhammad; Basheer, Chanbasha; Alhooshani, Khalid; Lee, Hian Kee
2016-09-01
In the present study, highly efficient and simple dispersive solid-phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid-phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH˂4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid-phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05-100 μg/L with detection limits in the range of 0.006-0.05 μg/L. The relative standard deviations were 0.33-3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Process for producing high purity isoolefins and dimers thereof by dissociation of ethers
Smith, L.A. Jr.; Jones, E.M. Jr.; Hearn, D.
1984-05-08
Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150 to 250 F at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C[sub 3] to C[sub 6] and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom. 2 figs.
Process for producing high purity isoolefins and dimers thereof by dissociation of ethers
Smith, Jr., Lawrence A.; Jones, Jr., Edward M.; Hearn, Dennis
1984-01-01
Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150.degree. to 250.degree. F. at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C.sub.3 to C.sub.6 and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom.
Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; La Barbera, Giorgia; Samperi, Roberto; Ventura, Salvatore; Laganà, Aldo
2016-12-01
Recently, magnetic solid-phase extraction has gained interest because it presents various operational advantages over classical solid-phase extraction. Furthermore, magnetic nanoparticles are easy to prepare, and various materials can be used in their synthesis. In the literature, there are only few studies on the determination of mycoestrogens in milk, although their carryover in milk has occurred. In this work, we wanted to develop the first (to the best of our knowledge) magnetic solid-phase extraction protocol for six mycoestrogens from milk, followed by liquid chromatography and tandem mass spectrometry analysis. Magnetic graphitized carbon black was chosen as the adsorbent, as this carbonaceous material, which is very different from the most diffuse graphene and carbon nanotubes, had already shown selectivity towards estrogenic compounds in milk. The graphitized carbon black was decorated with Fe 3 O 4 , which was confirmed by the characterization analyses. A milk deproteinization step was avoided, using only a suitable dilution in phosphate buffer as sample pretreatment. The overall process efficiency ranged between 52 and 102%, whereas the matrix effect considered as signal suppression was below 33% for all the analytes even at the lowest spiking level. The obtained method limits of quantification were below those of other published methods that employ classical solid-phase extraction protocols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ba, B B; Corniot, A G; Ducint, D; Breilh, D; Grellet, J; Saux, M C
1999-03-05
An isocratic high-performance liquid chromatographic method with automated solid-phase extraction has been developed to determine foscarnet in calf and human serums. Extraction was performed with an anion exchanger, SAX, from which the analyte was eluted with a 50 mM potassium pyrophosphate buffer, pH 8.4. The mobile phase consisted of methanol-40 mM disodium hydrogenphosphate, pH 7.6 containing 0.25 mM tetrahexylammonium hydrogensulphate (25:75, v/v). The analyte was separated on a polyether ether ketone (PEEK) column 150x4.6 mm I.D. packed with Kromasil 100 C18, 5 microm. Amperometric detection allowed a quantification limit of 15 microM. The assay was linear from 15 to 240 microM. The recovery of foscarnet from calf serum ranged from 60.65+/-1.89% for 15 microM to 67.45+/-1.24% for 200 microM. The coefficient of variation was < or = 3.73% for intra-assay precision and < or =7.24% for inter-assay precision for calf serum concentrations ranged from 15 to 800 microM. For the same samples, the deviation from the nominal value ranged from -8.97% to +5.40% for same day accuracy and from -4.50% to +2.77% for day-to-day accuracy. Selectivity was satisfactory towards potential co-medications. Replacement of human serum by calf serum for calibration standards and quality control samples was validated. Automation brought more protection against biohazards and increase in productivity for routine monitoring and pharmacokinetic studies.
Production of sodium-22 from proton irradiated aluminum
Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.
1996-01-01
A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.
Pulsed Discharge Nozzle Cavity Ring Down Spectroscopy of Cold PAH Ions
NASA Technical Reports Server (NTRS)
Biennier, Ludovic; Salama, Farid; Allamandola, Louis J.; Scherer, James J.; DeVincenzi, Donald (Technical Monitor)
2002-01-01
The gas-phase electronic absorption spectra of the naphthalene (C10H8(+)) and acenaphthene (C12H10(+)) cations have been measured in the visible range in a free 10 jet planar expansion in an attempt to collect data in an astrophysically relevant environment. The direct absorption spectra of two out of four bands measured of the gas-phase cold naphthalene cation along with the gas-phase vibronic absorption spectrum of the cold acenaphthene cation are reported for the first time. The study has been carried out using the ultrasensitive and versatile technique of cavity ringdown spectroscopy (CRDS) coupled to a pulsed discharge slit nozzle (PDN). The new CRDS-PDN set up is described and its characteristics are evaluated. The direct-absorption spectra of the PAH ions are discussed and compared to the gas-phase and solid-phase data available in the literature. The analysis of the results show that cold, free flying PAH ions are generated in the argon discharge primarily through soft Penning ionization. This enables the intrinsic band profiles to be measured, a key requirement for astrophysical applications.
Tylová, Tereza; Kolařík, Miroslav; Olšovská, Jana
2011-07-01
A new simple ultra-high-performance liquid chromatography method with diode array detection (UHPLC-DAD) was developed for chemical fingerprinting analysis of extracellular metabolites in fermentation broth of Geosmithia spp. The SPE method employing Oasis MCX strong cation-exchange mixed-mode polymeric sorbent was chosen for extraction of the metabolites. The analyses were performed on an Acquity UPLC BEH C18 column (100 × 2.1 mm i.d.; particle size, 1.7 μm; Waters) using a gradient elution program with an aqueous solution of trifluoroacetic acid and acetonitrile as the mobile phase. The applicability of the method was proved by analysis of 38 strains produced by different species and isolated from different sources (hosts). The results revealed the correlation of obtained UHPLC-DAD fingerprints with taxonomical identity.
Cationic Polymers Developed for Alkaline Fuel Cell Applications
2015-01-20
into five categories: proton exchange membrane fuel cell ( PEMFC ), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), solid oxide fuel...SOFC and PAFC belong to high temperature fuel cell, which can be applied in stationary power generation. PEMFC and AFC belong to low temperature fuel...function of the polymer electrolyte is to serve as electrolyte to transport ions between electrodes. PEMFC uses a polymer as electrolyte and works
Breter, H J; Zahn, R K
1979-09-01
6-Mercaptopurine (6MP) metabolism was quantitatively determined in L5178Y murine lymphoma. Cells grown in time-course incubates with [35S]-6MP were extracted with cold perchloric acid, and the buffered extracts were subjected to high-performance liquid cation-exchange chromatography prior to and after hydrolysis with alkaline phosphatase. Free sulfate, 6-thiouric acid, 6-thioxanthosine, 6-thioguanosine, 6-thioinosine, free 6MP, and 6-methylthioinosine were separated from each other; identified in the radiochromatograms by elution volume, UV spectroscopic data, and enzymatic peak-shifting analyses with purine nucleoside phosphorylase; and quantitatively determined by means of 35S radioactivity. Gross intracellular 35S concentrations remained constant at 5 x 10(-5) M after 1 hr of incubation. 6MP metabolism in L5178Y cells was distinguished into an early phase (to 1 hr of incubation) in which 6MP was predominantly catabolized to 6-thiouric acid and free sulfate, into an intermediate phase (to 8 hr) in which substantial amounts of free 6MP and of ribonucleotides of 6-thioxanthosine and 6-thioguanosine were present while the concentrations of nonnucleotide oxidation products sharply decreased, and into a late phase (to 24 hr) in which the ribonucleotides of 6MP, of 6-thioguanosine and, in particular, of 6-methylthioinosine were the most abundant metabolites.
Experimental validation of Swy-2 clay standard's PHREEQC model
NASA Astrophysics Data System (ADS)
Szabó, Zsuzsanna; Hegyfalvi, Csaba; Freiler, Ágnes; Udvardi, Beatrix; Kónya, Péter; Székely, Edit; Falus, György
2017-04-01
One of the challenges of the present century is to limit the greenhouse gas emissions for the mitigation of climate change which is possible for example by a transitional technology, CCS (Carbon Capture and Storage) and, among others, by the increase of nuclear proportion in the energy mix. Clay minerals are considered to be responsible for the low permeability and sealing capacity of caprocks sealing off stored CO2 and they are also the main constituents of bentonite in high level radioactive waste disposal facilities. The understanding of clay behaviour in these deep geological environments is possible through laboratory batch experiments of well-known standards and coupled geochemical models. Such experimentally validated models are scarce even though they allow deriving more precise long-term predictions of mineral reactions and rock and bentonite degradation underground and, therefore, ensuring the safety of the above technologies and increase their public acceptance. This ongoing work aims to create a kinetic geochemical model of Na-montmorillonite standard Swy-2 in the widely used PHREEQC code, supported by solution and mineral composition results from batch experiments. Several four days experiments have been carried out in 1:35 rock:water ratio at atmospheric conditions, and with inert and CO2 supercritical phase at 100 bar and 80 ⁰C relevant for the potential Hungarian CO2 reservoir complex. Solution samples have been taken during and after experiments and their compositions were measured by ICP-OES. The treated solid phase has been analysed by XRD and ATR-FTIR and compared to in-parallel measured references (dried Swy-2). Kinetic geochemical modelling of the experimental conditions has been performed by PHREEQC version 3 using equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). The visualization of experimental and numerous modelling results has been automatized by R. Experiments and models show very fast reactions under the studied conditions and increased reactivity in presence of scCO2. A model sensitivity analysis has pointed out that the continuously changing solution composition results cannot be described by the change of the uncertain reactive surface area of mineral phases in the model and still several orders of magnitude different ion-concentrations are predicted. However, by considering the clay standard's cation exchange capacity divided proportionally among interlayer cations of Na-montmorillonite, the measured variation can be described on an order of magnitude level. It is furthermore indicated that not only the interlayer cations take part in this process but a minor proportion of other, structural ions as well, differently in the reference and scCO2 environments. Experimental methodological aspects of the work, such as solution sampling, solid sample post-experimental treatment, solution and solid sample analysis sensitivity, expected experimental by-products etc. are also to be addressed.
USDA-ARS?s Scientific Manuscript database
A new method of sample preparation was developed and is reported for the first time. The approach combines in-vial filtration with dispersive solid-phase extraction (d-SPE) in a fast and convenient cleanup of QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts. The method was appli...
COMPARISON OF TWO DIFFERENT SOLID PHASE EXTRACTION/LARGE VOLUME INJECTION PROCEDURES FOR METHOD 8270
Two solid phase (SPE) and one traditional continuous liquid-liquid extraction method are compared for analysis of Method 8270 SVOCs. Productivity parameters include data quality, sample volume, analysis time and solvent waste.
One SPE system, unique in the U.S., uses aut...
A rapid and sensitive method has been developed for the analysis of 48 human prescription active pharmaceutical ingredients (APIs) and 6 metabolites of interest, utilizing selective solid-phase extraction (SPE) and ultra performance liquid chromatography in combination with tripl...
40 CFR 141.40 - Monitoring requirements for unregulated contaminants.
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring to be completed Reserved i Reserved i Reserved i Reserved i Reserved i Reserved i Column headings... Pesticides and Flame Retardants in Drinking Water by Solid Phase Extraction and Capillary Column Gas... Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS...
An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...
AUTOMATED SOLID PHASE EXTRACTION GC/MS FOR ANALYSIS OF SEMIVOLATILES IN WATER AND SEDIMENTS
Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line sampl...
NASA Astrophysics Data System (ADS)
Palhares, Leticia F.
The dissertation research is focused on (1) uncovering the mechanism of metal chalcogenide nanoparticle gel formation; (2) extending the cation exchange reaction protocol to zinc sulfide gel networks, with the goal of accessing new aerogel chemistries and understanding the factors that drive the process; and (3) conducting a quantitative analysis of the ability of ZnS aerogels to remove heavy metal ions from aqueous solutions. The mechanism of metal chalcogenide nanoparticle gel formation was investigated using Raman spectroscopy and X-ray Photoelectron Spectroscopy to probe the chemical changes that occur during the gelation process. These techniques suggest that the bonding between the particles in the CdSe nanoparticle gels is due to the oxidation of surface selenide species, forming covalent Se--Se bonds. Treating the gel networks with a suitable reducing agent, such as a thiol, breaks the covalent bond and disperses the gel network. The addition of sodium borohydride, a "pure" reducing agent, also breaks down the gel network, strengthening the hypothesis that the reducing character of the thiols, not their ligation ability, is responsible for the gel network breakdown. UV-Vis spectroscopy, Transmission Electron Microscopy and Powder X-ray Diffraction were used to analyze the particles after successive gelation-dispersion cycles. The primary particle size decreases after repeated oxidation-reduction cycles, due to nanoparticle surface etching. This trend is observed for CdSe and CdS gel networks, allowing for the proposition that the oxidative-reductive mechanism responsible for the formation-dispersion of the gels is general, applying to other metal chalcogenide nanocrystals as well. The cation exchange reaction previously demonstrated for CdSe gels was extended to ZnS gel networks. The exchange occurs under mild reaction conditions (room temperature, methanol solvent) with exchanging ions of different size, charge and mobility (Ag+, Pb2+, Cd2+ , Cu2+). The overall reaction is kinetically controlled, since systems with similar solubility, and thus similar thermodynamic driving force (e.g. PbS and CdS) exchange at very different rates. A correlation exists between the speed of the reaction and the difference between the reduction potential of the incoming cation and that of Zn2+; the larger the difference, the faster the exchange. At the same time, the porosity of the aerogels and the surfactant-free surfaces hold great importance for the exchange reactions, allowing for exchange between cations of similar size and charge (i.e. Pb2+ for Zn2+), a phenomenon that was previously reported as impossible in ligand-capped metal chalcogenide nanoparticles. These observations allowed for a better understanding of the factors governing the cation exchange reaction in nanoscale metal chalcogenides. Quaternary ZnS-CuInS2 gels were obtained by cation exchange with Cu+ and In3+, but the pure CuInS2 phase was not obtained under the mild reaction conditions used, probably due to the very different mobility of the two exchanging cations. The kinetically fast cation exchange process and the propensity of the soft chalcogenide gel networks to bind heavy metal ions selectively, suggest that these materials could also be suitable for the removal of heavy metal ions from the environment. The dissertation research studied the capacity of ZnS aerogels to sequester heavy metal ions such as Pb2+ and Hg2+ from water. The materials are efficient in removing the heavy metal ions from aqueous solutions with a wide range of initial concentrations. For initial concentrations that mimic an environmental spill (i.e. 100 ppb Pb2+), the treatment with the aerogel affords a final concentration lower than the 15 ppm action level recommended by the EPA. Under thermodynamically forcing conditions, the water remediation capacity of the ZnS nanoparticle aerogels was determined to be 14.2 mmol Pb2+ / g ZnS aerogel, which is the highest value reported to date.
Opiso, Einstine M; Aseneiro, John Paul J; Banda, Marybeth Hope T; Tabelin, Carlito B
2018-03-01
The solid-phase partitioning of mercury could provide necessary data in the identification of remediation techniques in contaminated artisanal gold mine tailings. This study was conducted to determine the total mercury content of mine wastes and identify its solid-phase partitioning through selective sequential extraction coupled with cold vapour atomic absorption spectroscopy. Samples from mine tailings and the carbon-in-pulp (CIP) process were obtained from selected key areas in Mindanao, Philippines. The results showed that mercury use is still prevalent among small-scale gold miners in the Philippines. Tailings after ball mill-gravity concentration (W-BM and Li-BM samples) from Mt Diwata and Libona contained high levels of mercury amounting to 25.024 and 6.5 mg kg -1 , respectively. The most prevalent form of mercury in the mine tailings was elemental/amalgamated mercury, followed by water soluble, exchangeable, organic and strongly bound phases, respectively. In contrast, mercury content of carbon-in-pulp residues were significantly lower at only 0.3 and 0.06 mg kg -1 for P-CIP (Del Pilar) and W-CIP (Mt Diwata), respectively. The bulk of mercury in P-CIP samples was partitioned in residual fraction while in W-CIP samples, water soluble mercury predominated. Overall, this study has several important implications with regards to mercury detoxification of contaminated mine tailings from Mindanao, Philippines.
Mommen, Geert P M; Meiring, Hugo D; Heck, Albert J R; de Jong, Ad P J M
2013-07-16
In proteomics, comprehensive analysis of peptides mixtures necessitates multiple dimensions of separation prior to mass spectrometry analysis to reduce sample complexity and increase the dynamic range of analysis. The main goal of this work was to improve the performance of (online) multidimensional protein identification technology (MudPIT) in terms of sensitivity, compatibility and recovery. The method employs weak anion and strong cation mixed-bed ion exchange chromatography (ACE) in the first separation dimension and reversed phase chromatography (RP) in the second separation dimension (Motoyama et.al. Anal. Chem 2007, 79, 3623-34.). We demonstrated that the chromatographic behavior of peptides in ACE chromatography depends on both the WAX/SCX mixing ratio as the ionic strength of the mobile phase system. This property allowed us to replace the conventional salt gradient by a (discontinuous) salt-free, pH gradient. First dimensional separation of peptides was accomplished with mixtures of aqueous formic acid and dimethylsulfoxide with increasing concentrations. The overall performance of this mobile phase system was found comparable to ammonium acetate buffers in application to ACE chromatography, but clearly outperformed strong cation exchange for use in first dimensional peptide separation. The dramatically improved compatibility between (salt-free) ion exchange chromatography and reversed phase chromatography-mass spectrometry allowed us to downscale the dimensions of the RP analytical column down to 25 μm i.d. for an additional 2- to 3-fold improvement in performance compared to current technology. The achieved levels of sensitivity, orthogonality, and compatibility demonstrates the potential of salt-free ACE MudPIT for the ultrasensitive, multidimensional analysis of very modest amounts of sample material.
Niu, Xingliang; Luo, Jun; Xu, Deran; Zou, Hongyan; Kong, Lingyi
2017-02-05
Ginkgolides, the main active constituents of Ginkgo biloba, possess significant selectively inhibition on platelet-activating factor and pancreatic lipase and attract wide attention in pharmacological research area. In our study, an effective hydrogen/deuterium (H/D) exchange method was developed by exchanging the α-Hs of lactone groups in ginkgolides with Ds, which was very useful for the elucidation of the fragmentation patterns of ginkgolides in Quadrupole Time-of-flight Mass Spectrometry (Q-TOF-MS), especially in accurately distinguishing the type and position of substituent in framework of ginkgolides. Then, a systematic research strategy for qualitative and quantitative analysis of ginkgolides, based on H/D exchange, tandem solid-phase extraction and LC-Q-TOF-MS, was developed, which was successfully applied in each medicinal part of G. biloba, which indicated that ginkgolide B was the most abundant ginkgolide in the seeds of G. biloba (60.6μg/g). This research was the successful application of H/D exchange in natural products, and proved that H/D exchange is a potential method for analysis research of complex TCMs active constituents. Copyright © 2016 Elsevier B.V. All rights reserved.
Structural chemistry and magnetic properties of the perovskite Sr{sub 3}Fe{sub 2}TeO{sub 9}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yawei; Hunter, Emily C.; Battle, Peter D., E-mail: peter.battle@chem.ox.ac.uk
2016-10-15
A polycrystalline sample of perovskite-like Sr{sub 3}Fe{sub 2}TeO{sub 9} has been prepared in a solid-state reaction and studied by a combination of electron microscopy, Mössbauer spectroscopy, magnetometry, X-ray diffraction and neutron diffraction. The majority of the reaction product is shown to be a trigonal phase with a 2:1 ordered arrangement of Fe{sup 3+} and Te{sup 6+} cations. However, the sample is prone to nano-twinning and tetragonal domains with a different pattern of cation ordering exist within many crystallites. Antiferromagnetic ordering exists in the trigonal phase at 300 K and Sr{sub 3}Fe{sub 2}TeO{sub 9} is thus the first example of amore » perovskite with 2:1 trigonal cation ordering to show long-range magnetic order. At 300 K the antiferromagnetic phase coexists with two paramagnetic phases which show spin-glass behaviour below ~80 K. - Graphical abstract: Sr{sub 3}Fe{sub 2}TeO{sub 9} has a 2:1 ordered arrangement of Fe{sup 3+} and Te{sup 6+} cations over the octahedral sites of a perovskite structure and is antiferromagnetic at room temperature. - Highlights: • 2:1 Cation ordering in a trigonal perovskite. • Magnetically ordered trigonal perovskite. • Intergrowth of nanodomains in perovskite microstructure.« less
Taghvimi, Arezou; Hamishehkar, Hamed; Ebrahimi, Mahmoud
2016-06-01
The simultaneous determination of amphetamine and methadone was carried out by magnetic graphene oxide nanoparticles, a magnetic solid-phase extraction adsorbent, as a new sample treatment technique. The main factors (the amounts of sample volume, amount of adsorbent, type and amount of extraction organic solvent, time of extraction and desorption, pH, the ionic strength of extraction medium, and agitation rate) influencing the extraction efficiency were investigated and optimized. Under the optimized conditions, good linearity was observed in the range of 100-1500 ng/mL for amphetamine and 100-1000 ng/mL for methadone. The method was evaluated for determination of AM and methadone in positive urine samples, satisfactory results were obtained, therefore magnetic solid-phase extraction can be applied as a novel method for the determination of drugs of abuse in forensic laboratories. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping
2017-01-01
In lattice Boltzmann simulations involving moving solid boundaries, the momentum exchange between the solid and fluid phases was recently found to be not fully consistent with the principle of local Galilean invariance (GI) when the bounce-back schemes (BBS) and the momentum exchange method (MEM) are used. In the past, this inconsistency was resolved by introducing modified MEM schemes so that the overall moving-boundary algorithm could be more consistent with GI. However, in this paper we argue that the true origin of this violation of Galilean invariance (VGI) in the presence of a moving solid-fluid interface is due to the BBS itself, as the VGI error not only exists in the hydrodynamic force acting on the solid phase, but also in the boundary force exerted on the fluid phase, according to Newton's Third Law. The latter, however, has so far gone unnoticed in previously proposed modified MEM schemes. Based on this argument, we conclude that the previous modifications to the momentum exchange method are incomplete solutions to the VGI error in the lattice Boltzmann method (LBM). An implicit remedy to the VGI error in the LBM and its limitation is then revealed. To address the VGI error for a case when this implicit remedy does not exist, a bounce-back scheme based on coordinate transformation is proposed. Numerical tests in both laminar and turbulent flows show that the proposed scheme can effectively eliminate the errors associated with the usual bounce-back implementations on a no-slip solid boundary, and it can maintain an accurate momentum exchange calculation with minimal computational overhead.
Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim
2016-01-01
A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na+), potassium (K+), ammonium (NH4+), chloride (Cl−) and nitrate (NO3−) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples. PMID:26786906
Gasse, Angela; Pfeiffer, Heidi; Köhler, Helga; Schürenkamp, Jennifer
2016-07-01
The aim of this work was to develop and validate a solid-phase extraction (SPE) method for the analysis of cannabinoids with emphasis on a very extensive and effective matrix reduction in order to ensure constant good results in selectivity and sensitivity regardless of the applied measuring technology. This was obtained by the use of an anion exchange sorbent (AXS) and the purposive ionic interaction between matrix components and this sorbent material. In a first step, the neutral cannabinoids ∆9-tetrahydrocannabinol (THC) and 11-hydroxy-∆9-tetrahydrocannabinol (11-OH-THC) were eluted, leaving 11-nor-9-carboxy-∆9-tetrahydrocannabinol (THC-COOH) and the main interfering matrix components bound to the AXS. In a second step, exploiting differences in pH and polarity, it was possible to separate matrix components and THC-COOH, thereby yielding a clean elution of THC-COOH into the same collecting tube as THC and 11-OH-THC. Even when using a simple measuring technology like gas chromatography with single quadrupole mass spectrometry, this two-step elution allows for an obvious decrease in number and intensity of matrix interference in the chromatogram. Hence, in both plasma and serum, the AXS extracts resulted in very good selectivity. Limits of detection and limits of quantification were below 0.25 and 0.35 ng/mL for the neutral cannabinoids in both matrices, 2.0 and 3.0 ng/mL in plasma and 1.6 and 3.3 ng/mL in serum for THC-COOH. The recoveries were ≥79.8 % for all analytes. Interday and intraday imprecisions ranged from 0.8 to 6.1 % relative standard deviation, and accuracy bias ranged from -12.6 to 3.6 %.
Waseem, Amir; Yaqoob, Mohammad; Nabi, Abdul
2010-01-01
A simple and rapid flow-injection chemiluminescence method has been developed for the determination of dithiocarbamate fungicide thiram based on the chemiluminescence reaction of thiram with ceric sulfate and quinine in aqueous sulfuric acid. The present method allowed the determination of thiram in the concentration range of 7.5-2500 ng/mL and the detection limit (signal-to-noise ratio = 3) was 7.5 ng/mL with sample throughput of 120/h. The relative standard deviation was 2.5% for 10 replicate analyses of 500 ng/mL thiram. The effects of foreign species including various anions and cations present in water at environmentally relevant concentrations and some pesticides were also investigated. The proposed method was applied to determine thiram in spiked natural waters using octadecyl bonded phase silica (C(18)) cartridges for solid-phase extraction. The recoveries were in the range 99 +/- 1 to 104 +/- 1%. Copyright (c) 2009 John Wiley & Sons, Ltd.
Jimmerson, Leah C.; Ray, Michelle L.; Bushman, Lane R.; Anderson, Peter L.; Klein, Brandon; Rower, Joseph E.; Zheng, Jia-Hua; Kiser, Jennifer J.
2014-01-01
Ribavirin (RBV) is a nucleoside analog used to treat a variety of DNA and RNA viruses. RBV undergoes intracellular phosphorylation to a mono- (MP), di- (DP), and triphosphate (TP). The phosphorylated forms have been associated with the mechanisms of antiviral effect observed in vitro, but the intracellular pharmacology of the drug has not been well characterized in vivo. A highly sensitive LC-MS/MS method was developed and validated for the determination of intracellular RBV MP, DP, and TP in multiple cell matrix types. For this method, the individual MP, DP, and TP fractions were isolated from lysed intracellular matrix using strong anion exchange solid phase extraction, dephosphorylated to parent RBV, desalted and concentrated and quantified using LC-MS/MS. The method utilized a stable labeled internal standard (RBV-13C5) which facilitated accuracy (% deviation within ±15%) and precision (coefficient of variation of ≤15%). The quantifiable linear range for the assay was 0.50 to 200 pmol/sample. The method was applied to the measurement of RBV MP, DP, and TP in human peripheral blood mononuclear cells (PBMC), red blood cells (RBC), and dried blood spot (DBS) samples obtained from patients taking RBV for the treatment of chronic Hepatitis C virus infection. PMID:25555148
Aga, D.S.; Thurman, E.M.
1993-01-01
Solid-phase extraction (SPE) and enzyme-linked immunosorbent assay (ELISA) were coupled for automated trace analysis of pristine water samples containing 2-chloro-4-ethylamino-6-isopropylamine-s-triazine (atrazine) and 2-chloro-2???,6???-diethyl-N-(methoxymethyl)acetanilide (alachlor). The isolation of the two herbicides on a C18-resin involved the selection of an elution solvent that both removes interfering substances and is compatible with ELISA. Ethyl acetate was selected as the elution solvent followed by a solvent exchange with methanol/water (20/80, % v/v). The SPE-ELISA method has a detection limit of 5.0 ng/L (5 ppt), >90% recovery, and a relative standard deviation of ??10%. The performance of a microtiter plate-based ELISA and a magnetic particle-based ELISA coupled to SPE was also evaluated. Although the sensitivity of the two ELISA methods was comparable, the precision using magnetic particles was improved considerably (??10% versus ??20%) because of the faster reaction kinetics provided by the magnetic particles. Finally, SPE-ELISA and isotope dilution gas chromatography/ mass spectrometry correlated well (correlation coefficient of 0.96) for lake-water samples. The SPE-ELISA method is simple and may have broader applications for the inexpensive automated analysis of other contaminants in water at trace levels.
[Studies on alkaloids of Asteropyrum cavaleriei (Lévl. et Vant.) Drumm. et Hutch].
Xu, H L
2000-08-01
To investigate the chemical constituents in the plant of Asteropyrum cavaleriei. The Chemical constituents were extracted with cation exchange resin 732 and separated by column chromatography, and the structures were identified by spectral analysis. Four compounds were isolated and identified as berberine, berberrabine, palmatine and magnoflorine. All compounds were separated from A. Cavaleriei for the first time.
Baig, Jameel A; Kazi, Tasneem G; Shah, Abdul Q; Arain, Mohammad B; Afridi, Hassan I; Kandhro, Ghulam A; Khan, Sumaira
2009-09-28
The simple and rapid pre-concentration techniques viz. cloud point extraction (CPE) and solid phase extraction (SPE) were applied for the determination of As(3+) and total inorganic arsenic (iAs) in surface and ground water samples. The As(3+) was formed complex with ammonium pyrrolidinedithiocarbamate (APDC) and extracted by surfactant-rich phases in the non-ionic surfactant Triton X-114, after centrifugation the surfactant-rich phase was diluted with 0.1 mol L(-1) HNO(3) in methanol. While total iAs in water samples was adsorbed on titanium dioxide (TiO(2)); after centrifugation, the solid phase was prepared to be slurry for determination. The extracted As species were determined by electrothermal atomic absorption spectrometry. The multivariate strategy was applied to estimate the optimum values of experimental factors for the recovery of As(3+) and total iAs by CPE and SPE. The standard addition method was used to validate the optimized methods. The obtained result showed sufficient recoveries for As(3+) and iAs (>98.0%). The concentration factor in both cases was found to be 40.
Microscopic theory of cation exchange in CdSe nanocrystals.
Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C
2014-10-10
Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.
A rapid method for estimating polychlorinated biphenyl (PCB) concentrations in contaminated soils and sediments has been developed by coupling static subcritical water extraction with solid-phase microextraction (SPME). Soil, water, and internal standards are placed in a seale...
Method 525.3 is an analytical method that uses solid phase extraction (SPE) and gas chromatography/mass spectrometry (GC/MS) for the identification and quantitation of 125 selected semi-volatile organic chemicals in drinking water.
QUANTIFICATION OF 2,4-D ON SOLID-PHASE EXPOSURE SAMPLING MEDIA BY LC/MS/MS
Three types of solid phase chemical exposure sampling media: cellulose, polyurethane foam (PUF) and XAD-2, were analyzed for 2,4-D and the amine salts of 2,4-D. Individual samples were extracted into acidified methanol and the extracts were analyzed via LC/MS/MS using electrospra...
Duan, Jiankun; He, Man; Hu, Bin
2012-12-14
A new phenylalanine derivative (L-N-(2-hydroxy-propyl)-phenylalanine, L-HP-Phe) was synthesized and its chelate with Cu(II) (Cu(II)-(L-HP-Phe)(2)) was used as the chiral selector for the ligand-exchange (LE) chiral separation of D,L-selenomethionine (SeMet) in selenized yeast samples by micelle electrokinetic capillary chromatography (MEKC). In order to improve the sensitivity of MEKC-UV, two-step preconcentration strategy was employed, off-line solid phase extraction (SPE) and on-line large volume sample stacking (LVSS). D,L-SeMet was first retained on the Cu(II) loaded mesoporous TiO(2), then eluted by 0.1 mL of 5 mol L(-1) ammonia, and finally introduced for MEKC-UV analysis by LVSS injection after evaporation of NH(3). With the enrichment factors of 1400 and 1378, the LODs of 0.44 and 0.60 ng mL(-1) for L-SeMet and D-SeMet was obtained, respectively. The developed method was applied to the analysis of D,L-SeMet in a certified reference material of SELM-1 and a commercial nutrition yeast, and the results showed that most of SeMet in the SELM-1 selenized yeast was l isomer and the recovery for L and D isomers in the spiked commercial nutrition yeast was 96.3% and 103%, respectively. This method is featured with low running cost, high sensitivity and selectivity, and exhibits application potential in chiral analysis of seleno amino acids in real world samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M
2013-12-04
Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Furukawa, Makoto; Takagai, Yoshitaka
2016-10-04
Online solid-phase extraction (SPE) coupled with inductively coupled plasma mass spectrometry (ICPMS) is a useful tool in automatic sequential analysis. However, it cannot simultaneously quantify the analytical targets and their recovery percentages (R%) in one-shot samples. We propose a system that simultaneously acquires both data in a single sample injection. The main flowline of the online solid-phase extraction is divided into main and split flows. The split flow line (i.e., bypass line), which circumvents the SPE column, was placed on the main flow line. Under program-controlled switching of the automatic valve, the ICPMS sequentially measures the targets in a sample before and after column preconcentration and determines the target concentrations and the R% on the SPE column. This paper describes the system development and two demonstrations to exhibit the analytical significance, i.e., the ultratrace amounts of radioactive strontium ( 90 Sr) using commercial Sr-trap resin and multielement adsorbability on the SPE column. This system is applicable to other flow analyses and detectors in online solid phase extraction.
Murakami, Tomonori; Kawasaki, Takao; Takemura, Akira; Fukutsu, Naoto; Kishi, Naoyuki; Kusu, Fumiyo
2008-10-24
Rapid and unambiguous identification of three degradation products (DP-1, DP-2 and DP-3) found in heat-stressed loxoprofen sodium adhesive tapes (Loxonin tapes) was achieved by LC-MS and dynamic pressurized liquid extraction (PLE)-solid-phase extraction (SPE) coupled to LC-NMR without complicated isolation or purification processes. The molecular formulae of the degradation products were determined by accurate mass measurements and product ion analyses and on-line hydrogen/deuterium (H/D) exchange experiments provided information about changes in the degradation of loxoprofen. To compensate for the low sensitivity of NMR, on-line dynamic PLE-SPE was employed and higher concentrations of degradation products trapped on the SPE column were afforded in a shorter time than they would be in such time-consuming sample preparations as pre-concentration after extraction. The loop-storage procedure was used in the LC-NMR analysis to allow the acquisition of the (1)H spectra of the three degradation products in one chromatographic run without affecting the peak separation and to avoid the carry-over of previously eluted DP-1 of high concentration by washing the NMR detection cell prior to the measurement of the DP-2 spectrum. Based on the resulting (1)H NMR spectra in combination with the MS results, DP-1 was successfully identified as an oxidation product having an oxodicarboxylic acid structure formed by the cleavage of the cyclopentanone ring of loxoprofen, DP-2 as a cyclopentanone ring-hydroxylated loxoprofen and DP-3 as a loxoprofen l-menthol ester.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Hai L., E-mail: Hai.Feng@cpfs.mpg.de; Yamaura, Kazunari; Tjeng, Liu Hao
Polycrystalline samples of double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were synthesized by solid state reactions. They adopt the cubic double perovskite structures (space group, Fm-3m) with ordered B and Os arrangements. Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) show antiferromagnetic transitions at 93 K, 69 K, and 28 K, respectively. The Weiss-temperatures are −590 K for Ba{sub 2}ScOsO{sub 6}, −571 K for Ba{sub 2}YOsO{sub 6}, and −155 K for Ba{sub 2}InOsO{sub 6}. Sc{sup 3+} and Y{sup 3+} have the open-shell d{sup 0} electronic configuration, while In{sup 3+} has the closed-shell d{sup 10}. This indicates that a d{sup 0} B-typemore » cation induces stronger overall magnetic exchange interactions in comparison to a d{sup 10}. Comparison of Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) to their Sr and Ca analogues shows that the structural distortions weaken the overall magnetic exchange interactions. - Graphical abstract: Magnetic properties of osmium double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were studied. Comparison of Ba{sub 2}BOsO{sub 6}indicates that a d{sup 0} B-type cation induces stronger overall magnetic exchange interactions in comparison to a d{sup 10}. - Highlights: • Magnetic properties of double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were studied. • A d{sup 0}B-type cation induces stronger magnetic interactions than a d{sup 10}. • Structural distortions weaken the overall Os{sup 5+}-Os{sup 5+} magnetic interactions.« less