Science.gov

Sample records for cationic amino acid

  1. Systematic studies of the mass spectrometric properties of alkaline earth metal cationized amino acids and peptides

    NASA Astrophysics Data System (ADS)

    Küjckelmann, Ulrich; Müller, Dietrich; Weber, Carsten

    1997-07-01

    The results of a systematic study of the gas phase interactions of α-amino acids and peptides (4-15 amino acids) with alkaline earth metals, observed with mass spectrometric techniques, are presented. Furthermore, a model for the cationization with calcium at the C-terminal amino acid arginine in rotaviral polypeptides is presented.

  2. Cationic amino acid transporters play key roles in the survival and transmission of apicomplexan parasites

    PubMed Central

    Rajendran, Esther; Hapuarachchi, Sanduni V.; Miller, Catherine M.; Fairweather, Stephen J.; Cai, Yeping; Smith, Nicholas C.; Cockburn, Ian A.; Bröer, Stefan; Kirk, Kiaran; van Dooren, Giel G.

    2017-01-01

    Apicomplexans are obligate intracellular parasites that scavenge essential nutrients from their hosts via transporter proteins on their plasma membrane. The identities of the transporters that mediate amino acid uptake into apicomplexans are unknown. Here we demonstrate that members of an apicomplexan-specific protein family—the Novel Putative Transporters (NPTs)—play key roles in the uptake of cationic amino acids. We show that an NPT from Toxoplasma gondii (TgNPT1) is a selective arginine transporter that is essential for parasite survival and virulence. We also demonstrate that a homologue of TgNPT1 from the malaria parasite Plasmodium berghei (PbNPT1), shown previously to be essential for the sexual gametocyte stage of the parasite, is a cationic amino acid transporter. This reveals a role for cationic amino acid scavenging in gametocyte biology. Our study demonstrates a critical role for amino acid transporters in the survival, virulence and life cycle progression of these parasites. PMID:28205520

  3. Cationic amino acid transporters play key roles in the survival and transmission of apicomplexan parasites.

    PubMed

    Rajendran, Esther; Hapuarachchi, Sanduni V; Miller, Catherine M; Fairweather, Stephen J; Cai, Yeping; Smith, Nicholas C; Cockburn, Ian A; Bröer, Stefan; Kirk, Kiaran; van Dooren, Giel G

    2017-02-16

    Apicomplexans are obligate intracellular parasites that scavenge essential nutrients from their hosts via transporter proteins on their plasma membrane. The identities of the transporters that mediate amino acid uptake into apicomplexans are unknown. Here we demonstrate that members of an apicomplexan-specific protein family-the Novel Putative Transporters (NPTs)-play key roles in the uptake of cationic amino acids. We show that an NPT from Toxoplasma gondii (TgNPT1) is a selective arginine transporter that is essential for parasite survival and virulence. We also demonstrate that a homologue of TgNPT1 from the malaria parasite Plasmodium berghei (PbNPT1), shown previously to be essential for the sexual gametocyte stage of the parasite, is a cationic amino acid transporter. This reveals a role for cationic amino acid scavenging in gametocyte biology. Our study demonstrates a critical role for amino acid transporters in the survival, virulence and life cycle progression of these parasites.

  4. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.

    PubMed

    Armentrout, P B; Yang, Bo; Rodgers, M T

    2014-04-24

    Metal cation-amino acid interactions are key components controlling the secondary structure and biological function of proteins, enzymes, and macromolecular complexes comprising these species. Determination of pairwise interactions of alkali metal cations with amino acids provides a thermodynamic vocabulary that begins to quantify these fundamental processes. In the present work, we expand a systematic study of such interactions by examining rubidium and cesium cations binding with the acidic amino acids (AA), aspartic acid (Asp) and glutamic acid (Glu), and their amide derivatives, asparagine (Asn) and glutamine (Gln). These eight complexes are formed using electrospray ionization and their bond dissociation energies (BDEs) are determined experimentally using threshold collision-induced dissociation with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations are conducted at the B3LYP, MP2(full), and M06 levels of theory using def2-TZVPPD basis sets, with results showing reasonable agreement with experiment. At 0 and 298 K, most levels of theory predict that the ground-state conformers for M(+)(Asp) and M(+)(Asn) involve tridentate binding of the metal cation to the backbone carbonyl, amino, and side-chain carbonyl groups, although tridentate binding to the carboxylic acid group and side-chain carbonyl is competitive for M(+)(Asn). For the two longer side-chain amino acids, Glu and Gln, multiple structures are competitive. A comparison of these results to those for the smaller alkali cations, Na(+) and K(+), provides insight into the trends in binding energies associated with the molecular polarizability and dipole moment of the side chain. For all four metal cations, the BDEs are inversely correlated with the size of the metal cation and follow the order Asp < Glu

  5. Hypomorphic variants of cationic amino acid transporter 3 in males with autism spectrum disorders.

    PubMed

    Nava, Caroline; Rupp, Johanna; Boissel, Jean-Paul; Mignot, Cyril; Rastetter, Agnès; Amiet, Claire; Jacquette, Aurélia; Dupuits, Céline; Bouteiller, Delphine; Keren, Boris; Ruberg, Merle; Faudet, Anne; Doummar, Diane; Philippe, Anne; Périsse, Didier; Laurent, Claudine; Lebrun, Nicolas; Guillemot, Vincent; Chelly, Jamel; Cohen, David; Héron, Delphine; Brice, Alexis; Closs, Ellen I; Depienne, Christel

    2015-12-01

    Cationic amino acid transporters (CATs) mediate the entry of L-type cationic amino acids (arginine, ornithine and lysine) into the cells including neurons. CAT-3, encoded by the SLC7A3 gene on chromosome X, is one of the three CATs present in the human genome, with selective expression in brain. SLC7A3 is highly intolerant to variation in humans, as attested by the low frequency of deleterious variants in available databases, but the impact on variants in this gene in humans remains undefined. In this study, we identified a missense variant in SLC7A3, encoding the CAT-3 cationic amino acid transporter, on chromosome X by exome sequencing in two brothers with autism spectrum disorder (ASD). We then sequenced the SLC7A3 coding sequence in 148 male patients with ASD and identified three additional rare missense variants in unrelated patients. Functional analyses of the mutant transporters showed that two of the four identified variants cause severe or moderate loss of CAT-3 function due to altered protein stability or abnormal trafficking to the plasma membrane. The patient with the most deleterious SLC7A3 variant had high-functioning autism and epilepsy, and also carries a de novo 16p11.2 duplication possibly contributing to his phenotype. This study shows that rare hypomorphic variants of SLC7A3 exist in male individuals and suggest that SLC7A3 variants possibly contribute to the etiology of ASD in male subjects in association with other genetic factors.

  6. Cationic amino acid transporters and beta-defensins in dry eye syndrome.

    PubMed

    Jäger, Kristin; Garreis, Fabian; Dunse, Matthias; Paulsen, Friedrich P

    2010-01-01

    Several diseases concomitant with L-arginine deficiency (diabetes, chronic kidney failure, psoriasis) are significantly associated with dry eye syndrome. One important factor that has so far been neglected is the y(+) transporter. In humans, y(+) accounts for nearly 80% of arginine transport, exclusively carrying the cationic amino acids L-arginine, L-lysine and L-ornithine. y(+) is represented by CAT(cationic amino acid transporter) proteins. L-arginine is a precursor of the moisturizer urea, which has been used in the treatment of dry skin diseases. Although urea has also been shown to be part of the tear film, little attention has been paid to it in this role. Moreover, L-arginine and L-lysine are major components contributing to synthesis of the antimicrobially active beta-defensins induced under dry eye conditions. The first results have demonstrated that transport of L-arginine and L-lysine into epithelial cells is limited by the y(+) transporter at the ocular surface.

  7. Biological and surface-active properties of double-chain cationic amino acid-based surfactants.

    PubMed

    Greber, Katarzyna E; Dawgul, Małgorzata; Kamysz, Wojciech; Sawicki, Wiesław; Łukasiak, Jerzy

    2014-08-01

    Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.

  8. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  9. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor.

    PubMed

    Kim, J W; Closs, E I; Albritton, L M; Cunningham, J M

    1991-08-22

    Susceptibility of rodent cells to infection by ecotropic murine leukaemia viruses (MuLV) is determined by binding of the virus envelope to a membrane receptor that has multiple membrane-spanning domains. Cells infected by ecotropic MuLV synthesize envelope protein, gp70, which binds to this receptor, thereby preventing additional infections. The consequences of envelope-MuLV receptor binding for the infected host cell have not been directly determined, partly because the cellular function of the MuLV receptor protein is unknown. Here we report a coincidence in the positions of the first eight putative membrane-spanning domains found in the virus receptor and in two related proteins, the arginine and histidine permeases of Saccharomyces cerevisiae (Fig. 1), but not in any other proteins identified by computer-based sequence comparison of the GenBank data base. Xenopus oocytes injected with receptor-encoding messenger RNA show increased uptake of L-arginine, L-lysine and L-ornithine. The transport properties and the expression pattern of the virus receptor behave in ways previously attributed to y+, the principal transporter of cationic L-amino acids in mammalian cells.

  10. Expression Profile of Cationic Amino Acid Transporters in Rats with Endotoxin-Induced Uveitis

    PubMed Central

    Chang, Shu-Wen; Lee, Yi-An; Kao, Tzu-Yun

    2016-01-01

    Purpose. The transcellular arginine transportation via cationic amino acid transporter (CAT) is the rate-limiting step in nitric oxide (NO) synthesis, which is crucial in intraocular inflammation. In this study, CAT isoforms and inducible nitric oxide synthase (iNOS) expression was investigated in endotoxin-induced uveitis (EIU). Methods. EIU was induced in Lewis rats by lipopolysaccharide (LPS) injection. In the treatment group, the rats were injected intraperitoneally with the proteasome inhibitor bortezomib before EIU induction. After 24 hours, leukocyte quantification, NO measurement of the aqueous humor, and histopathological examination were evaluated. The expression of CAT isoforms and iNOS was determined by reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence staining. Nuclear factor-kappa B (NF-κB) binding activity was evaluated by electrophoretic mobility shift assay. The mouse macrophage cell line RAW 264.7 was used to validate the in vivo findings. Results. LPS significantly stimulated iNOS, CAT-2A, and CAT-2B mRNA and protein expression but did not affect CAT-1 in EIU rats and RAW 264.7 cells. Bortezomib attenuated inflammation and inhibited iNOS, CAT-2A, and CAT-2B expression through NF-κB inhibition. Conclusions. CAT-2 and iNOS, but not CAT-1, are specifically involved in EIU. NF-κB is essential in the induction of CAT-2 and iNOS in EIU. PMID:27413255

  11. Amino acids

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  12. Superior SWNT dispersion by amino acid based amphiphiles: designing biocompatible cationic nanohybrids.

    PubMed

    Brahmachari, Sayanti; Das, Dibyendu; Das, Prasanta Kumar

    2010-11-28

    Stable aqueous SWNT dispersion up to 92% was achieved using amino acid based amphiphiles through a structure-property investigation. The nanohybrids showed remarkable serum stability and biocompatibility to mammalian cells.

  13. Electron transfer from aromatic amino acids to guanine and adenine radical cations in pi stacked and T-shaped complexes.

    PubMed

    Butchosa, Cristina; Simon, Sílvia; Voityuk, Alexander A

    2010-04-21

    Similar redox properties of the natural nucleobases and aromatic amino acids make it possible for electron transfer (ET) to occur between these sites in protein-nucleic acid complexes. Using DFT calculations, we estimate the ET rate from aromatic amino acid X (X = Phe, His, Tyr and Trp) to radical cations of guanine (G) and adenine (A) in dimers G-X and A-X with different arrangement of the subunits. We show that irrespective of the mutual orientation of the aromatic rings, the electronic interaction in the systems is strong enough to ensure effective ET from X to G(+) or A(+). Surprisingly, relatively high ET rates are found in T-shaped dimers. This suggests that pi stacking of nucleobases and aromatic amino acids is not required for feasible ET. In most complexes [G-X](+) and [A-X](+), we find the excess charge to be confined to a single site, either the nucleobase or amino acid X. Then, conformational changes may initiate migration of the radical cation state from the nucleobase to X and back. The ET process from Trp and Tyr to G(+) is found to be faster than deprotonation of G(+). Because the last reaction may lead to the formation of highly mutagenic species, the efficient repair of G(+) may play an important role in the protection of genomic DNA from oxidative damage.

  14. Unexpectedly Enhanced Solubility of Aromatic Amino Acids and Peptides in an Aqueous Solution of Divalent Transition-Metal Cations

    NASA Astrophysics Data System (ADS)

    Shi, Guosheng; Dang, Yaru; Pan, Tingting; Liu, Xing; Liu, Hui; Li, Shaoxian; Zhang, Lijuan; Zhao, Hongwei; Li, Shaoping; Han, Jiaguang; Tai, Renzhong; Zhu, Yiming; Li, Jichen; Ji, Qing; Mole, R. A.; Yu, Dehong; Fang, Haiping

    2016-12-01

    We experimentally observed considerable solubility of tryptophan (Trp) in a CuCl2 aqueous solution, which could reach 2-5 times the solubility of Trp in pure water. Theoretical studies show that the strong cation-π interaction between Cu2 + and the aromatic ring in Trp modifies the electronic distribution of the aromatic ring to enhance significantly the water affinity of Trp. Similar solubility enhancement has also been observed for other divalent transition-metal cations (e.g., Zn2 + and Ni2 + ), another aromatic amino acid (phenylalanine), and three aromatic peptides (Trp-Phe, Phe-Phe, and Trp-Ala-Phe).

  15. Pharmacological characterization of mouse GPRC6A, an L-α-amino-acid receptor modulated by divalent cations

    PubMed Central

    Christiansen, B; Hansen, K B; Wellendorph, P; Bräuner-Osborne, H

    2007-01-01

    Background and purpose: GPRC6A is a novel member of family C of G protein-coupled receptors with so far unknown function. We have recently described both human and mouse GPRC6A as receptors for L-α-amino acids. To date, functional characterization of wild-type GPRC6A has been impaired by the lack of activity in quantitative functional assays. The aim of this study was thus to develop such an assay and extend the pharmacological characterization of GPRC6A. Experimental approach: We have engineered a novel cell-based inositol phosphate turnover assay for wild-type mouse GPRC6A based on transient co-expression with the promiscuous GαqG66D protein, known to increase receptor signalling sensitivity. This assay allowed for measurements of L-α-amino acid potencies. Furthermore, in combination with an assay measuring inward currents at Ca2+-activated chloride channels in Xenopus oocytes, the divalent cation-sensing ability of the receptor was examined. Key results: Using our novel assay, we demonstrate that the basic L-α-amino acids ornithine, lysine, and arginine are the most potent agonists at wild-type mouse GPRC6A. Using two different assay systems, we show that divalent cations do not activate the Gq signalling pathway of mouse GPRC6A per se but positively modulate the amino-acid response. Conclusions and Implications: This is the first reported assay for a wild-type GPRC6A successfully applied for quantitative pharmacological characterization of amino acid and divalent cation responses at mouse GPRC6A. The assay enables further search for GPRC6A ligands such as allosteric modulators, which may provide essential information about the physiological function of GPRC6A. PMID:17245368

  16. Molecular physiology of the insect K-activated amino acid transporter 1 (KAAT1) and cation-anion activated amino acid transporter/channel 1 (CAATCH1) in the light of the structure of the homologous protein LeuT.

    PubMed

    Castagna, M; Bossi, E; Sacchi, V F

    2009-06-01

    K-activated amino acid transporter 1 (KAAT1) and cation-anion-activated amino acid transporter/channel 1 (CAATCH1) are amino acid cotransporters, belonging to the Na/Cl-dependent neurotransmitter transporter family (also called SLC6/NSS), that have been cloned from Manduca sexta midgut. They have been thoroughly studied by expression in Xenopus laevis oocytes, and structure/function analyses have made it possible to identify the structural determinants of their cation and amino acid selectivity. About 40 mutants of these proteins have been studied by measuring amino acid uptake and current/voltage relationships. The results obtained since the cloning of KAAT1 and CAATCH1 are here discussed in the light of the 3D model of the first crystallized member of the family, the leucine transporter LeuT.

  17. Envelope-binding domain in the cationic amino acid transporter determines the host range of ecotropic murine retroviruses.

    PubMed Central

    Albritton, L M; Kim, J W; Tseng, L; Cunningham, J M

    1993-01-01

    Infection of rodent cells by ecotropic type C retroviruses requires the expression of a cationic amino acid transporter composed of multiple membrane-spanning domains. By exchanging portions of cDNAs encoding the permissive mouse and nonpermissive human transporters and examining their abilities to specify virus infection upon expression in human 293 cells, we have identified the amino acid residues in the extracellular loop connecting the fifth and sixth membrane-spanning segments of the mouse transporter that are required for both envelope gp70 binding and infection. These findings strongly suggest that the role of the mouse transporter in determining infection is to provide an envelope-binding site. This role is analogous to those of host membrane proteins composed of a single membrane-spanning domain that serve as binding proteins or receptors for other enveloped viruses such as human immunodeficiency virus, Epstein-Barr virus, and murine and human coronaviruses. PMID:8445722

  18. First-principles data set of 45,892 isolated and cation-coordinated conformers of 20 proteinogenic amino acids

    PubMed Central

    Ropo, Matti; Schneider, Markus; Baldauf, Carsten; Blum, Volker

    2016-01-01

    We present a structural data set of the 20 proteinogenic amino acids and their amino-methylated and acetylated (capped) dipeptides. Different protonation states of the backbone (uncharged and zwitterionic) were considered for the amino acids as well as varied side chain protonation states. Furthermore, we studied amino acids and dipeptides in complex with divalent cations (Ca2+, Ba2+, Sr2+, Cd2+, Pb2+, and Hg2+). The database covers the conformational hierarchies of 280 systems in a wide relative energy range of up to 4 eV (390 kJ/mol), summing up to a total of 45,892 stationary points on the respective potential-energy surfaces. All systems were calculated on equal first-principles footing, applying density-functional theory in the generalized gradient approximation corrected for long-range van der Waals interactions. We show good agreement to available experimental data for gas-phase ion affinities. Our curated data can be utilized, for example, for a wide comparison across chemical space of the building blocks of life, for the parametrization of protein force fields, and for the calculation of reference spectra for biophysical applications. PMID:26881946

  19. Enantioseparation of dansyl amino acids by ultra-high pressure liquid chromatography using cationic β-cyclodextrins as chiral additives.

    PubMed

    Xiao, Yin; Tan, Timothy Thatt Yang; Ng, Siu-Choon

    2011-04-07

    This work reports the application of ultra-high pressure liquid chromatography (UHPLC) for reasonably fast enantiorecognition of some dansyl amino acids by employing three cationic β-cyclodextrins (β-CDs) as chiral additives. Good resolutions were obtained on an Agilent C18 column (2.1 mm i.d.; 1.8 μm; 50 mm length) with 1% (v/v) triethylammonium acetate buffered at pH 4.7 and acetonitrile as the mobile phase. Most of the analytes could be baseline resolved within 10 min. Increased cationic CD concentration or acetonitrile proportion in the mobile phase results in a decreased retention factor but accentuated selectivity. Furthermore, molecular mechanics calculation was performed and found to be consistent with the experimental results.

  20. Detection and characterization of carrier-mediated cationic amino acid transport in lysosomes of normal and cystinotic human fibroblasts. Role in therapeutic cystine removal

    SciTech Connect

    Pisoni, R.L.; Thoene, J.G.; Christensen, H.N.

    1985-04-25

    The discovery of a trans-stimulation property associated with lysine exodus from lysosomes of human fibroblasts has enabled us to characterize a system mediating the transport of cationic amino acids across the lysosomal membrane of human fibroblasts. The cationic amino acids arginine, lysine, ornithine, diaminobutyrate, histidine, 2-aminoethylcysteine, and the mixed disulfide of cysteine and cysteamine all caused trans-stimulation of the exodus of radiolabeled lysine from the lysosomal fraction of human fibroblasts at pH 6.5. In contrast, neutral and acidic amino acids did not affect the rate of lysine exodus. Trans-stimulation of lysine exodus was observed over the pH range from 5.5 to 7.6, was specific for the L-isomer of the cationic amino acid, and was intolerant to methylation of the alpha-amino group of the amino acid. The lysosomotropic amine, chloroquine, greatly retarded lysine exodus, whereas the presence of sodium ion was without effect. The specificity and lack of Na+ dependence of this lysosomal transport system is similar to that of System y+ present on the plasma membrane of human fibroblasts. An important mechanism by which cysteamine treatment of cystinosis allows cystine escape from lysosomes may be the ability of the mixed disulfide of cysteine and cysteamine formed by sulfhydryl-disulfide exchange to migrate by this newly discovered system mediating cationic amino acid transport.

  1. Cationic permethylated 6-monoamino-6-monodeoxy-β-cyclodextrin as chiral selector of dansylated amino acids in capillary electrophoresis.

    PubMed

    Németh, Krisztina; Domonkos, Celesztina; Sarnyai, Virág; Szemán, Julianna; Jicsinszky, László; Szente, Lajos; Visy, Júlia

    2014-10-01

    The resolution power of permethylated 6-monoamino-6-monodeoxy-βCD (PMMABCD) - a single isomer, cationic CD derivative - developed previously for chiral analyses in capillary electrophoresis was further studied here. Dansylated amino acids (Dns-AA) were chosen as amphoteric chiral model compounds. Changes in the resolutions of Dns-AAs by varying pH and selector concentrations were investigated and correlated with their structures and chemical properties (isoelectric point and lipophilicity). Maximal resolutions could be achieved at pH 6 or pH 4. The separations improved with increasing concentration of the selector. Baseline or substantially better resolution for 8 pairs of these Dns-AAs could be achieved. Low CD concentration was enough for the separation of the most apolar Dns-AAs. Chiral discrimination ability of PMMABCD was demonstrated by the separation of an artificial mixture of 8 Dns-AA pairs.

  2. Expression of cationic amino acid transporters, carcass traits, and performance of growing pigs fed low-protein amino acid-supplemented versus high protein diets.

    PubMed

    Morales, A; Grageola, F; García, H; Araiza, A; Zijlstra, R T; Cervantes, M

    2013-10-18

    Free amino acids (AA) appear to be absorbed faster than protein-bound AA (PB-AA). We conducted an experiment to assess the effect of feeding pigs with a partially free (F-AA) or totally PB-AA diet on expression of selected genes and performance of pigs. The expression of cationic AA transporters b(0,+) and CAT-1 in intestinal mucosa, liver, and longissimus (LM) and semitendinosus (SM) muscles, as well as that of myosin in LM and SM, was analyzed. Twelve pigs (31.7 ± 2.7 kg) were used. The F-AA diet was based on wheat, supplemented with 0.59% L-Lys, 0.33% L-Thr, and 0.10% DL-Met. The PB-AA diet was formulated with wheat-soybean meal. Average daily feed intake was 1.53 kg per pig. The expression of b(0,+) and CAT-1 was analyzed in jejunal and ileal mucosa, liver, LM, and SM; myosin expression was also analyzed in both muscles. Pigs fed the PB-AA diet tended to have higher weight gain and feed efficiency (P < 0.10), and had thinner back fat (P = 0.02). The expression of b(0,+) was higher (P < 0.01) in jejunum but lower (P < 0.01) in the liver of pigs fed the F-AA diet; CAT-1 tended to be lower in liver but higher in LM of PB-AA pigs. Myosin expression was not affected. Intestinal AA absorption was faster in pigs fed the F-AA diet, but AA uptake by the liver seemed to be faster in pigs fed the PB-AA. Performance and expression of AA transporters and myosin suggest that the dietary content of free or protein-bound AA does not affect their availability for protein synthesis in pigs.

  3. Fast and Efficient Separation and Determination of UV-absorbing Amino Acids, Nucleobases, and Creatinine Using a Carboxy-functionalized Cation-exchange Column.

    PubMed

    Yokoyama, Yukio; Fujishima, Takeru; Kurota, Kazuki

    2015-01-01

    This paper presents a new HPLC technique for the determination of biogenic cations such as amino acids and nucleobases, using a weak-acid cation-exchange column. Fourteen analytes, five amino acids and seven bases in addition to creatinine and creatine, were separated in 12 min by means of a two-liquid gradient elution with UV detection. The newly released column packed with a carboxy-functionalized polymethacrylate resin could give excellent selectivity to the organic cations of interest, although such a column is in general suitable for the separation of inorganic common cations. The chromatographic intra-day repeatability was very good with RSDs less than 0.4%, and the quantitation precision based on peak area intensities was also good with RSDs less than 5% for all analytes. The linear calibration lines for quantitation ranged between 5 and 500 μM on 20-μL injections with R(2) more than 0.9990. Since the method could provide concentration data of urinary creatinine and some metabolites simultaneously, for example, the urinary phenylalanine/creatinine ratios for phenylketonuria of inborn errors of metabolism were simply determined through one chromatographic run. The ratios for patients were significantly higher than those for controls. We found that the new weak-acid cation-exchange column was suitable for the separation of organic cations as well as inorganic cations.

  4. Stimulus-secretion coupling of arginine-induced insulin release. Uptake of metabolized and nonmetabolized cationic amino acids by pancreatic islets

    SciTech Connect

    Blachier, F.; Mourtada, A.; Sener, A.; Malaisse, W.J.

    1989-01-01

    In order to assess the possible role of L-arginine accumulation in islet cells as a determinant of its insulinotropic action, the uptake of L-arginine and other cationic amino acids (L-ornithine, L-homoarginine, D,L-alpha-methylornithine, D,L-alpha-difluoromethylornithine) by rat pancreatic islets was compared to the ionic and secretory responses of the islets to the same amino acids. A tight correlation was found between the net uptake of these amino acids and their capacity to stimulate 86Rb efflux, 45Ca uptake and efflux, and insulin release. In the latter respect, there was little difference between metabolized and nonmetabolized amino acids. Thus, although L-homoarginine and 4-amino-1-guanylpiperidine-4-carboxylic acid failed to act as a substrate for either arginase or amino acid aminotransferase in islet homogenates, they both stimulated 86Rb efflux, 45Ca uptake and efflux, and insulin secretion in intact islets. These findings are compatible with the view that the accumulation of these positively charged amino acids in islet cells represents an essential determinant of their secretory action. Hence, the release of insulin evoked by these amino acids could be due to depolarization of the plasma membrane with subsequent gating of voltage-sensitive Ca2+ channels and/or to some other biophysical effect, as suggested by the persistence of a sizeable secretory response to L-arginine or L-ornithine in islets perifused at a high concentrations of extracellular K+ (50 mM).

  5. Ruminal and Abomasal Starch Hydrolysate Infusions Selectively Decrease the Expression of Cationic Amino Acid Transporter mRNA by Small Intestinal Epithelia of Forage-fed Beef Steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although cationic amino acids (CAA) are consid-ered essential to maximize optimal growth of cattle, transporters responsible for CAA absorption by bovine small intestinal epithelia have not been described. This study was conducted to test 2 hypotheses: 1) the duo¬denal, jejunal, and ileal epithelia ...

  6. Role of cationic amino acids in the Na+/dicarboxylate co-transporter NaDC-1.

    PubMed Central

    Pajor, A M; Kahn, E S; Gangula, R

    2000-01-01

    The role of cationic amino acids in the Na(+)/dicarboxylate co-transporter NaDC-1 was investigated by site-directed mutagenesis and subsequent expression of mutant transporters in Xenopus oocytes. Of the ten residues chosen for mutagenesis, eight (Lys-34, Lys-107, Arg-108, Lys-333, Lys-390, Arg-368, Lys-414 and Arg-541) were found to be non-essential for function or targeting. Only two conserved residues, Lys-84 (at the cytoplasmic end of helix 3) and Arg-349 (at the extracellular end of helix 7), were found to be important for transport. Both mutant transporters were expressed at the plasma membrane. The mutation of Lys-84 to Ala resulted in an increased K(m) for succinate of 1.8 mM, compared with 0.3 mM in the wild-type NaDC-1. The R349A mutant had Na(+) and citrate kinetics that were similar to those of the wild type. However, succinate handling in the R349A mutant was altered, with evidence of inhibition at high succinate concentrations. In conclusion, charge neutralization of Lys-84 and Arg-349 in NaDC-1 affects succinate handling, suggesting that these residues might have roles in substrate binding. PMID:10970779

  7. Development of helix-stabilized cell-penetrating peptides containing cationic α,α-disubstituted amino acids as helical promoters.

    PubMed

    Yamashita, Hiroko; Misawa, Takashi; Oba, Makoto; Tanaka, Masakazu; Naito, Mikihiko; Kurihara, Masaaki; Demizu, Yosuke

    2017-03-15

    Cell-penetrating peptides (CPP) have attracted many scientists' attention as intracellular delivery tools due to their high cargo molecule transportation efficiency and low cytotoxicity. Therefore, in many research fields CPP, such as HIV-Tat and oligoarginine (Rn), are used to deliver hydrophilic drugs and biomolecules, including proteins, DNA, and RNA. We designed four types of CPP that contained cationic α,α-disubstituted amino acids (Api(C2Gu) and Api(C4Gu)) as helical promoters; i.e., 1-4 [FAM-β-Ala-(l-Arg-l-Arg-Xaa)3-(Gly)3-NH2 (1: Xaa=Api(C2Gu), 2: Xaa=Api(C4Gu)), 3: FAM-β-Ala-(l-Arg)8-Api(C2Gu)-(Gly)3-NH2, and 4: FAM-β-Ala-(l-Arg)5-Api(C2Gu)-(l-Arg)2-Api(C2Gu)-(Gly)3-NH2], and investigated their preferred secondary structures and cell membrane-penetrating ability. As a result, we found that the permeation efficiency of the CPP was affected by the number of helical promoters in their sequences. Specially, peptide 1, which contained three Api(C2Gu) residues, formed a stable helical structure and passed through the cell membrane more efficiently than the other peptides. Moreover, it was demonstrated that the spatial arrangement of the peptides' side chains also influenced their permeability and the helical stabilization of their main chains.

  8. Estradiol augments while progesterone inhibits arginine transport in human endothelial cells through modulation of cationic amino acid transporter-1.

    PubMed

    Bentur, Ohad S; Schwartz, Doron; Chernichovski, Tamara; Ingbir, Merav; Weinstein, Talia; Chernin, Gil; Schwartz, Idit F

    2015-08-15

    Decreased generation of nitric oxide (NO) by endothelial NO synthase (eNOS) characterizes endothelial dysfunction (ECD). Delivery of arginine to eNOS by cationic amino acid transporter-1 (CAT-1) was shown to modulate eNOS activity. We found in female rats, but not in males, that CAT-1 activity is preserved with age and in chronic renal failure, two experimental models of ECD. In contrast, during pregnancy CAT-1 is inhibited. We hypothesize that female sex hormones regulate arginine transport. Arginine uptake in human umbilical vein endothelial cells (HUVEC) was determined following incubation with either 17β-estradiol (E2) or progesterone. Exposure to E2 (50 and 100 nM) for 30 min resulted in a significant increase in arginine transport and reduction in phosphorylated CAT-1 (the inactive form) protein content. This was coupled with a decrease in phosphorylated MAPK/extracellular signal-regulated kinase (ERK) 1/2. Progesterone (1 and 100 pM for 30 min) attenuated arginine uptake and increased phosphorylated CAT-1, phosphorylated protein kinase Cα (PKCα), and phosphorylated ERK1/2 protein content. GO-6976 (PKCα inhibitor) prevented the progesterone-induced decrease in arginine transport. Coincubation with both progesterone and estrogen for 30 min resulted in attenuated arginine transport. While estradiol increases arginine transport and CAT-1 activity through modulation of constitutive signaling transduction pathways involving ERK, progesterone inhibits arginine transport and CAT-1 via both PKCα and ERK1/2 phosphorylation, an effect that predominates over estradiol.

  9. Dynamics of the separation of amino acid and mineral salt in the stationary dialysis of solutions with an MK-40 profiled sulfo group cation exchange membrane

    NASA Astrophysics Data System (ADS)

    Vasil'eva, V. I.; Vorob'eva, E. A.

    2012-11-01

    The conjugated diffusion transport of amino acid and mineral salt through a profiled sulfo group cation exchange membrane that simulates the extraction of amino acid from wash waters of microbiological production containing mineral components not used in synthesis is studied. The competitive nature of the conjugation of flows resulting in a decrease in the rate of the mass transfer of components and their separation factor is established from a comparative analysis of experimental data on the diffusion transfer of phenylalanine and sodium chloride in the form of hydrogen from individual and mixed solutions through a profiled sulfo group cation exchange membrane. The range of concentrations and the ratio of components in solution corresponding to the effective separation of phenylalanine and sodium chloride are determined.

  10. TACN-based cationic lipids with amino acid backbone and double tails: materials for non-viral gene delivery.

    PubMed

    Wang, Bing; Yi, Wen-Jing; Zhang, Ji; Zhang, Qin-Fang; Xun, Miao-Miao; Yu, Xiao-Qi

    2014-04-01

    Cationic lipids have become an efficient type of non-viral vectors for gene delivery. In this Letter, four cationic lipids containing 1,4,7-triazacyclononane (TACN) headgroup, glutamic/aspartic acid backbone and dioleyl tails were designed and synthesized. The TACN headgroup gives these lipids excellent pH buffering capacities, which were higher than branched 25 kDa PEI. Cationic liposomes prepared from these lipids and DOPE showed good DNA affinity, and full DNA condensation was found at N/P ratio of 3 via agarose gel electrophoresis. The lipoplexes were characterized by dynamic light scattering (DLS) assay, which gave proper particle sizes and zeta-potentials for transfection. In vitro gene transfection results in two cell lines reveal that TAN (with aspartic acid and amide bond in the structure) shows the best transfection efficiency, which is close to commercially available transfection agent Lipofectamine 2000.

  11. Plasma amino acids

    MedlinePlus

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  12. Cascade Dissociations of Peptide Cation-Radicals. Part 1. Scope and Effects of Amino Acid Residues in Penta-, Nona- and Decapeptides

    PubMed Central

    Chung, Thomas W.; Hui, Renjie; Ledvina, Aaron; Coon, Joshua J.

    2013-01-01

    Amino acid residue-specific backbone and side-chain dissociations of peptide z ions in MS3 spectra were elucidated for over 40 pentapeptides with arginine C-terminated sequences of the AAXAR and AAHXR type, nonapeptides of the AAHAAXYAR and AAHAXAYAR type, and AAHAAXYAAR decapeptides. Peptide zn ions containing amino acid residues with readily transferrable benzylic or tertiary β-hydrogen atoms (Phe, Tyr, His, Trp, Val) underwent facile backbone cleavages to form dominant zn-2 or zn-3 ions. These backbone cleavages are thought to be triggered by a side-chain β-hydrogen atom transfer to the z ion Cα radical site followed by homolytic dissociation of the adjacent Cα—CO bond, forming zn-2 + HNCO cation-radicals that spontaneously dissociate by loss of HNCO. Amino acid residues that do not have readily transferrable β-hydrogen atoms (Gly, Ala) do not undergo the zn → zn-2 dissociations. The backbone cleavages compete with side-chain dissociations in z ions containing Asp and Asn residues. Side-chain dissociations are thought to be triggered by α-hydrogen atom transfers that activate the Cβ—Cγ or Cβ—heteroatom bonds for dissociations that dominate the MS3 spectra of z ions from peptides containing Leu, Cys, Lys, Met, Ser, Arg, Glu and Gln residues. The Lys, Arg, Gln, and Glu residues also participate in γ-hydrogen atom transfers that trigger other side-chain dissociations. PMID:22669761

  13. Low-capacity cation-exchange chromatography of amino acids using a novel sulfoacylated macroreticular polystyrene-divinylbenzene column with binary gradient elution.

    PubMed

    Yokoyama, Yukio; Wakabayashi, Natsuko; Furugaki, Yuki; Sato, Hisakuni

    2004-08-01

    This paper describes a versatile technique for amino-acid separation using a novel low-capacity sulfoacylated macroreticular polystyrene-divinylbenzene cation-exchange column with a simple binary high-pressure pH gradient elution. Proteinic 16 amino acids were well separated within 50 min using a H3PO4/Na2HPO4-CH3CN eluent system, and the cycle time was about 70 min. The chromatography with postcolumn OPA fluorescent detection was reproducible with RSDs less than 1% for retention times, and was quantitative with RSDs less than 5% for area responses. A linear regression line with an r2 value above 0.9990 was obtained for each analyte in concentration from 0.1 to 10 microM by 20 microL injection. The method was applicable to the separation and detection of urinary diagnostic amino acid due to inborn errors of metabolism, such as phenylketonuria. The analytical costs would be decreased by using the proposed method.

  14. Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery

    NASA Astrophysics Data System (ADS)

    Ding, Jianxun; Xiao, Chunsheng; He, Chaoliang; Li, Mingqiang; Li, Di; Zhuang, Xiuli; Chen, Xuesi

    2011-12-01

    A novel pH-responsive poly(amino acid) grafted with oligocation was prepared through the combination of ring-opening polymerization (ROP) and subsequent atom transfer radical polymerization (ATRP). Firstly, poly(γ-2-chloroethyl-L-glutamate) (PCELG) with a pendent 2-chloroethyl group was synthesized through ROP of γ-2-chloroethyl-L-glutamate N-carboxyanhydride (CELG NCA) using n-hexylamine as the initiator. Then, PCELG was used to initiate the ARTP of 2-aminoethyl methacrylate hydrochloride (AMA), yielding poly(L-glutamate)-graft-oligo(2-aminoethyl methacrylate hydrochloride) (PLG-g-OAMA). The pKa of PLG-g-OAMA was 7.3 established by the acid-base titration method. The amphiphilic poly(amino acid) could directly self-assemble into a vesicle in PBS. The vesicle was characterized by TEM and DLS. Hydrophilic DOX·HCl was loaded into the hollow core of the vesicle. The in vitro release behavior of DOX·HCl from the vesicle in PBS could be adjusted by the solution pH. In vitro cell experiments revealed that the vesicle could reduce the toxicity of the DOX·HCl. In addition, the preliminary gel retardation assay displayed that PLG-g-OAMA could efficiently bind DNA at a PLG-g-OAMA/DNA weight ratio of 0.3 or above, indicating its potential use as a gene carrier. More in-depth studies of the PLG-g-OAMA vesicle for drug and gene co-delivery in vitro and in vivo are in progress.

  15. Transport in Halobacterium Halobium: Light-Induced Cation-Gradients, Amino Acid Transport Kinetics, and Properties of Transport Carriers

    NASA Technical Reports Server (NTRS)

    Lanyi, Janos K.

    1977-01-01

    Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na(+). Measurements of Na-22 flux, exterior pH change, and membrane potential, Delta(psi) (with the dye 3,3'-dipentyloxadicarbocyanine) indicate that the means of Na(+) transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H(+)/Na(++ greater than 1). The resulting large chemical gradient for Na(+) (outside much greater than inside), as well as the membrane potential, will drive the transport of 18 amino acids. The I9th, glutamate, is unique in that its accumulation is indifferent to Delta(psi): this amino acid is transported only when a chemical gradient for Na(+) is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+() collapses within 1 min, while the large Na(+) gradient and glutamate transporting activity persists for 10- 15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na(+), arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with V(sub max) and K(sub m) comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na(+), in an electrically neutral fashion, so that only the chemical component of the Na(+) gradient is a driving force.

  16. Near-UV Photodissociation of Tryptic Peptide Cation Radicals. Scope and Effects of Amino Acid Residues and Radical Sites

    NASA Astrophysics Data System (ADS)

    Nguyen, Huong T. H.; Tureček, František

    2017-02-01

    Peptide cation-radical fragment ions of the z-type, [●AXAR+], [●AXAK+], and [●XAR+], where X = A, C, D, E, F, G, H, K, L, M, N, P, Y, and W, were generated by electron transfer dissociation of peptide dications and investigated by MS3-near-ultraviolet photodissociation (UVPD) at 355 nm. Laser-pulse dependence measurements indicated that the ion populations were homogeneous for most X residues except phenylalanine. UVPD resulted in dissociations of backbone CO-NH bonds that were accompanied by hydrogen atom transfer, producing fragment ions of the [yn]+ type. Compared with collision-induced dissociation, UVPD yielded less side-chain dissociations even for residues that are sensitive to radical-induced side-chain bond cleavages. The backbone dissociations are triggered by transitions to second (B) excited electronic states in the peptide ion R-CH●-CONH- chromophores that are resonant with the 355-nm photon energy. Electron promotion increases the polarity of the B excited states, R-CH+-C●(O-)NH-, and steers the reaction to proceed by transfer of protons from proximate acidic Cα and amide nitrogen positions.

  17. Cascade dissociations of peptide cation-radicals. Part 1. Scope and effects of amino acid residues in penta-, nona-, and decapeptides.

    PubMed

    Chung, Thomas W; Hui, Renjie; Ledvina, Aaron; Coon, Joshua J; Tureček, Frantisek

    2012-08-01

    Amino acid residue-specific backbone and side-chain dissociations of peptide z ions in MS(3) spectra were elucidated for over 40 pentapeptides with arginine C-terminated sequences of the AAXAR and AAHXR type, nonapeptides of the AAHAAXX"AR and AAHAXAX"AR type, and AAHAAXX"AAR decapeptides. Peptide z(n) ions containing amino acid residues with readily transferrable benzylic or tertiary β-hydrogen atoms (Phe, Tyr, His, Trp, Val) underwent facile backbone cleavages to form dominant z(n-2) or z(n-3) ions. These backbone cleavages are thought to be triggered by a side-chain β-hydrogen atom transfer to the z ion C(α) radical site followed by homolytic dissociation of the adjacent C(α)-CO bond, forming x(n-2) cation-radicals that spontaneously dissociate by loss of HNCO. Amino acid residues that do not have readily transferrable β-hydrogen atoms (Gly, Ala) do not undergo the z(n) → z(n-2) dissociations. The backbone cleavages compete with side-chain dissociations in z ions containing Asp and Asn residues. Side-chain dissociations are thought to be triggered by α-hydrogen atom transfers that activate the C(β)-C(γ) or C(β)-heteroatom bonds for dissociations that dominate the MS(3) spectra of z ions from peptides containing Leu, Cys, Lys, Met, Ser, Arg, Glu, and Gln residues. The Lys, Arg, Gln, and Glu residues also participate in γ-hydrogen atom transfers that trigger other side-chain dissociations.

  18. Parenteral Nutrition: Amino Acids.

    PubMed

    Hoffer, Leonard John

    2017-03-10

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness.

  19. Parenteral Nutrition: Amino Acids

    PubMed Central

    Hoffer, Leonard John

    2017-01-01

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness. PMID:28287411

  20. Identification of the single amino acid involved in quenching the ent-kauranyl cation by a water molecule in ent-kaurene synthase of Physcomitrella patens.

    PubMed

    Kawaide, Hiroshi; Hayashi, Ken-ichiro; Kawanabe, Ryo; Sakigi, Yuka; Matsuo, Akihiko; Natsume, Masahiro; Nozaki, Hiroshi

    2011-01-01

    ent-Kaurene is a tetracyclic diterpene hydrocarbon and a biosynthetic intermediate of the plant hormone gibberellins. In flowering plants, ent-kaurene is biosynthesized from geranylgeranyl diphosphate (GGDP) by two distinct cyclases, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). Recently, the moss Physcomitrella patens ent-kaurene biosynthetic gene was cloned and functionally characterized. The bifunctional ent-kaurene synthase [P. patens CPS/KS (PpCPS/KS)] produces both ent-kaurene and 16α-hydroxy-ent-kaurane from GGDP via ent-copalyl diphosphate. Here, we cloned and analyzed the function of a cDNA encoding bifunctional ent-kaurene synthase from the liverwort Jungermannia subulata [J. subulata CPS/KS (JsCPS/KS)]. JsCPS/KS catalyzes the cyclization reaction of GGDP to produce ent-kaurene but not 16α-hydroxy-ent-kaurane, even though the PpCPS/KS (881 amino acids) and JsCPS/KS (886 amino acids) sequences share 60% identity. To determine the regions and amino acids involved in 16α-hydroxy-ent-kaurane formation, we analyzed the enzymic functions of JsCPS/KS and PpCPS/KS chimeric proteins. When the C-terminal region of PpCPS/KS was exchanged with the JsCPS/KS C-terminal region, the chimeric cyclases produced only ent-kaurene. The replacement of PpCPS/KS Ala710 with Met or Phe produced a JsCPS/KS-type cyclase that converted GGDP to ent-kaurene as the sole product. In contrast, replacing Ala710 with Gly, Cys or Ser did not affect the PpCPS/KS product profile as much as replacement of Cys of JsCPS/KS by Ala. Thus, the hydrophobicity and size of the side chain residue at the PpCPS/KS amino acid 710 is responsible for quenching the ent-kauranyl cation by the addition of a water molecule.

  1. Amino Acid Metabolism Disorders

    MedlinePlus

    ... breaks the food parts down into sugars and acids, your body's fuel. Your body can use this ... process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple ...

  2. Amino Acid Crossword Puzzle

    ERIC Educational Resources Information Center

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  3. Hydrogen Bonding, (1)H NMR, and Molecular Electron Density Topographical Characteristics of Ionic Liquids Based on Amino Acid Cations and Their Ester Derivatives.

    PubMed

    Rao, Soniya S; Bejoy, Namitha Brijit; Gejji, Shridhar P

    2015-08-13

    Amino acid ionic liquids (AAILs) have attracted significant attention in the recent literature owing to their ubiquitous applications in diversifying areas of modern chemistry, materials science, and biosciences. The present work focuses on unraveling the molecular interactions underlying AAILs. Electronic structures of ion pairs consisting of amino acid cations ([AA(+)], AA = Gly, Ala, Val, Leu, Ile, Pro, Ser, Thr) and their ester substituted derivatives [AAE(+)] interacting with nitrate anion [NO3(-)] have been obtained from the dispersion corrected M06-2x density functional theory. The formation of ion pair is accompanied by the transfer of proton from quaternary nitrogen to anion facilitated via hydrogen bonding. The [Ile], [Pro], [Ser], and [Thr] and their esters reveal relatively strong inter- as well as intramolecular hydrogen-bonding interactions. Consequently, the hierarchy in binding energies of [AA][NO3] ion pairs and their ester analogues turns out to be [Gly] > [Ala] > [Ser] ∼ [Val] ∼ [Ile] > [Leu] ∼ [Thr] > [Pro]. The work underlines how the interplay of intra- as well as intermolecular hydrogen-bonding interactions in [AA]- and [AAE]-based ILs manifest in their infrared and (1)H NMR spectra. Substitution of -OCH3 functional group in [AA][NO3] ILs lowers the melting point attributed to weaker hydrogen-bonding interactions, making them suitable for room temperature applications. As opposed to gas phase structures, the presence of solvent (DMSO) does not bring about any proton transfer in the ion pairs or their ester analogues. Calculated (1)H NMR chemical shifts of the solvated structures agree well with those from experiment. Correlations of decomposition temperatures in [AA]- and [AAE]-based ILs with binding energies and electron densities at the bond critical point(s) in molecular electron density topography, have been established.

  4. Role of positively charged amino acids in the M2D transmembrane helix of Ktr/Trk/HKT type cation transporters.

    PubMed

    Kato, Naoki; Akai, Masaro; Zulkifli, Lalu; Matsuda, Nobuyuki; Kato, Yasuhiro; Goshima, Shinobu; Hazama, Akihiro; Yamagami, Mutsumi; Guy, H Robert; Uozumi, Nobuyuki

    2007-01-01

    Studies suggest that Ktr/Trk/HKT-type transporters have evolved from multiple gene fusions of simple K(+) channels of the KcsA type into proteins that span the membrane at least eight times. Several positively charged residues are present in the eighth transmembrane segment, M2(D), in the transporters but not K(+) channels. Some models of ion transporters require a barrier to prevent free diffusion of ions down their electrochemical gradient, and it is possible that the positively charged residues within the transporter pore may prevent transporters from being channels. Here we studied the functional role of these positive residues in three Ktr/Trk/HKT-type transporters (Synechocystis KtrB-mediated K(+) uniporter, Arabidopsis AtHKT1-mediated Na(+) uniporter and wheat TaHKT1-mediated K(+)/Na(+) symporter) by examining K(+) uptake rates in E. coli, electrophysiological measurements in oocytes and growth rates of E. coli and yeast. The conserved Arg near the middle of the M2(D) segment was essential for the K(+) transport activity of KtrB and plant HKTs. Combined replacement of several positive residues in TaHKT1 showed that the positive residue at the beginning of the M2(D), which is conserved in many K(+) channels, also contributed to cation transport activity. This positive residue and the conserved Arg both face towards the ion conducting pore side. We introduced an atomic-scale homology model for predicting amino acid interactions. Based on the experimental results and the model, we propose that a salt bridge(s) exists between positive residues in the M2(D) and conserved negative residues in the pore region to reduce electrostatic repulsion against cation permeation caused by the positive residue(s). This salt bridge may help stabilize the transporter configuration, and may also prevent the conformational change that occurs in channels.

  5. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  6. The relationship between gene expression of cationic and neutral amino acid transporters in the small intestine of chick embryos and chick breed, development, sex, and egg amino acid concentration.

    PubMed

    Zeng, P L; Li, X G; Wang, X Q; Zhang, D X; Shu, G; Luo, Q B

    2011-11-01

    This study was conducted to investigate the gene expression of cationic and neutral amino acid (AA) transporters in the small intestine of chick embryos with different genetic backgrounds [Wenshi Yellow-Feathered chick (WYFC) and White Recessive Rock chick (WRRC)]. The study also investigated the correlation between the abundance of AA transporter mRNA and the AA content of fertilized eggs. Intestinal samples were collected on embryonic d 9, 12, 14, 17, and 19 and the day of hatch. The results showed that, before incubation, the AA content of WRRC eggs was lower (P < 0.05) than the AA content of WYFC eggs. In WYFC, the mRNA abundance of CAT-1 [solute carrier (SLC) family 7 member 1], CAT-4 (SLC family 7 member 4), rBAT (SLC family 3 member 1), y(+)LAT-1 (SLC family 7 member 7), y(+)LAT-2 (SLC family 7 member 6), LAT-4 (SLC family 43 member 2), and SNAT-2 (SLC family 38 member 2), as detected by real-time reverse transcriptase PCR, was greater (P < 0.05) than the mRNA abundance detected in the WRRC samples. The mRNA abundance of all measured AA transporters was affected (P < 0.05) by embryonic age. Sex had the largest effect (P < 0.05) on the mRNA expression of CAT-1, CAT-4, y(+)LAT-2, and LAT-4 in WYFC and on CAT-4 and B(0)AT-1 (SLC family 6 member 19) mRNA expression in WRRC. In WYFC, only CAT-1 mRNA expression was negatively correlated (r = -0.68 to -0.84, P < 0.05) with all AA content. However, few correlations were detected between AA content and the mRNA expression of multiple transporters in WRRC. These findings provide a comprehensive profile of the temporal and spatial mRNA expression of AA transporters in the small intestine of chick embryos. Few correlations were detected between the AA content of the eggs and mRNA expression of specific AA transporters in the small intestine.

  7. The structure of the gene ATRC1 coding for a cationic amino acid transport system in man: Molecular studies in lysinuric protein intolerance

    SciTech Connect

    Incerti, B.; Sebastio, G.; Parenti, G.

    1994-09-01

    The human cDNA (ATRC1) homologue of a murine gene encoding for a transporter specific for cationic amino acid (CAA) has been isolated. ATRC1 stimulates the uptake of CAA and shows the kinetic properties of system y+ when expressed in frog oocytes. To characterize the organization of the ATRC1 gene, a {lambda} phages genomic DNA library has been screened using an ATRC1 full length cDNA clone as a probe. Nine positive phages have been subcloned in plasmids and sequenced using cDNA specific primers to identify intron-exon junctions. The ATRC1 gene consists of 13 exons with an alternative first exon. Analysis of the intron/exon boundaries showed canonical sequences at the splice junction sites. ATRC1 expression pattern has been analyzed by RT-PCR. ATRC1 is expressed in adult fibroblasts and enterocytes, in fetal kidney, brain and heart, and in lymphoblastoid cell lines. The knowledge of structure and organization of ATRC1 can help in studying inborn errors of CAA transport. The best characterized among these diseases is Lysinuric Protein Intolerance (LPI) a multisystem disorder with impaired formation of urea and hyperammonemia after protein ingestion. Linkage analysis performed on 10 LPI patients from 9 Italian families using two intragenic RFLPs revealed 3 informative families and no recombinations. Using the CA-repeat microsatellite D12S120 (2 cM far from ATRC-1 locus) we found 7 informative families and 3 recombinational events. The sequence of the entire coding region of an LPI patient failed to show mutations. The data so far obtained do not seem to support the hypothesis that ATRC1 is the LPI gene.

  8. Expression of Cationic Amino Acid Transporter 2 Is Required for Myeloid-Derived Suppressor Cell-Mediated Control of T Cell Immunity.

    PubMed

    Cimen Bozkus, Cansu; Elzey, Bennett D; Crist, Scott A; Ellies, Lesley G; Ratliff, Timothy L

    2015-12-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells that expand during benign and cancer-associated inflammation and are characterized by their ability to inhibit T cell immunity. Increased metabolism of l-Arginine (l-Arg), through the enzymes arginase 1 and NO synthase 2 (NOS2), is well documented as a major MDSC suppressive mechanism. Therefore, we hypothesized that restricting MDSC uptake of l-Arg is a critical control point to modulate their suppressor activity. Using murine models of prostate-specific inflammation and cancer, we have identified the mechanisms by which extracellular l-Arg is transported into MDSCs. We have shown that MDSCs recruited to localized inflammation and tumor sites upregulate cationic amino acid transporter 2 (Cat2), coordinately with Arg1 and Nos2. Cat2 expression is not induced in MDSCs in peripheral organs. CAT2 contributes to the transport of l-Arg in MDSCs and is an important regulator of MDSC suppressive function. MDSCs that lack CAT2 have significantly reduced suppressive ability ex vivo and display impaired capacity for regulating T cell responses in vivo as evidenced by increased T cell expansion and decreased tumor growth in Cat2(-/-) mice. The abrogation of suppressive function is due to low intracellular l-Arg levels, which leads to the impaired ability of NOS2 to catalyze l-Arg-dependent metabolic processes. Together, these findings demonstrate that CAT2 modulates MDSC function. In the absence of CAT2, MDSCs display diminished capacity for controlling T cell immunity in prostate inflammation and cancer models, where the loss of CAT2 results in enhanced antitumor activity.

  9. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-11-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids and quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (< 0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanic emissions.

  10. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-07-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids to quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  11. Synthesis of amino acids

    DOEpatents

    Davis, J.W. Jr.

    1979-09-21

    A method is described for synthesizing amino acids preceding through novel intermediates of the formulas: R/sub 1/R/sub 2/C(OSOC1)CN, R/sub 1/R/sub 2/C(C1)CN and (R/sub 1/R/sub 2/C(CN)O)/sub 2/SO wherein R/sub 1/ and R/sub 2/ are each selected from hydrogen and monovalent hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  12. Amino acids in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Peterson, E.

    1975-01-01

    Studies with the combined gas chromatograph-mass spectrometer were conducted to characterize further the amino acids found in extracts of the Murchison meteorite. With the exception of beta-aminoisobutyric acid, all of the amino acids which were found in previous studies of the Murchison meteorite and the Murray meteorite have been identified. The results obtained lend further support to the hypothesis that amino acids are present in the Murchison meteorite as the result of an extraterrestrial abiotic synthesis.

  13. Deaminative and decarboxylative catalytic alkylation of amino acids with ketones.

    PubMed

    Kalutharage, Nishantha; Yi, Chae S

    2013-12-16

    It cuts two ways: The cationic [Ru-H] complex catalyzes selective coupling of α- and β-amino acids with ketones to form α-alkylated ketone products. The reaction involves CC and CN bond cleavage which result in regio- and stereoselective alkylation using amino acids. A broad substrate scope and high functional-group tolerance is demonstrated.

  14. Protein and amino acid nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy cow protein and amino acid nutrition have a significant role in sustainable dairying. Protein, amino acids, and nitrogen are inextricably linked through effects in the rumen, metabolism of the cow, and environmental nutrient management. Feeding systems have been making progress toward emphasiz...

  15. Amino Acids from a Comet

    NASA Technical Reports Server (NTRS)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  16. Treatment of Amino Acid Metabolism Disorders

    MedlinePlus

    ... amino acid metabolism disorders Treatment of amino acid metabolism disorders E-mail to a friend Please fill ... This is an amino acid that helps remove ammonia from the blood. Babies with HCY may need ...

  17. Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)

    1994-01-01

    The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.

  18. Cation-specific interactions with carboxylate in amino acid and acetate aqueous solutions: X-ray absorption and ab initio calculations.

    PubMed

    Aziz, Emad F; Ottosson, Niklas; Eisebitt, Stefan; Eberhardt, Wolfgang; Jagoda-Cwiklik, Barbara; Vácha, Robert; Jungwirth, Pavel; Winter, Bernd

    2008-10-09

    Relative interaction strengths between cations (X = Li (+), Na (+), K (+), NH 4 (+)) and anionic carboxylate groups of acetate and glycine in aqueous solution are determined. These model systems mimic ion pairing of biologically relevant cations with negatively charged groups at protein surfaces. With oxygen 1s X-ray absorption spectroscopy, we can distinguish between spectral contributions from H 2O and carboxylate, which allows us to probe the electronic structure changes of the atomic site of the carboxylate group being closest to the countercation. From the intensity variations of the COO (-) aq O 1s X-ray absorption peak, which quantitatively correlate with the change in the local partial density of states from the carboxylic site, interactions are found to decrease in the sequence Na (+) > Li (+) > K (+) > NH 4 (+). This ordering, as well as the observed bidental nature of the -COO (-) aq and X (+) aq interaction, is supported by combined ab initio and molecular dynamics calculations.

  19. Binding of cationic peptides (KX)4K to DPPG bilayers. Increasing the hydrophobicity of the uncharged amino acid X drives formation of membrane bound β-sheets: A DSC and FT-IR study.

    PubMed

    Hädicke, André; Blume, Alfred

    2016-06-01

    The binding of cationic peptides of the sequence (KX)4K to lipid vesicles of negatively charged dipalmitoyl-phosphatidylglycerol (DPPG) was investigated by differential scanning calorimetry (DSC) and temperature dependent Fourier-transformed infrared (FT-IR) spectroscopy. The hydrophobicity of the uncharged amino acid X was changed from G (glycine) over A (alanine), Abu (α-aminobutyric acid), V (valine) to L (leucine). The binding of the peptides caused an increase of the phase transition temperature (Tm) of DPPG by up to 20°C. The shift depended on the charge ratio and on the hydrophobicity of the amino acid X. Unexpectedly, the upward shift of Tm increased with increasing hydrophobicity of X. FT-IR spectroscopy showed a shift of the CH2 stretching vibrations of DPPG to lower frequency, particularly for bilayers in the liquid-crystalline phase, indicating an ordering of the hydrocarbon chains when the peptides were bound. Changes in the lipid C=O vibrational band indicated a dehydration of the lipid headgroup region after peptide binding. (KG)4K was bound in an unordered structure at all temperatures. All other peptides formed intermolecular antiparallel β-sheets, when bound to gel phase DPPG. However, for (KA)4K and (KAbu)4K, the β-sheets converted into an unordered structure above Tm. In contrast, the β-sheet structures of (KV)4K and (KL)4K remained stable even at 80°C when bound to the liquid-crystalline phase of DPPG. Strong aggregation of DPPG vesicles occurred after peptide binding. For the aggregates, we suggest a structure, where aggregated single β-sheets are sandwiched between opposing DPPG bilayers with a dehydrated interfacial region.

  20. Amino Acid Metabolism Disorders

    MedlinePlus

    ... acidemia? In ASA, the body can’t remove ammonia or a substance called argininosuccinic acid from the ... and children include: Breathing problems High levels of ammonia in the bloodIntense headache, especially after a high- ...

  1. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Amino acids. 172.320 Section 172.320 Food and....320 Amino acids. The food additive amino acids may be safely used as nutrients added to foods in... individual amino acids in the free, hydrated, or anhydrous form, or as the hydrochloride, sodium,...

  2. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Amino acids. 172.320 Section 172.320 Food and... Dietary and Nutritional Additives § 172.320 Amino acids. The food additive amino acids may be safely used... consists of one or more of the following individual amino acids in the free, hydrated or anhydrous form...

  3. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Amino acids. 172.320 Section 172.320 Food and Drugs... Dietary and Nutritional Additives § 172.320 Amino acids. The food additive amino acids may be safely used... consists of one or more of the following individual amino acids in the free, hydrated or anhydrous form...

  4. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Amino acids. 172.320 Section 172.320 Food and... Dietary and Nutritional Additives § 172.320 Amino acids. The food additive amino acids may be safely used... consists of one or more of the following individual amino acids in the free, hydrated or anhydrous form...

  5. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Amino acids. 172.320 Section 172.320 Food and... Dietary and Nutritional Additives § 172.320 Amino acids. The food additive amino acids may be safely used... consists of one or more of the following individual amino acids in the free, hydrated or anhydrous form...

  6. Interaction of Adjacent Amino Acids

    NASA Astrophysics Data System (ADS)

    Sheu, Sheh-Yi; Yang, Dah-Yen

    2008-02-01

    Ramachandran plots display the dihedral angles of a single protein residue. We here propose a crossed torsion angle plot called SSY-plot between two neighboring amino acids and demonstrate that a special coherence motion can exist between some very special amino acid pairs leading to spontaneous unusual structures. We also suggest that the existence of two domains corresponds to a bifurcation between two different protein structures and that the special pair is the key to producing these two structures. These are two different structures and are produced spontaneously without an external agent.

  7. Response surface optimized peroxyoxalate chemiluminescence of octahydro-Schiff base derivative as new luminophor and study of the quenching effect of some cations, amino acids and cholesterol.

    PubMed

    Yeganeh Faal, Ali; Jamalyan, Bahare; Bordbar, Maryam; Shayeste, Tavakol Heidary; Salavati-Niasari, Masoud

    2014-12-01

    We report the first detailed study of the characteristics of an octahydro-Schiff base derivative as a new luminophor in the peroxyoxalate chemiluminescence (POCL) system. The effect of reagents on this new POCL system was investigated. In addition, the response surface methodology was used for evaluating the relative significance of variables in this POCL system, establishing models and determining optimal conditions. The quenching effect of some cations and compounds such as Cu(2+), Fe(3+), Hg(2+), imidazole, histidine and cholesterol on an optimized POCL reaction were studied. The dynamic ranges were up to approximaterly 100 and 175 × 10(-6) M for Cu(2+) and cholesterol respectively. The detection limits were 3.3 × 10(-6) m and 2.58 × 10(-6) m for Cu(2+) and histidine, respectively. In all cases the relative standard deviations were 4-5% (n = 4).

  8. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  9. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-04-23

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  10. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  11. Toward Sustainable Amino Acid Production.

    PubMed

    Usuda, Yoshihiro; Hara, Yoshihiko; Kojima, Hiroyuki

    2016-11-22

    Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

  12. Nonprotein Amino Acids in the Murchison Meteorite

    PubMed Central

    Kvenvolden, Keith A.; Lawless, James G.; Ponnamperuma, Cyril

    1971-01-01

    Twelve nonprotein amino acids appear to be present in the Murchison meteorite. The identity of eight of them has been conclusively established as N-methylglycine, β-alanine, 2-methylalanine, α-amino-n-butyric acid, β-amino-n-butyric acid, γ-amino-n-butyric acid, isovaline, and pipecolic acid. Tentative evidence is presented for the presence of N-methylalanine, N-ethylglycine, β-aminoisobutyric acid, and norvaline. These amino acids appear to be extraterrestrial in origin and may provide new evidence for the hypothesis of chemical evolution. PMID:16591908

  13. Amino acid analyses of Apollo 14 samples.

    NASA Technical Reports Server (NTRS)

    Gehrke, C. W.; Zumwalt, R. W.; Kuo, K.; Aue, W. A.; Stalling, D. L.; Kvenvolden, K. A.; Ponnamperuma, C.

    1972-01-01

    Detection limits were between 300 pg and 1 ng for different amino acids, in an analysis by gas-liquid chromatography of water extracts from Apollo 14 lunar fines in which amino acids were converted to their N-trifluoro-acetyl-n-butyl esters. Initial analyses of water and HCl extracts of sample 14240 and 14298 samples showed no amino acids above background levels.

  14. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T Ashton; Chin, Jason W; Anderson, J Christopher; Schultz, Peter G

    2011-02-15

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  15. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  16. Amino acids as antioxidants for frying oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acids, proteins and hydrolysates of proteins have been known to protect edible oils from oxidation. While amino acids and related materials have high potential as antioxidants for frying oil, effectiveness of each amino acid and mechanisms of their activities are not well understood yet. Propo...

  17. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2011-08-09

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNAsyn-thetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  18. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  19. Recombinant adeno-associated virus-mediated high-efficiency, transient expression of the murine cationic amino acid transporter (ecotropic retroviral receptor) permits stable transduction of human HeLa cells by ecotropic retroviral vectors.

    PubMed Central

    Bertran, J; Miller, J L; Yang, Y; Fenimore-Justman, A; Rueda, F; Vanin, E F; Nienhuis, A W

    1996-01-01

    Adeno-associated virus has a broad host range, is nonpathogenic, and integrates into a preferred location on chromosome 19, features that have fostered development of recombinant adeno-associated viruses (rAAV) as gene transfer vectors for therapeutic applications. We have used an rAAV to transfer and express the murine cationic amino acid transporter which functions as the ecotropic retroviral receptor, thereby rendering human cells conditionally susceptible to infection by an ecotropic retroviral vector. The proportion of human HeLa cells expressing the receptor at 60 h varied as a function of the multiplicity of infection (MOI) with the rAAV. Cells expressing the ecotropic receptor were efficiently transduced with an ecotropic retroviral vector encoding a nucleus-localized form of beta-galactosidase. Cells coexpressing the ecotropic receptor and nucleus-localized beta-galactosidase were isolated by fluorescence-activated cell sorting, and cell lines were recovered by cloning at limiting dilution. After growth in culture, all clones contained the retroviral vector genome, but fewer than 10% (3 of 47) contained the rAAV genome and continued to express the ecotropic receptor. The ecotropic receptor coding sequences in the rAAV genome were under the control of a tetracycline-modulated promoter. In the presence of tetracycline, receptor expression was low and the proportion of cells transduced by the ecotropic retroviral vector was decreased. Modulation of receptor expression was achieved with both an episomal and an integrated form of the rAAV genome. These data establish that functional gene expression from an rAAV genome can occur transiently without genome integration. PMID:8794313

  20. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides.

    PubMed

    Mitsuhashi, Satoshi

    2014-04-01

    Amino acids play important roles in both human and animal nutrition and in the maintenance of health. Here, amino acids are classified into three groups: first, essential amino acids, which are essential to nutrition; second, functional amino acids, recently found to be important in the promotion of physiological functions; and third, dipeptides, which are used to resolve problematic features of specific free amino acids, such as their instability or insolubility. This review focusses on recent researches concerning the microbial production of essential amino acids (lysine and methionine), functional amino acids (histidine and ornithine), and a dipeptide (L-alanyl-L-glutamine).

  1. Amino acid contents of infant foods.

    PubMed

    Bosch, Lourdes; Alegría, Amparo; Farré, Rosaura

    2006-01-01

    The protein quality of three milk-cereal-based infant foods (paps) was evaluated by determining their amino acid contents and calculating the amino acid score. Proteins were subjected to acid hydrolysis, prior to which cysteine and methionine were oxidized with performic acid. Amino acids were determined by reverse-phase high-performance liquid chromatography with fluorescence detection with a prior derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Tryptophan was determined by reverse-phase high-performance liquid chromatography with ultraviolet detection after basic hydrolysis. Glutamic acid, proline and leucine were the most abundant amino acids, whereas tryptophan and cysteine had the lowest contents. Tryptophan was the limiting amino acid in the analyzed infant foods. A pap serving (250 ml) contributes significantly to fulfillment of the recommended dietary allowances of essential and semi-essential amino acids for infants (7-12 months old) and young children (1-3 years old).

  2. Microbial production of amino acids in Japan.

    PubMed

    Kumagai, H

    2000-01-01

    The microbial biotechnology of amino acids production which was developed and industrialized in Japan have been summarized. The amino acids include L-glutamic acid, L-lysine, L-threonine, L-aspartic acid, L-alanine, L-cysteine, L-dihydroxyphenylalanine, D-p-hydroxyphenyl-glycine, and hydroxy-L-proline.

  3. Amino and fatty acids in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1974-01-01

    Analyses of two carbonaceous meteorites have provided much of the latest evidence which seems to support Oparin's theory on the origin of life. The meteorites involved are the Murray meteorite, which fell in 1950, and the Murchison meteorite, which fell in 1969. The amino acids in the two meteorites are similar in composition. Eight of the twenty amino acids found belong to amino acids present in proteins. A number of monocarboxylic and dicarboxylic fatty acids were also found in the meteorites.

  4. Orientation Preferences of Backbone Secondary Amide Functional Groups in Peptide Nucleic Acid Complexes: Quantum Chemical Calculations Reveal an Intrinsic Preference of Cationic D-Amino Acid-Based Chiral PNA Analogues for the P-form

    SciTech Connect

    Smith, Jeremy C; Topham, Christopher

    2007-01-01

    Geometric descriptions of nonideal interresidue hydrogen bonding and backbone-base water bridging in the minor groove are established in terms of polyamide backbone carbonyl group orientation from analyses of residue junction conformers in experimentally determined peptide nucleic acid (PNA) complexes. Two types of interresidue hydrogen bonding are identified in PNA conformers in heteroduplexes with nucleic acids that adopt A-like base pair stacking. Quantum chemical calculations on the binding of a water molecule to an O2 base atom in glycine-based PNA thymine dimers indicate that junctions modeled with P-form backbone conformations are lower in energy than a dimer comprising the predominant conformation observed in A-like helices. It is further shown in model systems that PNA analogs based on D-lysine are better able to preorganize in a conformation exclusive to P-form helices than is glycine-based PNA. An intrinsic preference for this conformation is also exhibited by positively charged chiral PNA dimers carrying 3-amino-D-alanine or 4-aza-D-leucine residue units that provide for additional rigidity by side-chain hydrogen bonding to the backbone carbonyl oxygen. Structural modifications stabilizing P-form helices may obviate the need for large heterocycles to target DNA pyrimidine bases via PNADNA-PNA triplex formation. Quantum chemical modeling methods are used to propose candidate PNA Hoogsteen strand designs.

  5. Amino-acid contamination of aqueous hydrochloric acid.

    NASA Technical Reports Server (NTRS)

    Wolman, Y.; Miller, S. L.

    1971-01-01

    Considerable amino-acid contamination in commercially available analytical grade hydrochloric acid (37% HCl) was found. One bottle contained 8,300 nmol of amino-acids per liter. A bottle from another supplier contained 6,700 nmol per liter. The contaminants were mostly protein amino-acids and several unknowns. Data on the volatility of the amino-acids during HCl distillation were also obtained.

  6. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  7. Amino Acid Auxotrophy as Immunological Control Nodes

    PubMed Central

    Murray, Peter J.

    2016-01-01

    Summary Cells of the immune system are auxotrophs for most amino acids, including non-essential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that deplete the amino acid, or create regulatory molecules such as nitric oxide or kynurenines. Strategies to harness amino acid auxotrophy to block cancerous lymphocyte growth have been attempted for decades, with limited success. How immune cells integrate information about external essential amino acids supplies and transfer signals to growth and activation pathways remains unclear, but has potential for pathway discovery. Emerging insights may lead to strategies to both degrade amino acids and to block the immunoregulatory pathways controlled by amino acids. PMID:26784254

  8. Indigenous amino acids in primitive CR meteorites

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Alexander, C. M. O. D.; Orzechowska, G. E.; Fogel, M. L.; Ehrenfreund, P.

    CR chondrites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites. Three CRs, Elephant Moraine (EET) 92042, Graves Nunataks (GRA) 95229, and Grosvenor Mountains (GRO) 95577, were analyzed for their amino acid content using high-performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatography-mass spectrometry (GC-MS). Our data show that EET 92042 and GRA 95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 ppm to 249 ppm. The most abundant amino acids present in the EET 92042 and GRA 95229 meteorites are the α-amino acids glycine, isovaline, α-aminoisobutyric acid (α-AIB), and alanine, with δ13C values ranging from +31.6‰ to +50.5‰. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly indicate an extraterrestrial origin for these compounds. Compared to Elephant Moraine (EET) 92042 and GRA 95229, the more aqueously altered GRO 95577 is depleted in amino acids. In both CRs and CMs, the absolute amino acid abundances appear to be related to the degree of aqueous alteration in their parent bodies. In addition, the relative abundances of α-AIB and β-alanine in the Antarctic CRs also appear to depend on the degree of aqueous alteration.

  9. Amino acids in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Kminek, G.; Botta, O.; Glavin, D. P.; Bada, J. L.

    2002-01-01

    High-performance liquid chromatography (HPLC) based amino acid analysis of a Tagish Lake meteorite sample recovered 3 months after the meteorite fell to Earth have revealed that the amino acid composition of Tagish Lake is strikingly different from that of the CM and CI carbonaceous chondrites. We found that the Tagish Lake meteorite contains only trace levels of amino acids (total abundance = 880 ppb), which is much lower than the total abundance of amino acids in the CI Orgueil (4100 ppb) and the CM Murchison (16 900 ppb). Because most of the same amino acids found in the Tagish Lake meteorite are also present in the Tagish Lake ice melt water, we conclude that the amino acids detected in the meteorite are terrestrial contamination. We found that the exposure of a sample of Murchison to cold water lead to a substantial reduction over a period of several weeks in the amount of amino acids that are not strongly bound to the meteorite matrix. However, strongly bound amino acids that are extracted by direct HCl hydrolysis are not affected by the leaching process. Thus even if there had been leaching of amino acids from our Tagish Lake meteorite sample during its 3 month residence in Tagish Lake ice and melt water, a Murchison type abundance of endogenous amino acids in the meteorite would have still been readily detectable. The low amino acid content of Tagish Lake indicates that this meteorite originated fiom a different type of parent body than the CM and CI chondrites. The parent body was apparently devoid of the reagents such as aldehyldes/ketones, HCN and ammonia needed for the effective abiotic synthesis of amino acids. Based on reflectance spectral measurements, Tagish Lake has been associated with P- or D-type asteroids. If the Tagish Lake meteorite was indeed derived fiom these types of parent bodies, our understanding of these primitive asteroids needs to be reevaluated with respect to their potential inventory of biologically important organic compounds.

  10. Amino acids precursors in lunar finds

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Harada, K.; Hare, P. E.; Hinsch, G.; Mueller, G.

    1975-01-01

    The consistent pattern is discussed of amino acids found in lunar dust from Apollo missions. The evidence indicates that compounds yielding amino acids were implanted into the surface of the moon by the solar wind, and the kind and amounts of amino acids found on the moon are closely similar to those found in meteorites. It is concluded that there is a common cosmochemical pattern for the moom and meteorites, and this offers evidence of a common course of cosmochemical reactions for carbon.

  11. Amino acid composition of some Mexican foods.

    PubMed

    Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor

    2005-06-01

    Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.

  12. The complete amino acid sequence of prochymosin.

    PubMed Central

    Foltmann, B; Pedersen, V B; Jacobsen, H; Kauffman, D; Wybrandt, G

    1977-01-01

    The total sequence of 365 amino acid residues in bovine prochymosin is presented. Alignment with the amino acid sequence of porcine pepsinogen shows that 204 amino acid residues are common to the two zymogens. Further comparison and alignment with the amino acid sequence of penicillopepsin shows that 66 residues are located at identical positions in all three proteases. The three enzymes belong to a large group of proteases with two aspartate residues in the active center. This group forms a family derived from one common ancestor. PMID:329280

  13. Effect of domoic acid on brain amino acid levels.

    PubMed

    Durán, R; Arufe, M C; Arias, B; Alfonso, M

    1995-03-01

    The administration of Domoic Acid (Dom) in a 0.2 mg/kg i.p. dose induces changes in the levels of amino acids of neurochemical interest (Asp, Glu, Gly, Tau, Ala, GABA) in different rat brain regions (hypothalamus, hippocampus, amygdala, striatum, cortex and midbrain). The most affected amino acid is the GABA, the main inhibitory amino acid neurotransmitter, whereas glutamate, the main excitatory amino acid, is not affected. The rat brain regions that seem to be the main target of the Dom action belong to the limbic system (hippocampus, amygdala). The possible implication of the amino acids in the actions of Dom is also discussed.

  14. Research for amino acids in lunar samples.

    NASA Technical Reports Server (NTRS)

    Gehrke, C. W.; Zumwalt, R. W.; Kuo, K.; Rash, J. J.; Aue , W. A.; Stalling, D. L.; Kvenvolden, K. A.; Ponnamperuma, C.

    1972-01-01

    The study was primarily directed toward the examination of Apollo 14 lunar fines for indigenous amino acids or materials which could be converted to amino acids on hydrolysis with 6 N hydrochloric acid. Initial experiments were conducted to confirm the integrity of the derivatization reactions and reagents, and to optimize the gas-liquid chromatographic (GLC) instrumental and chromatographic system for the separation and flame ionization detection of the amino acid derivatives. In studies on the recovery of amino acids added to lunar fines, low recoveries were obtained when 10 ng of each amino acid were added to 50 mg of virgin fines, but the subsequent addition of 50 ng of each to the previously extracted sample resulted in much higher recoveries.

  15. Amino Acid Uptake in Arbuscular Mycorrhizal Plants

    PubMed Central

    Whiteside, Matthew D.; Garcia, Maria O.; Treseder, Kathleen K.

    2012-01-01

    We examined the extent to which arbuscular mycorrhizal (AM) fungi root improved the acquisition of simple organic nitrogen (ON) compounds by their host plants. In a greenhouse-based study, we used quantum dots (fluorescent nanoparticles) to assess uptake of each of the 20 proteinaceous amino acids by AM-colonized versus uncolonized plants. We found that AM colonization increased uptake of phenylalanine, lysine, asparagine, arginine, histidine, methionine, tryptophan, and cysteine; and reduced uptake of aspartic acid. Arbuscular mycorrhizal colonization had the greatest effect on uptake of amino acids that are relatively rare in proteins. In addition, AM fungi facilitated uptake of neutral and positively-charged amino acids more than negatively-charged amino acids. Overall, the AM fungi used in this study appeared to improve access by plants to a number of amino acids, but not necessarily those that are common or negatively-charged. PMID:23094070

  16. Fmoc/Trt-amino acids: comparison to Fmoc/tBu-amino acids in peptide synthesis.

    PubMed

    Barlos, K; Gatos, D; Koutsogianni, S

    1998-03-01

    Model peptides containing the nucleophilic amino acids Trp and Met have been synthesized with the application of Fmoc/Trt- and Fmoc/tBu-amino acids, for comparison. The deprotection of the peptides synthesized using Fmoc/Trt-amino acids in all cases leads to crude peptides of higher purity than that of the same peptides synthesized using Fmoc/tBu-amino acids.

  17. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  18. 6th Amino Acid Assessment Workshop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The focus of the 6th workshop is on lysine, arginine, and related amino acids. Functions, metabolic pathways, clinical uses, and upper tolerance intakes are emphasized in the articles that follow. Lysine is arguably the most deficient amino acid in the food supply of countries where poverty exists, ...

  19. The Apollo Program and Amino Acids

    ERIC Educational Resources Information Center

    Fox, Sidney W.

    1973-01-01

    Discusses the determination of hydrolyzable amino acid precursors and a group of six amino acids in the returned lunar samples of the Apollo programs. Indicates that molecular evolution is arrested at the precursor stage on the Moon because of lack of water. (CC)

  20. Differential distribution of amino acids in plants.

    PubMed

    Kumar, Vinod; Sharma, Anket; Kaur, Ravdeep; Thukral, Ashwani Kumar; Bhardwaj, Renu; Ahmad, Parvaiz

    2017-05-01

    Plants are a rich source of amino acids and their individual abundance in plants is of great significance especially in terms of food. Therefore, it is of utmost necessity to create a database of the relative amino acid contents in plants as reported in literature. Since in most of the cases complete analysis of profiles of amino acids in plants was not reported, the units used and the methods applied and the plant parts used were different, amino acid contents were converted into relative units with respect to lysine for statistical analysis. The most abundant amino acids in plants are glutamic acid and aspartic acid. Pearson's correlation analysis among different amino acids showed that there were no negative correlations between the amino acids. Cluster analysis (CA) applied to relative amino acid contents of different families. Alismataceae, Cyperaceae, Capparaceae and Cactaceae families had close proximity with each other on the basis of their relative amino acid contents. First three components of principal component analysis (PCA) explained 79.5% of the total variance. Factor analysis (FA) explained four main underlying factors for amino acid analysis. Factor-1 accounted for 29.4% of the total variance and had maximum loadings on glycine, isoleucine, leucine, threonine and valine. Factor-2 explained 25.8% of the total variance and had maximum loadings on alanine, aspartic acid, serine and tyrosine. 14.2% of the total variance was explained by factor-3 and had maximum loadings on arginine and histidine. Factor-4 accounted 8.3% of the total variance and had maximum loading on the proline amino acid. The relative content of different amino acids presented in this paper is alanine (1.4), arginine (1.8), asparagine (0.7), aspartic acid (2.4), cysteine (0.5), glutamic acid (2.8), glutamine (0.6), glycine (1.0), histidine (0.5), isoleucine (0.9), leucine (1.7), lysine (1.0), methionine (0.4), phenylalanine (0.9), proline (1.1), serine (1.0), threonine (1

  1. Amino acids in the Martian meteorite Nakhla.

    PubMed

    Glavin, D P; Bada, J L; Brinton, K L; McDonald, G D

    1999-08-03

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  2. Amino acids in the Martian meteorite Nakhla

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. L.; Brinton, K. L.; McDonald, G. D.

    1999-01-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  3. Amino Acids in the Martian Meteorite Nakhla

    NASA Astrophysics Data System (ADS)

    Glavin, Daniel P.; Bada, Jeffrey L.; Brinton, Karen L. F.; McDonald, Gene D.

    1999-08-01

    A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, β -alanine, and γ -amino-n-butyric acid (γ -ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

  4. Exogenous amino acids as fuel in shock.

    PubMed

    Daniel, A M; Kapadia, B; MacLean, L D

    1982-01-01

    It has been suggested that in shock branched-chain amino acids are preferentially oxidized resulting in continued proteolysis and stimulated gluconeogenesis. To determine if exogenous amino acids could be used as fuel in shock, dogs rendered hypotensive by controlled cardiac tamponade and normotensive controls were infused with amino acid mixtures and individual amino acids. When Nephramine, a mixture rich in branched-chain amino acids, was infused, plasma alpha-amino nitrogen levels rose but urea output did not increase in either the control state or in shock, suggesting that these amino acids were not rapidly deaminated to serve as fuels. Travasol, which in addition contained large amounts of alanine and glycine, tripled urea output in the controls and doubled it in shock. The limit of urea production was reached in both groups at 35 mumoles urea/minute/kg. In the Travasol-infused animals plasma alpha-amino nitrogen levels were maintained in normotension but rose sharply in shock. When glycine alone was infused into five dogs in shock urea production rate was 30.6 + 2.1 mumoles/minute/kg; with alanine the same value was 22.5 + 2.2 mumoles/minute/kg. In both cases plasma alpha-amino nitrogen levels were high, suggesting that transport of these amino acids into the cell was slow in shock. In four dogs in shock glycine-14C was added to the glycine infusate as a tracer. At radioactive equilibrium 28% of the label infused appeared in CO2; another 22% appeared in glucose. It is concluded that of all the amino acids tested only glycine and alanine are deaminated rapidly enough to serve as exogenous fuels in shock.

  5. Amino acid metabolism of experimental granulation tissue in vitro.

    PubMed

    Aalto, M; Lampiaho, K; Pikkarainen, J; Kulonen, E

    1973-04-01

    1. The intracellular volume in granulation tissue was about 15% of the total urea space. 2. The experimental granuloma has a greater ability to retain amino acids during the proliferation phase than later during the synthesis of collagen. 3. The synthesis of collagen and other proteins by granulation tissue is related to the concentrations of proline and glutamic acid in the medium. 4. The rate of synthesis of proline from glutamic acid in granulation-tissue slices is greatest during collagen synthesis. It is enhanced by lactate. 5. Extracellular cations influence the synthesis of collagen and ouabain is inhibitory. Synthesis of other proteins is less sensitive in this respect. 6. It is suggested that the synthesis of collagen is related to the supply of certain amino acids, especially proline, and hence to the redox balance, and also to the function of the cell wall.

  6. Gemini surfactants from natural amino acids.

    PubMed

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed.

  7. Specific lysosomal transport of small neutral amino acids

    SciTech Connect

    Pisoni, R.L.; Flickinger, K.S.; Thoene, J.G.; Christensen, H.N.

    1986-05-01

    Studies of amino acid exodus from lysosomes have allowed us previously to describe transport systems specific for cystine and another for cationic amino acids in fibroblast lysosomes. They are now able to study amino acid uptake into highly purified fibroblast lysosomes obtained by separating crude granular fraction on gradients formed by centrifugation in 35% isoosmotic Percoll solutions. Analog inhibition and saturation studies indicate that L-(/sup 14/C)proline (50 ..mu..M) uptake by fibroblast lysosomes at 37/sup 0/C in 50 mM citrate/tris pH 7.0 buffer containing 0.25 M sucrose is mediated by two transport systems, one largely specific for L-proline and the other for which transport is shared with small neutral amino acids such as alanine, serine and threonine. At 7 mM, L-proline inhibits L-(/sup 14/C)proline uptake almost completely, whereas ala, ser, val, thr, gly, N-methylalanine and sarcosine inhibit proline uptake by 50-65%. The system shared by alanine, serine and threonine is further characterized by these amino acids strongly inhibiting the uptakes of each other. Lysosomal proline transport is selective for the L-isomer of the amino acid, and is scarcely inhibited by 7 mM arg, glu, asp, leu, phe, his, met, (methylamino) isobutyrate, betaine or N,N-dimethylglycine. Cis or trans-4-hydroxy-L-proline inhibit proline uptake only slightly. In sharp contrast to the fibroblast plasma membrane in which Na/sup +/ is required for most proline and alanine transport, lysosomal uptake of these amino acids occurs independently of Na/sup +/.

  8. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, Mark M.; Shoup, Timothy

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  9. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, Mark M.; Shoup, Timothy

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  10. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, M.M.; Shoup, T.

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  11. Amino acid analogs for tumor imaging

    DOEpatents

    Goodman, M.M.; Shoup, T.

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  12. Amino acid transporters: roles in amino acid sensing and signalling in animal cells.

    PubMed Central

    Hyde, Russell; Taylor, Peter M; Hundal, Harinder S

    2003-01-01

    Amino acid availability regulates cellular physiology by modulating gene expression and signal transduction pathways. However, although the signalling intermediates between nutrient availability and altered gene expression have become increasingly well documented, how eukaryotic cells sense the presence of either a nutritionally rich or deprived medium is still uncertain. From recent studies it appears that the intracellular amino acid pool size is particularly important in regulating translational effectors, thus, regulated transport of amino acids across the plasma membrane represents a means by which the cellular response to amino acids could be controlled. Furthermore, evidence from studies with transportable amino acid analogues has demonstrated that flux through amino acid transporters may act as an initiator of nutritional signalling. This evidence, coupled with the substrate selectivity and sensitivity to nutrient availability classically associated with amino acid transporters, plus the recent discovery of transporter-associated signalling proteins, demonstrates a potential role for nutrient transporters as initiators of cellular nutrient signalling. Here, we review the evidence supporting the idea that distinct amino acid "receptors" function to detect and transmit certain nutrient stimuli in higher eukaryotes. In particular, we focus on the role that amino acid transporters may play in the sensing of amino acid levels, both directly as initiators of nutrient signalling and indirectly as regulators of external amino acid access to intracellular receptor/signalling mechanisms. PMID:12879880

  13. Amino Acid Detection in Cometary Matter?

    NASA Astrophysics Data System (ADS)

    Meierhenrich, U. J.; Munoz Caro, G. M.; Thiemann, W.; Goesmann, F.; Rosenbauer, H.

    2003-04-01

    The recent identification of amino acid structures in interstellar ice analogues [1, 2] strongly supports the assumption that amino acids are abundant in cometary matter too. Cometary matter is assumed to be built up of aggregates of interstellar dust particles. Amino acids are the molecular building blocks of proteins in living organisms. These results amplified the scientific interest in the ESA cometary mission Rosetta. The Rosetta Lander includes the Cosac experiment dedicated to the identification of chiral organic molecules in cometary matter itshape in situ \\upshape by multi column gas chromatography coupled with a reflectron time-of-flight mass spectrometer. However, the envisaged itshape in situ \\upshape amino acid analysis on the cometary surface requires special technical emphasis of the COSAC instrumentation. The context in which the amino acid identification in cometary matter is of interest will be outlined and the analytical solutions that make amino acids accessible to the COSAC instrument will be presented. A succesful identification of amino acid structures in cometary matter would help to understand the beginnings of the biomolecular evolution and the origin of the biomolecular asymmetry. [1] G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Sergovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg: itshape Nature \\upshape 416 (2002), 403-406. [2] M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, L.J. Allamandola: itshape Nature \\upshape 416 (2002), 401-403.

  14. Enantiomer-specific selection of amino acids

    PubMed Central

    Ren, Xueying; Tellez, Luis A; de Araujo, Ivan E

    2013-01-01

    Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: 1. During long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; 2. These behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; 3. These behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids, and suggest a mechanistic link between substrate utilization and amino acid preferences. PMID:24072505

  15. Distribution of Amino Acids in Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  16. Amino Acid Stability in the Early Oceans

    NASA Technical Reports Server (NTRS)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  17. Amino Acid Degradation after Meteoritic Impact Simulation

    NASA Technical Reports Server (NTRS)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  18. Amino acid analysis for pharmacopoeial purposes.

    PubMed

    Wahl, Oliver; Holzgrabe, Ulrike

    2016-07-01

    The impurity profile of amino acids depends strongly on the production process. Since there are many different production methods (e.g. fermentation, protein hydrolysis or chemical synthesis) universal, state of the art methods are required to determine the impurity profile of amino acids produced by all relevant competitors. At the moment TLC tests provided by the Ph. Eur. are being replaced by a very specific amino acid analysis procedure possibly missing out on currently unknown process related impurities. Production methods and possible impurities as well as separation and detection methods suitable for said impurities are subject to this review.

  19. ANTIGENICITY OF POLYPEPTIDES (POLY ALPHA AMINO ACIDS)

    PubMed Central

    Pinchuck, Paul; Maurer, Paul H.

    1965-01-01

    The response of mice to synthetic linear polypeptides of known composition but random sequence has been studied. Neither Swiss mice nor a number of inbred strains could respond to copolymers of only 2 amino acids (G60L40, G60A40, G90T10). Upon introduction of as little as 4 mole per cent of a third amino acid, good immune responses were obtained, regardless of the nature of the third amino acid. The level of the immune response to a series of glu-lys-ala polymers increased with increasing alanine content of the polymer. PMID:5849232

  20. Regulation of the plasma amino acid profile by leucine via the system L amino acid transporter.

    PubMed

    Zhen, Hongmin; Nakamura, Koichi; Kitaura, Yasuyuki; Kadota, Yoshihiro; Ishikawa, Takuya; Kondo, Yusuke; Xu, Minjun; Shimomura, Yoshiharu

    2015-01-01

    Plasma concentrations of amino acids reflect the intracellular amino acid pool in mammals. However, the regulatory mechanism requires clarification. In this study, we examined the effect of leucine administration on plasma amino acid profiles in mice with and without the treatment of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) or rapamycin as an inhibitor of system L or mammalian target of rapamycin complex 1, respectively. The elevation of plasma leucine concentration after leucine administration was associated with a significant decrease in the plasma concentrations of isoleucine, valine, methionine, phenylalanine, and tyrosine; BCH treatment almost completely blocked the leucine-induced decrease in plasma amino acid concentrations. Rapamycin treatment had much less effects on the actions of leucine than BCH treatment. These results suggest that leucine regulates the plasma concentrations of branched-chain amino acids, methionine, phenylalanine, and tyrosine, and that system L amino acid transporters are involved in the leucine action.

  1. Genetics Home Reference: aromatic l-amino acid decarboxylase deficiency

    MedlinePlus

    ... l-amino acid decarboxylase deficiency aromatic l-amino acid decarboxylase deficiency Enable Javascript to view the expand/ ... Open All Close All Description Aromatic l-amino acid decarboxylase (AADC) deficiency is an inherited disorder that ...

  2. Discovery and History of Amino Acid Fermentation.

    PubMed

    Hashimoto, Shin-Ichi

    2016-12-02

    There has been a strong demand in Japan and East Asia for L-glutamic acid as a seasoning since monosodium glutamate was found to present umami taste in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum in 1956 enabled abundant and low-cost production of the amino acid, creating a large market. The discovery also prompted researchers to develop fermentative production processes for other L-amino acids, such as lysine. Currently, the amino acid fermentation industry is so huge that more than 5 million metric tons of amino acids are manufactured annually all over the world, and this number continues to grow. Research on amino acid fermentation fostered the notion and skills of metabolic engineering which has been applied for the production of other compounds from renewable resources. The discovery of glutamate fermentation has had revolutionary impacts on both the industry and science. In this chapter, the history and development of glutamate fermentation, including the very early stage of fermentation of other amino acids, are reviewed.

  3. Amino acid odorants stimulate microvillar sensory neurons.

    PubMed

    Lipschitz, David L; Michel, William C

    2002-03-01

    The olfactory epithelium (OE) of zebrafish is populated with ciliated and microvillar olfactory sensory neurons (OSNs). Whether distinct classes of odorants specifically activate either of these unique populations of OSNs is unknown. Previously we demonstrated that zebrafish OSNs could be labeled in an activity-dependent fashion by amino acid but not bile acid odorants. To determine which sensory neuron type was stimulated by amino acid odorants, we labeled OSNs using the ion channel permeant probe agmatine (AGB) and analyzed its distribution with conventional light- and electron-microscope immunocytochemical techniques. Approximately 7% of the sensory epithelium was labeled by AGB exposure alone. Following stimulation with one of the eight amino acids tested, the proportion of labeled epithelium increased from 9% for histidine to 19% for alanine; amino acid stimulated increases in labeling of 2-12% over control labeling. Only histidine failed to stimulate a significant increase in the proportion of labeled OSNs compared to control preparations. Most amino acid sensitive OSNs were located superficially in the epithelium and immuno-electron microscopy demonstrated that the labeled OSNs were predominantly microvillar. Large numbers of nanogold particles (20-60 per 1.5 microm(2)) were associated with microvillar olfactory sensory neurons (MSNs), while few such particles (<15 per 1.5 microm(2)) were observed over ciliated olfactory sensory neurons (CSNs), supporting cells (SCs) and areas without tissue, such as the lumen above the OE. Collectively, these findings indicate that microvillar sensory neurons are capable of detecting amino acid odorants.

  4. Real-time measurements of amino acid and protein hydroperoxides using coumarin boronic acid.

    PubMed

    Michalski, Radoslaw; Zielonka, Jacek; Gapys, Ewa; Marcinek, Andrzej; Joseph, Joy; Kalyanaraman, Balaraman

    2014-08-08

    Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7-23 M(-1) s(-1)) were significantly higher than that measured for H2O2 (1.5 M(-1) s(-1)). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1-1.5 × 10(3) M(-1) s(-1). Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems.

  5. Enantioenrichment in sublimed amino acid mixtures.

    PubMed

    Viedma, Cristóbal; Ortiz, José E; de Torres, Trinidad; Cintas, Pedro

    2012-04-14

    A real amplification of an initial enantiomeric excess can be detected when two amino acids are sublimed at high temperature, even if one of the components is a racemic compound that does not convert into a conglomerate by sublimation.

  6. Amino Acid Biosynthesis Pathways in Diatoms

    PubMed Central

    Bromke, Mariusz A.

    2013-01-01

    Amino acids are not only building blocks for proteins but serve as precursors for the synthesis of many metabolites with multiple functions in growth and other biological processes of a living organism. The biosynthesis of amino acids is tightly connected with central carbon, nitrogen and sulfur metabolism. Recent publication of genome sequences for two diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum created an opportunity for extensive studies on the structure of these metabolic pathways. Based on sequence homology found in the analyzed diatomal genes, the biosynthesis of amino acids in diatoms seems to be similar to higher plants. However, one of the most striking differences between the pathways in plants and in diatomas is that the latter possess and utilize the urea cycle. It serves as an important anaplerotic pathway for carbon fixation into amino acids and other N-containing compounds, which are essential for diatom growth and contribute to their high productivity. PMID:24957993

  7. Production of amino acids by yogurt bacteria.

    PubMed

    Beshkova, D M; Simova, E D; Frengova, G I; Simov, Z I; Adilov, E F

    1998-01-01

    The dynamics of free amino acid production by the selected strains Streptococcus thermophilus 13a and Lactobacillus bulgaricus 2-11 were studied in pure and mixed cultivations during yogurt starter culture manufacture. L. bulgaricus 2-11 showed the highest activity for producing free amino acids with high individual concentrations over the first hour of growth (50% of the total amount). By the end of milk's full coagulation (4.5 h), 70% of the total amount of amino acids was released. S. thermophilus 13a showed poor proteolytic properties and consumed up to 70% of the free amino acids produced by L. bulgaricus 2-11 in the process of coagulation of milk with the mixed culture.

  8. Genetically encoded fluorescent coumarin amino acids

    DOEpatents

    Wang, Jiangyun [San Diego, CA; Xie, Jianming [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2012-06-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  9. Genetically encoded fluorescent coumarin amino acids

    DOEpatents

    Wang, Jiangyun; Xie, Jianming; Schultz, Peter G.

    2010-10-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl) ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  10. Nonprotein Amino Acids from Spark Discharges and Their Comparison with the Murchison Meteorite Amino Acids

    PubMed Central

    Wolman, Yecheskel; Haverland, William J.; Miller, Stanley L.

    1972-01-01

    All the nonprotein amino acids found in the Murchison meteorite are products of the action of electric discharge on a mixture of methane, nitrogen, and water with traces of ammonia. These amino acids include α-amino-n-butyric acid, α-aminoisobutyric acid, norvaline, isovaline, pipecolic acid, β-alanine, β-amino-n-butyric acid, β-aminoisobutyric acid, γ-aminobutyric acid, sarcosine, N-ethylglycine, and N-methylalanine. In addition, norleucine, alloisoleucine, N-propylglycine, N-isopropylglycine, N-methyl-β-alanine, N-ethyl-β-alanine α,β-diaminopropionic acid, isoserine, α,γ-diaminobutyric acid, and α-hydroxy-γ-aminobutyric acid are produced by the electric discharge, but have not been found in the meteorite. PMID:16591973

  11. Evaluation of amino acids as turfgrass nematicides.

    PubMed

    Zhang, Yun; Luc, John E; Crow, William T

    2010-12-01

    Laboratory experiments revealed that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog at rates of 224 and 448 kg amino acid/ha reduced the number of Belonolaimus longicaudatus mixed life-stages and Meloidogyne incognita J2 in soil, whereas L-threonine and lysine were not effective in reducing the number of either nematode. Futhermore, greenhouse experiments demonstrated that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog were equally effective against B. longicaudatus at rates of 112, 224, and 448 kg amino acid/ha, and the highest rate (448 kg amino acid/ha) of all amino acids was more effective in reducing the number of B. longicaudatus than the lower rate. However, phytotoxicity was observed on creeping bentgrass (Agrostis palustris) treated with 448 kg amino acid/ha of methionine hydroxyl analog and DL methionine. In addition, in one of two field experiments on bermudagrass (Cynodon dactylon × C. transvaalensis) turf percentage green cover was increased and the number of B. longicaudatus was reduced by 224 kg amino acid/ha of DL-methionine and potassium methionate compared to untreated controls in one of two trials.

  12. Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module Z basic2: design of a heterogeneous D-amino acid oxidase catalyst on porous glass.

    PubMed

    Bolivar, Juan M; Nidetzky, Bernd

    2012-06-01

    D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is applied in industry for the synthesis of pharmaceutical intermediates. Because free TvDAO is extremely sensitive to exposure to gas-liquid interfaces, biocatalytic processing is usually performed with enzyme immobilizates that offer enhanced stability under bubble aeration. We herein present an "Immobilization by Design" approach that exploits engineered charge complementarity between enzyme and carrier to optimize key features of the immobilization of TvDAO. A fusion protein between TvDAO and the positively charged module Z(basic2) was generated, and a corresponding oppositely charged carrier was obtained by derivatization of mesoporous glass with 3-(trihydroxysilyl)-1-propane-sulfonic acid. Using 250 mM NaCl for charge screening at pH 7.0, the Z(basic2) fusion of TvDAO was immobilized directly from E. coli cell extract with almost absolute selectivity and full retention of catalytic effectiveness of the isolated enzyme in solution. Attachment of the homodimeric enzyme to the carrier was quasi-permanent in low-salt buffer but fully reversible upon elution with 5 M NaCl. Immobilized TvDAO was not sensitive to bubble aeration and received substantial (≥ tenfold) stabilization of the activity at 45°C as compared to free enzyme, suggesting immobilization via multisubunit oriented interaction of enzyme with the insoluble carrier. The Z(basic2) enzyme immobilizate was demonstrated to serve as re-usable heterogeneous catalyst for D-amino acid oxidation. Z(basic2) -mediated binding on a sulfonic acid group-containing glass carrier constitutes a generally useful strategy of enzyme immobilization that supports transition from case-specific empirical development to rational design.

  13. Amino acid composition and amino acid-metabolic network in supragingival plaque.

    PubMed

    Washio, Jumpei; Ogawa, Tamaki; Suzuki, Keisuke; Tsukiboshi, Yosuke; Watanabe, Motohiro; Takahashi, Nobuhiro

    2016-01-01

    Dental plaque metabolizes both carbohydrates and amino acids. The former can be degraded to acids mainly, while the latter can be degraded to various metabolites, including ammonia, acids and amines, and associated with acid-neutralization, oral malodor and tissue inflammation. However, amino acid metabolism in dental plaque is still unclear. This study aimed to elucidate what kinds of amino acids are available as metabolic substrates and how the amino acids are metabolized in supragingival plaque, by a metabolome analysis. Amino acids and the related metabolites in supragingival plaque were extracted and quantified comprehensively by CE-TOFMS. Plaque samples were also incubated with amino acids, and the amounts of ammonia and amino acid-related metabolites were measured. The concentration of glutamate was the highest in supragingival plaque, while the ammonia-production was the highest from glutamine. The obtained metabolome profile revealed that amino acids are degraded through various metabolic pathways, including deamination, decarboxylation and transamination and that these metabolic systems may link each other, as well as with carbohydrate metabolic pathways in dental plaque ecosystem. Moreover, glutamine and glutamate might be the main source of ammonia production, as well as arginine, and contribute to pH-homeostasis and counteraction to acid-induced demineralization in supragingival plaque.

  14. Progress Toward an Enceladus Amino Acid Sampler Astrobiology Instrument

    NASA Astrophysics Data System (ADS)

    Kirby, J. P.; Willis, P. A.; Blacksberg, J.

    2012-12-01

    The development of a new astrobiolgoy instrument for exploring the trace chemical composition of the Enceladus jets and plume, and the e-ring of Saturn is presented. The Enceladus amino acid sampler (EAAS) allows for detection of amino acids using optical Raman spectroscopy integrated with a sample pre-concentration system. The pre-concentration process facilitates the delivery of a sample to a mass spectrometer for detection of specific amino acids. The initial EAAS design utilizes lab-on-a-breadboard components where a sample inlet, sample outlet, reagents, controllers, pumps, valves and pre-concentration column for the EAAS prototype are all assembled on a 5" x 7" breadboard. The pre-concentration process is controlled using automation scripts and software. An optical window allows a Raman spectrometer to directly monitor the pre-concentration of amino acids in a filter/column loaded with of a strong cation exchange resin. Initial samples to demonstrate EAAS simulate the conditions of Don Juan Pond, one of the coldest and saltiest bodies of liquid water on Earth, located in the Wright Valley of Antarctica. This EAAS development is an important step toward a new type of astrobiology science instrument that is capable of operating on a spacecraft in flight or in orbit.

  15. Evidence of Selection for Low Cognate Amino Acid Bias in Amino Acid Biosynthetic Enzymes

    PubMed Central

    Alves, Rui; Savageau, Michael A.

    2006-01-01

    Summary If the enzymes responsible for biosynthesis of a given amino acid are repressed and the cognate amino acid pool suddenly depleted, then derepression of these enzymes and replenishment of the pool would be problematic, if the enzymes were largely composed of the cognate amino acid. In the proverbial ‘Catch 22’, cells would lack the necessary enzymes to make the amino acid, and they would lack the necessary amino acid to make the needed enzymes. Based on this scenario, we hypothesize that evolution would lead to the selection of amino acid biosynthetic enzymes that have a relatively low content of their cognate amino acid. We call this the ‘cognate bias hypothesis’. Here we test several implications of this hypothesis directly using data from the proteome of Escherichia coli. Several lines of evidence show that low cognate bias is evident in 15 of the 20 amino acid biosynthetic pathways. Comparison with closely related Salmonella typhimurium shows similar results. Comparison with more distantly related Bacillus subtilis shows general similarities as well as significant differences in the detailed profiles of cognate bias. Thus, selection for low cognate bias plays a significant role in shaping the amino acid composition for a large class of cellular proteins. PMID:15853887

  16. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl amino substituted triazine...

  17. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl amino substituted triazine...

  18. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl amino substituted triazine...

  19. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino substituted triazine...

  20. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl amino substituted triazine...

  1. Amino Acid Transport into Cultured Tobacco Cells

    PubMed Central

    Harrington, H. Michael; Henke, Randolph R.

    1981-01-01

    Lysine transport into suspension-cultured Wisconsin-38 tobacco cells was observed. Uptake was linear (up to 90 minutes) with respect to time and amount of tissue only after 4 to 6 hours preincubation in calcium-containing medium. The observed cellular accumulation of lysine was against a concentration gradient and not due to exchange diffusion. Transport was stimulated by low pH and characterized by a biphasic uptake isotherm with two Km values for lysine. System I (Km ≃ 5 × 10−6 molar; Vmax ≃ 180 nanomoles per gram fresh weight per hour) and system II (Km ≃ 10−4 molar; Vmax ≃ 1900 nanomoles per gram fresh weight per hour) were inhibited by N-ethylmaleimide and a variety of respiratory inhibitors. This inhibition was not due to increased efflux. In antagonism experiments, system I was inhibited most effectively by basic amino acids, followed by the sulfur amino acids. System I was only slightly inhibited by the neutral and aromatic amino acids and was not inhibited by the acidic amino acids aspartic and glutamic acids. Transport by system II was inhibited by all of the tested amino acids (including aspartic and glutamic acids) and analogs; however, this system was not inhibited by d-arginine. Neither system was strongly inhibited by d-lysine or the lysine analog S-2-aminoethyl-l-cysteine. Arginine was shown to be a competitive inhibitor of both systems with values for Ki similar to the respective Km values. These studies suggest the presence of at least two amino acid permeases in W-38 tobacco cells. PMID:16661678

  2. Amino acids derived from Titan tholins

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Ogino, H.; Nagy, B.; Er, C.; Schram, K. H.; Arakawa, E. T.

    1986-01-01

    An organic heteropolymer (Titan tholin) was produced by continuous dc discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mbar pressure, roughly simulating the cloudtop atmosphere of Titan. Treatment of this tholin with 6N HCl yielded 16 amino acids by gas chromatography after derivatization of N-trifluroacetyl isopropyl esters on two different capillary columns. Identifications were confirmed by GC/MS. Glycine, aspartic acid, and alpha- and beta-alanine were produced in greatest abundance; the total yield of amino acids was approximately 10(-2), approximately equal to the yield of urea. The presence of "nonbiological" amino acids, the absence of serine, and the fact that the amino acids are racemic within experimental error together indicate that these molecules are not due to microbial or other contamination, but are derived from the tholin. In addition to the HCN, HC2CN, and (CN)2 found by Voyager, nitriles and aminonitriles should be sought in the Titanian atmosphere and, eventually, amino acids on the surface. These results suggest that episodes of liquid water in the past or future of Titan might lead to major further steps in prebiological organic chemistry on that body.

  3. Amino acids in modern and fossil woods

    NASA Technical Reports Server (NTRS)

    Lee, C.; Bada, J. L.; Peterson, E.

    1976-01-01

    The amino acid composition and the extent of racemization in several modern and fossil woods are reported. The method of analysis is described, and data are presented on the total amino acid concentration, the amino acid ratios, and the enantiomeric ratios in each sample. It is found that the amino acid concentration per gram of dry wood decreases with age of the sample, that the extent of racemization increases with increasing age, and that the amounts of aspartic acid, threonine, and serine decrease relative to valine with increasing age. The relative racemization rates of amino acids in wood, bone, and aqueous solution are compared, and it is shown that racemization in wood is much slower than in bone or aqueous solution. Racemization results for woods from the Kalambo Falls area of Zambia are used to calculate a minimum age of 110,000 years for the transition between the Sangoan and Acheulian industries at that site. This result is shown to be consistent with numerous radiometric dates for older Acheulian sites in Africa and to compare well with geologically inferred dates for the beginning of the Eemian and the end of the Acheulian industry in southern Africa.

  4. Amino acid isotopic analysis in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A relatively new approach to stable isotopic analysis—referred to as compound-specific isotopic analysis (CSIA)—has emerged, centering on the measurement of 15N:14N ratios in amino acids (glutamic acid and phenylalanine). CSIA has recently been used to generate trophic position estimates among anima...

  5. [Dependence of metabolic fecal amino acids on the amino acid content of the feed. 1. Metabolic fecal amino acids of rats fed with maize].

    PubMed

    Krawielitzki, K; Schadereit, R; Völker, T; Reichel, K

    1981-07-01

    The amount of metabolic fecal amino acids (MFAA) in dependence on the amino acid intake was determined for graded maize rations with 15N-labelled rats and the quota of labelled endogenous amino acids in faeces was calculated according to the isotope dilution method. The excretion of amino acids and MFAA in faeces are described as functions of the amino acid intake for 17 amino acids and regressively calculated. For all 17 amino acids investigated, there was a more or less steep increase of MFAA according to an increasing amino acid intake. In contrast to MFAA in N-free feeding, MFAA in feeding with pure maize (16.5% crude protein) increase to the 2- to 4.5-fold value. The thesis of the constancy of the excretion of MFAA can consequently be no longer maintained. The true digestibility according to the conventional method is, on an average of all amino acids, 7.3 units below the one ascertained according to the 15N-isotope method. For the limiting amino acids lysine and threonine the difference is biggest (23 resp. 17 units). Tryptophane as first limiting amino acid could not be determined. The true digestibility of nearly all amino acids ascertained for maize according to the isotope method is above 90%. For the limiting amino acids the expenditure resp. the loss of endogenous amino acids is biggest.

  6. Analysis of amino acids by miniaturised isotachophoresis.

    PubMed

    Prest, Jeff E; Baldock, Sara J; Fielden, Peter R; Goddard, Nicholas J; Brown, Bernard J Treves

    2004-10-08

    A method allowing the miniaturised isotachophoretic analysis of amino acids has been developed. To overcome the problems of carbonate contamination which occur when performing separations at alkaline pH levels glycolate was used as the leading ion. Addition of magnesium to the leading electrolyte as a counter species was found to improve the separations. The method has been used on a poly(methyl methacrylate) microdevice with integrated on-column conductivity detectors. The behaviour of a range of common amino acids was investigated and successful separations of up to seven amino acids were made. Good linearity was observed with calibration curves for aspartic acid and phenylalanine over the range 0.063-1.0 mM. Limits of detection for these two species were calculated to be 0.060 and 0.018 mM, respectively.

  7. Amino acids in the Yamato carbonaceous chrondrite from Antarctica

    NASA Technical Reports Server (NTRS)

    Shimoyama, A.; Ponnamperuma, C.; Yanai, K.

    1979-01-01

    Evidence for the presence of amino acids of extraterrestrial origin in the Antarctic Yamato carbonaceous chrondrite is presented. Hydrolyzed and nonhydrolyzed water-extracted amino acid samples from exterior, middle and interior portions of the meteorite were analyzed by an amino acid analyzer and by gas chromatography of N-TFA-isopropyl amino acid derivatives. Nine protein and six nonprotein amino acids were detected in the meteorite at abundances between 34 and less than one nmole/g, with equal amounts in interior and exterior portions. Nearly equal abundances of the D and L enantiomers of alanine, aspartic acid and glutamic acid were found, indicating the abiotic, therefore extraterrestrial, origin of the amino acids. The Antarctic environment and the uniformity of protein amino acid abundances are discussed as evidence against the racemization of terrestrially acquired amino acids, and similarities between Yamato amino acid compositions and the amino acid compositions of the Murchison and Murray type II carbonaceous chrondrites are indicated.

  8. The amino acid sequence of chymopapain from Carica papaya.

    PubMed Central

    Watson, D C; Yaguchi, M; Lynn, K R

    1990-01-01

    Chymopapain is a polypeptide of 218 amino acid residues. It has considerable structural similarity with papain and papaya proteinase omega, including conservation of the catalytic site and of the disulphide bonding. Chymopapain is like papaya proteinase omega in carrying four extra residues between papain positions 168 and 169, but differs from both papaya proteinases in the composition of its S2 subsite, as well as in having a second thiol group, Cys-117. Some evidence for the amino acid sequence of chymopapain has been deposited as Supplementary Publication SUP 50153 (12 pages) at the British Library Document Supply Centre, Boston Spa., Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1990) 265, 5. The information comprises Supplement Tables 1-4, which contain, in order, amino acid compositions of peptides from tryptic, peptic, CNBr and mild acid cleavages, Supplement Fig. 1, showing re-fractionation of selected peaks from Fig. 2 of the main paper. Supplement Fig. 2, showing cation-exchange chromatography of the earliest-eluted peak of Fig. 3 of the main paper, Supplement Fig. 3, showing reverse-phase h.p.l.c. of the later-eluted peak from Fig. 3 of the main paper, and Supplement Fig. 4, showing the separation of peptides after mild acid hydrolysis of CNBr-cleavage fragment CB3. PMID:2106878

  9. Detection of non-protein amino acids in the presence of protein amino acids. II.

    NASA Technical Reports Server (NTRS)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  10. Distinguishing Proteins From Arbitrary Amino Acid Sequences

    PubMed Central

    Yau, Stephen S.-T.; Mao, Wei-Guang; Benson, Max; He, Rong Lucy

    2015-01-01

    What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314

  11. Amino acid uptake in rust fungi

    PubMed Central

    Struck, Christine

    2015-01-01

    The plant pathogenic rust fungi colonize leaf tissue and feed off their host plants without killing them. Certain economically important species of different genera such as Melampsora, Phakopsora, Puccinia, or Uromyces are extensively studied for resolving the mechanisms of the obligate biotrophy. As obligate parasites rust fungi only can complete their life cycle on living hosts where they grow through the leaf tissue by developing an extended network of intercellular hyphae from which intracellular haustoria are differentiated. Haustoria are involved in key functions of the obligate biotrophic lifestyle: suppressing host defense responses and acquiring nutrients. This review provides a survey of rust fungi nitrogen nutrition with special emphasis on amino acid uptake. A variety of sequences of amino acid transporter genes of rust fungi have been published; however, transport activity of only three in planta highly up-regulated amino acid permeases have been characterized. Functional and immunohistochemical investigations have shown the specificity and localization of these transporters. Sequence data of various genome projects allowed identification of numerous rust amino acid transporter genes. An in silico analysis reveals that these genes can be classified into different transporter families. In addition, genetic and molecular data of amino acid transporters have provided new insights in the corresponding metabolic pathways. PMID:25699068

  12. Amino acid pools in cultured muscle cells.

    PubMed

    Low, R B; Stirewalt, W S; Rittling, S R; Woodworth, R C

    1984-01-01

    Compartmentalization of cellular amino acid pools occurs in cultures of cardiac and skeletal muscle cells, but the factors involved in this are not clear. We have further defined this problem by analyzing the intracellular free leucine and the transfer-RNA-(tRNA)-bound leucine pool in cultures of skeletal and cardiac muscle incubated with 3H-leucine in the presence and absence of serum and amino acids. Withdrawal of nitrogen substrates caused substantial changes in leucine pool relationships--in particular, a change in the degree to which intracellular free leucine and tRNA-leucine were derived from the culture medium. In separate experiments, the validity of our tRNA measurements was confirmed by measurements of the specific activity of newly synthesized ferritin after iron induction. We discuss the implications of these findings with regard to factors involved in the control of amino acid flux through the cell, as well as with regard to design of experiments using isotopic amino acids to measure rates of amino acid utilization.

  13. Conformations of amino acids in proteins.

    PubMed

    Hovmöller, Sven; Zhou, Tuping; Ohlson, Tomas

    2002-05-01

    The main-chain conformations of 237 384 amino acids in 1042 protein subunits from the PDB were analyzed with Ramachandran plots. The populated areas of the empirical Ramachandran plot differed markedly from the classical plot in all regions. All amino acids in alpha-helices are found within a very narrow range of phi, psi angles. As many as 40% of all amino acids are found in this most populated region, covering only 2% of the Ramachandran plot. The beta-sheet region is clearly subdivided into two distinct regions. These do not arise from the parallel and antiparallel beta-strands, which have quite similar conformations. One beta region is mainly from amino acids in random coil. The third and smallest populated area of the Ramachandran plot, often denoted left-handed alpha-helix, has a different position than that originally suggested by Ramachandran. Each of the 20 amino acids has its own very characteristic Ramachandran plot. Most of the glycines have conformations that were considered to be less favoured. These results may be useful for checking secondary-structure assignments in the PDB and for predicting protein folding.

  14. Biodegradable polymers derived from amino acids.

    PubMed

    Khan, Wahid; Muthupandian, Saravanan; Farah, Shady; Kumar, Neeraj; Domb, Abraham J

    2011-12-08

    In the past three decades, the use of polymeric materials has increased dramatically for biomedical applications. Many α-amino acids derived biodegradable polymers have also been intensely developed with the main goal to obtain bio-mimicking functional biomaterials. Polymers derived from α-amino acids may offer many advantages, as these polymers: (a) can be modified further to introduce new functions such as imaging, molecular targeting and drugs can be conjugated chemically to these polymers, (b) can improve on better biological properties like cell migration, adhesion and biodegradability, (c) can improve on mechanical and thermal properties and (d) their degradation products are expected to be non-toxic and readily metabolized/excreted from the body. This manuscript focuses on biodegradable polymers derived from natural amino acids, their synthesis, biocompatibility and biomedical applications. It is observed that polymers derived from α-amino acids constitute a promising family of biodegradable materials. These provide innovative multifunctional polymers possessing amino acid side groups with biological activity and with innumerous potential applications.

  15. Amino Acids Profiles in Biological Media

    SciTech Connect

    Iordache, A.; Horj, E.; Morar, S.; Cozar, O.; Culea, M.; Ani, A. R.; Mesaros, C.

    2010-08-04

    An accurate analytical method was developed to determine amino acids in some biological specimens by GC/MS technique. Stable isotopes provide useful tools for a variety of studies, offering ideal internal standards in quantitative information. Isotopic dilution gas chromatography--mass spectrometry (ID-GC/MS) is the techniques used for quantitative analysis of compounds labeled with stable isotopes. A Trace DSQ Thermo Finnigan quadrupole mass spectrometer coupled with a Trace GC was used. Amino acids were separated on a Rtx-5 MS capillary column, 30 mx0.25 mm, 0.25 {mu}m film thickness, using a temperature program from 50 deg. C, 1 min, 6 deg. C/min at 100 deg. C, 4 deg. C/min at 200 deg. C, 20 deg. C/min at 300 deg. C, (3 min). The transfer line temperature was 250 deg. C, the injector temperature 200 deg. C and ion source temperature 250 deg. C; splitter: 10:1. Electron energy was 70 eV and emission current, 100 {mu}A. The amino acids were purified on a Dowex 50W-W8 exchange resin and were derivatized in a procedure following two steps to obtain trifluoroacetyl butyl esters. The identification of amino acids was obtained by using NIST library but also by using amino acid standards.

  16. Cation-π, amino-π, π-π, and H-bond interactions stabilize antigen-antibody interfaces.

    PubMed

    Dalkas, Georgios A; Teheux, Fabian; Kwasigroch, Jean Marc; Rooman, Marianne

    2014-09-01

    The identification of immunogenic regions on the surface of antigens, which are able to stimulate an immune response, is a major challenge for the design of new vaccines. Computational immunology aims at predicting such regions--in particular B-cell epitopes--but is far from being reliably applicable on a large scale. To gain understanding into the factors that contribute to the antigen-antibody affinity and specificity, we perform a detailed analysis of the amino acid composition and secondary structure of antigen and antibody surfaces, and of the interactions that stabilize the complexes, in comparison with the composition and interactions observed in other heterodimeric protein interfaces. We make a distinction between linear and conformational B-cell epitopes, according to whether they consist of successive residues along the polypeptide chain or not. The antigen-antibody interfaces were shown to differ from other protein-protein interfaces by their smaller size, their secondary structure with less helices and more loops, and the interactions that stabilize them: more H-bond, cation-π, amino-π, and π-π interactions, and less hydrophobic packing; linear and conformational epitopes can clearly be distinguished. Often, chains of successive interactions, called cation/amino-π and π-π chains, are formed. The amino acid composition differs significantly between the interfaces: antigen-antibody interfaces are less aliphatic and more charged, polar and aromatic than other heterodimeric protein interfaces. Moreover, paratopes and epitopes-albeit to a lesser extent-have amino acid compositions that are distinct from general protein surfaces. This specificity holds promise for improving B-cell epitope prediction.

  17. Amino acids of the Murchison meteorite. III - Seven carbon acyclic primary alpha-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, John R.; Pizzarello, Sandra

    1986-01-01

    All of the eighteen possible seven-carbon acyclic primary alpha-amino alkanoic acids have been positively identified in a hot-water extract of the Murchison meteorite by the combined use of gas chromatography-mass spectrometry, ion exchange chromatography and reversed-phase chromatography. None of these amino acids has previously been found in meteorites or in any other natural material. They range in concentration from less than or equal to 0.5 to 5.3 nmol/g. Configuration assignments were made for 2-amino-3,4-dimethylpentanoic acid and allo-2-amino-3,4-dimethylpentanoic acid and the diasteromer ratio was determined. Fifty-five amino acids have now been positively identified in the Murchison meteorite, 36 of which are unknown in terrestrial materials. This unique suite of amino acids is characterized by the occurrence of all structural isomers within the two major classes of amino acids represented, by the predominance of branched chain isomers, and by an exponential decline in amount with increasing carbon chain length within homologous series. These characteristics of the Murchison amino acids are suggestive of synthesis before incorporation into a parent body.

  18. Economic aspects of amino acids production.

    PubMed

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  19. The metabolism of "surplus" amino acids.

    PubMed

    Bender, David A

    2012-08-01

    For an adult in N balance, apart from small amounts of amino acids required for the synthesis of neurotransmitters, hormones, etc, an amount of amino acids almost equal to that absorbed from the diet can be considered to be "surplus" in that it will be catabolized. The higher diet-induced thermogenesis from protein than from carbohydrate or fat has generally been assumed to be due to increased protein synthesis, which is ATP expensive. To this must be added the ATP cost of protein catabolism through the ubiquitin-proteasome pathway. Amino acid catabolism will add to thermogenesis. Deamination results in net ATP formation except when serine and threonine deaminases are used, but there is the energy cost of synthesizing glutamine in extra-hepatic tissues. The synthesis of urea has a net cost of only 1·5 × ATP when the ATP yield from fumarate metabolism is offset against the ATP cost of the urea cycle, but this offset is thermogenic. In fasting and on a low carbohydrate diet as much of the amino acid carbon as possible will be used for gluconeogenesis - an ATP-expensive, and hence thermogenic, process. Complete oxidation of most amino acid carbon skeletons also involves a number of thermogenic steps in which ATP (or GTP) or reduced coenzymes are utilized. There are no such thermogenic steps in the metabolism of pyruvate, acetyl CoA or acetoacetate, but for amino acids that are metabolized by way of the citric acid cycle intermediates there is thermogenesis ranging from 1 up to 7 × ATP equivalent per mol.

  20. Amino acid composition of human milk is not unique.

    PubMed

    Davis, T A; Nguyen, H V; Garcia-Bravo, R; Fiorotto, M L; Jackson, E M; Lewis, D S; Lee, D R; Reeds, P J

    1994-07-01

    To determine whether the amino acid pattern of human milk is unique, we compared the amino acid pattern of human milk with the amino acid patterns of the milks of great apes (chimpanzee and gorilla), lower primates (baboon and rhesus monkey) and nonprimates (cow, goat, sheep, llama, pig, horse, elephant, cat and rat). Amino acid pattern was defined as the relative proportion of each amino acid (protein-bound plus free) (in mg) to the total amino acids (in g). Total amino acid concentration was lower in primate milk than in nonprimate milk. There were commonalities in the overall amino acid pattern of the milks of all species sampled; the most abundant amino acids were glutamate (plus glutamine, 20%), proline (10%) and leucine (10%). Essential amino acids were 40%, branched-chain amino acids 20%, and sulfur amino acids 4% of the total amino acids. The amino acid pattern of human milk was more similar to those of great apes than to those of lower primates. For example, cystine was higher and methionine was lower in primate milks than in nonprimate milks, and in great ape and human milks than in lower primate milks. Because the milk amino acid patterns of the human and elephant, both slow-growing species, were dissimilar, the amino acid pattern of human milk seems unrelated to growth rate.

  1. Cometary Amino Acids from the STARDUST Mission

    NASA Technical Reports Server (NTRS)

    Cook, Jamie Elsila

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81 P/WiId 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a cometary amino acid.

  2. Inhibited muscle amino acid uptake in sepsis.

    PubMed Central

    Hasselgren, P O; James, J H; Fischer, J E

    1986-01-01

    Amino acid uptake in vivo was determined in soleus (SOL) muscle, diaphragm, heart, and liver following intravenous injection of [3H]-alpha-amino-isobutyric acid ([3H]-AIB) in rats made septic by cecal ligation and puncture (CLP) and in sham-operated controls. Muscle amino acid transport was also measured in vitro by determining uptake of [3H]-AIB in incubated extensor digitorum longus (EDL) and SOL muscles. Results were expressed as distribution ratio between [3H]-AIB in intracellular and extracellular fluid. AIB uptake in vivo was reduced by 90% in SOL and cardiac muscle and by 45% in diaphragm 16 hours after CLP. In contrast, AIB uptake by liver was almost four times higher in septic than in control animals. AIB uptake in vitro was reduced by 18% in EDL 8 hours after CLP but was not significantly altered in SOL at the same time point. Sixteen hours after CLP, AIB uptake was significantly reduced in both muscles, i.e., by 17% in EDL and by 65% in SOL. When muscles from untreated rats were incubated in the presence of plasma from septic animals (16 hours CLP) or from animals injected with endotoxin (2 mg/kg body weight), AIB uptake was reduced. Addition of endotoxin in vitro (2-200 micrograms/ml) to incubated muscles did not affect AIB uptake. The results suggest that sepsis leads to marked impairment of amino acid transport system A in muscle and that this impairment is mediated by a circulating factor that is not endotoxin. Reduced uptake of amino acids by skeletal muscle during sepsis may divert amino acids to the liver for increased gluconeogenesis and protein synthesis. PMID:3963895

  3. Synthetic adhesive oligopeptides with rigid polyhydroxylated amino acids.

    PubMed

    Deshmukh, Manjeet; Singh, Shashi; Geyer, Armin

    2013-05-01

    Synthetic oligopeptides containing polyhydroxylated bicyclic dipeptide (Glc=Tap) are investigated for their adhesion properties. The non-natural amino acid building block composed of Glc=Tap is derived from glucuronic acid and mimics the hydroxyl-amino acids of the natural proteins. Peptide oligomers of Glc=Tap flanked by the amino acids Tyr and Lys were synthesized and characterized. Solution structural studies performed by circular dichromism spectroscopy suggests that poly(Lys-Glc=Tap-Tyr) and poly(Glc=Tap-Tyr) adopts extended helical structures. Adhesion of these oligomers to the mica surface is shown by atomic force microscopy spectroscopy. Studies indicate that extended polyproline II polyhydroxylated peptide chains, which bear additional phenolic as well as cationic side chains, can mimic some of the adhesion properties of the natural protein models. Furthermore, obtained data suggest that poly(Glc=Tap-Tyr) and poly(Lys-Glc=Tap-Tyr) as outstanding adhesive compounds, which combine efficient synthetic accessibility with promising adhesive properties.

  4. Microbial degradation of poly(amino acid)s.

    PubMed

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  5. Active transport of amino acids by a guanidiniocarbonyl-pyrrole receptor.

    PubMed

    Urban, Christian; Schmuck, Carsten

    2010-08-16

    Herein we report the synthesis and characterization of a transporter 9 for N-acetylated amino acids. Transporter 9 is a conjugate of a guanidiniocarbonyl pyrrole cation, one of the most efficient carboxylate binding motifs reported so far, and a hydrophobic tris(dodecylbenzyl) group, which ensures solubility in organic solvents. In its protonated form, 9 binds N-acetylated amino acid carboxylates in wet organic solvents with association constants in the range of 10(4) M(-1) as estimated by extraction experiments. Aromatic amino acids are preferred due to additional cation-pi-interactions of the amino acid side chain with the guanidiniocarbonyl pyrrole moiety. U-tube experiments established efficient transport across a bulk liquid chloroform phase with fluxes approaching 10(-6) mol m(-2) s(-1). In experiments with single substrates, the release rate of the amino acid from the receptor-substrate complex at the interface with the receiving phase is rate determining. In contrast to this, in competition experiments with several substrates, the thermodynamic affinity to 9 becomes decisive. As 9 can only transport anions in its protonated form and has a pK(a) value of approximately 7, pH-driven active transport of amino acids is also possible. Transport occurs as a symport of the amino acid carboxylate and a proton.

  6. Polymerization of amino acids containing nucleotide bases

    NASA Technical Reports Server (NTRS)

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  7. Intestinal metabolism of sulfur amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acid (SAA) metabolism in the body and metabolizes approx. 20% of the dietary methionine intake that is mainly transmethylated to homocysteine and transsulfurated to cysteine. The GIT accounts for approx. 25% of the ...

  8. Amino Acid Formation on Interstellar Dust Particles

    NASA Astrophysics Data System (ADS)

    Meierhenrich, U. J.; Munoz Caro, G. M.; Barbier, B.; Brack, A.; Thiemann, W.; Goesmann, F.; Rosenbauer, H.

    2003-04-01

    In the dense interstellar medium dust particles accrete ice layers of known molecular composition. In the diffuse interstellar medium these ice layers are subjected to energetic UV-irradiation. Here, photoreactions form complex organic molecules. The interstellar processes were recently successfully simulated in two laboratories. At NASA Ames Research Center three amino acids were detected in interstellar ice analogues [1], contemporaneously, our European team reported on the identification of 16 amino acids therein [2]. Amino acids are the molecular building blocks of proteins in living organisms. The identification of amino acids on the simulated icy surface of interstellar dust particles strongly supports the assumption that the precursor molecules of life were delivered from interstellar and interplanetary space via (micro-) meteorites and/or comets to the earyl Earth. The results shall be verified by the COSAC experiment onboard the ESA cometary mission Rosetta [3]. [1] M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, L.J. Allamandola: itshape Nature \\upshape 416 (2002), 401-403. [2] G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Sergovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg: itshape Nature \\upshape 416 (2002), 403-406. [3] U. Meierhenrich, W.H.-P. Thiemann, H. Rosenbauer: itshape Chirality \\upshape 11 (1999), 575-582.

  9. Brain amino acid metabolism and ketosis.

    PubMed

    Yudkoff, M; Daikhin, Y; Nissim, I; Lazarow, A; Nissim, I

    2001-10-15

    The relationship between ketosis and brain amino acid metabolism was studied in mice that consumed a ketogenic diet (>90% of calories as lipid). After 3 days on the diet the blood concentration of 3-OH-butyrate was approximately 5 mmol/l (control = 0.06-0.1 mmol/l). In forebrain and cerebellum the concentration of 3-OH-butyrate was approximately 10-fold higher than control. Brain [citrate] and [lactate] were greater in the ketotic animals. The concentration of whole brain free coenzyme A was lower in ketotic mice. Brain [aspartate] was reduced in forebrain and cerebellum, but [glutamate] and [glutamine] were unchanged. When [(15)N]leucine was administered to follow N metabolism, this labeled amino acid accumulated to a greater extent in the blood and brain of ketotic mice. Total brain aspartate ((14)N + (15)N) was reduced in the ketotic group. The [(15)N]aspartate/[(15)N]glutamate ratio was lower in ketotic animals, consistent with a shift in the equilibrium of the aspartate aminotransferase reaction away from aspartate. Label in [(15)N]GABA and total [(15)N]GABA was increased in ketotic animals. When the ketotic animals were injected with glucose, there was a partial blunting of ketoacidemia within 40 min as well as an increase of brain [aspartate], which was similar to control. When [U-(13)C(6)]glucose was injected, the (13)C label appeared rapidly in brain lactate and in amino acids. Label in brain [U-(13)C(3)]lactate was greater in the ketotic group. The ratio of brain (13)C-amino acid/(13)C-lactate, which reflects the fraction of amino acid carbon that is derived from glucose, was much lower in ketosis, indicating that another carbon source, i.e., ketone bodies, were precursor to aspartate, glutamate, glutamine and GABA.

  10. Present Global Situation of Amino Acids in Industry.

    PubMed

    Tonouchi, Naoto; Ito, Hisao

    2016-11-11

    At present, amino acids are widely produced and utilized industrially. Initially, monosodium glutamate (MSG) was produced by extraction from a gluten hydrolysate. The amino acid industry started using the residual of the lysate. The discovery of the functions of amino acids has led to the expansion of their field of use. In addition to seasoning and other food use, amino acids are used in many fields such as animal nutrients, pharmaceuticals, and cosmetics. On the other hand, the invention of the glutamate fermentation process, followed by the development of fermentation methods for many other amino acids, is no less important. The supply of these amino acids at a low price is very essential for their industrial use. Most amino acids are now produced by fermentation. The consumption of many amino acids such as MSG or feed-use amino acids is still rapidly increasing.

  11. D-Amino Acids in Living Higher Organisms

    NASA Astrophysics Data System (ADS)

    Fujii, Noriko

    2002-04-01

    The homochirality of biological amino acids (L-amino acids) and of the RNA/DNA backbone (D-ribose) might have become established before the origin of life. It has been considered that D-amino acids and L-sugars were eliminated on the primitive Earth. Therefore, the presence and function of D-amino acids in living organisms have not been studied except for D-amino acids in the cell walls of microorganisms. However, D-amino acids were recently found in various living higher organisms in the form of free amino acids, peptides, and proteins. Free D-aspartate and D-serine are present and may have important physiological functions in mammals. D-amino acids in peptides are well known as opioid peptides and neuropeptides. In protein, D-aspartate residues increase during aging. This review deals with recent advances in the study of D-amino acids in higher organisms.

  12. Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.

    PubMed

    Xu, Chen; Hu, Xin; Wang, Jie; Zhang, Ye-Min; Liu, Xiao-Jiu; Xie, Bin-Bin; Yao, Chen; Li, Yi; Li, Xin-Song

    2015-08-12

    Biofouling is of great concern in numerous applications ranging from ophthalmological implants to catheters, and from bioseparation to biosensors. In this report, a general and facile strategy to combat surface fouling is developed by grafting of amino acids onto polymer substrates to form zwitterionic structure through amino groups induced epoxy ring opening click reaction. First of all, a library of poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) hydrogels with zwitterionic surfaces were prepared, resulting in the formation of pairs of carboxyl anions and protonated secondary amino cations. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the successful immobilization of amino acids on the hydrogel surfaces. After that, the contact angle and equilibrium water content of the modified hydrogels showed that the hydrogels exhibited improved hydrophilicity compared with the parent hydrogel. Furthermore, the protein deposition was evaluated by bicinchoninic acid assay using bovine serum albumin (BSA) and lysozyme as models. The results indicated that the performance of the hydrogels was determined by the nature of incorporated amino acid: the hydrogels incorporated with neutral amino acids had nonspecific antiadsorption capability to both BSA and lysozyme; the hydrogels incorporated with charged amino acids showed antiadsorption behaviors against protein with same charge and enhanced adsorption to the protein with opposite charge; the optimal antiadsorption performance was observed on the hydrogels incorporated with polar amino acids with a hydroxyl residual. The improvement of antiprotein fouling of the neutral amino acids grafted hydrogels can be ascribed to the formation of zwitterionic surfaces. Finally, a couple of soft contact lenses grafted with amino acids were fabricated having improved antifouling property and hydrophilicity. The result demonstrated the success of

  13. Permeability of lipid bilayers to amino acids and phosphate

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W.

    1992-01-01

    Permeability coefficients for amino acid classes, including neutral, polar, hydrophobic, and charged species, were measured and compared with values for other ionic solutes such as phosphate. The rates of efflux of glycine, lysine, phenylalanine, serine and tryptophan were determined after they were passively entrapped in large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine (EPC) or dimyristoylphosphatidylcholine (DMPC). The following permeability coefficients were obtained for: glycine, 5.7 x 10(-12) cm s-1 (EPC), 2.0 x 10(-11) cm s-1 (DMPC); serine, 5.5 x 10(-12) cm s-1 (EPC), 1.6 x 10(-11) cm s-1 (DMPC); lysine, 5.1 x 10(-12) cm s-1 (EPC), 1.9 x 10(-11) cm s-1 (DMPC); tryptophan, 4.1 x 10(-10) cm s-1 (EPC); and phenylalanine, 2.5 x 10(-10) cm s-1 (EPC). Decreasing lipid chain length increased permeability slightly, while variations in pH had only minor effects on the permeability coefficients of the amino acids tested. Phosphate permeability was in the range of 10(-12)-10(-13) cm s-1 depending on the pH of the medium. The values for the polar and charged amino acids were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium, which are in the range of 10(-12)-10(-13) cm s-1, depending on conditions and the lipid species used. This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. The results are relevant to the permeation of certain peptides into lipid bilayers during protein translocation and membrane biogenesis.

  14. Criteria for distinguishing biogenic and abiogenic amino acids - Preliminary considerations.

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1973-01-01

    Criteria to determine the mode of origin of amino acids can be established by consideration of their structure, enantiometric distribution, composition, and relative abundance. A population of dominantly protein amino acids with one enantiomeric configuration most likely had a biological origin. Biological amino acids do racemize, however, so the absence of optical activity would not rule out the possibility that the amino acids in a racemic mixture were originally synthesized biologically. For racemic amino acids, therefore, structure, composition and relative abundance become important in ascertaining the origin of these compounds. Abiotically synthesized amino acids have a population composed of both protein and nonprotein structures present as racemic mixtures.

  15. Microbial Production of Amino Acid-Related Compounds.

    PubMed

    Wendisch, Volker F

    2016-11-22

    Corynebacterium glutamicum is the workhorse of the production of proteinogenic amino acids used in food and feed biotechnology. After more than 50 years of safe amino acid production, C. glutamicum has recently also been engineered for the production of amino acid-derived compounds, which find various applications, e.g., as synthons for the chemical industry in several markets including the polymer market. The amino acid-derived compounds such as non-proteinogenic ω-amino acids, α,ω-diamines, and cyclic or hydroxylated amino acids have similar carbon backbones and functional groups as their amino acid precursors. Decarboxylation of amino acids may yield ω-amino acids such as β-alanine, γ-aminobutyrate, and δ-aminovalerate as well as α,ω-diamines such as putrescine and cadaverine. Since transamination is the final step in several amino acid biosynthesis pathways, 2-keto acids as immediate amino acid precursors are also amenable to production using recombinant C. glutamicum strains. Approaches for metabolic engineering of C. glutamicum for production of amino acid-derived compounds will be described, and where applicable, production from alternative carbon sources or use of genome streamline will be referred to. The excellent large-scale fermentation experience with C. glutamicum offers the possibility that these amino acid-derived speciality products may enter large-volume markets.

  16. Amino acids of the Murchison meteorite. I - Six carbon acyclic primary alpha-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Gandy, W. E.; Pizzarello, S.

    1981-01-01

    Six of the seven chain isomers of six-carbon acyclic primary alpha-amino alkanoic acids (leucine isomers) have been either identified or confirmed in hot-water extracts of the Murchison meteorite using combined gas chromatography-mass spectrometry (GC-MS) and ion exchange chromatography. 2-Amino-2-ethylbutyric acid, 2-amino-2,3-dimethylbutyric acid, pseudoleucine, and 2-methylnorvaline were positively identified by GC-MS. These amino acids have not been previously reported to occur in natural materials and may be uniquely meteoritic in origin. The presence of leucine and isoleucine (including the diastereoisomer, alloisoleucine) was confirmed. Peaks corresponding to norleucine were seen by ion-exchange and gas chromatography but characteristic mass spectra were not obtained. The alpha-branched chain isomers in this series are quantitatively the most significant. These results are compared with literature data on amino acid synthesis by electrical discharge and Fischer-Tropsch-type catalysis. Neither model system produces an amino acid suite that is completely comparable to that found in the Murchison meteorite.

  17. Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.

    PubMed

    Chen, Esther J; Kaiser, Chris A

    2002-11-12

    The delivery to the plasma membrane of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by the quality of the nitrogen source in the growth medium. In an effort to define how different nitrogen sources control Gap1p sorting, we find that mutations in GDH1 and GLN1 that decrease the flux through the glutamate and glutamine synthesis pathways result in increased Gap1p sorting to the plasma membrane. Conversely, deletion of MKS1, which increases glutamate and glutamine synthesis, decreases Gap1p sorting to the plasma membrane. Glutamate and glutamine are not unusual in their ability to regulate Gap1p sorting, because the addition of all natural amino acids and many amino acid analogs to the growth medium results in increased Gap1p sorting to the vacuole. Importantly, amino acids have the capacity to signal Gap1p sorting to the vacuole regardless of whether they can be used as a source of nitrogen. Finally, we show that rapamycin does not affect Gap1p sorting, indicating that Gap1p sorting is not directly influenced by the TOR pathway. Together, these data show that amino acids are a signal for sorting Gap1p to the vacuole and imply that the nitrogen-regulated Gap1p sorting machinery responds to amino acid-like compounds rather than to the overall nutritional status associated with growth on a particular nitrogen source.

  18. Roles of phytochemicals in amino acid nutrition.

    PubMed

    Kong, Xiangfeng; Wu, Guoyao; Yin, Yinlong

    2011-01-01

    Chinese herbal medicine (CHM) is often used as dietary supplements to maintain good health in animals and humans. Here, we review the current knowledge about effects of CHM (including ultra-fine Chinese herbal powder, Acanthopanax senticosus extracts, Astragalus polysaccharide, and glycyrrhetinic acid) as dietary additives on physiological and biochemical parameters in pigs, chickens and rodents. Additionally, we propose possible mechanisms for the beneficial effects of CHM on the animals. These mechanisms include (a) increased digestion and absorption of dietary amino acids; (b) altered catabolism of amino acids in the small intestine and other tissues; (c) enhanced synthesis of functional amino acids (e.g., arginine, glutamine and proline) and polyamines; and (d) improved metabolic control of nutrient utilization through cell signaling. Notably, some phytochemicals and glucocorticoids share similarities in structure and physiological actions. New research findings provide a scientific and clinical basis for the use of CHM to improve well-being in livestock species and poultry, while enhancing the efficiency of protein accretion. Results obtained from animal studies also have important implications for human nutrition and health.

  19. Recent advances in amino acid production by microbial cells.

    PubMed

    Hirasawa, Takashi; Shimizu, Hiroshi

    2016-12-01

    Amino acids have been utilized for the production of foods, animal feeds and pharmaceuticals. After the discovery of the glutamic acid-producing bacterium Corynebacterium glutamicum by Japanese researchers, the production of amino acids, which are primary metabolites, has been achieved using various microbial cells as hosts. Recently, metabolic engineering studies on the rational design of amino acid-producing microbial cells have been successfully conducted. Moreover, the technology of systems biology has been applied to metabolic engineering for the creation of amino acid-producing microbial cells. Currently, new technologies including synthetic biology, single-cell analysis, and evolutionary engineering have been utilized to create amino acid-producing microbial cells. In addition, useful compounds from amino acids have been produced by microbial cells. Here, current researches into the metabolic engineering of microbial cells toward production of amino acids and amino acid-related compounds are reviewed.

  20. Nonconventional techniques for separation of biosynthetic amino acids.

    PubMed

    Kloetzer, Lenuţa; Poştaru, Mădălina; Cheptea, Corina; Caşcaval, D; Galaction, Anca-Irina

    2014-01-01

    Amino acids can be obtained by biosynthesis, by protein hydrolysis or by extraction from natural sources. The most efficient methods are the first two, but the separation of amino acids from fermentation broths or protein hydrolysates is rather difficult. Amino acids dissociate in aqueous solutions, forming characteristic ionic species depending on the solution pH-value. These properties make amino acids to be hydrophilic at any pH-value. This paper presents a review of the separation studies of some amino acids by nonconventional methods, namely individual or selective reactive extraction. Separation of some amino acids from their mixture obtained either by fermentation or protein hydrolysis by reactive extraction with different extractants indicated the possibility of the amino acids selective separation as a function of the pH-value of aqueous solution correlated with the acidic or basic character of each amino acid.

  1. Antibacterial soybean-oil-based cationic polyurethane coatings prepared from different amino polyols.

    PubMed

    Xia, Ying; Zhang, Zongyu; Kessler, Michael R; Brehm-Stecher, Byron; Larock, Richard C

    2012-11-01

    Antibacterial soybean-oil-based cationic polyurethane (PU) coatings have been successfully prepared from five different amino polyols. The structure and hydroxyl functionality of these amino polyols affects the particle morphology, mechanical properties, thermal stability, and antibacterial properties of the resulting coatings. An increase in the hydroxyl functionality of the amino polyols increases the cross-link density, resulting in an increased glass transition temperature and improved mechanical properties. Both the cross-link density and the amount of ammonium cations incorporated into the PU backbone affect the thermal stability of PU films. PUs with the lowest ammonium cation content and highest cross-link density exhibit the best thermal stability. With some strain-specific exceptions, these PUs show good antibacterial properties toward a panel of bacterial pathogens comprised of Listeria monocytogenes NADC 2045, Salmonella typhimurium ATCC 13311 and Salmonella minnesota (S. minnesota) R613. S. minnesota R613 is a "deep rough" mutant lacking a full outer membrane (OM) layer, an important barrier structure in gram-negative bacteria. With wild-type strains, the PU coatings exhibit better antibacterial properties toward the gram-positive Listeria monocytogenes than the gram-negative S. minnesota. However, the coatings have excellent activity against S. minnesota R613, suggesting a protective role for an intact OM against the action of these PUs.

  2. Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...

  3. Ionic liquid crystals derived from amino acids.

    PubMed

    Mansueto, Markus; Frey, Wolfgang; Laschat, Sabine

    2013-11-18

    Novel chiral amino acid derived ionic liquid crystals with amine and amide moieties as spacers between the imidazolium head group and the alkyl chain were synthesised. The key step in the synthesis utilised the relatively uncommon SO3 leaving group in a microwave-assisted reaction. The mesomorphic properties of the mesogens were determined by differential scanning calorimetry (DSC), polarising optical microscopy (POM) and X-ray diffraction. All liquid crystalline salts exhibit a smectic A mesophase geometry with strongly interdigitated bilayer structures. An increase of the steric bulk of the stereogenic centre hindered the formation of mesophases. In case of phenylalanine-derived derivatives a mesomorphic behaviour was observed for shorter alkyl chains as compared to other amino acid derivatives indicating an additional stabilising effect by the phenyl moiety.

  4. AMINO ACID CROSS RESISTANCE IN AGROBACTERIUM TUMEFACIENS

    PubMed Central

    Beardsley, Robert E.

    1962-01-01

    Beardsley, Robert E. (Manhattan College, New York, N. Y.). Amino acid cross resistance in Agrobacterium tumefaciens. J. Bacteriol. 84:1237–1240. 1962.—Resistant clones selected on medium supplemented with glycine were also resistant to d-methionine, d-valine, dl-norleucine, and dl-serine. Cross resistance was similarly exhibited by clones selected on d-methionine, d-valine, or dl-norleucine. Two types of resistant organisms were observed. One produced colonies containing normal rods on selection medium. The other produced translucent colonies containing L forms. Both grew as typical rods in unsupplemented medium. Some resistant clones did not produce a temperate phage carried by the parental strain, but these retained immunity to homologous phage. The toxicity of d-methionine and d-valine for nonresistant bacteria is not reversed by the l isomers. The lethal effects of toxic amino acids are additive. PMID:13969951

  5. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  6. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  7. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  8. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  9. 40 CFR 721.1705 - Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 3-amino-, diazotized, coupled with 6-amino-4-hydroxy-2-naphthalenesulfonic acid, diazotized, (3-aminophenyl)phosphonic acid and... Significant New Uses for Specific Chemical Substances § 721.1705 Benzoic acid, 3-amino-, diazotized,...

  10. Alterations of amino Acid level in depressed rat brain.

    PubMed

    Yang, Pei; Li, Xuechun; Ni, Jian; Tian, Jingchen; Jing, Fu; Qu, Changhai; Lin, Longfei; Zhang, Hui

    2014-10-01

    Amino-acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. Several studies have demonstrated the potential of amino acids as a source of neuro-specific biomarkers could be used in future diagnosis of depression. Only partial amino acids such as glycine and asparagine were determined from certain parts of rats' brain included hippocampi and cerebral cortex in previous studies. However, according to systematic biology, amino acids in different area of brain are interacted and interrelated. Hence, the determination of 34 amino acids through entire rats' brain was conducted in this study in order to demonstrate more possibilities for biomarkers of depression by discovering other potential amino acids in more areas of rats' brain. As a result, 4 amino acids (L-aspartic acid, L-glutamine, taurine and γ-amino-n-butyric acid) among 34 were typically identified as potentially primary biomarkers of depression by data statistics. Meanwhile, an antidepressant called Fluoxetine was employed to verify other potential amino acids which were not identified by data statistics. Eventually, we found L-α-amino-adipic acid could also become a new potentially secondary biomarker of depression after drug validation. In conclusion, we suggested that L-aspartic acid, L-glutamine, taurine, γ-amino-n-butyric acid and L-α-amino-adipic acid might become potential biomarkers for future diagnosis of depression and development of antidepressant.

  11. Rotational Study of Natural Amino Acid Glutamine

    NASA Astrophysics Data System (ADS)

    Varela, Marcelino; Cabezas, Carlos; Alonso, José L.

    2014-06-01

    Recent improvements in laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) have allowed the investigation of glutamine (COOH-CH(NH2)-CH2-CH2-CONH2), a natural amino acid with a long polar side chain. One dominant structure has been detected in the rotational spectrum. The nuclear quadrupole hyperfine structure of two 14N nuclei has been totally resolved allowing the conclusive identification of the observed species.

  12. Amino acid analyses of R and CK chondrites

    NASA Astrophysics Data System (ADS)

    Burton, Aaron S.; McLain, Hannah; Glavin, Daniel P.; Elsila, Jamie E.; Davidson, Jemma; Miller, Kelly E.; Andronikov, Alexander V.; Lauretta, Dante; Dworkin, Jason P.

    2015-03-01

    Exogenous delivery of amino acids and other organic molecules to planetary surfaces may have played an important role in the origins of life on Earth and other solar system bodies. Previous studies have revealed the presence of indigenous amino acids in a wide range of carbon-rich meteorites, with the abundances and structural distributions differing significantly depending on parent body mineralogy and alteration conditions. Here we report on the amino acid abundances of seven type 3-6 CK chondrites and two Rumuruti (R) chondrites. Amino acid measurements were made on hot water extracts from these meteorites by ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Of the nine meteorites analyzed, four were depleted in amino acids, and one had experienced significant amino acid contamination by terrestrial biology. The remaining four, comprised of two R and two CK chondrites, contained low levels of amino acids that were predominantly the straight chain, amino-terminal (n-ω-amino) acids β-alanine, and γ-amino-n-butyric acid. This amino acid distribution is similar to what we reported previously for thermally altered ureilites and CV and CO chondrites, and these n-ω-amino acids appear to be indigenous to the meteorites and not the result of terrestrial contamination. The amino acids may have been formed by Fischer-Tropsch-type reactions, although this hypothesis needs further testing.

  13. Infrared Spectroscopic Investigation on CH Bond Acidity in Cationic Alkanes

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka

    2016-06-01

    We have demonstrated large enhancements of CH bond acidities in alcohol, ether, and amine cations through infrared predissociation spectroscopy based on the vacuum ultraviolet photoionization detection. In this study, we investigate for the cationic alkanes (pentane, hexane, and heptane) with different alkyl chain lengths. The σ electrons are ejected in the ionization of alkanes, while nonbonding electrons are ejected in ionization of alcohols, ethers, and amines. Nevertheless, the acidity enhancements of CH in these cationic alkanes have also been demonstrated by infrared spectroscopy. The correlations of their CH bond acidities with the alkyl chain lengths as well as the mechanisms of their acidity enhancements will be discussed by comparison of infrared spectra and theoretical calculations.

  14. Alimentary proteins, amino acids and cholesterolemia.

    PubMed

    Blachier, François; Lancha, Antonio H; Boutry, Claire; Tomé, Daniel

    2010-01-01

    Numerous data from both epidemiological and experimental origins indicate that some alimentary proteins and amino acids in supplements can modify the blood LDL cholesterol, HDL cholesterol and total cholesterol. After an initial approval of the health claim for soy protein consumption for the prevention of coronary heart disease, more recently it has been concluded from an overall analysis of literature that isolated soy protein with isoflavones only slightly decrease LDL and total cholesterol. Other plant extracts and also some proteins from animal origin have been reported to exert a lowering effect on blood cholesterol when compared with a reference protein (often casein). The underlying mechanisms are still little understood. Individual amino acids and mixture of amino acids have also been tested (mostly in animal studies) for their effects on cholesterol parameters and on cholesterol metabolism. Methionine, lysine, cystine, leucine, aspartate and glutamate have been tested individually and in combination in different models of either normo or hypercholesterolemic animals and found to be able to modify blood cholesterol and/or LDL cholesterol and/or HDL cholesterol. It is however not known if these results are relevant to human nutrition.

  15. Allied Health Chemistry Laboratory: Amino Acids, Insulin, Proteins, and Skin

    ERIC Educational Resources Information Center

    Dever, David F.

    1975-01-01

    Presents a laboratory experiment specifically designed for allied health students. The students construct molecular models of amino acids, extract amino acids from their skin with hot water, and chromatographically analyze the skin extract and hydrolyzed insulin. (MLH)

  16. Expression pattern of peptide and amino acid genes in digestive tract of transporter juvenile turbot ( Scophthalmus maximus L.)

    NASA Astrophysics Data System (ADS)

    Xu, Dandan; He, Gen; Mai, Kangsen; Zhou, Huihui; Xu, Wei; Song, Fei

    2016-04-01

    Turbot ( Scophthalmus maximus L.), a carnivorous fish species with high dietary protein requirement, was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach, pyloric caeca, rectum, and three equal parts of the remainder of the intestine. The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns. Peptide transporter 1 (PepT1) was rich in proximal intestine while peptide transporter 2 (PepT2) was abundant in distal intestine. A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B0-type amino acid transporter 1 (B0AT1), L-type amino acid transporter 2 (LAT2), T-type amino acid transporter 1 (TAT1), proton-coupled amino acid transporter 1 (PAT1), y+L-type amino acid transporter 1 (y+LAT1), and cationic amino acid transporter 2 (CAT2) while ASC amino acid transporter 2 (ASCT2), sodium-coupled neutral amino acid transporter 2 (SNAT2), and y+L-type amino acid transporter 2 (y+LAT2) abundantly expressed in stomach. In addition, system b0,+ transporters (rBAT and b0,+AT) existed richly in distal intestine. These findings comprehensively characterized the distribution of solute carrier family proteins, which revealed the relative importance of peptide and amino acid absorption through luminal membrane. Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.

  17. Nutritional and medicinal aspects of D-amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nu...

  18. Origin, Microbiology, Nutrition, and Pharmacology of D-Amino Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure of food proteins to certain processing conditions induces two major chemical changes: racemization of all L-amino acids (LAA) to D-amino acids (DAA) and concurrent formation of crosslinked amino acids such as lysinoalanine (LAL). The diet contains both processing-induced and naturally-form...

  19. 40 CFR 721.2584 - Dodecanoic acid, 12-amino-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Dodecanoic acid, 12-amino-. 721.2584... Substances § 721.2584 Dodecanoic acid, 12-amino-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as dodecanoic acid, 12-amino- (PMN P-98-0823; CAS No....

  20. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  1. 40 CFR 721.2584 - Dodecanoic acid, 12-amino-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dodecanoic acid, 12-amino-. 721.2584... Substances § 721.2584 Dodecanoic acid, 12-amino-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as dodecanoic acid, 12-amino- (PMN P-98-0823; CAS No....

  2. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  3. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  4. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  5. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  6. GCN2 whets the appetite for amino acids.

    PubMed

    Dever, Thomas E; Hinnebusch, Alan G

    2005-04-15

    In response to amino acid starvation, the kinase GCN2 in yeast activates amino acid biosynthesis. Two recent studies (Maurin et al., 2005; Hao et al., 2005) reveal that GCN2 in the brain of mice restricts intake of diets lacking essential amino acids.

  7. 40 CFR 721.2584 - Dodecanoic acid, 12-amino-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Dodecanoic acid, 12-amino-. 721.2584... Substances § 721.2584 Dodecanoic acid, 12-amino-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as dodecanoic acid, 12-amino- (PMN P-98-0823; CAS No....

  8. 40 CFR 721.2584 - Dodecanoic acid, 12-amino-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dodecanoic acid, 12-amino-. 721.2584... Substances § 721.2584 Dodecanoic acid, 12-amino-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as dodecanoic acid, 12-amino- (PMN P-98-0823; CAS No....

  9. 40 CFR 721.2584 - Dodecanoic acid, 12-amino-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Dodecanoic acid, 12-amino-. 721.2584... Substances § 721.2584 Dodecanoic acid, 12-amino-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as dodecanoic acid, 12-amino- (PMN P-98-0823; CAS No....

  10. Interaction and dynamics of ionic liquids based on choline and amino acid anions

    SciTech Connect

    Campetella, M.; Bodo, E. Caminiti, R. Martino, A.; Gontrani, L.; D’Apuzzo, F.; Lupi, S.

    2015-06-21

    The combination of amino acid anions with the choline cation gives origin to a new and potentially important class of organic ionic liquids that might represent a viable and bio-compatible alternative with respect to the traditional ones. We present here a detailed study of the bulk phase of the prototype system composed of the simplest amino acid (alanine) anion and the choline cation, based on ab initio and classical molecular dynamics. Theoretical findings have been validated by comparing with accurate experimental X-ray diffraction data and infrared spectra. We find that hydrogen bonding (HB) features in these systems are crucial in establishing their local geometric structure. We have also found that these HBs once formed are persistent and that the proton resides exclusively on the choline cation. In addition, we show that a classical force field description for this particular ionic liquid can be accurately performed by using a slightly modified version of the generalized AMBER force field.

  11. Amino acid auxotrophy as a system of immunological control nodes.

    PubMed

    Murray, Peter J

    2016-02-01

    Cells of the immune system are auxotrophs for most amino acids, including several nonessential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that actively deplete the amino acid from the microenvironment or that create regulatory molecules such as nitric oxide or kynurenines. How immune cells integrate information about essential amino acid supplies and then transfer these signals to growth and activation pathways remains unclear but has potential for pathway discovery about amino sensing. In applied research, strategies to harness amino acid auxotrophy so as to block cancerous lymphocyte growth have been attempted for decades with limited success. Emerging insights about amino acid metabolism may lead to new strategies in clinical medicine whereby both amino acid auxotrophy and the immunoregulatory pathways controlled by amino acids can be manipulated.

  12. 2-Chlorotrityl chloride resin. Studies on anchoring of Fmoc-amino acids and peptide cleavage.

    PubMed

    Barlos, K; Chatzi, O; Gatos, D; Stavropoulos, G

    1991-06-01

    The esterification of 2-chlorotrityl chloride resin with Fmoc-amino acids in the presence of DIEA is studied under various conditions. High esterification yields are obtained using 0.6 equiv. Fmoc-amino acid/mmol resin in DCM or DCE, in 25 min, at room temperature. The reaction proceeds without by product formation even in the case of Fmoc-Asn and Fmoc-Gln. The quantitative and easy cleavage of amino acids and peptides from 2-chlorotrityl resin, by using AcOH/TFE/DCM mixtures, is accomplished within 15-60 min at room temperature, while t-butyl type protecting groups remain unaffected. Under these exceptionally mild conditions 2-chlorotrityl cations generated during the cleavage of amino acids and peptides from resin do not attack the nucleophilic side chains of Trp, Met, and Tyr.

  13. Computational model of abiogenic amino acid condensation to obtain a polar amino acid profile.

    PubMed

    Polanco, Carlos; Buhse, Thomas; Samaniego, José Lino; Castañón González, Jorge Alberto; Arias Estrada, Miguel

    2014-01-01

    In accordance with the second law of thermodynamics, the Universe as a whole tends to higher entropy. However, the sequence of far-from-equilibrium events that led to the emergence of life on Earth could have imposed order and complexity during the course of chemical reactions in the so-called primordial soup of life. Hence, we may expect to find characteristic profiles or biases in the prebiotic product mixtures, as for instance among the first amino acids. Seeking to shed light on this hypothesis, we have designed a high performance computer program that simulates the spontaneous formation of the amino acid monomers in closed environments. The program was designed in reference to a prebiotic scenario proposed by Sydney W. Fox. The amino acid abundances and their polarities as the two principal biases were also taken into consideration. We regarded the computational model as exhaustive since 200,000 amino acid dimers were formed by simulation, subsequently expressed in a vector and compared with the corresponding amino acid dimers that were experimentally obtained by Fox. We found a very high similarity between the experimental results and our simulations.

  14. Effect of amino acid intake on brush-border membrane uptake of sulfur amino acids.

    PubMed

    Chesney, R W; Gusowski, N; Padilla, M; Lippincott, S

    1986-07-01

    Alterations in the intake of sulfur amino acids (SAA) changes the rat renal brush-border membrane uptake of the beta-amino acid, taurine. A low-SAA diet enhances and a high-taurine diet reduces uptake (Chesney et al., Kidney Int. 24: 588-594, 1983). Neither the low-SAA diet nor the high-taurine diet alters the time course or concentration-dependent accumulation of the sulfur amino acids methionine and cystine or of inorganic sulfate. By contrast the uptake of beta-alanine, another beta-amino acid that competes with taurine, is greater in animals on the low-SAA diet. The high-taurine diet does not change beta-alanine uptake. The plasma levels of taurine are altered by dietary change, but not the values for methionine and cystine. This study indicates that renal adaptation is expressed for beta-alanine, a nonsulfur-containing beta-amino acid. By contrast, methionine, cystine, and sulfate, which participate in a variety of synthetic and conjugative processes, are not conserved by the renal brush-border surface following ingestion of either a low-methionine and -cystine diet or high-taurine diet.

  15. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Devi, P Uma; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond.

  16. [Bound amino acids in local strains of Trichomonas vaginalis].

    PubMed

    Tsvetkova, A; Osinovski, E; Vasilevska, M

    1990-01-01

    Amino acid composition of water-soluble and water-insoluble proteins of 8 strains of Tr. vaginalis is studied. 17 amino acids are found in both protein hydrolyzates. Despite the complete coincidence of their qualitative compositions there are reliable differences in the quantitative contents of some amino acids. Differences in the contents of main amino acids of water-soluble proteins of different strains reflect the belonging of the latter to different sero-groups. No reliable differences in the quantitative contents of amino acids of both water-soluble and water-insoluble proteins in strains belonging to one sero-group are recognised.

  17. Free Amino-acid Concentrations in Fetal Fluids

    PubMed Central

    Cockburn, F.; Robins, S. P.; Forfar, J. O.

    1970-01-01

    The pattern of free amino-acid concentrations in maternal venous plasma, fetal umbilical arterial plasma, fetal urine, and amniotic fluid at 15 to 20 weeks' gestation has been determined. Free amino-acid concentrations were greater in fetal plasma than in maternal plasma, amniotic fluid, or fetal urine. The ratios of amino-acid concentrations in fetal umbilical arterial plasma and urine indicate that the fetal kidney can effectively conserve amino-acids, possibly reaching an adult level of competence in this respect. There was little correlation between amino-acid concentrations in the fluids analysed with the exception of that between amniotic fluid and fetal urine. PMID:5472758

  18. Amino acids from the late Precambrian Thule group, Greenland.

    PubMed

    Akiyama, M; Shimoyama, A; Ponnamperuma, C

    1982-06-01

    Amino acids were recovered at concentration level of 10-9 M/g from the interior of chert and dolomite of the Late Precambrian Thule Group. Examination of the stability of amino acids in chert under dry-heating conditions suggests that these amino acids have been preserved with a predominance of L-enantiomers in the precambrian chert. Enantiomer analysis of amino acids in dolomite showed a thermal effect resulting from a late precambrian igneous intrusion. This evidence indicates that the amino acids isolated from the Thule samples were chemical fossils and not recent contaminants.

  19. Stimulation of nonselective amino acid export by glutamine dumper proteins.

    PubMed

    Pratelli, Réjane; Voll, Lars M; Horst, Robin J; Frommer, Wolf B; Pilot, Guillaume

    2010-02-01

    Phloem and xylem transport of amino acids involves two steps: export from one cell type to the apoplasm, and subsequent import into adjacent cells. High-affinity import is mediated by proton/amino acid cotransporters, while the mechanism of export remains unclear. Enhanced expression of the plant-specific type I membrane protein Glutamine Dumper1 (GDU1) has previously been shown to induce the secretion of glutamine from hydathodes and increased amino acid content in leaf apoplasm and xylem sap. In this work, tolerance to low concentrations of amino acids and transport analyses using radiolabeled amino acids demonstrate that net amino acid uptake is reduced in the glutamine-secreting GDU1 overexpressor gdu1-1D. The net uptake rate of phenylalanine decreased over time, and amino acid net efflux was increased in gdu1-1D compared with the wild type, indicating increased amino acid export from cells. Independence of the export from proton gradients and ATP suggests that overexpression of GDU1 affects a passive export system. Each of the seven Arabidopsis (Arabidopsis thaliana) GDU genes led to similar phenotypes, including increased efflux of a wide spectrum of amino acids. Differences in expression profiles and functional properties suggested that the GDU genes fulfill different roles in roots, vasculature, and reproductive organs. Taken together, the GDUs appear to stimulate amino acid export by activating nonselective amino acid facilitators.

  20. Organic geochemistry of amino acids: Precambrian to recent

    SciTech Connect

    Engel, M.H.; Macko, S.A.

    1985-01-01

    Since the discovery of amino acids in fossils (Abelson, 1954), considerable effort has been made to elucidate the origin and distribution of amino acids in geologic materials. Racemization and decomposition reactions of amino acids and peptides derived via the natural hydrolysis of protein constituents of organisms have been extensively studied. While the ubiquity of amino acids presents a challenge for discerning their indigeneity in geologic samples, careful analyses have resulted in successful applications of amino acid racemization and decomposition reactions for investigations of geochronologic, paleoclimatic, stratigraphic, diagenetic and chemotaxonomic problems for Quaternary age samples. An investigation of amino acids in sediments from Baffin Island fjords indicates that their distribution may also provide data with respect to the relative contributions of marine and terrigenous organic matter to recent sediments. While the absence of unstable amino acids and the presence of racemic amino acids in a sample may preclude very recent contamination, the possibility of retardation of amino acid racemization rates subsequent to geopolymer formation must also be considered. Studies of amino acids in Paleozoic, Mesozoic and early Cenozoic age samples are limited. Precambrian samples, however, have received much attention, given the potential (however slight) for isolating compounds representative of the earliest living systems. A future approach for elucidating the origin(s) of amino acids in ancient samples may be analyses of their individual stable isotopic compositions.

  1. Dissolved amino acids in oceanic basaltic basement fluids

    NASA Astrophysics Data System (ADS)

    Lin, Huei-Ting; Amend, Jan P.; LaRowe, Douglas E.; Bingham, Jon-Paul; Cowen, James P.

    2015-09-01

    The oceanic basaltic basement contains the largest aquifer on Earth and potentially plays an important role in the global carbon cycle as a net sink for dissolved organic carbon (DOC). However, few details of the organic matter cycling in the subsurface are known because great water depths and thick sediments typically hinder direct access to this environment. In an effort to examine the role of water-rock-microorganism interaction on organic matter cycling in the oceanic basaltic crust, basement fluid samples collected from three borehole observatories installed on the eastern flank of the Juan de Fuca Ridge were analyzed for dissolved amino acids. Our data show that dissolved free amino acids (1-13 nM) and dissolved hydrolyzable amino acids (43-89 nM) are present in the basement. The amino acid concentrations in the ridge-flank basement fluids are at the low end of all submarine hydrothermal fluids reported in the literature and are similar to those in deep seawater. Amino acids in recharging deep seawater, in situ amino acid production, and diffusional input from overlying sediments are potential sources of amino acids in the basement fluids. Thermodynamic modeling shows that amino acid synthesis in the basement can be sustained by energy supplied from inorganic substrates via chemolithotrophic metabolisms. Furthermore, an analysis of amino acid concentrations and compositions in basement fluids support the notion that heterotrophic activity is ongoing. Similarly, the enrichment of acidic amino acids and depletion of hydrophobic ones relative to sedimentary particulate organic matter suggests that surface sorption and desorption also alters amino acids in the basaltic basement. In summary, although the oceanic basement aquifer is a net sink for deep seawater DOC, similar amino acid concentrations in basement aquifer and deep seawater suggest that DOC is preferentially removed in the basement over dissolved amino acids. Our data also suggest that organic carbon

  2. Characterization of amino acids using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Jenkins, Amanda L.; Larsen, Richard A.; Williams, Timothy B.

    2005-05-01

    A key process in the development of new drugs is elucidation of the interaction between the drug molecule and the target protein. Such knowledge then makes it possible to make systematic structural modifications of the drug molecule to optimize the interaction. Many analytical techniques can be applied to proteins in solution such as circular dichroism, ultraviolet, and fluorescence spectroscopy but these all have limitations. In this paper, we investigate the feasibility of using relatively simple, visible light Raman spectroscopic methods to investigate amino acids and related biopolymers.

  3. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 12 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  4. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the snythesis methods of the prior art.

  5. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceeding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 12 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  6. Food safety and amino acid balance in processed cassava "Cossettes".

    PubMed

    Diasolua Ngudi, Delphin; Kuo, Yu Haey; Lambein, Fernand

    2002-05-08

    Processed cassava (Manihot esculenta Crantz) roots provide more than 60% of the daily energy intake for the population of the Democratic Republic of Congo. Insufficiently processed cassava roots in a diet deficient in sulfur amino acid have been reported to cause the irreversible paralytic disease konzo, afflicting thousands of women and children in the remote rural areas of Bandundu Province. "Cossettes" (processed cassava roots) purchased in several markets of Kinshasa were analyzed for their content of cyanogens, free amino acids, and total protein amino acids. Residual cyanogen levels were below the safe limit recommended by the codex FAO/WHO for cassava flour (10 mg kg(-1)). The amino acid score was evaluated. Lysine and leucine were the limiting amino acids. Methionine content was very low and contributed about 13% of the total sulfur amino acids. Dietary requirements for sulfur amino acids need to be adjusted for the loss caused by cyanogen detoxification.

  7. Capillary Electrophoresis Analysis of Organic Amines and Amino Acids in Saline and Acidic Samples Using the Mars Organic Analyzer

    NASA Astrophysics Data System (ADS)

    Stockton, Amanda M.; Chiesl, Thomas N.; Lowenstein, Tim K.; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A.

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pKa values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  8. Capillary electrophoresis analysis of organic amines and amino acids in saline and acidic samples using the Mars organic analyzer.

    PubMed

    Stockton, Amanda M; Chiesl, Thomas N; Lowenstein, Tim K; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  9. Extraterrestrial amino acids in the Almahata Sitta meteorite

    NASA Astrophysics Data System (ADS)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.; Jenniskens, Peter; Shaddad, Muawia H.

    2010-10-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, β-amino-n-butyric acid, 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L ˜ 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other nonprotein amino acids were also identified in the meteorite above background levels including α-aminoisobutyric acid (α-AIB), 4-amino-2-methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and α-AIB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five-carbon amino acids in Almahata Sitta compared to CI, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures, or introduced as a contaminant from unrelated meteorite clasts and chemically altered by α-decarboxylation.

  10. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  11. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    PubMed

    Barton, Michael D; Delneri, Daniela; Oliver, Stephen G; Rattray, Magnus; Bergman, Casey M

    2010-08-17

    Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental conditions, we conclude that

  12. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  13. Effects of alkali or acid treatment on the isomerization of amino acids.

    PubMed

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue.

  14. Accumulated analyses of amino acid precursors in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Harada, K.; Hare, P. E.

    1973-01-01

    Six amino acids (glycine, alanine, aspartic acid, glutamic acid, serine, and threonine) obtained by hydrolysis of extracts have been quantitatively determined in ten collections of fines from five Apollo missions. Although the amounts found, 7-45 ng/g, are small, the lunar amino acid/carbon ratios are comparable to those of the carbonaceous chondrites, Murchison and Murray, as analyzed by the same procedures. Since both the ratios of amino acid to carbon, and the four or five most common types of proteinous amino acid found, are comparable for the two extraterrestrial sources despite different cosmophysical histories of the moon and meteorites, common cosmochemical processes are suggested.

  15. Morphology and Structure of Amino-fatty Acid Intercalated Montmorillonite

    NASA Astrophysics Data System (ADS)

    Reyes, Larry; Sumera, Florentino

    2015-04-01

    Natural clays and its modified forms have been studied for their wide range of applications, including polymer-layered silicate, catalysts and adsorbents. For nanocomposite production, montmorillonite (MMT) clays are often modified with organic surfactants to favor its intermixing with the polymer matrix. In the present study, Na+-montmorillonite (Na+-MMT) was subjected to organo-modification with a protonated 12-aminolauric acid (12-ALA). The amount of amino fatty acid surfactants loaded was 25, 50, 100 and 200% the cation exchange capacity (CEC) of Na+-MMT (25CEC-AMMT, 50CEC-AMMT, 100CEC-AMMT and 200CEC-AMMT). Fatty acid-derived surfactants are an attractive resource of intercalating agents for clays due to their renewability and abundance. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were performed to determine the occurrence of intercalation of 12-ALA and their molecular structure in the clay's silicates. XRD analysis revealed that the interlayer spacing between the alumino-silicate layers increased from 1.25 nm to 1.82 nm with increasing ALA content. The amino fatty acid chains were considered to be in a flat monolayer structure at low surfactant loading, and a bilayered to a pseudotrilayered structure at high surfactant loading. On the other hand, FTIR revealed that the alkyl chains adopt a gauche conformation, indicating their disordered state based on their CH2symmetric and asymmetric vibrations. Thermogravimetric analyses (TGA) allows the determination of the moisture and organic content in clays. Here, TGA revealed that the surfactant in the clay was thermally stable, with Td ranging from 353° C to 417° C. The difference in the melting behavior of the pristine amino fatty acids and confined fatty acids in the interlayer galleries of the clay were evaluated by Differential Scanning Calorimerty (DSC). The melting temperatures (Tm) of the amino fatty acid in the clay were initially found to be higher than those of the free

  16. Beneficial Effects of the Amino Acid Glycine.

    PubMed

    Pérez-Torres, Israel; Zuniga-Munoz, Alejandra María; Guarner-Lans, Veronica

    2017-01-01

    Glycine is the smallest non-essential, neutral and metabolically inert amino acid, with a carbon atom bound to two hydrogen atoms, and to an amino and a carboxyl group. This amino acid is an essential substrate for the synthesis of several biologically important biomolecules and compounds. It participates in the synthesis of proteins, of the tripeptide glutathione and in detoxification reactions. It has a broad spectrum of anti-inflammatory, cytoprotective and immunomodulatory properties. To exert its actions, glycine binds to different receptors. The GlyR anion channel is the most studied receptor for glycine. However, there are GlyR-independent mechanisms for glycine cytoprotection and other possible binding molecules of glycine are the NMDA receptor and receptors GlyT1 and GlyT2. Although, in humans, the normal serum level of glycine is approximately 300 μM, increasing glycine intake can lead to blood levels of more than 900 μM that increase its benefic actions without having harmful side effects. The herbal pesticide glyphosate might disrupt glycine homeostasis. Many in vitro studies involving different cell types have demonstrated beneficial effects of the addition of glycine. Glycine also improved conditions of isolated perfused or stored organs. In vivo studies in experimental animals have also tested glycine as a protector molecule and some studies on the beneficial effects of glycine after its clinical application have been done. Although at high-doses, glycine may cause toxic effects, further studies are needed to investigate the safe range of usage of this aminoacid and to test the diverse routes of administration.

  17. Amino acids in healthy aging skeletal muscle.

    PubMed

    Riddle, Emily S; Stipanuk, Martha H; Thalacker-Mercer, Anna E

    2016-01-01

    Life expectancy in the U.S. and globally continues to increase. Despite increased life expectancy quality of life is not enhanced, and older adults often experience chronic age-related disease and functional disability, including frailty. Additionally, changes in body composition such as the involuntary loss of skeletal muscle mass (i.e. sarcopenia) and subsequent increases in adipose tissue can augment disease and disability in this population. Furthermore, increased oxidative stress and decreased antioxidant concentrations may also lead to metabolic dysfunction in older adults. Specific amino acids, including leucine, cysteine and its derivative taurine, and arginine can play various roles in healthy aging, especially in regards to skeletal muscle health. Leucine and arginine play important roles in muscle protein synthesis and cell growth while cysteine and arginine play important roles in quenching oxidative stress. Evidence suggests that supplemental doses of each of these amino acids may improve the aging phenotype. However, additional research is required to establish the doses required to achieve positive outcomes in humans.

  18. Conformational properties of oxazoline-amino acids

    NASA Astrophysics Data System (ADS)

    Staś, Monika; Broda, Małgorzata A.; Siodłak, Dawid

    2016-04-01

    Oxazoline-amino acids (Xaa-Ozn) occur in natural peptides of potentially important bioactivity. The conformations of the model compounds: Ac-(S)-Ala-Ozn(4R-Me), Ac-(S)-Ala-Ozn(4S-Me), and (gauche+, gauche-, anti) Ac-(S)-Val-Ozn(4R-Me) were studied at meta-hybrid M06-2X/6-311++G(d,p) method including solvent effect. Boc-L-Ala-L-Ozn-4-COOMe and Boc-L-Val-L-Ozn-4-COOMe were synthesized and studied by FT-IR and NMR-NOE methods. The conformations in crystal state were gathered from the Cambridge Structural Data Base. The main conformational feature of the oxazoline amino acids is the conformation β2 (ϕ,ψ ∼ -161°, -6°), which predominates in weakly polar environment and still is accessible in polar surrounding. The changes of the conformational preferences towards the conformations αR (ϕ,ψ ∼ -70°, -15°) and then β (ϕ,ψ ∼ -57°, -155°) are observed with increase of the environment polarity.

  19. Intermolecular Vibrations of Hydrophobic Amino Acids

    NASA Astrophysics Data System (ADS)

    Williams, Michael Roy Casselman

    Hydrophobic amino acids interact with their chemical environment through a combination of electrostatic, hydrogen bonding, dipole, induced dipole, and dispersion forces. These interactions all have their own characteristic energy scale and distance dependence. The low-frequency (0.1-5 THz, 5-150 cm-1) vibrational modes of amino acids in the solid state are a direct indicator of the interactions between the molecules, which include interactions between an amino acid functional group and its surroundings. This information is central to understanding the dynamics and morphology of proteins. The alpha-carbon is a chiral center for all of the hydrophobic amino acids, meaning that they exist in two forms, traditionally referred to as L- and D-enantiomers. This nomenclature indicates which direction the molecule rotates plane-polarized visible light (levorotory and dextrorotory). Chiral a-amino acids in proteins are exclusively the L-variety In the solid state, the crystal lattice of the pure L-enantiomer is the mirror image of the D-enantiomer crystal lattice. These solids are energetically identical. Enantiomers also have identical spectroscopic properties except when the measurement is polarization sensitive. A mixture of equal amounts D- and L-amino acid enantiomers can crystallize into a racemic (DL-) structure that is different from that of the pure enantiomers. Whether a solution of both enantiomers will crystallize into a racemic form or spontaneously resolve into a mixture of separate D- and L-crystals largely depends on the interactions between molecules available in the various possible configurations. This is an active area of research. Low-frequency vibrations with intermolecular character are very sensitive to changes in lattice geometry, and consequently the vibrational spectra of racemic crystals are usually quite distinct from the spectra of the crystals of the corresponding pure enantiomers in the far-infrared (far-IR). THz time-domain spectroscopy (THz

  20. Formation and transformation of amino acids and amino acid precursors by high-velocity impacts

    NASA Astrophysics Data System (ADS)

    Kaneko, T.; Kobayashi, K.; Yamori, A.

    A wide variety of organic compounds have been found in extraterrestrial bodies such as comets and carbonaceous chondrites. It is plausible that these extraterrestrial bodies carried organic compounds such as amino acids or their precursors to the early Earth. It is claimed, however, that these extraterrestrial organics were destroyed during impacts to the Earth. We therefore examined possible transformation of amino acids and their precursors during high-velocity impacts by using a rail gun "HYPAC" in ISAS. Starting materials used in the impact experiments were (i) aqueous solution of glycine (10 mM or 1.0 M), and (ii) a mixture of ammonia, methanol and water. The target materials were sealed in stainless steel capsules, and shocked by impact with a polycarbonate projectile accelerated with "HYPAC" to the velocities of 2.5 - 7.0 km/s. A part of the products was acid-hydrolyzed. Both hydrolyzed an unhydrolyzed products were analyzed by mass spectrometry, high performance liquid chromatography and capillary electrophoresis and chromatography. When an aqueous solution containing ammonia, methanol and water was shocked by impact at the velocity of 6.4 km/s, a number of amino acids (e.g., serine and glycine) were detected after hydrolysis. The present results suggest that amino acid precursors could be formed during cometary impacts. When glycine solution was used as a starting material, about 40 % of glycine was recovered even after 6 km/s impact. Methylamine and ammonia, which are known as pyrolytic products of glycine, were detected, besides them, diketopiperazine and an unidentified product whose molecular weight was 134, were detected, while no glycine peptides were identified in them. It was shown that the impact processes resulted in the formation of amino acid condensates. Thermal stability of glycine precursor is comparable with glycine. The present results suggest that organic material could survive and/or formed during an impact process. Most of organic

  1. Amino acid-based ionic liquids: using XPS to probe the electronic environment via binding energies.

    PubMed

    Hurisso, Bitu Birru; Lovelock, Kevin R J; Licence, Peter

    2011-10-21

    Here we report the synthesis and characterisation by X-ray photoelectron spectroscopy (XPS) of eight high purity amino acid-based ionic liquids (AAILs), each containing the 1-octyl-3-methylimidazolium, [C(8)C(1)Im](+), as a standard reference cation. All expected elements were observed and the electronic environments of these elements identified. A fitting model for the carbon 1s region of the AAILs is reported; the C aliphatic component of the cation was used as an internal reference to obtain a series of accurate and reproducible binding energies. Comparisons are made between XP spectra of the eight AAILs and selected non-functionalised ionic liquids. 1-octyl-3-methylimidazolium acetate was also studied as a model of the carboxyl containing amino acid anion. The influence of anionic substituent groups on the measured binding energies of all elements is presented, and communication between anion and cation is investigated. This data is interpreted in terms of hard and soft anions and compared to the Kamlet-Taft hydrogen bond acceptor ability, β, for the ionic liquids. A linear correlation is presented which suggests that the functional side chain, or R group, of the amino acid has little impact upon the electronic environment of the charge-bearing moieties within the anions and cations studied.

  2. Inadequacy of prebiotic synthesis as origin of proteinous amino acids.

    PubMed

    Wong, J T; Bronskill, P M

    1979-07-18

    The production of some nonproteinous, and lack of production of other proteinous, amino acids in model prebiotic synthesis, along with the instability of glutamine and asparagine, suggest that not all of the 20 present day proteinous amino acids gained entry into proteins directly from the primordial soup. Instead, a process of active co-evolution of the genetic code and its constituent amino acids would have to precede the final selection of these proteinous amono acids.

  3. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen; Hu, Wenhan; Li, Yi; Li, Xinsong

    2016-11-01

    In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption related to protein with opposite electric charges. Furthermore, the ultrafiltration performance of the zwitterionic PES membranes was evaluated. The results showed that the modified membranes possessed of enhanced pure water flux, relative flux recovery and mildly lower rejection. The Darcy's Law analysis illustrated that the acidic amino acid grafted PES membranes had much lower permeation

  4. Prebiotic Synthesis of Hydrophobic and Protein Amino Acids

    PubMed Central

    Ring, David; Wolman, Yecheskel; Friedmann, Nadav; Miller, Stanley L.

    1972-01-01

    The formation of amino acids by the action of electric discharges on a mixture of methane, nitrogen, and water with traces of ammonia was studied in detail. The presence of glycine, alanine, α-amino-n-butyric acid, α-aminoisobutyric acid, valine, norvaline, isovaline, leucine, isoleucine, alloisoleucine, norleucine, proline, aspartic acid, glutamic acid, serine, threonine, allothreonine, α-hydroxy-γ-aminobutyric acid, and α,γ-diaminobutyric acid was confirmed by ion-exchange chromatography and gas chromatography-mass spectrometry. All of the primary α-amino acids found in the Murchison Meteorite have been synthesized by this electric discharge experiment. PMID:4501592

  5. Relative Amino Acid Composition Signatures of Organisms and Environments

    PubMed Central

    Moura, Alexandra; Savageau, Michael A.; Alves, Rui

    2013-01-01

    Background Identifying organism-environment interactions at the molecular level is crucial to understanding how organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that environment. Methodologies/Principal Findings To address these questions we collected and analyzed environmental amino acid determinations from the literature, and estimated from complete genomic sequences the global relative amino acid abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more influenced by GC content than habitat or phylogeny. Conclusions Our results suggest that relative amino acid composition can be used as a signature of an environment. In addition, we observed that the relative amino acid composition of organisms is not highly determined by environment, reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living organisms. PMID:24204807

  6. A reexamination of amino acids in lunar soil

    NASA Astrophysics Data System (ADS)

    Brinton, K. L. F.; Bada, J. L.; Arnold, J. R.

    1993-03-01

    Amino acids in lunar soils provide an important indicator of the level of prebiotic organic compounds on the moon. The results provide insight into the chemistry of amino acid precursors, and furthermore, given the flux of carbonaceous material to the moon, we can evaluate the survival of organics upon impact. The amino acid contents of both hydrolyzed and unhydrolyzed hot-water extracts of Apollo 17 lunar soil were determined using ophthaldialdehyde/N-acetyl cysteine (OPA/NAC) derivatization followed by HPLC analysis. Previous studies of lunar amino acids were inconclusive, as the technique used (derivatization with ninhydrin followed by HPLC analysis) was unable to discriminate between cosmogenic amino acids and terrestrial contaminants. Cosmogenic amino acids are racemic, and many of the amino acids found in carbonaceous meteorites such as Murchison, i.e., alpha-amino-i-butyric acid (aib), are extremely rare on Earth. The ninhydrin method does not distinguish amino acid enantiomers, nor does it detect alpha-alkyl amino acids such as aib, whereas the OPA/NAC technique does both.

  7. A reexamination of amino acids in lunar soil

    NASA Technical Reports Server (NTRS)

    Brinton, K. L. F.; Bada, J. L.; Arnold, J. R.

    1993-01-01

    Amino acids in lunar soils provide an important indicator of the level of prebiotic organic compounds on the moon. The results provide insight into the chemistry of amino acid precursors, and furthermore, given the flux of carbonaceous material to the moon, we can evaluate the survival of organics upon impact. The amino acid contents of both hydrolyzed and unhydrolyzed hot-water extracts of Apollo 17 lunar soil were determined using ophthaldialdehyde/N-acetyl cysteine (OPA/NAC) derivatization followed by HPLC analysis. Previous studies of lunar amino acids were inconclusive, as the technique used (derivatization with ninhydrin followed by HPLC analysis) was unable to discriminate between cosmogenic amino acids and terrestrial contaminants. Cosmogenic amino acids are racemic, and many of the amino acids found in carbonaceous meteorites such as Murchison, i.e., alpha-amino-i-butyric acid (aib), are extremely rare on Earth. The ninhydrin method does not distinguish amino acid enantiomers, nor does it detect alpha-alkyl amino acids such as aib, whereas the OPA/NAC technique does both.

  8. Amino Acid Transport in Mycobacterium smegmatis

    PubMed Central

    Yabu, Kunihiko

    1970-01-01

    The transport of d-alanine, d-glutamic acid, and d-valine in Mycobacterium smegmatis was compared quantitatively with that of their l-isomers. It appeared that the uptake of d-alanine was mediated by an active process displaying saturation kinetics characteristic of enzyme function, whereas the uptake of d-glutamic acid was accomplished by a passive process showing diffusion kinetics. Both processes were involved in the uptake of l-alanine, l-glutamic acid, d-valine, and l-valine. d-Valine competed with l-valine for entry into the cell through a single active process. d-Alanine and l-alanine also utilized the same active process, but the d-isomer could not enter the cell through the passive process. The passive process exhibited characteristics of diffusion, but was sensitive to sulfhydryl-blocking reagents and showed competition among structurally related amino acids. These last findings suggested that the passive process is a facilitated diffusion. PMID:5437732

  9. ANTIGENICITY OF POLYPEPTIDES (POLY ALPHA AMINO ACIDS)

    PubMed Central

    Maurer, Paul H.; Gerulat, Bernard F.; Pinchuck, Paul

    1964-01-01

    A new group of synthetic random polymers of α-L-amino acids has been studied for immunogenicity. With the glutamic acid and alanine copolymers, those consisting of almost equimolar amounts of the two (G60A40 and G40A60) were effective antigens in rabbits whereas those with higher glutamic acid contents (G75A25, G90A10) were poor antigens. The substitution of alanine by valine or leucine (G75V25 and G80Leu20) produced copolymers which were poor antigens in rabbits but effective in guinea pigs. L70A30, although capable of "non-specifically" precipitating serum proteins, was shown not to be antigenic in either rabbits or guinea pigs. The introduction of alanine into glutamic acid and lysine polymers (GLA series) enhanced the immunogenicity of the terpolymers, i.e., GLA30 > GLA20 > GLA10 > GL. The mechanism by which this may be accomplished is discussed as possibly being related to the reduction of the interactions between glutamyl and lysyl residues which allows the carboxyl groups to act as strong immunogenic determinants. PMID:14176288

  10. Limiting amino acids in bengal gram (Cicer arietinum) as determined from blood amino acid levels and amino acid supplementation studies in the rat.

    PubMed

    Khader, V; Rao, S V

    1982-01-01

    The limiting amino acids of Bengal gram (Cicer arietinum) were determined from plasma amino acid score and ratio and growth response of weanling rats to supplements of amino acids. The results indicated that methionine, threonine and tryptophan are the most limiting amino acids. Protein efficiency ratio of raw and cooked Bengal gram fed at a dietary level of 10% protein increased from 2.7 to 3.7 and 2.4 to 3.4, respectively, on supplementing the diets with methionine, threonine and tryptophan. Plasma levels of lysine, methionine, threonine and tryptophan were similar in rats fed raw or cooked Bengal gram, indicating that the trypsin or other inhibitors that may be present in the raw gram do not affect the biological availability of these amino acids.

  11. Fatty acid production from amino acids and alpha-keto acids by Brevibacterium linens BL2.

    PubMed

    Ganesan, Balasubramanian; Seefeldt, Kimberly; Weimer, Bart C

    2004-11-01

    Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and alpha-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of alpha-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and alpha-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from alpha-keto acids only. BL2 also converted alpha-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and alpha-keto acids and that carbon metabolism is important in regulating this event.

  12. Transfer of Asymmetry between Proteinogenic Amino Acids under Harsh Conditions

    NASA Astrophysics Data System (ADS)

    Tarasevych, Arkadii V.; Vives, Thomas; Snytnikov, Valeriy N.; Guillemin, Jean-Claude

    2017-03-01

    The heating above 400 °C of serine, cysteine, selenocysteine and threonine leads to a complete decomposition of the amino acids and to the formation in low yields of alanine for the three formers and of 2-aminobutyric acid for the latter. At higher temperature, this amino acid is observed only when sublimable α-alkyl-α-amino acids are present, and with an enantiomeric excess dependent on several parameters. Enantiopure or enantioenriched Ser, Cys, Sel or Thr is not able to transmit its enantiomeric excess to the amino acid formed during its decomposition. The presence during the sublimation-decomposition of enantioenriched valine or isoleucine leads to the enantioenrichment of all sublimable amino acids independently of the presence of many decomposition products coming from the unstable derivative. All these studies give information on a potentially prebiotic key-reaction of abiotic transformations between α-amino acids and their evolution to homochirality.

  13. Transfer of Asymmetry between Proteinogenic Amino Acids under Harsh Conditions.

    PubMed

    Tarasevych, Arkadii V; Vives, Thomas; Snytnikov, Valeriy N; Guillemin, Jean-Claude

    2017-03-31

    The heating above 400 °C of serine, cysteine, selenocysteine and threonine leads to a complete decomposition of the amino acids and to the formation in low yields of alanine for the three formers and of 2-aminobutyric acid for the latter. At higher temperature, this amino acid is observed only when sublimable α-alkyl-α-amino acids are present, and with an enantiomeric excess dependent on several parameters. Enantiopure or enantioenriched Ser, Cys, Sel or Thr is not able to transmit its enantiomeric excess to the amino acid formed during its decomposition. The presence during the sublimation-decomposition of enantioenriched valine or isoleucine leads to the enantioenrichment of all sublimable amino acids independently of the presence of many decomposition products coming from the unstable derivative. All these studies give information on a potentially prebiotic key-reaction of abiotic transformations between α-amino acids and their evolution to homochirality.

  14. Catalytic hydrogenation of amino acids to amino alcohols with complete retention of configuration.

    PubMed

    Tamura, Masazumi; Tamura, Riku; Takeda, Yasuyuki; Nakagawa, Yoshinao; Tomishige, Keiichi

    2014-06-25

    Rh-MoOx/SiO2 is an effective heterogeneous catalyst for selective hydrogenation of amino acids to amino alcohols in a water solvent. MoOx modification of Rh drastically enhanced the activity and improved the selectivity and ee. Various amino alcohols were obtained in high yields (90-94%) with complete retention of configuration.

  15. Unprecedented concentrations of indigenous amino acids in primitive CR meteorites

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; Martins, Zita; Alexander, Conel; Orzechowska, Grazyna; Fogel, Marylin

    CR meteorites are among the most primitive meteorites. We have performed pioneering work determining the compositional characteristics of amino acids in this type of carbonaceous chondrites. We report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. We have analyzed the amino acid content of the Antarctic CRs EET92042, GRA95229 and GRO95577 using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatography-mass spectrometry (GC-MS). Additionally, compound-specific carbon isotopic measurements for most of the individual amino acids from the EET92042 and GRA95229 meteorites were achieved by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations of 180 and 249 parts-per-million (ppm), respectively. GRO95577, however, is depleted in amino acids (<1 ppm). The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the α-amino acids glycine, isovaline, α-aminoisobutyric acid (α-AIB), and alanine, with δ 13 C values ranging from +31.6% to +50.5%. The highly enriched carbon isotope results together with racemic enantiomeric ratios determined for most amino acids indicate that primitive organic matter was preserved in these meteorites. In addition, the relative abundances of α-AIB and β-alanine amongst Antarctic CR meteorites appear to correspond to the degree of aqueous alteration on their respective parent body. Investigating the abundances and isotopic composition of amino acids in primitive chondrites helps to understand the role of meteorites as a source of extraterrestrial prebiotic organic compounds to the early Earth.

  16. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2009-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC(sub 3) called Almahata Sitta was carried out using reverse-phase high-perfo rmance liquid chromatography coupled with UV fluorescence detection a nd time-of-flight mass spectrometry (HPLC-FD/ToF-MS) as part of a sam ple analysis consortium. HPLC analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to six-carbon aliph atic amino acids and one- to three carbon amines with abundances rang ing from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, Beta-amino-n-butyric acid (Beta-ABA), 2-amino-2- methylbutanoic acid (isovaline), and 2-aminopentanoic acid (no rvaline) in the meteorite were racemic (D/L approximately 1), indicat ing that these amino acids are indigenous to the meteorite and not te rrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha -aminoisobutyric acid (alpha-AIB), 4-amino-2- methybutanoic acid, 4-a mino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. Th e total abundances of isovaline and AlB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous meteorite Murchison. The extremely love abund ances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous meteorites and may be due to extensive thermal alteration of amino acids on the parent aster oid by partial melting during formation or impact shock heating.

  17. Twenty natural amino acids identification by a photochromic sensor chip.

    PubMed

    Qin, Meng; Li, Fengyu; Huang, Yu; Ran, Wei; Han, Dong; Song, Yanlin

    2015-01-20

    All 20 natural amino acids identification shows crucial importance in biochemistry and clinical application while it is still a challenge due to highly similarity in molecular configuration of the amino acids. Low efficiency, complicated sensing molecules and environment hindered the successful identification. Here, we developed a facile sensor chip composed of one photochromic molecule with metal ions spotted to form spirooxazine-metallic complexes, and successfully recognized all the 20 natural amino acids as well as their mixtures. The sensor chip gives distinct fluorescent fingerprint pattern of each amino acid, based on multistate of spirooxazine under different light stimulations and discriminated interaction between various metal ions and amino acids. The sensor chip demonstrates powerful capability of amino acids identification, which promotes sensing of biomolecules.

  18. Transport of Aromatic Amino Acids by Pseudomonas aeruginosa

    PubMed Central

    Kay, W. W.; Gronlund, Audrey F.

    1971-01-01

    Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan. PMID:4994029

  19. Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.

    PubMed

    Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao

    2016-01-01

    Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.

  20. Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS.

    PubMed

    Mocellin, Alexandra; Gomes, Anderson Herbert de Abreu; Araújo, Oscar Cardoso; de Brito, Arnaldo Naves; Bjorneholm, Olle

    2017-03-30

    Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied XPS to study aqueous solutions of four amino acids: glycine, alanine, valine and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidences that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interaction play a central role in cloud droplet formation, and they should be considered in climate models.

  1. Nectar amino acids enhance reproduction in male butterflies.

    PubMed

    Cahenzli, Fabian; Erhardt, Andreas

    2013-01-01

    After over 30 years of research, it was recently shown that nectar amino acids increase female butterfly fecundity. However, little attention has been paid to the effect of nectar amino acids on male butterfly reproduction. Here, we show that larval food conditions (nitrogen-rich vs. nitrogen-poor host plants) and adult diet quality (nectar with or without amino acids) affected the amount of consumed nectar in Coenonympha pamphilus males. Furthermore, amino acids in the nectar diet of males increased progeny's larval hatching mass, irrespective of paternal larval reserves. Our study takes the whole reproductive cycle of male butterflies into account, and also considers the role of females in passing male nutrients to offspring, as males' realized reproduction was examined indirectly via nuptial gifts, by female performance. With this comprehensive approach, we demonstrate for the first time that nectar amino acids can improve male butterfly reproduction, supporting the old postulate that nectar amino acids generally enhance butterfly fitness.

  2. Stereoselective synthesis of stable-isotope-labeled amino acids

    SciTech Connect

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III; Lodwig, S.N.

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  3. Geochemistry of amino acids in shells of the clam Saxidomus

    USGS Publications Warehouse

    Kvenvolden, K.A.; Blunt, D.J.; McMenamin, M.A.; Straham, S.E.

    1980-01-01

    Concentrations of amino acids and their corresponding d l enantiomeric ratios have been measured in shells of the bivalve mollusk Saxidomus from eleven localities, ranging in age from modern to probably more than 500,000 yr, along the Pacific coast of North America. Natural logarithms of amino acid concentrations correlate well with d l ratios, and the relationship provides a possible guide to the selection of fossils for use in amino acid dating. The relative order of the extents of racemization of amino acids at any given time appears to change with increasing sample age. Application of the amino acid dating method to shells from Whidbey Island, Washington, yields an age of about 80,000 yr, in contrast to the previously determined radiocarbon age of 36,000 yr which was measured on some shell carbonate and considered a minimum age. The amino acid age is compatible with the geologic record in the area. ?? 1980.

  4. Amino acids as chiral selectors in enantioresolution by liquid chromatography.

    PubMed

    Bhushan, Ravi; Dixit, Shuchi

    2012-08-01

    Amino acids are unique in terms of their structural features and multidimensional uses. With their simple structures and the ready availability of both enantiomers, amino acids not only serve as a chiral pool for synthesis but also provide an inexpensive pool for resolution studies. There has been no attempt to review the application of amino acids as chiral selectors for chromatographic enantioresolution of pharmaceuticals and other compounds. The present paper deals with application of l-amino acids and complexes of l-amino acids with a metal ion, particularly Cu(II), as an impregnating reagent in thin-layer chromatography or as a chiral ligand exchange reagent or a chiral mobile phase additive in both thin-layer chromatography and high-performance liquid chromatography. Enantiomeric resolution of β-blockers, nonsteroidal anti-inflammatories, amino acids (and their derivatives) and certain other compounds is discussed.

  5. Distribution and Origin of Amino Acids in Lunar Regolith Samples

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; McLain, H. L.; Noble, S. K.; Gibson, E. K., Jr.

    2015-01-01

    The existence of organic compounds on the lunar surface has been a question of interest from the Apollo era to the present. Investigations of amino acids immediately after collection of lunar samples yielded inconclusive identifications, in part due to analytical limitations including insensitivity to certain compounds, an inability to separate enantiomers, and lack of compound-specific isotopic measurements. It was not possible to determine if the detected amino acids were indigenous to the lunar samples or the result of terrestrial contamination. Recently, we presented initial data from the analysis of amino acid abundances in 12 lunar regolith samples and discussed those results in the context of four potential amino acid sources [5]. Here, we expand on our previous work, focusing on amino acid abundances and distributions in seven regolith samples and presenting the first compound-specific carbon isotopic ratios measured for amino acids in a lunar sample.

  6. Amino Acid Sensing in Skeletal Muscle.

    PubMed

    Moro, Tatiana; Ebert, Scott M; Adams, Christopher M; Rasmussen, Blake B

    2016-11-01

    Aging impairs skeletal muscle protein synthesis, leading to muscle weakness and atrophy. However, the underlying molecular mechanisms remain poorly understood. Here, we review evidence that mammalian/mechanistic target of rapamycin complex 1 (mTORC1)-mediated and activating transcription factor 4 (ATF4)-mediated amino acid (AA) sensing pathways, triggered by impaired AA delivery to aged skeletal muscle, may play important roles in skeletal muscle aging. Interventions that alleviate age-related impairments in muscle protein synthesis, strength, and/or muscle mass appear to do so by reversing age-related changes in skeletal muscle AA delivery, mTORC1 activity, and/or ATF4 activity. An improved understanding of the mechanisms and roles of AA sensing pathways in skeletal muscle may lead to evidence-based strategies to attenuate sarcopenia.

  7. Recombinant thiopeptides containing noncanonical amino acids

    PubMed Central

    Luo, Xiaozhou; Zambaldo, Claudio; Liu, Tao; Zhang, Yuhan; Xuan, Weimin; Wang, Chen; Reed, Sean A.; Yang, Peng-Yu; Wang, Rongsheng E.; Javahishvili, Tsotne; Schultz, Peter G.; Young, Travis S.

    2016-01-01

    Thiopeptides are a subclass of ribosomally synthesized and posttranslationally modified peptides (RiPPs) with complex molecular architectures and an array of biological activities, including potent antimicrobial activity. Here we report the generation of thiopeptides containing noncanonical amino acids (ncAAs) by introducing orthogonal amber suppressor aminoacyl-tRNA synthetase/tRNA pairs into a thiocillin producer strain of Bacillus cereus. We demonstrate that thiopeptide variants containing ncAAs with bioorthogonal chemical reactivity can be further postbiosynthetically modified with biophysical probes, including fluorophores and photo-cross-linkers. This work allows the site-specific incorporation of ncAAs into thiopeptides to increase their structural diversity and probe their biological activity; similar approaches can likely be applied to other classes of RiPPs. PMID:26976568

  8. Synthesis of alpha-amino acids

    DOEpatents

    Davis, J.W. Jr.

    1983-01-25

    A method is described for synthesizing alpha amino acids proceeding through novel intermediates of the formulas: R[sub 1]R[sub 2]C(OSOCl)CN, R[sub 1]R[sub 2]C(Cl)CN and [R[sub 1]R[sub 2]C(CN)O][sub 2]SO wherein R[sub 1] and R[sub 2] are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art. No Drawings

  9. Diversity of amino acids in a typical chernozem of Moldova

    NASA Astrophysics Data System (ADS)

    Frunze, N. I.

    2014-12-01

    The content and composition of the amino acids in typical chernozems were studied. The objects of the study included a reference soil under an old fallow and three variants under fodder crop rotations: not fertilized, with mineral fertilizers, and with organic fertilizers. The contents of 18 amino acids were determined in these soils. The amino acids were extracted by the method of acid hydrolysis and identified by the method of ion-exchange chromatography. The total content of most of the amino acids was maximal in the reference soil; it was much lower in the cultivated soils and decreased in the following sequence: organic background > mineral background > no fertilization. The diversity of amino acids was evaluated quantitatively using different parameters applied in ecology for estimating various aspects of the species composition of communities (Simpson, Margalef, Menhinick, and Shannon's indices). The diversity and contribution of different amino acids to the total pool of amino acids also varied significantly in the studied variants. The maximum diversity of amino acids and maximum evenness of their relative abundance indices were typical of the reference chernozem; these parameters were lower in the cultivated soils. It was concluded that the changes in the structure of the amino acids under the impact of agricultural loads are similar to those that are usually observed under stress conditions.

  10. Preference for and learning of amino acids in larval Drosophila

    PubMed Central

    Kudow, Nana; Miura, Daisuke; Schleyer, Michael; Toshima, Naoko; Gerber, Bertram

    2017-01-01

    ABSTRACT Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis − and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila. We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila. PMID:28193602

  11. Survival of Amino Acids in Micrometeorites During Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Bada, Jeffrey L.

    2003-01-01

    The delivery of amino acids by micrometeorites to the early Earth during the period of heavy bombardment could have been a significant source of the Earth's prebiotic amino acid inventory provided that these organic compounds survived atmospheric entry heating. To investigate the sublimation of amino acids from a micrometeorite analog at elevated temperature, grains from the CM-type carbonaceous chondrite Murchison were heated to 550 C inside a glass sublimation apparatus (SA) under reduced pressure. The sublimed residue that had collected on the cold finger of the SA after heating was analyzed for amino acids by HPLC. We found that when the temperature of the meteorite reached approx. 150 C, a large fraction of the amino acid glycine had vaporized from the meteorite, recondensed onto the end of the SA cold finger, and survived as the rest of the grains heated to 550 C. alpha-Aminoisobutryic acid and isovaline, which are two of the most abundant non-protein amino acids in Murchison, did not sublime from the meteorite and were completely destroyed during the heating experiment. Our experimental results suggest that sublimation of glycine present in micrometeorite grains may provide a way for this amino acid to survive atmospheric entry heating at temperatures less than 550 C; all other amino acids apparently are destroyed. Key Words: Amino acids-Exogenous delivery-Micrometeorites-Sublimation.

  12. Preference for and learning of amino acids in larval Drosophila.

    PubMed

    Kudow, Nana; Miura, Daisuke; Schleyer, Michael; Toshima, Naoko; Gerber, Bertram; Tanimura, Teiichi

    2017-03-15

    Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis - and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila.

  13. Chemoenzymatic synthesis of surfactants from carbohydrates, amino acids, and fatty acids.

    PubMed

    Bellahouel, S; Rolland, V; Roumestant, M L; Viallefont, P; Martinez, J

    2001-02-01

    The chemoenzymatic synthesis of new surfactants is reported; they were prepared from unprotected carbohydrates, amino acids, and fatty acids. This study pointed out the factors that govern the possibility to enzymatically bind the carbohydrate to the amino acid.

  14. Trends for isolated amino acids and dipeptides: Conformation, divalent ion binding, and remarkable similarity of binding to calcium and lead

    NASA Astrophysics Data System (ADS)

    Ropo, M.; Blum, V.; Baldauf, C.

    2016-11-01

    We derive structural and binding energy trends for twenty amino acids, their dipeptides, and their interactions with the divalent cations Ca2+, Ba2+, Sr2+, Cd2+, Pb2+, and Hg2+. The underlying data set consists of more than 45,000 first-principles predicted conformers with relative energies up to ~4 eV (~400 kJ/mol). We show that only very few distinct backbone structures of isolated amino acids and their dipeptides emerge as lowest-energy conformers. The isolated amino acids predominantly adopt structures that involve an acidic proton shared between the carboxy and amino function. Dipeptides adopt one of two intramolecular-hydrogen bonded conformations C5 or . Upon complexation with a divalent cation, the accessible conformational space shrinks and intramolecular hydrogen bonding is prevented due to strong electrostatic interaction of backbone and side chain functional groups with cations. Clear correlations emerge from the binding energies of the six divalent ions with amino acids and dipeptides. Cd2+ and Hg2+ show the largest binding energies–a potential correlation with their known high acute toxicities. Ca2+ and Pb2+ reveal almost identical binding energies across the entire series of amino acids and dipeptides. This observation validates past indications that ion-mimicry of calcium and lead should play an important role in a toxicological context.

  15. Trends for isolated amino acids and dipeptides: Conformation, divalent ion binding, and remarkable similarity of binding to calcium and lead

    PubMed Central

    Ropo, M.; Blum, V.; Baldauf, C.

    2016-01-01

    We derive structural and binding energy trends for twenty amino acids, their dipeptides, and their interactions with the divalent cations Ca2+, Ba2+, Sr2+, Cd2+, Pb2+, and Hg2+. The underlying data set consists of more than 45,000 first-principles predicted conformers with relative energies up to ~4 eV (~400 kJ/mol). We show that only very few distinct backbone structures of isolated amino acids and their dipeptides emerge as lowest-energy conformers. The isolated amino acids predominantly adopt structures that involve an acidic proton shared between the carboxy and amino function. Dipeptides adopt one of two intramolecular-hydrogen bonded conformations C5 or . Upon complexation with a divalent cation, the accessible conformational space shrinks and intramolecular hydrogen bonding is prevented due to strong electrostatic interaction of backbone and side chain functional groups with cations. Clear correlations emerge from the binding energies of the six divalent ions with amino acids and dipeptides. Cd2+ and Hg2+ show the largest binding energies–a potential correlation with their known high acute toxicities. Ca2+ and Pb2+ reveal almost identical binding energies across the entire series of amino acids and dipeptides. This observation validates past indications that ion-mimicry of calcium and lead should play an important role in a toxicological context. PMID:27808109

  16. Trophic spectra under the lens of amino acid isotopic analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances in compound specific isotopic ratio analysis (CSIRA) have allowed researchers to measure trophic fractionation of 15N in specific amino acids, namely glutamic acid and phenylalanine. These amino acids have proven useful in food web studies because of the wide and consistent disparity...

  17. The Origin of Amino Acids in Lunar Regolith Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  18. Interactions between homopolymeric amino acids (HPAAs).

    PubMed

    Oma, Yoko; Kino, Yoshihiro; Toriumi, Kazuya; Sasagawa, Noboru; Ishiura, Shoichi

    2007-10-01

    Many human proteins contain consecutive amino acid repeats, known as homopolymeric amino acid (HPAA) tracts. Some inherited diseases are caused by proteins in which HPAAs are expanded to an excessive length. To this day, nine polyglutamine-related diseases and nine polyalanine-related diseases have been reported, including Huntington's disease and oculopharyngeal muscular dystrophy. In this study, potential HPAA-HPAA interactions were examined by yeast two-hybrid assays using HPAAs of approximately 30 residues in length. The results indicate that hydrophobic HPAAs interact with themselves and with other hydrophobic HPAAs. Previously, we reported that hydrophobic HPAAs formed large aggregates in COS-7 cells. Here, those HPAAs were shown to have significant interactions with each other, suggesting that hydrophobicity plays an important role in aggregation. Among the observed HPAA-HPAA interactions, the Ala28-Ala29 interaction was notable because polyalanine tracts of these lengths have been established to be pathogenic in several polyalanine-related diseases. By testing several constructs of different lengths, we clarified that polyalanine self-interacts at longer lengths (>23 residues) but not at shorter lengths (six to approximately 23 residues) in a yeast two-hybrid assay and a GST pulldown assay. This self-interaction was found to be SDS sensitive in SDS-PAGE and native-PAGE assays. Moreover, the intracellular localization of these long polyalanine tracts was also observed to be disturbed. Our results suggest that long tracts of polyalanine acquire SDS-sensitive self-association properties, which may be a prerequisite event for their abnormal folding. The misfolding of these tracts is thought to be a common molecular aspect underlying the pathogenesis of polyalanine-related diseases.

  19. Analysis of free amino acids in natural waters by liquid chromatography-tandem mass spectrometry.

    PubMed

    How, Zuo Tong; Busetti, Francesco; Linge, Kathryn L; Kristiana, Ina; Joll, Cynthia A; Charrois, Jeffrey W A

    2014-11-28

    This paper reports a new analytical method for the analysis of 18 amino acids in natural waters using solid-phase extraction (SPE) followed by liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) operated in multiple reaction monitoring mode. Two different preconcentration methods, solid-phase extraction and concentration under reduced pressure, were tested in development of this method. Although concentration under reduced pressure provided better recoveries and method limits of detection for amino acids in ultrapure water, SPE was a more suitable extraction method for real samples due to the lower matrix effects for this method. Even though the strong cation exchange resin used in SPE method introduced exogenous matrix interferences into the sample extracts (inorganic salt originating from the acid-base reaction during the elution step), the SPE method still incorporates a broad sample clean-up and minimised endogenous matrix effects by reducing interferences originating from real water samples. The method limits of quantification (MLQ) for the SPE LC-MS/MS method in ultrapure water ranged from 0.1 to 100 μg L(-1) as N for the different amino acids. The MLQs of the early eluting amino acids were limited by the presence of matrix interfering species, such as inorganic salts in natural water samples. The SPE LC-MS/MS method was successfully applied to the analysis of amino acids in 3 different drinking water source waters: the average total free amino acid content in these waters was found to be 19 μg L(-1) as N, while among the 18 amino acids analysed, the most abundant amino acids were found to be tyrosine, leucine and isoleucine.

  20. Amino acids of the Murchison meteorite. II - Five carbon acyclic primary beta-, gamma-, and delta-amino alkanoic acids

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Yuen, G. U.

    1985-01-01

    The five-carbon acyclic primary beta, gamma, and delta amino alkanoic acids of the Murchison meteorite are studied using gas chromatography-mass spectrometry and ion exchange chromatography. The chromatograms reveal that alpha is the most abundant monoamino alkanoic acid followed by gamma and beta, and an exponential increase in the amount of amino acid is observed as the carbon number increases in the homologous series. The influence of frictional heating, spontaneous thermal decomposition, and radiation of the synthesis of amino acids is examined. The data obtained support an amino acid synthesis process involving random combination of single-carbon precursors.

  1. A molecular biological approach to reducing dietary amino acid needs.

    PubMed

    Rees, W D; Flint, H J; Fuller, M F

    1990-07-01

    Rapid developments in transgenic animal technology make it possible to consider introducing new metabolic capabilities into animals, using genes from other species. Lysine and threonine are both essential amino acids in mammals, and are commonly the first and second limiting amino acids, respectively, for protein accretion in pigs and poultry fed cereal based diets. Here we consider the potential for transgenic animals with microbial biosynthetic pathways for these amino acids.

  2. Separation of certain carboxylic acids utilizing cation exchange membranes

    DOEpatents

    Chum, H.L.; Sopher, D.W.

    1983-05-09

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100/sup 0/C and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  3. Separation of certain carboxylic acids utilizing cation exchange membranes

    DOEpatents

    Chum, Helena L.; Sopher, David W.

    1984-01-01

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100.degree. C. and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  4. Amino acids in the cultivation of mammalian cells.

    PubMed

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  5. [Detection of amino acids based on terahertz spectroscopy].

    PubMed

    Tang, Zhong-feng; Lin, Hai-tao; Chen, Xiao-wei; Zhang, Zeng-fang

    2009-09-01

    Terahertz (THz) is the frequency region ranging from 0.1 to 2.0 THz, which lies in the far-infrared region. Compared to Fourier transform infrared spectra (FTIR), terahertz time-domain spectra (THz-TDS) has low energy, high signal-to-noise ratio (SNR) and is non-ionizing radiation. Low-frequency vibrational modes of some amino acids, such as torsional and collective vibrational modes and hydrogen-bond modes, exist in the THz region. Amino acids are important organic compounds and are the fundamental components of proteins. Amino acids can exist with a highly ordered crystal structure linked by hydrogen intermolecular bonds in the solid phase. The absorption spectra of amino acids in the THz region show marked differences while mid-infrared absorption spectra usually show very little difference. Up to now, absorption spectra of twenty kinds of amino acids have been studied by many researchers using THz technique; the quantitative analysis of amino acids by THZ-TDS is also included. Investigation of THz spectra of amino acids are of fundamental interests, and will lead to further understanding of low-frequency vibrations of protein/DNA and relevant biological reactions and activities. In the present paper, the latest progress in absorption spectra of amino acids determined by THz spectroscopy is reviewed and a database is built. Some brief remarks on future developments in and prospects for THz application in amino acids are also provided.

  6. Amino acid metabolism and protein synthesis in malarial parasites*

    PubMed Central

    Sherman, I. W.

    1977-01-01

    Malaria-infected red cells and free parasites have limited capabilities for the biosynthesis of amino acids. Therefore, the principal amino acid sources for parasite protein synthesis are the plasma free amino acids and host cell haemoglobin. Infected cells and plasmodia incorporate exogenously supplied amino acids into protein. However, the hypothesis that amino acid utilization (from an external source) is related to availability of that amino acid in haemoglobin is without universal support: it is true for isoleucine and for Plasmodium knowlesi and P. falciparum, but not for methionine, cysteine, and other amino acids, and it does not apply to P. lophurae. More by default than by direct evidence, haemoglobin is believed to be the main amino acid reservoir available to the intraerythrocytic plasmodium. Haemoglobin, ingested via the cytostome, is held in food vacuoles where auto-oxidation takes place. As a consequence, haem is released and accumulates in the vacuole as particulate haemozoin (= malaria pigment). Current evidence favours the view that haemozoin is mainly haematin. Acid and alkaline proteases (identified in crude extracts from mammalian and avian malarias) are presumably secreted directly into the food vacuole. They then digest the denatured globin and the resulting amino acids are incorporated into parasite protein. Cell-free protein synthesizing systems have been developed using P. knowlesi and P. lophurae ribosomes. In the main these systems are typically eukaryotic. Studies of amino acid metabolism are exceedingly limited. Arginine, lysine, methionine, and proline are incorporated into protein, whereas glutamic acid is metabolized via an NADP-specific glutamic dehydrogenase. Glutamate oxidation generates NADPH and auxiliary energy (in the form of α-ketoglutarate). The role of red cell glutathione in the economy of the parasite remains obscure. Important goals for future research should be: quantitative assessment of the relative importance of

  7. Mechanisms for stimulation of rat anterior pituitary cells by arginine and other amino acids.

    PubMed Central

    Villalobos, C; Núñez, L; García-Sancho, J

    1997-01-01

    1. Arginine and other amino acids are secretagogues for growth hormone and prolactin in the intact animal, but the mechanism of action is unclear. We have studied the effects of amino acids on cytosolic free calcium concentration ([Ca2+]i) in single rat anterior pituitary (AP) cells. Arginine elicited a large increase of [Ca2+]i) in about 40% of all the AP cells, suggesting that amino acids may modulate hormone secretion by acting directly on the pituitary. 2. Cell typing by immunofluorescence of the hormone the cells store showed that the arginine-sensitive cells are distributed uniformly within all the five AP cell types. The arginine-sensitive cells overlapped closely with the subpopulation of cells sensitive to thyrotrophin-releasing hormone. 3. Other cationic as well as several neutral (dipolar) amino acids had the same effect as arginine. The increase of [Ca2+]i was dependent on extracellular Ca2+ and blocked by dihydropyridine, suggesting that it is due to Ca2+ influx through L-type voltage-gated Ca2+ channels. The [Ca2+]i increase was also blocked by removal of extracellular Na+ but not by tetrodotoxin. The substrate specificity for stimulation of AP cells resembled closely that of the amino acid transport system B0+. We propose that electrogenic amino acid influx through this pathway depolarizes the plasma membrane with the subsequent activation of voltage-gated Ca2+ channels and Ca2+ entry. 4. Amino acids also stimulated prolactin secretion in vitro with a similar substrate specificity to that found for the [Ca2+]i increase. Existing data on the stimulation of secretion of other hormones by amino acids suggest that a similar mechanism could apply to other endocrine glands. PMID:9263921

  8. Amino acid fermentation at the origin of the genetic code

    PubMed Central

    2012-01-01

    There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments

  9. Receptor-level interrelationships of amino acids and the adequate amino acid type hormones in Tetrahymena: a receptor evolution model.

    PubMed

    Csaba, G; Darvas, Z

    1986-01-01

    Histidine stimulates the phagocytosis of Tetrahymena to the same extent as histamine, and also stimulates its division, which histamine does not. Tyrosine and diiodotyrosine equally stimulate the growth of the Tetrahymena. Both amino acids inhibit the characteristic influence of the adequate amino acid hormone when added to Tetrahymena culture 72 h in advance of it. Primary interaction with diiodotyrosine and tyrosine notably increases the cellular growth rate. Histamine has a similar, although less notable effect than histidine. In the light of these experimental observations there is reason to postulate that the receptors of the amino acid hormones have developed from amino acid receptors.

  10. Preferential Treatment: Interaction Between Amino Acids and Minerals

    NASA Astrophysics Data System (ADS)

    Crapster-Pregont, E. J.; Cleaves, H. J.; Hazen, R. M.

    2008-12-01

    Amino acids are the building blocks of proteins and are important for some models of the origin of life. Polymerization of amino acids from dilute solution is unlikely without a scaffold or catalyst. The surfaces of early Earth minerals are the most likely candidates for this role. The surface adsorption behavior of 12 amino acids (L-alanine, L-serine, L-aspartic acid, L-proline, L- phenylalanine, L-valine, L-arginine, d-amino valeric acid, glycine, L-lysine, L-isoleucine, and B-alanine) on 21 minerals (quartz, calcite, enstatite, illite, olivine, pyrrhotite, pyrite, alkali basalt, albite, analcime, chlorite, barite, hydroxyl apatite, hematite, magnetite, aluminum hydroxide, kaolin, silica gel, corundum, rutile, and montmorillonite) was determined via batch adsorption experiments. Absorption was determined for concentrations between 10-4M and 10-6M in the presence of 0.1M NaCl, and between pH values of 3 and 9 at 25 degrees C. The equilibrated solutions were centrifuged, filtered, derivatized using a fluorescent amino group tag (dansyl-chloride) and analyzed by HPLC. Adsorption was standardized using BET surface area measurements for each mineral to give the number of mols of each amino acid adsorbed per square meter for each mineral. The results indicate an enormous difference in the adsorption of amino acids between minerals, along with major differences in the adsorption of individual amino acids on the same mineral surface. There is also a change in the absorbance of amino acids as the pH changes. Many previous studies of amino acid concentration and catalysis by minerals have used clay minerals because of their high surface areas, however, this data suggests that the surfaces of minerals such as calcite, quartz and pyrite have even higher affinities for amino acids. The results suggest mineral surfaces that could be optimal locations for the polymerization of molecules linked to the origin of life.

  11. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    PubMed

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  12. Synthesis of gold nanoparticles using various amino acids.

    PubMed

    Maruyama, Tatsuo; Fujimoto, Yuhei; Maekawa, Tetsuya

    2015-06-01

    Gold nanoparticles (4-7nm) were synthesized from tetraauric acid using various amino acids as reducing and capping agents. The gold nanoparticles were produced from the incubation of a AuCl4(-) solution with an amino acid at 80°C for 20min. Among the twenty amino acids tested, several amino acids produced gold nanoparticles. The color of the nanoparticle solutions varied with the amino acids used for the reduction. We adopted l-histidine as a reducing agent and investigated the effects of the synthesis conditions on the gold nanoparticles. The His and AuCl4(-) concentrations affected the size of the gold nanoparticles and their aggregates. The pH of the reaction solution also affected the reaction yields and the shape of the gold nanoparticles.

  13. Polysulfone affinity membranes for the treatment of amino acid mixtures.

    PubMed

    Rodemann, K; Staude, E

    1995-06-20

    Affinity membranes for the treatment of solutions containing amino acids were obtained via lithiating polysulfone that was subsequently converted with glycidylether. From this polymer asymmetric ultrafiltration membranes were cast. The membranes were reacted with iminodiacetic acid yielding membranes fitted out with bidentate chelates. The same reaction path was applied to commercially available symmetric microfiltration membranes. The chelate-bearing membranes were complexed with Cu, Ni, and Zn ions. For the experiments with amino acids only the Cu-complexed membranes were used. The complexation constants for histidine and tryptophan for six different membranes were determined. Because of the affinity of these two amino acids for the complexed Cu ions, they could easily be separated from solutions containing amino acids such as alanine, glycine, and valine. Also, concentrating very dilute amino acid solutions was carried out successfully.

  14. Free amino acids in botanicals and botanical preparations.

    PubMed

    Carratù, B; Boniglia, C; Giammarioli, S; Mosca, M; Sanzini, E

    2008-06-01

    Numerous studies were carried out about aminoacidic composition of vegetable proteins, but information about the free amino acid pool and the role of these substances is very incomplete. The aim of this paper was to contribute to the scarce knowledge concerning the composition of free amino acids in botanicals and botanical preparations widely used as food, in dietary supplements, and in pharmaceutical products. This work studied the composition of free amino acids, identified the major components of 19 species of plants, and evaluated the influence of different types of extraction on the amino acid profile. Amino acids were determined using an automatic precolumn derivatization with fluorenylmethyl-chloroformate and reversed-phase liquid chromatography with fluorescence and ultraviolet detection. The amounts of total free amino acids varied widely between plants, from approximately 12 g in 100 g of Echinacea pallida extract to less than 60 mg in the same amount of Coleus forskohlii, Garcinia cambogia, and Glycine max. In 13 plants arginine, asparagine, glutamine, proline, and gamma-aminobutyric acid were the free amino acids found in preponderant quantities. The levels of free amino acids above the quantification limit in 36 assayed samples of botanicals, extracts, and supplements are shown.

  15. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    NASA Astrophysics Data System (ADS)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun'ichi

    2015-12-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val < Phe < Pro < Asp < Ala < Trp < Tyr < Arg < Leu. However, the simulation was not consistent with our experimental results. The adsorption of albumin (a protein) by C60 showed the effect on the side chains of Try and Trp. The structure of albumin was changed a little by C60. In our study Try and Tyr were hardly adsorbed by C60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.

  16. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.

    2007-09-01

    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  17. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  18. Terrestrial evolution of polymerization of amino acids - Heat to ATP

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Nakashima, T.

    1981-01-01

    Sets of amino acids containing sufficient trifunctional monomer are thermally polymerized at temperatures such as 65 deg; the amino acids order themselves. Various polymers have diverse catalytic activities. The polymers aggregate, in aqueous solution, to cell-like structures having those activities plus emergent properties, e.g. proliferatability. Polyamino acids containing sufficient lysine catalyze conversion of free amino acids, by ATP, to small peptides and a high molecular weight fraction. The lysine-rich proteinoid is active in solution, within suspensions of cell-like particles, or in other particles composed of lysine-rich proteinoid and homopolyribonucleotide. Selectivities are observed. An archaic polyamino acid prelude to coded protein synthesis is indicated.

  19. The Path of Carbon in Photosynthesis II. Amino Acids

    DOE R&D Accomplishments Database

    Stepka, W.; Benson, A. A.; Calvin, M.

    1948-05-25

    The radioactive amino acid's synthesized from C{sup 14}O{sub 2} by green algae both in the light and in the dark after CO{sub 2}-free preillumination have been separated and identified using paper chromatography and radioautography. The radioactive amino acids identified were aspartic acid, alanine and smaller amounts of 3- and 4-carbon amino acids. This finding as well as the total absence of radioactive glutamic acid substantiates the mechanism for reduction of CO{sub 2} previously postulated by members of this laboratory.

  20. The EZ:Faast family of amino acid analysis kits: application of the GC-FID kit for rapid determination of plasma tryptophan and other amino acids.

    PubMed

    Badawy, Abdulla A-B

    2012-01-01

    Plasma tryptophan (Trp) and other amino acids (AA) can be determined rapidly by gas (GC) or liquid (LC) chromatography using the Phenomenex EZ:Faast(™) family of kits. Three kits are available: (1) GC-FID or -NPD, (2) GC-MS, (3) LC-MS. The two GC kits can determine 32 AA, whereas the LC-MS can determine five additional AA. All three kits, however, share the same experimental procedure up to and including the preparation of derivatised AA. The method is based on solid-phase extraction (SPE), thus saving time on prior removal of plasma or other proteins and interfering substances, and can be applied to other body fluids and experimental media and to supernatants of extracts of solid material. Briefly, SPE is performed using a proprietary cation-exchange mechanism. The acid solution of the internal standard ensures that the free amino acids are in an anionic form suitable for cationic binding. The alkaline nature of the elution medium ensures that the AA cations are released prior to derivatisation. The latter involves production of chloroformate derivatives of both the amino and carboxylic acid groups. With experience, six plasma samples can be so processed within 12 min. The shortest analytical run is <7 min per sample using the GC-FID/NPD kit. Despite its many steps, the procedure becomes second nature and an enjoyable task. I have now used the GC-FID kit with manual injection to process >1,600 plasma and other samples. Limit of detection of AA is 1 μM or less. The procedure has been validated and optimised for Trp and its main five brain uptake competitors.

  1. Amino Acid Racemization and the Preservation of Ancient DNA

    NASA Technical Reports Server (NTRS)

    Poinar, Hendrik N.; Hoss, Matthias

    1996-01-01

    The extent of racemization of aspartic acid, alanine, and leucine provides criteria for assessing whether ancient tissue samples contain endogenous DNA. In samples in which the D/L ratio of aspartic acid exceeds 0.08, ancient DNA sequences could not be retrieved. Paleontological finds from which DNA sequences purportedly millions of years old have been reported show extensive racemization, and the amino acids present are mainly contaminates. An exception is the amino acids in some insects preserved in amber.

  2. Amino Acids in Nectar Enhance Longevity of Female Culex quinquefasciatus

    DTIC Science & Technology

    2010-01-01

    and that some insects show a preference for carbohydrate sources containing amino acids (Alm et al., 1990; Mevi-Schutz and Erhardt, 2003b), has led...to an increased interest in the role that they play in insect life histories (Baker and Baker, 1973). Some insects rely on nectar as a primary source ...2003a; Hill and Pierce, 1989). Certain flowers contain high levels of amino acids, and have been studied as potentially important sources for amino

  3. Amino acid determination in some edible Mexican insects.

    PubMed

    Ladrón de Guevara, O; Padilla, P; García, L; Pino, J M; Ramos-Elorduy, J

    1995-06-01

    The amino acid contents of edible insects from different provinces of Mexico and reference proteins were analysed by reversed-phase high-performance liquid chromatography and ion exchange chromatography. The insect amino acid contents were higher than the adult requirements indicated by the WHO/FAO pattern.

  4. Natural toxins that affect plant amino acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  5. Boron containing amino acid compounds and methods for their use

    DOEpatents

    Glass, John D.; Coderre, Jeffrey A.

    2000-01-01

    The present invention provides new boron containing amino acid compounds and methods for making these compounds by contacting melphalan or another nitrogen mustard derivative and sodium borocaptate. The present invention also provides a method of treating a mammal having a tumor by administering to the mammal a therapeutically effective amount of the new boron containing amino acid compounds.

  6. Boron containing amino acid compounds and methods for their use

    SciTech Connect

    Glass, J.D.; Coderre, J.A.

    2000-01-25

    The present invention provides new boron containing amino acid compounds and methods for making these compounds by contacting melphalan or another nitrogen mustard derivative and sodium borocaptate. The present invention also provides a method of treating a mammal having a tumor by administering to the mammal a therapeutically effective amount of the new boron containing amino acid compounds.

  7. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    PubMed Central

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves II, H. James

    2015-01-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or “chemistry space.” Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set. PMID:25802223

  8. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    NASA Astrophysics Data System (ADS)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves, H. James, II

    2015-03-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or ``chemistry space.'' Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set.

  9. Parenteral sulfur amino acid requirements in septic infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate parenteral methionine requirements of critically ill, septic infants, we conducted an investigation involving 12 infants (age 2+/-1 years; weight 13+/-2kg) using the intravenous indicator amino acid oxidation and balance technique. They received a balanced parenteral amino acid formul...

  10. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories

    PubMed Central

    2016-01-01

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplified by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large l-enantiomeric excesses of some extraterrestrial protein amino acids (up to ∼60%) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work. PMID:27413780

  11. Parenteral amino acid intakes in critically ill children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parenteral amino acid formulas used in parenteral nutrition have a variable composition. To determine the amino acid intake of parenterally fed, critically ill children, and compare it with recommended dietary allowances (RDA) established by the Institute of Medicine (IOM), we retrospectively review...

  12. Amino acids in a carbonaceous chondrite from Antarctica

    NASA Technical Reports Server (NTRS)

    Kotra, R. K.; Shimoyama, A.; Ponnamperuma, C.; Hare, P. E.

    1979-01-01

    A carbonaceous chondrite from the Antarctic, referred to as the Allan Hills meteorite 77306, appears to be free from terrestrial organic contamination. The presence of both protein and non-protein amino acids and an equal abundance of D- and L-enantiomers of amino acids, is testimony to the extraterrestrial nature of these compounds.

  13. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  14. Production of amino acids using auxotrophic mutants of methylotrophic bacillus

    DOEpatents

    Hanson, Richard S.; Flickinger, Michael C.; Schendel, Frederick J.; Guettler, Michael V.

    2001-07-17

    A method of producing amino acids by culturing an amino acid auxotroph of a biologically pure strain of a type I methylotrophic bacterium of the genus Bacillus which exhibits sustained growth at 50.degree. C. using methanol as a carbon and energy source and requiring vitamin B.sub.12 and biotin is provided.

  15. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  16. Interactive Hangman Teaches Amino Acid Structures and Abbreviations

    ERIC Educational Resources Information Center

    Pennington, Britney O.; Sears, Duane; Clegg, Dennis O.

    2014-01-01

    We developed an interactive exercise to teach students how to draw the structures of the 20 standard amino acids and to identify the one-letter abbreviations by modifying the familiar game of "Hangman." Amino acid structures were used to represent single letters throughout the game. To provide additional practice in identifying…

  17. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  18. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  19. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2009-04-28

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  20. Zwitterionic Poly(amino acid methacrylate) Brushes

    PubMed Central

    2014-01-01

    A new cysteine-based methacrylic monomer (CysMA) was conveniently synthesized via selective thia-Michael addition of a commercially available methacrylate-acrylate precursor in aqueous solution without recourse to protecting group chemistry. Poly(cysteine methacrylate) (PCysMA) brushes were grown from the surface of silicon wafers by atom-transfer radical polymerization. Brush thicknesses of ca. 27 nm were achieved within 270 min at 20 °C. Each CysMA residue comprises a primary amine and a carboxylic acid. Surface zeta potential and atomic force microscopy (AFM) studies of the pH-responsive PCysMA brushes confirm that they are highly extended either below pH 2 or above pH 9.5, since they possess either cationic or anionic character, respectively. At intermediate pH, PCysMA brushes are zwitterionic. At physiological pH, they exhibit excellent resistance to biofouling and negligible cytotoxicity. PCysMA brushes undergo photodegradation: AFM topographical imaging indicates significant mass loss from the brush layer, while XPS studies confirm that exposure to UV radiation produces surface aldehyde sites that can be subsequently derivatized with amines. UV exposure using a photomask yielded sharp, well-defined micropatterned PCysMA brushes functionalized with aldehyde groups that enable conjugation to green fluorescent protein (GFP). Nanopatterned PCysMA brushes were obtained using interference lithography, and confocal microscopy again confirmed the selective conjugation of GFP. Finally, PCysMA undergoes complex base-catalyzed degradation in alkaline solution, leading to the elimination of several small molecules. However, good long-term chemical stability was observed when PCysMA brushes were immersed in aqueous solution at physiological pH. PMID:24884533

  1. Amino acid composition predicts prion activity.

    PubMed

    Afsar Minhas, Fayyaz Ul Amir; Ross, Eric D; Ben-Hur, Asa

    2017-04-10

    Many prion-forming proteins contain glutamine/asparagine (Q/N) rich domains, and there are conflicting opinions as to the role of primary sequence in their conversion to the prion form: is this phenomenon driven primarily by amino acid composition, or, as a recent computational analysis suggested, dependent on the presence of short sequence elements with high amyloid-forming potential. The argument for the importance of short sequence elements hinged on the relatively-high accuracy obtained using a method that utilizes a collection of length-six sequence elements with known amyloid-forming potential. We weigh in on this question and demonstrate that when those sequence elements are permuted, even higher accuracy is obtained; we also propose a novel multiple-instance machine learning method that uses sequence composition alone, and achieves better accuracy than all existing prion prediction approaches. While we expect there to be elements of primary sequence that affect the process, our experiments suggest that sequence composition alone is sufficient for predicting protein sequences that are likely to form prions. A web-server for the proposed method is available at http://faculty.pieas.edu.pk/fayyaz/prank.html, and the code for reproducing our experiments is available at http://doi.org/10.5281/zenodo.167136.

  2. The tangled bank of amino acids

    PubMed Central

    Pollock, David D.

    2016-01-01

    Abstract The use of amino acid substitution matrices to model protein evolution has yielded important insights into both the evolutionary process and the properties of specific protein families. In order to make these models tractable, standard substitution matrices represent the average results of the evolutionary process rather than the underlying molecular biophysics and population genetics, treating proteins as a set of independently evolving sites rather than as an integrated biomolecular entity. With advances in computing and the increasing availability of sequence data, we now have an opportunity to move beyond current substitution matrices to more interpretable mechanistic models with greater fidelity to the evolutionary process of mutation and selection and the holistic nature of the selective constraints. As part of this endeavour, we consider how epistatic interactions induce spatial and temporal rate heterogeneity, and demonstrate how these generally ignored factors can reconcile standard substitution rate matrices and the underlying biology, allowing us to better understand the meaning of these substitution rates. Using computational simulations of protein evolution, we can demonstrate the importance of both spatial and temporal heterogeneity in modelling protein evolution. PMID:27028523

  3. How Do Haloarchaea Synthesize Aromatic Amino Acids?

    PubMed Central

    Gulko, Miriam Kolog; Dyall-Smith, Mike; Gonzalez, Orland; Oesterhelt, Dieter

    2014-01-01

    Genomic analysis of H. salinarum indicated that the de novo pathway for aromatic amino acid (AroAA) biosynthesis does not follow the classical pathway but begins from non-classical precursors, as is the case for M. jannaschii. The first two steps in the pathway were predicted to be carried out by genes OE1472F and OE1475F, while the 3rd step follows the canonical pathway involving gene OE1477R. The functions of these genes and their products were tested by biochemical and genetic methods. In this study, we provide evidence that supports the role of proteins OE1472F and OE1475F catalyzing consecutive enzymatic reactions leading to the production of 3-dehydroquinate (DHQ), after which AroAA production proceeds via the canonical pathway starting with the formation of DHS (dehydroshikimate), catalyzed by the product of ORF OE1477R. Nutritional requirements and AroAA uptake studies of the mutants gave results that were consistent with the proposed roles of these ORFs in AroAA biosynthesis. DNA microarray data indicated that the 13 genes of the canonical pathway appear to be utilised for AroAA biosynthesis in H. salinarum, as they are differentially expressed when cells are grown in medium lacking AroAA. PMID:25216252

  4. Marine Planktonic Archaea Take Up Amino Acids

    PubMed Central

    Ouverney, Cleber C.; Fuhrman, Jed A.

    2000-01-01

    Archaea are traditionally thought of as “extremophiles,” but recent studies have shown that marine planktonic Archaea make up a surprisingly large percentage of ocean midwater microbial communities, up to 60% of the total prokaryotes. However, the basic physiology and contribution of Archaea to community microbial activity remain unknown. We have studied Archaea from 200-m depths of the northwest Mediterranean Sea and the Pacific Ocean near California, measuring the archaeal activity under simulated natural conditions (8 to 17°C, dark and anaerobic) by means of a method called substrate tracking autoradiography fluorescence in situ hybridization (STARFISH) that simultaneously detects specific cell types by 16S rRNA probe binding and activity by microautoradiography. In the 200-m-deep Mediterranean and Pacific samples, cells binding the archaeal probes made up about 43 and 14% of the total countable cells, respectively. Our results showed that the Archaea are active in the uptake of dissolved amino acids from natural concentrations (nanomolar) with about 60% of the individuals in the archaeal communities showing measurable uptake. Bacteria showed a similar proportion of active cells. We concluded that a portion of these Archaea is heterotrophic and also appears to coexist successfully with Bacteria in the same water. PMID:11055931

  5. Electronic coupling through natural amino acids

    SciTech Connect

    Berstis, Laura; Beckham, Gregg T. E-mail: gregg.beckham@nrel.gov; Crowley, Michael F. E-mail: gregg.beckham@nrel.gov

    2015-12-14

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green’s function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.

  6. Amino acids: metabolism, functions, and nutrition.

    PubMed

    Wu, Guoyao

    2009-05-01

    Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.

  7. Amino Acid Carbamates As Prodrugs Of Resveratrol

    PubMed Central

    Mattarei, Andrea; Azzolini, Michele; La Spina, Martina; Zoratti, Mario; Paradisi, Cristina; Biasutto, Lucia

    2015-01-01

    Resveratrol (3, 5, 4′-trihydroxy-trans-stilbene), a plant polyphenol, has important drug-like properties, but its pharmacological exploitation in vivo is hindered by its rapid transformation via phase II conjugative metabolism. One approach to bypass this problem relies on prodrugs. We report here the synthesis, characterization, stability and in vivo pharmacokinetic behaviour of prodrugs of resveratrol in which the OH groups are engaged in an N-monosubstituted carbamate ester (-OC(O)NHR) linkage with a natural amino acid (Leu, Ile, Phe, Thr) to prevent conjugation and modulate the physicochemical properties of the molecule. We also report a convenient, high-yield protocol to obtain derivatives of this type. The new carbamate ester derivatives are stable at pH 1, while they undergo slow hydrolysis at physiological pH and hydrolyse with kinetics suitable for use in prodrugs in whole blood. After administration to rats by oral gavage the isoleucine-containing prodrug was significantly absorbed, and was present in the bloodstream as non-metabolized unaltered or partially deprotected species, demonstrating effective shielding from first-pass metabolism. We conclude that prodrugs based on the N-monosubstituted carbamate ester bond have the appropriate stability profile for the systemic delivery of phenolic compounds. PMID:26463125

  8. Amino Acid Analyses of Acid Hydrolysates in Desert Varnish

    NASA Technical Reports Server (NTRS)

    Perry, Randall S.; Staley, James T.; Dworkin, Jason P.; Engel, Mike

    2001-01-01

    There has long been a debate as to whether rock varnish deposits are microbially mediated or are deposited by inorganic processes. Varnished rocks are found throughout the world primarily in arid and semi-arid regions. The varnish coats are typically up to 200 microns thick and are composed of clays and alternating layers enriched in manganese and iron oxides. The individual layers range in thickness from 1 micron to greater than 10 microns and may continue laterally for more than a 100 microns. Overlapping botryoidal structures are visible in thin section and scanning electron micrographs. The coatings also include small amounts of organic mater and detrital grains. Amino-acid hydrolysates offer a means of assessing the organic composition of rock varnish collected from the Sonoran Desert, near Phoenix, AZ. Chromatographic analyses of hydrolysates from powdered samples of rock varnish suggest that the interior of rock varnish is relatively enriched in amino acids and specifically in d-alanine and glutamic acid. Peptidoglycan (murein) is the main structural component of gram-positive bacterial cell walls. The d-enantiomer of alanine and glutamic acid are specific to peptidoglycan and are consequently an indicator for the presence of bacteria. D-alanine is also found in teichoic acid which is only found in gram-positive bacteria. Several researchers have cultured bacteria from the surface of rock varnish and most have been gram-positive, suggesting that gram-positive bacteria are intimately associated with varnish coatings and may play a role in the formation of varnish coatings.

  9. Stardust, Supernovae and the Chirality of the Amino Acids

    SciTech Connect

    Boyd, R N; Kajino, T; Onaka, T

    2011-03-09

    A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.

  10. Supernovae, Neutrinos and the Chirality of Amino Acids

    PubMed Central

    Boyd, Richard N.; Kajino, Toshitaka; Onaka, Takashi

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids. PMID:21747686

  11. Supernovae, neutrinos and the chirality of amino acids.

    PubMed

    Boyd, Richard N; Kajino, Toshitaka; Onaka, Takashi

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the (14)N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.

  12. Transport of Amino Acids to the Maize Root 1

    PubMed Central

    Oaks, Ann

    1966-01-01

    When 5-mm maize root tips were excised and placed in an inorganic salts solution for 6 hours, there was a loss of alcohol-insoluble nitrogen. The levels of threonine, proline, valine, isoleucine, leucine, tyrosine, phenylalanine, and lysine in the alcohol soluble fraction were severely reduced, whereas those of glutamate, aspartate, ornithine, and alanine were scarcely affected. There was a 4-fold increase in the level of γ-aminobutyrate. Those amino acids whose synthesis appeared to be deficient in excised root tips also showed poor incorporation of acetate carbon. In addition, the results show that asparagine and the amino acids of the neutral and basic fraction were preferentially transported to the root tip region. The results therefore suggest that the synthesis of certain amino acids in the root tip region is restricted, and that this requirement for amino acids in the growing region could regulate the flow of amino acids to the root tip. PMID:16656225

  13. Crystallization of jarosite in the presence of amino acids

    NASA Astrophysics Data System (ADS)

    Crabbe, Harrison; Fernandez, Natalya; Jones, Franca

    2015-04-01

    Jarosite was formed in the presence of five amino acids at two pHs, namely 1.75 and 2.9, to determine what impact amino acids have on its formation. It was found that at the lower pH glycine was the most potent in terms of morphological and yield impacts. XRD analysis showed that incorporation of the amino acid occurs at this low pH for glycine and proline. Dynamic light scattering studies showed that glycine impacts significantly on the jarosite nucleation rate while proline and alanine do not. At the higher pH all of the amino acids had much less impact on morphology or yield. At pH 3 the solids were found to be a 3-phase system consisting of goethite, schwertmannite and jarosite. In this case, alanine appeared to stabilise the presence of schwertmannite more than the other amino acids.

  14. Peptide and amino acid separation with nanofiltration membranes

    SciTech Connect

    Tsuru, Toshinori; Shutou, Takatoshi; Nakao, Shin-Ichi; Kimura, Shoji )

    1994-05-01

    Several nanofiltration membranes [UTC-20, 60 (Toray Industries), NF-40 (Film-Tech Corporation), Desal-5, G-20 (Desalination Systems), and NTR-7450 (Nitto Electric Industrial Co.)] were applied to separate amino acids and peptides on the basis of charge interaction with the membranes since most of them contain charged functional groups. Nanofiltration membranes having a molecular weight cutoff (MWCO) below 300 (UTC-20, 60, NF-40 and Desal-5) were not suitable for separation of amino acids. On the other hand, separation of amino acids and peptides with nanofiltration membranes having a MWCO around 2000-3000 (NTR-7450 and G-20) was satisfactory based on a charge effect mechanism; charged amino acids and peptides were rejected while neutral amino acids and peptides permeated through the membranes. Separation of peptides having different isoelectric points with nanofiltration membranes was possible by adjusting the pH. 15 refs., 11 figs., 4 tabs.

  15. Soil Bacteria Take Up D-Amino Acids, Protect Plants

    NASA Astrophysics Data System (ADS)

    Sun, H. J.; Zhang, G.

    2011-12-01

    Recently, many groups reported D-amino acid uptake by plant roots, raising the question of whether soil D-amino acids represent a source of nitrogen or a source of toxicity. The discussion needs to be placed in the context of competition with rhizosphere bacteria. To provide this context, we followed the concentrations of D- and L-enantiomers of alanine, glutamic acid, aspartic acid, and leucine after they were added to soils in the laboratory. In all cases, the uptake of L-enantiomer began immediately and proceeded rapidly until exhausted. In contrast, the uptake of D-enantiomer required induction: an initial period of inactivity followed by rapid consumption comparable in rate to L-enantiomer. The induced nature of the D activity was confirmed by the addition of rifampicin, an mRNA synthesis inhibitor. Preventing the synthesis of new enzymes abolished soil flora's ability to consume D-amino acids, but not L-amino acids. These results suggest that inducible special racemase enzymes, which can convert D-amino acids back to their native L-forms, are widespread among soil microorganisms. This finding does not rule out the possibility that some plants may out-compete microorganisms and be able to access D-amino acids. It does suggest, however, that rhizosphere bacteria can shield plants from the toxic effect of D-amino acids.

  16. Wet, Carbonaceous Asteroids: Altering Minerals, Changing Amino Acids

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2011-04-01

    Many carbonaceous chondrites contain alteration products from water-rock interactions at low temperature and organic compounds. A fascinating fact known for decades is the presence in some of them of an assortment of organic compounds, including amino acids, sometimes called the building blocks of life. Murchison and other CM carbonaceous chondrites contain hundreds of amino acids. Early measurements indicated that the amino acids in carbonaceous chondrites had equal proportions of L- and D-structures, a situation called racemic. This was in sharp contrast to life on Earth, which heavily favors L- forms. However, beginning in 1997, John Cronin and Sandra Pizzarello (Arizona State University) found L- excesses in isovaline and several other amino acids in the Murchison carbonaceous chondrite. In 2009, Daniel Glavin and Jason Dworkin (Astrobiology Analytical Lab, Goddard Space Flight Center) reported the first independent confirmation of L-isovaline excesses in Murchison using a different analytical technique than employed by Cronin and Pizzarello. Inspired by this work, Daniel Glavin, Michael Callahan, Jason Dworkin, and Jamie Elsila (Astrobiology Analytical Lab, Goddard Space Flight Center), have done an extensive study of the abundance and symmetry of amino acids in carbonaceous chondrites that experienced a range of alteration by water in their parent asteroids. The results show that amino acids are more abundant in the less altered meteorites, implying that aqueous processing changes the mix of amino acids. They also confirmed the enrichment in L-structures of some amino acids, especially isovaline, confirming earlier work. The authors suggest that aqueously-altered planetesimals might have seeded the early Earth with nonracemic amino acids, perhaps explaining why life from microorganisms to people use only L- forms to make proteins. The initial imbalance caused by non-biologic processes in wet asteroids might have been amplified by life on Earth. Alternatively

  17. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    PubMed

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  18. Substrate specificity and transport mechanism of amino-acid transceptor Slimfast from Aedes aegypti

    PubMed Central

    Boudko, Dmitri Y.; Tsujimoto, Hitoshi; Rodriguez, Stacy D.; Meleshkevitch, Ella A.; Price, David P.; Drake, Lisa L.; Hansen, Immo A.

    2015-01-01

    Anautogenous mosquitoes depend on vertebrate blood as nutrient source for their eggs. A highly efficient set of membrane transporters mediates the massive movement of nutrient amino acids between mosquito tissues after a blood meal. Here we report the characterization of the amino-acid transporter Slimfast (Slif) from the yellow-fever mosquito Aedes aegypti using codon-optimized heterologous expression. Slif is a well-known component of the target-of-rapamycin signalling pathway and fat body nutrient sensor, but its substrate specificity and transport mechanism were unknown. We found that Slif transports essential cationic and neutral amino acids with preference for arginine. It has an unusual dual-affinity mechanism with only the high affinity being Na+ dependent. Tissue-specific expression and blood meal-dependent regulation of Slif are consistent with conveyance of essential amino acids from gut to fat body. Slif represents a novel transport system and type of transceptor for sensing and transporting essential amino acids during mosquito reproduction. PMID:26449545

  19. Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars.

    PubMed

    Yoshinaga, Naoko; Alborn, Hans T; Nakanishi, Tomoaki; Suckling, David M; Nishida, Ritsuo; Tumlinson, James H; Mori, Naoki

    2010-03-01

    Fatty acid amino acid conjugates (FACs) have been found in noctuid as well as sphingid caterpillar oral secretions; in particular, volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants. These induced volatiles, in turn, attract natural enemies of the caterpillars. In a previous study, we showed that N-linolenoyl-L-glutamine in larval Spodoptera litura plays an important role in nitrogen assimilation which might be an explanation for caterpillars synthesizing FACs despite an increased risk of attracting natural enemies. However, the presence of FACs in lepidopteran species outside these families of agricultural interest is not well known. We conducted FAC screening of 29 lepidopteran species, and found them in 19 of these species. Thus, FACs are commonly synthesized through a broad range of lepidopteran caterpillars. Since all FAC-containing species had N-linolenoyl-L-glutamine and/or N-linoleoyl-L-glutamine in common, and the evolutionarily earliest species among them had only these two FACs, these glutamine conjugates might be the evolutionarily older FACs. Furthermore, some species had glutamic acid conjugates, and some had hydroxylated FACs. Comparing the diversity of FACs with lepidopteran phylogeny indicates that glutamic acid conjugates can be synthesized by relatively primitive species, while hydroxylation of fatty acids is limited mostly to larger and more developed macrolepidopteran species.

  20. Quantitative analysis of 17 amino acids in tobacco leaves using an amino acid analyzer and chemometric resolution.

    PubMed

    Zeng, Yihang; Cai, Wensheng; Shao, Xueguang

    2015-06-01

    A method was developed for quantifying 17 amino acids in tobacco leaves by using an A300 amino acid analyzer and chemometric resolution. In the method, amino acids were eluted by the buffer solution on an ion-exchange column. After reacting with ninhydrin, the derivatives of amino acids were detected by ultraviolet detection. Most amino acids are separated by the elution program. However, five peaks of the derivatives are still overlapping. A non-negative immune algorithm was employed to extract the profiles of the derivatives from the overlapping signals, and then peak areas were adopted for quantitative analysis of the amino acids. The method was validated by the determination of amino acids in tobacco leaves. The relative standard deviations (n = 5) are all less than 2.54% and the recoveries of the spiked samples are in a range of 94.62-108.21%. The feasibility of the method was proved by analyzing the 17 amino acids in 30 tobacco leaf samples.

  1. Serum amino acid concentrations in patients receiving total parenteral nutrition with an amino acid plus dextrose mixture.

    PubMed

    Philcox, J C; Hartley, T F; Worthley, L I; Thomas, D W

    1984-01-01

    The results of monitoring the serum amino acid concentrations during three infusion regimens using a 5:4 mixture of 70% glucose and the synthetic L-amino acid solution, Synthamin 17 (Travasol) are reported. Twelve stabilized patients received continuous total parenteral nutrition (TPN), eight of whom were subsequently placed on a second regimen of cyclical feeding. A separate group of five patients was infused with amino acids, both with and without simultaneous glucose. The serum amino acid concentrations indicated that the supply of valine, leucine, isoleucine, lysine, and histidine, and the synthesis of taurine from the infused methionine was suboptimal, particularly if the period of TPN was prolonged. The synthesis of tyrosine from phenylalanine appeared to be inversely proportional to the infusion rate of the TPN mixture, in particular the glucose component, resulting in depressed tyrosine and increased phenylalanine concentrations in serum during continuous iv nutrition. Cyclical infusions, on the other hand, permitted the tyrosine and phenylalanine concentrations to return to normal during the noninfusion stage of the cycle. Amino acid measurements enabled us to design an amino acids additive mixture which normalized the serum concentrations in three long-term home parenteral nutrition patients. As a result of these investigations serum amino acid measurements are used routinely to monitor the efficacy of TPN and accommodate any specific amino acid requirements of individual patients.

  2. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  3. Network-Guided GWAS Improves Identification of Genes Affecting Free Amino Acids1[OPEN

    PubMed Central

    Deason, Nicholas; DellaPenna, Dean

    2017-01-01

    Amino acids are essential for proper growth and development in plants. Amino acids serve as building blocks for proteins but also are important for responses to stress and the biosynthesis of numerous essential compounds. In seed, the pool of free amino acids (FAAs) also contributes to alternative energy, desiccation, and seed vigor; thus, manipulating FAA levels can significantly impact a seed’s nutritional qualities. While genome-wide association studies (GWAS) on branched-chain amino acids have identified some regulatory genes controlling seed FAAs, the genetic regulation of FAA levels, composition, and homeostasis in seeds remains mostly unresolved. Hence, we performed GWAS on 18 FAAs from a 313-ecotype Arabidopsis (Arabidopsis thaliana) association panel. Specifically, GWAS was performed on 98 traits derived from known amino acid metabolic pathways (approach 1) and then on 92 traits generated from an unbiased correlation-based metabolic network analysis (approach 2), and the results were compared. The latter approach facilitated the discovery of additional novel metabolic interactions and single-nucleotide polymorphism-trait associations not identified by the former approach. The most prominent network-guided GWAS signal was for a histidine (His)-related trait in a region containing two genes: a cationic amino acid transporter (CAT4) and a polynucleotide phosphorylase resistant to inhibition with fosmidomycin. A reverse genetics approach confirmed CAT4 to be responsible for the natural variation of His-related traits across the association panel. Given that His is a semiessential amino acid and a potent metal chelator, CAT4 orthologs could be considered as candidate genes for seed quality biofortification in crop plants. PMID:27872244

  4. Polyampholyte nanoparticles prepared by self-complexation of cationized poly(γ-glutamic acid) for protein carriers.

    PubMed

    Shen, Heyun; Akagi, Takami; Akashi, Mitsuru

    2012-08-01

    A novel amphoteric poly(amino acid) is synthesized by grafting a cationic amino acid (L-Arg) to γ-PGA to prepare charged NPs. γ-PGA-Arg NPs can be prepared by the self-complexation of a single polymer by intra-/inter-molecular electrostatic interactions when the polymer is dispersed in water. The size and surface charge of the NPs can be regulated by the grafting degree of Arg (41, 56, and 83%). The smallest NPs are obtained at 56% grafting degree of the γ-PGA-Arg copolymer. The 56 and 83% grafting degree NPs are stable for at least 1 week. Depending on their surface charge, these NPs can selectively adsorb anionically or cationically charged proteins.

  5. Graphdiyne as a promising material for detecting amino acids

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Gao, Pengfei; Guo, Lei; Zhang, Shengli

    2015-11-01

    The adsorption of glycine, glutamic acid, histidine and phenylalanine on single-layer graphdiyne/ graphene is investigated by ab initio calculations. The results show that for each amino acid molecule, the adsorption energy on graphdiyne is larger than the adsorption energy on graphene and dispersion interactions predominate in the adsorption. Molecular dynamics simulations reveal that at room temperature the amino acid molecules keep migrating and rotating on graphdiyne surface and induce fluctuation in graphdiyne bandgap. Additionally, the photon absorption spectra of graphdiyne-amino-acid systems are investigated. We uncover that the presence of amino acid molecules makes the photon absorption peaks of graphdiyne significantly depressed and shifted. Finally, quantum electronic transport properties of graphdiyne-amino-acid systems are compared with the transport properties of pure graphdiyne. We reveal that the amino acid molecules induce distinct changes in the electronic conductivity of graphdiyne. The results in this paper reveal that graphdiyne is a promising two-dimensional material for sensitively detecting amino acids and may potentially be used in biosensors.

  6. Regulation of myocardial amino acid balance in the conscious dog.

    PubMed Central

    Schwartz, R G; Barrett, E J; Francis, C K; Jacob, R; Zaret, B L

    1985-01-01

    The effects in vivo of physiologic increases in insulin and amino acids on myocardial amino acid balance were evaluated in conscious dogs. Arterial and coronary sinus concentrations of amino acids and coronary blood flow were measured during a 30-min basal and a 100-min experimental period employing three protocols: euglycemic insulin clamp (plasma insulin equaled 70 +/- 11 microU/ml, n = 6); euglycemic insulin clamp during amino acid infusion (plasma insulin equaled 89 +/- 12 microU/ml, n = 6); and suppression of insulin with somatostatin during amino acid infusion (plasma insulin equaled 15 +/- 4 microU/ml, n = 6). Basally, only leucine and isoleucine were removed significantly by myocardium (net branched chain amino acid [BCAA] uptake equaled 0.5 +/- 0.2 mumol/min), while glycine, alanine, and glutamine were released. Glutamine demonstrated the highest net myocardial production (1.6 +/- 0.2 mumol/min). No net exchange was seen for valine, phenylalanine, tyrosine, cysteine, methionine, glutamate, asparagine, serine, threonine, taurine, and aspartate. In group I, hyperinsulinemia caused a decline of all plasma amino acids except alanine; alanine balance switched from release to an uptake of 0.6 +/- 0.4 mumol/min (P less than 0.05), while the myocardial balance of other amino acids was unchanged. In group II, amino acid concentrations rose, and were accompanied by a marked rise in myocardial BCAA uptake (0.4 +/- 0.1-2.6 +/- 0.3 mumol/min, P less than 0.001). Uptake of alanine was again stimulated (0.9 +/- 0.3 mumol/min, P less than 0.01), while glutamine production was unchanged (1.3 +/- 0.4 vs. 1.6 +/- 0.3 mumol/min). In group III, there was a 4-5-fold increase in the plasma concentration of the infused amino acids, accompanied by marked stimulation in uptake of only BCAA (6.8 +/- 0.7 mumol/min). Myocardial glutamine production was unchanged (1.9 +/- 0.4-1.3 +/- 0.7 mumol/min). Within the three experimental groups there were highly significant linear correlations

  7. Amino acid synthesis in a supercritical carbon dioxide - water system.

    PubMed

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-06-15

    Mars is a CO(2)-abundant planet, whereas early Earth is thought to be also CO(2)-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO(2)/liquid H(2)O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life's origin.

  8. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    PubMed Central

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-01-01

    Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin. PMID:19582225

  9. Transaminases for the synthesis of enantiopure beta-amino acids

    PubMed Central

    2012-01-01

    Optically pure β-amino acids constitute interesting building blocks for peptidomimetics and a great variety of pharmaceutically important compounds. Their efficient synthesis still poses a major challenge. Transaminases (also known as aminotransferases) possess a great potential for the synthesis of optically pure β-amino acids. These pyridoxal 5'-dependent enzymes catalyze the transfer of an amino group from a donor substrate to an acceptor, thus enabling the synthesis of a wide variety of chiral amines and amino acids. Transaminases can be applied either for the kinetic resolution of racemic compounds or the asymmetric synthesis starting from a prochiral substrate. This review gives an overview over microbial transaminases with activity towards β-amino acids and their substrate spectra. It also outlines current strategies for the screening of new biocatalysts. Particular emphasis is placed on activity assays which are applicable to high-throughput screening. PMID:22293122

  10. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    PubMed Central

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques.

  11. Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation.

    PubMed

    Rozance, Paul J; Crispo, Michelle M; Barry, James S; O'Meara, Meghan C; Frost, Mackenzie S; Hansen, Kent C; Hay, William W; Brown, Laura D

    2009-09-01

    Protein supplementation during human pregnancy does not improve fetal growth and may increase small-for-gestational-age birth rates and mortality. To define possible mechanisms, sheep with twin pregnancies were infused with amino acids (AA group, n = 7) or saline (C group, n = 4) for 4 days during late gestation. In the AA group, fetal plasma leucine, isoleucine, valine, and lysine concentrations were increased (P < 0.05), and threonine was decreased (P < 0.05). In the AA group, fetal arterial pH (7.365 +/- 0.007 day 0 vs. 7.336 +/- 0.012 day 4, P < 0.005), hemoglobin-oxygen saturation (46.2 +/- 2.6 vs. 37.8 +/- 3.6%, P < 0.005), and total oxygen content (3.17 +/- 0.17 vs. 2.49 +/- 0.20 mmol/l, P < 0.0001) were decreased on day 4 compared with day 0. Fetal leucine disposal did not change (9.22 +/- 0.73 vs. 8.09 +/- 0.63 micromol x min(-1) x kg(-1), AA vs. C), but the rate of leucine oxidation increased 43% in the AA group (2.63 +/- 0.16 vs. 1.84 +/- 0.24 micromol x min(-1) x kg(-1), P < 0.05). Fetal oxygen utilization tended to be increased in the AA group (327 +/- 23 vs. 250 +/- 29 micromol x min(-1) x kg(-1), P = 0.06). Rates of leucine incorporation into fetal protein (5.19 +/- 0.97 vs. 5.47 +/- 0.89 micromol x min(-1) x kg(-1), AA vs. C), release from protein breakdown (4.20 +/- 0.95 vs. 4.62 +/- 0.74 micromol x min(-1) x kg(-1)), and protein accretion (1.00 +/- 0.30 vs. 0.85 +/- 0.25 micromol x min(-1) x kg(-1)) did not change. Consistent with these data, there was no change in the fetal skeletal muscle ubiquitin ligases MaFBx1 or MuRF1 or in the protein synthesis regulators 4E-BP1, eEF2, eIF2alpha, and p70(S6K). Decreased concentrations of certain essential amino acids, increased amino acid oxidation, fetal acidosis, and fetal hypoxia are possible mechanisms to explain fetal toxicity during maternal amino acid supplementation.

  12. The indicator amino acid oxidation method identified limiting amino acids in two parenteral nutrition solutions in neonatal piglets.

    PubMed

    Brunton, Janet A; Shoveller, Anna K; Pencharz, Paul B; Ball, Ronald O

    2007-05-01

    Recent studies using the indicator amino acid oxidation (IAAO) technique in TPN-fed piglets and infants have been instrumental in defining parenteral amino acid requirements. None of the commercial products in use are ideal when assessed against these new data. Our objectives were to determine whether the oxidation of an indicator amino acid would decline with the addition of amino acids that were limiting in the diets of TPN-fed piglets, and to use this technique to identify limiting amino acids in a new amino acid profile. Piglets (n = 26) were randomized to receive TPN with amino acids provided by Vaminolact (VM) or by a new profile (NP). After 5 d of TPN administration, lysine oxidation was measured using a constant infusion of L- [1-(14)C]-lysine. Immediately following the first IAAO study, the piglets were further randomized within diet group to receive either 1) supplemental aromatic amino acids (AAA), 2) sulfur amino acids (SAA) or 3) both (AAA+SAA) (n = 4-5 per treatment group). A second IAAO study was carried out 18 h later. In the first IAAO study, lysine oxidation was high for both groups (18 vs. 21% for VM and NP, respectively, P = 0.055). The addition of AAA to VM induced a 30% decline in lysine oxidation compared with baseline (P < 0.01). Similarly, SAA added to NP lowered lysine oxidation by approximately 30% (P < 0.01). The application of the IAAO technique facilitates rapid evaluation of the amino acids that are limiting to protein synthesis in parenteral solutions.

  13. Evaluation of circulating levels and renal clearance of natural amino acids in patients with Cushing's disease.

    PubMed

    Faggiano, A; Pivonello, R; Melis, D; Alfieri, R; Filippella, M; Spagnuolo, G; Salvatore, F; Lombardi, G; Colao, A

    2002-02-01

    Although the hypercortisolism-induced impairment of protein homeostasis is object of several studies, a detailed evaluation of the complete amino acid profile of patients with Cushing's syndrome (CS) has never been performed. The aim of the current open transversal controlled study was to evaluate serum and urinary concentrations as well as renal clearance of the complete series of natural amino acids and their relationship with glucose tolerance in patients with Cushing's disease (CD). Twenty patients with CD (10 active and 10 cured) and 20 sex- and age-matched healthy controls entered the study. Measurement of serum and urinary levels of the complete series of natural amino acids was performed in all patients analyzed by cationic exchange high performance liquid cromatography (HPLC) after 2 weeks of a standardized protein intake regimen. The renal clearance (renal excretion rate) of each amino acid was calculated on the basis of the serum and urinary concentrations of creatinine and the specific amino acid. Fasting glucose and insulin levels, glucose and insulin response to standard glucose load, insulinogenic and homeostasis model insulin resistance (Homa-R) indexes were also evaluated and correlated to the circulating levels and renal clearances of each amino acid. Significantly higher serum (p<0.01) and urinary (p<0.05) levels of alanine and cystine, lower serum and higher urinary levels of leucine, isoleucine and valine (p<0.05) and higher renal excretion rates of leucine, isoleucine and valine (p<0.01) were found in patients with active CD than in patients cured from the disease and in controls. No difference was found between cured patients and controls. Creatinine clearance was similar in active and cured patients and in controls. In patients with active CD, urinary cortisol levels were significantly correlated to urinary cystine levels (r=0.85; p<0.01) and renal excretion rate of leucine (r=-0.76; p<0.05), isoleucine (r=-0.76; p<0.05) and valine (r=-0

  14. Functional role of polar amino acid residues in Na+/H+ exchangers.

    PubMed Central

    Wiebe, C A; Dibattista, E R; Fliegel, L

    2001-01-01

    Na(+)/H(+) exchangers are a family of ubiquitous membrane proteins. In higher eukaryotes they regulate cytosolic pH by removing an intracellular H(+) in exchange for an extracellular Na(+). In yeast and Escherichia coli, Na(+)/H(+) exchangers function in the opposite direction to remove intracellular Na(+) in exchange for extracellular H(+). Na(+)/H(+) exchangers display an internal pH-sensitivity that varies with the different antiporter types. Only recently have investigations examined the amino acids involved in pH-sensitivity and in cation binding and transport. Histidine residues are good candidates for H(+)-sensing amino acids, since they can ionize within the physiological pH range. Histidine residues have been shown to be important in the function of the E. coli Na(+)/H(+) exchanger NhaA and in the yeast Na(+)/H(+) exchanger sod2. In E. coli, His(225) of NhaA may function to interact with, or regulate, the pH-sensory region of NhaA. In sod2, His(367) is also critical to transport and may be a functional analogue of His(225) of NhaA. Histidine residues are not critical for the function of the mammalian Na(+)/H(+) exchanger, although an unusual histidine-rich sequence of the C-terminal tail has some influence on activity. Other amino acids involved in cation binding and transport by Na(+)/H(+) exchangers are only beginning to be studied. Amino acids with polar side chains such as aspartate and glutamate have been implicated in transport activity of NhaA and sod2, but have not been studied in the mammalian Na(+)/H(+) exchanger. Further studies are needed to elucidate the mechanisms involved in pH-sensitivity and cation binding and transport by Na(+)/H(+) exchangers. PMID:11415429

  15. Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine.

    PubMed

    Morris, Claudia R; Hamilton-Reeves, Jill; Martindale, Robert G; Sarav, Menaka; Ochoa Gautier, Juan B

    2017-04-01

    Nonessential amino acids are synthesized de novo and therefore not diet dependent. In contrast, essential amino acids must be obtained through nutrition since they cannot be synthesized internally. Several nonessential amino acids may become essential under conditions of stress and catabolic states when the capacity of endogenous amino acid synthesis is exceeded. Arginine and glutamine are 2 such conditionally essential amino acids and are the focus of this review. Low arginine bioavailability plays a pivotal role in the pathogenesis of a growing number of varied diseases, including sickle cell disease, thalassemia, malaria, acute asthma, cystic fibrosis, pulmonary hypertension, cardiovascular disease, certain cancers, and trauma, among others. Catabolism of arginine by arginase enzymes is the most common cause of an acquired arginine deficiency syndrome, frequently contributing to endothelial dysfunction and/or T-cell dysfunction, depending on the clinical scenario and disease state. Glutamine, an arginine precursor, is one of the most abundant amino acids in the body and, like arginine, becomes deficient in several conditions of stress, including critical illness, trauma, infection, cancer, and gastrointestinal disorders. At-risk populations are discussed together with therapeutic options that target these specific acquired amino acid deficiencies.

  16. Metabolism of amino acids, dipeptides and tetrapeptides by Lactobacillus sakei.

    PubMed

    Sinz, Quirin; Schwab, Wilfried

    2012-04-01

    The microbial degradation of proteins, peptides and amino acids generates volatiles involved in the typical flavor of dry fermented sausage. The ability of three Lactobacillus sakei strains to form aroma compounds was investigated. Whole resting cells were fermented in phosphate buffer with equimolar amounts of substrates consisting of dipeptides, tetrapeptides and free amino acids, respectively. Dipeptides disappeared quickly from the solutions whereas tetrapeptides were only partially degraded. In both approaches the concentration of free amino acids increased in the reaction mixture but did not reach the equimolar amount of the initial substrates. When free amino acids were fed to the bacteria their levels decreased only slightly. Although peptides were more rapidly degraded and/or transported into the cells, free amino acids produced higher amounts of volatiles. It is suggested, that after transport into the cell peptides are only partially hydrolyzed to their amino acids, while the rest is metabolized via alternative metabolic pathways. The three L. sakei strains differed to some extend in their ability to metabolize the substrates to volatile compounds. In a few cases this was due to the position of the amino acids within the peptides. Compared to other starter cultures used for the production of dry fermented sausages, the metabolic impact of the L. sakei strains on the formation of volatiles was very low.

  17. Retinal amino acid neurochemistry in health and disease.

    PubMed

    Kalloniatis, Michael; Loh, Chee Seang; Acosta, Monica L; Tomisich, Guido; Zhu, Yuan; Nivison-Smith, Lisa; Fletcher, Erica L; Chua, Jacqueline; Sun, Daniel; Arunthavasothy, Niru

    2013-05-01

    Advances in basic retinal anatomy, genetics, biochemical pathways and neurochemistry have not only provided a better understanding of retinal function but have also allowed us to link basic science to retinal disease. The link with disease allowed measures to be developed that now provide an opportunity to intervene and slow down or even restore sight in previously 'untreatable' retinal diseases. One of the critical advances has been the understanding of the retinal amino acid neurotransmitters, related amino acids, their metabolites and functional receptors. This review provides an overview of amino acid localisation in the retina and examples of how retinal anatomy and amino acid neurochemistry directly links to understanding retinal disease. Also, the implications of retinal remodelling involving amino acid (glutamate) receptors are outlined in this review and insights are presented on how understanding of detrimental and beneficial retinal remodelling will provide better outcomes for patients using strategies for the preservation or restoration of vision. An internet-based database of retinal images of amino acid labelling patterns and other amino acid-related images in health and disease is located at http://www.aminoacidimmunoreactivity.com.

  18. New Functions and Potential Applications of Amino Acids.

    PubMed

    Uneyama, Hisayuki; Kobayashi, Hisamine; Tonouchi, Naoto

    2016-11-22

    Currently, several types of amino acids are being produced and used worldwide. Nevertheless, several new functions of amino acids have been recently discovered that could result in other applications. For example, oral stimulation by glutamate triggers the cephalic phase response to prepare for food digestion. Further, the stomach and intestines have specific glutamate-recognizing systems in their epithelial mucosa. Regarding clinical applications, addition of monosodium glutamate to the medicinal diet has been shown to markedly enhance gastric secretion in a vagus-dependent manner. Branched-chain amino acids (BCAAs) are the major components of muscles, and ingestion of BCAAs has been found to be effective for decreasing muscle pain. BCAAs are expected to be a solution for the serious issue of aging. Further, ingestion of specific amino acids could be beneficial. Glycine can be ingested for good night's sleep: glycine ingestion before bedtime significantly improved subjective sleep quality. Ingestion of alanine and glutamine effectively accelerates alcohol metabolism, and ingestion of cystine and theanine effectively prevents colds. Finally, amino acids could be used in a novel clinical diagnostic method: the balance of amino acids in the blood could be an indicator of the risk of diseases such as cancer. These newly discovered functions of amino acids are expected to contribute to the resolution of various issues.

  19. Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe?

    PubMed Central

    2017-01-01

    There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease. PMID:28261376

  20. Differential diagnosis of (inherited) amino acid metabolism or transport disorders.

    PubMed

    Blom, W; Huijmans, J G

    1992-02-01

    Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various etiology. To differentiate between primary and secondary aminoacido-pathies systematic laboratory investigation is necessary. Early diagnosis of disorders of amino acid metabolism or transport is very important, because most of them can be treated, leading to the prevention of (further) clinical abnormalities. In those disorders, which cannot be treated, early diagnosis in an index-patient may prevent the birth of other siblings by means of genetic counseling and prenatal diagnosis.Primary aminoacidopathies can be due to genetically determined transport disorders and enzyme deficiencies in amino acid metabolism or degradation. Secondary aminoacidopathies are the result of abnormal or deficient nutrition, intestinal dysfunction, organ pathology or other metabolic diseases like organic acidurias.A survey of amino acid metabolism and transport abnormalities will be given, illustrated with metabolic pathways and characteristic abnormal amino acid chromatograms.

  1. Amino Acid Homeostasis and Chronological Longevity in Saccharomyces cerevisiae

    PubMed Central

    Aris, John P.; Fishwick, Laura K.; Marraffini, Michelle L.; Seo, Arnold Y.; Leeuwenburgh, Christiaan; Dunn, William A.

    2015-01-01

    Understanding how non-dividing cells remain viable over long periods of time, which may be decades in humans, is of central importance in understanding mechanisms of aging and longevity. The long-term viability of non-dividing cells, known as chronological longevity, relies on cellular processes that degrade old components and replace them with new ones. Key among these processes is amino acid homeostasis. Amino acid homeostasis requires three principal functions: amino acid uptake, de novo synthesis, and recycling. Autophagy plays a key role in recycling amino acids and other metabolic building blocks, while at the same time removing damaged cellular components such as mitochondria and other organelles. Regulation of amino acid homeostasis and autophagy is accomplished by a complex web of pathways that interact because of the functional overlap at the level of recycling. It is becoming increasingly clear that amino acid homeostasis and autophagy play important roles in chronological longevity in yeast and higher organisms. Our goal in this chapter is to focus on mechanisms and pathways that link amino acid homeostasis, autophagy, and chronological longevity in yeast, and explore their relevance to aging and longevity in higher eukaryotes. PMID:22094422

  2. Microbial products trigger amino acid exudation from plant roots.

    PubMed

    Phillips, Donald A; Fox, Tama C; King, Maria D; Bhuvaneswari, T V; Teuber, Larry R

    2004-09-01

    Plants naturally cycle amino acids across root cell plasma membranes, and any net efflux is termed exudation. The dominant ecological view is that microorganisms and roots passively compete for amino acids in the soil solution, yet the innate capacity of roots to recover amino acids present in ecologically relevant concentrations is unknown. We find that, in the absence of culturable microorganisms, the influx rates of 16 amino acids (each supplied at 2.5 microm) exceed efflux rates by 5% to 545% in roots of alfalfa (Medicago sativa), Medicago truncatula, maize (Zea mays), and wheat (Triticum aestivum). Several microbial products, which are produced by common soil microorganisms such as Pseudomonas bacteria and Fusarium fungi, significantly enhanced the net efflux (i.e. exudation) of amino acids from roots of these four plant species. In alfalfa, treating roots with 200 microm phenazine, 2,4-diacetylphloroglucinol, or zearalenone increased total net efflux of 16 amino acids 200% to 2,600% in 3 h. Data from (15)N tests suggest that 2,4-diacetylphloroglucinol blocks amino acid uptake, whereas zearalenone enhances efflux. Thus, amino acid exudation under normal conditions is a phenomenon that probably reflects both active manipulation and passive uptake by microorganisms, as well as diffusion and adsorption to soil, all of which help overcome the innate capacity of plant roots to reabsorb amino acids. The importance of identifying potential enhancers of root exudation lies in understanding that such compounds may represent regulatory linkages between the larger soil food web and the internal carbon metabolism of the plant.

  3. Control of mammalian gene expression by amino acids, especially glutamine.

    PubMed

    Brasse-Lagnel, Carole; Lavoinne, Alain; Husson, Annie

    2009-04-01

    Molecular data rapidly accumulating on the regulation of gene expression by amino acids in mammalian cells highlight the large variety of mechanisms that are involved. Transcription factors, such as the basic-leucine zipper factors, activating transcription factors and CCAAT/enhancer-binding protein, as well as specific regulatory sequences, such as amino acid response element and nutrient-sensing response element, have been shown to mediate the inhibitory effect of some amino acids. Moreover, amino acids exert a wide range of effects via the activation of different signalling pathways and various transcription factors, and a number of cis elements distinct from amino acid response element/nutrient-sensing response element sequences were shown to respond to changes in amino acid concentration. Particular attention has been paid to the effects of glutamine, the most abundant amino acid, which at appropriate concentrations enhances a great number of cell functions via the activation of various transcription factors. The glutamine-responsive genes and the transcription factors involved correspond tightly to the specific effects of the amino acid in the inflammatory response, cell proliferation, differentiation and survival, and metabolic functions. Indeed, in addition to the major role played by nuclear factor-kappaB in the anti-inflammatory action of glutamine, the stimulatory role of activating protein-1 and the inhibitory role of C/EBP homology binding protein in growth-promotion, and the role of c-myc in cell survival, many other transcription factors are also involved in the action of glutamine to regulate apoptosis and intermediary metabolism in different cell types and tissues. The signalling pathways leading to the activation of transcription factors suggest that several kinases are involved, particularly mitogen-activated protein kinases. In most cases, however, the precise pathways from the entrance of the amino acid into the cell to the activation of gene

  4. Advanced Biosensors for Amino Acid Detection

    DTIC Science & Technology

    1990-04-18

    transport of phentermine (C 6 H5 CH2 C(CH3 )2NH 2 ) or norephedrine (C6 H5 CH(OH)CH (CH3 )NH2 ) by (I) occurs 170 atid 62 times as rapidly, respectively...selectivities dependent upon ammonium cation hydrophobicities. Here transport rates were found to de- crease in the order phentermine > phenethylamine

  5. A common periodic table of codons and amino acids.

    PubMed

    Biro, J C; Benyó, B; Sansom, C; Szlávecz, A; Fördös, G; Micsik, T; Benyó, Z

    2003-06-27

    A periodic table of codons has been designed where the codons are in regular locations. The table has four fields (16 places in each) one with each of the four nucleotides (A, U, G, C) in the central codon position. Thus, AAA (lysine), UUU (phenylalanine), GGG (glycine), and CCC (proline) were placed into the corners of the fields as the main codons (and amino acids) of the fields. They were connected to each other by six axes. The resulting nucleic acid periodic table showed perfect axial symmetry for codons. The corresponding amino acid table also displaced periodicity regarding the biochemical properties (charge and hydropathy) of the 20 amino acids and the position of the stop signals. The table emphasizes the importance of the central nucleotide in the codons and predicts that purines control the charge while pyrimidines determine the polarity of the amino acids. This prediction was experimentally tested.

  6. The origin of amino acids in lunar regolith samples

    NASA Astrophysics Data System (ADS)

    Elsila, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5-651.1 ppb in 6 M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: α-aminoisobutyric acid (AIB), D- and L-β-amino-n-butyric acid (β-ABA), DL-α-amino-n-butyric acid, γ-amino-n-butyric acid, β-alanine, and ε-amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic β-ABA were present in some samples. We also examined seven samples from Apollo 15, 16, and 17 that had been previously allocated to a non-curation laboratory, as well as two samples of terrestrial dunite from studies of lunar module engine exhaust that had been stored in the same laboratory. The amino acid content of these samples suggested that contamination had occurred during non-curatorial storage. We measured the compound-specific carbon isotopic ratios of glycine, β-alanine, and L-alanine in Apollo regolith sample 70011 and found values of -21‰ to -33‰. These values are consistent with those seen in terrestrial biology and, together with the enantiomeric compositions of the proteinogenic amino acids, suggest that terrestrial biological contamination is a primary source of the

  7. Exhaustive Database Searching for Amino Acid Mutations in Proteomes

    SciTech Connect

    Hyatt, Philip Douglas; Pan, Chongle

    2012-01-01

    Amino acid mutations in proteins can be found by searching tandem mass spectra acquired in shotgun proteomics experiments against protein sequences predicted from genomes. Traditionally, unconstrained searches for amino acid mutations have been accomplished by using a sequence tagging approach that combines de novo sequencing with database searching. However, this approach is limited by the performance of de novo sequencing. The Sipros algorithm v2.0 was developed to perform unconstrained database searching using high-resolution tandem mass spectra by exhaustively enumerating all single non-isobaric mutations for every residue in a protein database. The performance of Sipros for amino acid mutation identification exceeded that of an established sequence tagging algorithm, Inspect, based on benchmarking results from a Rhodopseudomonas palustris proteomics dataset. To demonstrate the viability of the algorithm for meta-proteomics, Sipros was used to identify amino acid mutations in a natural microbial community in acid mine drainage.

  8. Modulation of absence seizures by branched-chain amino acids: correlation with brain amino acid concentrations.

    PubMed

    Dufour, F; Nalecz, K A; Nalecz, M J; Nehlig, A

    2001-07-01

    The occurrence of absence seizures might be due to a disturbance of the balance between excitatory and inhibitory neurotransmissions in the thalamo-cortical loop. In this study, we explored the consequences of buffering the glutamate content of brain cells on the occurrence and duration of seizures in Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a genetic model of generalized non-convulsive epilepsy. Branched-chain amino acids (BCAAs) and alpha-ketoisocaproate (alpha-KIC), the ketoacid of leucine were repeatedly shown to have a critical role in brain glutamate metabolism. Thus, GAERS were injected by intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) route with these compounds, then the effects on seizures were evaluated on the electroencephalographic recording. We also measured the concentration of amino acids in thalamus and cortex after an i.p. injection of leucine or alpha-KIC. Intracerebroventricular injections of leucine or alpha-KIC did not influence the occurrence of seizures, possibly because the substances reached only the cortex. BCAAs and alpha-KIC, injected intraperitoneally, increased the number of seizures whereas they had only a slight effect on their duration. Leucine and alpha-KIC decreased the concentration of glutamate in thalamus and cortex without affecting GABA concentrations. Thus, BCAAs and alpha-KIC, by decreasing the effects of glutamatergic neurotransmission could facilitate those of GABAergic neurotransmission, which is known to increase the occurrence of seizures in GAERS.

  9. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    NASA Astrophysics Data System (ADS)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  10. Amino acids of the cell wall of Nocardia rubra.

    PubMed

    Beaman, B L; Kim, K S; Salton, M R; Barksdale, L

    1971-11-01

    Two classes of preparations of cell walls of Nocardia rubra strain 721-A, digested by trypsin and pepsin with or without subsequent extraction in alkaline ethanol, when examined by electron microscope and analyzed quantitatively for amino acid content differ in ultrastructure and constituent amino acids. Evidence suggests that the lipid-associated amino acids (as peptide or protein) occupy a location superficial to the basal peptido-glycan layer of this nocardia. Their removal is associated with the loss of a characteristic pattern of the outer envelope.

  11. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    SciTech Connect

    Nan, Alexandrina Bunge, Alexander; Turcu, Rodica

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  12. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  13. Amino acid profile of milk-based infant formulas.

    PubMed

    Viadel, B; Alegriá, A; Farré, R; Abellán, P; Romero, F

    2000-09-01

    The protein content and amino acid profile of three milk-based infant formulas, two of which were powdered (adapted and follow-on) and the third liquid, were determined to check their compliance with the EU directive and to evaluate whether or not they fulfil an infant's nutritional needs. To obtain the amino acid profile proteins were subjected to acid hydrolysis, prior to which the sulfur-containing amino acids were oxidized with performic acid. The amino acids were derivatized with phenylisothiocyanate (PITC) and then determined by ion-pair reverse phase high performance liquid chromatography (HPLC) In the case of tryptophan a basic hydrolysis was applied and there was no need of derivatization. The protein contents of the analysed formulas were in the ranges established by the EU directive for these products and the amino acid contents were in the ranges reported by other authors for these types of formulas. In all cases the tryptophan content determined the value of the chemical score, which was always lower than 80% of the reference protein but in the ranges reported by other authors. The analysed adapted infant formula provides amino acids in amounts higher than the established nutritional requirements.

  14. Polymers with complexing properties. Simple poly(amino acids)

    NASA Technical Reports Server (NTRS)

    Roque, J. M.

    1978-01-01

    The free amino (0.3 equiv/residue) and carboxyl (0.5 equiv/residue) groups of thermal polylysine increased dramatically on treatment with distilled water. The total hydrolysis of such a polymer was abnormal in that only about 50% of the expected amino acids were recovered. Poly (lysine-co-alanine-co-glycine) under usual conditions hydrolyzed completely in 8 hours; whereas, when it was pretreated with diazomethane, a normal period of 24 hours was required to give (nearly) the same amounts of each free amino acid as compared with those obtained from the untreated polymer. The amino groups of the basic thermal poly(amino acids) were sterically hindered. The existence of nitrogen atoms linking two or three chains and reactive groups (anhydride, imine) were proposed.

  15. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    NASA Astrophysics Data System (ADS)

    Callahan, Michael; Aubrey, A.; Bada, J. L.; Dworkin, J. P.; Elsila, J. E.; Glavin, D. P.; Parker, E.; Jenniskens, P.

    2009-09-01

    The recovery of meteorite fragments from the 2008 TC3 asteroid impact, collectively named Almahata Sitta, revealed a rare, anomalous polymict ureilite containing large carbonaceous grains (Jenniskens et al. 2009). Here we report the first amino acid analysis of a meteorite from an F-type asteroid as part of the Almahata Sitta meteorite sample analysis consortium. A single fragment (piece #4, 1.2 grams) was crushed to a powder, and separate 0.1 g aliquots of the same meteorite were carried through identical hot-water extraction, acid hydrolysis and desalting procedures at NASA Goddard Space Flight Center and the Scripps Institution of Oceanography. The o-phthaldialdehyde/N-acetyl-L-cysteine amino acid derivatives in the extracts were analyzed by high performance liquid chromatography with UV fluorescence detection and time-of-flight mass spectrometry. Analyses of the meteorite extracts revealed a complex distribution of two- to six-carbon aliphatic amino acids with abundances ranging from 0.5 to 69 parts-per-billion (ppb). Glycine was the most abundant amino acid detected, however, since this protein amino acid is a common terrestrial contaminant, we are currently unable to rule out at least a partial terrestrial source. However, the D/L ratio of alanine in the meteorite was racemic, suggesting that very little terrestrial amino acid contamination. Several non-protein amino acids that are rare in the biosphere were also identified in the meteorite above background levels including D,L-4-amino-2-methybutyric acid (65 ± 8 ppb), D-isovaline (1.3 ± 0.1 ppb), L-isovaline (1.4 ± 0.1 ppb), and α-aminoisobutryic acid (7.1 ± 5.8 ppb). The abundance of isovaline and AIB are 1000 times lower than the abundances found in the CM2 meteorite Murchison while D,L-4-amino-2-methybutyric acid is similar. The very low amino acid abundances and the presence of several amino acid decomposition products including methylamine, ethylamine, and isopropylamine are consistent with

  16. Searching for Extraterrestrial Amino Acids in a Contaminated Meteorite: Amino Acid Analyses of the Canakkale L6 Chondrite

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Elsila, J. E.; Glavin, D. P.; Dworkin, J. P.; Ornek, C. Y.; Esenoglu, H. H.; Unsalan, O.; Ozturk, B.

    2016-01-01

    Amino acids can serve as important markers of cosmochemistry, as their abundances and isomeric and isotopic compositions have been found to vary predictably with changes in parent body chemistry and alteration processes. Amino acids are also of astrobiological interest because they are essential for life on Earth. Analyses of a range of meteorites, including all groups of carbonaceous chondrites, along with H, R, and LL chondrites, ureilites, and a martian shergottite, have revealed that amino acids of plausible extraterrestrial origin can be formed in and persist after a wide range of parent body conditions. However, amino acid analyses of L6 chondrites to date have not provided evidence for indigenous amino acids. In the present study, we performed amino acid analysis on larger samples of a different L6 chondite, Canakkale, to determine whether or not trace levels of indigenous amino acids could be found. The Canakkale meteor was an observed fall in late July, 1964, near Canakkale, Turkey. The meteorite samples (1.36 and 1.09 g) analyzed in this study were allocated by C. Y. Ornek, along with a soil sample (1.5 g) collected near the Canakkale recovery site.

  17. Simultaneous determination of amino acids and carbohydrates in culture media of Clostridium thermocellum by valve-switching ion chromatography.

    PubMed

    Fa, Yun; Yang, Haiyan; Ji, Chengshuai; Cui, He; Zhu, Xinshu; Du, Juan; Gao, Jun

    2013-10-10

    An improved method for the simultaneous determination of 20 amino acids and 7 carbohydrates using one-valve switching after injection, ion chromatography, and integrated pulsed amperometric detection is proposed. The resolution of the amino acids and carbohydrates in the cation trap column was investigated. In addition, parameters including flow liquid type, flow rate, concentration, and valve-switch timing were optimized. The method is time-saving, effective, and accurate for the simultaneous separation of amino acids and carbohydrates, with a mean correlation coefficient of >0.99 and repeatability of 0.5-4.6% for eight replicates. The method was successfully applied in the analysis of amino acids and carbohydrates in aseptic media and in extracellular culture media of three phenotypes of Clostridium thermocellum.

  18. Autistic children exhibit distinct plasma amino acid profile.

    PubMed

    Naushad, Shaik Mohammad; Jain, Jamal Md Nurul; Prasad, Chintakindi Krishna; Naik, Usha; Akella, Radha Rama Devi

    2013-10-01

    In order to ascertain whether autistic children display characteristic metabolic signatures that are of diagnostic value, plasma amino acid analyses were carried out on a cohort of 138 autistic children and 138 normal controls using reverse-phase HPLC. Pre-column derivatization of amino acids with phenyl isothiocyanate forms phenyl thio-carbamate derivates that have a lamba(max) of 254 nm, enabling their detection using photodiode array. Autistic children showed elevated levels of glutamic acid (120 +/- 89 vs. 83 +/- 35 micromol/L) and asparagine (85 +/- 37 vs. 47 +/- 19 micromol/L); lower levels of phenylalanine (45 +/- 20 vs. 59 +/- 18 micromol/L), tryptophan (24 +/- 11 vs. 41 +/- 16 micromol/L), methionine (22 +/- 9 vs. 28 +/- 9 micromol/L) and histidine (45 +/- 21 vs. 58 +/- 15 micromol/L). A low molar ratio of (tryptophan/large neutral amino acids) x 100 was observed in autism (5.4 vs 9.2), indicating lesser availability of tryptophan for neurotransmitter serotonin synthesis. To conclude, elevated levels of excitatory amino acids (glutamate and asparagine), decreased essential amino acids (phenylalanine, tryptophan and methionine) and decreased precursors of neurotransmitters (tyrosine and tryptophan) are the distinct characteristics of plasma amino acid profile of autistic children. Thus, such metabolic signatures might be useful tools for early diagnosis of autism.

  19. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    PubMed

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.

  20. Extending enzyme molecular recognition with an expanded amino acid alphabet

    PubMed Central

    Windle, Claire L.; Simmons, Katie J.; Ault, James R.; Trinh, Chi H.; Nelson, Adam

    2017-01-01

    Natural enzymes are constructed from the 20 proteogenic amino acids, which may then require posttranslational modification or the recruitment of coenzymes or metal ions to achieve catalytic function. Here, we demonstrate that expansion of the alphabet of amino acids can also enable the properties of enzymes to be extended. A chemical mutagenesis strategy allowed a wide range of noncanonical amino acids to be systematically incorporated throughout an active site to alter enzymic substrate specificity. Specifically, 13 different noncanonical side chains were incorporated at 12 different positions within the active site of N-acetylneuraminic acid lyase (NAL), and the resulting chemically modified enzymes were screened for activity with a range of aldehyde substrates. A modified enzyme containing a 2,3-dihydroxypropyl cysteine at position 190 was identified that had significantly increased activity for the aldol reaction of erythrose with pyruvate compared with the wild-type enzyme. Kinetic investigation of a saturation library of the canonical amino acids at the same position showed that this increased activity was not achievable with any of the 20 proteogenic amino acids. Structural and modeling studies revealed that the unique shape and functionality of the noncanonical side chain enabled the active site to be remodeled to enable more efficient stabilization of the transition state of the reaction. The ability to exploit an expanded amino acid alphabet can thus heighten the ambitions of protein engineers wishing to develop enzymes with new catalytic properties. PMID:28196894

  1. The Amino Acid Composition of the Sutter's Mill Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Burton, A. S.; Elsila, J. E.; Dworkin, J. P.; Yin, Q. Z.; Cooper, G.; Jenniskens, P.

    2012-01-01

    In contrast to the Murchison meteorite which had a complex distribution of amino acids with a total C2 to Cs amino acid abundance of approx.14,000 parts-per-billion (ppb) [2], the Sutters Mill meteorite was found to be highly depleted in amino acids. Much lower abundances (approx.30 to 180 ppb) of glycine, beta-alanine, L-alanine and L-serine were detected in SM2 above procedural blank levels indicating that this meteorite sample experienced only minimal terrestrial amino acid contamination after its fall to Earth. Carbon isotope measurements will be necessary to establish the origin of glycine and beta-alanine in SM2. Other non-protein amino acids that are rare on Earth, yet commonly found in other CM meteorites such as aaminoisobutyric acid (alpha-AIB) and isovaline, were not identified in SM2. However, traces of beta-AIB (approx.1 ppb) were detected in SM2 and could be" extraterrestrial in origin. The low abundances of amino acids in the Sutter's Mill meteorite is consistent with mineralogical evidence that at least some parts of the Sutter's Mill meteorite parent body experienced extensive aqueous and/or thermal alteration.

  2. Central Amino Acid Sensing in the Control of Feeding Behavior

    PubMed Central

    Heeley, Nicholas; Blouet, Clemence

    2016-01-01

    Dietary protein quantity and quality greatly impact metabolic health via evolutionary-conserved mechanisms that ensure avoidance of amino acid imbalanced food sources, promote hyperphagia when dietary protein density is low, and conversely produce satiety when dietary protein density is high. Growing evidence supports the emerging concept of protein homeostasis in mammals, where protein intake is maintained within a tight range independently of energy intake to reach a target protein intake. The behavioral and neuroendocrine mechanisms underlying these adaptations are unclear. While peripheral factors are able to signal amino acid deficiency and abundance to the brain, the brain itself is exposed to and can detect changes in amino acid concentrations, and subsequently engages acute and chronic responses modulating feeding behavior and food preferences. In this review, we will examine the literature describing the mechanisms by which the brain senses changes in amino acids concentrations, and how these changes modulate feeding behavior. PMID:27933033

  3. Guanine- Formation During the Thermal Polymerization of Amino Acids

    NASA Technical Reports Server (NTRS)

    Mc Caw, B. K.; Munoz, E. F.; Ponnamperuma, C.; Young, R. S.

    1964-01-01

    The action of heat on a mixture of amino acids was studied as a possible abiological pathway for the synthesis of purines and pyrimidines. Guanine was detected. This result is significant in the context of chemical evolution.

  4. How to build optically active alpha-amino acids.

    PubMed

    Calmes, M; Daunis, J

    1999-01-01

    Various methodologies published in the literature dealing with alpha-amino carboxylic acid asymmetric synthesis are presented in a digest form. In each case, only some recent or most typical works are mentioned.

  5. Free amino acids: an innovative treatment for ocular surface disease.

    PubMed

    Rusciano, Dario; Roszkowska, Anna Maria; Gagliano, Caterina; Pezzino, Salvatore

    2016-09-15

    Amino acids are the basic constituents of living organisms, and have both a structural and an active dynamic role in tissue and cell physiology. Human tears contain 23 amino acids, the relative proportion of which may change with the different physiological states of the eye surface. In this review, we present a collection of data from the published literature that indicate an active role of amino acids in the maintenance of eye surface homeostasis. Moreover, another series of published clinical data indicate that supplementation of amino acids, either as food supplements or as a topical treatment in enriched eye drops, is beneficial to the eye surface, and may improve its healing in cases of eye surface disease due to different causes.

  6. KINETICS OF AMINO ACID INCORPORATION INTO SERUM PROTEINS

    PubMed Central

    Green, H.; Anker, H. S.

    1955-01-01

    1. The effect of varying body temperature on the rate of amino acid incorporation into serum protein does not give support to the idea that the rate of this process is adjusted in vivo to restore those protein molecules destroyed by thermal denaturation. The experimentally observed Q10 was about 3.9. 2. When amino acids are injected into the blood of animals in a steady state of serum protein turnover, a period of time elapses before these amino acids can be found in the serum proteins. This has been called transit time. At a given temperature (31°) it is the same in rabbits, turtles, and Limulus (1 hour). In rabbits and turtles it has a Q10 of 3.2. It appears to be specifically related to the process of synthesis (or release) of serum proteins. 3. It was not possible to affect the transit time or the incorporation rate by the administration of amino acid analogues. PMID:13221773

  7. Astrobionibbler: In Situ Microfluidic Subcritical Water Extraction of Amino Acids

    NASA Astrophysics Data System (ADS)

    Noell, A. C.; Fisher, A. M.; Takano, N.; Fors-Francis, K.; Sherrit, S.; Grunthaner, F.

    2016-10-01

    A fluidic-chip based instrument for subcritical water extraction (SCWE) of amino acids and other organics from powder samples has been developed. A variety of soil analog extractions have been performed to better understand SCWE capabilities.

  8. Chemical Approaches to Studying Labile Amino Acid Phosphorylation.

    PubMed

    Marmelstein, Alan M; Moreno, Javier; Fiedler, Dorothea

    2017-04-01

    Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.

  9. Isotopic analyses of amino acids from the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, S.; Cronin, J. R.; Krishnamurthy, R. V.; Epstein, S.

    1991-01-01

    An account is given of the results of H-2, C-13 isotopic analyses of the Murchison meteorite incorporating an ultrafiltration step to exclude the possibility of fine particulate contaminants. The meteorite's amino acids were chromatographically separated in order to preclude isotopic enrichment by basic compounds other than the amino acids. The results indicate that the Murchison amino acids are isotopically highly unusual; delta-C-13 is elevated by about 40 percent, and delta-D by fully 2500 percent. This high D content of the meteorite's alpha-amino acids may be due to the synthesis of their molecular precursors by low-temperature ion-molecule reactions in an interstellar cloud.

  10. Multicomponent cascade reactions of unprotected carbohydrates and amino acids.

    PubMed

    Voigt, Benjamin; Linke, Michael; Mahrwald, Rainer

    2015-06-05

    Herein an operationally simple multicomponent reaction of unprotected carbohydrates with amino acids and isonitriles is presented. By the extension of this Ugi-type reaction to an unprotected disaccharide a novel glycopeptide structure was accessible.

  11. Dipeptide Sequence Determination: Analyzing Phenylthiohydantoin Amino Acids by HPLC

    NASA Astrophysics Data System (ADS)

    Barton, Janice S.; Tang, Chung-Fei; Reed, Steven S.

    2000-02-01

    Amino acid composition and sequence determination, important techniques for characterizing peptides and proteins, are essential for predicting conformation and studying sequence alignment. This experiment presents improved, fundamental methods of sequence analysis for an upper-division biochemistry laboratory. Working in pairs, students use the Edman reagent to prepare phenylthiohydantoin derivatives of amino acids for determination of the sequence of an unknown dipeptide. With a single HPLC technique, students identify both the N-terminal amino acid and the composition of the dipeptide. This method yields good precision of retention times and allows use of a broad range of amino acids as components of the dipeptide. Students learn fundamental principles and techniques of sequence analysis and HPLC.

  12. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  13. Light-Activated Amino Acid Transport Systems in Halobacterium halobium Envelope Vesicles: Role of Chemical and Electrical Gradients

    NASA Technical Reports Server (NTRS)

    MacDonald, Russell E.; Greene, Richard V.; Lanyi, Janos K.

    1977-01-01

    The accumulation of 20 commonly occurring L-amino acids by cell envelope vesicles of Halobacterium halobium, in response to light-induced membrane potential and an artificially created sodium gradient, has been studied. Nineteen of these amino acids are actively accumulated under either or both of these conditions. Glutamate is unique in that its uptake is driven only by a chemical gradient for sodium. Amino acid concentrations at half-maximal uptake rates (Km) and maximal transport rates (V(sub max) have been determined for the uptake of all 19 amino acids. The transport systems have been partially characterized with respect to groups of amino acids transported by common carriers, cation effects, and relative response to the electrical and chemical components of the sodium gradient, the driving forces for uptake. The data presented clearly show that the carrier systems, which are responsible for uptake of individual amino acids, are as variable in their properties as those found in other organisms, i. e., some are highly specific for individual amino acids, some transport several amino acids competitively, some are activated by a chemical gradient of sodium only, and some function also in the complete absence of such a gradient. For all amino acids, Na(+) and K(+) are both required for maximal rate of uptake. The carriers for L-leucine and L-histidine are symmetrical in that these amino acids are transported in both directions across the vesicle membrane. It is suggested that coupling of substrate transport to metabolic energy via transient ionic gradients may be a general phenomenon in procaryotes.

  14. Sublimation of natural amino acids and induction of asymmetry by meteoritic amino acids

    NASA Astrophysics Data System (ADS)

    Tarasevych, Arkadii V.; Guillemin, Jean-Claude

    It is believed that the homochirality of building blocks of life like amino acids (AAs) and sugars is a prerequisite requirement for the origin and evolution of life. Among different mechanisms that might have triggered the initial disparity in the enantiomeric ratio on the primitive Earth, the key roles were assigned to: (i) local chiral symmetry breaking and (ii) the inflow of extraterrestrial matter (eg the carbonaceous meteorites containing non-racemic AAs). Recently it has been revealed that sublimation, a subject almost completely neglected for a long time, gives a pathway to enantioenrichment of natural AAs (1,2 and references herein). Sublimation is however one of the key physical processes that occur on comets. Starting from a mixture with a low content of an enantiopure AA, a partial sublimation gives an important enrichment of the sublimate (1,2). The resulted disparity in the ratio between enantiomers of a partial sublimate is determined by the crystalline nature of the starting mixture: we observed a drastic difference in the behavior of (i) mixtures based on true racemic compounds and (ii) mechanical mixtures of two enantiopure solid phases. On the other hand, combination of crystallization and sublimation can lead to segregation of enantioenriched fractions starting from racemic composition of sublimable aliphatic AAs (Ala, Leu, Pro, Val) in mixtures with non-volatile enantiopure ones (Asn, Asp, Glu, Ser, Thr) (3). The resulted sense of chirality correlates with the handedness of the non-volatile AAs: the observed changes in enantiomeric ratios clearly demonstrate the preferential homochiral interactions and a tendency of natural amino acids to homochiral self-organization. It is noteworthy that just these 5 (Asn, Asp, Glu, Ser, Thr) out of 22 proteinogenic amino acids are able to local symmetry breaking. On the other hand, recent data on the enantiomeric composition of the Tagish Lake, a C2-type carbonaceous meteorite, revealed a large L

  15. Amino Acid Permeases and Virulence in Cryptococcus neoformans

    PubMed Central

    Takahashi, Juliana Possato Fernandes; Guerra, Juliana Mariotti; Santos, Dayane Cristina da Silva; Purisco, Sônia Ueda; Melhem, Márcia de Souza Carvalho; Fazioli, Raquel dos Anjos; Phanord, Clerlune; Sartorelli, Patrícia; Vallim, Marcelo A.

    2016-01-01

    Fungal opportunistic pathogens colonize various environments, from plants and wood to human and animal tissue. Regarding human pathogens, one great challenge during contrasting niche occupation is the adaptation to different conditions, such as temperature, osmolarity, salinity, pressure, oxidative stress and nutritional availability, which may constitute sources of stress that need to be tolerated and overcome. As an opportunistic pathogen, C. neoformans faces exactly these situations during the transition from the environment to the human host, encountering nutritional constraints. Our previous and current research on amino acid biosynthetic pathways indicates that amino acid permeases are regulated by the presence of the amino acids, nitrogen and temperature. Saccharomyces cerevisiae and Candida albicans have twenty-four and twenty-seven genes encoding amino acid permeases, respectively; conversely, they are scarce in number in Basidiomycetes (C. neoformans, Coprinopsis cinerea and Ustilago maydis), where nine to ten permease genes can be found depending on the species. In this study, we have demonstrated that two amino acid permeases are essential for virulence in C. neoformans. Our data showed that C. neoformans uses two global and redundant amino acid permeases, Aap4 and Aap5 to respond correctly to thermal and oxidative stress. Double deletion of these permeases causes growth arrest in C. neoformans at 37°C and in the presence of hydrogen peroxide. The inability to uptake amino acid at a higher temperature and under oxidative stress also led to virulence attenuation in vivo. Our data showed that thermosensitivity caused by the lack of permeases Aap4 and Aap5 can be remedied by alkaline conditions (higher pH) and salinity. Permeases Aap4 and Aap5 are also required during fluconazole stress and they are the target of the plant secondary metabolite eugenol, a potent antifungal inhibitor that targets amino acid permeases. In summary, our work unravels (i

  16. The protein digestibility-corrected amino acid score.

    PubMed

    Schaafsma, G

    2000-07-01

    The protein digestibility-corrected amino acid score (PDCAAS) has been adopted by FAO/WHO as the preferred method for the measurement of the protein value in human nutrition. The method is based on comparison of the concentration of the first limiting essential amino acid in the test protein with the concentration of that amino acid in a reference (scoring) pattern. This scoring pattern is derived from the essential amino acid requirements of the preschool-age child. The chemical score obtained in this way is corrected for true fecal digestibility of the test protein. PDCAAS values higher than 100% are not accepted as such but are truncated to 100%. Although the principle of the PDCAAS method has been widely accepted, critical questions have been raised in the scientific community about a number of issues. These questions relate to 1) the validity of the preschool-age child amino acid requirement values, 2) the validity of correction for fecal instead of ileal digestibility and 3) the truncation of PDCAAS values to 100%. At the time of the adoption of the PDCAAS method, only a few studies had been performed on the amino acid requirements of the preschool-age child, and there is still a need for validation of the scoring pattern. Also, the scoring pattern does not include conditionally indispensable amino acids. These amino acids also contribute to the nutrition value of a protein. There is strong evidence that ileal, and not fecal, digestibility is the right parameter for correction of the amino acid score. The use of fecal digestibility overestimates the nutritional value of a protein, because amino acid nitrogen entering the colon is lost for protein synthesis in the body and is, at least in part, excreted in urine as ammonia. The truncation of PDCAAS values to 100% can be defended only for the limited number of situations in which the protein is to be used as the sole source of protein in the diet. For evaluation of the nutritional significance of proteins as

  17. Amino Acid Permeases and Virulence in Cryptococcus neoformans.

    PubMed

    Martho, Kevin Felipe Cruz; de Melo, Amanda Teixeira; Takahashi, Juliana Possato Fernandes; Guerra, Juliana Mariotti; Santos, Dayane Cristina da Silva; Purisco, Sônia Ueda; Melhem, Márcia de Souza Carvalho; Fazioli, Raquel Dos Anjos; Phanord, Clerlune; Sartorelli, Patrícia; Vallim, Marcelo A; Pascon, Renata C

    2016-01-01

    Fungal opportunistic pathogens colonize various environments, from plants and wood to human and animal tissue. Regarding human pathogens, one great challenge during contrasting niche occupation is the adaptation to different conditions, such as temperature, osmolarity, salinity, pressure, oxidative stress and nutritional availability, which may constitute sources of stress that need to be tolerated and overcome. As an opportunistic pathogen, C. neoformans faces exactly these situations during the transition from the environment to the human host, encountering nutritional constraints. Our previous and current research on amino acid biosynthetic pathways indicates that amino acid permeases are regulated by the presence of the amino acids, nitrogen and temperature. Saccharomyces cerevisiae and Candida albicans have twenty-four and twenty-seven genes encoding amino acid permeases, respectively; conversely, they are scarce in number in Basidiomycetes (C. neoformans, Coprinopsis cinerea and Ustilago maydis), where nine to ten permease genes can be found depending on the species. In this study, we have demonstrated that two amino acid permeases are essential for virulence in C. neoformans. Our data showed that C. neoformans uses two global and redundant amino acid permeases, Aap4 and Aap5 to respond correctly to thermal and oxidative stress. Double deletion of these permeases causes growth arrest in C. neoformans at 37°C and in the presence of hydrogen peroxide. The inability to uptake amino acid at a higher temperature and under oxidative stress also led to virulence attenuation in vivo. Our data showed that thermosensitivity caused by the lack of permeases Aap4 and Aap5 can be remedied by alkaline conditions (higher pH) and salinity. Permeases Aap4 and Aap5 are also required during fluconazole stress and they are the target of the plant secondary metabolite eugenol, a potent antifungal inhibitor that targets amino acid permeases. In summary, our work unravels (i

  18. Polypeptide having an amino acid replaced with N-benzylglycine

    DOEpatents

    Mitchell, Alexander R.; Young, Janis D.

    1996-01-01

    The present invention relates to one or more polypeptides having useful biological activity in a mammal, which comprise: a polypeptide related to bradykinin of four to ten amino acid residues wherein one or more specific amino acids in the polypeptide chain are replaced with achiral N-benzylglycine. These polypeptide analogues have useful potent agonist or antagonist pharmacological properties depending upon the structure. A preferred polypeptide is (N-benzylglycine.sup.7)-bradykinin.

  19. The stability of amino acids at submarine hydrothermal vent temperatures

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.; Miller, Stanley L.; Zhao, Meixun

    1995-01-01

    It has been postulated that amino acid stability at hydrothermal vent temperatures is controlled by a metastable thermodynamic equilibrium rather than by kinetics. Experiments reported here demonstrate that the amino acids are irreversibly destroyed by heating at 240 C and that quasi-equilibrium calculations give misleading descriptions of the experimental observations. Equilibrium thermodynamic calculations are not applicable to organic compounds under high-temperature submarine vent conditions.

  20. Amino acid metabolism in tumour-bearing mice.

    PubMed Central

    Rivera, S; Azcón-Bieto, J; López-Soriano, F J; Miralpeix, M; Argilés, J M

    1988-01-01

    Mice bearing the Lewis lung carcinoma showed a high tumour glutaminase activity and significantly higher concentrations of most amino acids than in both the liver and the skeletal muscle of the host. Tumour tissue slices showed a marked preference for glutamine, especially for oxidation of its skeleton to CO2. It is proposed that the metabolism of this particular carcinoma is focused on amino acid degradation, glutamine being its preferred substrate. PMID:3342022

  1. Protein and sulfur amino acid requirements of broiler breeder hens.

    PubMed

    Harms, R H; Wilson, H R

    1980-02-01

    Two experiments were conducted with Cobb color-sexed broiler breeder hens to determine their protein and sulfur amino acid requirement. A daily intake between 400 and 478 mg of methionine and between 722 and 839 mg of total sulfur amino acids was necessary for maximum egg production, the latter in a diet of 13.07% protein. Slightly lower levels supported maximum body weights. Hens laying at the highest rate consumed 23.4 g of protein per day.

  2. Amino acid quantification in bulk soybeans by transmission Raman spectroscopy.

    PubMed

    Schulmerich, Matthew V; Gelber, Matthew K; Azam, Hossain M; Harrison, Sandra K; McKinney, John; Thompson, Dennis; Owen, Bridget; Kull, Linda S; Bhargava, Rohit

    2013-12-03

    Soybeans are a commodity crop of significant economic and nutritional interest. As an important source of protein, buyers of soybeans are interested in not only the total protein content but also in the specific amino acids that comprise the total protein content. Raman spectroscopy has the chemical specificity to measure the twenty common amino acids as pure substances. An unsolved challenge, however, is to quantify varying levels of amino acids mixed together and bound in soybeans at relatively low concentrations. Here we report the use of transmission Raman spectroscopy as a secondary analytical approach to nondestructively measure specific amino acids in intact soybeans. With the employment of a transmission-based Raman instrument, built specifically for nondestructive measurements from bulk soybeans, spectra were collected from twenty-four samples to develop a calibration model using a partial least-squares approach with a random-subset cross validation. The calibration model was validated on an independent set of twenty-five samples for oil, protein, and amino acid predictions. After Raman measurements, the samples were reduced to a fine powder and conventional wet chemistry methods were used for quantifying reference values of protein, oil, and 18 amino acids. We found that the greater the concentrations (% by weight component of interest), the better the calibration model and prediction capabilities. Of the 18 amino acids analyzed, 13 had R(2) values greater than 0.75 with a standard error of prediction c.a. 3-4% by weight. Serine, histidine, cystine, tryptophan, and methionine showed poor predictions (R(2) < 0.75), which were likely a result of the small sampling range and the low concentration of these components. It is clear from the correlation plots and root-mean-square error of prediction that Raman spectroscopy has sufficient chemical contrast to nondestructively quantify protein, oil, and specific amino acids in intact soybeans.

  3. [Sorption of amino acids from aqueous solutions on activated charcoal].

    PubMed

    Nekliudov, A D; Tsibanov, V V

    1985-03-01

    Various methods for quantitative description of amino acid sorption from solutions for parenteral nutrition on activated charcoal were studied under dynamic and static conditions. With the use of the well-known Freindlich and Langmuir absorption isotherms it was shown to be possible to describe in a simplified way the complex multicomponent process of sorption of the amino acids and to estimate their loss at the filtration stage.

  4. Genetic code correlations - Amino acids and their anticodon nucleotides

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Lacey, J. C., Jr.

    1978-01-01

    The data here show direct correlations between both the hydrophobicity and the hydrophilicity of the homocodonic amino acids and their anticodon nucleotides. While the differences between properties of uracil and cytosine derivatives are small, further data show that uracil has an affinity for charged species. Although these data suggest that molecular relationships between amino acids and anticodons were responsible for the origin of the code, it is not clear what the mechanism of the origin might have been.

  5. Amino acid modifiers in guayule rubber compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tire producers are increasingly interested in biobased materials, including rubber but also as compounding chemicals. An alternative natural rubber for tire use is produced by guayule, a woody desert shrub native to North America. Alternative compounding chemicals include naturally-occurring amino a...

  6. D-Amino Acids in the Nervous and Endocrine Systems

    PubMed Central

    Kiriyama, Yoshimitsu

    2016-01-01

    Amino acids are important components for peptides and proteins and act as signal transmitters. Only L-amino acids have been considered necessary in mammals, including humans. However, diverse D-amino acids, such as D-serine, D-aspartate, D-alanine, and D-cysteine, are found in mammals. Physiological roles of these D-amino acids not only in the nervous system but also in the endocrine system are being gradually revealed. N-Methyl-D-aspartate (NMDA) receptors are associated with learning and memory. D-Serine, D-aspartate, and D-alanine can all bind to NMDA receptors. H2S generated from D-cysteine reduces disulfide bonds in receptors and potentiates their activity. Aberrant receptor activity is related to diseases of the central nervous system (CNS), such as Alzheimer's disease, amyotrophic lateral sclerosis, and schizophrenia. Furthermore, D-amino acids are detected in parts of the endocrine system, such as the pineal gland, hypothalamus, pituitary gland, pancreas, adrenal gland, and testis. D-Aspartate is being investigated for the regulation of hormone release from various endocrine organs. Here we focused on recent findings regarding the synthesis and physiological functions of D-amino acids in the nervous and endocrine systems. PMID:28053803

  7. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots.

    PubMed

    Kudoyarova, Guzel R; Melentiev, Alexander I; Martynenko, Elena V; Timergalina, Leila N; Arkhipova, Tatiana N; Shendel, Galina V; Kuz'mina, Ludmila Yu; Dodd, Ian C; Veselov, Stanislav Yu

    2014-10-01

    Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane.

  8. Evaluation of Amino Acids as Turfgrass Nematicides1

    PubMed Central

    Zhang, Yun; Luc, John E.; Crow, William T.

    2010-01-01

    Laboratory experiments revealed that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog at rates of 224 and 448 kg amino acid/ha reduced the number of Belonolaimus longicaudatus mixed life-stages and Meloidogyne incognita J2 in soil, whereas L-threonine and lysine were not effective in reducing the number of either nematode. Futhermore, greenhouse experiments demonstrated that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog were equally effective against B. longicaudatus at rates of 112, 224, and 448 kg amino acid/ha, and the highest rate (448 kg amino acid/ha) of all amino acids was more effective in reducing the number of B. longicaudatus than the lower rate. However, phytotoxicity was observed on creeping bentgrass (Agrostis palustris) treated with 448 kg amino acid/ha of methionine hydroxyl analog and DL methionine. In addition, in one of two field experiments on bermudagrass (Cynodon dactylon × C. transvaalensis) turf percentage green cover was increased and the number of B. longicaudatus was reduced by 224 kg amino acid/ha of DL-methionine and potassium methionate compared to untreated controls in one of two trials. PMID:22736861

  9. Did Evolution Select a Nonrandom "Alphabet" of Amino Acids?

    NASA Astrophysics Data System (ADS)

    Philip, Gayle K.; Freeland, Stephen J.

    2011-04-01

    The last universal common ancestor of contemporary biology (LUCA) used a precise set of 20 amino acids as a standard alphabet with which to build genetically encoded protein polymers. Considerable evidence indicates that some of these amino acids were present through nonbiological syntheses prior to the origin of life, while the rest evolved as inventions of early metabolism. However, the same evidence indicates that many alternatives were also available, which highlights the question: what factors led biological evolution on our planet to define its standard alphabet? One possibility is that natural selection favored a set of amino acids that exhibits clear, nonrandom properties - a set of especially useful building blocks. However, previous analysis that tested whether the standard alphabet comprises amino acids with unusually high variance in size, charge, and hydrophobicity (properties that govern what protein structures and functions can be constructed) failed to clearly distinguish evolution's choice from a sample of randomly chosen alternatives. Here, we demonstrate unambiguous support for a refined hypothesis: that an optimal set of amino acids would spread evenly across a broad range of values for each fundamental property. Specifically, we show that the standard set of 20 amino acids represents the possible spectra of size, charge, and hydrophobicity more broadly and more evenly than can be explained by chance alone.

  10. Carbobenzoxy amino acids: Structural requirements for cholecystokinin receptor antagonist activity

    SciTech Connect

    Maton, P.N.; Sutliff, V.E.; Jensen, R.T.; Gardner, J.D.

    1985-04-01

    The authors used dispersed acini prepared from guinea pig pancreas to examine 28 carbobenzoxy (CBZ) amino acids for their abilities to function as cholecystokinin receptor antagonists. All amino acid derivatives tested, except for CBZ-alanine, CBZ-glycine, and N alpha-CBZ- lysine, were able to inhibit the stimulation of amylase secretion caused by the C-terminal octapeptide of cholecystokinin. In general, there was a good correlation between the ability of a carbobenzoxy amino acid to inhibit stimulated amylase secretion and the ability of the amino acid derivative to inhibit binding of /sup 125/I-cholecystokinin. The inhibition of cholecystokinin-stimulated amylase secretion was competitive, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor. The potencies with which the various carbobenzoxy amino acids inhibited the action of cholecystokinin varied 100-fold and CBZ-cystine was the most potent cholecystokinin receptor antagonist. This variation in potency was primarily but not exclusively a function of the hydrophobicity of the amino acid side chain.

  11. The spark discharge synthesis of amino acids from various hydrocarbons

    NASA Technical Reports Server (NTRS)

    Ring, D.; Miller, S. L.

    1984-01-01

    The spark discharge synthesis of amino acids using an atmosphere of CH4+N2+H2O+NH3 has been investigated with variable pNH3. The amino acids produced using higher hydrocarbons (ethane, ethylene, acetylene, propane, butane, and isobutane) instead of CH4 were also investigated. There was considerable range in the absolute yields of amino acids, but the yields relative to glycine (or alpha-amino-n-butyric acid) were more uniform. The relative yields of the C3 to C6 aliphatic alpha-amino acids are nearly the same (with a few exceptions) with all the hydrocarbons. The glycine yields are more variable. The precursors to the C3-C6 aliphatic amino acids seem to be produced in the same process, which is separate from the synthesis of glycine precursors. It may be possible to use these relative yields as a signature for a spark discharge synthesis provided corrections can be made for subsequent decomposition events (e.g. in the Murchison meteorite).

  12. Child Stunting is Associated with Low Circulating Essential Amino Acids

    PubMed Central

    Semba, Richard D.; Shardell, Michelle; Sakr Ashour, Fayrouz A.; Moaddel, Ruin; Trehan, Indi; Maleta, Kenneth M.; Ordiz, M. Isabel; Kraemer, Klaus; Khadeer, Mohammed A.; Ferrucci, Luigi; Manary, Mark J.

    2016-01-01

    Background Stunting affects about one-quarter of children under five worldwide. The pathogenesis of stunting is poorly understood. Nutritional interventions have had only modest effects in reducing stunting. We hypothesized that insufficiency in essential amino acids may be limiting the linear growth of children. Methods We used a targeted metabolomics approach to measure serum amino acids, glycerophospholipids, sphingolipids, and other metabolites using liquid chromatography-tandem mass spectrometry in 313 children, aged 12–59 months, from rural Malawi. Children underwent anthropometry. Findings Sixty-two percent of the children were stunted. Children with stunting had lower serum concentrations of all nine essential amino acids (tryptophan, isoleucine, leucine, valine, methionine, threonine, histidine, phenylalanine, lysine) compared with nonstunted children (p < 0.01). In addition, stunted children had significantly lower serum concentrations of conditionally essential amino acids (arginine, glycine, glutamine), non-essential amino acids (asparagine, glutamate, serine), and six different sphingolipids compared with nonstunted children. Stunting was also associated with alterations in serum glycerophospholipid concentrations. Interpretation Our findings support the idea that children with a high risk of stunting may not be receiving an adequate dietary intake of essential amino acids and choline, an essential nutrient for the synthesis of sphingolipids and glycerophospholipids. PMID:27211567

  13. Extraterrestrial Amino Acids in Ureilites Including Almahata Sitta

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.

    2011-01-01

    Ureilites are a class of meteorites that lack chondrules (achondrites) but have relatively high carbon abundances, averaging approx.3 wt %. Using highly sensitive liquid chromatography coupled with UV fluorescence and time-of-flight mass spectrometry (LC-FD/ToF-MS), it was recently determined that there are amino acids in. fragment 94 of the Almahata Sitta ureilite[l]. Based on the presence of amino acids that are rare in the Earth's biosphere, as well as the near-racemic enantiomeric ratios of marry of the more common amino acids, it was concluded that most of the detected amino acids were indigenous to the meteorite. Although the composition of the Almahata Sitta ureilite appears to be unlike other recovered ureilites, the discovery of amino acids in this meteorite raises the question of whether other ureilites rnav also contain amino acids. Herein we present the results of LC-FDlTo.F-MS analyses of: a sand sample from the Almahata Sitta strewn held, Almahata Sitta fragments 425 (an ordinary H5 chondrite) and 427 (ureilite), as well as an Antarctic ureilite (Allan lulls, ALHA 77257).

  14. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels

    SciTech Connect

    Karasov, W.H.; Solberg, D.H.; Diamond, J.M.

    1987-05-01

    To understand how intestinal amino acid (AA) transport is regulated by dietary substrate levels, the authors measured uptake of seven radioactively-labelled AAs and glucose across the jejunal brush-border membrane of mice kept on one of three isocaloric rations differing in nitrogen content. In the high-protein ration, uptake increased by 77-81% for the nonessential, less toxic AAs, proline, and aspartate but only by 32-61% for the more toxic essential AAs tested. In the nitrogen-deficient ration, uptake decreased for the nonessential aspartate and proline but stayed constant or increased for essential AAs and for the nonessential alanine. These patterns imply independent regulation of the intestine's various AA transporters. With decreasing dietary AA (or protein), the imino acid and acidic AA private transporters are repressed, while activities of the basic AA transporter and the neutral AA public transporter decrease to an asymptote or else go through a minimum. These regulatory patterns can be understood as a compromise among conflicting constraints imposed by protein's multiple roles as a source of calories, nitrogen, and essential AAs and by the toxicity of essential AAs at high concentrations.

  15. 77 FR 65537 - Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... Amino Acid Sequence Disclosures ACTION: Proposed collection; comment request. SUMMARY: The United States....'' SUPPLEMENTARY INFORMATION: I. Abstract Patent applications that contain nucleotide and/or amino acid...

  16. Branched-chain amino acid administration in surgical patients. Effects on amino acid and fuel substrate profiles.

    PubMed

    Desai, S P; Bistrian, B R; Palombo, J D; Moldawer, L L; Blackburn, G L

    1987-07-01

    During the first five days following gastric bypass surgery, 15 patients received near isotonic amino acid solutions that varied in their branched-chain amino acid (BCAA) content and amino acid profiles (15.6%, 50%, or 100% BCAA solutions). Plasma valine concentrations were elevated in patients receiving 50% and 100% BCAA solutions. Plasma alanine concentrations were highest in patients receiving 50% BCAA. Plasma free fatty acids and blood lactate concentrations were unchanged by either the operation or BCAA administration. Serum glucose concentration was unaffected by the different amino acid administrations and followed the pattern induced by stress initially and later by starvation. beta-Hydroxybutyrate concentrations increased as starvation proceeded and were highest in patients receiving the 15.6% BCAA solution. Branched-chain amino acid-enriched solutions without additional energy may be administered safely to patients recovering from operative trauma. Plasma amino acid concentrations and fuel substrate profiles appear to follow metabolic patterns determined by the physiologic response to stress and starvation and can be affected by large quantities of BCAAs.

  17. An efficient preparation of N-methyl-alpha-amino acids from N-nosyl-alpha-amino acid phenacyl esters.

    PubMed

    Leggio, Antonella; Belsito, Emilia Lucia; De Marco, Rosaria; Liguori, Angelo; Perri, Francesca; Viscomi, Maria Caterina

    2010-03-05

    In this paper we describe a simple and efficient solution-phase synthesis of N-methyl-N-nosyl-alpha-amino acids and N-Fmoc-N-methyl-alpha-amino acids. This represents a very important application in peptide synthesis to obtain N-methylated peptides in both solution and solid phase. The developed methodology involves the use of N-nosyl-alpha-amino acids with the carboxyl function protected as a phenacyl ester and the methylating reagent diazomethane. An important aspect of this synthetic strategy is the possibility to selectively deprotect the carboxyl function or alternatively both amino and carboxyl moieties by using the same reagent with a different molar excess and under mild conditions. Furthermore, the adopted procedure keeps unchanged the acid-sensitive side chain protecting groups used in Fmoc-based synthetic strategies.

  18. Comprehensive radiolabeling, stability, and tissue distribution studies of technetium-99m single amino acid chelates (SAAC).

    PubMed

    Maresca, Kevin P; Hillier, Shawn M; Femia, Frank J; Zimmerman, Craig N; Levadala, Murali K; Banerjee, Sangeeta R; Hicks, Justin; Sundararajan, Chitra; Valliant, John; Zubieta, Jon; Eckelman, William C; Joyal, John L; Babich, John W

    2009-08-19

    Technetium tricarbonyl chemistry has been a subject of interest in radiopharmaceutical development over the past decade. Despite the extensive work done on developing chelates for Tc(I), a rigorous investigation of the impact of changing donor groups and labeling conditions on radiochemical yields and/or distribution has been lacking. This information is crucially important if these platforms are going to be used to develop molecular imaging probes. Previous studies on the coordination chemistry of the {M(CO)(3)}(+) core have established alkylamine, aromatic nitrogen heterocycles, and carboxylate donors as effective chelating ligands. These observations led to the design of tridentate ligands derived from the amino acid lysine. Such amino acid analogues provide a tridentate donor set for chelation to the metal and an amino acid functionality for conjugation to biomolecules. We recently developed a family of single amino acid chelates (SAAC) that serve this function and can be readily incorporated into peptides via solid-phase synthesis techniques. As part of these continuing studies, we report here on the radiolabeling with technetium-99m ((99m)Tc) and stability of a series of SAAC analogues of lysine. The complexes studied include cationic, neutral, and anionic complexes. The results of tissue distribution studies with these novel complexes in normal rats demonstrate a range of distribution in kidney, liver, and intestines.

  19. Antimicrobial activity and stability of protonectin with D-amino acid substitutions.

    PubMed

    Qiu, Shuai; Zhu, Ranran; Zhao, Yanyan; An, Xiaoping; Jia, Fengjing; Peng, Jinxiu; Ma, Zelin; Zhu, Yuanyuan; Wang, Jiayi; Su, Jinhuan; Wang, Qingjun; Wang, Hailin; Li, Yuan; Wang, Kairong; Yan, Wenjin; Wang, Rui

    2017-03-16

    The misuse and overuse of antibiotics result in the emergence of resistant bacteria and fungi, which make an urgent need of the new antimicrobial agents. Nowadays, antimicrobial peptides have attracted great attention of researchers. However, the low physiological stability in biological system limits the application of naturally occurring antimicrobial peptides as novel therapeutics. In the present study, we synthesized derivatives of protonectin by substituting all the amino acid residues or the cationic lysine residue with the corresponding D-amino acids. Both the D-enantiomer of protonectin (D-prt) and D-Lys-protonectin (D-Lys-prt) exhibited strong antimicrobial activity against bacteria and fungi. Moreover, D-prt showed strong stability against trypsin, chymotrypsin and the human serum, while D-Lys-prt only showed strong stability against trypsin. Circular dichroism analysis revealed that D-Lys-prt still kept typical α-helical structure in the membrane mimicking environment, while D-prt showed left hand α-helical structure. In addition, propidium iodide uptake assay and bacteria and fungi killing experiments indicated that all D-amino acid substitution or partially D-amino acid substitution analogs could disrupt the integrity of membrane and lead the cell death. In summary, these findings suggested that D-prt and D-Lys-prt might be promising candidate antibiotic agents for therapeutic application against resistant bacteria and fungi infection. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  20. Aromatic amino acids are utilized and protein synthesis is stimulated during amino acid infusion in the ovine fetus.

    PubMed

    Liechty, E A; Boyle, D W; Moorehead, H; Auble, L; Denne, S C

    1999-06-01

    The purpose of this study was to determine whether the ovine fetus is capable of increased disposal of an amino acid load; if so, would it respond by increased protein synthesis, amino acid catabolism or both? A further purpose of the study was to determine whether the pathways of aromatic amino acid catabolism are functional in the fetus. Late gestation ovine fetuses of well-nourished ewes received an infusion of Aminosyn PF alone (APF), and Aminosyn PF + glycyl-L-tyrosine (APF+GT) at rates estimated to double the intake of these amino acids. The initial study, using APF, was performed at 126 +/- 1.4 d; the APF+GT study was performed at 132 +/- 1.7 d (term = 150 d). Phenylalanine and tyrosine kinetics were determined using both stable and radioactive isotopes. Plasma concentrations of most amino acids, but not tyrosine, increased during both studies; tyrosine concentration increased only during the APF+GT study. Phenylalanine rate of appearance and phenylalanine hydroxylation increased during both studies. Tyrosine rate of appearance increased only during the APF+GT study; tyrosine oxidation did not increase during either study. Fetal protein synthesis increased significantly during both studies, producing a significant increase in fetal protein accretion. Fetal proteolysis was unchanged in response to either amino acid infusion. These results indicate that the fetus responds to an acute increase in amino acid supply primarily by increasing protein synthesis and accretion, with a smaller but significant increase in amino acid catabolism also. Both phenylalanine hydroxylation and tyrosine oxidation are active in the fetus, and the fetus is able to increase phenylalanine hydroxylation rapidly in response to increased supply.

  1. A d-Amino Acid-Containing Neuropeptide Discovery Funnel

    PubMed Central

    2016-01-01

    A receptor binding class of d-amino acid-containing peptides (DAACPs) is formed in animals from an enzymatically mediated post-translational modification of ribosomally translated all-l-amino acid peptides. Although this modification can be required for biological actions, detecting it is challenging because DAACPs have the same mass as their all-l-amino acid counterparts. We developed a suite of mass spectrometry (MS) protocols for the nontargeted discovery of DAACPs and validated their effectiveness using neurons from Aplysia californica. The approach involves the following three steps, with each confirming and refining the hits found in the prior step. The first step is screening for peptides resistant to digestion by aminopeptidase M. The second verifies the presence of a chiral amino acid via acid hydrolysis in deuterium chloride, labeling with Marfey’s reagent, and liquid chromatography–mass spectrometry to determine the chirality of each amino acid. The third involves synthesizing the putative DAACPs and comparing them to the endogenous standards. Advantages of the method, the d-amino acid-containing neuropeptide discovery funnel, are that it is capable of detecting the d-form of any common chiral amino acid, and the first two steps do not require peptide standards. Using these protocols, we report that two peptides from the Aplysia achatin-like neuropeptide precursor exist as GdYFD and SdYADSKDEESNAALSDFA. Interestingly, GdYFD was bioactive in the Aplysia feeding and locomotor circuits but SdYADSKDEESNAALSDFA was not. The discovery funnel provides an effective means to characterize DAACPs in the nervous systems of animals in a nontargeted manner. PMID:27788334

  2. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  3. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  4. On the abiotic formation of amino acids. I - HCN as a precursor of amino acids detected in extracts of lunar samples. II - Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples

    NASA Technical Reports Server (NTRS)

    Yuasa, S.; Flory, D.; Basile, B.; Oro, J.

    1984-01-01

    Two studies on the abiotic formation of amino acids are presented. The first study demonstrates the role of hydrogen cyanide as a precursor of amino acids detected in extracts of lunar samples. The formation of several amino acids, including glycine, alanine, aspartic acid, and glutamic acid, under conditions similar to those used for the analysis of lunar samples is demonstrated. The second study investigates the formation of hydrogen cyanide as well as amino acids from lunar-sample gas mixtures under electrical discharge conditions. These results extend the possibility of synthesis of amino acids to planetary bodies with primordial atmospheres less reducing than a mixture of methane, ammonia, hydrogen and water.

  5. Survival of gas phase amino acids and nucleobases in space radiation conditions

    NASA Astrophysics Data System (ADS)

    Pilling, S.; Andrade, D. P. P.; de Castilho, R. B.; Cavasso-Filho, R. L.; Lago, A. F.; Coutinho, L. H.; de Souza, G. G. B.; Boechat-Roberty, H. M.; de Brito, A. Naves

    2008-10-01

    We present experimental studies on the photoionization and photodissociation processes (photodestruction) of gaseous amino acids and nucleobases in interstellar and interpla-netary radiation analogs conditions. The measurements have been undertaken at the Brazilian Synchrotron Light Laboratory (LNLS), employing vacuum ultraviolet (VUV) and soft X-ray photons. The experimental set up basically consists of a time-of-flight mass spectrometer kept under high vacuum conditions. Mass spectra were obtained using a photoelectron photoion coincidence technique. We have shown that the amino acids are effectively more destroyed (up to 70 80%) by the stellar radiation than the nucleobases, mainly in the VUV. Since polycyclic aromatic hydrocarbons have the same survival capability and seem to be ubiquitous in the ISM, it is not unreasonable to predict that nucleobases could survive in the interstellar medium and/or in comets, even as a stable cation.

  6. Synthesis and biological activity of novel amino acid-(N'-benzoyl) hydrazide and amino acid-(N'-nicotinoyl) hydrazide derivatives.

    PubMed

    Khattab, Sherine N

    2005-09-30

    The coupling reaction of benzoic acid and nicotinic acid hydrazides with N- protected L-amino acids including valine, leucine, phenylalanine, glutamic acid and tyrosine is reported. The target compounds, N-Boc-amino acid-(N;-benzoyl)- and N- Boc-amino acid-(N;-nicotinoyl) hydrazides 5a-5e and 6a-6e were prepared in very high yields and purity using N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl- methylene]-N-methyl-methanaminium hexafluorophosphate N-oxide (HATU) as coupling reagent. The antimicrobial activity of the Cu and Cd complexes of the designed compounds was tested. The products were deprotected affording the corresponding amino acid-(N;-benzoyl) hydrazide hydrochloride salts (7a-7e) and amino acid-(N;- nicotinoyl) hydrazide hydrochloride salts (8a-8e). These compounds and their Cu and Cd complexes were also tested for their antimicrobial activity. Several compounds showed comparable activity to that of ampicillin against S. aureus and E. coli.

  7. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    PubMed

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  8. [Blood amino acids in astronauts before and after a 211-day space flight].

    PubMed

    Popov, I G; Latskevich, A A

    1984-01-01

    The plasma content of 17 free amino acids of the Commander and Flight-Engineer of Salyut-1-Soyuz-T was examined before flight and on postflight days 1 and 7. The amino acids were measured in an automatic amino acid analyzer Hitachi KLA-3B. Both cosmonauts showed a decrease of most amino acids, particularly essential amino acids. On postflight day 7 the content of most amino acids did not yet return to the preflight level. It can therefore be concluded that the preflight diet should be supplemented with methionine and aspartic acid, and the flight and postflight diets with 7 essential amino acids plus cystine, arginine, proline and aspartic acid.

  9. Variation in amino acid and lipid composition of latent fingerprints.

    PubMed

    Croxton, Ruth S; Baron, Mark G; Butler, David; Kent, Terry; Sears, Vaughn G

    2010-06-15

    The enhancement of latent fingerprints, both at the crime scene and in the laboratory using an array of chemical, physical and optical techniques, permits their use for identification. Despite the plethora of techniques available, there are occasions when latent fingerprints are not successfully enhanced. An understanding of latent fingerprint chemistry and behaviour will aid the improvement of current techniques and the development of novel ones. In this study the amino acid and fatty acid content of 'real' latent fingerprints collected on a non-porous surface was analysed by gas chromatography-mass spectrometry. Squalene was also quantified in addition. Hexadecanoic acid, octadecanoic acid and cis-9-octadecenoic acid were the most abundant fatty acids in all samples. There was, however, wide variation in the relative amounts of each fatty acid in each sample. It was clearly demonstrated that touching sebum-rich areas of the face immediately prior to fingerprint deposition resulted in a significant increase in the amount of fatty acids and squalene deposited in the resulting 'groomed' fingerprints. Serine was the most abundant amino acid identified followed by glycine, alanine and aspartic acid. The significant quantitative differences between the 'natural' and 'groomed' fingerprint samples seen for fatty acids were not observed in the case of the amino acids. This study demonstrates the variation in latent fingerprint composition between individuals and the impact of the sampling protocol on the quantitative analysis of fingerprints.

  10. Functional characterization of Caenorhabditis elegans heteromeric amino acid transporters.

    PubMed

    Veljkovic, Emilija; Stasiuk, Susan; Skelly, Patrick J; Shoemaker, Charles B; Verrey, François

    2004-02-27

    Mammalian heteromeric amino acid transporters (HATs) are composed of a multi-transmembrane spanning catalytic protein covalently associated with a type II glycoprotein (e.g. 4F2hc, rBAT) through a disulfide bond. Caenorhabditis elegans has nine genes encoding close homologues of the HAT catalytic proteins. Three of these genes (designated AAT-1 to AAT-3) have a much higher degree of similarity to the mammalian homologues than the other six, including the presence of a cysteine residue at the position known to form a disulfide bridge to the glycoprotein partner in mammalian HATs. C. elegans also has two genes encoding homologues of the heteromeric amino acid transporter type II glycoprotein subunits (designated ATG-1 and ATG-2). Both ATG, and/or AAT-1, -2, -3 proteins were expressed in Xenopus oocytes and tested for amino acid transport function. This screen revealed that AAT-1 and AAT-3 facilitate amino acid transport when expressed together with ATG-2 but not with ATG-1 or the mammalian type II glycoproteins 4F2hc and rBAT. AAT-1 and AAT-3 covalently bind to both C. elegans ATG glycoproteins, but only the pairs with ATG-2 traffic to the oocyte surface. Both of these functional, surface-expressed C. elegans HATs transport most neutral amino acids and display the highest transport rate for l-Ala and l-Ser (apparent K(m) 100 microm range). Similar to their mammalian counterparts, the C. elegans HATs function as (near) obligatory amino acid exchangers. Taken together, this study demonstrates that the heteromeric structure and the amino acid exchange function of HATs have been conserved throughout the evolution of nematodes to mammals.

  11. Alterations in amino acid status in cats with feline dysautonomia

    PubMed Central

    Symonds, Herb W.; Knottenbelt, Clare; Cave, Tom A.; MacDonald, Susan J.; Stratton, Joanna; Leon, Irene; Turner, Judith A.; Pirie, R. Scott

    2017-01-01

    Feline dysautonomia (FD) is a multiple system neuropathy of unknown aetiology. An apparently identical disease occurs in horses (equine grass sickness, EGS), dogs, rabbits, hares, sheep, alpacas and llamas. Horses with acute EGS have a marked reduction in plasma concentrations of the sulphur amino acids (SAA) cyst(e)ine and methionine, which may reflect exposure to a neurotoxic xenobiotic. The aim of this study was to determine whether FD cats have alterations in amino acid profiles similar to those of EGS horses. Amino acids were quantified in plasma/serum from 14 FD cats, 5 healthy in-contact cats which shared housing and diet with the FD cats, and 6 healthy control cats which were housed separately from FD cats and which received a different diet. The adequacy of amino acids in the cats’ diet was assessed by determining the amino acid content of tinned and dry pelleted foods collected immediately after occurrences of FD. Compared with controls, FD cats had increased concentrations of many essential amino acids, with the exception of methionine which was significantly reduced, and reductions in most non-essential amino acids. In-contact cats also had inadequate methionine status. Artefactual loss of cysteine during analysis precluded assessment of the cyst(e)ine status. Food analysis indicated that the low methionine status was unlikely to be attributable to dietary inadequacy of methionine or cystine. Multi-mycotoxin screening identified low concentrations of several mycotoxins in dry food from all 3 premises. While this indicates fungal contamination of the food, none of these mycotoxins appears to induce the specific clinico-pathologic features which characterise FD and equivalent multiple system neuropathies in other species. Instead, we hypothesise that ingestion of another, as yet unidentified, dietary neurotoxic mycotoxin or xenobiotic, may cause both the characteristic disease pathology and the plasma SAA depletion. PMID:28333983

  12. Monoclonal antibodies recognizing single amino acid substitutions in hemoglobin

    SciTech Connect

    Stanker, L.H.; Branscomb, E.; Vanderlaan, M.; Jensen, R.H.

    1986-06-01

    Four monoclonal antibodies (mAb) to non-human primate hemoglobin referred to as Cap-4, Cap-5, Rh-2, and Rh-4, and two mAb to human hemoglobin, referred to as H-1 and H-3 were isolated and were partially characterized. Binding studies with these mAb on a panel of hemoglobins and isolated ..cap alpha.. and ..beta.. globin chains revealed a unique reactivity pattern for each mAb. Amino acid sequence analysis of the antigens used to generate the binding data suggests that the specific recognition of certain hemoglobin antigens by each mAb is controlled by the presence of a particular amino acid at a specific position within the epitope. The use of synthetic peptides as antigens confirmed this observation for five of the mAb. No synthetic peptides were tested with the sixth mAb, Rh-2. The amino acids required for binding of mAb Cap-4, Cap-5, Rh-4, and Rh-2 to hemoglobin are alanine at ..beta..5, threonine at ..beta..13, glutamine at ..beta..125, and leucine at ..cap alpha..68. The non-human primate hemoglobin antibodies require a specific amino acid that is not present in human hemoglobin. The amino acid required for binding of Cap-4, Cap-5, and Rh-4 could arise by a single base change in the ..beta.. globin gene, whereas the amino acid required for Rh-2 binding could only occur if two base changes occurred. Thus these mAb are candidate probes for a somatic cell mutation assay on the basis of the detection of peripheral blood red cells that possess single amino acid substituted hemoglobin as a result of single base substitutions in the globin genes of precursor cells.

  13. Thyroid peroxidase activity is inhibited by amino acids.

    PubMed

    Carvalho, D P; Ferreira, A C; Coelho, S M; Moraes, J M; Camacho, M A; Rosenthal, D

    2000-03-01

    Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 microM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 microM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 microM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 microM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  14. Boron-containing amino carboxylic acid compounds and uses thereof

    DOEpatents

    Kabalka, George W.; Srivastava, Rajiv R.

    2000-03-14

    Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed.

  15. Effects of amino acid additives during hemodialysis of children.

    PubMed

    Abitbol, C L; Mrozinska, K; Mandel, S; McVicar, M; Wapnir, R A

    1984-01-01

    The intradialytic losses into the dialysate of free amino acids (AA) and alpha-amino nitrogen were determined during the dialysis of three children. Variations in plasma AA were determined pre- and postdialysis. The effect of these losses with the addition of an Abbott General Amino Acid Mixture to the dialysate in concentrations of 8.5, 17, and 34 mg/100 ml was studied. The major determinant of AA losses was the plasma concentration of the AA before beginning the dialysis treatment. Dialysance of individual AA varied inversely with their molecular weights. A zero flux of alpha-amino nitrogen occurred at a derived concentration of 22 mg/100 ml of the AA additive in the dialysate. Plasma concentrations of nonessential amino acids were little affected by the dialysate additive. In contrast, total essential amino acid nitrogen which fell during baseline dialyses showed significant improvement when the AA solution was added to the dialysate. This study suggests that the addition of AA to the dialysate bath may be effective in decreasing AA nitrogen losses during dialysis.

  16. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  17. Robust analysis of underivatized free amino acids in soil by hydrophilic interaction liquid chromatography coupled with electrospray tandem mass spectrometry.

    PubMed

    Gao, Jiajia; Helmus, Rick; Cerli, Chiara; Jansen, Boris; Wang, Xiang; Kalbitz, Karsten

    2016-06-03

    Amino acids are an important and highly dynamic fraction of organic N in soils and their determination in soil without derivatization is challenging due to the difficulties in separation and detection of trace amounts of these polar analytes. In the present work, we developed an analytical method to quantify 20 free amino acids in aqueous soil extracts without derivatization. The method employed hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) technique combined with a cation exchange solid phase extraction (SPE). Four stable isotope labelled amino acids were used as internal standards to improve the method performance. Good separation of 20 underivatized amino acids was achieved within 12min. The limit of detection (LODs) and limit of quantification (LOQs) were in the range of 13-384ngg(-1) and 43-1267ngg(-1) (dry soil basis), respectively. The results showed that overall recoveries with high precision were obtained for the extracted free amino acids from ten different soils. The overall recoveries of 18 amino acids were similar for the ten soils used, which differed substantially in organic C content and in other properties as soil texture and pH. For most of the amino acids, the average recoveries from soil extracts were between 74% and 117%, with the exception of Met (31%), Pro (52%) and Arg (68%). Variability was within acceptable limits (relative standard deviations were between 4% and 13%), with the exception of Met (relative standard deviation=90%) and Arg (relative standard deviation=53%). Thus the proposed method with high throughout and high analyte specificity shows great promise for consistent analysis of free amino acids extracted from soils and offers new horizons for the analysis of amino acids in terrestrial and aquatic ecosystem.

  18. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  19. Formation and Fragmentation of Protonated Molecules after Ionization of Amino Acid and Lactic Acid Clusters by Collision with Ions in the Gas Phase.

    PubMed

    Poully, Jean-Christophe; Vizcaino, Violaine; Schwob, Lucas; Delaunay, Rudy; Kocisek, Jaroslav; Eden, Samuel; Chesnel, Jean-Yves; Méry, Alain; Rangama, Jimmy; Adoui, Lamri; Huber, Bernd

    2015-08-03

    Collisions between O(3+) ions and neutral clusters of amino acids (alanine, valine and glycine) as well as lactic acid are performed in the gas phase, in order to investigate the effect of ionizing radiation on these biologically relevant molecular systems. All monomers and dimers are found to be predominantly protonated, and ab initio quantum-chemical calculations on model systems indicate that for amino acids, this is due to proton transfer within the clusters after ionization. For lactic acid, which has a lower proton affinity than amino acids, a significant non-negligible amount of the radical cation monomer is observed. New fragment-ion channels observed from clusters, as opposed to isolated molecules, are assigned to the statistical dissociation of protonated molecules formed upon ionization of the clusters. These new dissociation channels exhibit strong delayed fragmentation on the microsecond time scale, especially after multiple ionization.

  20. How Amino Acids and Peptides Shaped the RNA World

    PubMed Central

    van der Gulik, Peter T.S.; Speijer, Dave

    2015-01-01

    The “RNA world” hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein synthesis. However, this view is incomplete at best. The modern protein-RNA ribosome most probably is not a distorted form of a “pure RNA ribosome” evolution started out with. Though the oldest center of the ribosome seems “RNA only”, we cannot conclude from this that it ever functioned in an environment without amino acids and/or peptides. Very small RNAs (versatile and stable due to basepairing) and amino acids, as well as dipeptides, coevolved. Remember, it is the amino group of aminoacylated tRNA that attacks peptidyl-tRNA, destroying the bond between peptide and tRNA. This activity of the amino acid part of aminoacyl-tRNA illustrates the centrality of amino acids in life. With the rise of the “RNA world” view of early life, the pendulum seems to have swung too much towards the ribozymatic part of early biochemistry. The necessary presence and activity of amino acids and peptides is in need of highlighting. In this article, we try to bring the role of the peptide component of early life back into focus. We argue that an RNA world completely independent of amino acids never existed. PMID:25607813

  1. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.

    PubMed

    Lager, Susanne; Jansson, Thomas; Powell, Theresa L

    2014-10-15

    Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus.

  2. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran.

    PubMed

    Levin, Eran; McCue, Marshall D; Davidowitz, Goggy

    2017-02-08

    The ability to allocate resources, even when limited, is essential for survival and fitness. We examine how nutrients that occur in minute amounts are allocated among reproductive, somatic, and metabolic demands. In addition to sugar, flower nectars contain two macronutrients-amino acids and fatty acids. We created artificial nectars spiked with (13)C-labelled amino acids and fatty acids and fed these to adult moths (Manduca sexta: Sphingidae) to understand how they allocate these nutrients among competing sinks (reproduction, somatic tissue, and metabolic fuel). We found that both essential and non-essential amino acids were allocated to eggs and flight muscles and were still detectable in early-instar larvae. Parental-derived essential amino acids were more conserved in the early-instars than non-essential amino acids. All amino acids were used as metabolic fuel, but the non-essential amino acids were oxidized at higher rates than essential amino acids. Surprisingly, the nectar fatty acids were not vertically transferred to offspring, but were readily used as a metabolic fuel by the moth, minimizing losses of endogenous nutrient stores. We conclude that the non-carbohydrate components of nectar may play important roles in both reproductive success and survival of these nectar-feeding animals.

  3. Vacancy ion-exclusion chromatography of haloacetic acids on a weakly acidic cation-exchange resin.

    PubMed

    Helaleh, Murad I H; Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Taoda, Hiroshi; Ding, Ming-Yu; Hu, Wenzhi; Hasebe, Kiyoshi; Haddad, Paul R

    2003-05-16

    A new and simple approach is described for the determination of the haloacetic acids (such as mono-, di- and trichloroacetic acids) usually found in drinking water as chlorination by-products after disinfection processes and acetic acid. The new approach, termed vacancy ion-exclusion chromatography, is based on an ion-exclusion mechanism but using the sample solution as the mobile phase, pure water as the injected sample, and a weakly acidic cation-exchange resin column (TSKgel OApak-A) as the stationary phase. The addition of sulfuric acid to the mobile phase results in highly sensitive conductivity detection with sharp and well-shaped peaks, leading to excellent and efficient separations. The elution order was sulfuric acid, dichloroacetic acid, monochloroacetic acid, trichloroacetic acid, and acetic acid. The separation of these acids depends on their pKa values. Acids with lower pKa values were eluted earlier than those with higher pKa, except for trichloroacetic acid due to a hydrophobic-adsorption effect occurring as a side-effect of vacancy ion-exclusion chromatography. The detection limits of these acids in the present study with conductivity detection were 3.4 microM for monochloroacetic acid, 0.86 microM for dichloroacetic acid and 0.15 microM for trichloroacetic acid.

  4. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads

    PubMed Central

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-01-01

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206

  5. Regulation of amino acid metabolic enzymes and transporters in plants.

    PubMed

    Pratelli, Réjane; Pilot, Guillaume

    2014-10-01

    Amino acids play several critical roles in plants, from providing the building blocks of proteins to being essential metabolites interacting with many branches of metabolism. They are also important molecules that shuttle organic nitrogen through the plant. Because of this central role in nitrogen metabolism, amino acid biosynthesis, degradation, and transport are tightly regulated to meet demand in response to nitrogen and carbon availability. While much is known about the feedback regulation of the branched biosynthesis pathways by the amino acids themselves, the regulation mechanisms at the transcriptional, post-transcriptional, and protein levels remain to be identified. This review focuses mainly on the current state of our understanding of the regulation of the enzymes and transporters at the transcript level. Current results describing the effect of transcription factors and protein modifications lead to a fragmental picture that hints at multiple, complex levels of regulation that control and coordinate transport and enzyme activities. It also appears that amino acid metabolism, amino acid transport, and stress signal integration can influence each other in a so-far unpredictable fashion.

  6. Amino acid containing glass-ionomer cement for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    Amino acid containing glass-ionomer cements were synthesized, formulated, and evaluated for orthopedic application. The formulation of different amino acid containing glass-ionomer bone cements was optimized, and conventional and resin-modified glass-ionomer bone cements were compared. Properties of interest included handling characteristics, physical and chemical properties, and mechanical strength of the bone cement. The study was based on the synthesis of different vinyl containing amino acids, different polyelectrolytes containing these amino acid residues, and different resin-modified polyelectrolytes, as well as formulation and evaluation of conventional and resin-modified glass-ionomer bone cements using these polyelectrolytes. Systematic preparation of polyelectrolytes and formulation of glass-ionomer bone cements were essential features of this work, since we anticipated that the mechanical properties of the glass-ionomer bone cements could be strongly affected by the nature of the polyelectrolytes and formulation. Mechanical properties were evaluated in a screw driven mechanical testing machine, and structure-property relationships were determined by scanning electron microscopic (SEM) observation of the fracture surface of the specimens. How the structure of polyelectrolytes, such as different amino acid residues, molecular weight, different modifying resin, and formulation of glass-ionomer bone cement, affected the mechanical properties was also studied.

  7. Plasma amino acid response to graded levels of escape protein.

    PubMed

    Gibb, D J; Klopfenstein, T J; Britton, R A; Lewis, A J

    1992-09-01

    A trial was conducted to examine the potential of using plasma amino acid responses to graded levels of escape protein to determine limiting amino acids in cattle. Growing calves (n = 120; mean BW = 220 +/- 21 kg) were fed a basal diet of corncob:sorghum silage (61:39) and were individually supplemented with distillers' dried grains (DDG), heat-damaged DDG (H-DDG), feather meal (FTH), or urea. The urea supplement was mixed with DDG and H-DDG to allow 0, 20, 35, 50, 65, or 80% of the supplemental CP to come from distillers' protein and maintain an 11.5% CP diet. Urea supplement was mixed with FTH to allow 0, 22, 39, 56, 73, or 90% of the supplemental CP to come from FTH. Dietary CP ranged from 11.5% at the 0% level to 17.3% at the 90% level. Plasma concentration of most essential plasma amino acids responded (P less than .10) linearly and(or) quadratically to increased escape protein. The broken-line response of plasma methionine at low DDG intake suggested that methionine was limiting at low levels of escape protein. An initial decrease followed by a plateau fit by a broken line indicated that histidine became limiting in FTH diets, and lysine eventually became limiting for DDG, H-DDG, and FTH diets before maximum BW gain was reached. Results indicate that plasma amino acid responses may identify amino acids that become limiting with increasing escape protein.

  8. Amino Acid Biosynthesis in the Halophilic Archaeon Haloarcula hispanica

    PubMed Central

    Hochuli, Michel; Patzelt, Heiko; Oesterhelt, Dieter; Wüthrich, Kurt; Szyperski, Thomas

    1999-01-01

    Biosynthesis of proteinogenic amino acids in the extremely halophilic archaeon Haloarcula hispanica was explored by using biosynthetically directed fractional 13C labeling with a mixture of 90% unlabeled and 10% uniformly 13C-labeled glycerol. The resulting 13C-labeling patterns in the amino acids were analyzed by two-dimensional 13C,1H correlation spectroscopy. The experimental data provided evidence for a split pathway for isoleucine biosynthesis, with 56% of the total Ile originating from threonine and pyruvate via the threonine pathway and 44% originating from pyruvate and acetyl coenzyme A via the pyruvate pathway. In addition, the diaminopimelate pathway involving diaminopimelate dehydrogenase was shown to lead to lysine biosynthesis and an analysis of the 13C-labeling pattern in tyrosine indicated novel biosynthetic pathways that have so far not been further characterized. For the 17 other proteinogenic amino acids, the data were consistent with data for commonly found biosynthetic pathways. A comparison of our data with the amino acid metabolisms of eucarya and bacteria supports the theory that pathways for synthesis of proteinogenic amino acids were established before ancient cells diverged into archaea, bacteria, and eucarya. PMID:10322026

  9. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    PubMed

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies.

  10. Industrial production of amino acids by coryneform bacteria.

    PubMed

    Hermann, Thomas

    2003-09-04

    In the 1950s Corynebacterium glutamicum was found to be a very efficient producer of L-glutamic acid. Since this time biotechnological processes with bacteria of the species Corynebacterium developed to be among the most important in terms of tonnage and economical value. L-Glutamic acid and L-lysine are bulk products nowadays. L-Valine, L-isoleucine, L-threonine, L-aspartic acid and L-alanine are among other amino acids produced by Corynebacteria. Applications range from feed to food and pharmaceutical products. The growing market for amino acids produced with Corynebacteria led to significant improvements in bioprocess and downstream technology as well as in molecular biology. During the last decade big efforts were made to increase the productivity and to decrease the production costs. This review gives an overview of the world market for amino acids produced by Corynebacteria. Significant improvements in bioprocess technology, i.e. repeated fed batch or continuous production are summarised. Bioprocess technology itself was improved furthermore by application of more sophisticated feeding and automatisation strategies. Even though several amino acids developed towards commodities in the last decade, side aspects of the production process like sterility or detection of contaminants still have increasing relevance. Finally one focus of this review is on recent developments in downstream technology.

  11. A critical evaluation of the application of amino acid racemization to geochronology and geothermometry

    NASA Technical Reports Server (NTRS)

    Williams, K. M.; Smith, G. G.

    1977-01-01

    Attempts have been made to determine the age of biological samples by measuring the racemization of amino acids in protein samples. The pitfalls and inherent complications in diagenetic racemization studies are reviewed, and recent advances in improving techniques are outlined. Methodological topics include isolation of amino acids from geological samples, resolution of amino acid enantiomers, and the effects of acid hydrolysis. The theory and kinetics of amino acid racemization are discussed with attention to the derivation of the rate expression for amino acid racemization, isoleucine and the equilibrium constant, the mechanism of amino acid racemization, the racemization of 'bound' versus 'free' amino acids, and factors affecting the racemization rates of free amino acids in aqueous solution. Applications of amino acid racemization kinetics to geochronology is considered with reference to shells, marine sediments, and bones. Potential complications include heating and diagenesis, diagenetic formation of amino acids, the effect of clays, species effect, and contamination.

  12. Composition of antioxidants and amino acids in Stevia leaf infusions.

    PubMed

    Periche, Angela; Koutsidis, Georgios; Escriche, Isabel

    2014-03-01

    Stevia, a non-caloric natural sweetener with beneficial properties and considerable antioxidants and amino acids, is increasingly consumed as an infusion. This work evaluates the influence of the conditions (temperature: 50, 70 or 90 °C and time: 1, 5, 20 or 40 min) applied to obtain Stevia infusions, on antioxidants (total phenols, flavonoids and antioxidant activity) and amino acids. The total concentration of the eleven amino acids found was 11.70 mg/g in dried leaves and from 6.84 to 9.11 mg/g per gram of Stevia in infusions. However, infusions showed higher levels of certain amino acids (alanine, asparagine, leucine and proline), and greater values of the three antioxidant parameters in comparison with dry leaves. Temperature had more influence (minimum values at 50 °C and maximum at 90 °C) than time in the case of antioxidants. At 90 °C there were no important increases in the extraction of antioxidant compounds after 5 min; each gram of Stevia had 117 mg trolox (total antioxidant activity), 90 mg gallic acid (total phenols) and 56 mg catechin equivalents (flavonoids). Varying the temperature and time conditions no notable differences were observed in the concentrations of the majority of amino acids. However, the infusion treatment at 90 °C for 5 min was the best, as it gave the highest yield of 8 of the 11 amino acids. Therefore, with respect to the compounds analyzed in this study, the best way to obtain Stevia leaf infusions is the same as the domestic process, almost boiling water for a short time.

  13. Excretion of amino acids by humans during space flight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Schluter, M. D.

    1998-01-01

    We measured the urine amino acid distribution patterns before, during and after space flight on the Space Shuttle. The urine samples were collected on two separate flights of the space shuttle. The first flight lasted 9.5 days and the second flight 15 days. Urine was collected continuously on 8 subjects for the period beginning 10 d before launch to 6 d after landing. Results: In contrast to the earlier Skylab missions where a pronounced amino aciduria was found, on shuttle the urinary amino acids showed little change with spaceflight except for a marked decrease in all of the amino acids on FD (flight day) 1 (p<0.05) and a reduction in isoleucine and valine on FD3 and FD4 (p<0.05). Conclusions: (i) Amino aciduria is not an inevitable consequence of space flight. (ii) The occurrence of amino aciduria, like muscle protein breakdown is a mission specific effect rather than part of the general human response to microgravity.

  14. Regulation of uterine and umbilical amino acid uptakes by maternal amino acid concentrations.

    PubMed

    Thureen, P J; Anderson, S M; Hay, W W

    2000-09-01

    We tested the hypothesis that decreased fetal amino acid (AA) supply, produced by maternal hypoaminoacidemia (low AA) during hyperglycemia (HG), is reversible with maternal AA infusion and regulates fetal insulin concentration ([I]). We measured net uterine and umbilical AA uptakes during maternal HG/low AA concentration ([AA]) and after maternal intravenous infusion of a mixed AA solution. After 5 days HG, all maternal [AA] except glycine were decreased >50%, particularly essential [AA] (P < 0.00005). Most fetal [AA] also were decreased, especially branched-chain AA (P < 0.001). Maternal AA infusion increased net uterine uptakes of Val, Leu, Ile, Met, and Ser and net umbilical uptakes of Val, Leu, Ile, Met, Phe, and Arg but did not change net uteroplacental uptake of any AA. Fetal [I] increased 55 +/- 14%, P < 0.001, with correction of fetal [AA], despite the lack of change in fetal glucose concentration. Thus generalized maternal hypoaminoacidemia decreases uterine and umbilical uptakes of primarily the essential AA and decreases fetal branched-chain [AA]. These changes are reversed with correction of maternal [AA], which also increases fetal [I].

  15. Amino acid-based surfactants – do they deserve more attention?

    PubMed

    Bordes, Romain; Holmberg, Krister

    2015-08-01

    The 20 standard amino acids (together with a few more that are not used in the biosynthesis of proteins) constitute a versatile tool box for synthesis of surfactants. Anionic, cationic and zwitterionic amphiphiles can be prepared and surfactants with several functional groups can be obtained by the proper choice of starting amino acid. This review gives examples of procedures used for preparation and discusses important physicochemical properties of the amphiphiles and how these can be taken advantage of for various applications. Micelles with a chiral surface can be obtained by self-assembly of enantiomerically pure surfactants and such supramolecular chirality can be utilized for asymmetric organic synthesis and for preparation of mesoporous materials with chiral pores. Surfactants based on amino acids with two carboxyl groups are effective chelating agents and can be used as collectors in mineral ore flotation. A surfactant based on cysteine readily oxidizes into the corresponding cystine compound, which can be regarded as a gemini surfactant. The facile and reversible cysteine-cystine transformation has been taken advantage of in the design of a switchable surfactant. A very attractive aspect of surfactants based on amino acids is that the polar head-group is entirely natural and that the linkage to the hydrophobic tail, which is often an ester or an amide bond, is easily cleaved. The rate of degradation can be tailored by the structure of the amphiphile. The ester linkage in betaine ester surfactants is particularly susceptible to alkaline hydrolysis and this surfactant type can be used as a biocide with short-lived action. This paper is not intended as a full review on the topic. Instead it highlights concepts that are unique to amino acid-based surfactants and that we believe can have practical implications.

  16. Amino acid sequences of proteins from Leptospira serovar pomona.

    PubMed

    Alves, S F; Lefebvre, R B; Probert, W

    2000-01-01

    This report describes a partial amino acid sequences from three putative outer envelope proteins from Leptospira serovar pomona. In order to obtain internal fragments for protein sequencing, enzymatic and chemical digestion was performed. The enzyme clostripain was used to digest the proteins 32 and 45 kDa. In situ digestion of 40 kDa molecular weight protein was accomplished using cyanogen bromide. The 32 kDa protein generated two fragments, one of 21 kDa and another of 10 kDa that yielded five residues. A fragment of 24 kDa that yielded nineteen residues of amino acids was obtained from 45 kDa protein. A fragment with a molecular weight of 20 kDa, yielding a twenty amino acids sequence from the 40 kDa protein.

  17. Simple, high-yield synthesis of polyhedral carborane amino acids

    SciTech Connect

    Kahl, S.B.; Kasar, R.A.

    1996-02-07

    Boron neutron capture therapy (BNCT) is a form of binary cancer therapy that offers the potential of delivering spatially selective, high linear energy transfer radiation to the target cells while sparing surrounding normal tissue. We have demonstarted a versatile, general method for the conversion of o- ,m-, and p-carborane to their corresponding Boc-protected amino acids. Heterobifunctional polyhedral carboranes are exceedingly rare in the literature, and the amino acids prepared by this general method may prove to be valuable synthons for use in the synthesis of tumor-seeking compounds for BNCT or PDT. Morever, these conformationally constrained amino acids should be particularly interesting for use in peptide synthesis. The dihedral angle between the carbon atoms of these polyhedra increases in the order 60{degree} (ortho), 110{degree} (meta), and 180{degree} (para), allowing the peptide chemist to select a desired conformation. 11 refs.

  18. Supernovae and the chirality of the amino acids.

    PubMed

    Boyd, R N; Kajino, T; Onaka, T

    2010-06-01

    A mechanism for creating amino acid enantiomerism that always selects the same large-scale chirality is identified, and subsequent chemical replication and galactic mixing that would populate the Galaxy with the predominant species is described. This involves (1) the spin of the 14N in the amino acids, or in precursor molecules from which amino acids might be formed, that couples to the chirality of the molecules; (2) the neutrinos emitted from the supernova, together with the magnetic field from the nascent neutron star or black hole formed from the supernova, which selectively destroy one orientation of the 14N and thus select the chirality associated with the other 14N orientation; (3) chemical evolution, by which the molecules replicate and evolve to more complex forms of a single chirality on a relatively short timescale; and (4) galactic mixing on a longer timescale that mixes the selected molecules throughout the Galaxy.

  19. Amino acid immunoreactivity in normal human retina and after brachytherapy.

    PubMed

    de Souza, Clairton F; Acosta, Monica L; Polkinghorne, Philip J; McGhee, Charles N J; Kalloniatis, Michael

    2013-09-01

    We localised amino acids in the mid-peripheral aged human retina and a retina that had undergone radiation treatment 10 years earlier. The distribution pattern of glutamate, γ-amino butyric acid (GABA), glycine, glutamine and taurine, reflected patterns established in the primate retina. The retina that had undergone radiation exposure displayed both anatomical and neurochemical remodelling. The proximal retina comprised around 40 to 45 per cent of the total retina and neuronal kinesis and aberrant neuronal projections were also present. Amino acid neurochemistry was strikingly different with Müller cells displaying GABA loading, glycinergic neurons displaced and displaying a very high level of glycine labelling. We conclude that radiation exposure triggered these changes in the human retina and likely reflects general remodelling of structure and function following ischaemic damage to endothelial cells.

  20. BIOACTIVE PROTEINS, PEPTIDES, AND AMINO ACIDS FROM MACROALGAE(1).

    PubMed

    Harnedy, Pádraigín A; FitzGerald, Richard J

    2011-04-01

    Macroalgae are a diverse group of marine organisms that have developed complex and unique metabolic pathways to ensure survival in highly competitive marine environments. As a result, these organisms have been targeted for mining of natural biologically active components. The exploration of marine organisms has revealed numerous bioactive compounds that are proteinaceous in nature. These include proteins, linear peptides, cyclic peptides and depsipeptides, peptide derivatives, amino acids, and amino acid-like components. Furthermore, some species of macroalgae have been shown to contain significant levels of protein. While some protein-derived bioactive peptides have been characterized from macroalgae, macroalgal proteins currently still represent good candidate raw materials for biofunctional peptide mining. This review will provide an overview of the important bioactive amino-acid-containing compounds that have been identified in macroalgae. Moreover, the potential of macroalgal proteins as substrates for the generation of biofunctional peptides for utilization as functional foods to provide specific health benefits will be discussed.

  1. Amino Acids in the Antarctic Martian Meteorite MIL03346

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Aubrey, A.; Dworkin, J. P.; Botta, O.; Bada, J. L.

    2005-01-01

    The report by McKay et al. that the Martian meteorite ALH84001 contains evidence for life on Mars remains controversial. Of central importance is whether ALH84001 and other Antarctic Martian meteorites contain endogenous organic compounds. In any investigation of organic compounds possibly derived from Mars it is important to focus on compounds that play an essential role in biochemistry as we know it and that have properties such as chirality which can be used to distinguish between biotic versus abiotic origins. Amino acids are one of the few compounds that fulfill these requirements. Previous analyses of the Antarctic Martian meteorites ALH84001 and EETA79001 have shown that these meteorites contain low levels of terrestrial amino acid contamination derived from Antarctic ice meltwater. Here we report preliminary amino acid investigations of a third Antarctic Martian meteorite MIL03346 which was discovered in Antarctica during the 2003-04 ANSMET season. Additional information is included in the original extended abstract

  2. Hidden thermodynamic information in protein amino acid mutation tables

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2017-03-01

    We combine the standard 1992 20 × 20 substitution matrix based on block alignment, BLOSUM62, with the standard 1982 amino acid hydropathicity scale KD as well as the modern 2007 hydropathicity scale MZ, and compare the results. The 20-parameter KD and MZ hydropathicity scales have different thermodynamic character, corresponding to first- and second-order transitions. The KD and MZ comparisons show that the mutation rates reflect quantitative iteration of qualitative amino acid-phobic and -philic binary 2 × 10 properties that define quaternary 4 × 5 subgroups (but not quinary 5 × 4 subgroups), with the modern MZ bioinformatic scale giving much better results. The quaternary 5-mer MZ 4 × 5 subgroups are called mutons (Mu5). Among all hydropathicity scales, the MZ scale uniquely exhibits a smooth, deep mutational minimum at its center associated with alanine, glycine, the smallest amino acid, and histidine.

  3. Energetics of amino acid synthesis in hydrothermal ecosystems

    NASA Technical Reports Server (NTRS)

    Amend, J. P.; Shock, E. L.

    1998-01-01

    Thermodynamic calculations showed that the autotrophic synthesis of all 20 protein-forming amino acids was energetically favored in hot (100 degrees C), moderately reduced, submarine hydrothermal solutions relative to the synthesis in cold (18 degrees C), oxidized, surface seawater. The net synthesis reactions of 11 amino acids were exergonic in the hydrothermal solution, but all were endergonic in surface seawater. The synthesis of the requisite amino acids of nine thermophilic and hyperthermophilic proteins in a 100 degreesC hydrothermal solution yielded between 600 and 8000 kilojoules per mole of protein, which is energy that is available to drive the intracellular synthesis of enzymes and other biopolymers in hyperthermophiles thriving in these ecosystems.

  4. Luminal Heterodimeric Amino Acid Transporter Defective in Cystinuria

    PubMed Central

    Pfeiffer, Rahel; Loffing, Jan; Rossier, Grégoire; Bauch, Christian; Meier, Christian; Eggermann, Thomas; Loffing-Cueni, Dominique; Kühn, Lukas C.; Verrey, François

    1999-01-01

    Mutations of the glycoprotein rBAT cause cystinuria type I, an autosomal recessive failure of dibasic amino acid transport (b0,+ type) across luminal membranes of intestine and kidney cells. Here we identify the permease-like protein b0,+AT as the catalytic subunit that associates by a disulfide bond with rBAT to form a hetero-oligomeric b0,+ amino acid transporter complex. We demonstrate its b0,+-type amino acid transport kinetics using a heterodimeric fusion construct and show its luminal brush border localization in kidney proximal tubule. These biochemical, transport, and localization characteristics as well as the chromosomal localization on 19q support the notion that the b0,+AT protein is the product of the gene defective in non-type I cystinuria. PMID:10588648

  5. Transport of aromatic amino acids by Brevibacterium linens.

    PubMed

    Boyaval, P; Moreira, E; Desmazeaud, M J

    1983-09-01

    Whole metabolizing Brevibacterium linens cells were used to study the transport of aromatic amino acids. Kinetic results followed the Michaelis-Menten equation with apparent Km values for phenylalanine, tyrosine, and tryptophan of 24, 3.5, and 1.8 microM. Transport of these amino acids was optimum at pH 7.5 and 25 degrees C for phenylalanine and pH 8.0 and 35 degrees C for tyrosine and tryptophan. Crossed inhibitions were all noncompetitive. The only marked stereospecificity was for the L form of phenylalanine. Transport was almost totally inhibited by carbonyl cyanide-m-chlorophenylhydrazone. Iodoacetate and N-ethylmaleimide were much more inhibitory for tryptophan transport than for transport of the other two aromatic amino acids.

  6. Relation between chemotaxis and consumption of amino acids in bacteria

    PubMed Central

    Yang, Yiling; M. Pollard, Abiola; Höfler, Carolin; Poschet, Gernot; Wirtz, Markus; Hell, Rüdiger

    2015-01-01

    Summary Chemotaxis enables bacteria to navigate chemical gradients in their environment, accumulating toward high concentrations of attractants and avoiding high concentrations of repellents. Although finding nutrients is likely to be an important function of bacterial chemotaxis, not all characterized attractants are nutrients. Moreover, even for potential nutrients, the exact relation between the metabolic value of chemicals and their efficiency as chemoattractants has not been systematically explored. Here we compare the chemotactic response of amino acids with their use by bacteria for two well‐established models of chemotactic behavior, E scherichia coli and B acillus subtilis. We demonstrate that in E . coli chemotaxis toward amino acids indeed strongly correlates with their utilization. However, no such correlation is observed for B . subtilis, suggesting that in this case, the amino acids are not followed because of their nutritional value but rather as environmental cues. PMID:25807888

  7. Interactive Hangman teaches amino acid structures and abbreviations.

    PubMed

    Pennington, Britney O; Sears, Duane; Clegg, Dennis O

    2014-01-01

    We developed an interactive exercise to teach students how to draw the structures of the 20 standard amino acids and to identify the one-letter abbreviations by modifying the familiar game of "Hangman." Amino acid structures were used to represent single letters throughout the game. To provide additional practice in identifying structures, hints to the answers were written in "amino acid sentences" for the students to translate. Students were required to draw the structure of the corresponding letter they wished to guess on a whiteboard. Each student received a reference sheet of the structures and abbreviations, but was required to draw from memory when guessing a letter. Preassessments and postassessments revealed a drastic improvement in the students' ability to recognize and draw structures from memory. This activity provides a fun, educational game to play in biochemistry discussion sections or during long incubations in biochemistry laboratories.

  8. Thermochemical study of amino acid imprinted polymer films.

    PubMed

    Chai, Ziyi; BelBruno, Joseph J

    2015-11-01

    Molecularly imprinted polymers provide an alternative to traditional methods of amino acid analysis. The imprinted polymers are more robust and significantly less expensive than, for example, ELISA analysis. Amino acid imprinted nylon-6 thin films were studied by differential scanning calorimetry and scanning electron microscopy. Endothermic peaks were observed for imprinted films at temperatures higher than that for pure nylon, indicating the formation of a more-ordered, hydrogen bonded polymer. Removal of the amino acid from the imprinted film resulted in reversion to the peak observed for pure nylon-6. Additives, β-cyclodextrin and multiwalled carbon nanotubes, were added to the imprinted polymer solutions as a means to increase the porosity of the films. These studies resulted in alternative morphologies and calorimetric results that provide additional functionalities and applications for imprinted polymers.

  9. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids

    PubMed Central

    Reichau, Sebastian; Blackmore, Nicola J.; Jiao, Wanting; Parker, Emily J.

    2016-01-01

    Chirality plays a major role in recognition and interaction of biologically important molecules. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of the shikimate pathway, which is responsible for the synthesis of aromatic amino acids in bacteria and plants, and a potential target for the development of antibiotics and herbicides. DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) displays an unprecedented complexity of allosteric regulation, with three interdependent allosteric binding sites and a ternary allosteric response to combinations of the aromatic amino acids l-Trp, l-Phe and l-Tyr. In order to further investigate the intricacies of this system and identify key residues in the allosteric network of MtuDAH7PS, we studied the interaction of MtuDAH7PS with aromatic amino acids that bear the non-natural d-configuration, and showed that the d-amino acids do not elicit an allosteric response. We investigated the binding mode of d-amino acids using X-ray crystallography, site directed mutagenesis and isothermal titration calorimetry. Key differences in the binding mode were identified: in the Phe site, a hydrogen bond between the amino group of the allosteric ligands to the side chain of Asn175 is not established due to the inverted configuration of the ligands. In the Trp site, d-Trp forms no interaction with the main chain carbonyl group of Thr240 and less favourable interactions with Asn237 when compared to the l-Trp binding mode. Investigation of the MtuDAH7PSN175A variant further supports the hypothesis that the lack of key interactions in the binding mode of the aromatic d-amino acids are responsible for the absence of an allosteric response, which gives further insight into which residues of MtuDAH7PS play a key role in the transduction of the allosteric signal. PMID:27128682

  10. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids.

    PubMed

    Reichau, Sebastian; Blackmore, Nicola J; Jiao, Wanting; Parker, Emily J

    2016-01-01

    Chirality plays a major role in recognition and interaction of biologically important molecules. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of the shikimate pathway, which is responsible for the synthesis of aromatic amino acids in bacteria and plants, and a potential target for the development of antibiotics and herbicides. DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) displays an unprecedented complexity of allosteric regulation, with three interdependent allosteric binding sites and a ternary allosteric response to combinations of the aromatic amino acids l-Trp, l-Phe and l-Tyr. In order to further investigate the intricacies of this system and identify key residues in the allosteric network of MtuDAH7PS, we studied the interaction of MtuDAH7PS with aromatic amino acids that bear the non-natural d-configuration, and showed that the d-amino acids do not elicit an allosteric response. We investigated the binding mode of d-amino acids using X-ray crystallography, site directed mutagenesis and isothermal titration calorimetry. Key differences in the binding mode were identified: in the Phe site, a hydrogen bond between the amino group of the allosteric ligands to the side chain of Asn175 is not established due to the inverted configuration of the ligands. In the Trp site, d-Trp forms no interaction with the main chain carbonyl group of Thr240 and less favourable interactions with Asn237 when compared to the l-Trp binding mode. Investigation of the MtuDAH7PSN175A variant further supports the hypothesis that the lack of key interactions in the binding mode of the aromatic d-amino acids are responsible for the absence of an allosteric response, which gives further insight into which residues of MtuDAH7PS play a key role in the transduction of the allosteric signal.

  11. Amino Acid Sequence of Human Cholinesterase

    DTIC Science & Technology

    1985-10-01

    liquid chromatography (HPLC). Activity testing of the aged, DFP-labeled cholinesterase showed that 99.8% of the active sites had been labeled, since...acids were quantitated by ninhydrin at the AAA Labs, or by derivatization with phenylisothiocyanate at the University of Michigan. The latter method

  12. Solution nonideality related to solute molecular characteristics of amino acids.

    PubMed Central

    Keener, C R; Fullerton, G D; Cameron, I L; Xiong, J

    1995-01-01

    By measuring the freezing-point depression for dilute, aqueous solutions of all water-soluble amino acids, we test the hypothesis that nonideality in aqueous solutions is due to solute-induced water structuring near hydrophobic surfaces and solute-induced water destructuring in the dipolar electric fields generated by the solute. Nonideality is expressed with a single solute/solvent interaction parameter I, calculated from experimental measure of delta T. A related parameter, I(n), gives a method of directly relating solute characteristics to solute-induced water structuring or destructuring. I(n)-values correlate directly with hydrophobic surface area and inversely with dipolar strength. By comparing the nonideality of amino acids with progressively larger hydrophobic side chains, structuring is shown to increase with hydrophobic surface area at a rate of one perturbed water molecule per 8.8 square angstroms, implying monolayer coverage. Destructuring is attributed to dielectric realignment as described by the Debye-Hückel theory, but with a constant separation of charges in the amino-carboxyl dipole. By using dimers and trimers of glycine and alanine, this destructuring is shown to increase with increasing dipole strength using increased separation of fixed dipolar charges. The capacity to predict nonideal solution behavior on the basis of amino acid characteristics will permit prediction of free energy of transfer to water, which may help predict the energetics of folding and unfolding of proteins based on the characteristics of constituent amino acids. Images FIGURE 6 PMID:7711253

  13. Plant amino acid-derived vitamins: biosynthesis and function.

    PubMed

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.

  14. Amino acid sequence of mouse submaxillary gland renin.

    PubMed Central

    Misono, K S; Chang, J J; Inagami, T

    1982-01-01

    The complete amino acid sequences of the heavy chain and light chain of mouse submaxillary gland renin have been determined. The heavy chain consists of 288 amino acid residues having a Mr of 31,036 calculated from the sequence. The light chain contains 48 amino acid residues with a Mr of 5,458. The sequence of the heavy chain was determined by automated Edman degradations of the cyanogen bromide peptides and tryptic peptides generated after citraconylation, as well as other peptides generated therefrom. The sequence of the light chain was derived from sequence analyses of the peptides generated by cyanogen bromide cleavage or by digestion with Staphylococcus aureus protease. The sequences in the active site regions in renin containing two catalytically essential aspartyl residues 32 and 215 were found identical with those in pepsin, chymosin, and penicillopepsin. Comparison of the amino acid sequence of renin with that of porcine pepsin indicated a 42% sequence identity of the heavy chain with the amino-terminal and middle regions and a 46% identity of the light chain with the carboxyl-terminal region of the porcine pepsin sequence. Residues identical in renin and pepsin are distributed throughout the length of the molecules, suggesting a similarity in their overall structures. PMID:6812055

  15. Effects of squat exercise and branched-chain amino acid supplementation on plasma free amino acid concentrations in young women.

    PubMed

    Shimomura, Yoshiharu; Kobayashi, Hisamine; Mawatari, Kazunori; Akita, Keiichi; Inaguma, Asami; Watanabe, Satoko; Bajotto, Gustavo; Sato, Juichi

    2009-06-01

    The present study was conducted to examine alterations in plasma free amino acid concentrations induced by squat exercise and branched-chain amino acid (BCAA) supplementation in young, untrained female subjects. In the morning on the exercise session day, participants ingested drinks containing either BCAA (isoleucine:leucine:valine=1:2.3:1.2) or dextrin (placebo) at 0.1 g/kg body weight 15 min before a squat exercise session, which consisted of 7 sets of 20 squats, with 3 min intervals between sets. In the placebo trial, plasma BCAA concentrations were decreased subsequent to exercise, whereas they were significantly increased in the BCAA trial until 2 h after exercise. Marked changes in other free amino acids in response to squat exercise and BCAA supplementation were observed. In particular, plasma concentrations of methionine and aromatic amino acids were temporarily decreased in the BCAA trial, being significantly lower than those in the placebo trial. These results suggest that BCAA intake before exercise affects methionine and aromatic amino acid metabolism.

  16. Cystatin. Amino acid sequence and possible secondary structure.

    PubMed Central

    Schwabe, C; Anastasi, A; Crow, H; McDonald, J K; Barrett, A J

    1984-01-01

    The amino acid sequence of cystatin, the protein from chicken egg-white that is a tight-binding inhibitor of many cysteine proteinases, is reported. Cystatin is composed of 116 amino acid residues, and the Mr is calculated to be 13 143. No striking similarity to any other known sequence has been detected. The results of computer analysis of the sequence and c.d. spectrometry indicate that the secondary structure includes relatively little alpha-helix (about 20%) and that the remainder is mainly beta-structure. PMID:6712597

  17. Search for amino acids in Apollo returned lunar soil.

    PubMed

    Gehrke, C W; Zumwalt, R W; Kuo, K; Ponnamperuma, C; Shimoyama, A

    1975-10-01

    The lunar samples from Apollo flights 11 through 17 provided the students of chemical evolution with an opportunity of examining extraterrestrial materials for evidence of early prebiological chemistry in the solar system. Our search was directed to water-extractable compounds with emphasis on amino acids. Gas chromatography, ion-exchange chromatography and gas chromatography combined with mass spectrometry were used for the analysis. It is our conclusion that amino acids are not present in the lunar regolith above the background levels of our investigations.

  18. Preparation of 4-amino-2,4-dioxobutanoic acid

    DOEpatents

    Unkefer, Pat J.; Martinez, Rodolfo A.; Glass, David R.

    2016-03-22

    A process for synthesizing 4-amino-2,4-dioxobutanoic acid involves reacting diethyl oxalate with an alkoxide in ethanol to form a reaction mixture, and afterward adding ethyl cyanoacetate to the reaction mixture and allowing a reaction to proceed under conditions suitable to form a first reaction product of the formula diethyl 2-cyano-3-hydroxy-butenedioate, and then isolating the diethyl 2-cyano-3-hydroxy-butenedioate, and afterward reacting the diethyl-2-cyano-3-hydroxy-butenedioate with an aqueous hydroxide under conditions suitable to form 4-amino-2,4-dioxobutanoic acid.

  19. Preparation of 4-amino-2,4-dioxobutanoic acid

    DOEpatents

    Unkefer, Pat J.; Martinez, Rodolfo A.; Glass, David R.

    2015-06-02

    A process for synthesizing 4-amino-2,4-dioxobutanoic acid involves reacting diethyl oxalate with sodium ethoxide in ethanol to form a reaction mixture, and afterward adding ethyl cyanoacetate to the reaction mixture and allowing a reaction to proceed under conditions suitable to form a first reaction product of the formula diethyl-2-cyano-3-hydroxy-butenedioate, and then isolating the diethyl-2-cyano-3-hydroxybutenedioate, and afterward reacting the diethyl-2-cyano-3-hydroxy-butenedioate with aqueous sodium hydroxide under conditions suitable to form 4-amino-2,4-dioxobutanoic acid.

  20. Biological activity of silylated amino acid containing substance P analogues.

    PubMed

    Cavelier, F; Marchand, D; Martinez, J; Sagan, S

    2004-03-01

    The need to replace natural amino acids in peptides with nonproteinogenic counterparts to obtain new medicinal agents has stimulated a great deal of innovation on synthetic methods. Here, we report the incorporation of non-natural silylated amino acids in substance P (SP), the binding affinity for the two hNK-1 binding sites and, the potency to stimulate phospholipase C (PLC) and adenylate cyclase of the resulting peptide. We also assess the improvement of their stability towards enzyme degradation. Altogether, we found that replacing glycine with silaproline (Sip) in position 9 of SP leads to a potent analogue exhibiting an increased resistance to angiotensin-converting enzyme hydrolysis.

  1. Multiple amino acid sensing inputs to mTORC1

    PubMed Central

    Shimobayashi, Mitsugu; Hall, Michael N

    2016-01-01

    The evolutionarily conserved target of rapamycin complex 1 (TORC1) is a master regulator of cell growth and metabolism. In mammals, growth factors and cellular energy stimulate mTORC1 activity through inhibition of the TSC complex (TSC1-TSC2-TBC1D7), a negative regulator of mTORC1. Amino acids signal to mTORC1 independently of the TSC complex. Here, we review recently identified regulators that link amino acid sufficiency to mTORC1 activity and how mutations affecting these regulators cause human disease. PMID:26658722

  2. Control of immune response by amino acid metabolism.

    PubMed

    Grohmann, Ursula; Bronte, Vincenzo

    2010-07-01

    The interaction between pathogenic microorganisms and their hosts is regulated by reciprocal survival strategies, including competition for essential nutrients. Though paradoxical, mammalian hosts have learned to take advantage of amino acid catabolism for controlling pathogen invasion and, at the same time, regulating their own immune responses. In this way, ancient catabolic enzymes have acquired novel functions and evolved into new structures with highly specialized functions, which go beyond the struggle for survival. In this review, we analyze the evidence supporting a critical role for the metabolism of various amino acids in regulating different steps of both innate and adaptive immunity.

  3. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    1998-01-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  4. Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?

    ERIC Educational Resources Information Center

    Leung, Sam H.

    2000-01-01

    Surveys the roots of the common names of organic compounds most likely to be encountered by undergraduate organic chemistry students. Includes information for 19 amino acids, 17 aromatic compounds, and 21 carboxylic acids. (WRM)

  5. Formation of [b3 - 1 + cat]+ ions from metal-cationized tetrapeptides containing beta-alanine, gamma-aminobutyric acid or epsilon-aminocaproic acid residues.

    PubMed

    Osburn, Sandra M; Ochola, Sila O; Talaty, Erach R; Van Stipdonk, Michael J

    2008-11-01

    The presence and position of a single beta-alanine (betaA), gamma-aminobutyric acid (gammaABu) or epsilon-aminocaproic acid (Cap) residue has been shown to have a significant influence on the formation of b(n)+ and y(n)+ product ions from a series of model, protonated peptides. In this study, we examined the effect of the same residues on the formation of analogous [b3 - 1 + cat]+ products from metal (Li+, Na+ and Ag+)-cationized peptides. The larger amino acids suppress formation of b3+ from protonated peptides with general sequence AAXG (where X = beta-alanine, gamma-aminobutyric acid or epsilon-aminocaproic acid), presumably because of the prohibitive effect of larger cyclic intermediates in the 'oxazolone' pathway. However, abundant [b3 - 1 + cat]+ products are generated from metal-cationized versions of AAXG. Using a group of deuterium-labeled and exchanged peptides, we found that formation of [b3 - 1 + cat]+ involves transfer of either amide or alpha-carbon position H atoms, and the tendency to transfer the atom from the alpha-carbon position increases with the size of the amino acid in position X. To account for the transfer of the H atom, a mechanism involving formation of a ketene product as [b3 - 1 + cat]+ is proposed.

  6. A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites.

    PubMed

    Brinton, K L; Engrand, C; Glavin, D P; Bada, J L; Maurette, M

    1998-10-01

    Antarctic micrometeorites (AMMs) in the 100-400 microns size range are the dominant mass fraction of extraterrestrial material accreted by the Earth today. A high performance liquid chromatography (HPLC) based technique exploited at the limits of sensitivity has been used to search for the extraterrestrial amino acids alpha-aminoisobutyric acid (AIB) and isovaline in AMMs. Five samples, each containing about 30 to 35 grains, were analyzed. All the samples possess a terrestrial amino acid component, indicated by the excess of the L-enantiomers of common protein amino acids. In only one sample (A91) was AIB found to be present at a level significantly above the background blanks. The concentration of AIB (approximately 280 ppm), and the AIB/isovaline ratio (> or = 10), in this sample are both much higher than in CM chondrites. The apparently large variation in the AIB concentrations of the samples suggests that AIB may be concentrated in rare subset of micrometeorites. Because the AIB/isovaline ratio in sample A91 is much larger than in CM chondrites, the synthesis of amino acids in the micrometeorite parent bodies might have involved a different process requiring an HCN-rich environment, such as that found in comets. If the present day characteristics of the meteorite and micrometeorite fluxes can be extrapolated back in time, then the flux of large carbonaceous micrometeorites could have contributed to the inventory of prebiotic molecules on the early Earth.

  7. A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites

    NASA Technical Reports Server (NTRS)

    Brinton, K. L.; Engrand, C.; Glavin, D. P.; Bada, J. L.; Maurette, M.

    1998-01-01

    Antarctic micrometeorites (AMMs) in the 100-400 microns size range are the dominant mass fraction of extraterrestrial material accreted by the Earth today. A high performance liquid chromatography (HPLC) based technique exploited at the limits of sensitivity has been used to search for the extraterrestrial amino acids alpha-aminoisobutyric acid (AIB) and isovaline in AMMs. Five samples, each containing about 30 to 35 grains, were analyzed. All the samples possess a terrestrial amino acid component, indicated by the excess of the L-enantiomers of common protein amino acids. In only one sample (A91) was AIB found to be present at a level significantly above the background blanks. The concentration of AIB (approximately 280 ppm), and the AIB/isovaline ratio (> or = 10), in this sample are both much higher than in CM chondrites. The apparently large variation in the AIB concentrations of the samples suggests that AIB may be concentrated in rare subset of micrometeorites. Because the AIB/isovaline ratio in sample A91 is much larger than in CM chondrites, the synthesis of amino acids in the micrometeorite parent bodies might have involved a different process requiring an HCN-rich environment, such as that found in comets. If the present day characteristics of the meteorite and micrometeorite fluxes can be extrapolated back in time, then the flux of large carbonaceous micrometeorites could have contributed to the inventory of prebiotic molecules on the early Earth.

  8. Preparation of 4-amino-2,4-dioxobutanoic acid

    DOEpatents

    Unkefer, Pat J.; Martinez, Rodolfo A.; Glass, David R.

    2016-03-22

    A process for synthesizing 4-amino-2,4-dioxobutanoate involves reacting a dialkyl oxalate with an alkoxide in ethanol to form a reaction mixture, and afterward adding an alkyl cyano acetate to the reaction mixture and allowing a reaction to proceed under conditions suitable to form a first reaction product of the formula diethyl 2-cyano-3-hydroxy-butenedioate, and then isolating the diethyl 2-cyano-3-hydroxy-butenedioate, and afterward reacting the diethyl-2-cyano-3-hydroxy-butenedioate with an aqueous hydroxide under conditions suitable to form 4-amino-2,4-dioxobutanoate. The 4-amino-2,4-dioxobutanoate may be acidified into 4-amino-2,4-dioxobutanoic acid.

  9. Polymerization on the rocks: beta-amino acids and arginine

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have studied the accumulation of long oligomers of beta-amino acids on the surface of minerals using the 'polymerization on the rocks' protocol. We find that long oligopeptides of beta-glutamic acid which cannot be formed in homogeneous aqueous solution are accumulated efficiently on the surface of hydroxylapatite using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as condensing agent. The EDAC-induced oligomerization of aspartic acid on hydroxylapatite proceeds even more efficiently. Hydroxylapatite can also facilitate the ligation of the tripeptide (glu)3. The 'polymerization on the rocks' scenario is not restricted to negatively-charged amino acids. Oligoarginines are accumulated on the surface of illite using carbonyldiimidizole (CDI) as condensing agent. We find that FeS2 catalyzes the CDI-induced oligomerization of arginine, although it does not adsorb oligoarginines. These results are relevant to the formation of polypeptides on the primitive earth.

  10. Polymerization on the rocks: beta-amino acids and arginine.

    PubMed

    Liu, R; Orgel, L E

    1998-06-01

    We have studied the accumulation of long oligomers of beta-amino acids on the surface of minerals using the 'polymerization on the rocks' protocol. We find that long oligopeptides of beta-glutamic acid which cannot be formed in homogeneous aqueous solution are accumulated efficiently on the surface of hydroxylapatite using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as condensing agent. The EDAC-induced oligomerization of aspartic acid on hydroxylapatite proceeds even more efficiently. Hydroxylapatite can also facilitate the ligation of the tripeptide (glu)3. The 'polymerization on the rocks' scenario is not restricted to negatively-charged amino acids. Oligoarginines are accumulated on the surface of illite using carbonyldiimidizole (CDI) as condensing agent. We find that FeS2 catalyzes the CDI-induced oligomerization of arginine, although it does not adsorb oligoarginines. These results are relevant to the formation of polypeptides on the primitive earth.

  11. Altered amino acid excretion in children with autism.

    PubMed

    Evans, Craig; Dunstan, R Hugh; Rothkirch, Tony; Roberts, Tim K; Reichelt, Karl L; Cosford, Robyn; Deed, Gary; Ellis, Libby B; Sparkes, Diane L

    2008-02-01

    Autism is a complex and life-long behavioural disorder of unknown aetiology. Recent reports have indicated the involvement of digestive tract dysfunction and possible complications from inadequate nutrition. In this study, 34 autistic children (12 untreated and 22 receiving therapeutic treatments related to digestive function and nutritional uptake) and 29 control subjects (all 5-15 years of age) were investigated to determine whether there were any anomalies in the urinary excretion of amino acids, glucose, sucrose, arabinose and tartaric acid using GC/FID and GC/MS analysis techniques. Significantly lower relative urinary levels of essential amino acids were revealed for both the untreated (mean +/- SEM, 32.53 +/- 3.09%) and treated (31.98 +/- 2.87%) autistic children compared with the controls (37.87 +/- 1.50%). There were no significant differences in measured excretions of sugars or tartaric acid. It was concluded that the untreated autistic children had evidence of altered metabolic homeostasis.

  12. Far infrared spectra of solid state aliphatic amino acids in different protonation states.

    PubMed

    Trivella, Aurélien; Gaillard, Thomas; Stote, Roland H; Hellwig, Petra

    2010-03-21

    Far infrared spectra of zwitterionic, cationic, and anionic forms of aliphatic amino acids in solid state have been studied experimentally. Measurements were done on glycine, L-alanine, L-valine, L-leucine, and L-isoleucine powder samples and film samples obtained from dried solutions prepared at pH ranging from 1 to 13. Solid state density functional theory calculations were also performed, and detailed potential energy distributions were obtained from normal mode results. A good correspondence between experimental and simulated spectra was achieved and this allowed us to propose an almost complete band assignment for the far infrared spectra of zwitterionic forms. In the 700-50 cm(-1) range, three regions were identified, each corresponding to a characteristic set of normal modes. A first region between 700 and 450 cm(-1) mainly contained the carboxylate bending, rocking, and wagging modes as well as the ammonium torsional mode. The 450-250 cm(-1) region was representative of backbone and sidechain skeletal bending modes. At last, the low wavenumber zone, below 250 cm(-1), was characteristic of carboxylate and skeletal torsional modes and of lattice modes. Assignments are also proposed for glycine cationic and anionic forms, but could not be obtained for all aliphatic amino acids due to the lack of structural data. This work is intended to provide fundamental information for the understanding of peptides vibrational properties.

  13. Amino acid transport by prosthecae of Asticcacaulis biprosthecum: evidence for a broad-range transport system.

    PubMed

    Tam, E; Pate, J L

    1985-10-01

    Prosthecae purified from cells of Asticcaulis biprosthecum possess active transport systems that transport all 20 amino acids tested. Using ascorbate-reduced phenazine methosulphate in the presence of oxygen, all 20 amino acids are accumulated against a concentration gradient by isolated prosthecae. Results of experiments testing the inhibition of transport of one amino acid by another, and of experiments testing the exchange of exogenous amino acids with those preloaded in prosthecae, along with characteristics of mutants defective in amino acid transport, suggest the presence in prosthecae of three amino acid transport systems. One, the general or G system, transports at least 18 of the 20 amino acids tested. Another system, referred to as the proline or P system, transports seven amino acids (including proline) that are also transported by the G system. The third system transports only glutamate and aspartate, and is referred to as the acidic amino acid transport system or A system.

  14. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China

    PubMed Central

    Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many

  15. Distribution of D-amino acids in vinegars and involvement of lactic acid bacteria in the production of D-amino acids.

    PubMed

    Mutaguchi, Yuta; Ohmori, Taketo; Akano, Hirofumi; Doi, Katsumi; Ohshima, Toshihisa

    2013-01-01

    Levels of free D-amino acids were compared in 11 vinegars produced from different sources or through different manufacturing processes. To analyze the D- and L-amino acids, the enantiomers were initially converted into diastereomers using pre-column derivatization with o-phthaldialdehyde plus N-acethyl-L-cysteine or N-tert-butyloxycarbonyl-L-cysteine. This was followed by separation of the resultant fluorescent isoindol derivatives on an octadecylsilyl stationary phase using ultra-performance liquid chromatography. The analyses showed that the total D-amino acid level in lactic fermented tomato vinegar was very high. Furthermore, analysis of the amino acids in tomato juice samples collected after alcoholic, lactic and acetic fermentation during the production of lactic fermented tomato vinegar showed clearly that lactic fermentation is responsible for the D-amino acids production; marked increases in D-amino acids were seen during lactic fermentation, but not during alcoholic or acetic fermentation. This suggests lactic acid bacteria have a greater ability to produce D-amino acids than yeast or acetic acid bacteria.

  16. Effect of potassium salts in rats adapted to an acidogenic high-sulfur amino acid diet.

    PubMed

    Sabboh, Houda; Horcajada, Marie-Noëlle; Coxam, Véronique; Tressol, Jean-Claude; Besson, Catherine; Rémésy, Christian; Demigné, Christian

    2005-08-01

    Low-grade metabolic acidosis, consecutive to excessive catabolism of sulfur amino acids and a high dietary Na:K ratio, is a common feature of Western food habits. This metabolic alteration may exert various adverse physiological effects, especially on bone, muscle and kidneys. To assess the actual effects of various K salts, a model of the Westernised diet has been developed in rats: slight protein excess (20 % casein); cations provided as non-alkalinising salts; high Na:K ratio. This diet resulted in acidic urine (pH 5.5) together with a high rate of divalent cation excretion in urine, especially Mg. Compared with controls, K supplementation as KCl accentuated Ca excretion, whereas potassium bicarbonate or malate reduced Mg and Ca excretion and alkalinised urine pH (up to 8). In parallel, citraturia was strongly increased, together with 2-ketoglutarate excretion, by potassium bicarbonate or malate in the diet. Basal sulfate excretion, in the range of 1 mmol/d, was slightly enhanced in rats fed the potassium malate diet. The present model of low-grade metabolic acidosis indicates that potassium malate may be as effective as KHCO3 to counteract urine acidification, to limit divalent cation excretion and to ensure high citrate concentration in urine.

  17. The Synthesis and Evaluation of Arctigenin Amino Acid Ester Derivatives.

    PubMed

    Cai, En-Bo; Yang, Li-Min; Jia, Cai-Xia; Zhang, Wei-Yuan; Zhao, Yan; Li, Wei; Song, Xing-Zhuo; Zheng, Man-Ling

    2016-10-01

    The use of arctigenin (ARG), a traditional medicine with many pharmacological activities, has been restricted due to its poor solubility in water. Five amino acid derivatives of ARG have been synthesized using glycine, o-alanine, valine, leucine, and isoleucine, which have t-butyloxy carbonyl (BOC) as a protective group. In this study, we examined the effects of removing these protective groups. The results showed that the amino