Science.gov

Sample records for cationic lipid-based transduction

  1. Polyethylenimine-cationized beta-catenin protein transduction activates the Wnt canonical signaling pathway more effectively than cationic lipid-based transduction.

    PubMed

    Kitazoe, Midori; Futami, Junichiro; Nishikawa, Mitsuo; Yamada, Hidenori; Maeda, Yoshitake

    2010-04-01

    The Wnt canonical signaling pathway is essential for the early development of eukaryotic organisms and plays a key role in cell proliferation, differentiation, and oncogenesis. Moreover, the Wnt canonical signaling pathway contributes to the self-renewal of mouse hematopoietic stem cells (HSCs). Here, we demonstrate artificial activation of the Wnt canonical signaling pathway by beta-catenin protein transduction. Constitutively active beta-catenin protein was introduced into human embryonic kidney HEK-293 cells using a polyethylenimine (PEI) cationization method, or with the BioPORTER protein transduction reagent. We have previously shown that modification with PEI effectively causes proteins to be internalized by living mammalian cells. PEI-cationized, constitutively active beta-catenin protein was added to HEK-293 cells, and induction of several Wnt/beta-catenin target genes was detected by real-time PCR. However, using BioPORTER to introduce active beta-catenin did not activate the Wnt canonical signaling pathway. Introduction of eGFPNuc (enhanced green fluorescent protein variant containing a nuclear localization signal) into HEK-293 cells using the BioPORTER reagent caused significant cell death, as determined by propidium iodide staining. In contrast, the PEI-modified eGFPNuc did not impair survival of HEK-293 cells. These results indicate that the Wnt canonical signaling pathway could be successfully activated by transduction of PEI-cationized active beta-catenin, and the PEI-cationization method is an effective and safe technology for protein transduction into mammalian cells.

  2. Drug loading to lipid-based cationic nanoparticles

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Leide P.; Konovalov, Oleg; Torriani, Iris L.; Haas, Heinrich

    2005-08-01

    Lipid-based cationic nanoparticles are a new promising option for tumor therapy, because they display enhanced binding and uptake at the neo-angiogenic endothelial cells, which a tumor needs for its nutrition and growth. By loading suitable cytotoxic compounds to the cationic carrier, the tumor endothelial and consequently also the tumor itself can be destroyed. For the development of such novel anti-tumor agents, the control of drug loading and drug release from the carrier matrix is essential. We have studied the incorporation of the hydrophobic anti-cancer agent Paclitaxel (PXL) into a variety of lipid matrices by X-Ray reflectivity measurements. Liposome suspensions from cationic and zwitterionic lipids, comprising different molar fractions of Paclitaxel, were deposited on planar glass substrates. After drying at controlled humidity, well ordered, oriented multilayer stacks were obtained, as proven by the presence of bilayer Bragg peaks to several orders in the reflectivity curves. The presence of the drug induced a decrease of the lipid bilayer spacing, and with an excess of drug, also Bragg peaks of drug crystals could be observed. From the results, insight into the solubility of Paclitaxel in the model membranes was obtained and a structural model of the organization of the drug in the membrane was derived. Results from subsequent pressure/area-isotherm and grazing incidence diffraction (GID) measurements performed with drug/lipid Langmuir monolayers were in accordance with these conjectures.

  3. Cationic Nucleoside Lipids Based on a 3-Nitropyrrole Universal Base for siRNA Delivery

    PubMed Central

    Ceballos, Claire; Prata, Carla A.H.; Giorgio, Suzanne; Garzino, Frédéric; Payet, Dominique; Barthélémy, Philippe; Grinstaff, Mark W.; Camplo, Michel

    2009-01-01

    Cationic nucleoside lipids based on a 3-nitropyrrole universal base were prepared from D-ribose using a straightforward chemical synthesis. Several studies including DLS, TEM and ethidium bromide (EthBr) assay demonstrated that these amphiphilic molecules form supramolecular organizations of nanometer size in aqueous solutions and are able to bind nucleic acids. siRNA knockdown experiments were performed with these nucleolipids and we observed protein knockdown activity similar to the siPORT NeoFX positive control. No significant cytotoxicity was found. PMID:19159294

  4. Protein transduction assisted by polyethylenimine-cationized carrier proteins.

    PubMed

    Kitazoe, Midori; Murata, Hitoshi; Futami, Junichiro; Maeda, Takashi; Sakaguchi, Masakiyo; Miyazaki, Masahiro; Kosaka, Megumi; Tada, Hiroko; Seno, Masaharu; Huh, Nam-ho; Namba, Masayoshi; Nishikawa, Mitsuo; Maeda, Yoshitake; Yamada, Hidenori

    2005-06-01

    Previously, we have reported that cationized-proteins covalently modified with polyethylenimine (PEI) (direct PEI-cationization) efficiently enter cells and function in the cytosol [Futami et al. (2005) J. Biosci. Bioeng. 99, 95-103]. However, it may be more convenient if a protein could be delivered into cells just by mixing the protein with a PEI-cationized carrier protein having a specific affinity (indirect PEI-cationization). Thus, we prepared PEI-cationized avidin (PEI-avidin), streptavidin (PEI-streptavidin), and protein G (PEI-protein G), and examined whether they could deliver biotinylated proteins and antibodies into living cells. PEI-avidin (and/or PEI-streptavidin) carried biotinylated GFPs into various mammalian cells very efficiently. A GFP variant containing a nuclear localization signal was found to arrive even in the nucleus. The addition of a biotinylated RNase A derivative mixed with PEI-streptavidin to a culture medium of 3T3-SV-40 cells resulted in remarkable cell growth inhibition, suggesting that the biotinylated RNase A derivative entered cells and digested intracellular RNA molecules. Furthermore, the addition of a fluorescein-labeled anti-S100C (beta-actin binding protein) antibody mixed with PEI-protein G to human fibroblasts resulted in the appearance of a fluorescence image of actin-like filamentous structures in the cells. These results indicate that indirect PEI-cationization using non-covalent interaction is as effective as the direct PEI-cationization for the transduction of proteins into living cells and for expression of their functions in the cytosol. Thus, PEI-cationized proteins having a specific affinity for certain molecules such as PEI-streptavidin, PEI-avidin and PEI-protein G are concluded to be widely applicable protein transduction carrier molecules.

  5. Efficient preparation of cationized gelatin for gene transduction.

    PubMed

    Fukuyama, Naoto; Onuma, Tsuyoshi; Jujo, Shio; Tamai, Yoshifumi; Suzuki, Takahiro; Myojin, Kazunori; Tabata, Yasuhiko; Ishihara, Yoshimi; Takano, Jiro; Mori, Hidezo

    2006-07-20

    We previously reported gene therapy using cationized gelatin microspheres of φ20-32 μm, prepared from pig skin, as a transducing agent, but although the gelatin offered various advantages, its yield was extremely low (only 0.1%). In this study, we markedly improved the yield of φ20-32 μm cationized gelatin microspheres and prepared a newly less than φ20 μm cationized gelatin. Conventionally, cationized gelatin is prepared by cationization, particulation by agitation, and cross-linking. The yield is determined by the particulation step, for which we had used a three-necked distillation flask of 500 mL and an agitation speed of 420 rpm. The yield was significantly increased from 0.13 ± 0.02% to 8.80 ± 1.90% by using a smaller flask of 300 mL and an agitation speed of 25000 rpm (p < 0.01). We could also prepare cationized gelatin of less than φ20 μm, which had not been possible previously. We confirmed that efficient gene introduction into peritoneal macrophages could be achieved with the new cationized gelatin.

  6. Molecular mechanisms in the dramatic enhancement of HIV-1 Tat transduction by cationic liposomes

    PubMed Central

    Li, Guan-Han; Li, Wenxue; Mumper, Russell J.; Nath, Avindra

    2012-01-01

    Human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) protein possesses a unique membrane-transduction property. Interestingly, Tat transduction could be dramatically increased 1000-fold based on LTR-transactivation assay when complexed with cationic liposomes (lipo-Tat), compared with Tat alone. Therefore, underlining mechanisms were explored further. Microscopy and flow cytometry showed that this effect was associated with enhanced membrane binding, large particle formation (1–2 μm) and increased intracellular uptake of Tat fluorescent proteins. Using pharmacological assays and immune colocalizations, it was found that lipid raft-dependent endocytosis and macropinocytosis were major pathways involved in lipo-Tat uptake, and actin-filaments played a major role in intracellular trafficking of lipo-Tat to the nucleus. Furthermore, we found that the Tat hydrophobic domain (aa 36–47) mediated formation of two positively charged molecules into lipo-Tat complexes via hydrophobic bonds, based on LTR-transactivation inhibition assay. Thus, the hydrophobic domain may play an important role in Tat protein uptake and be useful for intracellular delivery of biomacromolecules if coupled together with Tat basic peptide, a cell-penetrating peptide.—Li, G.-H., Li, W., Mumper, R. J., Nath, A. Molecular mechanisms in the dramatic enhancement of HIV-1 Tat transduction by cationic liposomes. PMID:22447980

  7. Lipid and cationic polymer based transduction of botulinum holotoxin, or toxin protease alone, extends the target cell range and improves the efficiency of intoxication.

    PubMed

    Kuo, Chueh-Ling; Oyler, George; Shoemaker, Charles B

    2010-01-01

    Botulinum neurotoxin (BoNT) heavy chain (Hc) facilitates receptor-mediated endocytosis into neuronal cells and transport of the light chain (Lc) protease to the cytosol where neurotransmission is inhibited as a result of SNARE protein cleavage. Here we show that the role of BoNT Hc in cell intoxication can be replaced by commercial lipid-based and polycationic polymer DNA transfection reagents. BoNT "transduction" by these reagents permits efficient intoxication of neuronal cells as well as some non-neuronal cell lines normally refractory to BoNT. Surprisingly, the reagents facilitate delivery of recombinant BoNT Lc protease to the cytosol of both neuronal and non-neuronal cells in the absence of BoNT Hc, and with sensitivities approaching that of BoNT holotoxin. Transduction of BoNT, as with natural intoxication, is inhibited by bafilomycin A1, methylamine and ammonium chloride indicating that both pathways require endosome acidification. DNA transfection reagents facilitate intoxication by holotoxins, or isolated Lc proteases, of all three BoNT serotypes tested (A, B, E). These results suggest that lipid and cationic polymer transfection reagents facilitate cytosolic delivery of BoNT holotoxins and isolated Lc proteases by an endosomal uptake pathway.

  8. Membranes of cationic gemini lipids based on cholesterol with hydroxyl headgroups and their interactions with DNA and phospholipid.

    PubMed

    Biswas, Joydeep; Bajaj, Avinash; Bhattacharya, Santanu

    2011-01-27

    Two series of cholesterol-based cationic gemini lipids with and without hydroxyl functions at the headgroups possessing different lengths of polymethylene [-(CH(2))(n)-] (n = 3, 4, 5, 6, 12) spacer have been synthesized. Each gemini lipid formed stable suspension in water. The suspensions of these gemini lipids in water were investigated using transmission electron microscopy, dynamic light scattering, zeta potential measurements and X-ray diffraction to characterize the nature of the individual aggregates formed therein. The aggregation properties of these gemini lipids in water were found to strongly depend upon the length of the spacer and the presence of hydroxyl group at the headgroup region. Lipoplex formation (DNA binding) and the release of the DNA from such lipoplexes were performed to understand the nature of interactions that prevail between these cationic cholesterol aggregates and duplex DNA. The interactions between such gemini lipids and DNA depend both on the presence of OH on the headgroups and the spacer length between the headgroups. Finally, we studied the effect of incorporation of each cationic gemini lipid into dipalmitoyl phosphatidylcholine vesicles using differential scanning calorimetry. The properties of the resulting mixed membranes were found again to depend upon the nature of the headgroup and the spacer chain length.

  9. Physical Chemical and Biomolecular Methods for the Optimization of Cationic Lipid-Based Lipoplexes In Vitro for the Gene Therapy Applications.

    PubMed

    Misra, Santosh K; Bhattacharya, Santanu

    2016-01-01

    Preparation and application protocols play a very important role while optimizing the cationic lipid-based lipoplexes in vitro. These protocols serve as the basis for the betterment of the lipoplexes with regard to their successful application in animals and eventually human subjects. Starting from the chemical structures of used cationic lipids (CLs), optimization of the additive inclusions, methods of nanoparticle (lipoplex) formation, presence of blood serum, time intervals of lipoplex incubation, and type of efficiency read-outs in various conditions play important roles in reaching insightful conclusions. Such steps of summarizing protocols and requirements of the pertinent events focus on getting improved lipoplexes for achieving optimal effects in terms of post transfection gene and protein expression. The progression of optimization and efficiency evaluation lead to predictable structure-method-activity relationship with involvement of various feedback principles including physical chemical and biomolecular evaluations before and after the use of lipoplexes in biological systems. This chapter discusses some of the focused strategies for the establishment of lipoplexes for a better post transfection activity with reduced risk of failure.

  10. Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release

    PubMed Central

    Gujrati, Maneesh; Malamas, Anthony; Shin, Tesia; Jin, Erlei; Sun, Lulu; Lu, Zheng-Rong

    2015-01-01

    Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems. PMID:25020033

  11. Inorganic Cation Transport and Energy Transduction in Enterococcus hirae and Other Streptococci

    PubMed Central

    Kakinuma, Yoshimi

    1998-01-01

    Energy metabolism by bacteria is well understood from the chemiosmotic viewpoint. We know that bacteria extrude protons across the plasma membrane, establishing an electrochemical potential that provides the driving force for various kinds of physiological work. Among these are the uptake of sugars, amino acids, and other nutrients with the aid of secondary porters and the regulation of the cytoplasmic pH and of the cytoplasmic concentration of potassium and other ions. Bacteria live in diverse habitats and are often exposed to severe conditions. In some circumstances, a proton circulation cannot satisfy their requirements and must be supplemented with a complement of primary transport systems. This review is concerned with cation transport in the fermentative streptococci, particularly Enterococcus hirae. Streptococci lack respiratory chains, relying on glycolysis or arginine fermentation for the production of ATP. One of the major findings with E. hirae and other streptococci is that ATP plays a much more important role in transmembrane transport than it does in nonfermentative organisms, probably due to the inability of this organism to generate a large proton potential. The movements of cations in streptococci illustrate the interplay between a variety of primary and secondary modes of transport. PMID:9841664

  12. Hybrid lipid-based nanostructures

    NASA Astrophysics Data System (ADS)

    Dayani, Yasaman

    Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and

  13. Lipid-Based Drug Delivery Systems

    PubMed Central

    Shrestha, Hina; Bala, Rajni; Arora, Sandeep

    2014-01-01

    The principle objective of formulation of lipid-based drugs is to enhance their bioavailability. The use of lipids in drug delivery is no more a new trend now but is still the promising concept. Lipid-based drug delivery systems (LBDDS) are one of the emerging technologies designed to address challenges like the solubility and bioavailability of poorly water-soluble drugs. Lipid-based formulations can be tailored to meet a wide range of product requirements dictated by disease indication, route of administration, cost consideration, product stability, toxicity, and efficacy. These formulations are also a commercially viable strategy to formulate pharmaceuticals, for topical, oral, pulmonary, or parenteral delivery. In addition, lipid-based formulations have been shown to reduce the toxicity of various drugs by changing the biodistribution of the drug away from sensitive organs. However, the number of applications for lipid-based formulations has expanded as the nature and type of active drugs under investigation have become more varied. This paper mainly focuses on novel lipid-based formulations, namely, emulsions, vesicular systems, and lipid particulate systems and their subcategories as well as on their prominent applications in pharmaceutical drug delivery. PMID:26556202

  14. Lipid-based antifungal agents: current status.

    PubMed

    Arikan, S; Rex, J H

    2001-03-01

    Immunocompromised patients are well known to be predisposed to developing invasive fungal infections. These infections are usually difficult to diagnose and more importantly, the resulting mortality rate is high. The limited number of antifungal agents available and their high rate of toxicity are the major factors complicating the issue. However, the development of lipid-based formulations of existing antifungal agents has opened a new era in antifungal therapy. The best examples are the lipid-based amphotericin B preparations, amphotericin B lipid complex (ABLC; Abelcet), amphotericin B colloidal dispersion (ABCD; Amphotec or Amphocil), and liposomal amphotericin B (AmBisome). These formulations have shown that antifungal activity is maintained while toxicity is reduced. This progress is followed by the incorporation of nystatin into liposomes. Liposomal nystatin formulation is under development and studies of it have provided encouraging data. Finally, lipid-based formulations of hamycin, miconazole, and ketoconazole have been developed but remain experimental. Advances in technology of liposomes and other lipid formulations have provided promising new tools for management of fungal infections.

  15. Lipid-based nanoformulations for peptide delivery.

    PubMed

    Matougui, Nada; Boge, Lukas; Groo, Anne-Claire; Umerska, Anita; Ringstad, Lovisa; Bysell, Helena; Saulnier, Patrick

    2016-04-11

    Nanoformulations have attracted a lot of attention because of their size-dependent properties. Among the array of nanoformulations, lipid nanoformulations (LNFs) have evoked increasing interest because of the advantages of their high degree of biocompatibility and versatility. The performance of lipid nanoformulations is greatly influenced by their composition and structure. Therapeutic peptides represent a growing share of the pharmaceutical market. However, the main challenge for their development into commercial products is their inherent physicochemical and biological instability. Important peptides such as insulin, calcitonin and cyclosporin A have been incorporated into LNFs. The association or encapsulation of peptides within lipid-based carriers has shown to protect the labile molecules against enzymatic degradation. This review describes strategies used for the formulation of peptides and some methods used for the assessment of association efficiency. The advantages and drawbacks of such carriers are also described. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Lipid-based nanovesicles for nanomedicine.

    PubMed

    Grimaldi, N; Andrade, F; Segovia, N; Ferrer-Tasies, L; Sala, S; Veciana, J; Ventosa, N

    2016-11-21

    Molecular self-assembly has enabled the fabrication of biologically inspired, advanced nanostructures as lipid-based nanovesicles (L-NVs). The oldest L-NVs, liposomes, have been widely proposed as potential candidates for drug delivery, diagnostic and/or theranostic applications and some liposome-based drug products have already stepped from the lab-bench to the market. This success is attributed to their ability to encapsulate both hydrophobic and/or hydrophilic molecules, efficiently carry and protect them within the body and finally deliver them at the target site. These positive features are also coupled with high biocompatibility. However, liposomes still present some unsolved drawbacks, such as poor colloidal stability, short shelf-life, restricted and expensive conditions of preparation because of the inherent nature of their fundamental constituents (phospholipids). The new tools available in the self-assembly of controlled molecules have significantly advanced the field of L-NV design and synthesis, and non-liposomal L-NVs have been recently developed; this new generation of nanovesicles can represent a paradigm shift in nanomedicine: they may complement liposomes, showing their advantages and overcoming most of their drawbacks. Clearly, being still young, their rocky way to the clinic first and then to the market has just started and it is still long, but they have all the potentialities to reach their objective target. The purpose of this review is to first present the large plethora of L-NVs available, focusing on this new generation of non-liposomal L-NVs and showing their similarities and differences with respect to their ancestors (liposomes). Since the overspread of a nanomaterial to the market is also strongly dependent on the availability of technological-scale preparation methods, we will also extensively review the current approaches exploited for L-NV production. The most cutting-edge approaches based on compressed fluid (CF) technologies will

  17. Query by transduction.

    PubMed

    Ho, Shen-Shyang; Wechsler, Harry

    2008-09-01

    There has been recently a growing interest in the use of transductive inference for learning. We expand here the scope of transductive inference to active learning in a stream-based setting. Towards that end this paper proposes Query-by-Transduction (QBT) as a novel active learning algorithm. QBT queries the label of an example based on the p-values obtained using transduction. We show that QBT is closely related to Query-by-Committee (QBC) using relations between transduction, Bayesian statistical testing, Kullback-Leibler divergence, and Shannon information. The feasibility and utility of QBT is shown on both binary and multi-class classification tasks using SVM as the choice classifier. Our experimental results show that QBT compares favorably, in terms of mean generalization, against random sampling, committee-based active learning, margin-based active learning, and QBC in the stream-based setting.

  18. In vivo protein transduction to the CNS.

    PubMed

    Loftus, L T; Li, H-F; Gray, A J; Hirata-Fukae, C; Stoica, B A; Futami, J; Yamada, H; Aisen, P S; Matsuoka, Y

    2006-01-01

    Proteins and peptides are useful research and therapeutic tools, however applications are limited because delivery to the desired location is not easily achievable. There are two hurdles in protein/peptide delivery to the brain: the blood-brain barrier and intracellular penetration. Penetration to both brain and the intracellular space can be achieved by adjusting hydrophilicity, and small molecule pharmacological agents have been successfully developed using this approach. But with proteins and peptides, it is difficult to modify the hydrophilicity without influencing biological functions. Trans-acting factor protein from the human immunodeficiency virus contains a highly conserved cationic peptide sequence necessary for transduction across the cell membrane. While trans-acting factor peptide has been used for in vitro protein transduction, its in vivo application is very limited because it is rapidly degraded by proteolysis. Polyethylenimine is a chemically synthesized small molecule cationization agent; the charge density is greater than a peptide-based cationic cluster such as trans-acting factor, and it is resistant to proteolysis in vivo. We first tested intracellular protein transduction following direct brain injection in mice using polyethylenimine-conjugated green fluorescence protein and beta-galactosidase (molecular weights 29 and 540 kDa, respectively). Polyethylenimine-conjugates penetrated to the intracellular space immediately surrounding the injection site within one hour. We further tested polyethylenimine-mediated protein transduction following intranasal administration, which bypasses the blood-brain barrier. Polyethylenimine-conjugates in pH 7.5 solution did not reach the brain, probably because the polyethylenimine-conjugates penetrated into the intracellular space where first exposed to the tissue, i.e. at the nasal mucosae. We temporarily reduced the electrostatic interaction between cationized polyethylenimine-conjugates and cellular

  19. Lipid-based transfection reagents can interfere with cholesterol biosynthesis.

    PubMed

    Danielli, Mauro; Marinelli, Raúl A

    2016-02-15

    Lipid-based transfection reagents are widely used for delivery of small interfering RNA into cells. We examined whether the commonly used commercial transfection reagents DharmaFECT-4 and Lipofectamine 2000 can interfere with lipid metabolism by studying cholesterogenesis. Cholesterol de novo synthesis from [(14)C]acetate was assessed in human hepatocyte-derived Huh-7 cells. The results revealed that DharmaFECT, but not Lipofectamine, markedly inhibited cholesterol biosynthesis by approximately 70%. Cell viability was not significantly altered. These findings suggest that caution is required in the choice of certain lipid-based transfection reagents for gene silencing experiments, particularly when assessing cholesterol metabolism.

  20. Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency

    PubMed Central

    Sork, Helena; Nordin, Joel Z; Turunen, Janne J; Wiklander, Oscar PB; Bestas, Burcu; Zaghloul, Eman M; Margus, Helerin; Padari, Kärt; Duru, Adil D; Corso, Giulia; Bost, Jeremy; Vader, Pieter; Pooga, Margus; Smith, CI Edvard; Wood, Matthew JA; Schiffelers, Raymond M; Hällbrink, Mattias; Andaloussi, Samir EL

    2016-01-01

    The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents. PMID:27111416

  1. Lipid-based cochleates: a promising formulation platform for oral and parenteral delivery of therapeutic agents.

    PubMed

    Rao, Ravi; Squillante, Emilio; Kim, Kwon H

    2007-01-01

    Cochleates are lipid-based supramolecular assemblies that display great potential as delivery systems for systemic delivery of drugs, including peptides, proteins, vaccines, oligonucleotides, and genes. This is mainly attributed to their high stability and biocompatibility and their ability to deliver both hydrophilic and lipophilic drugs. Cochleates have a unique multilayered spiral structure, which is composed of a negatively charged phospholipid and a divalent cation, and can encapsulate diverse drug molecules of various shapes and sizes while minimizing toxicity associated with polymeric materials present in micro- and nanoparticle systems. This review describes current technological advances in the preparation methods, physicochemical characterization, and potential applications of cochleates as a drug delivery system for systemic delivery of various types of therapeutic agents.

  2. Quantitation of signal transduction.

    PubMed

    Krauss, S; Brand, M D

    2000-12-01

    Conventional qualitative approaches to signal transduction provide powerful ways to explore the architecture and function of signaling pathways. However, at the level of the complete system, they do not fully depict the interactions between signaling and metabolic pathways and fail to give a manageable overview of the complexity that is often a feature of cellular signal transduction. Here, we introduce a quantitative experimental approach to signal transduction that helps to overcome these difficulties. We present a quantitative analysis of signal transduction during early mitogen stimulation of lymphocytes, with steady-state respiration rate as a convenient marker of metabolic stimulation. First, by inhibiting various key signaling pathways, we measure their relative importance in regulating respiration. About 80% of the input signal is conveyed via identifiable routes: 50% through pathways sensitive to inhibitors of protein kinase C and MAP kinase and 30% through pathways sensitive to an inhibitor of calcineurin. Second, we quantify how each of these pathways differentially stimulates functional units of reactions that produce and consume a key intermediate in respiration: the mitochondrial membrane potential. Both the PKC and calcineurin routes stimulate consumption more strongly than production, whereas the unidentified signaling routes stimulate production more than consumption, leading to no change in membrane potential despite increased respiration rate. The approach allows a quantitative description of the relative importance of signal transduction pathways and the routes by which they activate a specific cellular process. It should be widely applicable.

  3. Transduction in Bacillus subtilis.

    PubMed

    THORNE, C B

    1962-01-01

    Thorne, Curtis B. (Fort Detrick, Frederick, Md.). Transduction in Bacillus subtilis. J. Bacteriol. 83:106-111. 1962.-A bacteriophage, SP-10, isolated from soil carries out general transduction in Bacillus subtilis. Phage propagated on a streptomycin-resistant mutant of the wild-type strain W-23 was capable of transducing to prototrophy strain 168 (indole(-)), as well as all of the auxotrophic mutants of W-23-S(r) tested, which included mutants requiring arginine, histidine, adenine, guanine, thiamine, leucine, or methionine. Although strain 168 was transduced by phage SP-10, lytic activity on this strain could not be detected and attempts to propagate the phage on it failed. Transductions occurred at frequencies in the range of 10(-6) to 10(-5) per plaque-forming unit. Homologous phage was ineffective, deoxyribonuclease had no effect on the frequency of transduction, and transduction was prevented by the addition of phage antiserum. Phage SP-10 was capable of lysogenizing strain W-23-S(r), and this condition was maintained through repeated growth and sporulation cycles in potato-extract medium. Although heating at 65 C for 60 min inactivated free phage particles, spores retained their lysogenic condition after such heat treatment. When heat-treated spores of the lysogenic cultures were used as inocula for growth in a nutrient broth-yeast extract-glucose medium, filtrates contained 10(9), or more, phage particles per ml.

  4. Recombinant adeno-associated virus-mediated high-efficiency, transient expression of the murine cationic amino acid transporter (ecotropic retroviral receptor) permits stable transduction of human HeLa cells by ecotropic retroviral vectors.

    PubMed Central

    Bertran, J; Miller, J L; Yang, Y; Fenimore-Justman, A; Rueda, F; Vanin, E F; Nienhuis, A W

    1996-01-01

    Adeno-associated virus has a broad host range, is nonpathogenic, and integrates into a preferred location on chromosome 19, features that have fostered development of recombinant adeno-associated viruses (rAAV) as gene transfer vectors for therapeutic applications. We have used an rAAV to transfer and express the murine cationic amino acid transporter which functions as the ecotropic retroviral receptor, thereby rendering human cells conditionally susceptible to infection by an ecotropic retroviral vector. The proportion of human HeLa cells expressing the receptor at 60 h varied as a function of the multiplicity of infection (MOI) with the rAAV. Cells expressing the ecotropic receptor were efficiently transduced with an ecotropic retroviral vector encoding a nucleus-localized form of beta-galactosidase. Cells coexpressing the ecotropic receptor and nucleus-localized beta-galactosidase were isolated by fluorescence-activated cell sorting, and cell lines were recovered by cloning at limiting dilution. After growth in culture, all clones contained the retroviral vector genome, but fewer than 10% (3 of 47) contained the rAAV genome and continued to express the ecotropic receptor. The ecotropic receptor coding sequences in the rAAV genome were under the control of a tetracycline-modulated promoter. In the presence of tetracycline, receptor expression was low and the proportion of cells transduced by the ecotropic retroviral vector was decreased. Modulation of receptor expression was achieved with both an episomal and an integrated form of the rAAV genome. These data establish that functional gene expression from an rAAV genome can occur transiently without genome integration. PMID:8794313

  5. Enhancing intestinal drug solubilisation using lipid-based delivery systems.

    PubMed

    Porter, Christopher J H; Pouton, Colin W; Cuine, Jean F; Charman, William N

    2008-03-17

    Lipid-based delivery systems are finding increasing application in the oral delivery of poorly water-soluble, lipophilic drugs. Whilst lipidic dose forms may improve oral bioavailability via several mechanisms, enhancement of gastrointestinal solubilisation remains argueably the most important method of absorption enhancement. This review firstly describes the mechanistic rationale which underpins the use of lipid-based delivery systems to enhance drug solubilisation and briefly reviews the available literature describing increases in oral bioavailability after the administration of lipid solution, suspension and self-emulsifying formulations. The use of in vitro methods including dispersion tests and more complex models of in vitro lipolysis as indicators of potential in vivo performance are subsequently described, with particular focus on recent data which suggests that the digestion of surfactants present in lipid-based formulations may impact on formulation performance. Finally, a series of seven guiding principles for formulation design of lipid-based delivery systems are suggested based on an analysis of recent data generated in our laboratories and elsewhere.

  6. Lipid Based Nanosystems for Curcumin: Past, Present and Future.

    PubMed

    Nayak, Aditya P; Mills, Tom; Norton, Ian

    2016-01-01

    Curcumin is one of the principle bioactive compounds used in the ayurvedic medicine system that has the history of over 5000 years for human use. Curcumin an "Indian Gold" is used to treat simple ailments like the common cold to severe life threatening diseases like cancer, and HIV. Though its contribution is immense for the health protection and disease prevention, its clinical use is limited due to its susceptible nature to alkaline pH, high temperature, presence of oxygen and light. Hence it becomes extremely difficult to maintain its bioactivity during processing, storage and consumption. Recent advancements in the application of nanotechnology to curcumin offer an opportunity to enhance its stability, bioactivity and to overcome its pharmacokinetic mismatch. This in turn helps to bridge the gaps that exist between its bench top research data to its clinical findings. Among the various types of nano/micro delivery systems, lipid based delivery systems are well studied and are the best suited delivery systems to enhance the stability and pharmacokinetic profile of curcumin both for pharma and the food application. In the current review, effort will be made to recapitulate the work done in the past to use lipid based delivery systems (liposomes, solid lipid nanoparticles, and emulsions) to enhance the application of curcumin for health promotion and disease prevention. Further, future prospects for the utilization of these lipid-based delivery systems will be discussed in detail.

  7. Umami taste transduction mechanisms1234

    PubMed Central

    2009-01-01

    l-Glutamate elicits the umami taste sensation, now recognized as a fifth distinct taste quality. A characteristic feature of umami taste is its potentiation by 5′-ribonucleotides such as guanosine-5'-monophosphate and inosine 5′-monophosphate, which also elicit the umami taste on their own. Recent data suggest that multiple G protein–coupled receptors contribute to umami taste. This review will focus on events downstream of the umami taste receptors. Ligand binding leads to Gβγ activation of phospholipase C β2, which produces the second messengers inositol trisphosphate and diacylglycerol. Inositol trisphosphate binds to the type III inositol trisphosphate receptor, which causes the release of Ca2+ from intracellular stores and Ca2+-dependent activation of a monovalent-selective cation channel, TRPM5. TRPM5 is believed to depolarize taste cells, which leads to the release of ATP, which activates ionotropic purinergic receptors on gustatory afferent nerve fibers. This model is supported by knockout of the relevant signaling effectors as well as physiologic studies of isolated taste cells. Concomitant with the molecular studies, physiologic studies show that l-glutamate elicits increases in intracellular Ca2+ in isolated taste cells and that the source of the Ca2+ is release from intracellular stores. Both Gα gustducin and Gα transducin are involved in umami signaling, because the knockout of either subunit compromises responses to umami stimuli. Both α-gustducin and α-transducin activate phosphodiesterases to decrease intracellular cAMP. The target of cAMP in umami transduction is not known, but membrane-permeant analogs of cAMP antagonize electrophysiologic responses to umami stimuli in isolated taste cells, which suggests that cAMP may have a modulatory role in umami signaling. PMID:19571214

  8. Auxin signal transduction.

    PubMed

    Hagen, Gretchen

    2015-01-01

    The plant hormone auxin (indole-3-acetic acid, IAA) controls growth and developmental responses throughout the life of a plant. A combination of molecular, genetic and biochemical approaches has identified several key components involved in auxin signal transduction. Rapid auxin responses in the nucleus include transcriptional activation of auxin-regulated genes and degradation of transcriptional repressor proteins. The nuclear auxin receptor is an integral component of the protein degradation machinery. Although auxin signalling in the nucleus appears to be short and simple, recent studies indicate that there is a high degree of diversity and complexity, largely due to the existence of multigene families for each of the major molecular components. Current studies are attempting to identify interacting partners among these families, and to define the molecular mechanisms involved in the interactions. Future goals are to determine the levels of regulation of the key components of the transcriptional complex, to identify higher-order complexes and to integrate this pathway with other auxin signal transduction pathways, such as the pathway that is activated by auxin binding to a different receptor at the outer surface of the plasma membrane. In this case, auxin binding triggers a signal cascade that affects a number of rapid cytoplasmic responses. Details of this pathway are currently under investigation. © 2015 Authors; published by Portland Press Limited.

  9. Protein phylogenetic analysis of Ca(2+)/cation antiporters and insights into their evolution in plants

    USDA-ARS?s Scientific Manuscript database

    Cation transport is a critical process in all organisms and is essential for mineral nutrition, ion stress tolerance, and signal transduction. Transporters that are members of the Ca(2+)/cation antiporter (CaCA) superfamily are involved in the transport of Ca(2+) and/or other cations using the count...

  10. Considerations in developing lipid-based nutrient supplements for prevention of undernutrition: experience from the International Lipid-Based Nutrient Supplements (iLANS) Project.

    USDA-ARS?s Scientific Manuscript database

    The International Lipid-Based Nutrient Supplements (iLiNS) Project began in 2009 with the goal of contributing to the evidence base regarding the potential of lipid-based nutrient supplements (LNS) to prevent undernutrition in vulnerable populations. The first project objective was the development o...

  11. Considerations in developing lipid-based nutrient supplements for prevention of undernutrition: experience from the International Lipid-Based Nutrient Supplements (iLiNS)

    USDA-ARS?s Scientific Manuscript database

    The International Lipid-Based Nutrient Supplements (iLiNS) Project began in 2009 with the goal of contributing to the evidence base regarding the potential of lipid-based nutrient supplements (LNS) to prevent undernutrition in vulnerable populations. The first project objective was the development o...

  12. A highlight on lipid based nanocarriers for transcutaneous immunization.

    PubMed

    Nasr, Maha; Abdel-Hamid, Sameh; Alyoussef, Abdullah A

    2015-01-01

    Transcutaneous vaccination has become a widely used technique for providing immunity against several types of pathogens, taking advantage of the immune components found in the skin. The success in the field of vaccination has not only relied on the type of antigen and adjuvant delivered, but also on how they are delivered. In this regard, particulate carriers, especially nanoparticles have evoked considerable interest, owing to the desirable properties that they impart to the substance being delivered. The presentation of antigens by the nanoparticles mimics the presentation of the immunogen by the pathogen; hence, it creates a similar immune response. Furthermore, nanoparticles protect the antigen from degradation and allow its prolonged release, which maximizes its exposure to the immune cells. The most commonly used materials for the formulation of nanoparticles are either polymer-based or lipid based. This review will focus on the lipid based nanocarriers, either vesicular such as liposomes, transfersomes, and ethosomes, or non-vesicular such as cubosomes, solid lipid nanoparticles, nano-structured lipid carriers, solid in oil nanodispersions, lipoplexes, and hybrid polymeric-lipidic systems. The applications of these carriers in the field of transcutaneous immunization will be discussed in this review as well.

  13. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications

    PubMed Central

    GUO, ZHENGRONG; PENG, HUANYAN; KANG, JIWEN; SUN, DIANXING

    2016-01-01

    Cell-penetrating peptides (CPPs), also known as protein transduction domains, are a class of diverse peptides with 5–30 amino acids. CPPs are divided into cationic, amphipathic and hydrophobic CPPs. They are able to carry small molecules, plasmid DNA, small interfering RNA, proteins, viruses, imaging agents and other various nanoparticles across the cellular membrane, resulting in internalization of the intact cargos. However, the mechanisms of CPP internalization remain to be elucidated. Recently, CPPs have received considerable attention due to their high transduction efficiency and low cytotoxicity. These peptides have a significant potential for diagnostic and therapeutic applications, such as delivery of fluorescent or radioactive compounds for imaging, delivery of peptides and proteins for therapeutic application, and delivery of molecules into induced pluripotent stem cells for directing differentiation. The present study reviews the classifications and transduction mechanisms of CPPs, as well as their potential applications. PMID:27123243

  14. Protein transduction domain delivery of therapeutic macromolecules.

    PubMed

    van den Berg, Arjen; Dowdy, Steven F

    2011-12-01

    Owing to their unprecedented selectivity, specific activity and potential for 1000+ fold amplification of signal, macromolecules, such as peptides, catalytic protein domains, complete proteins, and oligonucleotides, offer great potential as therapeutic molecules. However, therapeutic use of macromolecules is limited by their poor penetration in tissues and their inability to cross the cellular membrane. The discovery of small cationic peptides that cross the membrane, called Protein Transduction Domains (PTDs) or Cell Penetrating Peptides (CPPs), in the late 1980s opened the door to cellular delivery of large, bioactive molecules. Now, PTDs are widely used as research tools, and impressively, multiple clinical trials are testing PTD-mediated delivery of macromolecular drug conjugates in patients with a variety of diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Lipid-based mRNA vaccine delivery systems.

    PubMed

    Midoux, Patrick; Pichon, Chantal

    2015-02-01

    Synthetic mRNAs can become biopharmaceutics allowing vaccination against cancer, bacterial and virus infections. Clinical trials with direct administration of synthetic mRNAs encoding tumor antigens demonstrated safety and induction of tumor-specific immune responses. Although immune responses are generated by naked mRNAs, their formulations with chemical carriers are expected to provide more specificity and internalization in dendritic cells (DCs) for better immune responses and dose reduction. This review reports lipid-based formulations (LBFs) that have proved preclinical efficacy. The selective delivery of mRNA LBFs to favor intracellular accumulation in DCs and reduction of the effective doses is discussed, notably to decorate LBFs with carbohydrates or glycomimetics allowing endocytosis in DCs. We also report how smart intracellular delivery is achieved using pH-sensitive lipids or polymers for an efficient mRNA escape from endosomes and limitations regarding cytosolic mRNA location for translation.

  16. Lipid-based systemic delivery of siRNA

    PubMed Central

    Tseng, Yu-Cheng; Mozumdar, Subho; Huang, Leaf

    2011-01-01

    RNAi technology has brought a new category of treatments for various diseases including genetic diseases, viral diseases, and cancer. Despite the great versatility of RNAi that can down regulate almost any protein in the cells, the delicate and precise machinery used for silencing is the same. The major challenge indeed for RNAi-based therapy is the delivery system. In this review, we start with the uniqueness and mechanism of RNAi machinery and the utility of RNAi in therapeutics. Then we discuss the challenges in systemic siRNA delivery by dividing them into two categories--kinetic and physical barriers. At the end, we discuss different strategies to overcome these barriers, especially focusing on the step of endosome escape. Toxicity issues and current successful examples for lipid-based delivery are also included in the review. PMID:19328215

  17. Lipid-based nanocarriers for oral peptide delivery.

    PubMed

    Niu, Zhigao; Conejos-Sánchez, Inmaculada; Griffin, Brendan T; O'Driscoll, Caitriona M; Alonso, María J

    2016-11-15

    This article is aimed to overview the lipid-based nanostructures designed so far for the oral administration of peptides and proteins, and to analyze the influence of their composition and physicochemical (particle size, zeta potential) and pharmaceutical (drug loading and release) properties, on their interaction with the gastro-intestinal environment, and the subsequent PK/PD profile of the associated drugs. The ultimate goal has been to highlight and comparatively analyze the key factors that may be determinant of the success of these nanocarriers for oral peptide delivery. The article ends with some prospects on the challenges to be addressed for the intended commercial success of these delivery vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Pheromone Transduction in Moths

    PubMed Central

    Stengl, Monika

    2010-01-01

    Calling female moths attract their mates late at night with intermittent release of a species-specific sex-pheromone blend. Mean frequency of pheromone filaments encodes distance to the calling female. In their zig-zagging upwind search male moths encounter turbulent pheromone blend filaments at highly variable concentrations and frequencies. The male moth antennae are delicately designed to detect and distinguish even traces of these sex pheromones amongst the abundance of other odors. Its olfactory receptor neurons sense even single pheromone molecules and track intermittent pheromone filaments of highly variable frequencies up to about 30 Hz over a wide concentration range. In the hawkmoth Manduca sexta brief, weak pheromone stimuli as encountered during flight are detected via a metabotropic PLCβ-dependent signal transduction cascade which leads to transient changes in intracellular Ca2+ concentrations. Strong or long pheromone stimuli, which are possibly perceived in direct contact with the female, activate receptor-guanylyl cyclases causing long-term adaptation. In addition, depending on endogenous rhythms of the moth's physiological state, hormones such as the stress hormone octopamine modulate second messenger levels in sensory neurons. High octopamine levels during the activity phase maximize temporal resolution cAMP-dependently as a prerequisite to mate location. Thus, I suggest that sliding adjustment of odor response threshold and kinetics is based upon relative concentration ratios of intracellular Ca2+ and cyclic nucleotide levels which gate different ion channels synergistically. In addition, I propose a new hypothesis for the cyclic nucleotide-dependent ion channel formed by insect olfactory receptor/coreceptor complexes. Instead of being employed for an ionotropic mechanism of odor detection it is proposed to control subthreshold membrane potential oscillation of sensory neurons, as a basis for temporal encoding of odors. PMID:21228914

  19. A Drosophila mechanosensory transduction channel.

    PubMed

    Walker, R G; Willingham, A T; Zuker, C S

    2000-03-24

    Mechanosensory transduction underlies a wide range of senses, including proprioception, touch, balance, and hearing. The pivotal element of these senses is a mechanically gated ion channel that transduces sound, pressure, or movement into changes in excitability of specialized sensory cells. Despite the prevalence of mechanosensory systems, little is known about the molecular nature of the transduction channels. To identify such a channel, we analyzed Drosophila melanogaster mechanoreceptive mutants for defects in mechanosensory physiology. Loss-of-function mutations in the no mechanoreceptor potential C (nompC) gene virtually abolished mechanosensory signaling. nompC encodes a new ion channel that is essential for mechanosensory transduction. As expected for a transduction channel, D. melanogaster NOMPC and a Caenorhabditis elegans homolog were selectively expressed in mechanosensory organs.

  20. Lipid-based vectors for siRNA delivery

    PubMed Central

    Zhang, Shubiao; Zhi, Defu; Huang, Leaf

    2016-01-01

    siRNA therapeutics has developed rapidly and already there are clinical trials ongoing or planned; however, the delivery of siRNA into cells, tissues or organs remains to be a major obstacle. Lipid-based vectors hold the most promising position among non-viral vectors, as they have a similar structure to cell or organelle membranes. But when used in the form of liposomes, these vectors have shown some problems. Therefore, either the nature of lipids themselves or forms used should be improved. As a novel class of lipid like materials, lipidoids have the advantages of easy synthesis and the ability for delivering siRNA to obtain excellent silencing activity. However, the toxicities of lipidoids have not been thoroughly studied. pH responsive lipids have also gained great attention recently, though some of the amine-based lipids are not novel in terms of chemical structures. More complex self-assembly structures, such as LPD (LPH) and LCP, may provide a good solution to siRNA delivery. They have demonstrated controlled particle morphology and size and siRNA delivery activity for both in vitro and in vivo. PMID:22994300

  1. Lipid-based amphotericin B in the treatment of cryptococcosis.

    PubMed

    Viviani, M A; Rizzardini, G; Tortorano, A M; Fasan, M; Capetti, A; Roverselli, A M; Gringeri, A; Suter, F

    1994-01-01

    Amphotericin B is the only antifungal drug which, despite its dose-limiting toxicity, can be given intravenously when an aggressive treatment is required. In an attempt to reduce the drug toxicity while retaining its therapeutic efficacy, new formulations of amphotericin B have been developed. The most promising have employed lipid vehicles such as liposomes. Three lipid-based amphotericin B formulations have been developed by pharmaceutical companies and are under active clinical investigation. Efficacy and safety data of these derivatives in animals and humans are reviewed, with particular concern to cryptococcal infection. The authors' experience with a small unilamellar liposomal amphotericin B formulation, AmBisome, in the primary therapy of cryptococcosis is reported. Nine AIDS patients affected with cryptococcosis, seven of whom had meningitis, were given AmBisome (3 mg/kg/day) for 3-6 weeks. Complete response was obtained in six patients, marked improvement in two, and failure in one. AmBisome was well tolerated and shortened the time to clinical and mycological response suggesting a further improvement in the management of cryptococcosis in AIDS patients.

  2. Loading of curcumin into macrophages using lipid-based nanoparticles.

    PubMed

    Sou, Keitaro; Inenaga, Shunsuke; Takeoka, Shinji; Tsuchida, Eishun

    2008-03-20

    Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, Cm) is a natural compound which possesses antioxidant, anti-inflammatory and anti-tumor ability. Here, phospholipid vesicles or lipid-nanospheres embedding Cm (CmVe or CmLn) were formulated to deliver Cm into tissue macrophages through intravenous injection. Cm could be solubilized in hydrophobic regions of these particles to form nanoparticle dispersions, and these formulations showed ability to scavenge reactive oxygen species as antioxidants in dispersions. At 6h after intravenous injection in rats via the tail vein (2mg Cm/kg bw), confocal microscopic observations of tissue sections showed that Cm was massively distributed in cells assumed as macrophages into the bone marrow and spleen. Taken together, these results indicate that the lipid-based nanoparticulates provide improved intravenous delivery of Cm to tissues macrophages, specifically bone marrow and splenic macrophages in present formulation, which has therapeutic potential as an antioxidant and anti-inflammatory.

  3. Uniformly cationized protein efficiently reaches the cytosol of mammalian cells.

    PubMed

    Futami, Midori; Watanabe, Yasuyoshi; Asama, Takashi; Murata, Hitoshi; Tada, Hiroko; Kosaka, Megumi; Yamada, Hidenori; Futami, Junichiro

    2012-10-17

    Protein cationization techniques are powerful protein transduction methods for mammalian cells. As we demonstrated previously, cationized proteins with limited conjugation to polyethylenimine have excellent ability to enter into cells by adsorption-mediated endocytosis [Futami, J., et al. (2005) J. Biosci. Bioeng. 99, 95-103]. In this study, we show that proteins with extensive and uniform cationization covering the protein surface reach the cytoplasm and nucleus more effectively than proteins with limited cationic polymers or proteins that are fused to cationic peptides. Although extensive modification of carboxylates results in loss of protein function, chicken avidin retains biotin-binding ability even after extensive amidation of carboxylates. Using this cationized avidin carrier system, the protein transduction ability of variously cationized avidins was investigated using biotinylated protein as a probe. The results revealed that cationized avidins bind rapidly to the cell surface followed by endocytotic uptake. Small amounts of uniformly cationized avidin showed direct penetration into the cytoplasm within a 15 min incubation. This penetration route seemed to be energy dependent and functioned under cellular physiological conditions. A biotinylated exogenous transcription factor protein that penetrated cells was demonstrated to induce target gene expression in living cells.

  4. Multilayered films fabricated from an oligoarginine-conjugated protein promote efficient surface-mediated protein transduction.

    PubMed

    Jewell, Christopher M; Fuchs, Stephen M; Flessner, Ryan M; Raines, Ronald T; Lynn, David M

    2007-03-01

    The conjugation of cationic protein transduction domains to proteins results in an increase in the extent to which proteins are internalized by cells. This investigation sought to determine whether the conjugation of a protein transduction domain to a functional protein could be used to facilitate the incorporation of the protein into multilayered polyelectrolyte films and, subsequently, whether these films could be used to promote surface-mediated protein transduction. We demonstrate that it is possible to fabricate multilayered assemblies 80 nm thick using sodium polystyrene sulfonate (SPS) and bovine pancreatic ribonuclease (RNase A) conjugated to the cationic protein transduction domain nonaarginine (R(9)) using an entirely aqueous layer-by-layer process. We demonstrate further that the conjugation of R(9) to RNase A permits the assembly of multilayered films under conditions that do not allow for the incorporation of the unmodified protein. This result suggests that R(9) functions as a cationic anchor and serves to increase the strength of electrostatic interactions with SPS and facilitate layer-by-layer assembly. We also demonstrate that RNase A-R(9)/SPS films dissolve rapidly in physiologically relevant media and that macroscopic objects coated with these materials can be used to mediate high levels of protein transduction in mammalian cells. These results suggest the basis of general methods that could contribute to the design of materials that permit spatial and temporal control over the delivery of therapeutic proteins to cells and tissues.

  5. Molecular basis of mechanosensory transduction

    NASA Astrophysics Data System (ADS)

    Gillespie, Peter G.; Walker, Richard G.

    2001-09-01

    Mechanotransduction - a cell's conversion of a mechanical stimulus into an electrical signal - reveals vital features of an organism's environment. From hair cells and skin mechanoreceptors in vertebrates, to bristle receptors in flies and touch receptors in worms, mechanically sensitive cells are essential in the life of an organism. The scarcity of these cells and the uniqueness of their transduction mechanisms have conspired to slow molecular characterization of the ensembles that carry out mechanotransduction. But recent progress in both invertebrates and vertebrates is beginning to reveal the identities of proteins essential for transduction.

  6. Specially-Made Lipid-Based Assemblies for Improving Transmembrane Gene Delivery: Comparison of Basic Amino Acid Residue Rich Periphery.

    PubMed

    Jiang, Qian; Yue, Dong; Nie, Yu; Xu, Xianghui; He, Yiyan; Zhang, Shiyong; Wagner, Ernst; Gu, Zhongwei

    2016-06-06

    Cationic lipid based assemblies provide a promising platform for effective gene condensation into nanosized particles, and the peripheral properties of the assemblies are vital for complexation and interaction with physical barriers. Here, we report three cationic twin head lipids, and each of them contains a dioleoyl-glutamate hydrophobic tail and a twin polar head of lysine, arginine, or histidine. Such lipids were proven to self-assemble in aqueous solution with well-defined nanostructures and residual amino-, guanidine-, or imidazole-rich periphery, showing strong buffering capacity and good liquidity. The assemblies with arginine (RL) or lysine (KL) periphery exhibited positive charges (∼+35 mV) and complete condensation of pDNA into nanosized complexes (∼120 nm). In contrast, assemblies composed of histidine-rich lipids (HL) showed relatively low cationic electric potential (∼+10 mV) and poor DNA binding ability. As expected, the designed RL assemblies with guanidine-rich periphery enhanced the in vitro gene transfection up to 190-fold as compared with the golden standard PEI25k and Lipofectamine 2000, especially in the presence of serum. Meanwhile, interaction with cell and endo/lysosome membrane also revealed the superiority of RL complexes, that the guanidine-rich surface efficiently promoted transmembrane process in cellular internalization and endosomal disruption. More importantly, RL complexes also succeeded beyond others in vivo with significantly (∼7-fold) enhanced expression in HepG2 tumor xenografts in mice, as well as stronger green fluorescence protein imaging in isolated tumors and tumor frozen sections.

  7. Meeting Report: Teaching Signal Transduction

    ERIC Educational Resources Information Center

    Kramer, IJsbrand; Thomas, Geraint

    2006-01-01

    In July, 2005, the European Institute of Chemistry and Biology at the campus of the University of Bordeaux, France, hosted a focused week of seminars, workshops, and discussions around the theme of "teaching signal transduction." The purpose of the summer school was to offer both junior and senior university instructors a chance to…

  8. Meeting Report: Teaching Signal Transduction

    ERIC Educational Resources Information Center

    Kramer, IJsbrand; Thomas, Geraint

    2006-01-01

    In July, 2005, the European Institute of Chemistry and Biology at the campus of the University of Bordeaux, France, hosted a focused week of seminars, workshops, and discussions around the theme of "teaching signal transduction." The purpose of the summer school was to offer both junior and senior university instructors a chance to…

  9. Applications of lipid based formulation technologies in the delivery of biotechnology-based therapeutics.

    PubMed

    du Plessis, Lissinda H; Marais, Etienne B; Mohammed, Faruq; Kotzé, Awie F

    2014-01-01

    In the last decades several new biotechnologically-based therapeutics have been developed due to progress in genetic engineering. A growing challenge facing pharmaceutical scientists is formulating these compounds into oral dosage forms with adequate bioavailability. An increasingly popular approach to formulate biotechnology-based therapeutics is the use of lipid based formulation technologies. This review highlights the importance of lipid based drug delivery systems in the formulation of oral biotechnology based therapeutics including peptides, proteins, DNA, siRNA and vaccines. The different production procedures used to achieve high encapsulation efficiencies of the bioactives are discussed, as well as the factors influencing the choice of excipient. Lipid based colloidal drug delivery systems including liposomes and solid lipid nanoparticles are reviewed with a focus on recent advances and updates. We further describe microemulsions and self-emulsifying drug delivery systems and recent findings on bioactive delivery. We conclude the review with a few examples on novel lipid based formulation technologies.

  10. Interactions between the HIV-TAT transduction domain and cell membranes

    NASA Astrophysics Data System (ADS)

    Mishra, Abhijit; Wong, Gerard

    2006-03-01

    Biologically active molecules such as proteins and oligonucleotides can be transduced into cells with high efficiency when covalently linked to a Protein Transduction Domain (PTD), such as the TAT domain in the HIV virus. All PTDs have a high content of basic amino acids resulting in a net positive charge. Electrostatic interactions between cationic PTDs and the negatively charged phospholipids that constitute the plasma membrane are likely to be responsible for peptide uptake, but no detailed structural studies exist. We compare membrane structures induced by the cationic TAT domain and those induced by other cationic polypeptides as a function of membrane composition using synchrotron x-ray scattering, and examine possible mechanisms of the anomalous transduction.

  11. Receptors and transduction of umami taste stimuli.

    PubMed

    Kinnamon, Sue C; Vandenbeuch, Aurelie

    2009-07-01

    L-glutamate and 5'-ribonucleotides, such as GMP and IMP, elicit the "umami" taste, also known as the fifth taste. This review will highlight recent advancements in our understanding of umami taste receptors and their downstream signaling effectors in taste receptor cells. Several G protein-coupled receptors that bind umami stimuli have been identified in taste buds, including the heterodimer T1R1/T1R3, truncated and brain forms of mGluR4 and mGluR1, brain mGluR2, and brain mGluR3. Further, ionotropic glutamate receptors are expressed in taste cells and may play a role in glutamate transduction or signaling between taste cells and/or nerve fibers. Knockout of T1R1 or T1R3 reduces, but does not eliminate, responses to umami stimuli, suggesting that multiple receptors contribute to umami taste. The signaling effectors downstream of umami G protein-coupled receptors involve Gbetagamma activation of PLCbeta2 to elicit Ca(2+) release from intracellular stores and activation of a cation channel, TRPM5. In fungiform and palatal taste buds, T1R1/T1R3 is co-expressed with Galpha gustducin and transducin, but the Galpha proteins involved in circumvallate taste buds have not been identified. In most taste fields, however, cAMP antagonizes responses to umami stimuli, suggesting that the Galpha subunit serves to modulate umami taste sensitivity.

  12. Phosphorylation in halobacterial signal transduction.

    PubMed Central

    Rudolph, J; Tolliday, N; Schmitt, C; Schuster, S C; Oesterhelt, D

    1995-01-01

    Regulated phosphorylation of proteins has been shown to be a hallmark of signal transduction mechanisms in both Eubacteria and Eukarya. Here we demonstrate that phosphorylation and dephosphorylation are also the underlying mechanism of chemo- and phototactic signal transduction in Archaea, the third branch of the living world. Cloning and sequencing of the region upstream of the cheA gene, known to be required for chemo- and phototaxis in Halobacterium salinarium, has identified cheY and cheB analogs which appear to form part of an operon which also includes cheA and the following open reading frame of 585 nucleotides. The CheY and CheB proteins have 31.3 and 37.5% sequence identity compared with the known signal transduction proteins CheY and CheB from Escherichia coli, respectively. The biochemical activities of both CheA and CheY were investigated following their expression in E.coli, isolation and renaturation. Wild-type CheA could be phosphorylated in a time-dependent manner in the presence of [gamma-32P]ATP and Mg2+, whereas the mutant CheA(H44Q) remained unlabeled. Phosphorylated CheA was dephosphorylated rapidly by the addition of wild-type CheY. The mutant CheY(D53A) had no effect on phosphorylated CheA. The mechanism of chemo- and phototactic signal transduction in the Archaeon H.salinarium, therefore, is similar to the two-component signaling system known from chemotaxis in the eubacterium E.coli. Images PMID:7556066

  13. Bacteriophage Transduction in Staphylococcus epidermidis

    PubMed Central

    Olson, Michael E.; Horswill, Alexander R.

    2016-01-01

    The genetic manipulation of Staphylococcus epidermidis for molecular experimentation has long been an area of difficulty. Many of the traditional laboratory techniques for strain construction are laborious and hampered by poor efficiency. The ability to move chromosomal genetic markers and plasmids using bacteriophage transduction has greatly increased the speed and ease of S. epidermidis studies. These molecular genetic advances have advanced the S. epidermidis research field beyond a select few genetically tractable strains and facilitated investigations of clinically relevant isolates. PMID:24222465

  14. Improvement of drug safety by the use of lipid-based nanocarriers.

    PubMed

    Lim, Sok Bee; Banerjee, Amrita; Önyüksel, Hayat

    2012-10-10

    Drug toxicity is an important factor that contributes significantly to adverse drug events in current healthcare practice. Application of lipid-based nanocarriers in drug formulation is one approach to improve drug safety. Lipid-based delivery systems include micelles, liposomes, solid lipid nanoparticles, nanoemulsions and nanosuspensions. These carriers are generally composed of physiological lipids well tolerated by human body. Delivery of water-insoluble drugs in these formulations increases their solubility and stability in aqueous media and eliminates the need for toxic co-solvents or pH adjustment to solubilize hydrophobic drugs. Association or encapsulation of peptides/proteins within lipid-based carriers protects the labile biologics against enzymatic degradation, hence reducing the therapeutic dose required and risk of dose-dependent toxicity. Most importantly, lipid-based nanocarriers alter the pharmacokinetics and biodistribution of drugs through passive and active targeting, leading to increased drug accumulation at target sites while significantly decreasing non-specific distribution to other tissues. Furthermore, surface modification of these nanocarriers reduces immunogenicity of drug-carrier complexes, imparts stealth by preventing opsonization and removal by phagocytes and minimizes interaction with circulating blood components. In view of heightening attention on drug safety in patient treatment, lipid-based nanocarrier is therefore an important and promising option for formulation of pharmaceutical products to improve treatment safety and efficacy.

  15. Assessing cellular toxicities in fibroblasts upon exposure to lipid-based nanoparticles: a high content analysis approach

    NASA Astrophysics Data System (ADS)

    Solmesky, Leonardo J.; Shuman, Michal; Goldsmith, Meir; Weil, Miguel; Peer, Dan

    2011-12-01

    Lipid-based nanoparticles (LNPs) are widely used for the delivery of drugs and nucleic acids. Although most of them are considered safe, there is confusing evidence in the literature regarding their potential cellular toxicities. Moreover, little is known about the recovery process cells undergo after a cytotoxic insult. We have previously studied the systemic effects of common LNPs with different surface charge (cationic, anionic, neutral) and revealed that positively charged LNPs ((+)LNPs) activate pro-inflammatory cytokines and induce interferon response by acting as an agonist of Toll-like receptor 4 on immune cells. In this study, we focused on the response of human fibroblasts exposed to LNPs and their cellular recovery process. To this end, we used image-based high content analysis (HCA). Using this strategy, we were able to show simultaneously, in several intracellular parameters, that fibroblasts can recover from the cytotoxic effects of (+)LNPs. The use of HCA opens new avenues in understanding cellular response and nanotoxicity and may become a valuable tool for screening safe materials for drug delivery and tissue engineering.

  16. Sensory Transduction in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  17. Comparative assessment of lipid based nano-carrier systems for dendritic cell based targeting of tumor re-initiating cells in gynecological cancers.

    PubMed

    Bhargava, Arpit; Mishra, Dinesh K; Jain, Subodh K; Srivastava, Rupesh K; Lohiya, Nirmal K; Mishra, Pradyumna K

    2016-11-01

    We aimed to identify an optimum nano-carrier system to deliver tumor antigen to dendritic cells (DCs) for efficient targeting of tumor reinitiating cells (TRICs) in gynecological malignancies. Different lipid based nano-carrier systems i.e. liposomes, ethosomes and solid lipid nanoparticles (SLNPs) were examined for their ability to activate DCs in allogeneic settings. Out of these three, the most optimized formulation was subjected for cationic and mannosylated surface modification and pulsed with DCs for specific targeting of tumor cells. In both allogeneic and autologous trials, SLNPs showed a strong ability to activate DCs and orchestrate specific immune responses for targeting TRICs in gynecological malignancies. Our findings suggest that the mannosylated form of SLNPs is a suitable molecular vector for DC based therapeutics. DCs pulsed with mannosylated SLNPs may be utilized as adjuvant therapy for specific removal of TRICs to benefit patients from tumor recurrence.

  18. Providing lipid-based nutrient supplements does not affect developmental milestones among Malawian children

    USDA-ARS?s Scientific Manuscript database

    Our objective was to assess whether using lipid-based nutrient supplements (LNS) to complement the diets of infants and young children affected when they achieved selected developmental milestones. In rural Malawi, 840 6-month-old healthy infants were enrolled to a randomised trial. Control particip...

  19. Acceptability of three novel lipid-based nutrient supplements among Malawian infants and their caregivers

    USDA-ARS?s Scientific Manuscript database

    We tested the acceptability of three new lipid-based nutrient supplements (LNSs) in two independent phases among 18 8–12-month-old healthy rural Malawians and their caregivers. In phase 1, acceptability was assessed by offering three new LNSs in random order, and an LNS already determined to be acce...

  20. Polymer-enhanced adenoviral transduction of CAR-negative bladder cancer cells.

    PubMed

    Kasman, Laura M; Barua, Sutapa; Lu, Ping; Rege, Kaushal; Voelkel-Johnson, Christina

    2009-01-01

    The application of adenoviral gene therapy for cancer is limited by immune clearance of the virus as well as poor transduction efficiency, since the protein used for viral entry (CAR) serves physiological functions in adhesion and is frequently decreased among cancer cells. Cationic polymers have been used to enhance adenoviral gene delivery, but novel polymers with low toxicity are needed to realize this approach. We recently identified polymers that were characterized by high transfection efficiency of plasmid DNA and a low toxicity profile. In this study we evaluated the novel cationic polymer EGDE-3,3' for its potential to increase adenoviral transduction of the CAR-negative bladder cancer cell line TCCSUP. The amount of adenovirus required to transduce 50-60% of the cells was reduced 100-fold when Ad.GFP was preincubated with the EGDE-3,3' polymer. Polyethyleneimine (pEI), a positively charged polymer currently used as a standard for enhancing adenoviral transduction, also increased infectivity, but transgene expression was consistently higher with EGDE-3,3'. In addition, EGDE-3,3'-supplemented transduction of an adenovirus expressing an apoptosis inducing transgene, Ad.GFP-TRAIL, significantly enhanced the amount of cell death. Thus, our results indicate that novel biocompatible polymers may be useful in improving the delivery of adenoviral gene therapy.

  1. Vectofusin-1, a New Viral Entry Enhancer, Strongly Promotes Lentiviral Transduction of Human Hematopoietic Stem Cells

    PubMed Central

    Fenard, David; Ingrao, Dina; Seye, Ababacar; Buisset, Julien; Genries, Sandrine; Martin, Samia; Kichler, Antoine; Galy, Anne

    2013-01-01

    Gene transfer into hCD34+ hematopoietic stem/progenitor cells (HSCs) using human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors (LVs) has several promising therapeutic applications. Yet, efficiency, safety, and cost of LV gene therapy could be ameliorated by enhancing target cell transduction levels and reducing the amount of LV used on the cells. Several transduction enhancers already exist such as fibronectin fragments and cationic compounds, but all present limitations. In this study, we describe a new transduction enhancer called Vectofusin-1, which is a short cationic peptide, active on several LV pseudotypes. Vectofusin-1 is used as a soluble additive to safely increase the frequency of transduced HSCs and to augment the level of transduction to one or two copies of vector per cell in a vector dose-dependent manner. Vectofusin-1 acts at the entry step by promoting the adhesion and the fusion between viral and cellular membranes. Vectofusin-1 is therefore a promising additive that could significantly ameliorate hCD34+ cell-based gene therapy. PMID:23653154

  2. Meeting Report: Teaching Signal Transduction

    PubMed Central

    Kramer, IJsbrand; Thomas, Geraint

    2006-01-01

    In July, 2005, the European Institute of Chemistry and Biology at the campus of the University of Bordeaux, France, hosted a focused week of seminars, workshops, and discussions around the theme of “teaching signal transduction.” The purpose of the summer school was to offer both junior and senior university instructors a chance to reflect on the development and delivery of their teaching activities in this area. This was achieved by combining open seminars with restricted access workshops and discussion events. The results suggest ways in which systems biology, information and communication technology, Web-based investigations, and high standard illustrations might be more effectively and efficiently incorporated into modern cell biology courses. PMID:17012185

  3. Electromagnetic transduction of ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Passarelli, Frank; Alers, George; Alers, Ron

    2012-05-01

    Excitation and detection of ultrasonic vibrations without physical contact has proven to be of great commercial value. First used to excite the resonant vibration of bar shaped laboratory specimens in the 1930's, it was Bruce Thompson's contributions in 1973-5 that launched their practical application to a wide range of difficult NDE problems. As a fresh PhD, he championed the use of mathematical models for the electromagnetic transduction process in order to guide the design and construction of practical transducers. His early papers presented both theoretical and experimental results that exposed the wide range of wave types that could be generated along with the environmental conditions that could be overcome. Several laboratories around the world established research programs to apply the electromagnetic transducer (EMAT) to specific NDE problems. This paper will summarize those applications made by the authors.

  4. Mimicking photosynthetic solar energy transduction.

    PubMed

    Gust, D; Moore, T A; Moore, A L

    2001-01-01

    Increased understanding of photosynthetic energy conversion and advances in chemical synthesis and instrumentation have made it possible to create artificial nanoscale devices and semibiological hybrids that carry out many of the functions of the natural process. Artificial light-harvesting antennas can be synthesized and linked to artificial reaction centers that convert excitation energy to chemical potential in the form of long-lived charge separation. Artificial reaction centers can form the basis for molecular-level optoelectronic devices. In addition, they may be incorporated into the lipid bilayer membranes of artificial vesicles, where they function as components of light-driven proton pumps that generate transmembrane proton motive force. The proton gradient may be used to synthesize adenosine triphosphate via an ATP synthase enzyme. The overall energy transduction process in the liposomal system mimics the solar energy conversion system of a photosynthetic bacterium. The results of this research illustrate the advantages of designing functional nanoscale devices based on biological paradigms.

  5. Sentra, a database of signal transduction proteins.

    SciTech Connect

    Maltsev, N.; Marland, E.; Yu, G. X.; Bhatnagar, S.; Lusk, R.; Mathematics and Computer Science

    2002-01-01

    Sentra (http://www-wit.mcs.anl.gov/sentra) is a database of signal transduction proteins with the emphasis on microbial signal transduction. The database was updated to include classes of signal transduction systems modulated by either phosphorylation or methylation reactions such as PAS proteins and serine/threonine kinases, as well as the classical two-component histidine kinases and methyl-accepting chemotaxis proteins. Currently, Sentra contains signal transduction proteins from 43 completely sequenced prokaryotic genomes as well as sequences from SWISS-PROT and TrEMBL. Signal transduction proteins are annotated with information describing conserved domains, paralogous and orthologous sequences, and conserved chromosomal gene clusters. The newly developed user interface supports flexible search capabilities and extensive visualization of the data.

  6. SENTRA, a database of signal transduction proteins.

    SciTech Connect

    D'Souza, M.; Romine, M. F.; Maltsev, N.; Mathematics and Computer Science; PNNL

    2000-01-01

    SENTRA, available via URL http://wit.mcs.anl.gov/WIT2/Sentra/, is a database of proteins associated with microbial signal transduction. The database currently includes the classical two-component signal transduction pathway proteins and methyl-accepting chemotaxis proteins, but will be expanded to also include other classes of signal transduction systems that are modulated by phosphorylation or methylation reactions. Although the majority of database entries are from prokaryotic systems, eukaroytic proteins with bacterial-like signal transduction domains are also included. Currently SENTRA contains signal transduction proteins in 34 complete and almost completely sequenced prokaryotic genomes, as well as sequences from 243 organisms available in public databases (SWISS-PROT and EMBL). The analysis was carried out within the framework of the WIT2 system, which is designed and implemented to support genetic sequence analysis and comparative analysis of sequenced genomes.

  7. The cubyl cation rearrangements.

    PubMed

    Jalife, Said; Mondal, Sukanta; Cabellos, Jose Luis; Martinez-Guajardo, Gerardo; Fernandez-Herrera, Maria A; Merino, Gabriel

    2016-02-25

    Born-Oppenheimer molecular dynamics simulations and high-level ab initio computations predict that the cage-opening rearrangement of the cubyl cation to the 7H(+)-pentalenyl cation is feasible in the gas phase. The rate-determining step is the formation of the cuneyl cation with an activation barrier of 25.3 kcal mol(-1) at the CCSD(T)/def2-TZVP//MP2/def2-TZVP level. Thus, the cubyl cation is kinetically stable enough to be formed and trapped at moderate temperatures, but it may be rearranged at higher temperatures.

  8. The Physiology of Mechanoelectrical Transduction Channels in Hearing

    PubMed Central

    Fettiplace, Robert; Kim, Kyunghee X.

    2014-01-01

    Much is known about the mechanotransducer (MT) channels mediating transduction in hair cells of the vertrbrate inner ear. With the use of isolated preparations, it is experimentally feasible to deliver precise mechanical stimuli to individual cells and record the ensuing transducer currents. This approach has shown that small (1–100 nm) deflections of the hair-cell stereociliary bundle are transmitted via interciliary tip links to open MT channels at the tops of the stereocilia. These channels are cation-permeable with a high selectivity for Ca2+; two channels are thought to be localized at the lower end of the tip link, each with a large single-channel conductance that increases from the low- to high-frequency end of the cochlea. Ca2+ influx through open channels regulates their resting open probability, which may contribute to setting the hair cell resting potential in vivo. Ca2+ also controls transducer fast adaptation and force generation by the hair bundle, the two coupled processes increasing in speed from cochlear apex to base. The molecular intricacy of the stereocilary bundle and the transduction apparatus is reflected by the large number of single-gene mutations that are linked to sensorineural deafness, especially those in Usher syndrome. Studies of such mutants have led to the discovery of many of the molecules of the transduction complex, including the tip link and its attachments to the stereociliary core. However, the MT channel protein is still not firmly identified, nor is it known whether the channel is activated by force delivered through accessory proteins or by deformation of the lipid bilayer. PMID:24987009

  9. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations

    PubMed Central

    Khan, Arshad Ali; Mudassir, Jahanzeb; Mohtar, Noratiqah; Darwis, Yusrida

    2013-01-01

    The delivery of drugs and bioactive compounds via the lymphatic system is complex and dependent on the physiological uniqueness of the system. The lymphatic route plays an important role in transporting extracellular fluid to maintain homeostasis and in transferring immune cells to injury sites, and is able to avoid first-pass metabolism, thus acting as a bypass route for compounds with lower bioavailability, ie, those undergoing more hepatic metabolism. The lymphatic route also provides an option for the delivery of therapeutic molecules, such as drugs to treat cancer and human immunodeficiency virus, which can travel through the lymphatic system. Lymphatic imaging is useful in evaluating disease states and treatment plans for progressive diseases of the lymph system. Novel lipid-based nanoformulations, such as solid lipid nanoparticles and nanostructured lipid carriers, have unique characteristics that make them promising candidates for lymphatic delivery. These formulations are superior to colloidal carrier systems because they have controlled release properties and provide better chemical stability for drug molecules. However, multiple factors regulate the lymphatic delivery of drugs. Prior to lymphatic uptake, lipid-based nanoformulations are required to undergo interstitial hindrance that modulates drug delivery. Therefore, uptake and distribution of lipid-based nanoformulations by the lymphatic system depends on factors such as particle size, surface charge, molecular weight, and hydrophobicity. Types of lipid and concentration of the emulsifier are also important factors affecting drug delivery via the lymphatic system. All of these factors can cause changes in intermolecular interactions between the lipid nanoparticle matrix and the incorporated drug, which in turn affects uptake of drug into the lymphatic system. Two lipid-based nanoformulations, ie, solid lipid nanoparticles and nanostructured lipid carriers, have been administered via multiple routes

  10. Gravitational Effects on Signal Transduction

    NASA Technical Reports Server (NTRS)

    Sytkowski, Arthur J.

    1999-01-01

    An understanding of the mechanisms by which individual cells perceive gravity and how these cells transduce and respond to gravitational stimuli is critical for the development of long-term manned space flight experiments. We now propose to use a well-characterized model erythroid cell system and to investigate gravitational perturbations of its erythropoietin (Epo) signaling pathway and gene regulation. Cells will be grown at 1-G and in simulated microgravity in the NASA Rotating Wall Vessel bioreactor (RWV). Cell growth and differentiation, the Epo-receptor, the protein kinase C pathway to the c-myc gene, and the protein phosphatase pathway to the c-myb gene will be studied and evaluated as reporters of gravitational stimuli. The results of these experiments will have impact on the problems of 1) gravitational sensing by individual cells, and 2) the anemia of space flight. This ground-based study also will serve as a Space Station Development Study in gravitational effects on intracellular signal transduction.

  11. Progress in gene delivery by cationic lipids: guanidinium-cholesterol-based systems as an example.

    PubMed

    Aissaoui, Abderrahim; Oudrhiri, Noufissa; Petit, Laure; Hauchecorne, Michelle; Kan, Erwan; Sainlos, Matthieu; Julia, Sébastien; Navarro, Jean; Vigneron, Jean-Pierre; Lehn, Jean-Marie; Lehn, Pierre

    2002-02-01

    Artificial self-assembling systems are currently widely investigated as an alternative approach to recombinant viruses for gene transfection in vitro and in vivo. Cationic lipids are particularly attractive, as a great variety of well-characterized reagents can be synthesized from there. Over the last few years, numerous cationic lipid systems have been developed and shown to be efficient for in vitro transfection. However, although some promising results have been reported in the in vivo setting (even in clinical gene therapy trials in man), the in vivo use of cationic lipid-based systems is still problematic, especially when considering the systemic route of administration. Herein, we summarize our own research on a particular class of cationic lipids, cholesterol derivatives characterized by polar headgroups with guanidinium functions, in order to illustrate the basic principles of and the positive results already obtained by cationic lipid-mediated gene delivery as well as the remaining problems that need to be urgently resolved, particularly as regards the systemic administration. In this forward-looking review, we also discuss the present efforts to develop modular systems for improved in vivo transfection. Indeed, lipid-based vectors offer the possibility to create sophisticated modular gene delivery systems capable of self-assembly via hydrophobic interaction between their components, the role of the different functional elements being to help in overcoming the distinct extracellular and cellular barriers to in vivo gene transfection into the various somatic target tissues.

  12. A Critical Review of Lipid-based Nanoparticles for Taxane Delivery

    PubMed Central

    Feng, Lan; Mumper, Russell J.

    2012-01-01

    Nano-based delivery systems have attracted a great deal of attention in the past two decades as a strategy to overcome the low therapeutic index of conventional anticancer drugs and delivery barriers in solid tumors. Myriads of preclinical studies have been focused on developing nano-based formulations to effectively deliver taxanes, one of the most important and most prescribed anticancer drug types in the clinic. Given the hydrophobic property of taxanes, lipid-based NPs, serve as a viable alternative delivery system. This critical review will provide an overview and perspective of the advancement of lipid-based nanoparticles for taxane delivery. Currently available formulations of taxanes and their drawbacks as well as criteria for idea taxane delivery system will be discussed. PMID:22796606

  13. Lipid-based surface engineering of PLGA nanoparticles for drug and gene delivery applications.

    PubMed

    Bose, Rajendran Jc; Lee, Soo-Hong; Park, Hansoo

    2016-01-01

    The use of poly(lactic-co-glycolic acid) (PLGA)-based nanocarriers presents several major challenges, including their synthetic hydrophobic surface, low transfection efficiency, short circulation half-life, and nonspecific tissue distribution. Numerous engineering strategies have been employed to overcome these problems, with lipid-based surface functionalization of PLGA nanoparticles (NPs) showing promising results in the development of PLGA-based clinical nanomedicines. Surface engineering with different lipids enhances the target specificity of the carrier and improves its physicochemical properties as well as NP-cell associations, such as cellular membrane permeability, immune responses, and long circulation half-life in vivo. This review focuses on recent advances in the lipid-based surface engineering of PLGA NPs for drug and gene delivery applications.

  14. Lipid-based formulations for oral administration of poorly water-soluble drugs.

    PubMed

    Mu, Huiling; Holm, René; Müllertz, Anette

    2013-08-30

    Lipid-based drug delivery systems have shown great potentials in oral delivery of poorly water-soluble drugs, primarily for lipophilic drugs, with several successfully marketed products. Pre-dissolving drugs in lipids, surfactants, or mixtures of lipids and surfactants omits the dissolving/dissolution step, which is a potential rate limiting factor for oral absorption of poorly water-soluble drugs. Lipids not only vary in structures and physiochemical properties, but also in their digestibility and absorption pathway; therefore selection of lipid excipients and dosage form has a pronounced effect on the biopharmaceutical aspects of drug absorption and distribution both in vitro and in vivo. The aim of this review is to provide an overview of the different lipid-based dosage forms from a biopharmaceutical point of view and to describe effects of lipid dosage forms and lipid excipients on drug solubility, absorption and distribution. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic

    PubMed Central

    Puri, Anu; Loomis, Kristin; Smith, Brandon; Lee, Jae-Ho; Yavlovich, Amichai; Heldman, Eli; Blumenthal, Robert

    2010-01-01

    In recent years, various nanotechnology platforms in the area of medical biology, including both diagnostics and therapy, have gained remarkable attention. Moreover, research and development of engineered multifunctional nanoparticles as pharmaceutical drug carriers have spurred exponential growth in applications to medicine in the last decade. Design principles of these nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, drug-carrier conjugates, antibody-drug complexes, and magnetic nanoparticles, are primarily based on unique assemblies of synthetic, natural, or biological components, including but not limited to synthetic polymers, metal ions, oils, and lipids as their building blocks. However, the potential success of these particles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Among these, lipid-based nanoparticles bear the advantage of being the least toxic for in vivo applications, and significant progress has been made in the area of DNA/RNA and drug delivery using lipid-based nanoassemblies. In this review, we will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery. We begin with a review of current activities in the field of liposomes (the so-called honorary nanoparticles), and challenging issues of targeting and triggering will be discussed in detail. We will further describe nanoparticles derived from a novel class of amphipathic lipids called bolaamphiphiles with unique lipid assembly features that have been recently examined as drug/DNA delivery vehicles. Finally, an overview of an emerging novel class of particles (based on lipid components other than phospholipids), solid lipid nanoparticles and nanostructured lipid carriers will be presented. We

  16. Mechanisms of protein transduction domains: HIV TAT and ANTP penetratin as prototypical cases

    NASA Astrophysics Data System (ADS)

    Mishra, Abhijit; Schmidt, Nathan; Gordon, Vernita; Wong, Gerard

    2007-03-01

    Biologically active molecules such as proteins and oligonucleotides can be transduced across cell membranes with high efficiency when covalently linked to a Protein Transduction Domain (PTD), such as the TAT domain in the HIV virus and ANTP from the fruitfly. All PTDs have a high content of basic amino acids resulting in a net positive charge. Electrostatic interactions between cationic PTDs and the negatively charged phospholipids that constitute the plasma membrane are likely to be responsible for peptide uptake, but no detailed structural studies exist. We examined membrane structures induced by the cationic TAT domain and those induced by other cationic polypeptides as a function of membrane composition using synchrotron x-ray scattering. We find that both the TAT PTD and ANTP generate negative Gaussian curvature, which is necessary for pore formation, and produce a bicontinuous Pn3m double diamond cubic phase. A general mechanism is proposed.

  17. Controlling molecular transport and sustained drug release in lipid-based liquid crystalline mesophases.

    PubMed

    Zabara, Alexandru; Mezzenga, Raffaele

    2014-08-28

    Lipid-based lyotropic liquid crystals, also referred to as reversed liquid crystalline mesophases, such as bicontinuous cubic, hexagonal or micellar cubic phases, have attracted deep interest in the last few decades due to the possibility of observing these systems at thermodynamic equilibrium in excess water conditions. This becomes of immediate significance for applications in the colloidal environment, such as in the food, cosmetic and pharmaceutical arenas. One possible application regarded as very promising is that of controlled delivery of functional ingredients. Different crystallographic structures of the lipid mesophase give access to different diffusion coefficients and distinct diffusion modes. It becomes thus crucial to engineer the space group of the mesophase in a controlled way, and ideally, in a stimuli-responsive manner. In this article we review the state of the art on diffusion and molecular transport in lipid-based mesophases and we discuss recent contributions to the controlled delivery of molecules and colloids through these systems. In particular we focus on the different available strategies relying on either endogenous or exogenous stimuli to induce changes in the symmetry and transport properties of lipid-based mesophases and we discuss the impact and implications this may have on controlled drug delivery.

  18. Enhanced bioavailability of nerve growth factor with phytantriol lipid-based crystalline nanoparticles in cochlea

    PubMed Central

    Bu, Meng; Tang, Jingling; Wei, Yinghui; Sun, Yanhui; Wang, Xinyu; Wu, Linhua; Liu, Hongzhuo

    2015-01-01

    Purpose Supplementation of exogenous nerve growth factor (NGF) into the cochlea of deafened animals rescues spiral ganglion cells from degeneration. However, a safe and potent delivery of therapeutic proteins, such as NGF, to spiral ganglion cells remains one of the greatest challenges. This study presents the development of self-assembled cubic lipid-based crystalline nanoparticles to enhance inner ear bioavailability of bioactive NGF via a round window membrane route. Methods A novel nanocarrier-entrapped NGF was developed based on phytantriol by a liquid precursor dilution, with Pluronic® F127 and propylene glycol as the surfactant and solubilizer, respectively. Upon dilution of the liquid lipid precursors, monodispersed submicron-sized particles with a slight negative charge formed spontaneously. Results Biological activity of entrapped NGF was assessed using pheochromocytoma cells with NGF-loaded reservoirs to induce significant neuronal outgrowth, similar to that seen in free NGF-treated controls. Finally, a 3.28-fold increase in inner ear bioavailability was observed after administration of phytantriol lipid-based crystalline nanoparticles as compared to free drug, contributing to an enhanced drug permeability of the round window membrane. Conclusion Data presented here demonstrate the potential of lipid-based crystalline nanoparticles to improve the outcomes of patients bearing cochlear implants. PMID:26604754

  19. Cation binding by bacteriorhodopsin

    SciTech Connect

    Chang, C.H.; Chen, J.G.; Govindjee, R.; Ebrey, T.

    1984-01-01

    It was found that extensively washed purple membrane has about 1 calcium and 3-4 magnesium ions bound per bacteriorhodopsin molecule. When these divalent cations are removed by any of a variety of means, the pigment changes its color from purple to blue (lambda/sub max/ approx. = 600 nm). This blue pigment, which can be formed at near neutral pH, is probably very similar to blue species formed when the pH of a purple membrane sample is lowered to approx. = 2. When any of a wide variety of cations are added to a blue membrane preparation, the characteristic purple color of bacteriorhodopsin returns. Divalent and trivalent cations are much more efficient than monovalent cations in restoring the purple color and are effective at a ratio approaching one cation per pigment molecule. Besides shifting the absorption spectrum, removal of the divalent cations drastically alters the photochemical cycle of bacteriorhodopsin, including abolishing the unprotonated Schiff base (M-type) intermediate. Finally, lanthanum not only displaces the divalent cations normally bound to the purple membrane but also greatly reduces both the rate of decay of the M412 intermediate and proton uptake.

  20. Considerations in developing lipid-based nutrient supplements for prevention of undernutrition: experience from the International Lipid-Based Nutrient Supplements (iLiNS) Project.

    PubMed

    Arimond, Mary; Zeilani, Mamane; Jungjohann, Svenja; Brown, Kenneth H; Ashorn, Per; Allen, Lindsay H; Dewey, Kathryn G

    2015-12-01

    The International Lipid-Based Nutrient Supplements (iLiNS) Project began in 2009 with the goal of contributing to the evidence base regarding the potential of lipid-based nutrient supplements (LNS) to prevent undernutrition in vulnerable populations. The first project objective was the development of acceptable LNS products for infants 6-24 months and for pregnant and lactating women, for use in studies in three countries (Burkina Faso, Ghana and Malawi). This paper shares the rationale for a series of decisions in supplement formulation and design, including those related to ration size, ingredients, nutrient content, safety and quality, and packaging. Most iLiNS supplements have a daily ration size of 20 g and are intended for home fortification of local diets. For infants, this ration size is designed to avoid displacement of breast milk and to allow for dietary diversity including any locally available and accessible nutrient-dense foods. Selection of ingredients depends on acceptability of flavour, micronutrient, anti-nutrient and essential fatty acid contents. The nutrient content of LNS designed to prevent undernutrition reflects the likelihood that in many resource-poor settings, diets of the most nutritionally vulnerable individuals (infants, young children, and pregnant and lactating women) are likely to be deficient in multiple micronutrients and, possibly, in essential fatty acids. During ingredient procurement and LNS production, safety and quality control procedures are required to prevent contamination with toxins or pathogens and to ensure that the product remains stable and palatable over time. Packaging design decisions must include consideration of product protection, stability, convenience and portion control.

  1. Transduction of chemical into electrical energy.

    PubMed

    Nachmansohn, D

    1976-01-01

    The paper recalls some fundamental notions, developed by Otto Meyerhof, which were used in the analysis of the transduction of chemical into mechanical energy during muscular contraction. These notions formed the basis of the approach to the analysis of the transduction of chemical into electrical energy, i.e., the very principle underlying nerve and muscle excitability and bioelectricity. Instrumental for this purpose was the use, since 1937, of electric organs of fish, a tissue highly specialized for bioelectrogenesis.

  2. Transduction of chemical into electrical energy.

    PubMed Central

    Nachmansohn, D

    1976-01-01

    The paper recalls some fundamental notions, developed by Otto Meyerhof, which were used in the analysis of the transduction of chemical into mechanical energy during muscular contraction. These notions formed the basis of the approach to the analysis of the transduction of chemical into electrical energy, i.e., the very principle underlying nerve and muscle excitability and bioelectricity. Instrumental for this purpose was the use, since 1937, of electric organs of fish, a tissue highly specialized for bioelectrogenesis. Images PMID:1061129

  3. On the calculation of signal transduction ability of signaling transduction pathways in intracellular communication: systematic approach.

    PubMed

    Chen, Bor-Sen; Wu, Chia-Chou

    2012-06-15

    The major function of signal transduction pathways in cells is to sense signals from the environment and process the information through signaling molecules in order to regulate the activity of transcription factors. On the molecular level, the information transmitted by a small number of signal molecules is amplified in the internal signaling pathway through enzyme catalysis, molecular modification and via the activation or inhibition of interactions. However, the dynamic system behavior of a signaling pathway can be complex and, despite knowledge of the pathway components and interactions, it is still a challenge to interpret the pathways behavior. Therefore, a systematic method is proposed in this study to quantify the signal transduction ability. Based on the non-linear signal transduction system, signal transduction ability can be investigated by solving a Hamilton-Jacobi inequality (HJI)-constrained optimization problem. To avoid difficulties associated with solving a complex HJI-constrained optimization problem for signal transduction ability, the Takagi-Sugeno fuzzy model is introduced to approximate the non-linear signal transduction system by interpolating several local linear systems so that the HJI-constrained optimization problem can be replaced by a linear matrix inequality (LMI)-constrained optimization problem. The LMI problem can then be efficiently solved for measuring signal transduction ability. Finally, the signal transduction ability of two important signal transduction pathways was measured by the proposed method and confirmed using experimental data, which is useful for biotechnological and therapeutic application and drug design.

  4. Regulation of Cation Balance in Saccharomyces cerevisiae

    PubMed Central

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  5. The composition and role of cross links in mechanoelectrical transduction in vertebrate sensory hair cells.

    PubMed

    Hackney, Carole M; Furness, David N

    2013-04-15

    The key components of acousticolateralis systems (lateral line, hearing and balance) are sensory hair cells. At their apex, these cells have a bundle of specialized cellular protrusions, which are modified actin-containing microvilli, connected together by extracellular filaments called cross links. Stereociliary deflections open nonselective cation channels allowing ions from the extracellular environment into the cell, a process called mechanoelectrical transduction. This produces a receptor potential that causes the release of the excitatory neurotransmitter glutamate onto the terminals of the sensory nerve fibres, which connect to the cell base, causing nerve signals to be sent to the brain. Identification of the cellular mechanisms underlying mechanoelectrical transduction and of some of the proteins involved has been assisted by research into the genetics of deafness, molecular biology and mechanical measurements of function. It is thought that one type of cross link, the tip link, is composed of cadherin 23 and protocadherin 15, and gates the transduction channel when the bundle is deflected. Another type of link, called lateral (or horizontal) links, maintains optimal bundle cohesion and stiffness for transduction. This Commentary summarizes the information currently available about the structure, function and composition of the links and how they might be relevant to human hearing impairment.

  6. Folate-targeted docetaxel-lipid-based-nanosuspensions for active-targeted cancer therapy

    PubMed Central

    Wang, Lili; Li, Min; Zhang, Na

    2012-01-01

    The purpose of this study was to develop two novel drug delivery systems based on biodegradable docetaxel-lipid-based-nanosuspensions. The first one was poly(ethylene glycol)- modified docetaxel-lipid-based-nanosuspensions (pLNS). It was developed to increase the cycle time of the drug within the body and enhance the accumulation of the drug at the tumor site. The second one was targeted docetaxel-lipid-based-nanosuspensions (tLNS) using folate as the target ligand. The tLNS could target the tumor cells that overexpressed folate receptor (FR). The morphology, particle size, and zeta potential of pLNS and tLNS were characterized, respectively. The in vitro cytotoxicity evaluation of Duopafei®, pLNS, and tLNS were performed in human hepatocellular liver carcinoma HepG2 (FR−) and B16 (FR+) cells, respectively. The in vivo antitumor efficacy and pharmacokinetics, as well as the drug tissue distribution, were evaluated in Kunming mice bearing B16 cells. The particle size of pLNS was 204.2 ± 6.18 nm and tLNS had a mean particle size of 220.6 ± 9.54 nm. Cytotoxicity of tLNS against B16 (FR+) cell lines was superior to pLNS (P < 0.05), while there was no significant difference in the half maximum inhibitory concentration values for HepG2 (FR−) cells between pLNS and tLNS. The results of the in vivo antitumor efficacy evaluation showed that tLNS exhibited higher antitumor efficacy by reducing tumor volume (P < 0.01) compared with Duopafei and pLNS, respectively. The results of the in vivo biodistribution study indicate that the better antitumor efficacy of tLNS was attributed to the increased accumulation of the drug in the tumor. PMID:22802688

  7. The Cornucopia of Intestinal Chemosensory Transduction

    PubMed Central

    Bertrand, Paul P.

    2009-01-01

    The chemosensory transduction mechanisms that the gastrointestinal (GI) tract uses to detect chemical and nutrient stimuli are poorly understood. The GI tract is presented with a wide variety of stimuli including potentially harmful chemicals or toxins as well as ‘normal’ stimuli including nutrients, bacteria and mechanical forces. Sensory transduction is at its simplest the conversion of these stimuli into a neural code in afferent nerves. Much of the information encoded is used by the enteric nervous system to generate local reflexes while complementary information is sent to the central nervous system via afferents or by release of hormones to affect behaviour. This review focuses on the chemosensory transduction mechanisms present in the GI tract. It examines the expression and localisation of the machinery for chemosensory transduction. It summarises the types of cells which might be involved in detecting stimuli and releasing neuroactive transmitters. Finally, it highlights the idea that chemosensory transduction mechanisms in the GI tract utilise many overlapping and complementary mechanisms for detecting and transducing stimuli into reflex action. PMID:20582275

  8. Novel immunotherapeutic approaches to skin cancer treatments using protein transduction technology.

    PubMed

    Shibagaki, Naotaka; Okamoto, Takashi; Mitsui, Hiroshi; Inozume, Takashi; Kanzaki, Mirei; Shimada, Shinji

    2011-03-01

    Protein-transduction domains (PTDs) are short stretches of cationic amino acids that enable peptides, proteins, oligonucleotides, and other reagents to efficiently enter multiple cell types. Therefore, PTDs offer unique therapeutic opportunities for the treatment of many diseases. Previous studies examined the in vivo distribution of PTD-containing fusion proteins following administration via different routes, including portal vein, intravenous, intraperitoneal, and oral administration. Skin may be an appropriate target organ for this new molecular-carrier system; however, there are no studies on the in vivo kinetics and biological effects of PTD-containing proteins following intradermal application. Among the PTDs, poly-arginine peptides, especially nona-arginine (R9), is transported most efficiently with minimal cytotoxicity. Here, we review protein transduction technology from a different angle, as a novel tool in immunotherapeutic approaches to the skin cancers that depend on the biological characteristics of poly-arginine. This could be used in place of gene therapy for skin cancer patients.

  9. Coating with spermine-pullulan polymer enhances adenoviral transduction of mesenchymal stem cells

    PubMed Central

    Wan, Li; Yao, Xinglei; Faiola, Francesco; Liu, Bojun; Zhang, Tianyuan; Tabata, Yasuhiko; Mizuguchi, Hiroyuki; Nakagawa, Shinsaku; Gao, Jian-Qing; Zhao, Robert Chunhua

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with multilineage potential, which makes them attractive tools for regenerative medicine applications. Efficient gene transfer into MSCs is essential not only for basic research in developmental biology but also for therapeutic applications involving gene-modification in regenerative medicine. Adenovirus vectors (Advs) can efficiently and transiently introduce an exogenous gene into many cell types via their primary receptors, the coxsackievirus and adenovirus receptors, but not into MSCs, which are deficient in coxsackievirus and adenovirus receptors expression. To overcome this problem, we developed an Adv coated with a spermine-pullulan (SP) cationic polymer and investigated its physicochemical properties and internalization mechanisms. We demonstrated that the SP coating could enhance adenoviral transduction of MSCs without detectable cytotoxicity or effects on differentiation. Our results argue in favor of the potentiality of the SP-coated Adv as a prototype vector for efficient and safe transduction of MSCs. PMID:28008251

  10. Comparison of histological, genetic, metabolomics, and lipid-based methods for sex determination in marine mussels.

    PubMed

    Hines, Adam; Yeung, Wai Ho; Craft, John; Brown, Margaret; Kennedy, Jill; Bignell, John; Stentiford, Grant D; Viant, Mark R

    2007-10-15

    Omics technologies are increasingly being used to monitor organismal responses to environmental stressors. Previous studies have shown that species identification, an appreciation of life history traits, and organism phenotype (e.g., gender) are essential for the accurate interpretation of omics data from field samples. As marine mussels are increasingly being used in ecotoxicogenomics and monitoring, a technique to determine mussel gender throughout their annual reproductive cycle is urgently needed. This study examines four methods for sex determination in the two mussel species found in the United Kingdom, Mytilus edulis and Mytilus galloprovincialis, and their hybrid. Each of these methods-histology, a lipid-based assay, a new reverse transcriptase polymerase chain reaction (RT-PCR) assay, and nuclear magnetic resonance (NMR)-based metabolomics-initially was evaluated using sexually mature ("ripe") mussels whose gender was clearly distinguishable using histology. The methods subsequently were tested on spawned ("spent") mussels. For ripe animals, all techniques yielded high classification accuracies: histology, 100%; RT-PCR, 94.6%; lipid analysis, 90.6%; and metabolomics, 89.5%. The gender of spent animals, however, could not be determined by histology (0%) or lipid analysis (55.6%), but RT-PCR (100%) and metabolomics (88.9%) both proved to be successful. In addition, the RT-PCR, metabolomics, and lipid-based methods identified animals of mixed sex. Our findings highlight the application of a novel RT-PCR method as a robust technique for gender determination of ripe and spent mussels.

  11. Development of new lipid-based paclitaxel nanoparticles using sequential simplex optimization.

    PubMed

    Dong, Xiaowei; Mattingly, Cynthia A; Tseng, Michael; Cho, Moo; Adams, Val R; Mumper, Russell J

    2009-05-01

    The objective of these studies was to develop Cremophor-free lipid-based paclitaxel (PX) nanoparticle formulations prepared from warm microemulsion precursors. To identify and optimize new nanoparticles, experimental design was performed combining Taguchi array and sequential simplex optimization. The combination of Taguchi array and sequential simplex optimization efficiently directed the design of paclitaxel nanoparticles. Two optimized paclitaxel nanoparticles (NPs) were obtained: G78 NPs composed of glyceryl tridodecanoate (GT) and polyoxyethylene 20-stearyl ether (Brij 78), and BTM NPs composed of Miglyol 812, Brij 78, and d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Both nanoparticles successfully entrapped paclitaxel at a final concentration of 150 microg/ml (over 6% drug loading) with particle sizes less than 200 nm and over 85% of entrapment efficiency. These novel paclitaxel nanoparticles were stable at 4 degrees C over five months and in PBS at 37 degrees C over 102 h as measured by physical stability. Release of paclitaxel was slow and sustained without initial burst release. Cytotoxicity studies in MDA-MB-231 cancer cells showed that both nanoparticles have similar anticancer activities compared to Taxol. Interestingly, PX BTM nanocapsules could be lyophilized without cryoprotectants. The lyophilized powder comprised only of PX BTM NPs in water could be rapidly rehydrated with a complete retention of original physicochemical properties, in vitro release properties, and cytotoxicity profile. Sequential Simplex Optimization has been utilized to identify promising new lipid-based paclitaxel nanoparticles having useful attributes.

  12. Clinical studies with oral lipid based formulations of poorly soluble compounds

    PubMed Central

    Fatouros, Dimitrios G; Karpf, Ditte M; Nielsen, Flemming S; Mullertz, Anette

    2007-01-01

    This work is an attempt to give an overview of the clinical data available on lipid based formulations. Lipid and surfactant based formulations are recognized as a feasible approach to improve bioavailability of poorly soluble compounds. However not many clinical studies have been published so far. Several drug products intended for oral administration have been marketed utilizing lipid and surfactant based formulations. Sandimmune® and Sandimmune Neoral® (cyclosporin A, Novartis), Norvir® (ritonavir), and Fortovase® (saquinavir) have been formulated in self-emulsifying drug delivery systems (SEDDS). This review summarizes published pharmacokinetic studies of orally administered lipid based formulations of poorly aqueous soluble drugs in human subjects. Special attention has been paid to the physicochemical characteristics of the formulations, when available and the impact of these properties on the in vivo performance of the formulation. Equally important is the effect of concurrent food intake on the bioavailability of poorly soluble compounds. The effect of food on the bioavailability of compounds formulated in lipid and surfactant based formulations is also reviewed. PMID:18472981

  13. Lipid-based siRNA Delivery Systems: Challenges, Promises and Solutions Along the Long Journey.

    PubMed

    Sarisozen, Can; Salzano, Giuseppina; Torchilin, Vladimir P

    RNA interference (RNAi) is an evolutionary conserved highly specific gene-silencing mechanism initiated by small interfering RNA (siRNA) molecules. Fast-paced preclinical and clinical studies helped the siRNA technology become an efficient tool for undruggable targets in different diseases including genetic diseases, viral diseases and cancer. Despite great feature of siRNAs that can down-regulate any protein in the cells, the full potential and the success of the preclinical studies could not be translated into largely successful clinical outcomes. It has become clear that the possibility of overcoming the pitfalls for in vivo siRNA therapy fully depends on delivery systems. In this review, we start with the challenges and barriers for in vivo siRNA delivery. Then we briefly discuss the recent developments in siRNA modification technology. We specifically focused on siRNA lipidation and delivery approaches with special emphasis on the lipid based hybrid systems. Here we summarize the journey of lipid-based micelle-like nanoparticle systems that combine longevity in blood, effective cellular uptake and endosomal escape for successful siRNA delivery and discuss the multifunctional stimuli-sensitive systems based on lipids as the next generation smart systems.

  14. Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application.

    PubMed

    Jain, Shashank; Patel, Niketkumar; Shah, Mansi K; Khatri, Pinak; Vora, Namrata

    2017-02-01

    In the recent decade, skin delivery (topical and transdermal) has gained an unprecedented popularity, especially due to increased incidences of chronic skin diseases, demand for targeted and patient compliant delivery, and interest in life cycle management strategies among pharmaceutical companies. Literature review of recent publications indicates that among various skin delivery systems, lipid-based delivery systems (vesicular carriers and lipid particulate systems) have been the most successful. Vesicular carriers consist of liposomes, ultradeformable liposomes, and ethosomes, while lipid particulate systems consist of lipospheres, solid lipid nanoparticles, and nanostructured lipid carriers. These systems can increase the skin drug transport by improving drug solubilization in the formulation, drug partitioning into the skin, and fluidizing skin lipids. Considering that lipid-based delivery systems are regarded as safe and efficient, they are proving to be an attractive delivery strategy for the pharmaceutical as well as cosmeceutical drug substances. However, development of these delivery systems requires comprehensive understanding of physicochemical characteristics of drug and delivery carriers, formulation and process variables, mechanism of skin delivery, recent technological advancements, specific limitations, and regulatory considerations. Therefore, this review article encompasses recent research advances addressing the aforementioned issues.

  15. Purinergic mechanosensory transduction and visceral pain.

    PubMed

    Burnstock, Geoffrey

    2009-11-30

    In this review, evidence is presented to support the hypothesis that mechanosensory transduction occurs in tubes and sacs and can initiate visceral pain. Experimental evidence for this mechanism in urinary bladder, ureter, gut, lung, uterus, tooth-pulp and tongue is reviewed. Potential therapeutic strategies are considered for the treatment of visceral pain in such conditions as renal colic, interstitial cystitis and inflammatory bowel disease by agents that interfere with mechanosensory transduction in the organs considered, including P2X3 and P2X2/3 receptor antagonists that are orally bioavailable and stable in vivo and agents that inhibit or enhance ATP release and breakdown.

  16. Purinergic mechanosensory transduction and visceral pain

    PubMed Central

    2009-01-01

    In this review, evidence is presented to support the hypothesis that mechanosensory transduction occurs in tubes and sacs and can initiate visceral pain. Experimental evidence for this mechanism in urinary bladder, ureter, gut, lung, uterus, tooth-pulp and tongue is reviewed. Potential therapeutic strategies are considered for the treatment of visceral pain in such conditions as renal colic, interstitial cystitis and inflammatory bowel disease by agents that interfere with mechanosensory transduction in the organs considered, including P2X3 and P2X2/3 receptor antagonists that are orally bioavailable and stable in vivo and agents that inhibit or enhance ATP release and breakdown. PMID:19948030

  17. Inhibitors targeting two-component signal transduction.

    PubMed

    Watanabe, Takafumi; Okada, Ario; Gotoh, Yasuhiro; Utsumi, Ryutaro

    2008-01-01

    A two-component signal transduction system (TCS) is an attractive target for antibacterial agents. In this chapter, we review the TCS inhibitors developed during the past decade and introduce novel drug discovery systems to isolate the inhibitors of the YycG/YycF system, an essential TCS for bacterial growth, in an effort to develop a new class of antibacterial agents.

  18. Lipid-based colloidal carriers for peptide and protein delivery – liposomes versus lipid nanoparticles

    PubMed Central

    Martins, Susana; Sarmento, Bruno; Ferreira, Domingos C; Souto, Eliana B

    2007-01-01

    This paper highlights the importance of lipid-based colloidal carriers and their pharmaceutical implications in the delivery of peptides and proteins for oral and parenteral administration. There are several examples of biomacromolecules used nowadays in the therapeutics, which are promising candidates to be delivered by means of liposomes and lipid nanoparticles, such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). Several production procedures can be applied to achieve a high association efficiency between the bioactives and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. Generally, this can lead to improved bioavailability, or in case of oral administration a more consistent temporal profile of absorption from the gastrointestinal tract. Advantages and drawbacks of such colloidal carriers are also pointed out. This article describes strategies used for formulation of peptides and proteins, methods used for assessment of association efficiency and practical considerations regarding the toxicological concerns. PMID:18203427

  19. Manufacture of concentrated, lipid-based oxygen microbubble emulsions by high shear homogenization and serial concentration.

    PubMed

    Thomson, Lindsay M; Polizzotti, Brian D; McGowan, Frances X; Kheir, John N

    2014-05-26

    Gas-filled microbubbles have been developed as ultrasound contrast and drug delivery agents. Microbubbles can be produced by processing surfactants using sonication, mechanical agitation, microfluidic devices, or homogenization. Recently, lipid-based oxygen microbubbles (LOMs) have been designed to deliver oxygen intravenously during medical emergencies, reversing life-threatening hypoxemia, and preventing subsequent organ injury, cardiac arrest, and death. We present methods for scaled-up production of highly oxygenated microbubbles using a closed-loop high-shear homogenizer. The process can produce 2 L of concentrated LOMs (90% by volume) in 90 min. Resulting bubbles have a mean diameter of ~2 μm, and a rheologic profile consistent with that of blood when diluted to 60 volume %. This technique produces LOMs in high capacity and with high oxygen purity, suggesting that this technique may be useful for translational research labs.

  20. Growth Mechanism of Lipid-Based Nanodiscs -- a Model Membrane for Studying Kinetics of Particle Coalescence

    NASA Astrophysics Data System (ADS)

    Nieh, Mu-Ping; Dizon, Anthony; Li, Ming; Hu, Andrew; Fan, Tai-Hsi

    2012-02-01

    Lipid-based nanodiscs composed of long- and short- chain lipids [namely, dimyristoyl phosphatidylcholine (DMPC), dimyristoyl phosphatidylglycerol (DMPG) and dihexanoyl phosphatidylcholine (DHPC)] constantly form at high lipid concentrations and at low temperatures (i.e., below the melting transition temperature of DMPC, TM). The initial size of these nanodiscs (at high total lipid concentration, CL> 20 wt.%) is relatively uniform and of similar dimension (according to dynamic light scattering and small angle neutron scattering experiments), seemingly independent of thermal history. Upon dilution, the nanodiscs slowly coalesce and grow in size with time irreversibly. Our preliminary result shows that the growth rate strongly depends on several parameters such as charge density, CL and temperature. We have also found that the nanodisc coalescence is a reaction limit instead of diffusion limit process through a time-resolved study.

  1. LIPID ABNORMALITIES AND LIPID-BASED REPAIR STRATEGIES IN ATOPIC DERMATITIS

    PubMed Central

    Elias, Peter M.

    2013-01-01

    Prior studies have revealed the key roles played by Th1/Th2 cell dysregulation, IgE production, mast cell hyperactivity, and dendritic cell signaling in the evolution of the chronic, pruritic, inflammatory dermatosis that characterizes atopic dermatitis (AD). We review here increasing evidence that the inflammation in AD results primarily from inherited abnormalities in epidermal structural and enzymatic proteins that impact permeability barrier function. We also will show that the barrier defect can be attributed to a paracellular abnormality due to a variety of abnormalities in lipid composition, transport and extracellular organization. Accordingly, we also review the therapeutic implications of this emerging pathogenic paradigm, including several current and potentially novel, lipid-based approaches to corrective therapy. PMID:24128970

  2. Novel aliphatic lipid-based diesters for use in lubricant formulations: Structure property investigations

    NASA Astrophysics Data System (ADS)

    Raghunanan, Latchmi Cindy

    Structure-property relationships are increasingly valued for the identification of specifically engineered materials with properties optimized for targeted application(s). In this work, linear and branched diesters for use in lubricant formulations are prepared from lipid-based oleochemicals and their structure-property relationships reported. It is shown that the branched diesters possess exceptional physical property profiles, including suppression of crystallization, and are superior alternatives for use in lubricant formulations. For the linear aliphatic diesters, both high and low temperature properties were predictable functions of total chain length, and both were differently influenced by the fatty acid versus diol chain length. Symmetry did not influence either, although thermal stability decreased and thermal transition temperatures increased with increasing saturation. All of the linear diesters demonstrated Newtonian flow behaviour. Viscosity was also predictable as a function of total chain length; any microstructural features due to structural effects were superseded by mass effects.

  3. Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles.

    PubMed

    Martins, Susana; Sarmento, Bruno; Ferreira, Domingos C; Souto, Eliana B

    2007-01-01

    This paper highlights the importance of lipid-based colloidal carriers and their pharmaceutical implications in the delivery of peptides and proteins for oral and parenteral administration. There are several examples of biomacromolecules used nowadays in the therapeutics, which are promising candidates to be delivered by means of liposomes and lipid nanoparticles, such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). Several production procedures can be applied to achieve a high association efficiency between the bioactives and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. Generally, this can lead to improved bioavailability, or in case of oral administration a more consistent temporal profile of absorption from the gastrointestinal tract. Advantages and drawbacks of such colloidal carriers are also pointed out. This article describes strategies used for formulation of peptides and proteins, methods used for assessment of association efficiency and practical considerations regarding the toxicological concerns.

  4. A lipid-based nano-regulator for cancer immunotherapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qian, Yuan; Qiao, Sha; Zhang, Zhihong

    2017-02-01

    In the application of nanotechnology in cancer immunotherapy, antigen presenting cells (APCs, dendritic cells and macrophages) are preferable target due to their endocytic capacity and suppressed phenotype. Recently, we developed a lipid-based core-shell nanocarrier, which is stabilized by changeable fusion peptides and possesses a sub-30 diameter. With the different peptides, the nanoparticles (NPs) could either target to dendritic cells (DCs) in lymph nodes (LNs) or tumor associated macrophages (TAMs) in tumor environment. After subcutaneous injection, the NPs could targeted deliver the encapsulated antigen peptides (APs) and adjuvants (CpG-ODN) to dendritic cells in LNs, and lead to the antigen presenting and activation of cytotoxic T lymphocytes against tumor. In other case, after systemic administration, the immune regulatory molecules were carried by NPs and targeting delivered to specific immunocytes in tumor microenvironment resulting in the immunosuppressive state broken and tumor growth inhibition.

  5. Advanced Strategies in Immune Modulation of Cancer Using Lipid-Based Nanoparticles

    PubMed Central

    Mizrahy, Shoshy; Hazan-Halevy, Inbal; Landesman-Milo, Dalit; Ng, Brandon D.; Peer, Dan

    2017-01-01

    Immunotherapy has a great potential in advancing cancer treatment, especially in light of recent discoveries and therapeutic interventions that lead to complete response in specific subgroups of melanoma patients. By using the body’s own immune system, it is possible not only to specifically target and eliminate cancer cells while leaving healthy cells unharmed but also to elicit long-term protective response. Despite the promise, current immunotherapy is limited and fails in addressing all tumor types. This is probably due to the fact that a single treatment strategy is not sufficient in overcoming the complex antitumor immunity. The use of nanoparticle-based system for immunotherapy is a promising strategy that can simultaneously target multiple pathways with the same kinetics to enhance antitumor response. Here, we will highlight the recent advances in the field of cancer immunotherapy that utilize lipid-based nanoparticles as delivery vehicles and address the ongoing challenges and potential opportunities. PMID:28220118

  6. Incorporation of lipolysis in monolayer permeability studies of lipid-based oral drug delivery systems.

    PubMed

    Sadhukha, Tanmoy; Layek, Buddhadev; Prabha, Swayam

    2017-05-01

    Lipid-based drug delivery systems, a well-tolerated class of formulations, have been evaluated extensively to enhance the bioavailability of poorly soluble drugs. However, it has been difficult to predict the in vivo performance of lipid dosage forms based on conventional in vitro techniques such as cell monolayer permeability studies because of the complexity of the gastrointestinal processing of lipid formulations. In the current study, we explored the feasibility of coupling Caco-2 and Madin-Darby canine kidney monolayer permeability studies with lipolysis, a promising in vitro technique to evaluate lipid systems. A self-emulsifying lipid delivery system was formulated using a blend of oil (castor oil), surfactant (Labrasol® or PL497), and co-surfactant (lecithin). Formulations demonstrating high drug solubility and rapid self-emulsification were selected to study the effect of lipolysis on in vitro cell permeability. Lipolysis of the formulations was carried out using pancreatin as the digestive enzyme. All the digested formulations compromised monolayer integrity as indicated by lowered trans-epithelial electrical resistance (TEER) and enhanced Lucifer yellow (LY) permeability. Further, the changes in TEER value and LY permeability were attributable to the digestion products of the formulation rather than the individual lipid excipients, drug, digestion enzyme, or the digestion buffer. The digested formulations were fractionated into pellet, oily phase, and aqueous phase, and the effect of each of these on cell viability was examined. Interestingly, the aqueous phase, which is considered important for in vivo drug absorption, was responsible for cytotoxicity. Because lipid digestion products lead to disruption of cell monolayer, it may not be appropriate to combine lipolysis with cell monolayer permeability studies. Additional in vivo studies are needed to determine any potential side effects of the lipolysis products on the intestinal permeability barrier

  7. Impact of gastrointestinal lipolysis on oral lipid-based formulations and bioavailability of lipophilic drugs.

    PubMed

    Carrière, Frédéric

    2016-06-01

    Oil-in-water emulsions are common vehicles for lipids as nutrients and for the delivery of poorly water-soluble drugs. Enhancing oral bioavailability of these drugs using lipid-based formulations (LBF) or self-emulsifying drug delivery systems is one of the current challenges in pharmaceutical industry. Many of the compounds found in LBF (acylglycerols, surfactants with esterified fatty acids, …) are however potential substrates for digestive enzymes. Their digestion (or lipolysis) in the gastrointestinal (GI) tract is critical for drug dissolution and absorption: it can be beneficial (drug solubilization/dispersion) or deleterous (drug precipitation) depending on the drug-LBF association. A better understanding of the fate of LBF in the GI tract is therefore required to engineer efficient lipid-based drug delivery systems. In vitro models for testing simultaneously LBF digestion and drug dispersion are in development to predict drug solubilization and bioavailability, select the best drug-LBF association and obtain better in vitro-in vivo correlations. So far, research in this area has focused on LBF lipolysis under intestinal conditions because the small intestine is the main target for drug delivery and absorption, as well as the main site of digestion by pancreatic enzymes. Lipolysis however starts within the stomach through the action of gastric lipase, the first enzyme involved in fat digestion in humans. In vitro digestion experiments show that most LBFs are submitted to gastric lipolysis, and therefore, both intragastric and intestinal digestions are critical for the fate of LBF and drug solubility. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. Super-cooled and amorphous lipid-based colloidal dispersions for the delivery of phytosterols.

    PubMed

    Ribeiro, H S; Gupta, R; Smith, K W; van Malssen, K F; Popp, A K; Velikov, K P

    2016-07-06

    Super-cooled and amorphous lipid-based colloids are highly desirable delivery systems because of their ability to encapsulate compounds in a soluble or in a non-crystalline state. In this study, we demonstrate the preparation and characterization of super-cooled and amorphous lipid-based nanoscale colloidal dispersions containing high concentrations of phytosterols (PSs). PSs are highly hydrophobic natural bioactive compounds that are known to significantly reduce blood cholesterol levels in humans, but are insoluble in water and are poorly soluble in common lipids such as triacylglycerols (TAGs). Using the ultrahigh pressure homogenization of pre-heated dispersions, followed by temperature quenching, colloidal dispersions with varying concentrations of PSs in the lipid phase are prepared. Long and medium chain TAGs in combination with a non-ionic surfactant are used. The particle size, morphology and stability are analysed by dynamic and static light scattering, electron microscopy, and X-ray diffraction. Rapid temperature quenching enables the formation of stable colloidal dispersions of 10 wt% PSs, more than five times the equilibrium solubility at room temperature. Super-cooled emulsions are formed using liquid TAG, whereas amorphous particles are formed in the case of solid TAG. In both cases, the complete suppression of the crystallization of both PSs and lipids is observed due to the nanoscale confinement. The colloidal dispersions are stable for at least four months. The insights of this work will help understand the colloid formation and particle morphology control in the development of delivery systems for hydrophobic bio-actives such as drugs, cosmeceuticals, nutraceuticals, nutritional and agricultural nanoscale formulations.

  9. Mechanical transduction by ion channels: A cautionary tale

    PubMed Central

    Sachs, Frederick

    2016-01-01

    Mechanical transduction by ion channels occurs in all cells. The physiological functions of these channels have just begun to be elaborated, but if we focus on the upper animal kingdom, these channels serve the common sensory services such as hearing and touch, provide the central nervous system with information on the force and position of muscles and joints, and they provide the autonomic system with information about the filling of hollow organs such as blood vessels. However, all cells of the body have mechanosensitive channels (MSCs), including red cells. Most of these channels are cation selective and are activated by bilayer tension. There are also K+ selective MSCs found commonly in neurons where they may be responsible for both general anesthesia and knockout punches in the boxing ring by hyperpolarizing neurons to reduce excitability. The cationic MSCs are typically inactive under normal mechanical stress, but open under pathologic stress. The channels are normally inactive because they are shielded from stress by the cytoskeleton. The cationic MSCs are specifically blocked by the externally applied peptide GsMtx4 (aka, AT-300). This is the first drug of its class and provides a new approach to many pathologies since it is nontoxic, non-immunogenic, stable in a biological environment and has a long pharmacokinetic lifetime. Pathologies involving excessive stress are common. They produce cardiac arrhythmias, contraction in stretched dystrophic muscle, xerocytotic and sickled red cells, etc. The channels seem to function primarily as “fire alarms”, providing feedback to the cytoskeleton that a region of the bilayer is under excessive tension and needs reinforcing. The eukaryotic forms of MSCs have only been cloned in recent years and few people have experience working with them. “Newbies” need to become aware of the technology, potential artifacts, and the fundamentals of mechanics. The most difficult problem in studying MSCs is that the actual

  10. Diaryldichalcogenide radical cations.

    PubMed

    Mallow, Ole; Khanfar, Monther A; Malischewski, Moritz; Finke, Pamela; Hesse, Malte; Lork, Enno; Augenstein, Timo; Breher, Frank; Harmer, Jeffrey R; Vasilieva, Nadezhda V; Zibarev, Andrey; Bogomyakov, Artem S; Seppelt, Konrad; Beckmann, Jens

    2015-01-01

    One-electron oxidation of two series of diaryldichalcogenides (C6F5E)2 (13a-c) and (2,6-Mes2C6H3E)2 (16a-c) was studied (E = S, Se, Te). The reaction of 13a and 13b with AsF5 and SbF5 gave rise to the formation of thermally unstable radical cations [(C6F5S)2]˙(+) (14a) and [(C6F5Se)2]˙(+) (14b) that were isolated as [Sb2F11](-) and [As2F11](-) salts, respectively. The reaction of 13c with AsF5 afforded only the product of a Te-C bond cleavage, namely the previously known dication [Te4](2+) that was isolated as [AsF6](-) salt. The reaction of (2,6-Mes2C6H3E)2 (16a-c) with [NO][SbF6] provided the corresponding radical cations [(2,6-Mes2C6H3E)2]˙(+) (17a-c; E = S, Se, Te) in the form of thermally stable [SbF6](-) salts in nearly quantitative yields. The electronic and structural properties of these radical cations were probed by X-ray diffraction analysis, EPR spectroscopy, and density functional theory calculations and other methods.

  11. [Protein transduction, from technology to physiology].

    PubMed

    Prochiantz, Alain

    2006-01-01

    In the early 90s, we found that the DNA-binding domain (homeodomain) of Antennapedia, a homeoprotein transcription factor, was internalized by live cells gaining access to their cytoplasm and nuclei. It was soon revealed that internalization is due to the third helix of the homeodomain, composed of sixteen amino acids. This short peptide baptized Penetratin is the first of a large series of transduction peptides widely used for the internalization of all sorts of cargoes in vitro and in vivo. Although transduction peptides are being developed with the latter practical goal, the most intriguing outcome of our initial observation is that full-length homeoproteins are transferred between cells and have non-cell autonomous transcriptional and translational activities. This new signaling mechanism requires that homeoproteins be internalized and secreted. Secretion is Golgi independent and requires a small sequence also present in the homeodomain but distinct from the Penetratin sequence. The consequences of this novel signaling mechanism are briefly discussed.

  12. Advances in Targeting Signal Transduction Pathways

    PubMed Central

    McCubrey, James A.; Steelman, Linda S.; Chappell, William H.; Sun, Lin; Davis, Nicole M.; Abrams, Stephen L.; Franklin, Richard A.; Cocco, Lucio; Evangelisti, Camilla; Chiarini, Francesca; Martelli, Alberto M.; Libra, Massimo; Candido, Saverio; Ligresti, Giovanni; Malaponte, Grazia; Mazzarino, Maria C.; Fagone, Paolo; Donia, Marco; Nicoletti, Ferdinando; Polesel, Jerry; Talamini, Renato; Bäsecke, Jörg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Milella, Michele; Tafuri, Agostino; Dulińska-Litewka, Joanna; Laidler, Piotr; D'Assoro, Antonio B.; Drobot, Lyudmyla; Umezawa, Kazuo; Montalto, Giuseppe; Cervello, Melchiorre; Demidenko, Zoya N.

    2012-01-01

    Over the past few years, significant advances have occurred in both our understanding of the complexity of signal transduction pathways as well as the isolation of specific inhibitors which target key components in those pathways. Furthermore critical information is being accrued regarding how genetic mutations can affect the sensitivity of various types of patients to targeted therapy. Finally, genetic mechanisms responsible for the development of resistance after targeted therapy are being discovered which may allow the creation of alternative therapies to overcome resistance. This review will discuss some of the highlights over the past few years on the roles of key signaling pathways in various diseases, the targeting of signal transduction pathways and the genetic mechanisms governing sensitivity and resistance to targeted therapies. PMID:23455493

  13. The ethylene signal transduction pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.

  14. The ethylene signal transduction pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.

  15. Targeted delivery of in situ PCR-amplified Sleeping Beauty transposon genes to cancer cells with lipid-based nanoparticle-like protocells.

    PubMed

    Ma, Kun; Fu, Duo; Yu, Dongli; Cui, Changhao; Wang, Li; Guo, Zhaoming; Mao, Chuanbin

    2017-03-01

    A Sleeping Beauty (SB) transposon system is made of a transposon plasmid (containing gene encoding a desired functional or therapeutic protein) and a transposase plasmid (encoding an enzyme capable of cutting and pasting the gene into the host cell genome). It is a kind of natural, nonviral gene delivery vehicle, which can achieve efficient genomic insertion, providing long-term transgenic expression. However, before the SB transposon system could play a role in promoting gene expression, it has to be delivered efficiently first across cell membrane and then into cell nuclei. Towards this end, we used a nanoparticle-like lipid-based protocell, a closed bilayer of the neutral lipids with the DNA encapsulated inside, to deliver the SB transposon system to cancer cells. The SB transposon system was amplified in situ inside the protocells by a polymerase chain reaction (PCR) process, realizing more efficient loading and delivery of the target gene. To reach a high transfection efficiency, we introduced two targeting moieties, folic acid (FA) as a cancer cell-targeting motif and Dexamethasone (DEX) as a nuclear localization signaling molecule, into the protocells. As a result, the FA enabled the modified targeting protocells to deliver the DNA into the cancer cells with an increased efficiency and the DEX promoted the DNA to translocate to cell nuclei, eventually leading to the increased chromosome insertion efficiency of the SB transposon. In vivo study strongly suggested that the transfection efficiency of FA-modified protocells in the tumor tissue was much higher than that in other tissues, which was consistent with the in vitro results. Our studies implied that with the targeting ligand modification, the protocells could be utilized as an efficient targeting gene carrier. Since the protocells were made of neutral lipids without cationic charges, the cytotoxicity of protocells was significantly lower than that of traditional cationic gene carriers such as cationic

  16. Signal transduction in T lymphocytes in microgravity

    NASA Technical Reports Server (NTRS)

    Cogoli, A.

    1997-01-01

    More than 120 experiments conducted in space in the last 15 years have shown that dramatic changes are occurring in several types of single cells during their exposure to microgravity. One focus of today's research on cells in space is on signal transduction, especially those steps involving the cytoskeleton and cell-cell interactions. Signal transduction is often altered in microgravity as well as in hypergravity. This leads to changes in cell proliferation, genetic expression and differentiation. Interesting examples are leukocytes, HeLa cells, epidermoid cells and osteoblastic cells. Signalling pathways were studied in T lymphocytes in microgravity by several investigators after the discovery that mitogenic activation in vitro is virtually nil at 0g. T cells are a good model to study signal transduction because three extracellular signals (mitogen, IL-1 and IL-2) are required for full activation, and two classical pathways (via proteins G and PKC) are activated within the cell. In addition, low molecular weight GTP-binding proteins (Ras and Rap) are interacting with the cytoskeleton. The data at 0g support the notion that the expression of IL-2 receptor is inhibited at 0g, while mitogen binding and the transmission of IL-1 by accessory cells occur normally. In addition, alterations of the cytoskeleton suggest that the interaction with Rap proteins is disturbed. Data obtained with phorbol esters indicate that the function of PKC is changed in microgravity. Similar conclusions are drawn from the results with epidermoid cells A431.

  17. Mechanotransduction and auditory transduction in Drosophila.

    PubMed

    Kernan, Maurice J

    2007-08-01

    Insects are utterly reliant on sensory mechanotransduction, the process of converting physical stimuli into neuronal receptor potentials. The senses of proprioception, touch, and hearing are involved in almost every aspect of an adult insect's complex behavioral repertoire and are mediated by a diverse array of specialized sensilla and sensory neurons. The physiology and morphology of several of these have been described in detail; genetic approaches in Drosophila, combining behavioral screens and sensory electrophysiology with forward and reverse genetic techniques, have now revealed specific proteins involved in their differentiation and operation. These include three different TRP superfamily ion channels that are required for transduction in tactile bristles, chordotonal stretch receptors, and polymodal nociceptors. Transduction also depends on the normal differentiation and mechanical integrity of the modified cilia that form the neuronal sensory endings, the accessory structures that transmit stimuli to them and, in bristles, a specialized receptor lymph and transepithelial potential. Flies hear near-field sounds with a vibration-sensitive, antennal chordotonal organ. Biomechanical analyses of wild-type antennae reveal non-linear, active mechanical properties that increase their sensitivity to weak stimuli. The effects of mechanosensory and ciliary mutations on antennal mechanics show that the sensory cilia are the active motor elements and indicate distinct roles for TRPN and TRPV channels in auditory transduction and amplification.

  18. Signal transduction in T lymphocytes in microgravity

    NASA Technical Reports Server (NTRS)

    Cogoli, A.

    1997-01-01

    More than 120 experiments conducted in space in the last 15 years have shown that dramatic changes are occurring in several types of single cells during their exposure to microgravity. One focus of today's research on cells in space is on signal transduction, especially those steps involving the cytoskeleton and cell-cell interactions. Signal transduction is often altered in microgravity as well as in hypergravity. This leads to changes in cell proliferation, genetic expression and differentiation. Interesting examples are leukocytes, HeLa cells, epidermoid cells and osteoblastic cells. Signalling pathways were studied in T lymphocytes in microgravity by several investigators after the discovery that mitogenic activation in vitro is virtually nil at 0g. T cells are a good model to study signal transduction because three extracellular signals (mitogen, IL-1 and IL-2) are required for full activation, and two classical pathways (via proteins G and PKC) are activated within the cell. In addition, low molecular weight GTP-binding proteins (Ras and Rap) are interacting with the cytoskeleton. The data at 0g support the notion that the expression of IL-2 receptor is inhibited at 0g, while mitogen binding and the transmission of IL-1 by accessory cells occur normally. In addition, alterations of the cytoskeleton suggest that the interaction with Rap proteins is disturbed. Data obtained with phorbol esters indicate that the function of PKC is changed in microgravity. Similar conclusions are drawn from the results with epidermoid cells A431.

  19. A Biosensor for Urea from Succinimide-Modified Acrylic Microspheres Based on Reflectance Transduction

    PubMed Central

    Ulianas, Alizar; Heng, Lee Yook; Ahmad, Musa

    2011-01-01

    New acrylic microspheres were synthesised by photopolymerisation where the succinimide functional group was incorporated during the microsphere preparation. An optical biosensor for urea based on reflectance transduction with a large linear response range to urea was successfully developed using this material. The biosensor utilized succinimide-modified acrylic microspheres immobilized with a Nile blue chromoionophore (ETH 5294) for optical detection and urease enzyme was immobilized on the surface of the microspheres via the succinimide groups. No leaching of the enzyme or chromoionophore was observed. Hydrolysis of the urea by urease changes the pH and leads to a color change of the immobilized chromoionophore. When the color change was monitored by reflectance spectrophotometry, the linear response range of the biosensor to urea was from 0.01 to 1,000 mM (R2 = 0.97) with a limit of detection of 9.97 μM. The biosensor response showed good reproducibility (relative standard deviation = 1.43%, n = 5) with no interference by major cations such as Na+, K+, NH4+ and Mg2+. The use of reflectance as a transduction method led to a large linear response range that is better than that of many urea biosensors based on other optical transduction methods. PMID:22164078

  20. A biosensor for urea from succinimide-modified acrylic microspheres based on reflectance transduction.

    PubMed

    Ulianas, Alizar; Heng, Lee Yook; Ahmad, Musa

    2011-01-01

    New acrylic microspheres were synthesised by photopolymerisation where the succinimide functional group was incorporated during the microsphere preparation. An optical biosensor for urea based on reflectance transduction with a large linear response range to urea was successfully developed using this material. The biosensor utilized succinimide-modified acrylic microspheres immobilized with a Nile blue chromoionophore (ETH 5294) for optical detection and urease enzyme was immobilized on the surface of the microspheres via the succinimide groups. No leaching of the enzyme or chromoionophore was observed. Hydrolysis of the urea by urease changes the pH and leads to a color change of the immobilized chromoionophore. When the color change was monitored by reflectance spectrophotometry, the linear response range of the biosensor to urea was from 0.01 to 1,000 mM (R2 = 0.97) with a limit of detection of 9.97 μM. The biosensor response showed good reproducibility (relative standard deviation = 1.43%, n = 5) with no interference by major cations such as Na+, K+, NH4+ and Mg2+. The use of reflectance as a transduction method led to a large linear response range that is better than that of many urea biosensors based on other optical transduction methods.

  1. A novel lipid-based nanomicelle of docetaxel: evaluation of antitumor activity and biodistribution

    PubMed Central

    Ma, Mingshu; Hao, Yanli; Liu, Nan; Yin, Zhe; Wang, Lan; Liang, Xingjie; Zhang, Xiaoning

    2012-01-01

    Purpose A lipid-based, nanomicelle-loaded docetaxel (M-DOC) was designed and characterized. Optical imaging was employed to evaluate the pharmacokinetics and antitumor efficacy of docetaxel in vivo. Materials and methods The M-DOC was prepared using the emulsion-diffusion method. Transmission electron microscopy and dynamic light scattering were used to assess the morphology and particle size of the M-DOC. Critical micelle concentrations, their stability under physiological conditions, and their encapsulation efficiency – as measured by high-performance liquid chromatography – were assessed. Pharmacological features were evaluated in two different animal models by comparing M-DOC treatments with docetaxel injections (I-DOC). Bioluminescence imaging was used to assess antitumor activity and docetaxel distribution in vivo, using nude mice injected with luciferase-expressing MDA-MB-231 human breast tumor cells. In addition, animals injected with B16 melanoma cells were used to measure survival time and docetaxel distribution. Results The M-DOC was prepared as round, uniform spheres with an effective diameter of 20.8 nm. The critical micelle concentration of the original emulsion was 0.06%. Satisfactory encapsulation efficiency (87.6% ± 3.0%) and 12-hour stability were achieved. Xenograft results demonstrated that the M-DOC was more effective in inhibiting tumor growth, without significantly changing body weight. Survival was prolonged by 12.6% in the M-DOC group. Tumor growth inhibitory rates in the M-DOC and I-DOC groups were 91.2% and 57.8% in volume and 71.8% and 44.9% in weight, respectively. Optical bioluminescence imaging of tumor growths yielded similar results. Area under the curve(0–6 hour) levels of docetaxel in blood and tumors were significantly higher in the M-DOC group (15.9 ± 3.2 μg/mL−1, 601.1 ± 194.5 μg/g−1) than in the I-DOC group (7.2 ± 1.7 μg/mL−1, 357.8 ± 86.2 μg/g−1). The fluorescent dye 1,1-dioctadecyl-3,3,3,3

  2. Cation diffusion in titanomagnetites

    NASA Astrophysics Data System (ADS)

    Aragon, R.; McCallister, R. H.; Harrison, H. R.

    1984-02-01

    Interdiffusion couple experiments were performed with titanomagnetite single crystals at 1,000°C, 1,100° C and 1,200° C in various buffered atmospheres. The dependence of the interdiffusion coefficient on oxygen fugacity, composition and temperature was interpreted in terms of point defect structure. Estimates of the cation tracer diffusivities indicate that Fe migrates via a point defect mechanism, involving mixed tetrahedral-octahedral site jumps, with an activation energy of 33 Kcal/mole; whereas Ti migration is one to two orders of magnitude slower, is restricted to octahedral sites and has an activation energy of 60 Kcal/mole.

  3. Dissecting the cation-cation interaction between two uranyl units.

    PubMed

    Tecmer, Paweł; Hong, Sung W; Boguslawski, Katharina

    2016-07-21

    We present a state-of-the-art computational study of the uranyl(vi) and uranyl(v) cation-cation interactions (dications) in aqueous solution. Reliable electronic structures of two interacting uranyl(vi) and uranyl(v) subunits as well as those of the uranyl(vi) and uranyl(v) clusters are presented for the first time. Our theoretical study elucidates the impact of cation-cation interactions on changes in the molecular structure as well as changes in vibrational and UV-Vis spectra of the bare uranyl(vi) and uranyl(v) moieties for different total spin-states and total charges of the dications.

  4. Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin.

    PubMed

    Shangguan, Mingzhu; Lu, Yi; Qi, Jianping; Han, Jin; Tian, Zhiqiang; Xie, Yunchang; Hu, Fuqiang; Yuan, Hailong; Wu, Wei

    2014-02-01

    The main purpose of this study was to prepare binary lipids-based nanostructured lipid carriers to improve the oral bioavailability of silymarin, a poorly water-soluble liver protectant. Silymarin-loaded nanostructured lipid carriers were prepared by the method of high-pressure homogenization with glycerol distearates (Precirol ATO-5) and oleic acid as the solid and liquid lipids, respectively, and lecithin (Lipoid E 100) and Tween-80 as the emulsifiers. The silymarin-nanostructured lipid carrier prepared under optimum conditions was spherical in shape with mean particle size of ∼78.87 nm, entrapment efficiency of 87.55%, loading capacity of 8.32%, and zeta potential of -65.3 mV, respectively. In vitro release of silymarin-nanostructured lipid carriers was very limited even after 12 h, while in vitro lipolysis showed fast digestion of nanostructured lipid carriers within 1 h. Relative oral bioavailability of silymarin-nanostructured lipid carriers in Beagle dogs was 2.54- and 3.10-fold that of marketed Legalon® and silymarin solid dispersion pellets, respectively. It was concluded that nanostructured lipid carriers were potential drug delivery systems to improve the bioavailability of silymarin. Other than improved dissolution, alternative mechanisms such as facilitated absorption as well as lymphatic transport may contribute to bioavailability enhancement.

  5. Metastability in lipid based particles exhibits temporally deterministic and controllable behavior.

    PubMed

    Jacoby, Guy; Cohen, Keren; Barkan, Kobi; Talmon, Yeshayahu; Peer, Dan; Beck, Roy

    2015-03-30

    The metastable-to-stable phase-transition is commonly observed in many fields of science, as an uncontrolled independent process, highly sensitive to microscopic fluctuations. In particular, self-assembled lipid suspensions exhibit phase-transitions, where the underlying driving mechanisms and dynamics are not well understood. Here we describe a study of the phase-transition dynamics of lipid-based particles, consisting of mixtures of dilauroylphosphatidylethanolamine (DLPE) and dilauroylphosphatidylglycerol (DLPG), exhibiting a metastable liquid crystalline-to-stable crystalline phase transition upon cooling from 60°C to 37°C. Surprisingly, unlike classically described metastable-to-stable phase transitions, the manner in which recrystallization is delayed by tens of hours is robust, predetermined and controllable. Our results show that the delay time can be manipulated by changing lipid stoichiometry, changing solvent salinity, adding an ionophore, or performing consecutive phase-transitions. Moreover, the delay time distribution indicates a deterministic nature. We suggest that the non-stochastic physical mechanism responsible for the delayed recrystallization involves several rate-affecting processes, resulting in a controllable, non-independent metastability. A qualitative model is proposed to describe the structural reorganization during the phase transition.

  6. Metastability in lipid based particles exhibits temporally deterministic and controllable behavior

    PubMed Central

    Jacoby, Guy; Cohen, Keren; Barkan, Kobi; Talmon, Yeshayahu; Peer, Dan; Beck, Roy

    2015-01-01

    The metastable-to-stable phase-transition is commonly observed in many fields of science, as an uncontrolled independent process, highly sensitive to microscopic fluctuations. In particular, self-assembled lipid suspensions exhibit phase-transitions, where the underlying driving mechanisms and dynamics are not well understood. Here we describe a study of the phase-transition dynamics of lipid-based particles, consisting of mixtures of dilauroylphosphatidylethanolamine (DLPE) and dilauroylphosphatidylglycerol (DLPG), exhibiting a metastable liquid crystalline-to-stable crystalline phase transition upon cooling from 60°C to 37°C. Surprisingly, unlike classically described metastable-to-stable phase transitions, the manner in which recrystallization is delayed by tens of hours is robust, predetermined and controllable. Our results show that the delay time can be manipulated by changing lipid stoichiometry, changing solvent salinity, adding an ionophore, or performing consecutive phase-transitions. Moreover, the delay time distribution indicates a deterministic nature. We suggest that the non-stochastic physical mechanism responsible for the delayed recrystallization involves several rate-affecting processes, resulting in a controllable, non-independent metastability. A qualitative model is proposed to describe the structural reorganization during the phase transition. PMID:25820650

  7. Effect of starch- and lipid-based encapsulation on the culturability of two Bifidobacterium longum strains.

    PubMed

    Lahtinen, S J; Ouwehand, A C; Salminen, S J; Forssell, P; Myllärinen, P

    2007-05-01

    To assess the applicability of starch- and lipid-based encapsulation methods for improving the viability and culturability of two Bifidobacterium longum strains stored in fermented and nonfermented foods. Cells were encapsulated with partially hydrolysed potato starch granules combined with amylose coating, or entrapped in cocoa butter matrix. The tested B. longum strains were not adherent to the starch granules, and the culturability of the cells stored in fermented and nonfermented foods was not improved by starch-based encapsulation. Encapsulation of the cells in cocoa butter was found to increase the plate counts during storage. In addition to plate counts, viability of the cells was measured by fluorescent microscopy using LIVE/DEAD BacLight viability assay. Microscopic counts of the viable cells did not change significantly during storage, suggesting that the cells remained alive despite becoming unable to grow on nutrient agar plates. Encapsulation with cocoa butter increased the culturability of the cells, but encapsulation with hydrolysed potato starch had no effect. Culture-independent viability assay suggested that cells remained viable despite being unable to grow on agar plates. This study indicates that encapsulation techniques may be useful in improving the culturability of bacteria, but the plate counts may yield insufficient data on the actual viability of the cells.

  8. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals.

    PubMed

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations.

  9. Molecularly imprinted microparticles in lipid-based formulations for sustained release of donepezil.

    PubMed

    Ruela, André Luís Morais; de Figueiredo, Eduardo Costa; de Araújo, Magali Benjamim; Carvalho, Flávia Chiva; Pereira, Gislaine Ribeiro

    2016-10-10

    Donepezil is a drug administered for Alzheimer's disease treatment, and it is a potential template molecule for imprinted microparticles. The precipitation polymerization technique allows the synthesis of spherical imprinted microparticles, and the intermolecular interactions among drug and molecularly imprinted polymers (MIPs) play a promising role for delineating drug delivery systems. Once that donepezil is a poorly-water soluble compound, lipid based-formulations (LBFs) may enhance its oral administration. Based on this, LBFs are useful vehicles to incorporate imprinted microparticles synthesized by precipitation polymerization. In these formulations, the drug dissolved in lipids is accessible to adsorbate in the polymers, and the hydrophobic environment of lipids increases the molecular recognition of MIPs. The formulations based on MIPs using pure oleic acid as vehicle prolong the in vitro release of donepezil up to several hours by a Fickian diffusion mechanism, and it provides a multiphasic release pattern related to the heterogeneity of the binding sites. The modulation of donepezil release from MIPs-based formulations using oil vehicles may contribute to decrease its side effects, possibly regulating its absorption rate in the gastrointestinal tract. These systems represent a novel technological platform to prolong the delivery not only for donepezil, but also for a variety of therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Applications of nanosystems to anticancer drug therapy (Part II. Dendrimers, micelles, lipid-based nanosystems).

    PubMed

    Ruiz, María E; Gantner, Melisa E; Talevi, Alan

    2014-01-01

    The great efforts of many researchers have brought down some of the barriers that exist to turn a good in vitro compound into a potential in vivo drug. The advent of pharmaceutical nanotechnology has allowed an arsenal of drugs with poor stability, low solubility, high off-target toxicity and other disadvantageous features, to be accessible as pharmaceutical products that could be administered to a patient. Nanotechnology was introduced in drug delivery very long ago, but has flourished with unprecedented intensity during the last twenty years and now a diversity of nano-based preparations are at clinical stage of development or already available in the market. Undoubtedly, nanotechnology plays a key role in future pharmaceutical development and pharmacotherapy. In the first part of this review, we have already discussed recent (2008-2012) patents on linear polymer-based nanosystems (nanogels, nanospheres and nanocapsules) applications to cancer therapy. Here, we have expanded such analysis to branched polymers (dendrimers), self-assembling nanomicelles and lipid-based nanocarriers.

  11. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals

    PubMed Central

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations. PMID:28243062

  12. Lipid-based amphotericin B: a review of the last 10 years of use.

    PubMed

    Hann, I M; Prentice, H G

    2001-03-01

    The last decade has been remarkable for the dramatic increase in the prevalence of serious fungal infections in patients with haematological disorders and neutropenic cancer patients. The mortality rate of deep-seated infection has been in excess of 90% and there is no doubt that this is one of the greatest challenges currently facing haematologists and oncologists. The development of the lipid-based drugs - liposomal amphotericin (AmBisome(R)), amphotericin B lipid complex, ABLC (Abelcet(R)), amphotericin B colloidal dispersion, Amphocil (ABCD(R)), has meant that doses of amphotericin B can be safely escalated for the first time whilst the problems of nephrotoxicity, infusion related reactions (including chills, rigors, fevers and hypoxia) can be reduced. These toxicities are variably reduced with AmBisome more than Abelcet and more than Amphocil and there is little information from randomised trials other than for AmBisome. AmBisome used in the setting of persistent fever and neutropenia not responding after 3-4 days of intravenous antibiotics, is associated with less breakthrough systemic fungal infections. There is also much less need for premedication, including steroids, compared with amphotericin B and Abelcet. The use of intermittent doses of Ambisome given prophylactically is now being explored. A new and exciting era of antifungal therapy is opening up with new compounds, such as itraconazole voriconazole, posaconazole and echinocandins, being investigated and for the first time, we also have options for combination therapy and prophylaxis.

  13. Spray drying of lipid-based systems loaded with Camellia sinensis polyphenols.

    PubMed

    Secolin, Vanessa A; Souza, Claudia R F; Oliveira, Wanderley P

    2017-03-01

    In this work, spray-dried lipid systems based on soy phosphatidylcholine, cholesterol and lauroyl polyoxylglycerides for entrapping Green tea polyphenols were produced. The aim was to study the effects of the encapsulating composition and spray drying conditions on the system performance and physicochemical product properties. The spray dryer powder production yield falls around 50.7 ± 2.8%, which is typical for lab scale spray dryers. Wrinkled and rounded particles, with low surface porosities were generated, independent of the drying carriers (trehalose or lactose) used. The product showed high encapsulation efficiency of Green tea polyphenols, which was promptly redispersible in water. It presented low density, and good compressive and flow properties. The results herein reported confirm the feasibility of the entrapment of Green tea polyphenols in lipid-based compositions by spray drying in presence of the drying carriers evaluated. The spray-dried microparticles show high potential to be used as additive in food, nutraceutical and pharmaceutical products.

  14. Lipid-based nutrient supplements and linear growth in children under 2 years: a review.

    PubMed

    Matsungo, Tonderayi M; Kruger, Herculina S; Smuts, Cornelius M; Faber, Mieke

    2017-03-13

    The prevalence of stunting remains high in low- and middle-income countries despite adoption of comprehensive nutrition interventions, particularly in low-income countries. In the present paper, we review current evidence on the acceptability and efficacy of small-quantity lipid-based nutrient supplements (SQ-LNS) on preventing stunting in children under 2 years, discuss the factors that affect their efficacy, highlight the implications of the current findings at pragmatic level and identify research priorities. Although the present paper is not a generic systematic review, we used a systematic approach to select relevant literature. The review showed that there is growing interest in the potential benefits of using SQ-LNS to prevent growth faltering. Acceptability studies showed that SQ-LNS are generally well accepted. However, results on the efficacy of SQ-LNS on improving linear growth or preventing growth faltering in infants and young children are still inconclusive. Factors that may affect efficacy include the duration of the trial, composition and dosage of SQ-LNS given, and baseline demographics and nutritional status of research participants. Future research should focus on controlled and long-term follow-up trials to obtain more conclusive results. In the long term, there will be need for studies to investigate how provision of SQ-LNS can be integrated with existing strategies to prevent stunting in low- and middle-income settings.

  15. Lipids-based nanostructured lipid carriers (NLCs) for improved oral bioavailability of sirolimus.

    PubMed

    Yu, Qin; Hu, Xiongwei; Ma, Yuhua; Xie, Yunchang; Lu, Yi; Qi, Jianping; Xiang, Li; Li, Fengqian; Wu, Wei

    2016-05-01

    The main purpose of this study was to improve the oral bioavailability of sirolimus (SRL), a poorly water-soluble immunosuppressant, by encapsulating into lipids-based nanostructured lipid carriers (NLCs). SRL-loaded NLCs (SRL-NLCs) were prepared by a high-pressure homogenization method with glycerol distearates (PRECIROL ATO-5) as the solid lipid, oleic acid as the liquid lipids, and Tween 80 as the emulsifier. The SRL-NLCs prepared under optimum conditions was spherical in shape with a mean particle size of about 108.3 nm and an entrapment efficiency of 99.81%. In vitro release of SRL-NLCs was very slow, about 2.15% at 12 h, while in vitro lipolysis test showed fast digestion of the NLCs within 1 h. Relative oral bioavailability of SRL-NLCs in Beagle dogs was 1.81-folds that of the commercial nanocrystalline sirolimus tablets Rapamune®. In conclusion, the NLCs show potential to improve the oral bioavailability of SRL.

  16. Role of blooming in determining the storage stability of lipid-based dosage forms.

    PubMed

    Khan, Nurzalina; Craig, Duncan Q M

    2004-12-01

    Gelucire 50/13 alone and solid dispersions in this material containing two model drugs (10% w/w caffeine and paracetamol) have been studied with a view to establishing the mechanism underpinning changes in drug-release characteristics as a function of storage time and temperature. The lipid systems were fabricated into tablets and stored for up to 180 days at temperatures of 20 and 37 degrees C. The dispersions were studied using differential scanning calorimetry (DSC), scanning electron microscopy, and dissolution testing. DSC studies indicated that the Gelucire 50/13 exists in two principal melting forms (melting points 38 and 43 degrees C) that undergo transformation to the higher melting form on storage at 37 degrees C. Scanning electron microscopy studies indicated that the systems exhibit "blooming," with crystal formation on the surface being apparent on storage at both temperatures. The dissolution rate increased on storage, with the effect being particularly marked at higher storage temperatures and for the paracetamol systems. However, whereas these changes corresponded well to those seen for the morphology, the correlation between the changes in dissolution and those of the DSC profiles was poor. The study has suggested a novel explanation for the storage instability of Gelucire 50/13 whereby the change in dissolution is associated not with molecular rearrangement as such but with the gross distribution of the constituent components, this in turn altering the physical integrity of the lipid bases.

  17. Why Fish Oil Fails: A Comprehensive 21st Century Lipids-Based Physiologic Analysis

    PubMed Central

    Peskin, B. S.

    2014-01-01

    The medical community suffered three significant fish oil failures/setbacks in 2013. Claims that fish oil's EPA/DHA would stop the progression of heart disease were crushed when The Risk and Prevention Study Collaborative Group (Italy) released a conclusive negative finding regarding fish oil for those patients with high risk factors but no previous myocardial infarction. Fish oil failed in all measures of CVD prevention—both primary and secondary. Another major 2013 setback occurred when fish oil's DHA was shown to significantly increase prostate cancer in men, in particular, high-grade prostate cancer, in the Selenium and Vitamin E Cancer Prevention Trial (SELECT) analysis by Brasky et al. Another monumental failure occurred in 2013 whereby fish oil's EPA/DHA failed to improve macular degeneration. In 2010, fish oil's EPA/DHA failed to help Alzheimer's victims, even those with low DHA levels. These are by no means isolated failures. The promise of fish oil and its so-called active ingredients EPA / DHA fails time and time again in clinical trials. This lipids-based physiologic review will explain precisely why there should have never been expectation for success. This review will focus on underpublicized lipid science with a focus on physiology. PMID:24551453

  18. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids

    NASA Astrophysics Data System (ADS)

    Simovic, Spomenka; Barnes, Timothy J.; Tan, Angel; Prestidge, Clive A.

    2012-02-01

    Lipid based colloids (e.g. emulsions and liposomes) are widely used as drug delivery systems, but often suffer from physical instabilities and non-ideal drug encapsulation and delivery performance. We review the application of engineered nanoparticle layers at the interface of lipid colloids to improve their performance as drug delivery systems. In addition we focus on the creation of novel hybrid nanomaterials from nanoparticle-lipid colloid assemblies and their drug delivery applications. Specifically, nanoparticle layers can be engineered to enhance the physical stability of submicron lipid emulsions and liposomes, satbilise encapsulated active ingredients against chemical degradation, control molecular transport and improve the dermal and oral delivery characteristics, i.e. increase absorption, bioavailability and facilitate targeted delivery. It is feasible that hybrid nanomaterials composed of nanoparticles and colloidal lipids are effective encapsulation and delivery systems for both poorly soluble drugs and biological drugs and may form the basis for the next generation of medicines. Additional pre-clinical research including specific animal model studies are required to advance the peptide/protein delivery systems, whereas the silica lipid hybrid systems have now entered human clinical trials for poorly soluble drugs.

  19. Pharmacokinetic aspects and in vitro–in vivo correlation potential for lipid-based formulations

    PubMed Central

    Kollipara, Sivacharan; Gandhi, Rajesh Kumar

    2014-01-01

    Lipid-based formulations have been an attractive choice among novel drug delivery systems for enhancing the solubility and bioavailability of poorly soluble drugs due to their ability to keep the drug in solubilized state in the gastrointestinal tract. These formulations offer multiple advantages such as reduction in food effect and inter-individual variability, ease of preparation, and the possibility of manufacturing using common excipients available in the market. Despite these advantages, very few products are available in the present market, perhaps due to limited knowledge in the in vitro tests (for prediction of in vivo fate) and lack of understanding of the mechanisms behind pharmacokinetic and biopharmaceutical aspects of lipid formulations after oral administration. The current review aims to provide a detailed understanding of the in vivo processing steps involved after oral administration of lipid formulations, their pharmacokinetic aspects and in vitro in vivo correlation (IVIVC) perspectives. Various pharmacokinetic and biopharmaceutical aspects such as formulation dispersion and lipid digestion, bioavailability enhancement mechanisms, impact of excipients on efflux transporters, and lymphatic transport are discussed with examples. In addition, various IVIVC approaches towards predicting in vivo data from in vitro dispersion/precipitation, in vitro lipolysis and ex vivo permeation studies are also discussed in detail with help of case studies. PMID:26579403

  20. Advanced stable lipid-based formulations for a patient-centric product design.

    PubMed

    Becker, Karin; Saurugger, Eva-Maria; Kienberger, Diana; Lopes, Diogo; Haack, Detlev; Köberle, Martin; Stehr, Michael; Lochmann, Dirk; Zimmer, Andreas; Salar-Behzadi, Sharareh

    2016-01-30

    Multiparticulate dosage forms are a recent strategy to meet the special needs of children, elderly people and patients suffering from dysphagia. Our study presents a novel and cost-efficient approach for the manufacturing of a taste-masked multiparticulate system with a stable immediate release profile by applying lipid-based excipients in a solvent-free hot melt coating process. The thermosensitive N-acetylcysteine (N-ac) was used as model drug and hot-melt coated with a mixture of tripalmitin and polysorbate 65. A predictive in vitro method for the evaluation of the taste masking efficiency was developed based on the deprotonation of the carboxyl group of N-ac and the decline of pH, responsible for the unpleasant sour taste of the compound. The method was confirmed using in vivo studies. Differential scanning calorimetry and X-ray scattering experiments revealed polymorphic transformation and its dependency on transformation time, temperature and emulsifier concentration. During the process, the coating was transformed almost completely into the stable β-polymorph, leading to an unaltered dissolution profile during storage. A statistical design was conducted that revealed the critical process parameters affecting the taste masking efficiency and drug release. This study shows the successful application of solvent-free hot-melt coating in the development of a taste-masked and stable formulation.

  1. Biopharmaceutical modeling of drug supersaturation during lipid-based formulation digestion considering an absorption sink.

    PubMed

    Stillhart, Cordula; Imanidis, Georgios; Griffin, Brendan T; Kuentz, Martin

    2014-12-01

    In vitro lipolysis is widely utilized for predicting in vivo performance of oral lipid-based formulations (LBFs). However, evaluation of LBFs in the absence of an absorption sink may have limited in vivo relevance. This study aimed at employing biopharmaceutical modeling to simulate LBF digestion and drug supersaturation in a continuous absorptive environment. Three fenofibrate-loaded LBFs were characterized in vitro (dispersion and lipolysis) and drug precipitation was monitored using in-line Raman spectroscopy. In vitro data were combined with pharmacokinetic data derived from an in vivo study in pigs to simulate intestinal LBF transit. This biopharmaceutical model allowed calculation of lipolysis-triggered drug supersaturation while drug and lipolysis products are absorbed from the intestine. The biopharmaceutical model predicted that, in a continuous absorption environment, fenofibrate supersaturation was considerably lower compared to in vitro lipolysis (non-sink). Hence, the extensive drug precipitation observed in vitro was predicted to be unlikely in vivo. The absorption of lipolysis products increased drug supersaturation, but drug precipitation was unlikely for highly permeable drugs. Biopharmaceutical modeling is a valuable approach for predicting LBFs performance in vivo. In the absence of in vitro tools simulating absorptive conditions, modeling strategies should be further considered.

  2. Evaluation of novel lipid based formulation of β-Artemether and Lumefantrine in murine malaria model.

    PubMed

    Patil, Sushant; Suryavanshi, Shital; Pathak, Sulabha; Sharma, Shobhona; Patravale, Vandana

    2013-10-15

    The present investigation aims at formulating lipid based drug delivery system of β-Artemether and Lumefantrine and comparative pharmacological evaluation with innovator formulation. Commercial modified oil and indigenous natural fatty acids comprised the oily phase in developing lipidic formulation of β-Artemether and Lumefantrine. The developed system was characterized for mean globule size, stability by freeze thaw cycles, and birefringence. Developed formulation and innovator formulation were compared for their in vivo anti-malarial activity at different dose levels in male Swiss mice, infected with lethal ANKA strain of Plasmodium berghei. The percent parasitemia, activity against time and animal survival period were examined. On fourth day of antimalarial studies, at normal and ½ dose levels, formulations revealed zero percent parasitemia while control showed 33.92±6.00% parasitemia. At 1/10 dose level, developed and innovator formulations revealed zero percent parasitemia upto 11th day, however, three mice from innovator formulation demonstrated recrudescence after 12th day. Both the formulations at normal dose and ½ dose levels showed 100% activity and survival whereas at 1/10 dose level, innovator formulation showed, 62.5% survival. The developed lipidic system of β-Artemether and Lumefantrine exhibited excellent antimalarial activity with 100% survival.

  3. Lipid-based nanodiscs as models for studying mesoscale coalescence--a transport limited case.

    PubMed

    Hu, Andrew; Fan, Tai-Hsi; Katsaras, John; Xia, Yan; Li, Ming; Nieh, Mu-Ping

    2014-07-28

    Lipid-based nanodiscs (bicelles) are able to form in mixtures of long- and short-chain lipids. Initially, they are of uniform size but grow upon dilution. Previously, nanodisc growth kinetics have been studied using time-resolved small angle neutron scattering (SANS), a technique which is not well suited for probing their change in size immediately after dilution. To address this, we have used dynamic light scattering (DLS), a technique which permits the collection of useful data in a short span of time after dilution of the system. The DLS data indicate that the negatively charged lipids in nanodiscs play a significant role in disc stability and growth. Specifically, the charged lipids are most likely drawn out from the nanodiscs into solution, thereby reducing interparticle repulsion and enabling the discs to grow. We describe a population balance model, which takes into account Coulombic interactions and adequately predicts the initial growth of nanodiscs with a single parameter - i.e., surface potential. The results presented here strongly support the notion that the disc coalescence rate strongly depends on nanoparticle charge density. The present system containing low-polydispersity lipid nanodiscs serves as a good model for understanding how charged discoidal micelles coalesce.

  4. Lipid-Based Nanodiscs as Models for Studying Mesoscale Coalescence A Transport Limited Case

    SciTech Connect

    Hu, Andrew; Fan, Tai-Hsi; Katsaras, John; Xia, Yan; Li, Ming; Nieh, Mu-Ping

    2014-01-01

    Lipid-based nanodiscs (bicelles) are able to form in mixtures of long- and short-chain lipids. Initially, they are of uniform size but grow upon dilution. Previously, nanodisc growth kinetics have been studied using time-resolved small angle neutron scattering (SANS), a technique which is not well suited for probing their change in size immediately after dilution. To address this, we have used dynamic light scattering (DLS), a technique which permits the collection of useful data in a short span of time after dilution of the system. The DLS data indicate that the negatively charged lipids in nanodiscs play a significant role in disc stability and growth. Specifically, the charged lipids are most likely drawn out from the nanodiscs into solution, thereby reducing interparticle repulsion and enabling the discs to grow. We describe a population balance model, which takes into account Coulombic interactions and adequately predicts the initial growth of nanodiscs with a single parameter i.e., surface potential. The results presented here strongly support the notion that the disc coalescence rate strongly depends on nanoparticle charge density. The present system containing low-polydispersity lipid nanodiscs serves as a good model for understanding how charged discoidal micelles coalesce.

  5. Tracing retinal vessel trees by transductive inference

    PubMed Central

    2014-01-01

    Background Structural study of retinal blood vessels provides an early indication of diseases such as diabetic retinopathy, glaucoma, and hypertensive retinopathy. These studies require accurate tracing of retinal vessel tree structure from fundus images in an automated manner. However, the existing work encounters great difficulties when dealing with the crossover issue commonly-seen in vessel networks. Results In this paper, we consider a novel graph-based approach to address this tracing with crossover problem: After initial steps of segmentation and skeleton extraction, its graph representation can be established, where each segment in the skeleton map becomes a node, and a direct contact between two adjacent segments is translated to an undirected edge of the two corresponding nodes. The segments in the skeleton map touching the optical disk area are considered as root nodes. This determines the number of trees to-be-found in the vessel network, which is always equal to the number of root nodes. Based on this undirected graph representation, the tracing problem is further connected to the well-studied transductive inference in machine learning, where the goal becomes that of properly propagating the tree labels from those known root nodes to the rest of the graph, such that the graph is partitioned into disjoint sub-graphs, or equivalently, each of the trees is traced and separated from the rest of the vessel network. This connection enables us to address the tracing problem by exploiting established development in transductive inference. Empirical experiments on public available fundus image datasets demonstrate the applicability of our approach. Conclusions We provide a novel and systematic approach to trace retinal vessel trees with the present of crossovers by solving a transductive learning problem on induced undirected graphs. PMID:24438151

  6. Mechano-Transduction: From Molecules to Tissues

    PubMed Central

    Pruitt, Beth L.; Dunn, Alexander R.; Weis, William I.; Nelson, W. James

    2014-01-01

    External forces play complex roles in cell organization, fate, and homeostasis. Changes in these forces, or how cells respond to them, can result in abnormal embryonic development and diseases in adults. How cells sense and respond to these mechanical stimuli requires an understanding of the biophysical principles that underlie changes in protein conformation and result in alterations in the organization and function of cells and tissues. Here, we discuss mechano-transduction as it applies to protein conformation, cellular organization, and multi-cell (tissue) function. PMID:25405923

  7. Mechanisms of sensory transduction in the skin.

    PubMed

    Lumpkin, Ellen A; Caterina, Michael J

    2007-02-22

    Sensory neurons innervating the skin encode the familiar sensations of temperature, touch and pain. An explosion of progress has revealed unanticipated cellular and molecular complexity in these senses. It is now clear that perception of a single stimulus, such as heat, requires several transduction mechanisms. Conversely, a given protein may contribute to multiple senses, such as heat and touch. Recent studies have also led to the surprising insight that skin cells might transduce temperature and touch. To break the code underlying somatosensation, we must therefore understand how the skin's sensory functions are divided among signalling molecules and cell types.

  8. Signal transduction mechanisms in plants: an overview

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Thompson, G. Jr; Roux, S. J.

    2001-01-01

    This article provides an overview on recent advances in some of the basic signalling mechanisms that participate in a wide variety of stimulus-response pathways. The mechanisms include calcium-based signalling, G-protein-mediated-signalling and signalling involving inositol phospholipids, with discussion on the role of protein kinases and phosphatases interspersed. As a further defining feature, the article highlights recent exciting findings on three extracellular components that have not been given coverage in previous reviews of signal transduction in plants, extracellular calmodulin, extracellular ATP, and integrin-like receptors, all of which affect plant growth and development.

  9. Auditory neuroscience: Development, transduction, and integration

    PubMed Central

    Hudspeth, A. J.; Konishi, Masakazu

    2000-01-01

    Hearing underlies our ability to locate sound sources in the environment, our appreciation of music, and our ability to communicate. Participants in the National Academy of Sciences colloquium on Auditory Neuroscience: Development, Transduction, and Integration presented research results bearing on four key issues in auditory research. How does the complex inner ear develop? How does the cochlea transduce sounds into electrical signals? How does the brain's ability to compute the location of a sound source develop? How does the forebrain analyze complex sounds, particularly species-specific communications? This article provides an introduction to the papers stemming from the meeting. PMID:11050196

  10. The Molecular Basis of Mechanosensory Transduction

    PubMed Central

    Marshall, Kara L.; Lumpkin, Ellen A.

    2014-01-01

    Multiple senses including hearing, touch, and osmotic regulation, require the ability to convert force into an electrical signal: a process called mechanotransduction. Mechanotransduction occurs through specialized proteins that open an ion channel pore in response to a mechanical stimulus. Many of these proteins remain unidentified in vertebrates, but known mechanotransduction channels in lower organisms provide clues into their identity and mechanism. Bacteria, fruit flies, and nematodes have all been used to elucidate the molecules necessary for force transduction. This chapter discusses many different mechanical senses and takes an evolutionary approach to review the proteins responsible for mechanotransduction in various biological kingdoms. PMID:22399400

  11. Signal transduction mechanisms in plants: an overview

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Thompson, G. Jr; Roux, S. J.

    2001-01-01

    This article provides an overview on recent advances in some of the basic signalling mechanisms that participate in a wide variety of stimulus-response pathways. The mechanisms include calcium-based signalling, G-protein-mediated-signalling and signalling involving inositol phospholipids, with discussion on the role of protein kinases and phosphatases interspersed. As a further defining feature, the article highlights recent exciting findings on three extracellular components that have not been given coverage in previous reviews of signal transduction in plants, extracellular calmodulin, extracellular ATP, and integrin-like receptors, all of which affect plant growth and development.

  12. Cochlear transduction: an integrative model and review

    PubMed Central

    Brownell, William E.

    2009-01-01

    A model for cochlear transduction is presented that is based on considerations of the cell biology of its receptor cells, particularly the mechanisms of transmitter release at recepto-neural synapses. Two new interrelated hypotheses on the functional organization of the organ of Corti result from these considerations, one dealing with the possibility of electrotonic interaction between inner and outer hair cells and the other with a possible contributing source to acoustic emissions of cochlear origin that results from vesicular membrane turnover. PMID:6282796

  13. Signal transduction during cold stress in plants.

    PubMed

    Solanke, Amolkumar U; Sharma, Arun K

    2008-04-01

    Cold stress signal transduction is a complex process. Many physiological changes like tissue break down and senescence occur due to cold stress. Low temperature is initially perceived by plasma membrane either due to change in membrane fluidity or with the help of sensors like Ca(2+) permeable channels, histidine kinases, receptor kinases and phospholipases. Subsequently, cytoskeleton reorganization and cytosolic Ca(2+) influx takes place. Increase in cytosolic Ca(2+) is sensed by CDPKs, phosphatase and MAPKs, which transduce the signals to switch on transcriptional cascades. Photosynthetic apparatus have also been thought to be responsible for low temperature perception and signal transduction. Many cold induced pathways are activated to protect plants from deleterious effects of cold stress, but till date, most studied pathway is ICE-CBF-COR signaling pathway. However, the importance of CBF independent pathways in cold acclimation is supported by few Arabidopsis mutants' studies. Cold stress signaling has certain pathways common with other abiotic and biotic stress signaling which suggest cross-talks among these. Most of the economically important crops are sensitive to low temperature, but very few studies are available on cold susceptible crop plants. Therefore, it is necessary to understand signal transducing components from model plants and utilize that knowledge to improve survival of cold sensitive crop plants at low temperature.

  14. Driving DNA transposition by lentiviral protein transduction

    PubMed Central

    Cai, Yujia; Mikkelsen, Jacob Giehm

    2014-01-01

    Gene vectors derived from DNA transposable elements have become powerful molecular tools in biomedical research and are slowly moving into the clinic as carriers of therapeutic genes. Conventional uses of DNA transposon-based gene vehicles rely on the intracellular production of the transposase protein from transfected nucleic acids. The transposase mediates mobilization of the DNA transposon, which is typically provided in the context of plasmid DNA. In recent work, we established lentiviral protein transduction from Gag precursors as a new strategy for direct delivery of the transposase protein. Inspired by the natural properties of infecting viruses to carry their own enzymes, we loaded lentivirus-derived particles not only with vector genomes carrying the DNA transposon vector but also with hundreds of transposase subunits. Such particles were found to drive efficient transposition of the piggyBac transposable element in a range of different cell types, including primary cells, and offer a new transposase delivery approach that guarantees short-term activity and limits potential cytotoxicity. DNA transposon vectors, originally developed and launched as a non-viral alternative to viral integrating vectors, have truly become viral. Here, we briefly review our findings and speculate on the perspectives and potential advantages of transposase delivery by lentiviral protein transduction. PMID:25057443

  15. Transductive face sketch-photo synthesis.

    PubMed

    Wang, Nannan; Tao, Dacheng; Gao, Xinbo; Li, Xuelong; Li, Jie

    2013-09-01

    Face sketch-photo synthesis plays a critical role in many applications, such as law enforcement and digital entertainment. Recently, many face sketch-photo synthesis methods have been proposed under the framework of inductive learning, and these have obtained promising performance. However, these inductive learning-based face sketch-photo synthesis methods may result in high losses for test samples, because inductive learning minimizes the empirical loss for training samples. This paper presents a novel transductive face sketch-photo synthesis method that incorporates the given test samples into the learning process and optimizes the performance on these test samples. In particular, it defines a probabilistic model to optimize both the reconstruction fidelity of the input photo (sketch) and the synthesis fidelity of the target output sketch (photo), and efficiently optimizes this probabilistic model by alternating optimization. The proposed transductive method significantly reduces the expected high loss and improves the synthesis performance for test samples. Experimental results on the Chinese University of Hong Kong face sketch data set demonstrate the effectiveness of the proposed method by comparing it with representative inductive learning-based face sketch-photo synthesis methods.

  16. Activity Dependent Signal Transduction in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Hamilton, Susan L.

    1999-01-01

    The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.

  17. Activity Dependent Signal Transduction in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Hamilton, Susan L.

    1999-01-01

    The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.

  18. Conformation Transformation Determined by Different Self-Assembled Phases in a DNA Complex with Cationic Polyhedral Oligomeric Silsesquioxane Lipid

    SciTech Connect

    Cui,L.; Chen, D.; Zhu, L.

    2008-01-01

    In this work, a novel cube-shaped cationic lipid based on the imidazolium salt of polyhedral oligomeric silsesquioxane (POSS) was complexed with double-stranded DNA. Because of the negative spontaneous curvature of the cationic POSS imidazolium lipid, an inverted hexagonal phase resulted above the melting point of POSS crystals. Depending on the competition between the crystallization of POSS molecules and the negative spontaneous curvature of cationic POSS imidazolium lipids, different self-assembled phase morphologies were obtained. A lamellar phase was obtained when the POSS crystallization was relatively slow. When the POSS crystallization was fast, an inverted hexagonal phase was obtained with POSS lamellar crystals grown in the interstitials of DNA cylinders. On the basis of a circular dichroism study, double-stranded DNA adopted the B-form helical conformation in the inverted hexagonal phase, whereas the helical conformation was largely destroyed in the lamellar phase.

  19. Tumor targeting profiling of hyaluronan-coated lipid based-nanoparticles

    NASA Astrophysics Data System (ADS)

    Mizrahy, Shoshy; Goldsmith, Meir; Leviatan-Ben-Arye, Shani; Kisin-Finfer, Einat; Redy, Orit; Srinivasan, Srimeenakshi; Shabat, Doron; Godin, Biana; Peer, Dan

    2014-03-01

    Hyaluronan (HA), a naturally occurring high Mw (HMw) glycosaminoglycan, has been shown to play crucial roles in cell growth, embryonic development, healing processes, inflammation, and tumor development and progression. Low Mw (LMw, <10 kDa) HA has been reported to provoke inflammatory responses, such as induction of cytokines, chemokines, reactive nitrogen species and growth factors. Herein, we prepared and characterized two types of HA coated (LMw and HMw) lipid-based targeted and stabilized nanoparticles (tsNPs) and tested their binding to tumor cells expressing the HA receptor (CD44), systemic immunotoxicity, and biodistribution in tumor bearing mice. In vitro, the Mw of the surface anchored HA had a significant influence on the affinity towards CD44 on B16F10 murine melanoma cells. LMw HA-tsNPs exhibited weak binding, while binding of tsNPs coated with HMw HA was characterized by high binding. Both types of tsNPs had no measured effect on cytokine induction in vivo following intravenous administration to healthy C57BL/6 mice suggesting no immune activation. HMw HA-tsNPs showed enhanced circulation time and tumor targeting specificity, mainly by accumulating in the tumor and its vicinity compared with LMw HA-tsNPs. Finally, we show that methotrexate (MTX), a drug commonly used in cancer chemotherapy, entrapped in HMw HA-tsNPs slowly diffused from the particles with a half-life of 13.75 days, and improved the therapeutic outcome in a murine B16F10 melanoma model compared with NPs suggesting an active cellular targeting beyond the Enhanced Permeability and Retention (EPR) effect. Taken together, these findings have major implications for the use of high molecular weight HA in nanomedicine as a selective and safe active cellular targeting moiety.Hyaluronan (HA), a naturally occurring high Mw (HMw) glycosaminoglycan, has been shown to play crucial roles in cell growth, embryonic development, healing processes, inflammation, and tumor development and progression

  20. Impact of lipid-based nutrient supplementation (LNS) on children's diet adequacy in Western Uganda.

    PubMed

    Ickes, Scott B; Adair, Linda S; Brahe, Catherine A; Thirumurthy, Harsha; Charles, Baguma; Myhre, Jennifer A; Bentley, Margaret E; Ammerman, Alice S

    2015-12-01

    Lipid-based nutrient supplements (LNS) can help treat undernutrition; however, the dietary adequacy of children supplemented with LNS, and household utilisation patterns are not well understood. We assessed diet adequacy and the quality of complementary foods by conducting a diet assessment of 128 Ugandan children, ages 6-59 months, who participated in a 10-week programme for children with moderate acute malnutrition (MAM, defined as weight-for-age z-score < -2). Caregivers were given a weekly ration of 650 kcal day(-1) (126 g day(-1) ) of a peanut/soy LNS. Two 24-h dietary recalls were administered per child. LNS was offered to 86% of targeted children at least once. Among non-breastfed children, over 90% met their estimated average requirement (EAR) cut-points for all examined nutrients. Over 90% of breastfed children met EAR cut-points for nutrient density for most nutrients, except for zinc where 11.7% met cut-points. A lower proportion of both breastfed and non-breastfed children met adjusted EARs for the specific nutritional needs of MAM. Fewer than 20% of breastfed children met EAR nutrient-density guidelines for MAM for zinc, vitamin C, vitamin A and folate. Underweight status, the presence of a father in the child's home, and higher programme attendance were all associated with greater odds of feeding LNS to targeted children. Children in this community-based supplemental feeding programme who received a locally produced LNS exhibited substantial micronutrient deficiencies given the special dietary needs of this population. These results can help inform programme strategies to improve LNS targeting, and highlight potential nutrient inadequacies for consumers of LNS in community-based settings. © 2015 John Wiley & Sons Ltd.

  1. Examining the gastrointestinal transit of lipid-based liquid crystalline systems using whole-animal imaging.

    PubMed

    Pham, Anna C; Nguyen, Tri-Hung; Nowell, Cameron J; Graham, Bim; Boyd, Ben J

    2015-12-01

    Lipid-based liquid crystalline (LC) systems have the potential to sustain the oral absorption of poorly water-soluble drugs in vivo, facilitating slow drug release from their complex internal structure. To further evaluate the dynamic relationship between gastric retention and sustained drug absorption for these systems, this study aimed to explore non-invasive X-ray micro-CT imaging as an approach to assess gastric retention. Pharmacokinetic studies were also conducted with cinnarizine-loaded LC formulations to correlate gastric retention of the formulation to drug absorption. The in vivo studies demonstrated the interplay between gastric retention and drug absorption based on the digestibility of the LC structures. An increase in non-digestible phytantriol (PHY) composition in the formulation relative to digestible glyceryl monooleate (GMO) increased the gastric retention, with 68 ± 4 % of formulation intensity remaining at 8 h for 85 % w/w PHY, and 26 ± 9 % for 60 % w/w PHY. Interestingly, it was found that PHY 30 % w/w in GMO provided the highest bioavailability for cinnarizine (CZ) amongst the other combinations, including GMO alone. The studies demonstrated that combining digestible and non-digestible lipids into LC systems allowed for an optimal balance between sustaining drug absorption whilst increasing plasma concentration (C max) over time, leading to enhanced oral bioavailability. The results demonstrate the potential for utilising non-invasive X-ray micro-CT imaging to dynamically assess the GI transit of orally administered liquid crystal-forming formulations.

  2. Reversed lipid-based nanoparticles dispersed in oil for malignant tumor treatment via intratumoral injection.

    PubMed

    Shen, Liao; Zhang, Zhen; Wang, Tao; Yang, Xi; Huang, Ri; Quan, Dongqin

    2017-11-01

    Intratumoral injection of anticancer drugs directly delivers chemotherapeutics to the tumor region, offering an alternative strategy for cancer treatment. However, most hydrophilic drugs spread quickly from the injection site into systemic circulation, leading to inferior antitumor activity and adverse effects in patients. Therefore, we developed novel reversed lipid-based nanoparticles (RLBN) as a nanoscale drug carrier. RLBNs differ from traditional nanoscale drug carriers in that they possess a reversed structure consisting of a polar core and lipophilic periphery, leading to excellent solubility and stability in hydrophobic liquids; therefore, hydrophilic drugs can be entrapped in RLBNs and dispersed in oil. In vivo studies in tumor-bearing Balb/c nude mice indicated remarkable antitumor activity of RLBN-DOX after a single injection, with effective tumor growth inhibition for at least 17 days; the inhibition rate was ∼80%. These results can be attributed to the long-term retention and sustained drug release of RLBN-DOX in the tumor region. In contrast, intratumoral injection of free DOX showed weaker antitumor activity than RLBN-DOX did, with the tumor size doubling by day 11 and tripling by day 17. Further, the initial burst of drug released from free DOX could produce detrimental systemic effects, such as weight loss. Histological analyses by TUNEL staining showed apoptosis after treatment with RLBN-DOX, whereas tumor cell viability was high in the free DOX group. Current results indicate that RLBNs show sustained delivery of hydrophilic agents to local areas resulting in therapeutic efficacy, and they may be a promising drug delivery system suitable for intratumoral chemotherapy.

  3. Integration of surface-active, periodically sequenced peptides into lipid-based microbubbles.

    PubMed

    Badami, Joseph V; Desir, Pierre; Tu, Raymond S

    2014-07-29

    The development of microbubbles toward functional, "theranostic" particles requires the incorporation of constituents with high binding specificity and therapeutic efficacy. Integrating peptides or proteins into the shell of lipid-based microbubbles can provide a means to access both receptor-ligand interactions and therapeutic properties. Simultaneously, peptides or proteins can define the characteristic monolayer mechanics of lipid bubbles and eliminate the need for post-bubble generation modification. The ability to engineer peptide sequences de novo that effectively partition into the bubble monolayer remains parametrically daunting. This work contributes to this effort using two simple amphipathic helical peptides that examine the role of local electrostatics and secondary structure. The two periodically sequenced peptides both have three positive charges, but peptide "K-2.5" spaces those charges 2.5 amino acids apart, while peptide "K-6.0" spaces the charges six amino acids apart. Size populations were determined for bubbles containing each peptide species using light scattering, and a quantitative method was developed to clearly define the fraction of peptides binding onto the microbubble monolayer. The impact of both the initial peptide concentration and the zwitterionic:anionic lipid ratio on peptide binding was also evaluated. Our results indicate that the lipid ratio affected only K-6.0 binding, which appears to be an outcome of the greater ensemble average α-helical population of the K-6.0. These findings provide further insights into the role of charge separation on peptide secondary structure, establishing a simple design metric for peptide binding onto microbubble systems.

  4. Association of prenatal lipid-based nutritional supplementation with fetal growth in rural Gambia.

    PubMed

    Johnson, William; Darboe, Momodou K; Sosseh, Fatou; Nshe, Patrick; Prentice, Andrew M; Moore, Sophie E

    2017-04-01

    Prenatal supplementation with protein-energy (PE) and/or multiple-micronutrients (MMNs) may improve fetal growth, but trials of lipid-based nutritional supplements (LNSs) have reported inconsistent results. We conducted a post-hoc analysis of non-primary outcomes in a trial in Gambia, with the aim to test the associations of LNS with fetal growth and explore how efficacy varies depending on nutritional status. The sample comprised 620 pregnant women in an individually randomized, partially blinded trial with four arms: (a) iron and folic acid (FeFol) tablet (usual care, referent group), (b) MMN tablet, (c) PE LNS, and (d) PE + MMN LNS. Analysis of variance examined unadjusted differences in fetal biometry z-scores at 20 and 30 weeks and neonatal anthropometry z-scores, while regression tested for modification of intervention-outcome associations by season and maternal height, body mass index, and weight gain. Despite evidence of between-arm differences in some fetal biometry, z-scores at birth were not greater in the intervention arms than the FeFol arm (e.g., birth weight z-scores: FeFol -0.71, MMN -0.63, PE -0.64, PE + MMN -0.62; group-wise p = .796). In regression analyses, intervention associations with birth weight and head circumference were modified by maternal weight gain between booking and 30 weeks gestation (e.g., PE + MMN associations with birth weight were +0.462 z-scores (95% CI [0.097, 0.826]) in the highest quartile of weight gain but -0.099 z-scores (-0.459, 0.260) in the lowest). In conclusion, we found no strong evidence that a prenatal LNS intervention was associated with better fetal growth in the whole sample.

  5. Tools for Early Prediction of Drug Loading in Lipid-Based Formulations

    PubMed Central

    2015-01-01

    Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R2 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R2 0.85; Polysorbate 80, R2 0.90; Cremophor EL, R2 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R2 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R2 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug. PMID:26568134

  6. In Vivo Precipitation of Poorly Soluble Drugs from Lipid-Based Drug Delivery Systems.

    PubMed

    Sassene, P J; Michaelsen, M H; Mosgaard, M D; Jensen, M K; Van Den Broek, E; Wasan, K M; Mu, H; Rades, T; Müllertz, A

    2016-10-03

    Precipitation of poorly water-soluble drugs from lipid-based drug delivery systems (LbDDS) has been studied extensively during in vitro lipolysis but has never been shown in vivo. The aim of this study was therefore to investigate if drug precipitation can occur from LbDDS during transit of the gastrointestinal tract in vivo. Rats were administered 300 μL of either of two LbDDS (LbDDS I and LbDDS II) loaded with danazol or fenofibrate (or paracetamol to assess gastric emptying). The rats were euthanized at various time points after administration of both LbDDS containing either drug, and the contents of the stomach and proximal part of the small intestine were harvested. The contents were analyzed for crystalline drug by X-ray powder diffraction and polarized light microscopy. No drug precipitation was evident in the stomach or the intestine after administration of LbDDS I containing danazol at the tested time points. Fenofibrate precipitation was absent in the stomach initially after administration of LbDDS I, but was evident in the stomach 90 min after dosing. No crystalline fenofibrate was observed in the intestine. Danazol and fenofibrate precipitation was evident in the stomach following administration of LbDDS II containing either drug, but not in the intestine at the tested time point. Drug precipitation from LbDDS was observed in the stomach, but not in the intestine, which is contrary to what in vitro lipolysis data (obtained under human GI conditions) suggests. Thus, precipitation of drugs from LbDDS in vivo in rats is much lower than might be anticipated from in vitro lipolysis data.

  7. Assembly of the transmembrane domain of E. coli PhoQ histidine kinase: implications for signal transduction from molecular simulations.

    PubMed

    Lemmin, Thomas; Soto, Cinque S; Clinthorne, Graham; DeGrado, William F; Dal Peraro, Matteo

    2013-01-01

    The PhoQP two-component system is a signaling complex essential for bacterial virulence and cationic antimicrobial peptide resistance. PhoQ is the histidine kinase chemoreceptor of this tandem machine and assembles in a homodimer conformation spanning the bacterial inner membrane. Currently, a full understanding of the PhoQ signal transduction is hindered by the lack of a complete atomistic structure. In this study, an atomistic model of the key transmembrane (TM) domain is assembled by using molecular simulations, guided by experimental cross-linking data. The formation of a polar pocket involving Asn202 in the lumen of the tetrameric TM bundle is crucial for the assembly and solvation of the domain. Moreover, a concerted displacement of the TM helices at the periplasmic side is found to modulate a rotation at the cytoplasmic end, supporting the transduction of the chemical signal through a combination of scissoring and rotational movement of the TM helices.

  8. Role of membrane curvature in mechanoelectrical transduction: ion carriers nonactin and valinomycin sense changes in integral bending energy.

    PubMed

    Shlyonsky, V Gh; Markin, V S; Andreeva, I; Pedersen, S E; Simon, S A; Benos, D J; Ismailov, I I

    2006-11-01

    We describe the phenomenon of mechanoelectrical transduction in macroscopic lipid bilayer membranes modified by two cation-selective ionophores, valinomycin and nonactin. We found that bulging these membranes, while maintaining the membrane tension constant, produced a marked supralinear increase in specific carrier-mediated conductance. Analyses of the mechanisms involved in mechanoelectrical transduction induced by the imposition of a hydrostatic pressure gradient or by an amphipathic compound chlorpromazine reveal similar changes in the charge carrier motility and carrier reaction rates at the interface(s). Furthermore, the relative change in membrane conductance was independent of membrane diameter, but was directly proportional to the square of membrane curvature, thus relating the observed phenomena to the bilayer bending energy. Extrapolated to biological membranes, these findings indicate that ion transport in cells can be influenced simply by changing shape of the membrane, without a change in membrane tension.

  9. Analysis of cellular signal transduction from an information theoretic approach.

    PubMed

    Uda, Shinsuke; Kuroda, Shinya

    2016-03-01

    Signal transduction processes the information of various cellular functions, including cell proliferation, differentiation, and death. The information for controlling cell fate is transmitted by concentrations of cellular signaling molecules. However, how much information is transmitted in signaling pathways has thus far not been investigated. Shannon's information theory paves the way to quantitatively analyze information transmission in signaling pathways. The theory has recently been applied to signal transduction, and mutual information of signal transduction has been determined to be a measure of information transmission. We review this work and provide an overview of how signal transduction transmits informational input and exerts biological output. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice.

    PubMed

    Valetti, Sabrina; Mura, Simona; Stella, Barbara; Couvreur, Patrick

    2013-01-01

    Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field.

  11. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice

    PubMed Central

    2013-01-01

    Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field. PMID:24564841

  12. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come

    PubMed Central

    Yingchoncharoen, Phatsapong; Kalinowski, Danuta S.

    2016-01-01

    Cancer is a leading cause of death in many countries around the world. However, the efficacy of current standard treatments for a variety of cancers is suboptimal. First, most cancer treatments lack specificity, meaning that these treatments affect both cancer cells and their normal counterparts. Second, many anticancer agents are highly toxic, and thus, limit their use in treatment. Third, a number of cytotoxic chemotherapeutics are highly hydrophobic, which limits their utility in cancer therapy. Finally, many chemotherapeutic agents exhibit short half-lives that curtail their efficacy. As a result of these deficiencies, many current treatments lead to side effects, noncompliance, and patient inconvenience due to difficulties in administration. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems known commonly as nanoparticles. Among these delivery systems, lipid-based nanoparticles, particularly liposomes, have shown to be quite effective at exhibiting the ability to: 1) improve the selectivity of cancer chemotherapeutic agents; 2) lower the cytotoxicity of anticancer drugs to normal tissues, and thus, reduce their toxic side effects; 3) increase the solubility of hydrophobic drugs; and 4) offer a prolonged and controlled release of agents. This review will discuss the current state of lipid-based nanoparticle research, including the development of liposomes for cancer therapy, different strategies for tumor targeting, liposomal formulation of various anticancer drugs that are commercially available, recent progress in liposome technology for the treatment of cancer, and the next generation of lipid-based nanoparticles. PMID:27363439

  13. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs.

    PubMed

    Cerpnjak, Katja; Zvonar, Alenka; Gašperlin, Mirjana; Vrečer, Franc

    2013-12-01

    Low oral bioavailability as a consequence of low water solubility of drugs is a growing challenge to the development of new pharmaceutical products. One of the most popular approaches of oral bioavailability and solubility enhancement is the utilization of lipid-based drug delivery systems. Their use in product development is growing due to the versatility of pharmaceutical lipid excipients and drug formulations, and their compatibility with liquid, semi-solid, and solid dosage forms. Lipid formulations, such as self-emulsifying (SEDDS), self-microemulsifying SMEDDS) and self- -nanoemulsifying drug delivery systems (SNEDDS) were explored in many studies as an efficient approach for improving the bioavailability and dissolution rate of poorly water-soluble drugs. One of the greatest advantages of incorporating poorly soluble drugs into such formulations is their spontaneous emulsification and formation of an emulsion, microemulsion or nanoemulsion in aqueous media. This review article focuses on the following topics. First, it presents a classification overview of lipid-based drug delivery systems and mechanisms involved in improving the solubility and bioavailability of poorly water-soluble drugs. Second, the article reviews components of lipid-based drug delivery systems for oral use with their characteristics. Third, it brings a detailed description of SEDDS, SMEDDS and SNEDDS, which are very often misused in literature, with special emphasis on the comparison between microemulsions and nanoemulsions.

  14. Simulating the digestion of lipid-based drug delivery systems (LBDDS): overview of in vitro lipolysis models.

    PubMed

    Bolko, Katarina; Zvonar, Alenka; Gašperlin, Mirjana

    2014-01-01

    One of the greatest challenges in the pharmaceutical science is the improvement of oral bioavailability of poorly soluble drugs. Lately, one of the most attractive approaches has been formulation of lipid based drug delivery systems. However, the emerging popularity of these systems in the last decade has brought to light the need for efficient methods for their in vitro evaluation that would serve as their in vivo behaviour prediction tool. Because lipids are subject to lipid digestion and multiple absorption pathways in vivo, simple dissolution tests are not predictive enough when testing lipid based delivery systems. To assert these needs, the in vitro lipolysis model has been developed, utilizing pancreatic enzymes, bile and phospholipids in a temperature controlled chamber to simulate in vivo digestion. However, with very variable physiological conditions in gastrointestinal tract, this model has not been yet standardised and experiments vary among different laboratories. This review discusses in vivo events following oral application of lipid based delivery, in vitro lipolysis models to emulate them and their future perspectives.

  15. In vitro digestion kinetics of excipients for lipid-based drug delivery and introduction of a relative lipolysis half life.

    PubMed

    Arnold, Yvonne E; Imanidis, Georgios; Kuentz, Martin

    2012-10-01

    Lipid-based drug delivery systems are widely used for enhancing the solubility of poorly water soluble drugs in the gastro-intestinal tract. Following oral intake, lipid systems undergo digestion in the stomach as well as the intestine. Lipolysis is here a complex process at the oil/water interface, influenced by numerous factors. To study the digestibility of nine excipients often used in lipid-based drug delivery systems. In addition, we introduced a mathematical model to describe in vitro lipolysis kinetics. A relative lipolysis half life was defined using the reference excipient medium-chain triglycerides. Using pH-stat equipment, the NaOH consumption was determined in an in vitro lipolysis assay. We identified two classes of excipients. Some additives were partially hydrolysed, whereas other excipients displayed complete lipolysis. For the latter class, a simplified mathematical model provided a good first approximation of initial lipolysis kinetics. Digestion characterization of excipients is important for the development of lipid-based delivery systems. The applied kinetic model and the concept of a relative lipolysis half life seemed to be promising tools for comparing in vitro lipolysis results.

  16. Trends in the Assessment of Drug Supersaturation and Precipitation In Vitro Using Lipid-Based Delivery Systems.

    PubMed

    Stillhart, Cordula; Kuentz, Martin

    2016-09-01

    The generation of drug supersaturation close to the absorptive site is an important mechanism of how several formulation technologies enhance oral absorption and bioavailability. Lipid-based formulations belong to the supersaturating drug delivery systems although this is not the only mechanism of how drug absorption is promoted in vivo. Different methods to determine drug supersaturation and precipitation from lipid-based formulations are described in the literature. Experimental in vitro setups vary according to their complexity and proximity to the in vivo conditions and, therefore, some tests are used for early formulation screening, while others better qualify for a later stage of development. The present commentary discusses this rapidly evolving field of in vitro testing with a special focus on the advancements in analytical techniques and new approaches of mechanistic modeling. The importance of considering a drug absorption sink is particularly emphasized. This commentary should help formulators in the pharmaceutical industry as well as in academia to make informed decisions on how to conduct in vitro tests for lipid-based delivery systems and to decide on the implications of experimental results. Copyright © 2016. Published by Elsevier Inc.

  17. Green Light to Illuminate Signal Transduction Events

    PubMed Central

    Balla, Tamas

    2009-01-01

    When cells are exposed to hormones that act on cell surface receptors, information is processed through the plasma membrane into the cell interior via second messengers generated in the inner leaflet of the plasma membrane. Individual biochemical steps along this cascade, starting with ligand binding to receptors to activation of guanine nucleotide binding proteins and their downstream effectors such as adenylate cyclase or phospholipase C, have been biochemically characterized. However, the complexity of temporal and spatial integration of these molecular events requires that they be studied in intact cells. The great expansion of fluorescent techniques and improved imaging technologies such as confocal- and TIRF microscopy combined with genetically engineered protein modules has provided a completely new approach to signal transduction research. Spatial definition of biochemical events followed with real-time temporal resolution has become a standard goal and we are breaking the resolution barrier of light microscopes with several new techniques. PMID:19818623

  18. Transduction of mechanical strain in bone

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.

    1995-01-01

    One physiologic consequence of extended periods of weightlessness is the rapid loss of bone mass associated with skeletal unloading. Conversely, mechanical loading has been shown to increase bone formation and stimulate osteoblastic function. The mechanisms underlying mechanotransduction, or how the osteoblast senses and converts biophysical stimuli into cellular responses has yet to be determined. For non-innervated mechanosensitive cells like the osteoblast, mechanotransduction can be divided into four distinct phases: 1) mechanocoupling, or the characteristics of the mechanical force applied to the osteoblast, 2) biochemical coupling, or the mechanism through which mechanical strain is transduced into a cellular biochemical signal, 3) transmission of signal from sensor to effector cell and 4) the effector cell response. This review examines the characteristics of the mechanical strain encountered by osteoblasts, possible biochemical coupling mechanisms, and how the osteoblast responds to mechanical strain. Differences in osteoblastic responses to mechanical strain are discussed in relation to the types of strain encountered and the possible transduction pathways involved.

  19. Transduction of mechanical strain in bone

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.

    1995-01-01

    One physiologic consequence of extended periods of weightlessness is the rapid loss of bone mass associated with skeletal unloading. Conversely, mechanical loading has been shown to increase bone formation and stimulate osteoblastic function. The mechanisms underlying mechanotransduction, or how the osteoblast senses and converts biophysical stimuli into cellular responses has yet to be determined. For non-innervated mechanosensitive cells like the osteoblast, mechanotransduction can be divided into four distinct phases: 1) mechanocoupling, or the characteristics of the mechanical force applied to the osteoblast, 2) biochemical coupling, or the mechanism through which mechanical strain is transduced into a cellular biochemical signal, 3) transmission of signal from sensor to effector cell and 4) the effector cell response. This review examines the characteristics of the mechanical strain encountered by osteoblasts, possible biochemical coupling mechanisms, and how the osteoblast responds to mechanical strain. Differences in osteoblastic responses to mechanical strain are discussed in relation to the types of strain encountered and the possible transduction pathways involved.

  20. [ALPHA-ACTININS AND SIGNAL TRANSDUCTION PATHWAYS].

    PubMed

    Panyushev, N V; Tentler, D G

    2015-01-01

    Involvement of actin cytoskeleton proteins in signal transduction from cell surface to the nucleus, including regulation of transcription factors activity, has now been supported by a lot of experimental data. Here-with, cytoskeletal proteins may have different functions than ones they execute in the cytoplasm. Particularly, alpha-actinin 4 stabilizing actin microfilaments in the cytoplasm can translocate to the nucleus and change the activity of several transcription factors. Despite the lack of nuclear import signal and DNA binding domain, alpha-actinin 4 can bind to promoter sequences, and co-activate NF-κB-dependent transcription. Selective regulation of NF-κB gene targets may indicate involvement of alpha-actinin 4 in determining the specificity of cell response to NF-κB activation in cells of different types.

  1. Studying Cellular Signal Transduction with OMIC Technologies

    PubMed Central

    Landry, Benjamin D.; Clarke, David C.; Lee, Michael J.

    2016-01-01

    In the gulf between genotype and phenotype exists proteins and, in particular, protein signal transduction systems. These systems use a relatively limited parts list to respond to a much longer list of extracellular, environmental, and/or mechanical cues with rapidity and specificity. Most signaling networks function in a highly nonlinear and often contextual manner. Furthermore, these processes occur dynamically across space and time. Because of these complexities, systems and “OMIC” approaches are essential for the study of signal transduction. One challenge in using OMIC-scale approaches to study signaling is that the “signal” can take different forms in different situations. Signals are encoded in diverse ways such as protein-protein interactions, enzyme activities, localizations, or post-translational modifications to proteins. Furthermore, in some cases signals may be encoded only in the dynamics, duration, or rates of change of these features. Accordingly, systems-level analyses of signaling may need to integrate multiple experimental and/or computational approaches. As the field has progressed, the non-triviality of integrating experimental and computational analyses has become apparent. Successful use of OMIC methods to study signaling will require the “right” experiments and the “right” modeling approaches, and it is critical to consider both in the design phase of the project. In this review, we discuss common OMIC and modeling approaches for studying signaling, emphasizing the philosophical and practical considerations for effectively merging these two types of approaches to maximize the probability of obtaining reliable and novel insights into signaling biology. PMID:26244521

  2. Striatal Signal Transduction and Drug Addiction

    PubMed Central

    Philibin, Scott D.; Hernandez, Adan; Self, David W.; Bibb, James A.

    2011-01-01

    Drug addiction is a severe neuropsychiatric disorder characterized by loss of control over motivated behavior. The need for effective treatments mandates a greater understanding of the causes and identification of new therapeutic targets for drug development. Drugs of abuse subjugate normal reward-related behavior to uncontrollable drug-seeking and -taking. Contributions of brain reward circuitry are being mapped with increasing precision. The role of synaptic plasticity in addiction and underlying molecular mechanisms contributing to the formation of the addicted state are being delineated. Thus we may now consider the role of striatal signal transduction in addiction from a more integrative neurobiological perspective. Drugs of abuse alter dopaminergic and glutamatergic neurotransmission in medium spiny neurons of the striatum. Dopamine receptors important for reward serve as principle targets of drugs abuse, which interact with glutamate receptor signaling critical for reward learning. Complex networks of intracellular signal transduction mechanisms underlying these receptors are strongly stimulated by addictive drugs. Through these mechanisms, repeated drug exposure alters functional and structural neuroplasticity, resulting in transition to the addicted biological state and behavioral outcomes that typify addiction. Ca2+ and cAMP represent key second messengers that initiate signaling cascades, which regulate synaptic strength and neuronal excitability. Protein phosphorylation and dephosphorylation are fundamental mechanisms underlying synaptic plasticity that are dysregulated by drugs of abuse. Increased understanding of the regulatory mechanisms by which protein kinases and phosphatases exert their effects during normal reward learning and the addiction process may lead to novel targets and pharmacotherapeutics with increased efficacy in promoting abstinence and decreased side effects, such as interference with natural reward, for drug addiction. PMID

  3. Calcium and signal transduction in plants

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Reddy, A. S.

    1993-01-01

    Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.

  4. Studying Cellular Signal Transduction with OMIC Technologies.

    PubMed

    Landry, Benjamin D; Clarke, David C; Lee, Michael J

    2015-10-23

    In the gulf between genotype and phenotype exists proteins and, in particular, protein signal transduction systems. These systems use a relatively limited parts list to respond to a much longer list of extracellular, environmental, and/or mechanical cues with rapidity and specificity. Most signaling networks function in a highly non-linear and often contextual manner. Furthermore, these processes occur dynamically across space and time. Because of these complexities, systems and "OMIC" approaches are essential for the study of signal transduction. One challenge in using OMIC-scale approaches to study signaling is that the "signal" can take different forms in different situations. Signals are encoded in diverse ways such as protein-protein interactions, enzyme activities, localizations, or post-translational modifications to proteins. Furthermore, in some cases, signals may be encoded only in the dynamics, duration, or rates of change of these features. Accordingly, systems-level analyses of signaling may need to integrate multiple experimental and/or computational approaches. As the field has progressed, the non-triviality of integrating experimental and computational analyses has become apparent. Successful use of OMIC methods to study signaling will require the "right" experiments and the "right" modeling approaches, and it is critical to consider both in the design phase of the project. In this review, we discuss common OMIC and modeling approaches for studying signaling, emphasizing the philosophical and practical considerations for effectively merging these two types of approaches to maximize the probability of obtaining reliable and novel insights into signaling biology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Calcium and signal transduction in plants

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Reddy, A. S.

    1993-01-01

    Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.

  6. Extracellular divalent cations modulate aminoglycoside-induced hair cell death in the zebrafish lateral line

    PubMed Central

    Coffin, Allison B.; Reinhart, Katherine E.; Owens, Kelly N.; Raible, David W.; Rubel, Edwin W

    2016-01-01

    Aminoglycoside antibiotics cause death of sensory hair cells. Research over the past decade has identified several key players in the intracellular cascade. However, the role of the extracellular environment in aminoglycoside ototoxicity has received comparatively little attention. The present study uses the zebrafish lateral line to demonstrate that extracellular calcium and magnesium ions modulate hair cell death from neomycin and gentamicin in vivo, with high levels of either divalent cation providing significant protection. Imaging experiments with fluorescently tagged gentamicin show that drug uptake is reduced under high calcium conditions. Treating fish with the hair cell transduction blocker amiloride also reduces aminoglycoside uptake, preventing the toxicity, and experiments with variable calcium and amiloride concentrations suggest complementary effects between the two protectants. Elevated magnesium, in contrast, does not appear to significantly attenuate drug uptake, suggesting that the two divalent cations may protect hair cells from aminoglycoside damage through different mechanisms. These results provide additional evidence for calcium- and transduction-dependent aminoglycoside uptake. Divalent cations provided differential protection from neomycin and gentamicin, with high cation concentrations almost completely protecting hair cells from neomycin and acute gentamicin toxicity, but offering reduced protection from continuous (6 hr) gentamicin exposure. These experiments lend further support to the hypothesis that aminoglycoside toxicity occurs via multiple pathways in a both a drug and time course-specific manner. PMID:19285547

  7. 50years of oral lipid-based formulations: Provenance, progress and future perspectives.

    PubMed

    Feeney, Orlagh M; Crum, Matthew F; McEvoy, Claire L; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Charman, William N; Bergström, Christel A S; Porter, Christopher J H

    2016-06-01

    Lipid based formulations (LBF) provide well proven opportunities to enhance the oral absorption of drugs and drug candidates that sit close to, or beyond, the boundaries of Lipinski's 'rule-of-five' chemical space. Advantages in permeability, efflux and presystemic metabolism are evident; however, the primary benefit is in increases in dissolution and apparent intestinal solubility for lipophilic, poorly water soluble drugs. This review firstly details the inherent advantages of LBF, their general properties and classification, and provides a brief retrospective assessment of the development of LBF over the past fifty years. More detailed analysis of the ability of LBF to promote intestinal solubilisation, supersaturation and absorption is then provided alongside review of the methods employed to assess formulation performance. Critical review of the ability of simple dispersion and more complex in vitro digestion methods to predict formulation performance subsequently reveals marked differences in the correlative ability of in vitro tests, depending on the properties of the drug involved. Notably, for highly permeable low melting drugs e.g. fenofibrate, LBF appear to provide significant benefit in all cases, and sustained ongoing solubilisation may not be required. In other cases, and particularly for higher melting point drugs such as danazol, where re-dissolution of crystalline precipitate drug is likely to be slow, correlations with ongoing solubilisation and supersaturation are more evident. In spite of their potential benefits, one limitation to broader use of LBF is low drug solubility in the excipients employed to generate formulations. Techniques to increase drug lipophilicity and lipid solubility are therefore explored, and in particular those methods that provide for temporary enhancement including lipophilic ionic liquid and prodrug technologies. The transient nature of these lipophilicity increases enhances lipid solubility and LBF viability, but

  8. Effects of lipophilic components on the compatibility of lipid-based formulations with hard gelatin capsules.

    PubMed

    Chen, Feng-Jing; Etzler, Frank M; Ubben, Johanna; Birch, Amy; Zhong, Li; Schwabe, Robert; Dudhedia, Mayur S

    2010-01-01

    The present study investigated the effect of lipophilic components on the compatibility of propylene glycol (PG)-containing lipid-based drug delivery system (LBDDS) formulations with hard gelatin capsules. The presence of a lipophilic active pharmaceutical ingredient (API) (log P approximately 6.1) and an additional lipophilic excipient (Capmul MCM) significantly affected the activity of PG in the fills and the equilibrium of PG between capsule shells and fills. These changes in activity and equilibrium of PG were furthermore correlated to the mechanical and thermal properties of the liquid-filled capsules and subsequently linked to the shelf-life of the capsules on stability with respect to capsule deformation. The present study also investigated the mechanism by which lipophilic component(s) might affect the activity of PG in the fill formulations and the equilibrium of PG between capsule shells and fills. The activities of PG in two series of "binary" mixtures with Capmul MCM and with Cremophor EL were measured, respectively. The mixtures of PG containing Capmul MCM were found to be more nearly ideal than those containing Cremophor EL. The observed negative deviation from Rauolt's law indicates that the excess free energies of mixing are less then zero indicating favorable interaction between PG and the other component. It is speculated that enhanced hydrogen bonding opportunities with Cremophor EL are responsible for the decreased excess free energy of mixing. Replacement of Cremophor EL with lipophilic API also reduces the hydrogen bonding opportunities for PG in the mixtures. This hypothesis may further explain the increased activity of PG in the fills and the shifted equilibrium of PG toward the capsule shells. Activity determination utilizing headspace gas chromatography (GC) using short 30 min incubation time seems to be a time-efficient approach for assessing capsule-fill compatibility. Direct measurements of PG migration and other physical properties of

  9. Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes.

    PubMed

    Barauskas, Justas; Cervin, Camilla; Jankunec, Marija; Spandyreva, Marija; Ribokaite, Kristina; Tiberg, Fredrik; Johnsson, Markus

    2010-05-31

    Lipid-based liquid crystalline nanoparticles (LCNPs) are interesting candidates for drug delivery applications, for instance as solubilizing or encapsulating carriers for intravenous (i.v.) drugs. Here it is important that the carriers are safe and tolerable and do not have, e.g. hemolytic activity. In the present study we have studied LCNP particles of different compositions with respect to their mixing behavior and membrane destabilizing effects in model and cell membrane systems. Different types of non-lamellar LCNPs were studied including cubic phase nanoparticles (Cubosome) based on glycerol monooleate (GMO), hexagonal phase nanoparticles (Hexosome) based on diglycerol monooleate (DGMO) and glycerol dioleate (GDO), sponge phase nanoparticles based on DGMO/GDO/polysorbate 80 (P80) and non-lamellar nanoparticles based on soy phosphatidylcholine (SPC)/GDO. Importantly, the LCNPs based on the long-chain monoacyl lipid, GMO, were shown to display a very fast and complete lipid mixing with model membranes composed of multilamellar SPC liposomes as assessed by a fluorescence energy transfer (FRET) assay. The result correlated well with pronounced hemolytic properties observed when the GMO-based LCNPs were mixed with rat whole blood. In sharp contrast, LCNPs based on mixtures of the long-chain diacyl lipids, SPC and GDO, were found to be practically inert towards both hemolysis in rat whole blood as well as lipid mixing with SPC model membranes. The LCNP dispersions based on a mixture of long-chain monoacyl and diacyl lipids, DGMO/GDO, displayed an intermediate behavior compared to the GMO and SPC/GDO-based systems with respect to both hemolysis and lipid mixing. It is concluded that GMO-based LCNPs are unsuitable for parenteral drug delivery applications (e.g. i.v. administration) while the SPC/GDO-based LCNPs exhibit good properties with limited lipid mixing and hemolytic activity. The correlation between results from lipid mixing or FRET experiments and the in

  10. Lipid-Based Nutrient Supplements Increase Energy and Macronutrient Intakes from Complementary Food among Malawian Infants.

    PubMed

    Hemsworth, Jaimie; Kumwenda, Chiza; Arimond, Mary; Maleta, Kenneth; Phuka, John; Rehman, Andrea M; Vosti, Stephen A; Ashorn, Ulla; Filteau, Suzanne; Dewey, Kathryn G; Ashorn, Per; Ferguson, Elaine L

    2016-02-01

    Low intakes of good-quality complementary foods (CFs) contribute to undernutrition and consequently negatively affect health, growth, and development. Lipid-based nutrient supplements (LNSs) are designed to ensure dietary adequacy in micronutrients and essential fatty acids and to provide some energy and high-quality protein. In populations in which acute energy deficiency is rare, the dose-dependent effect of LNSs on CF intakes is unknown. The objective of this study was to evaluate the difference in energy and macronutrient intakes from CF between a control (no supplement) group and 3 groups that received 10, 20, or 40 g LNS/d. We collected repeated interactive 24-h dietary recalls from caregivers of rural Malawian 9- to 10-mo-old infants (n = 748) to estimate dietary intakes (LNS and all non-breast-milk foods) of energy and macronutrients and their dietary patterns. All infants were participating in a 12-mo randomized controlled trial to investigate the efficacy of various doses of LNS for preventing undernutrition. Dietary energy intakes were significantly higher among infants in the LNS intervention groups than in the control group (396, 406, and 388 kcal/d in the 10-, 20-, and 40-g LNS/d groups, respectively, compared with 345 kcal/d; each pairwise P < 0.05), but no significant differences were found in energy intakes between groups who were administered the different LNS doses (10 g LNS/d compared with 20 g LNS/d: P = 0.72; 10 g LNS/d compared with 40 g LNS/d: P ≥ 0.67; 20 g LNS/d compared with 40 g LNS/d: P = 0.94). Intakes of protein and fat were significantly higher in the LNS intervention groups than in the control group. No significant intergroup differences were found in median intakes of energy from non-LNS CFs (357, 347, and 296 kcal/d in the 10-, 20-, and 40-g LNS/d groups, respectively, compared with 345 kcal/d in the control group; P = 0.11). LNSs in doses of 10-40 g/d increase intakes of energy and macronutrients among 9- to 10-mo-old Malawian

  11. Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles.

    PubMed

    Cohen, Zvi R; Ramishetti, Srinivas; Peshes-Yaloz, Naama; Goldsmith, Meir; Wohl, Anton; Zibly, Zion; Peer, Dan

    2015-02-24

    Glioblastoma multiforme (GBM) is one of the most infiltrating, aggressive, and poorly treated brain tumors. Progress in genomics and proteomics has paved the way for identifying potential therapeutic targets for treating GBM, yet the vast majority of these leading drug candidates for the treatment of GBM are ineffective, mainly due to restricted passages across the blood-brain barrier. Nanoparticles have been emerged as a promising platform to treat different types of tumors due to their ability to transport drugs to target sites while minimizing adverse effects. Herein, we devised a localized strategy to deliver RNA interference (RNAi) directly to the GBM site using hyaluronan (HA)-grafted lipid-based nanoparticles (LNPs). These LNPs having an ionized lipid were previously shown to be highly effective in delivering small interfering RNAs (siRNAs) into various cell types. LNP's surface was functionalized with hyaluronan (HA), a naturally occurring glycosaminoglycan that specifically binds the CD44 receptor expressed on GBM cells. We found that HA-LNPs can successfully bind to GBM cell lines and primary neurosphers of GBM patients. HA-LNPs loaded with Polo-Like Kinase 1 (PLK1) siRNAs (siPLK1) dramatically reduced the expression of PLK1 mRNA and cumulated in cell death even under shear flow that simulate the flow of the cerebrospinal fluid compared with control groups. Next, a human GBM U87MG orthotopic xenograft model was established by intracranial injection of U87MG cells into nude mice. Convection of Cy3-siRNA entrapped in HA-LNPs was performed, and specific Cy3 uptake was observed in U87MG cells. Moreover, convection of siPLK1 entrapped in HA-LNPs reduced mRNA levels by more than 80% and significantly prolonged survival of treated mice in the orthotopic model. Taken together, our results suggest that RNAi therapeutics could effectively be delivered in a localized manner with HA-coated LNPs and ultimately may become a therapeutic modality for GBM.

  12. Genetic Analysis in Bacillus pumilus by PBS1-Mediated Transduction

    PubMed Central

    Lovett, Paul S.; Young, Frank E.

    1970-01-01

    Bacteriophage PBS1 mediates generalized transduction in Bacillus pumilus NRRL B-3275 (BpB1). Transduction frequencies for single auxotrophic markers are of the order of 10−4 transductants per plaque-forming unit in crude phage lysates. The characteristics of PBS1 propagated on BpB1 and the properties of the system of transduction are similar to those reported for PBS1 propagated on Bacillus subtilis. By transduction, eight amino acid auxotrophic markers in BpB1 have been oriented into two linkage groups. One group contains the auxotrophic markers arginine A, leucine, and phenylalanine, and the other group contains the markers lysine, serine, tryptophan, isoleucine-valine, and isoleucine. The nature and relative order of the markers within each linkage group suggest that the arrangement of genes in these areas of the chromosome of BpB1 is similar to the arrangement of phenotypically comparable genes in two linkage groups (defined by PBS1 transduction) in B. subtilis. However, transduction of any of the above cited markers in BpB1 to prototrophy with PBS1 propagated on B. subtilis 168 could not be demonstrated. In addition to BpB1, seven other strains of B. pumilus can be infected with PBS1. Transduction has been demonstrated in three of these strains. Images PMID:5413829

  13. Serotonin Signal Transduction in Two Groups of Autistic Patients

    DTIC Science & Technology

    2012-10-01

    AD_________________ Award Number: TITLE: Serotonin Signal Transduction in Two Groups of Autistic ...Serotonin Signal Transduction in Two Groups of Autistic Patients 5a. CONTRACT NUMBER W81XWH-11-1-0820 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Furthermore, while treatment with selective serotonin uptake inhibitors (SSRI) is routine for autistic patients, therapeutic benefit is variable and

  14. Plasmid transfer via transduction from Streptococcus thermophilus to Lactococcus lactis.

    PubMed

    Ammann, Andreas; Neve, Horst; Geis, Arnold; Heller, Knut J

    2008-04-01

    Using Streptococcus thermophilus phages, plasmid transduction in Lactococcus lactis was demonstrated. The transduction frequencies were 4 orders of magnitude lower in L. lactis than in S. thermophilus. These results are the first evidence that there is phage-mediated direct transfer of DNA from S. thermophilus to L. lactis. The implications of these results for phage evolution are discussed.

  15. Report of an Army Workshop on Convergence Forecasting: Mechanochemical Transduction

    DTIC Science & Technology

    2012-07-01

    Breakout Session 1, Group 1.........................................................................10  Figure 3. Potential Ultrasound -Mediated...Capabilities in Mechanochemical Transduction ..........10  Figure 4. Factors that Limit Potential Ultrasound -Mediated Mechanochemical Transduction... ultrasound as a mechanism to induce mechanochemical reactions. If ultrasound is to be used to provide the mechanical energy for subsequent chemical

  16. The Cation-π Interaction

    PubMed Central

    DOUGHERTY, DENNIS A.

    2014-01-01

    CONSPECTUS The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author’s perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forgo aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction – Li+ binds to benzene with 38 kcal/mol of binding energy; NH4+ with 19 kcal/mol– distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2 – 5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) Cδ−–Hδ+ bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li+>Na+>K+>Rb+: as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane

  17. Optogenetics - Bringing light into the darkness of mammalian signal transduction.

    PubMed

    Mühlhäuser, Wignand W D; Fischer, Adrian; Weber, Wilfried; Radziwill, Gerald

    2017-02-01

    Cells receive many different environmental clues to which they must adapt accordingly. Therefore, a complex signal transduction network has evolved. Cellular signal transduction is a highly dynamic process, in which the specific outcome is a result of the exact spatial and temporal resolution of single sub-events. While conventional techniques, like chemical inducer systems, have led to a sound understanding of the architecture of signal transduction pathways, the spatiotemporal aspects were often impossible to resolve. Optogenetics, based on genetically encoded light-responsive proteins, has the potential to revolutionize manipulation of signal transduction processes. Light can be easily applied with highest precision and minimal invasiveness. This review focuses on examples of optogenetic systems which were generated and applied to manipulate non-neuronal mammalian signaling processes at various stages of signal transduction, from cell membrane through cytoplasm to nucleus. Further, the future of optogenetic signaling will be discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Separate TRP channels mediate amplification and transduction in drosophila

    NASA Astrophysics Data System (ADS)

    Lehnert, Brendan P.; Baker, Allison E.; Wilson, Rachel I.

    2015-12-01

    Auditory receptor cells rely on mechanically-gated channels to transform sound stimuli into neural activity. Several TRP channels have been implicated in Drosophila auditory transduction, but mechanistic studies have been hampered by the inability to record subthreshold signals from receptor neurons. We developed a non-invasive method for measuring these signals by recording from a central neuron that is electrically coupled to a genetically-defined population of auditory receptors. We find that the TRPN family member NompC, which is necessary for the active amplification of motion by the auditory organ, is not required for transduction. Instead, NompC sensitizes the transduction complex to movement and precisely regulates the static forces on the complex. In contrast, the TRPV channels Nanchung and Inactive are required for responses to sound, suggesting they are components of the transduction complex. Thus, transduction and active amplification are genetically separable processes in Drosophila hearing.

  19. An intimate link: two-component signal transduction systems and metal transport systems in bacteria

    PubMed Central

    Singh, Kamna; Senadheera, Dilani B; Cvitkovitch, Dennis G

    2014-01-01

    Bacteria have evolved various strategies to contend with high concentrations of environmental heavy metal ions for rapid, adaptive responses to maintain cell viability. Evidence gathered in the past two decades suggests that bacterial two-component signal transduction systems (TCSTSs) are intimately involved in monitoring cation accumulation, and can regulate the expression of related metabolic and virulence genes to elicit adaptive responses to changes in the concentration of these ions. Using examples garnered from recent studies, we summarize the cross-regulatory relationships between metal ions and TCSTSs. We present evidence of how bacterial TCSTSs modulate metal ion homeostasis and also how metal ions, in turn, function to control the activities of these signaling systems linked with bacterial survival and virulence. PMID:25437189

  20. An intimate link: two-component signal transduction systems and metal transport systems in bacteria.

    PubMed

    Singh, Kamna; Senadheera, Dilani B; Cvitkovitch, Dennis G

    2014-01-01

    Bacteria have evolved various strategies to contend with high concentrations of environmental heavy metal ions for rapid, adaptive responses to maintain cell viability. Evidence gathered in the past two decades suggests that bacterial two-component signal transduction systems (TCSTSs) are intimately involved in monitoring cation accumulation, and can regulate the expression of related metabolic and virulence genes to elicit adaptive responses to changes in the concentration of these ions. Using examples garnered from recent studies, we summarize the cross-regulatory relationships between metal ions and TCSTSs. We present evidence of how bacterial TCSTSs modulate metal ion homeostasis and also how metal ions, in turn, function to control the activities of these signaling systems linked with bacterial survival and virulence.

  1. Cationic Nitrogen Doped Helical Nanographenes.

    PubMed

    Xu, Kun; Feng, Xinliang; Berger, Reinhard; Popov, Alexey A; Weigand, Jan J; Vincon, Ilka; Machata, Peter; Hennersdorf, Felix; Zhou, Youjia; Fu, Yubin

    2017-09-13

    Herein, we report on the synthesis of a series of novel cationic nitrogen doped nanographenes (CNDN) by rhodium catalyzed annulation reactions. This powerful method allows for the synthesis of cationic nanographenes with non-planar, axial chiral geometries. Single-crystal X-ray analysis reveals helical and cove-edged structures. Compared to their all-carbon analogues, the CNDN exhibit energetically lower lying frontier orbitals with a reduced optical energy gap and an electron accepting behavior. All derivatives show quasi reversible reductions in cyclic voltammetry. Depending on the number of nitrogen dopant, in situ spectroelectrochemistry proves the formation of neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) upon reduction. The developed synthetic protocol paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons containing cationic nitrogen doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Membrane and Lipids as Integral Participants in Signal Transduction: Lipid Signal Transduction for the Non-Lipid Biochemist

    ERIC Educational Resources Information Center

    Eyster, Kathleen M.

    2007-01-01

    Reviews of signal transduction have often focused on the cascades of protein kinases and protein phosphatases and their cytoplasmic substrates that become activated in response to extracellular signals. Lipids, lipid kinases, and lipid phosphatases have not received the same amount of attention as proteins in studies of signal transduction.…

  3. The Membrane and Lipids as Integral Participants in Signal Transduction: Lipid Signal Transduction for the Non-Lipid Biochemist

    ERIC Educational Resources Information Center

    Eyster, Kathleen M.

    2007-01-01

    Reviews of signal transduction have often focused on the cascades of protein kinases and protein phosphatases and their cytoplasmic substrates that become activated in response to extracellular signals. Lipids, lipid kinases, and lipid phosphatases have not received the same amount of attention as proteins in studies of signal transduction.…

  4. Desensitization of the mGluR6 transduction current in tiger salamander On bipolar cells.

    PubMed

    Nawy, Scott

    2004-07-01

    Light depolarizes retinal On bipolar cells, opening the cation-selective channels that are responsible for producing the synaptic current. In this study, the basic features of light-induced signals were mimicked by bathing slices of salamander retina with an agonist for the mGluR6 receptor that is expressed on the dendrites of On cells, and then displacing the agonist with the mGluR6 antagonist (RS)-a-cyclopropyl-4-phosphonophenylglycine (CPPG). The transduction current that is activated by this protocol rapidly shuts off, or desensitizes. Desensitization was highly correlated with the concentration and the type of Ca2+ buffer that was dialysed into the cell: When Ca2+ buffering was minimized by dialysing cells with 0.5 mM EGTA, the steady-state response was reduced to approximately 40% of the peak response. Buffering with 10 mM EGTA reduced desensitization, while BAPTA completely eliminated it. Removing external Ca2+ also prevented desensitization, suggesting that entry of Ca2+ through the transduction channel provides the trigger. The time course of desensitization was measured by using a voltage jump protocol to rapidly increase Ca2+ influx, and could be fitted with a single time constant on the order of 1 s, in good agreement with previously published rates of desensitization to steps of light in this species. It is proposed that Ca(2+)-dependent shut-off of the On bipolar cell transduction current may contribute to the conversion of sustained to transient light responses that predominate in the inner retina.

  5. Enhanced in-cell folding of reversibly cationized transcription factor using amphipathic peptide.

    PubMed

    Futami, Midori; Nakano, Tomoki; Yasunaga, Mayu; Makihara, Masahiro; Asama, Takashi; Hagihara, Yoshihisa; Nakajima, Yoshihiro; Futami, Junichiro

    2017-04-01

    The intracellular delivery of functionally active transcription factor proteins is emerging as a promising technique for artificial regulation of cellular functions. However, in addition to the cell membrane, which acts as a barrier to macromolecules, the aggregation-favored properties of structurally flexible transcription factor proteins limit the application of this method. In-cell folding technique can be used to overcome these issues. This technique solubilizes denatured protein by reversible alkyl-disulfide cationization (S-cationization), and simultaneously endows efficient intracellular delivery and folding to the biologically active conformation in the reducing environment of the cytosol. Because cationized protein is internalized into cells by adsorption-mediated endocytosis, endosomal escape is crucial for this technique. In this study, we utilized a sensitive luciferase reporter gene assay to quantitatively evaluate in-cell folding of the artificial transcription factor GAL4-VP16. Although the cationic moiety of S-cationized protein was slightly affected, co-transduction of amphipathic peptide Endo-PORTER dramatically improved in-cell folding efficiency. Live cell imaging of fluorescent-labeled GAL4-VP16 revealed that some of the proteins diffused into the cytosol and nucleus through co-transduction with Endo-PORTER. Real-time monitoring of light output of luciferase revealed the kinetics of in-cell folding, supporting that endosomal-release assisted by Endo-PORTER was stimulated by endosome acidification. Because this method can transduce proteins uniformly and repeatedly into living cells, S-cationized transcription factor proteins are widely applicable for the artificial regulation of cellular functions.

  6. Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes.

    PubMed

    Crespo, Gastón A; Macho, Santiago; Bobacka, Johan; Rius, F Xavier

    2009-01-15

    Porous carbon materials and carbon nanotubes were recently used as solid contacts in ion-selective electrodes (ISE), and the signal transduction mechanism of these carbon-based materials is therefore of great interest. In this work the ion-to-electron transduction mechanism of carbon nanotubes is studied by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Single-walled carbon nanotubes (SWCNT) are deposited on glassy carbon (GC) disk electrodes by repetitive spraying, resulting in SWCNT layers with thicknesses of 10, 35, and 50 mum. The impedance spectra of these GC/SWCNT electrodes in contact with aqueous electrolyte solution show a very small resistance and a large bulk capacitance that is related to a large effective double layer at the SWCNT/electrolyte interface. Interestingly, the impedance response of GC/SWCNT is very similar to that of poly(3,4-ethylenedioxythiophene) (PEDOT) film electrodes studied earlier under the same experimental conditions. The same equivalent circuit is valid for both types of materials. The reason is that both materials can be described schematically as an asymmetric capacitor where one side is formed by electronic charge (electrons/holes) in the SWCNT wall or along the conjugated polymer chain of PEDOT and the other side is formed by ions (anions/cations) in the solution (or in the ion-selective membrane when used as a solid contact in ISE).

  7. Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA.

    PubMed

    Yang, Xian-Zhu; Dou, Shuang; Wang, Yu-Cai; Long, Hong-Yan; Xiong, Meng-Hua; Mao, Cheng-Qiong; Yao, Yan-Dan; Wang, Jun

    2012-06-26

    The clinical success of therapeutics of small interfering RNA (siRNA) is still hindered by its delivery systems. Cationic polymer or lipid-based vehicles as the major delivery systems of siRNA cannot sufficiently satisfy siRNA therapeutic applications. It is hypothesized that cationic lipid-polymer hybrid nanoparticles may take advantage of both polymeric and lipid-based nanoparticles for siRNA delivery, while diminishing the shortcomings of both. In this study, cationic lipid-polymer hybrid nanoparticles were prepared by a single-step nanoprecipitation of a cationic lipid (N,N-bis(2-hydroxyethyl)-N-methyl-N-(2-cholesteryloxycarbonyl aminoethyl) ammonium bromide, BHEM-Chol) and amphiphilic polymers for systemic delivery of siRNA. The formed hybrid nanoparticles comprised a hydrophobic polylactide core, a hydrophilic poly(ethylene glycol) shell, and a cationic lipid monolayer at the interface of the core and the shell. Such hybrid nanoparticles exhibited excellent stability in serum and showed significantly improved biocompatibility compared to that of pure BHEM-Chol particles. The hybrid nanoparticles were capable of delivering siRNA into BT474 cells and facilitated the escape of loaded siRNA from the endosome into the cytoplasm. The hybrid nanoparticles carrying polo-like kinase 1 (Plk1)-specific siRNA (siPlk1) remarkably and specifically downregulated expression of the oncogene Plk1 and induced cancer cell apoptosis both in vitro and in vivo and significantly suppressed tumor growth following systemic administration. We demonstrate that this system is stable, nontoxic, highly efficient, and easy to scale up, bringing the clinical application of siRNA therapy one important step closer to reality.

  8. Cationic glycosphingolipids in neuronal tissues and their possible biological significance.

    PubMed

    Hikita, Toshiyuki; Tadano-Aritomi, Keiko; Iida-Tanaka, Naoko; Levery, Steven B; Ishizuka, Ineo; Hakomori, Senitiroh

    2002-08-01

    During the course of studies on natural occurrence of sphingosine base in brain, cationic glycosphingolipids bound to carboxymethyl-Sephadex and eluted with triethylamine in organic solvents were isolated and characterized. Four classes of compounds were identified: (i) plasmalopsychosine-A and -B; (ii) glyceroplasmalopsychosine; (iii) glycosphingolipids having de-N-acetyl-hexosamine, e.g., de-N-acetyl-Lc3Cer; (iv) glycosylsphingosine, i.e., lysoglycosphingolipid. Only two kinds, galactosylsphingosine (psychosine) and lactosylsphingosine, were found to occur naturally in brain. All these compounds were isolated from extract of brain white matter. Their occurrence, quantity, and distribution pattern differ from one species to another. Their quantity is much lower than that of regular acidic and neutral glycosphingolipids. They may interact with regular glycosphingolipids in glycosphingolipid-enriched microdomains to elicit signal transduction, to modify cellular phenotype, although studies along this line are highly limited at this time.

  9. Signal transduction by the Fat cytoplasmic domain

    PubMed Central

    Pan, Guohui; Feng, Yongqiang; Ambegaonkar, Abhijit A.; Sun, Gongping; Huff, Matthew; Rauskolb, Cordelia; Irvine, Kenneth D.

    2013-01-01

    The large atypical cadherin Fat is a receptor for both Hippo and planar cell polarity (PCP) pathways. Here we investigate the molecular basis for signal transduction downstream of Fat by creating targeted alterations within a genomic construct that contains the entire fat locus, and by monitoring and manipulating the membrane localization of the Fat pathway component Dachs. We establish that the human Fat homolog FAT4 lacks the ability to transduce Hippo signaling in Drosophila, but can transduce Drosophila PCP signaling. Targeted deletion of conserved motifs identifies a four amino acid C-terminal motif that is essential for aspects of Fat-mediated PCP, and other internal motifs that contribute to Fat-Hippo signaling. Fat-Hippo signaling requires the Drosophila Casein kinase 1ϵ encoded by discs overgrown (Dco), and we characterize candidate Dco phosphorylation sites in the Fat intracellular domain (ICD), the mutation of which impairs Fat-Hippo signaling. Through characterization of Dachs localization and directed membrane targeting of Dachs, we show that localization of Dachs influences both the Hippo and PCP pathways. Our results identify a conservation of Fat-PCP signaling mechanisms, establish distinct functions for different regions of the Fat ICD, support the correlation of Fat ICD phosphorylation with Fat-Hippo signaling, and confirm the importance of Dachs membrane localization to downstream signaling pathways. PMID:23318637

  10. Melanin, Radiation, and Energy Transduction in Fungi.

    PubMed

    Casadevall, Arturo; Cordero, Radames J B; Bryan, Ruth; Nosanchuk, Joshua; Dadachova, Ekaterina

    2017-03-01

    Melanin pigments are found in many diverse fungal species, where they serve a variety of functions that promote fitness and cell survival. Melanotic fungi inhabit some of the most extreme habitats on earth such as the damaged nuclear reactor at Chernobyl and the highlands of Antarctica, both of which are high-radiation environments. Melanotic fungi migrate toward radioactive sources, which appear to enhance their growth. This phenomenon, combined with the known capacities of melanin to absorb a broad spectrum of electromagnetic radiation and transduce this radiation into other forms of energy, raises the possibility that melanin also functions in harvesting such energy for biological usage. The ability of melanotic fungi to harness electromagnetic radiation for physiological processes has enormous implications for biological energy flows in the biosphere and for exobiology, since it provides new mechanisms for survival in extraterrestrial conditions. Whereas some features of the way melanin-related energy transduction works can be discerned by linking various observations and circumstantial data, the mechanistic details remain to be discovered.

  11. Glycosphingolipid–Protein Interaction in Signal Transduction

    PubMed Central

    Russo, Domenico; Parashuraman, Seetharaman; D’Angelo, Giovanni

    2016-01-01

    Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development. PMID:27754465

  12. Signal transduction activated by cannabinoid receptors.

    PubMed

    Díaz-Laviada, Inés; Ruiz-Llorente, Lidia

    2005-07-01

    Since the discovery that cannabinoids exert biological actions through binding to specific receptors, signal mechanisms triggered by these receptors have been focus of extensive study. This review summarizes the current knowledge of the signalling events produced by cannabinoids from membrane receptors to downstream regulators. Two types of cannabinoid receptors have been identified to date: CB(1) and CB(2) both belonging to the heptahelichoidal receptor family but with different tissue distribution and signalling mechanisms. Coupling to inhibitory guanine nucleotide-binding protein and thus inhibition of adenylyl cyclase has been observed in both receptors but other signal transduction pathways that are regulated or not by these G proteins are differently activated upon ligand-receptor binding including ion channels, sphingomyelin hydrolysis, ceramide generation, phospholipases activation and downstream targets as MAP kinase cascade, PI3K, FAK or NOS regulation. Cannabinoids may also act independently of CB(1)or CB(2) receptors. The existence of new unidentified putative cannabinoid receptors has been claimed by many investigators. Endocannabinoids activate vanilloid TRPV1 receptors that may mediate some of the cannabinoid effects. Other actions of cannabinoids can occur through non-receptor-mediated mechanisms.

  13. Confocal Scanner for Highly Sensitive Photonic Transduction of Nanomechanical Resonators

    NASA Astrophysics Data System (ADS)

    Diao, Zhu; Losby, Joseph E.; Sauer, Vincent T. K.; Westwood, Jocelyn N.; Freeman, Mark R.; Hiebert, Wayne K.

    2013-06-01

    We show that a simple confocal laser scanning system can be used to couple light through grating couplers into nanophotonic circuits. The coupling efficiency is better than 15% per coupler. Our technique avoids using multi-axis fibre stages and is especially advantageous when the nanophotonic circuit is kept in vacuum, e.g., for nanomechanical resonator displacement transduction. This was demonstrated by recording the resonant response of a nanomechanical doubly clamped beam embedded in a race-track optical cavity. The nanophotonic transduction offers an increase of two orders of magnitude in transduction responsivity compared with conventional free-space optical interferometry.

  14. Protein transduction domain-containing microemulsions as cutaneous delivery systems for an anticancer agent.

    PubMed

    Pepe, Dominique; McCall, Melissa; Zheng, Haian; Lopes, Luciana B

    2013-05-01

    In this study, we developed cationic microemulsions containing a protein transduction domain (penetratin) for optimizing paclitaxel localization within the skin. Microemulsions were prepared by mixing a surfactant blend (BRIJ:ethanol:propylene glycol 2:1:1, w/w/w) with monocaprylin (oil phase) at 1.3:1 ratio, and adding water at 30% (ME-30), 43% (ME-43), and 50% (ME-50). Electrical conductivity and viscosity measurements indicated that ME-30 is most likely a bicontinuous system, whereas ME-43 and ME-50 are water continuous. Their irritation potential, studied in bioengineered skin equivalents, decreased as aqueous content increased. Because ME-50 was not stable in the presence of paclitaxel (0.5%), ME-43 was selected for penetratin incorporation (0.4%). The microemulsion containing penetratin (ME-P) displayed zeta potential of +5.2 mV, and promoted a 1.8-fold increase in paclitaxel cutaneous (but not transdermal) delivery compared with the plain ME-43, whereas the enhancement promoted by another cationic microemulsion containing phytosphingosine was 1.3-fold. Compared with myvacet oil, ME-P promoted a larger increase on transepidermal water loss (twofold) than the plain or the phytosphingosine-containing microemulsions (1.5-fold), suggesting that penetratin addition increases the barrier-disrupting and penetration-enhancing effects of microemulsions. The ratio Δcutaneous/Δtransdermal delivery promoted by ME-P was the highest among the formulations, suggesting its potential for drug localization within cutaneous tumor lesions.

  15. Combination of adenovirus and cross-linked low molecular weight PEI improves efficiency of gene transduction

    NASA Astrophysics Data System (ADS)

    Han, Jianfeng; Zhao, Dong; Zhong, Zhirong; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2010-03-01

    Recombinant adenovirus (Ad)-mediated gene therapy is an exciting novel strategy in cancer treatment. However, poor infection efficiency with coxsackievirus and adenovirus receptor (CAR) down-regulated cancer cell lines is one of the major challenges for its practical and extensive application. As an alternative method of viral gene delivery, a non-viral carrier using cationic materials could compensate for the limitation of adenovirus. In our study, adenovectors were complexed with a new synthetic polymer PEI-DEG-bis-NPC (PDN) based on polyethylenimine (PEI), and then the properties of the vehicle were characterized by measurement of size distribution, zeta potential and transmission electron microscopy (TEM). Enhancement of gene transduction by Ad/PDN complexes was observed in both CAR-overexpressing cell lines (A549) and CAR-lacking cell lines (MDCK, CHO, LLC), as a result of facilitating binding and cell uptake of adenoviral particles by the cationic component. Ad/PDN complexes also promoted the inhibition of tumor growth in vivo and prolonged the survival time of tumor-bearing mice. These data suggest that a combination of viral and non-viral gene delivery methods may offer a new approach to successful cancer gene therapy.

  16. Mechano-electrical transduction currents in isolated vestibular hair cells of the chick.

    PubMed Central

    Ohmori, H

    1985-01-01

    Properties of a mechano-electrical transduction channel were studied in enzymatically dissociated chick vestibular hair cells by using a whole-cell recording variation of the patch voltage-clamp technique. The apical hair bundle was stimulated by a glass rod which moved along a one-dimensional axis when stimulated by either a triangular or a trapezoidal command voltage. The motion of the glass rod was monitored optically using a photodiode. In response to triangular stimuli, the hair cell generated a current of triangular wave form with occasional step-like spiky or zigzag-appearing events. Control experiments confirmed that the current was generated only when the hair bundle was displaced towards the tallest stereocilium. The mechano-sensitive current was blocked by streptomycin and by neomycin. The blockage by streptomycin was clearly voltage dependent: the reduction of the current became larger with hyperpolarization of the membrane. This suggests that the positively charged antibiotic molecules plug the mechanically gated channels. From the evidence presented in 3 and 4 above, the mechano-sensitive current recorded here was identified as the mechano-electrical transduction (m-e.t.) current. The permeability of the m-e.t. channel to various monovalent cations was determined from reversal potential measurements. Since a CsCl-EGTA intracellular medium was used, all the permeabilities were calculated relative to PCs. The sequence of permeabilities was Li greater than Na greater than or equal to K greater than or equal to Rb greater than Cs greater than choline greater than TMA greater than TEA. External Ca ions were indispensable for the recording of transduction current and Sr ions could replace Ca ions without loss of the transduction activity. The minimum [Ca]o for stable generation of the m-e.t. current was 20 microM in Cs saline. The addition of 50-200 microM-Ca to the isotonic Ba saline could maintain the m-e.t. current. The m-e.t. current was observed in

  17. Structural analysis of DNA complexation with cationic lipids

    PubMed Central

    Marty, Regis; N'soukpoé-Kossi, Christophe N.; Charbonneau, David; Weinert, Carl Maximilian; Kreplak, Laurent; Tajmir-Riahi, Heidar-Ali

    2009-01-01

    Complexes of cationic liposomes with DNA are promising tools to deliver genetic information into cells for gene therapy and vaccines. Electrostatic interaction is thought to be the major force in lipid–DNA interaction, while lipid-base binding and the stability of cationic lipid–DNA complexes have been the subject of more debate in recent years. The aim of this study was to examine the complexation of calf-thymus DNA with cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethylammoniumbromide (DDAB) and dioleoylphosphatidylethanolamine (DOPE), at physiological condition, using constant DNA concentration and various lipid contents. Fourier transform infrared (FTIR), UV-visible, circular dichroism spectroscopic methods and atomic force microscopy were used to analyse lipid-binding site, the binding constant and the effects of lipid interaction on DNA stability and conformation. Structural analysis showed a strong lipid–DNA interaction via major and minor grooves and the backbone phosphate group with overall binding constants of KChol = 1.4 (±0.5) × 104 M−1, KDDAB = 2.4 (±0.80) × 104 M−1, KDOTAP = 3.1 (±0.90) × 104 M−1 and KDOPE = 1.45 (± 0.60) × 104 M−1. The order of stability of lipid–DNA complexation is DOTAP>DDAB>DOPE>Chol. Hydrophobic interactions between lipid aliphatic tails and DNA were observed. Chol and DOPE induced a partial B to A-DNA conformational transition, while a partial B to C-DNA alteration occurred for DDAB and DOTAP at high lipid concentrations. DNA aggregation was observed at high lipid content. PMID:19103664

  18. The transduction properties of intercostal muscle mechanoreceptors

    PubMed Central

    Holt, Gregory A; Johnson, Richard D; Davenport, Paul W

    2002-01-01

    Background Intercostal muscles are richly innervated by mechanoreceptors. In vivo studies of cat intercostal muscle have shown that there are 3 populations of intercostal muscle mechanoreceptors: primary muscle spindles (1°), secondary muscle spindles (2°) and Golgi tendon organs (GTO). The purpose of this study was to determine the mechanical transduction properties of intercostal muscle mechanoreceptors in response to controlled length and velocity displacements of the intercostal space. Mechanoreceptors, recorded from dorsal root fibers, were localized within an isolated intercostal muscle space (ICS). Changes in ICS displacement and the velocity of ICS displacement were independently controlled with an electromagnetic motor. ICS velocity (0.5 – 100 μm/msec to a displacement of 2,000 μm) and displacement (50–2,000 μm at a constant velocity of 10 μm/msec) parameters encompassed the full range of rib motion. Results Both 1° and 2° muscle spindles were found evenly distributed within the ICS. GTOs were localized along the rib borders. The 1° spindles had the greatest discharge frequency in response to displacement amplitude followed by the 2° afferents and GTOs. The 1° muscle spindles also possessed the greatest discharge frequency in response to graded velocity changes, 3.0 spikes·sec-1/μm·msec-1. GTOs had a velocity response of 2.4 spikes·sec-1/μm·msec-1 followed by 2° muscle spindles at 0.6 spikes·sec-1/μm·msec-1. Conclusion The results of this study provide a systematic description of the mechanosenitivity of the 3 types of intercostal muscle mechanoreceptors. These mechanoreceptors have discharge properties that transduce the magnitude and velocity of intercostal muscle length. PMID:12392601

  19. The sensory transduction pathways in bacterial chemotaxis

    NASA Technical Reports Server (NTRS)

    Taylor, Barry L.

    1989-01-01

    Bacterial chemotaxis is a useful model for investigating in molecular detail the behavioral response of cells to changes in their environment. Peritrichously flagellated bacteria such as coli and typhimurium swim by rotating helical flagella in a counterclockwise direction. If flagellar rotation is briefly reversed, the bacteria tumble and change the direction of swimming. The bacteria continuously sample the environment and use a temporal sensing mechanism to compare the present and immediate past environments. Bacteria respond to a broad range of stimuli including changes in temperature, oxygen concentration, pH and osmotic strength. Bacteria are attracted to potential sources of nutrition such as sugars and amino acids and are repelled by other chemicals. In the methylation-dependent pathways for sensory transduction and adaptation in E. coli and S. typhimurium, chemoeffectors bind to transducing proteins that span the plasma membrane. The transducing proteins are postulated to control the rate of autophosphorylation of the CheA protein, which in turn phosphorylates the CheY protein. The phospho-CheY protein binds to the switch on the flagellar motor and is the signal for clockwise rotation of the motor. Adaptation to an attractant is achieved by increasing methylation of the transducing protein until the attractant stimulus is cancelled. Responses to oxygen and certain sugars involve methylation-independent pathways in which adaption occurs without methylation of a transducing protein. Taxis toward oxygen is mediated by the electron transport system and changes in the proton motive force. Recent studies have shown that the methylation-independent pathway converges with the methylation-dependent pathway at or before the CheA protein.

  20. Gravitational sensory transduction chain in flagellates

    NASA Astrophysics Data System (ADS)

    Häder, D.-P.; Richter, P.; Ntefidou, M.; Lebert, M.

    Earlier hypotheses have assumed that gravitactic orientation in flagellates, such as the photosynthetic unicell Euglena gracilis, is brought about by passive alignment of the cells in the water column by being tail heavy. A recent experiment on a sounding rocket (TEXUS 40) comparing immobilized cells with mobile cells demonstrated that the passive buoy effect can account for approximately 20% of the orientation of the cells in a gravity field. The cells show either positive or negative gravitaxis depending on other external or internal factors. Shortly after inoculation, the tendency of young cells to swim downward in the water column can be readily reverted by adding micromolar concentrations of some heavy metal ions including copper, cadmium or lead. The negative gravitaxis of older cells is converted into a positive one by stress factors such as increasing salinity or exposure to excessive visible or UV radiation. The mechanism for this switch seems to involve reactive oxygen species since the gravitactic sign change was suppressed when oxygen was removed by flushing the cell suspension with nitrogen. Also, the addition of radical scavengers (Trolox, ascorbic acid or potassium cyanide) abolished or reduced the gravitactic sign change. Addition of hydrogen peroxide induced a gravitactic sign change in the absence of external stress factors. The primary reception for the gravity vector seems to involve mechanosensitive ion channels which specifically gate calcium ions inward. We have identified several gene sequences for putative mechanosensory channels in Euglena and have applied RNAi to identify which of these channels are involved in graviperception. The influx of Ca 2+ activates calmodulin (CaM) which has been shown to be involved in the sensory transduction chain of graviorientation. It is known that an adenylyl cyclase is bound to the flagellar membrane in Euglena which is activated by CaM. This enzyme produces cAMP which has also been shown to be the key

  1. Pheromones cause disease: pheromone/odourant transduction.

    PubMed

    Nicholson, B

    2001-09-01

    This paper compares two models of the sense of smell and demonstrates that the new model has advantages over the accepted model with implications for medical research. The accepted transduction model had an odourant or pheromone contacting an aqueous sensory lymph then movement through it to a receptor membrane beneath. If the odourant or pheromone were non-soluble, the odourant/pheromone supposedly would be bound to a soluble protein in the lymph to be carried across. Thus, an odourant/carrier protein complex physically moved through the receptor lymph/mucus to interact with a membrane bound receptor. After the membranous receptor interaction, the molecule would be deactivated and any odourant/pheromone-binding protein recycled. This new electrical chemosensory model being proposed here has the pheromone or other odourant generating an electrical event in the extra-cellular mucus. Before the pheromone arrives, proteins of the 'carrier class' dissolved in the receptor mucus slowly and continuously sequester ions. A sensed pheromonal chemical species sorbs to the mucus and immediately binds to the now ion-holding dissolved protein. The binding of the pheromone to the protein causes a measurable conformational change in the pheromone/odourant-binding protein, desequestering ions. Releasing the bound ions changes the potential differences across a nearby super-sensitive dendritic membrane resulting in dendrite excitation. Pheromones will be implicated in the aetiology of the infectious, psychiatric and autoimmune diseases. This is the third article in a series of twelve to systematically explore this contention (see references 1-9). Copyright 2001 Harcourt Publishers Ltd.

  2. Assessment of novel oral lipid-based formulations of amphotericin B using an in vitro lipolysis model.

    PubMed

    Ibrahim, Fady; Gershkovich, Pavel; Sivak, Olena; Wasan, Ellen K; Wasan, Kishor M

    2012-08-15

    The purpose of this study was to investigate the intraluminal processing of novel oral lipid-based formulations of amphotericin B using an in vitro lipolysis model. Amphotericin B (AmB) was formulated in three lipid-based formulations consisting of different lipid components: iCo-009, iCo-010 and iCo-011. Various lipid loads (0.25, 0.5, 1 and 2 g) were digested using the lipolysis model to assess AmB distribution among the lipolysis phases. The duration of lipolysis was comparable among the three formulations except for 2 g load of iCo-009 which had a significantly longer lipolysis than iCo-010 and iCo-011. The lipid components of iCo-009 experienced lower extent of lipolysis as compared to other formulations. Amphotericin B concentration in the aqueous phases was the highest with iCo-010 which also had the lowest sediment recovery. Amphotericin B levels in the undigested lipid layers were comparable between iCo-009 and iCo-010 and were higher than with iCo-011. Given the observation that iCo-010 had the highest aqueous micellar solubilization and the lowest sediment recovery of AmB among the tested formulations, these results could potentially be used to interpret and predict the in vivo performance of AmB- SEDDS formulations in future studies. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  3. Lipid-based nanocarriers for drug delivery and targeting: a patent survey of methods of production and characterization.

    PubMed

    Carbone, Claudia; Cupri, Sarha; Leonardi, Antonio; Puglisi, Giovanni; Pignatello, Rosario

    2013-09-01

    Among the colloidal vectors proposed for the controlled delivery and targeting of drugs and other biologically active compounds, lipid-based nanocarriers are acquiring an increasing role due to a number of peculiar technological and physical features. Solid lipid nanoparticles, lipid nanocapsules, nanostructured lipid carriers, and drug-lipid conjugates are all examples of how it can be possible to combine the properties of the more acknowledged liposomal systems, such as biocompatibility and biodegradability, with the stability and compositional flexibility, distinctive of polymeric nanosystems. This article introduces recent patents, filed in years 2007-2013, that deal with novel or amended methods of production of the various types of lipid-based nanocarriers. Although a significant gap still remains between basic research and patenting activity in this field, many of the proposed methods can attain an industrial value. Furthermore, the critical analysis of these patents further supports the position that a general revision of patenting systems at an international level would be necessary for nanosized pharmaceutical systems.

  4. Reverse engineering of Ayurvedic lipid based formulation, ghrita by combined column chromatography, normal and reverse phase HPTLC analysis.

    PubMed

    Duraipandi, Selvakumar; Selvakumar, Vijaya; Er, Ng Yun

    2015-03-13

    Ghritas are ayurvedic lipid based preparations in which oil or ghee is boiled with prescribed kasaya (polyherbal decoction) and kalka (fine paste of herbs) until the evaporation of aqueous phase transfers the contents into oily phase. The polyherbal decoction used in the preparation predominantly contains water soluble Active Botanical Ingredients (ABIs). The column chromatography was used to fractionate the ghrita into polar and non-polar fractions on silica gel as adsorbent using petroleum ether and mixture of ethanol, methanol & water as eluents. These fractions were further analysed by normal and reverse phase HPTLC analysis for the presence of the contents and its polarity. The results showed that all the ABIs present in the formulation were polar since the fractionated non-polar fraction did not show the presence of any active botanical ingredients on normal and reverse phase HPTLC analysis. The ayurvedic system of medicine has got its own technique of incorporating the polar contents into a lipid base for enhanced absorption and delivery of the ABIs at targets.

  5. pH-Cleavable Nucleoside Lipids: A New Paradigm for Controlling the Stability of Lipid-Based Delivery Systems.

    PubMed

    Oumzil, Khalid; Benizri, Sébastien; Tonelli, Giovanni; Staedel, Cathy; Appavoo, Ananda; Chaffanet, Max; Navailles, Laurence; Barthélémy, Philippe

    2015-11-01

    Lipid-based delivery systems are an established technology with considerable clinical acceptance and several applications in human. Herein, we report the design, synthesis and evaluation of novel orthoester nucleoside lipids (ONLs) for the modulation of liposome stability. The ONLs contain head groups with 3'-orthoester nucleoside derivatives featuring positive or negative charges. The insertion of the orthoester function in the NL structures allows the formation of pH-sensitive liposomes. ONL-based liposomes can be hydrolyzed to provide nontoxic products, including nucleoside derivatives and hexadecanol. To allow the release to be tunable at different hydrolysis rates, the charge of the polar head structure is modulated, and the head group can be released at a biologically relevant pH. Crucially, when ONLs are mixed with natural phosphocholine lipids (PC), the resultant liposome evolves toward the formation of a hexadecanol/PC lamellar system. Biological evaluation shows that stable nucleic acid lipid particles (SNALPs) formulated with ONLs and siRNAs can effectively enter into tumor cells and release their nucleic acid payload in response to an intracellular acidic environment. This results in a much higher antitumor activity than conventional SNALPs. The ability to use pH-cleavable nucleolipids to control the stability of lipid-based delivery systems represents a promising approach for the intracellular delivery of drug cargos.

  6. Protective Effect of a Lipid-Based Preparation from Mycobacterium smegmatis in a Murine Model of Progressive Pulmonary Tuberculosis

    PubMed Central

    García, Maria de los Angeles; Lanio, Maria E.; Tirado, Yanely; Alvarez, Nadine; Puig, Alina; Aguilar, Alicia; Canet, Liem; Mata Espinoza, Dulce; Barrios Payán, Jorge; Sarmiento, María Elena; Hernández-Pando, Rogelio; Norazmi, Mohd-Nor; Acosta, Armando

    2014-01-01

    A more effective vaccine against tuberculosis (TB) is urgently needed. Based on its high genetic homology with Mycobacterium tuberculosis (Mtb), the nonpathogenic mycobacteria, Mycobacterium smegmatis (Ms), could be an attractive source of potential antigens to be included in such a vaccine. We evaluated the capability of lipid-based preparations obtained from Ms to provide a protective response in Balb/c mice after challenge with Mtb H37Rv strain. The intratracheal model of progressive pulmonary TB was used to assess the level of protection in terms of bacterial load as well as the pathological changes in the lungs of immunized Balb/c mice following challenge with Mtb. Mice immunized with the lipid-based preparation from Ms either adjuvanted with Alum (LMs-AL) or nonadjuvanted (LMs) showed significant reductions in bacterial load (P < 0.01) compared to the negative control group (animals immunized with phosphate buffered saline (PBS)). Both lipid formulations showed the same level of protection as Bacille Calmette and Guerin (BCG). Regarding the pathologic changes in the lungs, mice immunized with both lipid formulations showed less pneumonic area when compared with the PBS group (P < 0.01) and showed similar results compared with the BCG group. These findings suggest the potential of LMs as a promising vaccine candidate against TB. PMID:25548767

  7. The Precipitation Behavior of Poorly Water-Soluble Drugs with an Emphasis on the Digestion of Lipid Based Formulations.

    PubMed

    Khan, Jamal; Rades, Thomas; Boyd, Ben

    2016-03-01

    An increasing number of newly discovered drugs are poorly water-soluble and the use of natural and synthetic lipids to improve the oral bioavailability of these drugs by utilizing the digestion pathway in-vivo has proved an effective formulation strategy. The mechanisms responsible for lipid digestion and drug solubilisation during gastrointestinal transit have been explored in detail, but the implications of drug precipitation beyond the potential adverse effect on bioavailability have received attention only in recent years. Specifically, these implications are that different solid forms of drug on precipitation may affect the total amount of drug absorbed in-vivo through their different physico-chemical properties, and the possibility that the dynamic environment of the small intestine may afford re-dissolution of precipitated drug if present in a high-energy form. This review describes the events that lead to drug precipitation during the dispersion and digestion of lipid based formulations, common methods used to inhibit precipitation, as well as conventional and newly emerging characterization techniques for studying the solid state form of the precipitated drug. Moreover, selected case studies are discussed where drug precipitation has ensued from the digestion of lipid based formulations, as well as the apparent link between drug ionisability and altered solid forms on precipitation, culminating in a discussion about the importance of the solid form on precipitation with relevance to the total drug absorbed.

  8. On-Site Classification of Pansteatitis in Mozambique Tilapia (Oreochromis mossambicus) using a Portable Lipid-Based Analyzer

    PubMed Central

    Somerville, Stephen E.; Cantu, Theresa M.; Guillette, Matthew P.; Botha, Hannes; Boggs, Ashley S. P.; Luus-Powell, Wilmien; Guillette, Louis J.

    2017-01-01

    While no pansteatitis-related large-scale mortality events have occurred since 2008, the current status of pansteatitis (presence and pervasiveness) in the Olifants River system and other regions of South Africa remain largely unknown. In part, this is due to both a lack of known biological markers of pansteatitis and a lack of suitable non-invasive assays capable of rapidly classifying the disease. Here, we propose the application of a point-of-care (POC) device using lipid-based test strips (total cholesterol (TC) and total triglyceride (TG)), for classifying pansteatitis status in the whole blood of pre-spawning Mozambique tilapia (Oreochromis mossambicus). Using the TC strips, the POC device was able to non-lethally classify the tilapia as either healthy or pansteatitis-affected; the sexes were examined independently because sexual dimorphism was observed for TC (males p = 0.0364, females χ2 = 0.0007). No significant difference between diseased and pansteatitis-affected tilapia was observed using the TG strips. This is one of the first described applications of using POC devices for on-site environmental disease state testing. A discussion on the merits of using portable lipid-based analyzers as an in-field disease-state diagnostic tool is provided. PMID:28729886

  9. Signal Transduction in the Footsteps of Goethe and Schiller

    PubMed Central

    Friedrich, Karlheinz; Lindquist, Jonathan A; Entschladen, Frank; Serfling, Edgar; Thiel, Gerald; Kieser, Arnd; Giehl, Klaudia; Ehrhardt, Christina; Feller, Stephan M; Ullrich, Oliver; Schaper, Fred; Janssen, Ottmar; Hass, Ralf

    2009-01-01

    The historical town of Weimar in Thuringia, the "green heart of Germany" was the sphere of Goethe and Schiller, the two most famous representatives of German literature's classic era. Not yet entirely as influential as those two cultural icons, the Signal Transduction Society (STS) has nevertheless in the last decade established within the walls of Weimar an annual interdisciplinary Meeting on "Signal Transduction – Receptors, Mediators and Genes", which is well recognized as a most attractive opportunity to exchange results and ideas in the field. The 12th STS Meeting was held from October 28 to 31 and provided a state-of-the-art overview of various areas of signal transduction research in which progress is fast and discussion lively. This report is intended to share with the readers of CCS some highlights of the Meeting Workshops devoted to specific aspects of signal transduction. PMID:19193215

  10. Signal transduction in the footsteps of goethe and schiller.

    PubMed

    Friedrich, Karlheinz; Lindquist, Jonathan A; Entschladen, Frank; Serfling, Edgar; Thiel, Gerald; Kieser, Arnd; Giehl, Klaudia; Ehrhardt, Christina; Feller, Stephan M; Ullrich, Oliver; Schaper, Fred; Janssen, Ottmar; Hass, Ralf

    2009-02-04

    The historical town of Weimar in Thuringia, the "green heart of Germany" was the sphere of Goethe and Schiller, the two most famous representatives of German literature's classic era. Not yet entirely as influential as those two cultural icons, the Signal Transduction Society (STS) has nevertheless in the last decade established within the walls of Weimar an annual interdisciplinary Meeting on "Signal Transduction - Receptors, Mediators and Genes", which is well recognized as a most attractive opportunity to exchange results and ideas in the field.The 12th STS Meeting was held from October 28 to 31 and provided a state-of-the-art overview of various areas of signal transduction research in which progress is fast and discussion lively. This report is intended to share with the readers of CCS some highlights of the Meeting Workshops devoted to specific aspects of signal transduction.

  11. Differential effects of bitter compounds on the taste transduction channels TRPM5 and IP3 receptor type 3.

    PubMed

    Gees, Maarten; Alpizar, Yeranddy A; Luyten, Tomas; Parys, Jan B; Nilius, Bernd; Bultynck, Geert; Voets, Thomas; Talavera, Karel

    2014-05-01

    Transient receptor potential cation channel subfamily M member 5 (TRPM5) is a Ca(2+)-activated nonselective cation channel involved in the transduction of sweet, bitter, and umami tastes. We previously showed that TRPM5 is a locus for the modulation of taste perception by temperature changes, and by quinine and quinidine, 2 bitter compounds that suppress gustatory responses. Here, we determined whether other bitter compounds known to modulate taste perception also affect TRPM5. We found that nicotine inhibits TRPM5 currents with an effective inhibitory concentration of ~1.3mM at -50 mV. This effect may contribute to the inhibitory effect of nicotine on gustatory responses in therapeutic and experimental settings, where nicotine is often employed at millimolar concentrations. In addition, it implies the existence of a TRPM5-independent pathway for the detection of nicotine bitterness. Nicotine seems to act from the extracellular side of the channel, reducing the maximal whole-cell conductance and inducing an acceleration of channel closure that leads to a negative shift of the activation curve. TRPM5 currents were unaffected by nicotine's metabolite cotinine, the intensive sweetener saccharin or by the bitter xanthines caffeine, theobromine, and theophylline. We also tested the effects of bitter compounds on another essential element of the sweet taste transduction pathway, the type 3 IP3 receptor (IP3R3). We found that IP3R3-mediated Ca(2+) flux is slightly enhanced by nicotine, not affected by saccharin, modestly inhibited by caffeine, theobromine, and theophylline, and strongly inhibited by quinine. Our results demonstrate that bitter compounds have differential effects on key elements of the sweet taste transduction pathway, suggesting for heterogeneous mechanisms of bitter-sweet taste interactions.

  12. Falsification of the ionic channel theory of hair cell transduction.

    PubMed

    Rossetto, Michelangelo

    2013-11-01

    The hair cell provides the transduction of mechanical vibrations in the balance and acoustic sense of all vertebrates that swim, walk, or fly. The current theory places hair cell transduction in a mechanically controlled ion channel. Although the theory of a mechanical input modulating the flow of ions through an ion pore has been a useful tool, it is falsified by experimental data in the literature and can be definitively falsified by a proposed experiment.

  13. Engineering key components in a synthetic eukaryotic signal transduction pathway

    PubMed Central

    Antunes, Mauricio S; Morey, Kevin J; Tewari-Singh, Neera; Bowen, Tessa A; Smith, J Jeff; Webb, Colleen T; Hellinga, Homme W; Medford, June I

    2009-01-01

    Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB-VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB-VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved-signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways. PMID:19455134

  14. Evidence for the plasticity of arthropod signal transduction pathways.

    PubMed

    Pace, Ryan M; Eskridge, P Cole; Grbić, Miodrag; Nagy, Lisa M

    2014-12-01

    Metazoans are known to contain a limited, yet highly conserved, set of signal transduction pathways that instruct early developmental patterning mechanisms. Genomic surveys that have compared gene conservation in signal transduction pathways between various insects and Drosophila support the conclusion that these pathways are conserved in evolution. However, the degree to which individual components of signal transduction pathways vary among more divergent arthropods is not known. Here, we report our results of a survey of the genome of the two-spotted spider mite Tetranychus urticae, using a set of 294 Drosophila orthologs of genes that function in signal transduction. We find a third of all genes surveyed absent from the spider mite genome. We also identify several novel duplications that have not been previously reported for a chelicerate. In comparison with previous insect surveys, Tetranychus contains a decrease in overall gene conservation, as well as an unusual ratio of ligands to receptors and other modifiers. These findings suggest that gene loss and duplication among components of signal transduction pathways are common among arthropods and suggest that signal transduction pathways in arthropods are more evolutionarily labile than previously hypothesized.

  15. Polymeric microspheres as protein transduction reagents.

    PubMed

    Nagel, David; Behrendt, Jonathan M; Chimonides, Gwen F; Torr, Elizabeth E; Devitt, Andrew; Sutherland, Andrew J; Hine, Anna V

    2014-06-01

    Discovering the function of an unknown protein, particularly one with neither structural nor functional correlates, is a daunting task. Interaction analyses determine binding partners, whereas DNA transfection, either transient or stable, leads to intracellular expression, though not necessarily at physiologically relevant levels. In theory, direct intracellular protein delivery (protein transduction) provides a conceptually simpler alternative, but in practice the approach is problematic. Domains such as HIV TAT protein are valuable, but their effectiveness is protein specific. Similarly, the delivery of intact proteins via endocytic pathways (e.g. using liposomes) is problematic for functional analysis because of the potential for protein degradation in the endosomes/lysosomes. Consequently, recent reports that microspheres can deliver bio-cargoes into cells via a non-endocytic, energy-independent pathway offer an exciting and promising alternative for in vitro delivery of functional protein. In order for such promise to be fully exploited, microspheres are required that (i) are stably linked to proteins, (ii) can deliver those proteins with good efficiency, (iii) release functional protein once inside the cells, and (iv) permit concomitant tracking. Herein, we report the application of microspheres to successfully address all of these criteria simultaneously, for the first time. After cellular uptake, protein release was autocatalyzed by the reducing cytoplasmic environment. Outside of cells, the covalent microsphere-protein linkage was stable for ≥90 h at 37 °C. Using conservative methods of estimation, 74.3% ± 5.6% of cells were shown to take up these microspheres after 24 h of incubation, with the whole process of delivery and intracellular protein release occurring within 36 h. Intended for in vitro functional protein research, this approach will enable study of the consequences of protein delivery at physiologically relevant levels, without recourse to

  16. Cation affinity numbers of Lewis bases.

    PubMed

    Lindner, Christoph; Tandon, Raman; Maryasin, Boris; Larionov, Evgeny; Zipse, Hendrik

    2012-01-01

    Using selected theoretical methods the affinity of a large range of Lewis bases towards model cations has been quantified. The range of model cations includes the methyl cation as the smallest carbon-centered electrophile, the benzhydryl and trityl cations as models for electrophilic substrates encountered in Lewis base-catalyzed synthetic procedures, and the acetyl cation as a substrate model for acyl-transfer reactions. Affinities towards these cationic electrophiles are complemented by data for Lewis-base addition to Michael acceptors as prototypical neutral electrophiles.

  17. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance.

    PubMed

    Tan, Angel; Rao, Shasha; Prestidge, Clive A

    2013-12-01

    The diversity of lipid excipients available commercially has enabled versatile formulation design of lipid-based drug delivery systems for enhancing the oral absorption of poorly water-soluble drugs, such as emulsions, microemulsions, micelles, liposomes, niosomes and various self-emulsifying systems. The transformation of liquid lipid-based systems into solid dosage forms has been investigated for several decades, and has recently become a core subject of pharmaceutical research as solidification is regarded as viable means for stabilising lipid colloidal systems while eliminating stringent processing requirements associated with liquid systems. This review describes the types of pharmaceutical grade excipients (silica nanoparticle/microparticle, polysaccharide, polymer and protein-based materials) used as solid carriers and the current state of knowledge on the liquid-to-solid conversion approaches. Details are primarily focused on the solid-state physicochemical properties and redispersion capacity of various dry lipid-based formulations, and how these relate to the in vitro drug release and solubilisation, lipid carrier digestion and cell permeation performances. Numerous in vivo proof-of-concept studies are presented to highlight the viability of these dry lipid-based formulations. This review is significant in directing future research work in fostering translation of dry lipid-based formulations into clinical applications.

  18. Combinatorial synthesis of new cationic lipids and high-throughput screening of their transfection properties.

    PubMed

    Lenssen, Karl; Jantscheff, Peter; von Kiedrowski, Günter; Massing, Ulrich

    2002-09-02

    Here we describe the first synthesis-screening approach for the identification and optimization of new cationic lipids for gene transfer in various cell lines. Combinatorial solid-phase chemistry was used to synthesize a library of new cationic lipids based on 3-methylamino-1,2-dihydroxypropane as the polar, cationic lipid part. As the nonpolar lipid part, different hydrocarbon chains were bound to the amino group of the scaffold and the amino group was further methylated to afford constantly cationic lipids. Lipids were synthesized in both configurations and as racemates, and the counter ions were also varied. By using a fully automated transfection screening method and COS-7 cells, the cationic lipid N,N-ditetradecyl-N-methyl-amino-2,3-propanediol (KL-1-14) was identified as a candidate lipid for the development of an improved transfection reagent. Screening the transfection properties of KL-1-14 in numerous combinations with the helper lipids dioleoylphosphatidylethanolamine (DOPE) and cholesterol (Chol) revealed that Chol is the most suitable helper lipid and the best KL-1-14/Chol ratio is 0.5-0.7. Compared to the standard transfection lipid N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl sulfate (DOTAP), transfection efficiency was improved by a factor of about 40. Furthermore, by using R- and S-configured KL-1-14, it could be shown that the configuration of the lipids had no significant influence on its transfection efficiency. The highest transfection efficiencies were achieved with chloride as the counter ion. The new lipofection reagent was further tested to transfect the cell lines MDA-MB-468, MCF-7, MDCK-C7, and primary dentritic cells (DC), which are important for the development of new anticancer gene therapy strategies. Even in these cells, KL-1-14/Chol (1:0.6) had improved transfection efficiencies, which were about two to four times higher than for DOTAP.

  19. Evaluating Clinical Use of a Ceramide-dominant, Physiologic Lipid-based Topical Emulsion for Atopic Dermatitis

    PubMed Central

    Del Rosso, James Q.; Aversa, Daniel

    2011-01-01

    Objectives: The objective of this study was to evaluate the efficacy of a ceramide-dominant, physiologic lipid-based topical emulsion, inclusive of ceramides, cholesterol, and fatty acids in a 3:1:1 ratio, in the clinical practice setting in subjects with mild-to-moderate atopic dermatitis. The included subjects presented with a wide range of demographic characteristics thus building upon the results reported with this agent from an earlier clinical trial in atopic dermatitis subjects. In addition, the utility of this important treatment approach of starting with a product directed at epidermal barrier repair was explored. Methods: In a 50-center, open-label, interventional study, the ceramide-dominant, physiologic lipid barrier repair emulsion was evaluated for three weeks in 207 patients either as monotherapy or in combination with another atopic dermatitis treatment. Outcome measures included investigator global assessment, investigator and subject satisfaction, subject-perceived improvement in atopic dermatitis, pruritus severity, and two quality-of-life questions. Results: Overall, approximately half of the subjects achieved success with investigator global assessment (clear or almost clear investigator global assessment scores) after three weeks of treatment with the ceramide-dominant, physiologic lipid barrier repair emulsion as monotherapy or in combination with another treatment. A large proportion of subjects (75% of subjects) and investigators (for 77% of subjects) reported satisfaction after three weeks of treatment. Pruritus and quality of life improved during the study. Conclusion: The ceramide-dominant, physiologic lipid-based product was shown to be an effective agent, with or without additional topical therapy, to provide good clinical efficacy and high levels of investigator and patient satisfaction for many patients with mild-to-moderate atopic dermatitis. The results of this study are consistent with results noted in a previous study of atopic

  20. Transformation of poorly water-soluble drugs into lipophilic ionic liquids enhances oral drug exposure from lipid based formulations.

    PubMed

    Sahbaz, Yasemin; Williams, Hywel D; Nguyen, Tri-Hung; Saunders, Jessica; Ford, Leigh; Charman, Susan A; Scammells, Peter J; Porter, Christopher J H

    2015-06-01

    Absorption after oral administration is a requirement for almost all drug products but is a challenge for drugs with intrinsically low water solubility. Here, the weakly basic, poorly water-soluble drugs (PWSDs) itraconazole, cinnarizine, and halofantrine were converted into lipophilic ionic liquids to facilitate incorporation into lipid-based formulations and integration into lipid absorption pathways. Ionic liquids were formed via metathesis reactions of the hydrochloride salt of the PWSDs with a range of lipophilic counterions. The resultant active pharmaceutical ingredient-ionic liquids (API-ILs) were liquids or low melting point solids and either completely miscible or highly soluble in lipid based, self-emulsifying drug delivery systems (SEDDS) comprising mixtures of long or medium chain glycerides, surfactants such as Kolliphor-EL and cosolvents such as ethanol. They also readily incorporated into the colloids formed in intestinal fluids during lipid digestion. Itraconazole docusate or cinnarizine decylsulfate API-ILs were subsequently dissolved in long chain lipid SEDDS at high concentration, administered to rats and in vivo exposure assessed. The data were compared to control formulations based on the same SEDDS formulations containing the same concentrations of drug as the free base, but in this case as a suspension (since the solubility of the free base in the SEDDS was much lower than the API-ILs). For itraconazole, comparison was also made to a physical mixture of itraconazole free base and sodium docusate in the same SEDDS formulation. For both drugs plasma exposure was significantly higher for the API-IL containing formulations (2-fold for cinnarizine and 20-fold for itraconazole), when compared to the suspension formulations (or the physical mixture in the case of itraconazole) at the same dose. The liquid SEDDS formulations, made possible by the use of the API-ILs, also provide advantages in dose uniformity, capsule filling, and stability compared

  1. EDITORIAL: Special section on signal transduction Special section on signal transduction

    NASA Astrophysics Data System (ADS)

    Shvartsman, Stanislav

    2012-08-01

    This special section of Physical Biology focuses on multiple aspects of signal transduction, broadly defined as the study of the mechanisms by which cells communicate with their environment. Mechanisms of cell communication involve detection of incoming signals, which can be chemical, mechanical or electromagnetic, relaying these signals to intracellular processes, such as cytoskeletal networks or gene expression systems, and, ultimately, converting these signals to responses such as cell differentiation or death. Given the multiscale nature of signal transduction systems, they must be studied at multiple levels, from the identities and structures of molecules comprising signal detection and interpretation networks, to the systems-level properties of these networks. The 11 papers in this special section illustrate some of the most exciting aspects of signal transduction research. The first two papers, by Marie-Anne Félix [1] and by Efrat Oron and Natalia Ivanova [2], focus on cell-cell interactions in developing tissues, using vulval patterning in worm and cell fate specification in mammalian embryos as prime examples of emergent cell behaviors. Next come two papers from the groups of Julio Saez-Rodriguez [3] and Kevin Janes [4]. These papers discuss how the causal relationships between multiple components of signaling systems can be inferred using multivariable statistical analysis of empirical data. An authoritative review by Zarnitsyna and Zhu [5] presents a detailed discussion of the sequence of signaling events involved in T-cell triggering. Once the structure and components of the signaling systems are determined, they can be modeled using approaches that have been successful in other physical sciences. As two examples of such approaches, reviews by Rubinstein [6] and Kholodenko [7], present reaction-diffusion models of cell polarization and thermodynamics-based models of gene regulation. An important class of models takes the form of enzymatic networks

  2. Frequency of F116-mediated transduction of Pseudomonas aeruginosa in a freshwater environment.

    PubMed Central

    Morrison, W D; Miller, R V; Sayler, G S

    1978-01-01

    Transduction of Pseudomonas aeruginosa streptomycin resistance by a generalized transducing phage, F116, was shown to occur during a 10-day incubation in a flow-through environmental test chamber suspended in a freshwater reservoir. Mean F116 transduction frequencies ranged from 1.4 X 10(-5) to 8.3 X 10(-2) transductants per recipient during the in situ incubation. These transduction frequencies were comparable to transduction frequencies determined in preliminary laboratory transduction experiments. The results demonstrate the potential for naturally occurring transduction in aquatic environments and concurrent environmental and ecological ramifications. Images PMID:103503

  3. An investigation of spatial signal transduction in cellular networks.

    PubMed

    Alam-Nazki, Aiman; Krishnan, J

    2012-07-05

    Spatial signal transduction plays a vital role in many intracellular processes such as eukaryotic chemotaxis, polarity generation and cell division. Furthermore it is being increasingly realized that the spatial dimension to signalling may play an important role in other apparently purely temporal signal transduction processes. It is increasingly being recognized that a conceptual basis for studying spatial signal transduction in signalling networks is necessary. In this work we examine spatial signal transduction in a series of standard motifs/networks. These networks include coherent and incoherent feedforward, positive and negative feedback, cyclic motifs, monostable switches, bistable switches and negative feedback oscillators. In all these cases, the driving signal has spatial variation. For each network we consider two cases, one where all elements are essentially non-diffusible, and the other where one of the network elements may be highly diffusible. A careful analysis of steady state signal transduction provides many insights into the behaviour of all these modules. While in the non-diffusible case for the most part, spatial signalling reflects the temporal signalling behaviour, in the diffusible cases, we see significant differences between spatial and temporal signalling characteristics. Our results demonstrate that the presence of diffusible elements in the networks provides important constraints and capabilities for signalling. Our results provide a systematic basis for understanding spatial signalling in networks and the role of diffusible elements therein. This provides many insights into the signal transduction capabilities and constraints in such networks and suggests ways in which cellular signalling and information processing is organized to conform to or bypass those constraints. It also provides a framework for starting to understand the organization and regulation of spatial signal transduction in individual processes.

  4. An investigation of spatial signal transduction in cellular networks

    PubMed Central

    2012-01-01

    Background Spatial signal transduction plays a vital role in many intracellular processes such as eukaryotic chemotaxis, polarity generation and cell division. Furthermore it is being increasingly realized that the spatial dimension to signalling may play an important role in other apparently purely temporal signal transduction processes. It is increasingly being recognized that a conceptual basis for studying spatial signal transduction in signalling networks is necessary. Results In this work we examine spatial signal transduction in a series of standard motifs/networks. These networks include coherent and incoherent feedforward, positive and negative feedback, cyclic motifs, monostable switches, bistable switches and negative feedback oscillators. In all these cases, the driving signal has spatial variation. For each network we consider two cases, one where all elements are essentially non-diffusible, and the other where one of the network elements may be highly diffusible. A careful analysis of steady state signal transduction provides many insights into the behaviour of all these modules. While in the non-diffusible case for the most part, spatial signalling reflects the temporal signalling behaviour, in the diffusible cases, we see significant differences between spatial and temporal signalling characteristics. Our results demonstrate that the presence of diffusible elements in the networks provides important constraints and capabilities for signalling. Conclusions Our results provide a systematic basis for understanding spatial signalling in networks and the role of diffusible elements therein. This provides many insights into the signal transduction capabilities and constraints in such networks and suggests ways in which cellular signalling and information processing is organized to conform to or bypass those constraints. It also provides a framework for starting to understand the organization and regulation of spatial signal transduction in individual

  5. Reciprocity and gyrotropism in magnetic resonance transduction

    SciTech Connect

    Tropp, James

    2006-12-15

    We give formulas for transduction in magnetic resonance - i.e., the appearance of an emf due to Larmor precession of spins - based upon the modified Lorentz reciprocity principle for gyrotropic (also called 'nonreciprocal') media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields, oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e. (H{sub 1x}{+-}iH{sub 1y}), where, e.g., for a single transceive antenna, the H's are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are

  6. Pharmacokinetics and tissue distribution of amphotericin B following oral administration of three lipid-based formulations to rats.

    PubMed

    Ibrahim, Fady; Gershkovich, Pavel; Sivak, Olena; Wasan, Ellen K; Wasan, Kishor M

    2013-09-01

    The objective of this study was to assess the pharmacokinetics and tissue distribution of amphotericin B (AmB) in rats following oral administration of three lipid-based formulations (iCo-009, iCo-010 and iCo-011). The lipid-based formulations were administered to rats at a dose of 10 mg/kg and blood samples were withdrawn at predose, 1, 2, 4, 6, 8, 10, 12, 24, 48 and 72 h, after which the animals were sacrificed and the body organs were collected for AmB quantification using a validated HPLC method. Plasma pharmacokinetics parameters were determined using non-compartmental analysis. The disappearance of AmB from plasma was the slowest following the administration of iCo-010 with MRT of 63 h followed by iCo-009 then iCo-011 (36 and 27 h). The AUC(0-24h) of iCo-009 and iCo-010 was 1.5-2-fold higher than that of iCo-011. The kidney exposure was comparable between iCo-009 and iCo-010 and was higher than that of iCo-011. The lung exposure was the highest following iCo-010 administration as compared to that of iCo-009. The distribution of AmB from plasma to tissues resulted in a high accumulation of AmB overtime with slow back-distribution to plasma. The pharmacokinetics profiles varied among the three formulations, despite the similarity in lipid composition between iCo-010 and iCo-011 and the presence of Peceol® as a common component in the formulations. The administration of oral iCo-010 could lead to higher steady state concentrations in the tissues after multiple dosing, which could lead to enhanced eradication of tissue borne fungal and parasitic infections.

  7. Phase Transitions of Isotropic to Anisotropic Biocompatible Lipid-Based Drug Delivery Systems Overcoming Insoluble Benznidazole Loading.

    PubMed

    Streck, Letícia; Sarmento, Víctor H V; Machado, Paula R L; Farias, Kleber J S; Fernandes-Pedrosa, Matheus F; da Silva-Júnior, Arnóbio Antônio

    2016-06-30

    Previous studies reported low benznidazole (BNZ) loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR) and oil-to-water ratio w/w (OWR) change the phase behavior of different lipid-based drug delivery systems (LBDDS) produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16) stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4) were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type) that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment.

  8. Phase Transitions of Isotropic to Anisotropic Biocompatible Lipid-Based Drug Delivery Systems Overcoming Insoluble Benznidazole Loading

    PubMed Central

    Streck, Letícia; Sarmento, Víctor H. V.; Machado, Paula R. L.; Farias, Kleber J. S.; Fernandes-Pedrosa, Matheus F.; da Silva-Júnior, Arnóbio Antônio

    2016-01-01

    Previous studies reported low benznidazole (BNZ) loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR) and oil-to-water ratio w/w (OWR) change the phase behavior of different lipid-based drug delivery systems (LBDDS) produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16) stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4) were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type) that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment. PMID:27376278

  9. Lipid-based delivery of combinations of antisense oligodeoxynucleotides for the in vitro inhibition of HIV-1 replication.

    PubMed

    Lavigne, C; Yelle, J; Sauvé, G; Thierry, A G

    2001-01-01

    We evaluated a new approach to AIDS therapy by using combinations of oligodeoxynucleotides (ODNs), delivered with a lipid-based carrier system, that target different HIV viral genome sites. We identified some of the factors that seem to influence the effectiveness of a combination strategy in cell cultures including ODN concentrations, type of infection (acute vs chronic), backbone modification of the ODN, and the number of sequences. When delivered by the DLS carrier system, some advantages of using a combination of ODNs over treatment with only one ODN could be observed in acute infection assays but not in the chronic infection model. These results suggest that in the acute infection model, the 3 different antisense ODNs in the "cocktail" might block an early step of virus replication by combined inhibitory effects. Various combinations of phosphorothioate-modified (PS) and unmodified oligonucleotides delivered by the DLS system were compared for their antiviral activity in a long-term acute assay using HIV-1 (IIIB strain)-infected MOLT-3 cells. The most effective combination had 3 phosphorothioate antisense ODNs: Srev, SDIS, and SPac (>99% inhibition at 100 pM). However, the additive effect determined when using ODN combinations was rather low, revealing the high level of nonsequence specificity in HIV-1 cell culture models. Data illustrated the high sequence nonspecific activity of ODNs, especially when comparing activity of antisense ODNs with activity of random control sequence ODNs. The latter exhibited an inhibitory effect similar to that of antisense ODNs under our experimental conditions. Nevertheless, we demonstrated that it is possible to achieve high anti-HIV activity by using, in combination, picomolar range concentrations of antisense oligonucleotides complexed to a lipid-based carrier system such as the DLS system, without increasing cell toxicity.

  10. Glycosyl Cations versus Allylic Cations in Spontaneous and Enzymatic Hydrolysis.

    PubMed

    Danby, Phillip M; Withers, Stephen G

    2017-08-09

    Enzymatic prenyl and glycosyl transfer are seemingly unrelated reactions that yield molecules and protein modifications with disparate biological functions. However, both reactions employ diphosphate-activated donors and each proceed via cationic species: allylic cations and oxocarbenium ions, respectively. In this study, we explore the relationship between these processes by preparing valienyl ethers to serve as glycoside mimics that are capable of allylic rather than oxocarbenium cation stabilization. Rate constants for spontaneous hydrolysis of aryl glycosides and their analogous valienyl ethers were found to be almost identical, as were the corresponding activation enthalpies and entropies. This close similarity extended to the associated secondary kinetic isotope effects (KIEs), indicating very similar transition state stabilities and structures. Screening a library of over 100 β-glucosidases identified a number of enzymes that catalyze hydrolysis of these valienyl ethers with kcat values up to 20 s(-1). Detailed analysis of one such enzyme showed that ether hydrolysis occurs via the analogous mechanisms found for glycosides, and through a very similar transition state. This suggests that the generally lower rates of enzymatic cleavage of the cyclitol ethers reflects evolutionary specialization of these enzymes toward glycosides rather than inherent reactivity differences.

  11. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    PubMed

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  12. Halogenated silanes, radicals, and cations

    NASA Astrophysics Data System (ADS)

    Wang, Liming; He, Yi-Liang

    2008-09-01

    Quantum chemistry study has been carried out on the structure and energetics of halogenated silanes, radicals, and cations (SiHxXy0,+1, X = F, Cl, Br; x + y = 1-4). The geometries are optimized at B3LYP/6-31+G(2df,p) level. The adiabatic ionization energiess (IEas), relative energetics of cations, proton affinities (PAs) of silanes, and the enthalpies of formation are predicted using G3(CC) model chemistry. Non-classical ion complex structures are found for hydrogenated cations and transition states connecting classical and non-classical structures are also located. The most stable cations for silylene and silyl radicals have their classical divalent and trivalent structures, and those for silanes have non-classical structures except for SiH3Br+ and SiH2Br2+. The non-classical structures for halosilane cations imply difficulty in experimentally measurement of the adiabatic ionization energies using photoionization or photoelectron studies. For SiH3X, SiH2X2, and SiHX3, the G3(CC) adiabatic IEas to classical ionic structures closest to their neutrals agree better with the photoelectron spectroscopic measurements. The transition states between classical and non-classical structures also hamper the photoionization determination of the appearance energies for silylene cations from silanes. The G3(CC) results for SiHx0,+1 agree excellently with the photoionization mass spectrometric study, and the results for fluorinated and chlorinated species also agree with the previous theoretical predictions at correlation levels from BAC-MP4 to CCSD(T)/CBS. The predicted enthalpy differences between SiH2Cl+, SiHCl2+, and SiCl3+ are also in accordance with previous kinetics study. The G3(CC) results show large discrepancies to the collision-induced charge transfer and/or dissociation reactions involving SiFx+ and SiClx+ ions, for which the G3(CC) enthalpies of formation are also significantly differed from the previous theoretical predictions, especially on SiFx+ (x = 2-4). The G3

  13. Cationic electrodepositable coating composition comprising lignin

    DOEpatents

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  14. Nonselective block by La3+ of Arabidopsis ion channels involved in signal transduction

    NASA Technical Reports Server (NTRS)

    Lewis, B. D.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Lanthanide ions such as La3+ are frequently used as blockers to test the involvement of calcium channels in plant and animal signal transduction pathways. For example, the large rise in cytoplasmic Ca2+ concentration triggered by cold shock in Arabidopsis seedlings is effectively blocked by 10 mM La3+ and we show here that the simultaneous large membrane depolarization is similarly blocked. However, a pharmacological tool is only as useful as it is selective and the specificity of La3+ for calcium channels was brought into question by our finding that it also blocked a blue light (BL)-induced depolarization that results from anion channel activation and believed not to involve calcium channels. This unexpected inhibitory effect of La3+ on the BL-induced depolarization is explained by our finding that 10 mM La3+ directly and completely blocked the BL-activated anion channel when applied to excised patches. We have investigated the ability of La3+ to block noncalcium channels in Arabidopsis. In addition to the BL-activated anion channel, 10 mM La3+ blocked a cation channel and a stretch-activated channel in patches of plasma membrane excised from hypocotyl cells. In root cells, 10 mM La3+ inhibited the activity of an outward-rectifying potassium channel at the whole cell and single-channel level by 47% and 58%, respectively. We conclude that La3+ is a nonspecific blocker of multiple ionic conductances in Arabidopsis and may disrupt signal transduction processes independently of any effect on Ca2+ channels.

  15. Nonselective block by La3+ of Arabidopsis ion channels involved in signal transduction

    NASA Technical Reports Server (NTRS)

    Lewis, B. D.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Lanthanide ions such as La3+ are frequently used as blockers to test the involvement of calcium channels in plant and animal signal transduction pathways. For example, the large rise in cytoplasmic Ca2+ concentration triggered by cold shock in Arabidopsis seedlings is effectively blocked by 10 mM La3+ and we show here that the simultaneous large membrane depolarization is similarly blocked. However, a pharmacological tool is only as useful as it is selective and the specificity of La3+ for calcium channels was brought into question by our finding that it also blocked a blue light (BL)-induced depolarization that results from anion channel activation and believed not to involve calcium channels. This unexpected inhibitory effect of La3+ on the BL-induced depolarization is explained by our finding that 10 mM La3+ directly and completely blocked the BL-activated anion channel when applied to excised patches. We have investigated the ability of La3+ to block noncalcium channels in Arabidopsis. In addition to the BL-activated anion channel, 10 mM La3+ blocked a cation channel and a stretch-activated channel in patches of plasma membrane excised from hypocotyl cells. In root cells, 10 mM La3+ inhibited the activity of an outward-rectifying potassium channel at the whole cell and single-channel level by 47% and 58%, respectively. We conclude that La3+ is a nonspecific blocker of multiple ionic conductances in Arabidopsis and may disrupt signal transduction processes independently of any effect on Ca2+ channels.

  16. Calorimetric study of cationic photopolymerization

    NASA Astrophysics Data System (ADS)

    Czajlik, I.; Hedvig, P.; Ille, A.; Dobó, J.

    1996-03-01

    The photopolymerization of penta-erythritol tetra-glycidyl ether (initiator Degacure KI-85) was studied by a du Pont 910 type DSC. From our experimental results the following conclusions can be drawn: (1) During the cationic polymerization reaction the lifetime of the initiating centers are long compared to the lifetime of free radicals in case of radical polymerization. (2) The rate of deactivation of the initiating centers increases with increasing temperature.

  17. Signal Transduction in Histidine Kinases: Insights from New Structures

    PubMed Central

    Bhate, Manasi P.; Molnar, Kathleen S.; Goulian, Mark; DeGrado, William F.

    2015-01-01

    Histidine kinases (HKs) are major players in bacterial signaling. There has been an explosion of new HK crystal structures in the last five years. We globally analyze the structures of HKs to yield insights into the mechanisms by which signals are transmitted to and across protein structures in this family. We interpret known enzymological data in the context of new structural data to show how asymmetry across the dimer interface is a key feature of signal transduction in HKs, and discuss how different HK domains undergo asymmetric-to-symmetric transitions during signal transduction and catalysis. A thermodynamic framework for signaling that encompasses these various properties is presented and the consequences of weak thermodynamic coupling are discussed. The synthesis of observations from enzymology, structural biology, protein engineering and thermodynamics paves the way for a deeper molecular understanding of histidine kinase signal transduction. PMID:25982528

  18. Nonreciprocal Radio Frequency Transduction in a Parametric Mechanical Artificial Lattice

    NASA Astrophysics Data System (ADS)

    Huang, Pu; Zhang, Liang; Zhou, Jingwei; Tian, Tian; Yin, Peiran; Duan, Changkui; Du, Jiangfeng

    2016-07-01

    Generating nonreciprocal radio frequency transduction plays important roles in a wide range of research and applications, and an aspiration is to integrate this functionality into microcircuits without introducing a magnetic field, which, however, remains challenging. By designing a 1D artificial lattice structure with a neighbor interaction engineered parametrically, we predicted a nonreciprocity transduction with a large unidirectionality. We then experimentally demonstrated the phenomenon on a nanoelectromechanical chip fabricated by conventional complementary metal-silicon processing. A unidirectionality with isolation as high as 24 dB is achieved, and several different transduction schemes are realized by programing the control voltage topology. Apart from being used as a radio frequency isolator, the system provides a way to build a practical on-chip programmable device for broad research and applications in the radio frequency domain.

  19. Brassinosteroid signal transduction from receptor kinases to transcription factors.

    PubMed

    Kim, Tae-Wuk; Wang, Zhi-Yong

    2010-01-01

    Brassinosteroids (BRs) are growth-promoting steroid hormones in plants. Genetic studies in Arabidopsis illustrated the essential roles of BRs in a wide range of developmental processes and helped identify many genes involved in BR biosynthesis and signal transduction. Recently, proteomic studies identified missing links. Together, these approaches established the BR signal transduction cascade, which includes BR perception by the BRI1 receptor kinase at the cell surface, activation of BRI1/BAK1 kinase complex by transphosphorylation, subsequent phosphorylation of the BSK kinases, activation of the BSU1 phosphatase, dephosphorylation and inactivation of the BIN2 kinase, and accumulation of unphosphorylated BZR transcription factors in the nucleus. Mass spectrometric analyses are providing detailed information on the phosphorylation events involved in each step of signal relay. Thus, the BR signaling pathway provides a paradigm for understanding receptor kinase-mediated signal transduction as well as tools for the genetic improvement of the productivity of crop plants.

  20. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  1. One-component systems dominate signal transduction in prokaryotes

    PubMed Central

    Ulrich, Luke E.; Koonin, Eugene V.; Zhulin, Igor B.

    2009-01-01

    Two-component systems that link environmental signals to cellular responses are viewed as the primary mode of signal transduction in prokaryotes. By analyz-ing information encoded by 145 prokaryotic genomes, we found that the majority of signal transduction systems consist of a single protein that contains input and output domains but lacks phosphotransfer domains typical of two-component systems. One-component systems are evolutionarily older, more widely distributed among bacteria and archaea, and display a greater diversity of domains than two-component systems. PMID:15680762

  2. Signal transduction pathways involved in mechanotransduction in bone cells

    SciTech Connect

    Liedert, Astrid . E-mail: astrid.liedert@uni-ulm.de; Kaspar, Daniela; Blakytny, Robert; Claes, Lutz; Ignatius, Anita

    2006-10-13

    Several in vivo and in vitro studies with different loading regimens showed that mechanical stimuli have an influence on proliferation and differentiation of bone cells. Prerequisite for this influence is the transduction of mechanical signals into the cell, a phenomenon that is termed mechanotransduction, which is essential for the maintenance of skeletal homeostasis in adults. Mechanoreceptors, such as the integrins, cadherins, and stretch-activated Ca{sup 2+} channels, together with various signal transduction pathways, are involved in the mechanotransduction process that ultimately regulates gene expression in the nucleus. Mechanotransduction itself is considered to be regulated by hormones, the extracellular matrix of the osteoblastic cells and the mode of the mechanical stimulus.

  3. Protein Interaction and Na/K-ATPase-Mediated Signal Transduction.

    PubMed

    Cui, Xiaoyu; Xie, Zijian

    2017-06-14

    The Na/K-ATPase (NKA), or Na pump, is a member of the P-type ATPase superfamily. In addition to pumping ions across cell membrane, it is engaged in assembly of multiple protein complexes in the plasma membrane. This assembly allows NKA to perform many non-pumping functions including signal transduction that are important for animal physiology and disease progression. This article will focus on the role of protein interaction in NKA-mediated signal transduction, and its potential utility as target for developing new therapeutics.

  4. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  5. Crosstalk between Photoreceptor and Sugar Signaling Modulates Floral Signal Transduction

    PubMed Central

    Matsoukas, Ianis G.

    2017-01-01

    Over the past decade, integrated genetic, cellular, proteomic and genomic approaches have begun to unravel the surprisingly crosstalk between photoreceptors and sugar signaling in regulation of floral signal transduction. Although a number of physiological factors in the pathway have been identified, the molecular genetic interactions of some components are less well understood. The further elucidation of the crosstalk mechanisms between photoreceptors and sugar signaling will certainly contribute to our better understanding of the developmental circuitry that controls floral signal transduction. This article summarizes our current knowledge of this crosstalk, which has not received much attention, and suggests possible directions for future research. PMID:28659814

  6. Crosstalk between Photoreceptor and Sugar Signaling Modulates Floral Signal Transduction.

    PubMed

    Matsoukas, Ianis G

    2017-01-01

    Over the past decade, integrated genetic, cellular, proteomic and genomic approaches have begun to unravel the surprisingly crosstalk between photoreceptors and sugar signaling in regulation of floral signal transduction. Although a number of physiological factors in the pathway have been identified, the molecular genetic interactions of some components are less well understood. The further elucidation of the crosstalk mechanisms between photoreceptors and sugar signaling will certainly contribute to our better understanding of the developmental circuitry that controls floral signal transduction. This article summarizes our current knowledge of this crosstalk, which has not received much attention, and suggests possible directions for future research.

  7. Mechanism and evolution of cytosolic Hedgehog signal transduction

    PubMed Central

    Wilson, Christopher W.; Chuang, Pao-Tien

    2010-01-01

    Hedgehog (Hh) signaling is required for embryonic patterning and postnatal physiology in invertebrates and vertebrates. With the revelation that the primary cilium is crucial for mammalian Hh signaling, the prevailing view that Hh signal transduction mechanisms are conserved across species has been challenged. However, more recent progress on elucidating the function of core Hh pathway cytosolic regulators in Drosophila, zebrafish and mice has confirmed that the essential logic of Hh transduction is similar between species. Here, we review Hh signaling events at the membrane and in the cytosol, and focus on parallel and divergent functions of cytosolic Hh regulators in Drosophila and mammals. PMID:20530542

  8. Targeted Lymphoma Cell Death by Novel Signal Transduction Modifications

    DTIC Science & Technology

    2010-07-14

    CD22-binding peptides that initiate signal transduction and apoptosis in non -Hodgkin’s lymphoma (NHL), 2) optimize CD22-mediated signal transduction...positive non -Hodgkin’s lymphoma (NHL), much as rituximab (Rituxan) is an option to patients with CD20-positive NHL. By sequencing the heavy and...Int J Pept Res Ther (2008) 14:237–246 8. O’Donnell RT, Pearson D, McKnight HC, Ma YP, Tuscano JM. Treatment of non -Hodgkin’s lymphoma xenografts with

  9. Next generation macrocyclic and acyclic cationic lipids for gene transfer: Synthesis and in vitro evaluation.

    PubMed

    Jubeli, Emile; Maginty, Amanda B; Abdul Khalique, Nada; Raju, Liji; Abdulhai, Mohamad; Nicholson, David G; Larsen, Helge; Pungente, Michael D; Goldring, William P D

    2015-10-01

    Previously we reported the synthesis and in vitro evaluation of four novel, short-chain cationic lipid gene delivery vectors, characterized by acyclic or macrocyclic hydrophobic regions composed of, or derived from, two 7-carbon chains. Herein we describe a revised synthesis of an expanded library of related cationic lipids to include extended chain analogues, their formulation with plasmid DNA (pDNA) and in vitro delivery into Chinese hamster ovarian (CHO-K1) cells. The formulations were evaluated against each other based on structural differences in the hydrophobic domain and headgroup. Structurally the library is divided into four sets based on lipids derived from two 7- or two 11-carbon hydrophobic chains, C7 and C11 respectively, which possess either a dimethylamine or a trimethylamine derived headgroup. Each set includes four cationic lipids based on an acyclic or macrocyclic, saturated or unsaturated hydrophobic domain. All lipids were co-formulated with the commercial cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC) in a 1:1 molar ratio, along with one of two distinct neutral co-lipids, cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in an overall cationic-to-neutral lipid molar ratio of 3:2. Binding of lipid formulations with DNA, and packing morphology associated with the individual lipid-DNA complexes were characterized by gel electrophoresis and small angle X-ray diffraction (SAXD), respectively. As a general trend, lipoplex formulations based on mismatched binary cationic lipids, composed of a shorter C7 lipid and the longer lipid EPC (C14), were generally associated with higher transfection efficiency and lower cytotoxicity than their more closely matched C11/EPC binary lipid formulation counterparts. Furthermore, the cyclic lipids gave transfection levels as high as or greater than their acyclic counterparts, and formulations with cholesterol exhibited higher transfection and lower cytotoxicity than those

  10. Postintervention growth of Malawian children who received 12-mo dietary complementation with a lipid-based nutrient supplement or maize-soy flour

    USDA-ARS?s Scientific Manuscript database

    Therapeutic feeding with micronutrient-fortified lipid-based nutrient supplements (LNSs) has proven useful in the rehabilitation of severely malnourished children. We recently reported that complementary feeding of 6 to 18-mo-old infants with LNS known as FS50, was associated with improved linear gr...

  11. Developmental outcomes among 18-month-old Malawians after a year of complementary feeding with lipid-based nutrient supplements or corn-soy flour

    USDA-ARS?s Scientific Manuscript database

    The major aim of this trial was to compare the development of 18-month-old infants who received complementary feeding for 1 year with either lipid-based nutrient supplements or micronutrient-fortified corn-soy porridge. Our secondary aim was to determine the socio-economic factors associated with de...

  12. Effects of Zinc Gluconate and 2 Other Divalent Cationic Compounds on Olfactory Function in Mice

    PubMed Central

    Duncan-Lewis, Christopher A; Lukman, Roy L; Banks, Robert K

    2011-01-01

    Intranasal application of zinc gluconate has commonly been used to treat the common cold. The safety of this treatment, however, has come into question recently. In addition to a United States recall of a homeopathic product that contains zinc gluconate, abundant literature reports cytotoxic effects of zinc on the olfactory epithelium. Additional research suggests that divalent cations (such as zinc) can block ion channels that facilitate the transduction of odors into electrical signals on the olfactory epithelium. The purpose of the current study was 2-fold: to confirm whether zinc gluconate causes anosmia and to reveal whether any other divalent cationic compounds produce a similar effect. Groups of mice underwent a buried food-pellet test to gauge olfactory function and then were nasally irrigated with 1 of 3 divalent cationic compounds. When tested after treatment, mice irrigated with zinc gluconate and copper gluconate experienced a marked increase in food-finding time, indicating that they had lost their ability to smell a hidden food source. Control mice irrigated with saline had a significantly lower increase in times. These results confirm that zinc gluconate can cause anosmia and reveal that multiple divalent cations can negatively affect olfaction. PMID:22330252

  13. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3: understanding supersaturation versus precipitation potential during the in vitro digestion of type I, II, IIIA, IIIB and IV lipid-based formulations.

    PubMed

    Williams, Hywel D; Sassene, Philip; Kleberg, Karen; Calderone, Marilyn; Igonin, Annabel; Jule, Eduardo; Vertommen, Jan; Blundell, Ross; Benameur, Hassan; Müllertz, Anette; Pouton, Colin W; Porter, Christopher J H

    2013-12-01

    Recent studies have shown that digestion of lipid-based formulations (LBFs) can stimulate both supersaturation and precipitation. The current study has evaluated the drug, formulation and dose-dependence of the supersaturation - precipitation balance for a range of LBFs. Type I, II, IIIA/B LBFs containing medium-chain (MC) or long-chain (LC) lipids, and lipid-free Type IV LBF incorporating different doses of fenofibrate or tolfenamic acid were digested in vitro in a simulated intestinal medium. The degree of supersaturation was assessed through comparison of drug concentrations in aqueous digestion phases (APDIGEST) during LBF digestion and the equilibrium drug solubility in the same phases. Increasing fenofibrate or tolfenamic acid drug loads (i.e., dose) had negligible effects on LC LBF performance during digestion, but promoted drug crystallization (confirmed by XRPD) from MC and Type IV LBF. Drug crystallization was only evident in instances when the calculated maximum supersaturation ratio (SR(M)) was >3. This threshold SR(M) value was remarkably consistent across all LBF and was also consistent with previous studies with danazol. The maximum supersaturation ratio (SR(M)) provides an indication of the supersaturation 'pressure' exerted by formulation digestion and is strongly predictive of the likelihood of drug precipitation in vitro. This may also prove effective in discriminating the in vivo performance of LBFs.

  14. Efficacious redox-responsive gene delivery in serum by ferrocenylated monomeric and dimeric cationic cholesterols.

    PubMed

    Vulugundam, Gururaja; Kumar, Krishan; Kondaiah, Paturu; Bhattacharya, Santanu

    2015-04-14

    Herein, we present the design and synthesis of new redox-active monomeric and dimeric (gemini) cationic lipids based on ferrocenylated cholesterol derivatives for gene delivery. The cationic cholesterols are shown to be transfection efficient after being formulated with the neutral helper lipid DOPE in the presence of serum (FBS). The redox activity of the resulting co-liposomes and their lipoplexes could be regulated using the alkanyl ferrocene moiety attached to the ammonium head groups of the cationic cholesterols. Atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta potential measurements were performed to characterize the co-liposomal aggregates and their complexes with pDNA. The transfection efficiency of lipoplexes could be tuned by changing the oxidation state of the ferrocene moiety. The gene transfection capability was assayed in terms of green fluorescence protein (GFP) expression using pEGFP-C3 plasmid DNA in three cell lines of different origins, namely Caco-2, HEK293T and HeLa, in the presence of serum. The vesicles possessing ferrocene in the reduced state induced an efficient transfection, even better than a commercial reagent Lipofectamine 2000 (Lipo 2000) as evidenced by flow cytometry and fluorescence microscopy. All the co-liposomes containing the oxidized ferrocene displayed diminished levels of gene expression. Gene transfection events from the oxidized co-liposomes were further potentiated by introducing ascorbic acid (AA) as a reducing agent during lipoplex incubation with cells, leading to the resumption of transfection activity. Assessment of transfection capability of both reduced and oxidized co-liposomes was also undertaken following cellular internalization of labelled pDNA using confocal microscopy and flow cytometry. Overall, we demonstrate here controlled gene transfection activities using redox-driven, transfection efficient cationic monomeric and dimeric cholesterol lipids. Such systems could be used in gene

  15. Lipid-based oral delivery systems for skin deposition of a potential chemopreventive DIM derivative: characterization and evaluation.

    PubMed

    Boakye, Cedar H A; Patel, Ketan; Patel, Apurva R; Faria, Henrique A M; Zucolotto, Valtencir; Safe, Stephen; Singh, Mandip

    2016-10-01

    The objective of this study was to explore the oral route as a viable potential for the skin deposition of a novel diindolylmethane derivative (DIM-D) for chemoprevention activity. Various lipid-based oral delivery systems were optimized and compared for enhancing DIM-D's oral bioavailability and skin deposition. Preformulation studies were performed to evaluate the log P and solubility of DIM-D. Microsomal metabolism, P-glycoprotein efflux, and caco-2 monolayer permeability of DIM-D were determined. Comparative evaluation of the oral absorption and skin deposition of DIM-D-loaded various lipid-based formulations was performed in rats. DIM-D showed pH-dependent solubility and a high log P value. It was not a strong substrate of microsomal degradation and P-glycoprotein. SMEDDs comprised of medium chain triglycerides, monoglycerides, and kolliphor-HS15 (36.70 ± 0.42 nm). SNEDDs comprised of long chain triglycerides, cremophor RH40, labrasol, and TPGS (84.00 ± 14.14 nm). Nanostructured lipid carriers (NLC) consisted of compritol, miglyol, and surfactants (116.50 ± 2.12 nm). The blank formulations all showed >70 % cell viability in caco-2 cells. Differential Scanning Calorimetry confirmed the amorphization of DIM-D within the lipid matrices while Atomic Force Microscopy showed particle size distribution similar to the dynamic light scattering data. DIM-D also showed reduced permeation across caco-2 monolayer that was enhanced (p < 0.05) by SNEDDs in comparison to SMEDDs and NLC. Fabsolute for DIM-D SNEDDs, SMEDDs, and NLC was 0.14, 0.04, and 0.007, respectively. SNEDDs caused 53.90, 11.32, and 15.08-fold more skin deposition of DIM-D than the free drug, SMEDDs, and NLC, respectively, at 2 h following oral administration and shows a viable potential for use in skin cancer chemoprevention. Graphical Abstract ᅟ.

  16. Olfactory transduction pathways in the Senegalese sole Solea senegalensis.

    PubMed

    Velez, Z; Hubbard, P C; Barata, E N; Canário, A V M

    2013-09-01

    This study tested whether differences in sensitivity between the upper and lower olfactory epithelia of Solea senegalensis are associated with different odorant receptors and transduction pathways, using the electro-olfactogram. Receptor mechanisms were assessed by cross-adaptation with amino acids (L-cysteine, L-phenylalanine and 1-methyl-L-tryptophan) and bile acids (taurocholic acid and cholic acid). This suggested that relatively specific receptors exist for 1-methyl-L-tryptophan and L-phenylalanine (food-related odorants) in the lower epithelium, and for taurocholic acid (conspecific-derived odorant) in the upper. Inhibition by U73122 [a phospholipase C (PLC) inhibitor] suggested that olfactory responses to amino acids were mediated mostly, but not entirely, by PLC-mediated transduction (IC50 ; 15-55 nM), whereas bile acid responses were mediated by both PLC and adenylate cyclase-cyclic adenosine monophosphate (AC-cAMP) (using SQ-22536; an AC inhibitor). Simultaneous application of both drugs rarely inhibited responses completely, suggesting possible involvement of non-PLC and non-AC mediated mechanisms. For aromatic amino acids and bile acids, there were differences in the contribution of each transduction pathway (PLC, AC and non-PLC and non-AC) between the two epithelia. These results suggest that differences in sensitivity of the two epithelia are associated with differences in odorant receptors and transduction mechanisms.

  17. Revisiting Theories of Humidity Transduction: A Focus on Electrophysiological Data.

    PubMed

    Tichy, Harald; Hellwig, Maria; Kallina, Wolfgang

    2017-01-01

    Understanding the mechanism of humidity transduction calls for experimental data and a theory to interpret the data and design new experiments. A comprehensive theory of humidity transduction must start with agreement on what humidity parameters are measured by hygroreceptors and processed by the brain. Hygroreceptors have been found in cuticular sensilla of a broad range of insect species. Their structural features are far from uniform. Nevertheless, these sensilla always contain an antagonistic pair of a moist cell and a dry cell combined with a thermoreceptive cold cell. The strategy behind this arrangement remains unclear. Three main models of humidity transduction have been proposed. Hygroreceptors could operate as mechanical hygrometers, psychrometers or evaporation detectors. Each mode of action measures a different humidity parameter. Mechanical hygrometers measure the relative humidity, psychrometers indicate the wet-bulb temperature, and evaporimeters refer to the saturation deficit of the air. Here we assess the validity of the different functions by testing specific predictions drawn from each of the models. The effect of air temperature on the responses to humidity stimulation rules out the mechanical hygrometer function, but it supports the psychrometer function and highlights the action as evaporation rate detector. We suggest testing the effect of the flow rate of the air stream used for humidity stimulation. As the wind speed strongly affects the power of evaporation, experiments with changing saturation deficit at different flow rates would improve our knowledge on humidity transduction.

  18. A graphic editor for analyzing signal-transduction pathways.

    PubMed

    Koike, T; Rzhetsky, A

    2000-12-23

    We describe a graphical editor designed specifically to facilitate analysis and visualization of complex signal-transduction pathways. The editor provides automatic layout of complex regulatory graphs and enables users easily to maintain, edit, and exchange publication-quality images of regulatory networks.

  19. Protein phosphorylation and its role in archaeal signal transduction

    PubMed Central

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  20. Highly efficient transduction of primary adult CNS and PNS neurons

    PubMed Central

    Levin, Evgeny; Diekmann, Heike; Fischer, Dietmar

    2016-01-01

    Delivery and expression of recombinant genes, a key methodology for many applications in biological research, remains a challenge especially for mature neurons. Here, we report easy, highly efficient and well tolerated transduction of adult peripheral and central neuronal populations of diverse species in culture using VSV-G pseudo-typed, recombinant baculovirus (BacMam). Transduction rates of up to 80% were reliably achieved at high multiplicity of infection without apparent neuro-cytopathic effects. Neurons could be transduced either shortly after plating or after several days in culture. Co-incubation with two different baculoviruses attained near complete co-localization of fluorescent protein expression, indicating multigene delivery. Finally, evidence for functional protein expression is provided by means of cre-mediated genetic recombination and neurite outgrowth assays. Recombinant protein was already detected within hours after transduction, thereby enabling functional readouts even in relatively short-lived neuronal cultures. Altogether, these results substantiate the usefulness of baculovirus-mediated transduction of mature neurons for future research in neuroscience. PMID:27958330

  1. Water taste transduction pathway is calcium dependent in Drosophila.

    PubMed

    Meunier, Nicolas; Marion-Poll, Frédéric; Lucas, Philippe

    2009-06-01

    In mammals, detection of osmolarity by the gustatory system was overlooked until recently. In insects, specific taste receptor neurons detect hypoosmotic stimuli and are commonly called "W" (water) cells. W cells are easy to access in vivo and represent a good model to study the transduction of hypoosmotic stimuli. Using pharmacological and genetic approaches in Drosophila, we show that tarsal W cell firing activity depends on the concentration of external calcium bathing the dendrite. This dependence was confirmed by the strong inhibition of W cell responses to hypoosmotic stimuli by lanthanum (IC(50) = 8 nM), an ion known to inhibit calcium-permeable channels. Downstream, the transduction pathway likely involves calmodulin because calmodulin antagonists such as W-7 (IC(50) = 2 microM) and fluphenazine (IC(50) = 30 microM) prevented the activation of the W cell by hypoosmotic stimuli. A protein kinase C (PKC) may also be involved as W cell responses were blocked by PKC inhibitors, chelerythrine (IC(50) = 20 microM) and staurosporine (IC(50) = 30 microM). It was also reduced when expressing an inhibitory pseudosubstrate of PKC in gustatory receptor neurons. In the rat, the transduction pathway underlying low osmolarity detection involves aquaporin and swelling-activated ion channels. Our study suggests that the transduction pathway of hypoosmotic stimuli in insects differs from mammals.

  2. Cell biology symposium: Membrane trafficking and signal transduction

    USDA-ARS?s Scientific Manuscript database

    In general, membrane trafficking is a broad group of processes where proteins and other large molecules are distributed throughout the cell as well as adjacent extracellular spaces. Whereas signal transduction is a process where signals are transmitted through a series of chemical or molecular event...

  3. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    USDA-ARS?s Scientific Manuscript database

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  4. Reversible binding of heme to proteins in cellular signal transduction.

    PubMed

    Hou, Shangwei; Reynolds, Mark F; Horrigan, Frank T; Heinemann, Stefan H; Hoshi, Toshinori

    2006-12-01

    Heme plays critical roles in numerous biological phenomena. Recent evidence has uncovered a new role of heme in cellular signal transduction, and its mechanism involves reversible binding of heme to proteins. This Account highlights the novel function of heme as an intracellular messenger in the regulation of gene expression and ion channel function.

  5. Neuropilins are positive regulators of Hedgehog signal transduction

    PubMed Central

    Hillman, R. Tyler; Feng, Brian Y.; Ni, Jun; Woo, Wei-Meng; Milenkovic, Ljiljana; Hayden Gephart, Melanie G.; Teruel, Mary N.; Oro, Anthony E.; Chen, James K.; Scott, Matthew P.

    2011-01-01

    The Hedgehog (Hh) pathway is essential for vertebrate embryogenesis, and excessive Hh target gene activation can cause cancer in humans. Here we show that Neuropilin 1 (Nrp1) and Nrp2, transmembrane proteins with roles in axon guidance and vascular endothelial growth factor (VEGF) signaling, are important positive regulators of Hh signal transduction. Nrps are expressed at times and locations of active Hh signal transduction during mouse development. Using cell lines lacking key Hh pathway components, we show that Nrps mediate Hh transduction between activated Smoothened (Smo) protein and the negative regulator Suppressor of Fused (SuFu). Nrp1 transcription is induced by Hh signaling, and Nrp1 overexpression increases maximal Hh target gene activation, indicating the existence of a positive feedback circuit. The regulation of Hh signal transduction by Nrps is conserved between mammals and bony fish, as we show that morpholinos targeting the Nrp zebrafish ortholog nrp1a produce a specific and highly penetrant Hh pathway loss-of-function phenotype. These findings enhance our knowledge of Hh pathway regulation and provide evidence for a conserved nexus between Nrps and this important developmental signaling system. PMID:22051878

  6. Revisiting Theories of Humidity Transduction: A Focus on Electrophysiological Data

    PubMed Central

    Tichy, Harald; Hellwig, Maria; Kallina, Wolfgang

    2017-01-01

    Understanding the mechanism of humidity transduction calls for experimental data and a theory to interpret the data and design new experiments. A comprehensive theory of humidity transduction must start with agreement on what humidity parameters are measured by hygroreceptors and processed by the brain. Hygroreceptors have been found in cuticular sensilla of a broad range of insect species. Their structural features are far from uniform. Nevertheless, these sensilla always contain an antagonistic pair of a moist cell and a dry cell combined with a thermoreceptive cold cell. The strategy behind this arrangement remains unclear. Three main models of humidity transduction have been proposed. Hygroreceptors could operate as mechanical hygrometers, psychrometers or evaporation detectors. Each mode of action measures a different humidity parameter. Mechanical hygrometers measure the relative humidity, psychrometers indicate the wet-bulb temperature, and evaporimeters refer to the saturation deficit of the air. Here we assess the validity of the different functions by testing specific predictions drawn from each of the models. The effect of air temperature on the responses to humidity stimulation rules out the mechanical hygrometer function, but it supports the psychrometer function and highlights the action as evaporation rate detector. We suggest testing the effect of the flow rate of the air stream used for humidity stimulation. As the wind speed strongly affects the power of evaporation, experiments with changing saturation deficit at different flow rates would improve our knowledge on humidity transduction. PMID:28928673

  7. Protein phosphorylation and its role in archaeal signal transduction.

    PubMed

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C; Albers, Sonja-Verena; Siebers, Bettina

    2016-09-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. © FEMS 2016.

  8. Transductive learning as an alternative to translation initiation site identification.

    PubMed

    Nunes Pinto, Cristiano Lacerda; Nobre, Cristiane Neri; Zárate, Luis Enrique

    2017-02-02

    The correct protein coding region identification is an important and latent problem in the molecular biology field. This problem becomes a challenge due to the lack of deep knowledge about the biological systems and unfamiliarity of conservative characteristics in the messenger RNA (mRNA). Therefore, it is fundamental to research for computational methods aiming to help the patterns discovery for identification of the Translation Initiation Sites (TIS). In the field of Bioinformatics, machine learning methods have been widely applied based on the inductive inference, as Inductive Support Vector Machine (ISVM). On the other hand, not so much attention has been given to transductive inference-based machine learning methods such as Transductive Support Vector Machine (TSVM). The transductive inference performs well for problems in which the amount of unlabeled sequences is considerably greater than the labeled ones. Similarly, the problem of predicting the TIS may take advantage of transductive methods due to the fact that the amount of new sequences grows rapidly with the progress of Genome Project that allows the study of new organisms. Consequently, this work aims to investigate the transductive learning towards TIS identification and compare the results with those obtained in inductive method. The transductive inference presents better results both in F-measure and in sensitivity in comparison with the inductive method for predicting the TIS. Additionally, it presents the least failure rate for identifying the TIS, presenting a smaller number of False Negatives (FN) than the ISVM. The ISVM and TSVM methods were validated with the molecules from the most representative organisms contained in the RefSeq database: Rattus norvegicus, Mus musculus, Homo sapiens, Drosophila melanogaster and Arabidopsis thaliana. The transductive method presented F-measure and sensitivity higher than 90% and also higher than the results obtained with ISVM. The ISVM and TSVM approaches

  9. Cation disorder in shocked orthopyroxene.

    NASA Technical Reports Server (NTRS)

    Dundon, R. W.; Hafner, S. S.

    1971-01-01

    The study of cation distributions over nonequivalent lattice sites in minerals may reveal information on the history of temperature and pressure in rocks. Chemically homogeneous orthopyroxene specimens were shocked under well-controlled conditions in the laboratory in order to provide a basis for the interpretation of more complex natural materials. As a result of the investigation it is concluded that the distribution of magnesium and iron over the M1 and M2 positions in Bamle enstatite shocked at 1 megabar is highly disordered. It corresponds to an equilibrium distribution of at least 1000 C.

  10. Anti-arthritis activity of cationic materials

    PubMed Central

    Dong, Lei; Xia, Suhua; Chen, Huan; Chen, Jiangning; Zhang, Junfeng

    2010-01-01

    Abstract Cationic materials exhibit remarkable anti-inflammatory activity in experimental arthritis models. Our aim was to confirm this character of cationic materials and investigate its possible mechanism. Adjuvant-induced arthritis (AIA) models were used to test cationic materials for their anti-inflammatory activity. Cationic dextran (C-dextran) with different cationic degrees was used to investigate the influence of the cationic elements of materials on their anti-inflammatory ability. Peritoneal macrophages and spleen cells were used to test the expression of cytokines stimulated by cationic materials. Interferon (IFN)-γ receptor-deficient mice and macrophage-depleted rats were used to examine the possible mechanisms of the anti-inflammatory activity of cationic materials. In AIA models, different cationic materials shared similar anti-inflammatory characters. The anti-inflammatory activity of C-dextran increased with as the cationic degree increased. Cationic materials stimulated interleukin (IL)-12 expression in peritoneal macrophages, and strong stimulation of IFN-γ secretion was subsequently observed in spleen cells. In vivo experiments revealed that circulating IL-12 and IFN-γ were enhanced by the cationic materials. Using IFN-γ receptor knockout mice and macrophage-depleted rats, we found that IFN-γ and macrophages played key roles in the anti-inflammatory activity of the materials towards cells. We also found that neutrophil infiltration at inflammatory sites was reduced when AIA animals were treated with C-dextran. We propose that cationic signals act through an unknown receptor on macrophages to induce IL-12 secretion, and that IL-12 promotes the expression of IFN-γ by natural killer cells (or T cells). The resulting elevated systemic levels of IFN-γ inhibit arthritis development by preventing neutrophil recruitment to inflammatory sites. PMID:19538477

  11. Microbead-assisted retroviral transduction for clinical application.

    PubMed

    Heemskerk, Bianca; Jorritsma, Annelies; Gomez-Eerland, Raquel; Toebes, Mireille; Haanen, John B A G; Schumacher, Ton N M

    2010-10-01

    Retroviral transduction is the most commonly used strategy to obtain long-term expression of therapeutic genes. To efficiently transduce mammalian cells, a recombinant fibronectin molecule, RetroNectin, is generally used to juxtapose viral particles and cells, and thereby enhance viral uptake. Although this strategy has become widely adopted, in particular for the genetic modification of hematopoietic cells, several limitations apply. For example, it requires the use of culture systems that allow protein coating, something that is not possible for many of the closed cell culture systems that are used in clinical trials. Furthermore, efficient transduction is obtained only when culture systems can be exposed to centrifugation, an approach termed spin transduction. Here, we describe a novel and more potent strategy for the transduction of T cells that can be applied on a clinical scale. We show that RetroNectin can efficiently be coated onto epoxy-modified paramagnetic beads. After a blocking step, these beads can subsequently bind retroviral particles from viral supernatants, rendering such supernatants largely devoid of functional viral particles. Addition of these virus-loaded beads to activated T cells results in efficient retroviral infection. Importantly, transduction does not require the use of culture systems that are compatible with protein coating, nor is it dependent on centrifugation of either the viral supernatant or the cells. Finally, cell growth, phenotype, and function of spin-transduced versus bead-transduced cells are comparable. Viral coating of microbeads should facilitate the production of genetically modified cells, in particular for use in clinical trials.

  12. Quantitative Biology of Exercise-Induced Signal Transduction Pathways.

    PubMed

    Liu, Timon Cheng-Yi; Liu, Gang; Hu, Shao-Juan; Zhu, Ling; Yang, Xiang-Bo; Zhang, Quan-Guang

    2017-01-01

    Exercise is essential in regulating energy metabolism. Exercise activates cellular, molecular, and biochemical pathways with regulatory roles in training response adaptation. Among them, endurance/strength training of an individual has been shown to activate its respective signal transduction pathways in skeletal muscle. This was further studied from the viewpoint of quantitative difference (QD). For the mean values, [Formula: see text], of two sets of data, their QD is defined as [Formula: see text] ([Formula: see text]). The function-specific homeostasis (FSH) of a function of a biosystem is a negative-feedback response of the biosystem to maintain the function-specific conditions inside the biosystem so that the function is perfectly performed. A function in/far from its FSH is called a normal/dysfunctional function. A cellular normal function can resist the activation of other signal transduction pathways so that there are normal function-specific signal transduction pathways which full activation maintains the normal function. An acute endurance/strength training may be dysfunctional, but its regular training may be normal. The normal endurance/strength training of an individual may resist the activation of other signal transduction pathways in skeletal muscle so that there may be normal endurance/strength training-specific signal transduction pathways (NEPs/NSPs) in skeletal muscle. The endurance/strength training may activate NSPs/NEPs, but the QD from the control is smaller than 0.80. The simultaneous activation of both NSPs and NEPs may enhance their respective activation, and the QD from the control is larger than 0.80. The low level laser irradiation pretreatment of rats may promote the activation of NSPs in endurance training skeletal muscle. There may be NEPs/NSPs in skeletal muscle trained by normal endurance/strength training.

  13. Preventative lipid-based nutrient supplements (LNS) and young child feeding practices: findings from qualitative research in Haiti.

    PubMed

    Lesorogol, Carolyn; Jean-Louis, Sherlie; Green, Jamie; Iannotti, Lora

    2015-12-01

    To prevent undernutrition in an urban slum in Haiti, a lipid-based nutrient supplement (LNS) was introduced through a randomised control trial. Food supplementation for young child nutrition has a long history in Haiti, but there is little empirical information regarding the effects of supplementation on young child feeding practices. One of the concerns raised by supplementation is that it may disrupt other positive feeding practices such as breastfeeding and use of other complementary foods, with negative consequences for child nutrition. We conducted 29 in-depth interviews with mother-baby pairs from the three comparison groups: control, 3-month LNS supplementation and 6-month LNS supplementation. Findings from those in the LNS groups indicated high acceptance and satisfaction with LNS and perceptions that it positively affects child health and development. LNS was integrated into and enhanced ongoing complementary feeding practices. The effects of LNS use on duration and perceived quantity of breastfeeding were variable, but generally, breastfeeding was maintained during and after the intervention. Interviews generated insights into beliefs regarding infant and young child feeding practices such as introduction and use of complementary foods, and breastfeeding duration, exclusivity and cessation. Implications for the use of LNS in public health nutrition programmes are discussed. © 2014 John Wiley & Sons Ltd.

  14. In vivo detection of lipid-based nano- and microparticles in the outermost human stratum corneum by EDX analysis.

    PubMed

    Iannuccelli, Valentina; Coppi, Gilberto; Romagnoli, Marcello; Sergi, Santo; Leo, Eliana

    2013-04-15

    Lipid-based particulate delivery systems have been extensively investigated in the last decade for both pharmaceutical and cosmetic skin application although their translocation across the skin is not yet clarified. The aim of this paper was to investigate on humans the ability of solid lipid nanoparticles (SLN) and solid lipid microparticles (SLM) to penetrate the outermost stratum corneum (SC) and to be modified upon contact with the cutaneous components by using the Tape Stripping Test coupled with the energy dispersive X-ray (EDX) analysis. SLN and SLM were prepared by the melt emulsification technique and loaded with nanosized titanium dioxide (TiO2) to become identifiable by means of X-ray emission. Following human skin application, the translocation of the particulate systems was monitored by the analysis of twelve repetitive stripped tapes using non-encapsulated metal dioxide as the control. Intact SLN as well as non-encapsulated TiO₂ were recorded along the largest SC openings until the 12th stripped tape suggesting the intercluster region as their main pathway. Evidences of a concurrent biodegradation process of the lipid matrix, as the result of SLN interaction with the lipid packing between the corneocyte clusters, were found in the deepest SC layers considered. On the contrary, SLM were retained on the skin surface without undergoing biodegradation so preventing the leaching and the subsequent SC translocation of the loaded TiO₂.

  15. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    PubMed

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  16. A microstructural study of water effects in lipid-based pharmaceutical formulations for liquid filling of capsules.

    PubMed

    Machado, Alexandra H E; Kokubo, Tohru; Dujovny, Gabriela; Jones, Brian; Scialdone, Claudio; Bravo, Roberto; Kuentz, Martin

    2016-07-30

    Water is known to exhibit pronounced effects on lipid-based formulations (LBFs) and much research has focused on aqueous dispersion and dilution behavior regarding biopharmaceutical performance. From a product quality perspective, it is also critical to study a range of lower water amounts in formulations with respect to capsule filling. The present work addressed the need for a better understanding of LBF microstructure by taking percolation theory into account. The effects of increasing amounts of water on LBFs were analyzed by conductivity, water activity, time-domain nuclear magnetic resonance, and diffusing wave spectroscopy. Results were interpreted using percolation theory and preliminary mechanical tests were conducted on gelatin and hypromellose (HPMC) capsule shells. For both LBF systems, increasing water amounts led to marked changes in the microstructure of the formulations. Percolation laws could be fitted adequately to the data and thresholds were identified for the formation of continuous water channels (ϕwc~0.02-0.06). A new theoretical model was proposed for water activity. The preliminary shell material studies showed that the threshold for generating water channels in the formulation could be correlated to mechanical changes of the capsule shell that were relatively more pronounced in the case of gelatin. This mechanistic study demonstrated the importance of understanding and monitoring of microstructural changes occurring in LBFs with increasing amounts of water, which will help to design quality into the final dosage form.

  17. Trastuzumab guided nanotheranostics: A lipid based multifunctional nanoformulation for targeted drug delivery and imaging in breast cancer therapy.

    PubMed

    Parhi, Priyambada; Sahoo, Sanjeeb Kumar

    2015-08-01

    Nowadays, emerging aspects of cancer therapy involve both diagnostic and therapeutic modules in a single setting. Targeted theranostic nanoplatforms have emerged globally as frontier research for the improvement of cancer therapy. Trastuzumab (Tmab), a humanized monoclonal antibody is now being used to target human epidermal growth factor receptor-2 (HER 2) positive cancer cells. In the present study, we have analysed the imaging and theragnosis potentiality of Tmab functionalized lipid based nanoparticles (NPs) loaded with anticancer drug rapamycin and imaging agent (quantum dots) for targeted cancer therapy and imaging. The therapeutic evaluation of drug loaded NPs were evaluated through various in vitro cellular studies. The results showed enhanced therapeutic efficacy of targeted drug loaded NPs over native drug and unconjugated NPs in HER 2 positive SKBR 3 breast cancer cell line. Moreover, exploration of the therapeutic benefits of rapamycin loaded Tmab conjugated NPs (Tmab-rapa-NPs) at molecular level, revealed augmented down regulation of mTOR signalling pathway thereby, inducing more cell death. Above all, our targeted multifunctional NPs have shown an excellent bio-imaging modality both in 2D monolayer and 3D tumor spheroid model. Thus, we can anticipate that such a multimodal nanotheranostic approach may be a useful tool for better cancer management in future. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. High-Throughput Lipolysis in 96-Well Plates for Rapid Screening of Lipid-Based Drug Delivery Systems.

    PubMed

    Mosgaard, Mette D; Sassene, Philip J; Mu, Huiling; Rades, Thomas; Müllertz, Anette

    2017-04-01

    The high-throughput in vitro intestinal lipolysis model (HTP) applicable for rapid and low-scale screening of lipid-based drug delivery systems (LbDDSs) was optimized and adjusted as to be conducted in 96-well plates (HTP-96). Three different LbDDSs (I-III) loaded with danazol or cinnarizine were used as model systems. The distributions of cinnarizine and danazol in the aqueous and precipitated digestion phases generated during lipolysis in HTP-96 were compared with previously published data obtained from HTP. The final HTP-96 setup resulted in the same rank order as the original HTP model with regard to solubilization in the aqueous phase during digestion: LbDDS III > LbDDS II > LbDDS I for danazol and LbDDS III ≈ LbDDS II ≈ LbDDS I for cinnarizine. HTP-96 is a useful model for fast performance assessment of LbDDS in a small scale. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Meeting nutritional needs in the first 1000 days: a place for small-quantity lipid-based nutrient supplements.

    PubMed

    Adu-Afarwuah, Seth; Lartey, Anna; Dewey, Kathryn G

    2017-03-01

    The first 1000 days of life is marked by intense metabolic activity and tissue deposition. The increased nutritional needs during this period, and the challenges to meeting them, are often not understood or appreciated. Here, we describe the nutritional needs during the first 1000 days, highlight the challenges to meeting these needs in developing countries, outline intervention strategies, and examine the consumption of small-quantity lipid-based nutrient supplements (SQ-LNS) as a promising strategy. In low-income settings, the challenge to meeting nutritional needs during the first 1000 days is worsened by overreliance on cereal-based diets of low nutrient density and high prevalence of infections and infestations. Dietary diversification is the ideal long-term solution to nutritional deficiencies, but difficulties with obtaining adequate amounts of iron, zinc, and certain vitamins may still remain. Several other interventions are available, but applying them is often fraught with challenges, including cost and contextual factors limiting efficacy. Evidence suggests that SQ-LNS supplementation may help reduce inadequate gestational weight gain and promote fetal and child growth and development in some populations. More research is needed to evaluate the effectiveness of SQ-LNS and other fortified products in different contexts and within integrated programs that address other determinants of maternal and child undernutrition. © 2017 New York Academy of Sciences.

  20. Treatment of respiratory damage in mice by aerosols of drug-encapsulating targeted lipid-based particles.

    PubMed

    Rivkin, Ilia; Galnoy-Glucksam, Yifat; Elron-Gross, Inbar; Afriat, Amichay; Eisenkraft, Arik; Margalit, Rimona

    2016-04-05

    The purpose of this study was to develop a treatment for respiratory damage caused by exposure to toxic industrial chemicals (TICs), including mass casualty events, by aerosols of dexamethasone and/or N-acetyl cysteine formulated in targeted lipid-based particles. Good encapsulation, performance as slow-release drug depots, conservation of matter, and retention of biological activity were obtained for the three drug-carrier formulations, pre- and post-aerosolization. Weight changes over a 2week period were applied, deliberately, as a non-invasive clinical parameter. Control mice gained weight continuously, whereas a non-lethal 30minute exposure of mice to 300ppm Cl2 in air showed a two-trend response. Weight loss over the first two days, reversing thereafter to weight gain, but at a rate and level significantly slower and smaller than those of the control mice, indicating the chlorine damage was long-term. The weight changes of Cl2-exposed mice given the inhalational treatments also showed the two-trend response, but the weight gain rates and levels were similar to those of the control mice, reaching the weight-gain range of the control mice. Following this proof of concept, studies are now extended to include additional TICs, and biochemical markers of injury and recovery.

  1. Nitric oxide-sensing actuators for modulating structure in lipid-based liquid crystalline drug delivery systems.

    PubMed

    Liu, Qingtao; Hu, Jinming; Whittaker, Michael R; Davis, Thomas P; Boyd, Ben J

    2017-08-24

    Herein we report on the development of a nitric oxide-sensing lipid-based liquid crystalline (LLC) system specifically designed to release encapsulated drugs on exposure to NO through a stimulated phase change. A series of nitric oxide (NO)-sensing lipids compatible with phytantriol and GMO cubic phases were designed and synthesized, and utilized in enabling nitric oxide-sensing LLC systems. The nitric oxide (NO)-sensing lipids react with nitric oxide, resulting in hydrolysis of these lipids and phase transition of the LLC system. Specifically, the N-3-aminopyridinyl myristylamine (NAPyM)+phytantriol mixture formed a lamellar phase in excess aqueous environment. The NAPyM+phytantriol LLC responded to the nitric oxide gas as a chemical stimulus which triggers a phase transition from lamellar phase to inverse cubic and hexagonal phase. The nitric oxide-triggered phase transition of the LLC accelerated the release of encapsulated model drug from the LLC bulk phase, resulting in a 15-fold increase in the diffusion coefficient compared to the starting lamellar structure. The nitric oxide-sensing LLC system has potential application in the development of smart medicines to treat nitric oxide implicated diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Lipid-based formulations and drug supersaturation: harnessing the unique benefits of the lipid digestion/absorption pathway.

    PubMed

    Williams, Hywel D; Trevaskis, Natalie L; Yeap, Yan Yan; Anby, Mette U; Pouton, Colin W; Porter, Christopher J H

    2013-12-01

    Drugs with low aqueous solubility commonly show low and erratic absorption after oral administration. Myriad approaches have therefore been developed to promote drug solubilization in the gastrointestinal (GI) fluids. Here, we offer insight into the unique manner by which lipid-based formulations (LBFs) may enhance the absorption of poorly water-soluble drugs via co-stimulation of solubilization and supersaturation. Supersaturation provides an opportunity to generate drug concentrations in the GI tract that are in excess of the equilibrium crystalline solubility and therefore higher than that achievable with traditional formulations. Incorporation of LBF into lipid digestion and absorption pathways provides multiple drivers of supersaturation generation and the potential to enhance thermodynamic activity and absorption. These drivers include 1) formulation dispersion, 2) lipid digestion, 3) interaction with bile and 4) lipid absorption. However, high supersaturation ratios may also stimulate drug precipitation and reduce exposure where re-dissolution limits absorption. The most effective formulations are likely to be those that generate moderate supersaturation and do so close to the site of absorption. LBFs are particularly well suited to these criteria since solubilization protects against high supersaturation ratios, and supersaturation initiation typically occurs in the small intestine, at the absorptive membrane.

  3. Cation Transport in Escherichia coli

    PubMed Central

    Schultz, Stanley G.; Solomon, A. K.

    1961-01-01

    Methods have been developed to study the intracellular Na and K concentrations in E. coli, strain K-12. These intracellular cation concentrations have been shown to be functions of the extracellular cation concentrations and the age of the bacterial culture. During the early logarithmic phase of growth, the intracellular K concentration greatly exceeds that of the external medium, whereas the intracellular Na concentration is lower than that of the growth medium. As the age of the culture increases, the intracellular K concentration falls and the intracellular Na concentration rises, changes which are related to the fall in the pH of the medium and to the accumulation of the products of bacterial metabolism. When stationary phase cells, which are rich in Na and poor in K, are resuspended in fresh growth medium, there is a rapid reaccumulation of K and extrusion of Na. These processes represent oppositely directed net ion movements against concentration gradients, and have been shown to be dependent upon the presence of an intact metabolic energy supply. PMID:13909521

  4. Transduction heats in retinal rods: tests of the role of cGMP by pyroelectric calorimetry.

    PubMed Central

    Hagins, W A; Ross, P D; Tate, R L; Yoshikami, S

    1989-01-01

    The sensory dark current of vertebrate retinal rods is believed to be controlled by light activation of a chain of coupled biochemical cycles that finally regulate the cationic conductance of the plasma membrane by hydrolytically reducing the level of cGMP in rod outer segment cytoplasm. The scheme has been tested by measuring heat production by live frog retinas when stimulated with sequences of light flashes of progressively increasing energy. Using pyroelectric poly(vinylidene 1,1-difluoride) detectors that simultaneously measure transretinal voltage and retinal temperature change, four heat effects assignable to known biochemical cycles in rods have been found. As the dark current shuts down after a flash causing 180-1800 rhodopsin photoisomerizations per rod, a heat burst, q1, raises the retinal temperature 1-2 microK. q1 is closely regulated in size and slightly precedes dark current shutdown. Isobutylmethylxanthine slows and enlarges q1, delaying the dark-current response. Increasing cytoplasmic Ca2+ stops the dark current without affecting q1. Although rod heat production is consistent with splitting of 1-3 microM of free cytoplasmic cGMP during transduction, the kinetics of the two processes do not match the predictions of current cGMP control models. PMID:2537492

  5. Liquid Crystalline Polymers by Cationic Polymerization,

    DTIC Science & Technology

    1986-01-01

    cation mechanism of Scholl reaction the Lewis acid and by the benzylic carbocations . Hydride transfer to benzylic carbenium ions leads to methyl groups...reviewed. Examples from ring-opening, carbocationic , and radical-cation poly- merizations and oligomerizations are discussed. Accesion For DrIC TAB3...Examples from ring- opening, carbocationic , and radical-cation polymeri- zations and oligomerizations are discussed. INTRODUCTION This paper will

  6. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOEpatents

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  7. Cation-Coupled Bicarbonate Transporters

    PubMed Central

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2016-01-01

    Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na+-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na+-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3− transporters of the SLC4-family. PMID:25428855

  8. Cation-coupled bicarbonate transporters.

    PubMed

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2014-10-01

    Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.

  9. Recent Trends in Nanotechnology Toward CNS Diseases: Lipid-Based Nanoparticles and Exosomes for Targeted Therapeutic Delivery.

    PubMed

    Cardoso, A M; Guedes, J R; Cardoso, A L; Morais, C; Cunha, P; Viegas, A T; Costa, R; Jurado, A; Pedroso de Lima, M C

    2016-01-01

    Central nervous system (CNS) diseases constitute a set of challenging pathological conditions concerning diagnosis and therapeutics. For most of these disorders, there is a lack of early diagnosis, biomarkers to allow proper follow-up of disease progression and effective therapeutic strategies to allow a persistent cure. The poor prognosis of most CNS diseases is, therefore, a global concern, especially regarding chronic age-related neurodegenerative disorders, which are already considered problems of public health due to the increasing average of life expectancy. The difficulties associated with the treatment of CNS diseases are owed, at least in part, to very specific characteristics of the brain and spinal cord, when compared to peripheral organs. In this regard, the CNS is physically and chemically protected by the blood-brain barrier (BBB), which, while maintaining essential brain homeostasis, significantly restricts the delivery of most therapeutic agents to the brain parenchyma. On the other hand, regenerative properties of the tissue are lacking, meaning that a CNS insult resulting in neuronal death is a permanent phenomenon. Approaches for transposing the BBB aiming to treat CNS diseases, relying on specific properties of nanosystems, have been reported for therapeutic delivery to CNS without interfering with the normal function of the brain. In this chapter, we address the latest advances concerning the principles of such approaches, employing lipid-based nanoparticles and cell-produced exosomes as drug and nucleic acid delivery systems, and summarize recent example of applications in the context of neurological diseases. Major achievements obtained in preclinical studies and the trends identified by these studies are emphasized to provide new prospects for further developments in this area, thus enabling us to move from the research realm to the clinical arena. © 2016 Elsevier Inc. All rights reserved.

  10. In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer.

    PubMed

    Yang, Shaomei; Zhang, Bo; Gong, Xiaowei; Wang, Tianqi; Liu, Yongjun; Zhang, Na

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. In this study, sorafenib-loaded lipid-based nanosuspensions (sorafenib-LNS) were first developed as an intravenous injectable formulation to increase the efficacy of sorafenib against HCC. LNS were used as nanocarriers for sorafenib owing to their desired features in increasing the solubility and dissolution velocity, improving the bioavailability of sorafenib. Sorafenib-LNS were prepared by nanoprecipitation and consisted of spherical particles with a uniform size distribution (164.5 nm, polydispersity index =0.202) and negative zeta potential (-11.0 mV). The drug loading (DL) was 10.55%±0.16%. Sorafenib-LNS showed higher in vitro cytotoxicity than sorafenib against HepG2 cells (P<0.05) and Bel-7402 cells (P<0.05). The in vivo biodistribution, biocompatibility, and antitumor efficacy of sorafenib-LNS were evaluated in H22-bearing liver cancer xenograft murine model. The results showed that sorafenib-LNS (9 mg/kg) exhibited significantly higher antitumor efficacy by reducing the tumor volume compared with the sorafenib oral group (18 mg/kg, P<0.05) and sorafenib injection group (9 mg/kg, P<0.05). Furthermore, the results of the in vivo biodistribution experiments demonstrated that sorafenib-LNS injected into H22 tumor-bearing mice exhibited increased accumulation in the tumor tissue, which was confirmed by in vivo imaging. In the current experimental conditions, sorafenib-LNS did not show significant toxicity both in vitro and in vivo. These results suggest that sorafenib-LNS are a promising nanomedicine for treating HCC.

  11. Willingness to pay for lipid-based nutrient supplements for young children in four urban sites of Ethiopia.

    PubMed

    Segrè, Joel; Winnard, Kim; Abrha, Teweldebrhan Hailu; Abebe, Yewelsew; Shilane, David; Lapping, Karin

    2015-12-01

    Malnutrition in children under 5 years of age is pervasive in Ethiopia across all wealth quintiles. The objective of this study was to determine the willingness to pay (WTP) for a week's supply of Nutributter® (a lipid-based nutrient supplement, or LNS) through typical urban Ethiopian retail channels. In February, 2012, 128 respondents from 108 households with 6-24-month-old children had the opportunity to sample Nutributter® for 2 days in their homes as a complementary food. Respondents were asked directly and indirectly what they were willing to pay for the product, and then participated in market simulation where they could demonstrate their WTP through an exchange of real money for real product. Nearly all (96%) of the respondents had a positive WTP, and 25% were willing to pay the equivalent of at least $1.05, which we calculated as the likely minimum, unsubsidised Ethiopian retail price of Nutributter® for 1 week for one child. Respondents willing to pay at least $1.05 included urban men and women with children 6-24 months old from low-, middle- and high-wealth groups from four study sites across three cities. Additionally, we estimated the initial annual market size for Nutributter® in the cities where the study took place to be around $500 000. The study has important implications for retail distribution of LNS in Ethiopia, showing who the most likely customers could be, and also suggesting why the initial market may be too small to be of interest to food manufacturers seeking profit maximisation. © 2012 Blackwell Publishing Ltd.

  12. In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer

    PubMed Central

    Yang, Shaomei; Zhang, Bo; Gong, Xiaowei; Wang, Tianqi; Liu, Yongjun; Zhang, Na

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. In this study, sorafenib-loaded lipid-based nanosuspensions (sorafenib-LNS) were first developed as an intravenous injectable formulation to increase the efficacy of sorafenib against HCC. LNS were used as nanocarriers for sorafenib owing to their desired features in increasing the solubility and dissolution velocity, improving the bioavailability of sorafenib. Sorafenib-LNS were prepared by nanoprecipitation and consisted of spherical particles with a uniform size distribution (164.5 nm, polydispersity index =0.202) and negative zeta potential (−11.0 mV). The drug loading (DL) was 10.55%±0.16%. Sorafenib-LNS showed higher in vitro cytotoxicity than sorafenib against HepG2 cells (P<0.05) and Bel-7402 cells (P<0.05). The in vivo biodistribution, biocompatibility, and antitumor efficacy of sorafenib-LNS were evaluated in H22-bearing liver cancer xenograft murine model. The results showed that sorafenib-LNS (9 mg/kg) exhibited significantly higher antitumor efficacy by reducing the tumor volume compared with the sorafenib oral group (18 mg/kg, P<0.05) and sorafenib injection group (9 mg/kg, P<0.05). Furthermore, the results of the in vivo biodistribution experiments demonstrated that sorafenib-LNS injected into H22 tumor-bearing mice exhibited increased accumulation in the tumor tissue, which was confirmed by in vivo imaging. In the current experimental conditions, sorafenib-LNS did not show significant toxicity both in vitro and in vivo. These results suggest that sorafenib-LNS are a promising nanomedicine for treating HCC. PMID:27307733

  13. Prenatal lipid-based nutrient supplements increase cord leptin concentration in pregnant women from rural Burkina Faso.

    PubMed

    Huybregts, Lieven; Roberfroid, Dominique; Lanou, Hermann; Meda, Nicolas; Taes, Youri; Valea, Innocent; D'Alessandro, Umberto; Kolsteren, Patrick; Van Camp, John

    2013-05-01

    In developing countries, prenatal lipid-based nutrient supplements (LNSs) were shown to increase birth size; however, the mechanism of this effect remains unknown. Cord blood hormone concentrations are strongly associated with birth size. Therefore, we hypothesize that LNSs increase birth size through a change in the endocrine regulation of fetal development. We compared the effect of daily prenatal LNSs with multiple micronutrient tablets on cord blood hormone concentrations using a randomized, controlled design including 197 pregnant women from rural Burkina Faso. Insulin-like growth factors (IGF) I and II, their binding proteins IGFBP-1 and IGFBP-3, leptin, cortisol, and insulin were quantified in cord sera using immunoassays. LNS was associated with higher cord blood leptin mainly in primigravidae (+57%; P = 0.02) and women from the highest tertile of BMI at study inclusion (+41%; P = 0.02). We did not find any significant LNS effects on other measured cord hormones. The observed increase in cord leptin was associated with a significantly higher birth weight. Cord sera from small-for-gestational age newborns had lower median IGF-I (-9 μg/L; P = 0.003), IGF-II (-79 μg/L; P = 0.003), IGFBP-3 (-0.7 μg/L; P = 0.007), and leptin (-1.0 μg/L; P = 0.016) concentrations but higher median cortisol (+18 μg/L; P = 0.037) concentrations compared with normally grown newborns. Prenatal LNS resulted in increased cord leptin concentrations in primigravidae and mothers with higher BMI at study inclusion. The elevated leptin concentrations could point toward a higher neonatal fat mass.

  14. Design of lipid-based formulations for oral administration of poorly water-soluble drug fenofibrate: effects of digestion.

    PubMed

    Mohsin, Kazi

    2012-06-01

    Lipid-based drug carriers are likely to have influence on bioavailability through enhanced solubilization of the drug in the gastrointestinal tract. The study was designed to investigate the lipid formulation digestibility in the simulated gastro intestinal media. Fenofibrate was formulated in representative Type II, IIIA, IIIB and IV self-emulsifying/microemulsifying lipid delivery systems (SEDDS and SMEDDS designed for oral administration) using various medium-chain glyceride components, non-ionic surfactants and cosolvents as excipients. Soybean oil was used only as an example of long-chain triglycerides to compare the effects of formulation with their counterparts. The formulations were subjected to in vitro digestion specifically to predict the fate of the drug in the gastro intestinal tract after exposure of the formulation to pancreatic enzymes and bile. In vitro digestion experiments were carried out using a pH-stat maintained at pH 7.5 for 30 min using intestinal fluids simulating the fed and fasted states. The digestion rate was faster and almost completed in Type II and IIIA systems. Most of the surfactants used in the studies are digestible. However, the high concentration of surfactant and/or cosolvent used in Type IIIB or IV systems lowered the rate of digestion. The digestion of medium-chain triglycerides was faster than long-chain triglycerides, but kept comparatively less drug in the post digestion products. Medium-chain mixed glycerides are good solvents for fenofibrate as rapidly digested but to improve fenofibrate concentration in post digestion products the use of long-chain mixed glycerides are suggested for further investigations.

  15. Effects of lipid-based nutrient supplements v. micronutrient powders on nutritional and developmental outcomes among Peruvian infants.

    PubMed

    Matias, Susana L; Vargas-Vásquez, Alejandro; Bado Pérez, Ricardo; Alcázar Valdivia, Lorena; Aquino Vivanco, Oscar; Rodriguez Martín, Amelia; Novalbos Ruiz, Jose Pedro

    2017-08-09

    To determine the effects of lipid-based nutrient supplements (LNS) on children's Hb, linear growth and development, compared with supplementation with micronutrient powder (MNP). The study was a two-arm parallel-group randomized controlled trial, where participants received either LNS or MNP for daily consumption during 6 months. Supplements were delivered by staff at government-run health centres. Hb, anthropometric, motor development, language development and problem-solving indicators were measured by trained research assistants when children were 12 months of age. The study was conducted in five rural districts in the Province of Ambo in the Department of Huánuco, Peru. We enrolled 6-month-old children (n 422) at nineteen health centres. Children who received LNS had a higher mean Hb concentration and lower odds of anaemia than those who received MNP. No significant differences in height-for-age, weight-for-height or weight-for-age Z-score, or stunting and underweight prevalence, were observed. Provision of LNS was associated with a higher pre-verbal language (gestures) score, but such effect lost significance after adjustment for covariates. Children in the LNS group had higher problem-solving task scores and increased odds of achieving this cognitive task than children in the MNP group. No significant differences were observed on receptive language or gross motor development. LNS between 6 and 12 months of age increased Hb concentration, reduced anaemia and improved cognitive development in children, but showed no effects on anthropometric indicators, motor or language development.

  16. Silica encapsulated lipid-based drug delivery systems for reducing the fed/fasted variations of ziprasidone in vitro.

    PubMed

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-04-01

    Ziprasidone is a poorly water-soluble antipsychotic drug that demonstrates low fasted state oral bioavailability and a clinically significant two-fold increase in absorption when dosed postprandially. Owing to significant compliance challenges faced by schizophrenic patients, a novel oral formulation of ziprasidone that demonstrates improved fasted state absorption and a reduced food effect is of major interest, and is therefore the aim of this research. Three lipid-based drug delivery systems (LBDDS) were developed and investigated: (a) a self-nanoemulsifying drug delivery system (SNEDDS), (b) a solid SNEDDS formulation, and (c) silica-lipid hybrid (SLH) microparticles. SNEDDS was developed using Capmul MCM® and Tween 80®, and solid SNEDDS was fabricated by spray-drying SNEDDS with Aerosil 380® silica nanoparticles as the solid carrier. SLH microparticles were prepared in a similar manner to solid SNEDDS using a precursor lipid emulsion composed of Capmul MCM® and soybean lecithin. The performance of the developed formulations was evaluated under simulated digesting conditions using an in vitro lipolysis model, and pure (unformulated) ziprasidone was used as a control. While pure ziprasidone exhibited the lowest rate and extent of drug solubilization under fasting conditions and a significant 2.4-fold increase in drug solubilization under fed conditions, all three LBDDS significantly enhanced the extent of drug solubilization under fasting conditions between 18- and 43-folds in comparison to pure drug. No significant difference in drug solubilization for the fed and fasted states was observed for the three LBDDS systems. To highlight the potential of LBDDS, mechanism(s) of action and various performance characteristics are discussed. Importantly, LBDDS are identified as an appropriate formulation strategy to explore further for the improved oral delivery of ziprasidone. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Local versus offshore production of ready-to-use therapeutic foods and small quantity lipid-based nutrient supplements.

    PubMed

    Segrè, Joel; Liu, Grace; Komrska, Jan

    2016-11-08

    Manufacturers on four continents currently produce ready-to-use therapeutic foods (RUTF). Some produce locally, near their intended users, while others produce offshore and ship their product long distances. Small quantity lipid-based nutrient supplements (SQ-LNS) such as Nutriset's Enov'Nutributter are not yet in widespread production. There has been speculation whether RUTF and SQ-LNS should be produced primarily offshore, locally, or both. We analyzed The United Nations Children's Fund (UNICEF) Supply Division data, reviewed published literature, and interviewed local manufacturers to identify key benefits and challenges to local versus offshore manufacture of RUTF. Both prices and estimated costs for locally produced product have consistently been higher than offshore prices. Local manufacture faces challenges in taxation on imported ingredients, low factory utilization, high interest rates, long cash conversion cycle, and less convenient access to quality testing labs. Benefits to local economies are not likely to be significant. Although offshore manufacturers offer RUTF at lower cost, local production is getting closer to cost parity for RUTF. UNICEF, which buys the majority of RUTF globally, continues to support local production, and efforts are underway to narrow the cost gap further. Expansion of RUTF producers into the production of other ready-to-use foods, including SQ-LNS in order to reach a larger market and achieve a more sustainable scale, may further close the cost and price gap. Local production of both RUTF and SQ-LNS could be encouraged by a favorable tax environment, assistance in lending, consistent forecasts from buyers, investment in reliable input supply chains, and local laboratory testing.

  18. Pathway logic modeling of protein functional domains in signal transduction.

    PubMed

    Talcott, C; Eker, S; Knapp, M; Lincoln, P; Laderoute, K

    2004-01-01

    Protein functional domains (PFDs) are consensus sequences within signaling molecules that recognize and assemble other signaling components into complexes. Here we describe the application of an approach called Pathway Logic to the symbolic modeling signal transduction networks at the level of PFDs. These models are developed using Maude, a symbolic language founded on rewriting logic. Models can be queried (analyzed) using the execution, search and model-checking tools of Maude. We show how signal transduction processes can be modeled using Maude at very different levels of abstraction involving either an overall state of a protein or its PFDs and their interactions. The key insight for the latter is our algebraic representation of binding interactions as a graph.

  19. Transductive Regression for Data With Latent Dependence Structure.

    PubMed

    Gornitz, Nico; Lima, Luiz Alberto; Varella, Luiz Eduardo; Muller, Klaus-Robert; Nakajima, Shinichi

    2017-05-18

    Analyzing data with latent spatial and/or temporal structure is a challenge for machine learning. In this paper, we propose a novel nonlinear model for studying data with latent dependence structure. It successfully combines the concepts of Markov random fields, transductive learning, and regression, making heavy use of the notion of joint feature maps. Our transductive conditional random field regression model is able to infer the latent states by combining limited labeled data of high precision with unlabeled data containing measurement uncertainty. In this manner, we can propagate accurate information and greatly reduce uncertainty. We demonstrate the usefulness of our novel framework on generated time series data with the known temporal structure and successfully validate it on synthetic as well as real-world offshore data with the spatial structure from the oil industry to predict rock porosities from acoustic impedance data.

  20. Maxwell's demon in biochemical signal transduction with feedback loop.

    PubMed

    Ito, Sosuke; Sagawa, Takahiro

    2015-06-23

    Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive research on 'Maxwell's demon'-a feedback controller that utilizes information of individual molecules-have led to a unified theory of information and thermodynamics. Here we combine these two streams of research, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we find that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result could open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information-thermodynamics link.

  1. Signal transduction in the invadopodia formation using fixed domain method

    NASA Astrophysics Data System (ADS)

    Admon, M. A.; Suzuki, T.

    2017-09-01

    The degradation of the extracellular matrix is driven by actin-based protrusions known as invadopodia, lead to the cancer cell invasion across the surrounding tissue barriers. Signal transduction through the binding between ligand and membrane associated receptor is important in order to establish the actin polymerization, and consequently push the membrane of migrating cells. In this study, we considered one-dimensional Stefan-like problem of the signal transduction and cell membrane is treated as a free boundary surface to separate any activity that happened on intra- and extra-cellular regions. The velocity concerning the movement of the free boundary is calculated by the decrease of signal gradient on the front. The problem is solved numerically using finite-difference scheme of fixed-domain method. Our results showed that both free boundary positions and signal distributions are increasing as time progresses.

  2. A PKD Channel-based Biosensor for Taste Transduction

    NASA Astrophysics Data System (ADS)

    Wu, Chunsheng; Du, Liping; Hu, Liang; Zhang, Wei; Zhao, Luhang; Wang, Ping

    2011-09-01

    This study describes a micro electrode array (MEA)-based biosensor for taste transduction using heterologous expressed taste polycystic kidney disease-like (PKD) channels as molecular sensors. Taste PKD1L3/2L1 channels were expressed on the plasma membrane of human embryo kidney (HEK)-293 cells [1]. Then the cells were cultured on the surface of MEA chip [2] to record the responses of PKD channels to sour stimulations by monitoring membrane potential. The results indicate this MEA-based biosensor can record the special off-responses of PKD channels to sour stimulation in a non-invasive manner for a long term. It may provide an alternative tool for the research of taste transduction, especially for the characterization of taste ion channels.

  3. Role of Calcium in Signal Transduction of Commelina Guard Cells.

    PubMed Central

    Gilroy, S; Fricker, MD; Read, ND; Trewavas, AJ

    1991-01-01

    The role of cytosolic Ca2+ in signal transduction in stomatal guard cells of Commelina communis was investigated using fluorescence ratio imaging and photometry. By changing extracellular K+, extracellular Ca2+, or treatment with Br-A23187, substantive increases in cytosolic Ca2+ to over 1 micromolar accompanied stomatal closure. The increase in Ca2+ was highest in the cytoplasm around the vacuole and the nucleus. Similar increases were observed when the cells were pretreated with ethyleneglycol-bis-(o-aminoethyl)tetraacetic acid or the channel blocker La3+, together with the closing stimuli. This suggests that a second messenger system operates between the plasma membrane and Ca2+-sequestering organelle(s). The endogenous growth regulator abscisic acid elevated cytosolic Ca2+ levels in a minority of cells investigated, even though stomatal closure always occurred. Ca2+-dependent and Ca2+-independent transduction pathways linking abscisic acid perception to stomatal closure are thus indicated. PMID:12324599

  4. Widespread Losses of Vomeronasal Signal Transduction in Bats

    PubMed Central

    Zhao, Huabin; Xu, Dong; Zhang, Shuyi; Zhang, Jianzhi

    2011-01-01

    The vertebrate vomeronasal system (VNS) detects intraspecific pheromones and environmental odorants. We sequenced segments of the gene encoding Trpc2, an ion channel crucial for vomeronasal signal transduction, in 11 species that represent all main basal lineages of Yinpterochiroptera, one of the two suborders of the order Chiroptera (bats). Our sequences show that Trpc2 is a pseudogene in each of the 11 bats, suggesting that all yinpterochiropterans lack vomeronasal sensitivity. The Trpc2 sequences from four species of Yangochiroptera, the other suborder of bats, suggest vomeronasal insensitivity in some but not all yangochiropterans. These results, together with the available morphological data from the bat VNS, strongly suggest multiple and widespread losses of vomeronasal signal transduction and sensitivity in bats. Future scrutiny of the specific functions of the VNS in the few bats that still retain the VNS may help explain why it is dispensable in most bats. PMID:20693241

  5. Maxwell's demon in biochemical signal transduction with feedback loop

    NASA Astrophysics Data System (ADS)

    Ito, Sosuke; Sagawa, Takahiro

    2015-06-01

    Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive research on `Maxwell's demon'--a feedback controller that utilizes information of individual molecules--have led to a unified theory of information and thermodynamics. Here we combine these two streams of research, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we find that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result could open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information-thermodynamics link.

  6. Maxwell's demon in biochemical signal transduction with feedback loop

    PubMed Central

    Ito, Sosuke; Sagawa, Takahiro

    2015-01-01

    Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive research on ‘Maxwell's demon'—a feedback controller that utilizes information of individual molecules—have led to a unified theory of information and thermodynamics. Here we combine these two streams of research, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we find that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result could open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information–thermodynamics link. PMID:26099556

  7. High-sensitivity linear piezoresistive transduction for nanomechanical beam resonators

    NASA Astrophysics Data System (ADS)

    Sansa, Marc; Fernández-Regúlez, Marta; Llobet, Jordi; San Paulo, Álvaro; Pérez-Murano, Francesc

    2014-07-01

    Highly sensitive conversion of motion into readable electrical signals is a crucial and challenging issue for nanomechanical resonators. Efficient transduction is particularly difficult to realize in devices of low dimensionality, such as beam resonators based on carbon nanotubes or silicon nanowires, where mechanical vibrations combine very high frequencies with miniscule amplitudes. Here we describe an enhanced piezoresistive transduction mechanism based on the asymmetry of the beam shape at rest. We show that this mechanism enables highly sensitive linear detection of the vibration of low-resistivity silicon beams without the need of exceptionally large piezoresistive coefficients. The general application of this effect is demonstrated by detecting multiple-order modes of silicon nanowire resonators made by either top-down or bottom-up fabrication methods. These results reveal a promising approach for practical applications of the simplest mechanical resonators, facilitating its manufacturability by very large-scale integration technologies.

  8. Study of spatial signal transduction in bistable switches

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Yao, Cheng-Gui; Tang, Jun; Liu, Li-Wei

    2016-10-01

    Bistable switch modules are among the most important fundamental motifs in signal-transduction pathways. To better understand their spatial signal transduction, we model the diffusion process in the one-dimensional (1-D) domain. We find that when none of the elements diffuse, the response of the system exhibits a spatial switch-like property. However, when one of the elements is highly diffusible, the response of the system does not show any spatial switching behavior. Furthermore, we observe that the spatial responses of the system are more sensitive to the time constant of the switch when none of the elements are diffusible. Further, a slow loop keeps the system in the high steady state more positions than that in the fast loop. Finally, we consolidate our numerical results analytically by performing a mathematical method.

  9. Role of tight junctions in signal transduction: an update

    PubMed Central

    Takano, Kenichi; Kojima, Takashi; Sawada, Norimasa; Himi, Tetsuo

    2014-01-01

    Tight junctions (TJs), which are the most apically located of the intercellular junctional complexes, have a barrier function and a fence function. Recent studies show that they also participate in signal transduction mechanisms. TJs are modulated by intracellular signaling pathways including protein kinase C, mitogen-activated protein kinase, and NF-ϰB, to affect the epithelial barrier function in response to diverse stimuli. TJs are also regulated by various cytokines, growth factors, and hormones via signaling pathways. To investigate the regulation of TJ molecules via signaling pathways in human epithelial cells under normal and pathological conditions, we established a novel model of human telomerase reverse transcriptase-transfected human epithelial cells. In this review, we describe the recent progress in our understanding of the role of TJs for signal transduction under normal conditions in upper airway epithelium, pancreatic duct epithelial cells, hepatocytes, and endometrial epithelial cells, and in pathological conditions including cancer and infection. PMID:26417329

  10. Colored Petri net modeling and simulation of signal transduction pathways.

    PubMed

    Lee, Dong-Yup; Zimmer, Ralf; Lee, Sang Yup; Park, Sunwon

    2006-03-01

    Presented herein is a methodology for quantitatively analyzing the complex signaling network by resorting to colored Petri nets (CPN). The mathematical as well as Petri net models for two basic reaction types were established, followed by the extension to a large signal transduction system stimulated by epidermal growth factor (EGF) in an application study. The CPN models based on the Petri net representation and the conservation and kinetic equations were used to examine the dynamic behavior of the EGF signaling pathway. The usefulness of Petri nets is demonstrated for the quantitative analysis of the signal transduction pathway. Moreover, the trade-offs between modeling capability and simulation efficiency of this pathway are explored, suggesting that the Petri net model can be invaluable in the initial stage of building a dynamic model.

  11. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOEpatents

    Wasserman, Stephen R.; Anderson, Kenneth B.; Song, Kang; Yuchs, Steven E.; Marshall, Christopher L.

    1998-01-01

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  12. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation

    DTIC Science & Technology

    2012-07-01

    VL. Protein Microarray Analysis of Mammary Epithelial Cells from Obese and Non- Obese Women at High-Risk for Breast Cancer . Cancer Epidemiol...from Obese and Non- Obese Women at High-Risk for Breast Cancer . Cancer Epidemiol Biomarkers Prevention. 20:476-482, 2011 (cover article). PMID...Std. Z39.18 Victoria Seewaldt, M.D. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation Duke University Durham

  13. Signal Transduction in T Cell Activation and Tolerance

    DTIC Science & Technology

    1993-01-01

    wealth of new information regarding the mechanism by which these surface receptors influence intracellular biochemical events. Transmembrane...Ltd 98 7 1 5 Vi 86 Basic MI | I L I IF a 86 Basic Mechanisms - How can an understanding of signal transduction aid in our understand- ing of T...distribution of the r consensus sequence suggests that it may represent a common mechanism used by a variety of immune system receptors to couple to signal

  14. Tuning piezoresistive transduction in nanomechanical resonators by geometrical asymmetries

    SciTech Connect

    Llobet, J.; Sansa, M.; Lorenzoni, M.; Pérez-Murano, F.; Borrisé, X.; San Paulo, A.

    2015-08-17

    The effect of geometrical asymmetries on the piezoresistive transduction in suspended double clamped beam nanomechanical resonators is investigated. Tapered silicon nano-beams, fabricated using a fast and flexible prototyping method, are employed to determine how the asymmetry affects the transduced piezoresistive signal for different mechanical resonant modes. This effect is attributed to the modulation of the strain in pre-strained double clamped beams, and it is confirmed by means of finite element simulations.

  15. Empirical Properties of Multilingual Phone-To-Word Transduction

    DTIC Science & Technology

    2008-01-01

    a noisy channel model in which a phonetic input stream is corrupted by an error model, and then transduced back to words using the inverse error model... phonetic input stream. This analysis is carried further to measure the impor- tance of each phone in each language individually. We study Arabic...the conditional entropy of words given phones to explain the observed behavior. Index Terms— Speech recognition, phonetic decoding, transduction

  16. Hypergravity signal transduction and gene expression in cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Kumei, Y.; Whitson, P. A.

    1994-01-01

    A number of studies have been conducted during space flight and with clinostats and centrifuges, suggesting that gravity effects the proliferation and differentiation of mammalian cells in vitro. However, little is known about the mechanisms by which mammalian cells respond to changes in gravitational stress. This paper summarizes studies designed to clarify the effects of hypergravity on the cultured human HeLa cells and to investigate the mechanism of hypergravity signal transduction in these cells.

  17. Dynamic disorder and the energetic costs of information transduction

    SciTech Connect

    Thill, Peter

    2014-07-07

    We study a model of dynamic disorder relevant for signal transduction pathways in which enzymatic reaction rates fluctuate over several orders of magnitude. For the simple networks we consider, dynamic disorder drives the system far from equilibrium and imposes an energetic burden for high fidelity signaling capability. We study how the dynamics of the underlying stochastic behavior in the reaction rate process is related to the energetic cost of transmitting information through the network.

  18. Soliton growth-signal transduction in topologically quantized T cells

    NASA Astrophysics Data System (ADS)

    Matsson, Leif

    1993-09-01

    A model for growth-signal transduction of the T cell and its growth factor, interleukin-2, is presented. It is obtained as a generalization of the usual rate equation and is founded on the observation that a definite number of receptor occupations must take place in order to promote transition to the S phase and subsequent DNA replication. The generalized rate equation is identified as the equation of motion of a Lagrangian field theory of Ginzburg-Landau (Goldstone) type. However it is not an ad hoc model but is a microscopic theory of the interaction of interleukin-2 and its receptor. The topological quantum number of the model is related to the observed definite number of receptor occupations required to elicit growth-signal transduction. Individual receptor quanta, up to this limit, are subjected to a type of Bose condensation. This collective excitation constitutes the growth signal in the form of a topological kink soliton which is then launched by the next potential receptor occupation that makes the interaction repulsive. The model provides a possible long-absent explanation of the triggering mechanism for growth-signal transduction by means of the ambivalent interaction, which switches sign after a definite number of receptor occupations. Moreover, it offers an explanation of how Nature screens out fractional signals in the growth-signal-transduction process of T cells. Although the model is derived for assumed point-like cells and certain other restrictions, the obtained dose-response curves are in striking agreement with proliferation data from studies of both the leukemic T cell line MLA-144 from gibbon ape and normal human T cells in, and without, the presence of monoclonal anti-Tac antibodies.

  19. Hypergravity signal transduction and gene expression in cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Kumei, Y.; Whitson, P. A.

    1994-01-01

    A number of studies have been conducted during space flight and with clinostats and centrifuges, suggesting that gravity effects the proliferation and differentiation of mammalian cells in vitro. However, little is known about the mechanisms by which mammalian cells respond to changes in gravitational stress. This paper summarizes studies designed to clarify the effects of hypergravity on the cultured human HeLa cells and to investigate the mechanism of hypergravity signal transduction in these cells.

  20. Adenoviral transduction supports matrix expression of alginate cultured articular chondrocytes.

    PubMed

    Pohle, D; Kasch, R; Herlyn, P; Bader, R; Mittlmeier, T; Pützer, B M; Müller-Hilke, B

    2012-09-01

    The present study examines the effects of adenoviral (Ad) transduction of human primary chondrocyte on transgene expression and matrix production. Primary chondrocytes were isolated from healthy articular cartilage and from cartilage with mild osteoarthritis (OA), transduced with an Ad vector and either immediately cultured in alginate or expanded in monolayer before alginate culture. Proteoglycan production was measured using dimethylmethylene blue (DMMB) assay and matrix gene expression was quantified by real-time PCR. Viral infection of primary chondrocytes results in a stable long time transgene expression for up to 13 weeks. Ad transduction does not significantly alter gene expression and matrix production if chondrocytes are immediately embedded in alginate. However, if expanded prior to three dimension (3D) culture in alginate, chondrocytes produce not only more proteoglycans compared to non-transduced controls, but also display an increased anabolic and decreased catabolic activity compared to non-transduced controls. We therefore suggest that successful autologous chondrocyte transplantation (ACT) should combine adenoviral transduction of primary chondrocytes with expansion in monolayer followed by 3D culture. Future studies will be needed to investigate whether the subsequent matrix production can be further improved by using Ad vectors bearing genes encoding matrix proteins. Copyright © 2012 Wiley Periodicals, Inc.

  1. Signal Transduction Pathways of TNAP: Molecular Network Analyses.

    PubMed

    Négyessy, László; Györffy, Balázs; Hanics, János; Bányai, Mihály; Fonta, Caroline; Bazsó, Fülöp

    2015-01-01

    Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.

  2. Signal transduction images in human brain by positron emission tomography

    SciTech Connect

    Imahori, Y.; Fujii, R.; Ueda, S.

    1994-05-01

    Analysis of changes in intracellular signal transduction will provide clear images of the projected target neurons. We have recently developed a technique which allows second-messenger imaging of changes in intracellular signal transduction which is activated in parallel with phosphoinositide (PI) turnover. Using carbon-11-labeled 1,2-diacylglycerol (DAG), we have recently succeeded in making an image of intracellular signal transduction during the course of synaptic transmission in human brains. When five healthy volunteers were examined by this technique, they had high activity in the associate field, in particular the prefrontal area. In the absence of paradigm loading, the associate field was unilaterally active, and human subjects showed predominant activity in the right prefrontal area. Activation of the ipsilateral supraorbital region and the superior temporal area was also seen at the same time. In conclusion, no previous study has directly demonstrated the unilateral predominance of the activity in the associate fields (projected target area) and the accompanying areas. Unlike the conventional positron-labeled compounds which did not permit visualization of activation of the associate fields, our technique can measure the PI turnover, as a postsynaptic response, and thus provide clear images of the projected target nerve cells in relation to higher cortical function in human brain.

  3. Key cancer cell signal transduction pathways as therapeutic targets.

    PubMed

    Bianco, Roberto; Melisi, Davide; Ciardiello, Fortunato; Tortora, Giampaolo

    2006-02-01

    Growth factor signals are propagated from the cell surface, through the action of transmembrane receptors, to intracellular effectors that control critical functions in human cancer cells, such as differentiation, growth, angiogenesis, and inhibition of cell death and apoptosis. Several kinases are involved in transduction pathways via sequential signalling activation. These kinases include transmembrane receptor kinases (e.g., epidermal growth factor receptor EGFR); or cytoplasmic kinases (e.g., PI3 kinase). In cancer cells, these signalling pathways are often altered and results in a phenotype characterized by uncontrolled growth and increased capability to invade surrounding tissue. Therefore, these crucial transduction molecules represent attractive targets for cancer therapy. This review will summarize current knowledge of key signal transduction pathways, that are altered in cancer cells, as therapeutic targets for novel selective inhibitors. The most advanced targeted agents currently under development interfere with function and expression of several signalling molecules, including the EGFR family; the vascular endothelial growth factor and its receptors; and cytoplasmic kinases such as Ras, PI3K and mTOR.

  4. Sympathetic vascular transduction is augmented in young normotensive blacks

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    The purpose of the present study was to determine sympathetic vascular transduction in young normotensive black and white adults. We hypothesized that blacks would demonstrate augmented transduction of muscle sympathetic nerve activity (MSNA) into vascular resistance. To test this hypothesis, MSNA, forearm blood flow, heart rate, and arterial blood pressure were measured during lower body negative pressure (LBNP). At rest, no differences existed in arterial blood pressure, heart rate, forearm blood flow, and forearm vascular resistance (FVR). Likewise, LBNP elicited comparable responses of these variables for blacks and whites. Baseline MSNA did not differ between blacks and whites, but whites demonstrated greater increases during LBNP (28 +/- 7 vs. 55 +/- 18%, 81 +/- 21 vs. 137 +/- 42%, 174 +/- 81 vs. 556 +/- 98% for -5, -15, and -40 mmHg LBNP, respectively; P < 0.001). Consistent with smaller increases in MSNA but similar FVR responses during LBNP, blacks demonstrated greater sympathetic vascular transduction (%FVR/%MSNA) than whites (0.95 +/- 0.07 vs. 0.82 +/- 0.07 U; 0.82 +/- 0.11 vs. 0.64 +/- 0.09 U; 0.95 +/- 0.37 vs. 0.35 +/- 0.09 U; P < 0.01). In summary, young whites demonstrate greater increases in MSNA during baroreceptor unloading than age-matched normotensive blacks. However, more importantly, for a given increase in MSNA, blacks demonstrate greater forearm vasoconstriction than whites. This finding may contribute to augmented blood pressure reactivity in blacks.

  5. Antibody mediated transduction of therapeutic proteins into living cells.

    PubMed

    Hansen, James E; Weisbart, Richard H; Nishimura, Robert N

    2005-09-16

    Protein therapy refers to the direct delivery of therapeutic proteins to cells and tissues with the goal of ameliorating or modifying a disease process. Current techniques for delivering proteins across cell membranes include taking advantage of receptor-mediated endocytosis or using protein transduction domains that penetrate directly into cells. The most commonly used protein transduction domains are small cell-penetrating peptides derived from such proteins as the HIV-1 Tat protein. A novel protein transduction domain developed as the single chain fragment (Fv) of a murine anti-DNA autoantibody, mAb 3E10, has recently been developed and used to deliver biologically active proteins to living cells in vitro. This review will provide a brief overview of the development of the Fv fragment and provide a summary of recent studies using Fv to deliver therapeutic peptides and proteins (such as a C-terminal p53 peptide, C-terminal p53 antibody fragment, full-length p53, and micro-dystrophin) to cells.

  6. An Electrokinetic Model of Transduction in the Semicircular Canal

    PubMed Central

    O'Leary, Dennis P.

    1970-01-01

    Transduction in the semicircular canal was studied by focusing an infrared beam on either side of exposed ampullae from the posterior canals of Rana pipiens. The direction of fluid movement resulting from a stimulus was inferred by observing the polarity of the change in afferent impulse mean rate relative to the spontaneous value. On the basis of the accepted functional polarization of this receptor, the results indicate that fluid moved toward the warmer side of the ampulla. Convection and thermal reception were shown to be unlikely explanations for these results. Morover, cupular displacements toward the warmer side would not be expected. Because thermo-osmosis can cause fluid to move toward the warmer side in a gelatin membrane, the results can be interpreted as evidence that thermo-osmosis occurred in the gelatinous cupula and influenced the transduction mechanism. Thermo-osmosis of liquids appears to be due to an electric field that is set up in a charged membrane; hence, the hair cells might have detected an electric field that occurred in the cupula during thermo-osmosis. Electroreception might be an important link in the transduction of physiological stimuli also. Rotational stimuli could result in weak electric fields in the cupula by the mechanoelectric effect. Cupular displacements could be important for large stimuli, but extrapolations to threshold stimuli suggest displacements of angstrom amplitudes. Therefore, electroreception by the hair cells could be an explanation of the great sensitivity that has been observed in the semicircular canal and other labyrinthine receptors. PMID:5496906

  7. Sympathetic vascular transduction is augmented in young normotensive blacks

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    The purpose of the present study was to determine sympathetic vascular transduction in young normotensive black and white adults. We hypothesized that blacks would demonstrate augmented transduction of muscle sympathetic nerve activity (MSNA) into vascular resistance. To test this hypothesis, MSNA, forearm blood flow, heart rate, and arterial blood pressure were measured during lower body negative pressure (LBNP). At rest, no differences existed in arterial blood pressure, heart rate, forearm blood flow, and forearm vascular resistance (FVR). Likewise, LBNP elicited comparable responses of these variables for blacks and whites. Baseline MSNA did not differ between blacks and whites, but whites demonstrated greater increases during LBNP (28 +/- 7 vs. 55 +/- 18%, 81 +/- 21 vs. 137 +/- 42%, 174 +/- 81 vs. 556 +/- 98% for -5, -15, and -40 mmHg LBNP, respectively; P < 0.001). Consistent with smaller increases in MSNA but similar FVR responses during LBNP, blacks demonstrated greater sympathetic vascular transduction (%FVR/%MSNA) than whites (0.95 +/- 0.07 vs. 0.82 +/- 0.07 U; 0.82 +/- 0.11 vs. 0.64 +/- 0.09 U; 0.95 +/- 0.37 vs. 0.35 +/- 0.09 U; P < 0.01). In summary, young whites demonstrate greater increases in MSNA during baroreceptor unloading than age-matched normotensive blacks. However, more importantly, for a given increase in MSNA, blacks demonstrate greater forearm vasoconstriction than whites. This finding may contribute to augmented blood pressure reactivity in blacks.

  8. Signal transduction and information processing in mammalian taste buds

    PubMed Central

    2013-01-01

    The molecular machinery for chemosensory transduction in taste buds has received considerable attention within the last decade. Consequently, we now know a great deal about sweet, bitter, and umami taste mechanisms and are gaining ground rapidly on salty and sour transduction. Sweet, bitter, and umami tastes are transduced by G-protein-coupled receptors. Salty taste may be transduced by epithelial Na channels similar to those found in renal tissues. Sour transduction appears to be initiated by intracellular acidification acting on acid-sensitive membrane proteins. Once a taste signal is generated in a taste cell, the subsequent steps involve secretion of neurotransmitters, including ATP and serotonin. It is now recognized that the cells responding to sweet, bitter, and umami taste stimuli do not possess synapses and instead secrete the neurotransmitter ATP via a novel mechanism not involving conventional vesicular exocytosis. ATP is believed to excite primary sensory afferent fibers that convey gustatory signals to the brain. In contrast, taste cells that do have synapses release serotonin in response to gustatory stimulation. The postsynaptic targets of serotonin have not yet been identified. Finally, ATP secreted from receptor cells also acts on neighboring taste cells to stimulate their release of serotonin. This suggests that there is important information processing and signal coding taking place in the mammalian taste bud after gustatory stimulation. PMID:17468883

  9. Hair-bundle friction from transduction channels' gating forces

    NASA Astrophysics Data System (ADS)

    Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal

    2015-12-01

    Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. We have shown recently that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle and thus provide a major source of damping [2]. We develop here a physical theory of passive hair-bundle mechanics that explains the origin of channel friction. We show that channel friction can be understood quantitatively by coupling the dynamics of the conformational change associated with channel gating to tip-link tension. As a result, varying channel properties affects friction, with faster channels producing smaller friction. The analysis emphasizes the dual role of transduction channels' gating forces, which affect both hair-bundle stiffness and drag. Friction originating from gating of ion channels is a general concept that is relevant to all mechanosensitive channels.

  10. Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy

    PubMed Central

    Talukdar, Abdul; Faheem Khan, M.; Lee, Dongkyu; Kim, Seonghwan; Thundat, Thomas; Koley, Goutam

    2015-01-01

    Measurement of femtoscale displacements in the ultrasonic frequency range is attractive for advanced material characterization and sensing, yet major challenges remain in their reliable transduction using non-optical modalities, which can dramatically reduce the size and complexity of the transducer assembly. Here we demonstrate femtoscale displacement transduction using an AlGaN/GaN heterojunction field effect transistor-integrated GaN microcantilever that utilizes piezoelectric polarization-induced changes in two-dimensional electron gas to transduce displacement with very high sensitivity. The piezotransistor demonstrated an ultra-high gauge factor of 8,700 while consuming an extremely low power of 1.36 nW, and transduced external excitation with a superior noise-limited resolution of 12.43 fm Hz−1/2 and an outstanding responsivity of 170 nV fm−1, which is comparable to the optical transduction limits. These extraordinary characteristics, which enabled unique detection of nanogram quantity of analytes using photoacoustic spectroscopy, can be readily exploited in realizing a multitude of novel sensing paradigms. PMID:26258983

  11. The Hippo signal transduction network in skeletal and cardiac muscle.

    PubMed

    Wackerhage, Henning; Del Re, Dominic P; Judson, Robert N; Sudol, Marius; Sadoshima, Junichi

    2014-08-05

    The discovery of the Hippo pathway can be traced back to two areas of research. Genetic screens in fruit flies led to the identification of the Hippo pathway kinases and scaffolding proteins that function together to suppress cell proliferation and tumor growth. Independent research, often in the context of muscle biology, described Tead (TEA domain) transcription factors, which bind CATTCC DNA motifs to regulate gene expression. These two research areas were joined by the finding that the Hippo pathway regulates the activity of Tead transcription factors mainly through phosphorylation of the transcriptional coactivators Yap and Taz, which bind to and activate Teads. Additionally, many other signal transduction proteins crosstalk to members of the Hippo pathway forming a Hippo signal transduction network. We discuss evidence that the Hippo signal transduction network plays important roles in myogenesis, regeneration, muscular dystrophy, and rhabdomyosarcoma in skeletal muscle, as well as in myogenesis, organ size control, and regeneration of the heart. Understanding the role of Hippo kinases in skeletal and heart muscle physiology could have important implications for translational research. Copyright © 2014, American Association for the Advancement of Science.

  12. Novel Insights on Thyroid-Stimulating Hormone Receptor Signal Transduction

    PubMed Central

    Neumann, Susanne; Grüters, Annette; Krude, Heiko

    2013-01-01

    The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed. PMID:23645907

  13. Protein and peptide transduction, twenty years later a happy birthday.

    PubMed

    Prochiantz, Alain

    2008-03-01

    This commentary underscores the following aspects of Cell Permeable Peptides/Transduction Peptides (CPP/PTD) research. First the discovery of CPP/PTD takes its origin in the observation that some full-length transcription factors navigate between cells. The latter physiological origin is of interest as the significance of this new mode of signal transduction is not yet fully understood. A second point is that most breakthroughs in the domain have been made possible by long lasting collaborations between biologists, chemists and physicists. It is beyond doubt that the understanding of the mechanisms of secretion and internalization, in parallel with the development of new transduction compounds, not only peptides, will require that such collaborative efforts be amplified. Finally, although the domain is flourishing and our minds full of hope, it must be said that many points need to be resolved before getting close to bedside. Among these points are bio-disponibility, toxicity and specific addressing to body regions, cell types and intracellular compartments. In brief, beyond this happy birthday, there is still plenty of home work!

  14. Cation exchange capacity of pine bark substrates

    USDA-ARS?s Scientific Manuscript database

    Cation exchange capacity (CEC) is an important soil and substrate chemical property. It describes a substrate's ability to retain cation nutrients. Higher CEC values for a substrate generally result in greater amounts of nutrients retained in the substrate and available for plant uptake, and great...

  15. Advancements in Anion Exchange Membrane Cations

    SciTech Connect

    Sturgeon, Matthew R.; Long, Hai; Park, Andrew M.; Pivovar, Bryan S.

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  16. Tripodal Receptors for Cation and Anion Sensors

    PubMed Central

    Kuswandi, Bambang; Nuriman; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selective recognition and sensing of cations and anions. Examples on the relationship between structure and selectivity towards cations and anions are described. Furthermore, their applications as potentiometric ion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  17. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs.

    PubMed

    Dahan, Arik; Hoffman, Amnon

    2008-07-02

    As a consequence of modern drug discovery techniques, there has been a consistent increase in the number of new pharmacologically active lipophilic compounds that are poorly water soluble. A great challenge facing the pharmaceutical scientist is making these molecules into orally administered medications with sufficient bioavailability. One of the most popular approaches to improve the oral bioavailability of these molecules is the utilization of a lipid based drug delivery system. Unfortunately, current development strategies in the area of lipid based delivery systems are mostly empirical. Hence, there is a need for a simplified in vitro method to guide the selection of a suitable lipidic vehicle composition and to rationalize the delivery system design. To address this need, a dynamic in vitro lipolysis model, which provides a very good simulation of the in vivo lipid digestion process, has been developed over the past few years. This model has been extensively used for in vitro assessment of different lipid based delivery systems, leading to enhanced understanding of the suitability of different lipids and surfactants as a delivery system for a given poorly water soluble drug candidate. A key goal in the development of the dynamic in vitro lipolysis model has been correlating the in vitro data of various drug-lipidic delivery system combinations to the resultant in vivo drug profile. In this paper, we discuss and review the need for this model, its underlying theory, practice and limitations, and the available data accumulated in the literature. Overall, the dynamic in vitro lipolysis model seems to provide highly useful initial guidelines in the development process of oral lipid based drug delivery systems for poorly water soluble drugs, and it predicts phenomena that occur in the pre-enterocyte stages of the intestinal absorption cascade.

  18. Structural and energetic study of cation-π-cation interactions in proteins.

    PubMed

    Pinheiro, Silvana; Soteras, Ignacio; Gelpí, Josep Lluis; Dehez, François; Chipot, Christophe; Luque, F Javier; Curutchet, Carles

    2017-04-12

    Cation-π interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-π-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins. We present a statistical analysis of the occurrence, composition and geometrical preferences of cation-π-cation interactions identified in a set of non-redundant protein structures taken from the Protein Data Bank. Our results demonstrate that this structural motif is observed at a small, albeit non-negligible frequency in proteins, and suggest a preference to establish cation-π-cation motifs with Trp, followed by Tyr and Phe. Furthermore, we have found that cation-π-cation interactions tend to be highly conserved, which supports their structural or functional role. Finally, we have performed an energetic analysis of a representative subset of cation-π-cation complexes combining quantum-chemical and continuum solvation calculations. Our results point out that the protein environment can strongly screen the cation-cation repulsion, leading to an attractive interaction in 64% of the complexes analyzed. Together with the high degree of conservation observed, these results suggest a potential stabilizing role in the protein fold, as demonstrated recently for a miniature protein (Craven et al., J. Am. Chem. Soc. 2016, 138, 1543). From a computational point of view, the significant contribution of non-additive three-body terms challenges the suitability of standard additive force fields for describing cation-π-cation motifs in molecular simulations.

  19. Cationic Lipid-Nucleic Acid Complexes for Gene Delivery And Silencing: Pathways And Mechanisms for Plasmid Dna And Sirna

    SciTech Connect

    Ewert, K.K.; Zidovska, A.; Ahmad, A.; Bouxsein, N.F.; Evans, H.M.; McAllister, C.S.; Samuel, C.E.; Safinya, C.R.; /SLAC

    2012-07-17

    Motivated by the promises of gene therapy, there is great interest in developing non-viral lipid-based vectors for therapeutic applications due to their low immunogenicity, low toxicity, ease of production, and the potential of transferring large pieces of DNA into cells. In fact, cationic liposome (CL) based vectors are among the prevalent synthetic carriers of nucleic acids (NAs) currently used in gene therapy clinical trials worldwide. These vectors are studied both for gene delivery with CL-DNA complexes and gene silencing with CL-siRNA (short interfering RNA) complexes. However, their transfection efficiencies and silencing efficiencies remain low compared to those of engineered viral vectors. This reflects the currently poor understanding of transfection-related mechanisms at the molecular and self-assembled levels, including a lack of knowledge about interactions between membranes and double stranded NAs and between CL-NA complexes and cellular components. In this review we describe our recent efforts to improve the mechanistic understanding of transfection by CL-NA complexes, which will help to design optimal lipid-based carriers of DNA and siRNA for therapeutic gene delivery and gene silencing.

  20. ESR study of the guanine cation

    NASA Astrophysics Data System (ADS)

    Close, David M.; Sagstuen, Einar; Nelson, William H.

    1985-05-01

    It has been proposed that the primary direct radiation damage products in DNA are guanine cations and thymine anions. Experiments reported here characterize a guanine cation observed in a single crystal of guanine:HCl:H2O. ESR experiments were performed by x-irradiating and observing the crystals at 15 K. Spectral parameters for the cation include N3 and N10 hyperfine couplings, a C8-Hα hyperfine coupling, and two small exchangeable couplings presumably from the N10 protons. The computed spin densities of ρ(N3)=0.283, ρ(N10)=0.168, and ρ(C8)=0.182 agree nicely with those observed for the guanine cation in DNA. In the single crystal the native molecule is protonated at N7. It is proposed that once the native molecule is oxidized it rapidly deprotonates at N7 to form the cation observed.

  1. In vitro-in vivo evaluation of lipid based formulations of the CETP inhibitors CP-529,414 (torcetrapib) and CP-532,623.

    PubMed

    McEvoy, Claire L; Trevaskis, Natalie L; Edwards, Glenn A; Perlman, Michael E; Ambler, Catherine M; Mack, Mary C; Brockhurst, Barbara; Porter, Christopher J H

    2014-11-01

    The present study investigated the use of lipid based drug delivery systems to enhance the oral bioavailability of the CETP inhibitors CP-532,623 and torcetrapib. A series of self-emulsifying lipid based drug delivery systems (SEDDS) were assembled and examined using an in vitro lipid digestion model to evaluate patterns of drug precipitation under simulated intestinal conditions. Drug exposure after oral administration of the same formulations was subsequently assessed in beagle dogs. CP-532,623 was maintained in a solubilised state during dispersion of most formulations in simulated intestinal fluid, however, solubilisation capacity was reduced to various degrees upon in vitro digestion. Administration of SEDDS formulations to beagle dogs resulted in moderate differences in plasma AUC when compared to the differences in solubilisation observed in vitro. Similar trends were observed for torcetrapib. In all cases, however, in vivo exposure of CP-532,623 was greatly enhanced by administration in lipid based drug delivery systems when compared to a powder formulation. Some correlation between in vitro solubilisation and in vivo drug exposure (AUC) was evident; however, this was not linear. The data suggest that for highly lipophilic drugs such as CP-532,623 in vitro digestion data may be a conservative in vitro indicator of utility and that good exposure may be evident even for formulations that result in significant drug precipitation during in vitro digestion. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The In Vitro Lipolysis of Lipid-Based Drug Delivery Systems: A Newly Identified Relationship between Drug Release and Liquid Crystalline Phase

    PubMed Central

    Xiao, Lu; Yi, Tao; Liu, Ying; Zhou, Hua

    2016-01-01

    The purpose of this study was to offer a new insight into the microstructure changes during in vitro lipolysis of five lipid-based drug delivery formulations belonging to different lipid formulation types. Five lipid-based formulations of indomethacin were investigated using an in vitro lipolysis model. During lipolysis, microstructures of the intermediate phase formed by lipolytic products were observed. The results showed that the time of liquid crystal formation during in vitro digestion for these formulations was Type I > Type II > Type IIIB > Type IV > Type IIIA (p < 0.05). After lipolysis, the drug releases from these formulations were determined. The results showed that the amount of drug distributed in the aqueous phase, obtained by ultracentrifuge after lipolysis, was, astonishingly, in inverse rank order of the above mentioned, that is, Type IIIA > Type IV > Type IIIB > Type II > Type I (p < 0.05). These results showed that the liquid crystalline phase probably has a critical influence on the fate of the drug during in vitro lipolysis and suggested that the liquid crystalline phase facilitated drug precipitation. These findings may improve the understanding of lipolysis of lipid-based drug delivery systems for designing better delivery system. PMID:27294110

  3. Gene Transfection in High Serum Levels: Case Studies with New Cholesterol Based Cationic Gemini Lipids

    PubMed Central

    Misra, Santosh K.; Biswas, Joydeep; Kondaiah, Paturu; Bhattacharya, Santanu

    2013-01-01

    Background Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH) and oligo-oxyethylene -(CH2CH2O)n- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media. Methodology/Principal Findings To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and X-ray diffraction (XRD). We studied the lipid/DNA complex (lipoplex) formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE) showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50%) greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features. Conclusions/Significance -OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies. PMID:23861884

  4. Enhanced gastrointestinal absorption of N3- O-toluyl-fluorouracil by cationic solid lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Donghua; Liu, Chunxi; Zou, Weiwei; Zhang, Na

    2010-03-01

    This study was aimed to prepare N3- O-toluyl-fluorouracil (TFu) loaded cationic solid lipid nanoparticles (TFu-SLNs) and evaluate the potential of a novel lipid-based drug delivery system to enhance the oral absorption of TFu. TFu-SLNs were prepared by the film dispersion-ultrasonication method, using hexadecyltrimethylammonium bromide as cationic tenside. The formulation and manufacture parameters were optimized concerning the drug encapsulation efficiency and the particle size. The in vitro release characteristics, in vivo pharmacokinetic properties and bioavailability, and in situ intestinal absorption features were investigated. The morphology of TFu-SLNs was approximately spherical and the mean particle size was 178.8 ± 9.99 nm; the zeta potential was +19.54 ± 0.32 mV. The mean entrapment efficiency and drug loading were 71.03 ± 1.19% and 3.57 ± 0.08%, respectively. The release behaviors of TFu from TFu-SLNs in PBS were fitted to the bioexponential model, while in artificial gastric juice, artificial intestinal juice and artificial gastric juice (2 h) followed by artificial intestinal juice (2-48 h) were fitted to the Weibull equation. The results of the pharmacokinetic studies in mice showed that the bioavailability of TFu-SLNs was significantly increased compared with that of the TFu suspensions after oral administration. The absorption of TFu-SLNs in intestine of rat was fitted to first-order kinetics with passive diffusion mechanism and the main segments of TFu-SLNs absorbed in intestine were duodenum and jejunum for the bioadhesion mediated by electrostatic interaction between the positively charged colloidal particles and the negatively charged mucosal surface. These results indicated that cationic SLNs would offer a promising delivery system for the facilitation of the bioavailability of poorly oral absorption drugs by enhancing the bioadhesion between the absorption mucosal surface and the drug carriers.

  5. Temperature-induced vesicle to micelle transition in cationic/cationic mixed surfactant systems.

    PubMed

    Yang, Yanjuan; Liu, Lifei; Huang, Xin; Tan, Xiuniang; Luo, Tian; Li, Wei

    2015-12-07

    Temperature-induced vesicle to micelle transition (VMT), which has rarely been reported in cationic/cationic mixed surfactant systems, was systemically studied in a didodecyldimethylammonium bromide (DDAB)/dodecyltrimethylammonium chloride (DTAC) aqueous solution. We investigated the effect of temperature on DDAB/DTAC aqueous solutions by means of turbidity, conductivity, cryo-TEM, a UV-vis spectrophotometer, and a steady-state fluorescence spectrometer. It was found that increasing temperature could induce the transformation from the vesicle to the micelle in this cationic/cationic mixed surfactant system. The degree of transformation can be easily controlled by the operation temperature. Additionally, by adjusting the proportion of the mixed cationic/cationic systems and employing cationic surfactants with different chain-lengths, we were able to conclude that the hydrophobic tail length of the surfactant affects the aggregation behavior of cationic/cationic mixed surfactant systems as a function of temperature. It is universal to induce the transformation from the vesicle to the micelle by temperature in cationic/cationic mixed surfactant systems. A possible mechanism for the temperature-induced VMT was proposed based on the experimental results.

  6. Exploring transduction mechanisms of protein transduction domains (PTDs) in living cells utilizing single-quantum dot tracking (SQT) technology.

    PubMed

    Suzuki, Yasuhiro

    2012-01-01

    Specific protein domains known as protein transduction domains (PTDs) can permeate cell membranes and deliver proteins or bioactive materials into living cells. Various approaches have been applied for improving their transduction efficacy. It is, therefore, crucial to clarify the entry mechanisms and to identify the rate-limiting steps. Because of technical limitations for imaging PTD behavior on cells with conventional fluorescent-dyes, how PTDs enter the cells has been a topic of much debate. Utilizing quantum dots (QDs), we recently tracked the behavior of PTD that was derived from HIV-1 Tat (TatP) in living cells at the single-molecule level with 7-nm special precision. In this review article, we initially summarize the controversy on TatP entry mechanisms; thereafter, we will focus on our recent findings on single-TatP-QD tracking (SQT), to identify the major sequential steps of intracellular delivery in living cells and to discuss how SQT can easily provide direct information on TatP entry mechanisms. As a primer for SQT study, we also discuss the latest findings on single particle tracking of various molecules on the plasma membrane. Finally, we discuss the problems of QDs and the challenges for the future in utilizing currently available QD probes for SQT. In conclusion, direct identification of the rate-limiting steps of PTD entry with SQT should dramatically improve the methods for enhancing transduction efficiency.

  7. Intracellular trafficking mechanism of cationic phospholipids including cationic liposomes in HeLa cells.

    PubMed

    Un, K; Sakai-Kato, K; Goda, Y

    2014-07-01

    The development of gene delivery methods is essential for the achievement of effective gene therapy. Elucidation of the intracellular transfer mechanism for cationic carriers is in progress, but there are few reports regarding the intracellular trafficking processes of the cationic phospholipids taken up into cells. In the present work, the trafficking processes of a cationic phospholipid (1,2-dioleoyl-3-trimethylammonium-propane, DOTAP) were investigated from intracellular uptake to extracellular efflux using cationic liposomes in vitro. Following intracellular transport of liposomes via endocytosis, DOTAP was localized in the endoplasmic reticulum, Golgi apparatus, and mitochondria. Moreover, the proteins involved in DOTAP intracellular trafficking and extracellular efflux were identified. In addition, helper lipids of cationic liposomes were found to partially affect this intracellulartrafficking. These findings might provide valuable information for designing cationic carriers and avoiding unexpected toxic side effects derived from cationic liposomal components.

  8. Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding.

    PubMed

    Rosilo, Henna; McKee, Jason R; Kontturi, Eero; Koho, Tiia; Hytönen, Vesa P; Ikkala, Olli; Kostiainen, Mauri A

    2014-10-21

    Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications.

  9. Design of lipid-based delivery systems for improving lymphatic transport and bioavailability of delta-tocopherol and nobiletin

    NASA Astrophysics Data System (ADS)

    Xia, Chunxin

    Lymphatic drug transport can confer bioavailability advantage by avoiding the first-pass metabolism normally observed in the portal vein hepatic route. It was reported that long chain lipid-based delivery systems can stimulate the formation of chylomicron and thus promote the lymphatic transport of drugs. In this study, a novel delta-tocopherol (delta-T) loaded Solid Lipid Nanoparticle (SLN) system was developed to investigate its effect on promoting the lymphatic transport of delta-T. The delta-T SLN was prepared with hot melt emulsification method by using glyceryl behenate (compritol RTM888) as the lipid phase and lecithin (PC75) as the emulsifier. Formula configuration, processing condition and loading capacity were carefully optimized. Physicochemical properties (particle size, surface charge, morphology) were also characterized. Moreover, excellent stability of the developed delta-T SLN in the gastrointestinal environment was observed by using an in vitro digestion model. Further investigations of the SLN in stimulating delta-T lymphatic transport were performed on mice without cannulation. Compared with the control group (delta-T corn oil dispersion), much lower delta-T levels in both blood and liver indicated reduced portal vein and hepatic transport of delta-T in the form of SLN. On the other hand, significantly higher concentrations of delta-T were observed in thymus, a major lymphatic tissue, indicating improved lymphatic transport of delta-T with the SLN delivery system. Finally, the far less excreted delta-T level in feces further confirmed improved lymphatic transport and overall bioavailability of delta-T by using SLN system. Nobiletin (NOB), one of most abundant polymethoxyflavones (PMFs) found in Citrus genus, has a low solubility in both water and oil at ambient temperatures. Thus it tends to form crystals when the loading exceeds its saturation level in the carrier system. This character greatly impaired its bioavailability and application. To

  10. Cationic Bolaamphiphiles for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  11. Cation Transport in Escherichia coli

    PubMed Central

    Schultz, Stanley G.; Epstein, Wolfgang; Solomon, A. K.

    1963-01-01

    The resuspension of K-poor, Na-rich stationary phase E. coli in fresh medium at pH 7.0 results in a rapid uptake of K and extrusion of Na by the cells. In all experiments net K uptake exceeded net Na extrusion. An investigation of the uptake of glucose, PO4, and Mg and the secretion of H by these cells indicates that the excess K uptake is not balanced by the simultaneous uptake of anions but must be accompanied by the extrusion of cations from the cell. The kinetics of net K uptake are consistent with the existence of two parallel influx processes. The first is rapid, of brief duration, and accounts for approximately 60 per cent of the total net K uptake. This process is a function of the extracellular K concentration, is inhibited in acid media, and appears to be a 1 for 1 exchange of extracellular K for intracellular H. The second influx process has a half-time of approximately 12 minutes, and is not affected by acid media. This process is a function of the intracellular Na concentration, is dependent upon the presence of K in the medium, and may be ascribed to a 1 for 1 exchange of extracellular K for intracellular Na. PMID:14080819

  12. INORGANIC CATIONS IN RAT KIDNEY

    PubMed Central

    Tandler, C. J.; Kierszenbaum, A. L.

    1971-01-01

    For localization of pyroantimonate-precipitable cations, rat kidney was fixed by perfusion with a saturated aqueous solution of potassium pyroantimonate (pH about 9.2, without addition of any conventional fixative). A remarkably good preservation of the tissue and cell morphology was obtained as well as a consistent and reproducible localization of the insoluble antimonate salts of magnesium, calcium, and sodium. All proximal and distal tubules and glomeruli were delimited by massive electron-opaque precipitates localized in the basement membrane and, to a lesser extent, in adjacent connective tissue. In the intraglomerular capillaries the antimonate precipitate was encountered in the basement membranes and also between the foot processes. In addition to a more or less uniform distribution in the cytoplasm and between the microvilli of the brush border, antimonate precipitates were found in all cell nuclei, mainly between the masses of condensed chromatin. The mitochondria usually contained a few large antimonate deposits which probably correspond to the so-called "dense granules" observed after conventional fixations. PMID:4106544

  13. Aggregation of nucleosomes by divalent cations.

    PubMed Central

    de Frutos, M; Raspaud, E; Leforestier, A; Livolant, F

    2001-01-01

    Conditions of precipitation of nucleosome core particles (NCP) by divalent cations (Ca(2+) and Mg(2+)) have been explored over a large range of nucleosome and cation concentrations. Precipitation of NCP occurs for a threshold of divalent cation concentration, and redissolution is observed for further addition of salt. The phase diagram looks similar to those obtained with DNA and synthetic polyelectrolytes in the presence of multivalent cations, which supports the idea that NCP/NCP interactions are driven by cation condensation. In the phase separation domain the effective charge of the aggregates was determined by measurements of their electrophoretic mobility. Aggregates formed in the presence of divalent cations (Mg(2+)) remain negatively charged over the whole concentration range. They turn positively charged when aggregation is induced by trivalent (spermidine) or tetravalent (spermine) cations. The higher the valency of the counterions, the more significant is the reversal of the effective charge of the aggregates. The sign of the effective charge has no influence on the aspect of the phase diagram. We discuss the possible reasons for this charge reversal in the light of actual theoretical approaches. PMID:11463653

  14. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  15. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  16. The effect of surface modification of adenovirus with an arginine-grafted bioreducible polymer on transduction efficiency and immunogenicity in cancer gene therapy.

    PubMed

    Kim, Pyung-Hwan; Kim, Tae-Il; Yockman, James W; Kim, Sung Wan; Yun, Chae-Ok

    2010-03-01

    Adenoviral vectors offer many advantages for cancer gene therapy, including high transduction efficiency, but safety concerns related to severe immunogenicity and other side effects have led to careful reconsideration of their use in human clinical trials. To overcome these issues, a strategy of generating hybrid vectors that combine viral and non-viral elements as more intelligent gene carriers has been employed. Here, we coated adenovirus (Ad) with an arginine-grafted bioreducible polymer (ABP) via electrostatic interaction. We examined the effect of ABP-coated Ad complex at various ABP molecules/Ad particle ratios. Enhanced transduction efficiency was observed in cells treated with cationic ABP polymer-coated Ad complex compared to naked Ad. We also examined the coating of Ad with ABP polymers at the optimal polymer ratio using dynamic light scattering and transmission electron microscopy. In both high and low coxsackie virus and adenovirus receptor (CAR)-expressing cells, ABP-coated Ad complex produced higher levels of transgene expression than cationic polymer 25K PEI. Notably, high cytotoxicity was observed with 25K PEI-coated Ad complex treatment, but not with ABP-coated Ad complex treatment. In addition, ABP-coated Ad complex was not significantly inhibited by serum, in contrast to naked Ad. Moreover, ABP-coated Ad complex significantly reduced the innate immune response relative to naked Ad, as assessed by interleukin-6 (IL-6) cytokine release from macrophage cells. Overall, our studies demonstrate that Ad complex formed with ABP cationic polymer may improve the efficiency of Ad and be a promising tool for cancer gene therapy. (c) 2009 Elsevier Ltd. All rights reserved.

  17. Characterization of the ABA signal transduction pathway in Vitis vinifera.

    PubMed

    Boneh, Uri; Biton, Iris; Schwartz, Amnon; Ben-Ari, Giora

    2012-05-01

    The plant hormone abscisic acid (ABA) regulates many key processes in plants including the response to abiotic stress. ABA signal transduction consists of a double-negative regulatory mechanism, whereby ABA-bound PYR/RCARs inhibit PP2C activity, and PP2Cs inactivate SnRK2s. We studied and analyzed the various genes participating in the ABA signaling cascade of the grape (Vitis vinifera). The grape ABA signal transduction consists of at least six SnRK2s. Yeast two-hybrid system was used to test direct interactions between core components of grape ABA signal transduction. We found that a total of forty eight interactions can occur between the various components. Exogenous abscisic acid (ABA) and abiotic stresses such as drought, high salt concentration and cold, were applied to vines growing in a hydroponic system. These stresses regulated the expression of various grape SnRK2s as well as ABFs in leaves and roots. Based on the interactions between SnRK2s and its targets and the expression pattern, we suggest that VvSnRK2.1 and VvSnRK2.6, can be considered the major VvSnRK2 candidates involved in the stomata response to abiotic stress. Furthermore, we found that the expression pattern of the two grape ABF genes indicates organ specificity of these genes. The key role of ABA signaling in response to abiotic stresses makes the genes involve in this signaling potential candidates for manipulation in programs designed to improve fruit tree performance in extreme environments. © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Molecular mechanisms of phytochrome signal transduction in higher plants.

    PubMed

    Chu, Li-Ye; Shao, Hong-Bo; Li, Mao-Yau

    2005-11-10

    Phytochromes in higher plants play a great role in development, responses to environmental stresses and signal transduction, which are the fundamental principles for higher plants to be adapted to changing environment. Deep and systematic understanding of the phytochrome in higher plants is of crucial importance to molecular biology, purposeful improvement of environment in practice, especially molecular mechanism by which higher plants perceive UV-B stress. The last more than 10 years have seen rapid progress in this field with the aid of a combination of molecular, genetic and cell biological approaches. No doubt, what is the most important, is the application of Arabidopsis experimental system and the generation of various mutants regarding phytochromes (phy A-E). Increasing evidence demonstrates that phytochrome signaling transduction constitutes a highly ordered multidimensional network of events. Some phytochromes and signaling intermediates show light-dependent nuclear-cytoplasmic partitioning, which implies that early signaling events take place in the nucleus and that subcellular localization patterns most probably represent an important signaling control point. The main subcellular localization includes nucleus, cytosol and chloroplasts, respectively. Additionally, proteasome-mediated degradation of signaling intermediates most possibly function in concert with subcellular partitioning events as an integrated checkpoint. What higher plants do in this way is to execute accurate responses to the changes in the light environment on the basis of interconnected subcellular organelles. By integrating the available data, at the molecular level and from the angle of eco-environment, we should be able to construct a solid foundation for further dissection of phytochrome signaling transduction in higher plants.

  19. Transduction of a Proteus vulgaris strain by a Proteus mirabilis bacteriophage.

    PubMed

    Coetzee, J N

    1975-08-01

    Only Proteus vulgaris strain PV127 out of many P. vulgaris, P. morganii and Providence strains was transduced to kanamycin resistance by high-frequency transducing variants, 5006MHFTk and 5006MHFTak, of phage 5006M, a general transducing phage for P. mirabilis strain PM5006. The phages adsorbed poorly to strain PV127 and did not form plaques. The transduction frequency of PV127 by these phages was 5 x 10(-8)/p.f.u. adsorbed. Phage 5006M increased the transduction frequencies. Abortive transductants were not detected. Transductants segregated kanamycin-sensitive clones at high frequency and this, together with data from the inactivation of transducing activity of lysates by ultraviolet irradiation, indicated that transduction was by lysogenization. The general transducing property of the phages was not expressed in transductions to auxotrophs of PV127. Transductants (type I) resulting from low multiplicities of phage input adsorbed phage to the same extent as PV127. This suggested a defect in the transducing particles (or host) because single phage 5006M infection converted strain PM5006 to non-adsorption of homologous phage. Type I transductants did not liberate phage, suggesting a defective phage maturation function. Transductants (type II) which arose from higher multiplicities of phage input did not adsorb phage, indicating possible heterogeneity among transducing particles. Phage derived from type II transductants adsorbed poorly to PV127 and transduced it to kanamycin resistance at frequencies similar to those of phages 5006MHFTk and 5006MHFTak, ruling out host-controlled modification as a cause of the low transduction frequencies. This phage transduced PM5006 to antibiotic resistance at high frequencies but generalized transduction was again not detected. It was suggested that general transduction could be performed by particles which, due to a different composition and/or mode of chromosomal integration, made material they carried susceptible to host

  20. Paramyxovirus Disruption of Interferon Signal Transduction: STATus Report

    PubMed Central

    Ramachandran, Aparna

    2009-01-01

    RNA viruses in the paramyxovirus family have evolved a number of strategies to escape host cell surveillance and antiviral responses. One mechanism exploited by a number of viruses in this family is direct targeting of cytokine-inducible transcription regulators in the STAT family. Diverse members of this large virus family effectively suppress STAT signaling by the actions of their V proteins, or the related proteins derived from alternate viral mRNAs. These viral proteins have distinct means of targeting STATs, resulting in a variety of negative effects on STATs and their signal transduction. Recent developments in understanding STAT targeting will be reviewed. PMID:19694544

  1. Solar-powered nanomechanical transduction from crystalline molecular rotors.

    PubMed

    Sylvester, Sven O; Cole, Jacqueline M

    2013-06-25

    A photoinduced solid-state SO₂ isomerism drives a larger mechanical change (benzene-ring rotation) in a neighbouring ion (i.e., the system acts as a solar-powered molecular transducer). The ring rotation and SO₂ photoisomerisation are observed using in situ X-ray crystallography and are controllable, reproducible, and metastable at low temperatures. This discovery presents a new range of materials for solar-energy-based molecular transduction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bio-inspired signal transduction with heterogeneous networks of nanoscillators

    NASA Astrophysics Data System (ADS)

    Cervera, Javier; Manzanares, José A.; Mafé, Salvador

    2012-02-01

    Networks of single-electron transistors mimic some of the essential properties of neuron populations, because weak electrical signals trigger network oscillations with a frequency proportional to the input signal. Input potentials representing the pixel gray level of a grayscale image can then be converted into rhythms and the image can be recovered from these rhythms. Networks of non-identical nanoscillators complete the noisy transduction more reliably than identical ones. These results are important for signal processing schemes and could support recent studies suggesting that neuronal variability enhances the processing of biological information.

  3. Deciphering Parameter Sensitivity in the BvgAS Signal Transduction

    PubMed Central

    Mapder, Tarunendu; Talukder, Srijeeta; Chattopadhyay, Sudip; Banik, Suman K.

    2016-01-01

    To understand the switching of different phenotypic phases of Bordetella pertussis, we propose an optimized mathematical framework for signal transduction through BvgAS two-component system. The response of the network output to the sensory input has been demonstrated in steady state. An analysis in terms of local sensitivity amplification characterizes the nature of the molecular switch. The sensitivity analysis of the model parameters within the framework of various correlation coefficients helps to decipher the contribution of the modular structure in signal propagation. Once classified, the model parameters are tuned to generate the behavior of some novel strains using simulated annealing, a stochastic optimization technique. PMID:26812153

  4. Transduction of DNA information through water and electromagnetic waves.

    PubMed

    Montagnier, Luc; Del Giudice, Emilio; Aïssa, Jamal; Lavallee, Claude; Motschwiller, Steven; Capolupo, Antonio; Polcari, Albino; Romano, Paola; Tedeschi, Alberto; Vitiello, Giuseppe

    2015-01-01

    The experimental conditions by which electromagnetic signals (EMS) of low frequency can be emitted by diluted aqueous solutions of some bacterial and viral DNAs are described. That the recorded EMS and nanostructures induced in water carry the DNA information (sequence) is shown by retrieval of that same DNA by classical PCR amplification using the TAQ polymerase, including both primers and nucleotides. Moreover, such a transduction process has also been observed in living human cells exposed to EMS irradiation. These experiments suggest that coherent long-range molecular interaction must be present in water to observe the above-mentioned features. The quantum field theory analysis of the phenomenon is presented in this article.

  5. Towards blueprints for network architecture, biophysical dynamics and signal transduction.

    PubMed

    Coombes, Stephen; Doiron, Brent; Josić, Kresimir; Shea-Brown, Eric

    2006-12-15

    We review mathematical aspects of biophysical dynamics, signal transduction and network architecture that have been used to uncover functionally significant relations between the dynamics of single neurons and the networks they compose. We focus on examples that combine insights from these three areas to expand our understanding of systems neuroscience. These range from single neuron coding to models of decision making and electrosensory discrimination by networks and populations and also coincidence detection in pairs of dendrites and dynamics of large networks of excitable dendritic spines. We conclude by describing some of the challenges that lie ahead as the applied mathematics community seeks to provide the tools which will ultimately underpin systems neuroscience.

  6. Modulation of signal transduction in cancer cells by phytosterols.

    PubMed

    Bradford, Peter G; Awad, Atif B

    2010-01-01

    Phytosterols are biofactors found enriched in plant foods such as seeds, grains, and legumes. Their dietary consumption is associated with numerous health benefits. Epidemiologic and experimental animal studies indicate that phytosterols are cancer chemopreventive agents particularly against cancers of the colon, breast, and prostate. Phytosterols impede oncogenesis and prevent cancer cell proliferation and survival. The molecular mechanisms underlying these beneficial actions involve effects on signal transduction processes which regulate cell growth and apoptosis. Phytosterols increase sphingomyelin turnover, ceramide formation, and liver X receptor activation. In concert, these actions slow cell cycle progression, inhibit cell proliferation, and activate caspase cascades and apoptosis in cancer cells.

  7. Transduction of nanovolt signals: Limits of electric-field detection

    NASA Astrophysics Data System (ADS)

    Kalmijn, J.

    1989-11-01

    Life scientists discussed the extreme electrical sensitivity of marine sharks, skates, and rays. After reviewing the results of earlier studies on the electric sense at the animal and system levels, the participants discussed the basic process of signal transduction in terms of voltage-sensitive ionic channels. Struck by the small charge displacements needed for excitation, they strongly recommended that sensory biologists, physiologists, and biophysicists join in a concerted effort to initiate new research on the ionic mechanisms of electric field detection. To obtain detailed information on the electroreceptive membrane and its ionic channels, high resolution recording techniques will be mandatory.

  8. Characterization of electrochemically deposited polypyrrole using magnetoelastic material transduction elements

    NASA Technical Reports Server (NTRS)

    Ersoz, Arzu; Ball, J. Christopher; Grimes, Craig A.; Bachas, Leonidas G.

    2002-01-01

    Magnetoelastic alloy films have been used as a working electrode in an electrochemical cell. This material allows magnetic interrogation of electrochemical deposition. This technique was used to monitor the electrochemical deposition of polypyrrole by multisweep (CV) and potentiostatic methods. Since the determination of the mass-sensitive magnetoelastic film's resonance frequency is based on magnetic transduction, an inherent advantage of this method is that it requires no electrical connections other than the working lead of the potentiostat. Increases in pyrrole deposition correlated with a decrease in the peak resonance frequency of the magnetoelastic alloy. This technique provides a novel approach by which one can monitor electrochemical processes.

  9. Ion channels and the transduction of light signals

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Studies of biological light-sensing mechanisms are revealing important roles for ion channels. Photosensory transduction in plants is no exception. In this article, the evidence that ion channels perform such signal-transducing functions in the complex array of mechanisms that bring about plant photomorphogenesis will be reviewed and discussed. The examples selected for discussion range from light-gradient detection in unicellular algae to the photocontrol of stem growth in Arabidopsis. Also included is some discussion of the technical aspects of studies that combine electrophysiology and photobiology.

  10. Ion channels and the transduction of light signals

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Studies of biological light-sensing mechanisms are revealing important roles for ion channels. Photosensory transduction in plants is no exception. In this article, the evidence that ion channels perform such signal-transducing functions in the complex array of mechanisms that bring about plant photomorphogenesis will be reviewed and discussed. The examples selected for discussion range from light-gradient detection in unicellular algae to the photocontrol of stem growth in Arabidopsis. Also included is some discussion of the technical aspects of studies that combine electrophysiology and photobiology.

  11. Hedgehog Signal Transduction: Key Players, Oncogenic Drivers, and Cancer Therapy.

    PubMed

    Pak, Ekaterina; Segal, Rosalind A

    2016-08-22

    The Hedgehog (Hh) signaling pathway governs complex developmental processes, including proliferation and patterning within diverse tissues. These activities rely on a tightly regulated transduction system that converts graded Hh input signals into specific levels of pathway activity. Uncontrolled activation of Hh signaling drives tumor initiation and maintenance. However, recent entry of pathway-specific inhibitors into the clinic reveals mixed patient responses and thus prompts further exploration of pathway activation and inhibition. In this review, we share emerging insights into regulated and oncogenic Hh signaling, supplemented with updates on the development and use of Hh pathway-targeted therapies.

  12. Hedgehog signal transduction: key players, oncogenic drivers, and cancer therapy

    PubMed Central

    Pak, Ekaterina; Segal, Rosalind A.

    2016-01-01

    Summary The Hedgehog (Hh) signaling pathway governs complex developmental processes, including proliferation and patterning within diverse tissues. These activities rely on a tightly-regulated transduction system that converts graded Hh input signals into specific levels of pathway activity. Uncontrolled activation of Hh signaling drives tumor initiation and maintenance. However, recent entry of pathway-specific inhibitors into the clinic reveals mixed patient responses and thus prompts further exploration of pathway activation and inhibition. In this review, we share emerging insights on regulated and oncogenic Hh signaling, supplemented with updates on the development and use of Hh pathway-targeted therapies. PMID:27554855

  13. Coacervate-like membrane structures and olfactory transduction.

    PubMed

    Sperber, G O

    1977-02-01

    Current theories concerning the olfactory transduction process are discussed. A hypothesis is formulated, according to which the olfactory receptor membrane contains regions where it has the structure of a lipid-protein coacervate. Such structures may well occur in living cells. Such a membrane would have the ability to change its permeability in response to adorants and a sensitivity comparable to that of the sense of smell. The model also explains the fact that different receptor cells have different sensitivity patterns towards odorants. The model is consistent with the results of experiments that seek to establish the locus of odorant action.

  14. Deciphering Parameter Sensitivity in the BvgAS Signal Transduction.

    PubMed

    Mapder, Tarunendu; Talukder, Srijeeta; Chattopadhyay, Sudip; Banik, Suman K

    2016-01-01

    To understand the switching of different phenotypic phases of Bordetella pertussis, we propose an optimized mathematical framework for signal transduction through BvgAS two-component system. The response of the network output to the sensory input has been demonstrated in steady state. An analysis in terms of local sensitivity amplification characterizes the nature of the molecular switch. The sensitivity analysis of the model parameters within the framework of various correlation coefficients helps to decipher the contribution of the modular structure in signal propagation. Once classified, the model parameters are tuned to generate the behavior of some novel strains using simulated annealing, a stochastic optimization technique.

  15. Roles of lipid turnover in transmembrane signal transduction.

    PubMed

    Ganong, B R

    1991-11-01

    Cells of higher organisms respond to external stimuli with a cascade of intracellular biochemical events initiated by binding of a hormone, growth factor, or neurotransmitter to a specific cell surface receptor. Previously well-characterized signal transduction pathways involve cyclic nucleotides as intracellular second messengers. Over the past decade, increasing attention has been focused on other signaling pathways in which membrane lipids serve as second messengers or their precursors. This review describes current understanding of these pathways and points to recent discoveries likely to open new frontiers in the coming decade.

  16. Antiviral effect of HPMPC (Cidofovir®), entrapped in cationic liposomes: in vitro study on MDBK cell and BHV-1 virus.

    PubMed

    Korvasová, Zina; Drašar, Lukáš; Mašek, Josef; Turánek Knotigová, Pavlína; Kulich, Pavel; Matiašovic, Ján; Kovařčík, Kamil; Bartheldyová, Eliška; Koudelka, Štěpán; Škrabalová, Michaela; Miller, Andrew D; Holý, Antonín; Ledvina, Miroslav; Turánek, Jaroslav

    2012-06-10

    We designed and synthesised a series of new cationic lipids based on spermine linked to various hydrophobic anchors. These lipids could be potentially useful for the preparation of stable cationic liposomes intended for the construction of drug targeting systems applicable in the field of anticancer/antiviral therapy, vaccine carriers, and vectors for the gene therapy. Low in vitro toxicity was found for these compounds, especially for LD1, in several cell lines. The delivery of both a fluorescence marker (calcein) and antiviral drugs into cells has been achieved owing to a large extent of internalization of cationic liposomes (labelled by Lyssamine-Rhodamine PE or fluorescein-PE) as demonstrated by fluorescent microscopy and quantified by flow cytometry. The bovine herpes virus type 1 (BHV-1) virus infection in vitro model using MDBK cells was employed to study the effect of the established antiviral drug HPMPC (Cidofovir®) developed by Prof. A. Holý. Inhibition of BHV-1 virus replication was studied by quantitative RT-PCR and confirmed by both Hoffman modulation contrast microscopy and transmission electron microscopy. We found that in vitro antiviral activity of HPMPC was significantly improved by formulation in cationic liposomes, which decreased the viral replication by about 2 orders of magnitude. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Cation-π Interactions: Mimicking mussel mechanics

    NASA Astrophysics Data System (ADS)

    Birkedal, Henrik

    2017-05-01

    Gluing materials together underwater is a mighty challenge faced -- and overcome -- by mussels. It requires good adhesion and cohesion. Molecular-level mechanical measurements have now shown that cation-π interactions provide surprisingly strong cohesive abilities.

  18. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    PubMed

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  19. Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion.

    PubMed

    Knorr, Anne; Ludwig, Ralf

    2015-12-02

    Direct spectroscopic evidence for H-bonding between like-charged ions is reported for the ionic liquid, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. New infrared bands in the OH frequency range appear at low temperatures indicating the formation of H-bonded cation-cation clusters similar to those known for water and alcohols. Supported by DFT calculations, these vibrational bands can be assigned to attractive interaction between the hydroxyl groups of the cations. The repulsive Coulomb interaction is overcome by cooperative hydrogen bonding between ions of like charge. The transition energy from purely cation-anion interacting configurations to those including cation-cation H-bonds is determined to be 3-4 kJmol(-1). The experimental findings and DFT calculations strongly support the concept of anti-electrostatic hydrogen bonds (AEHBs) as recently suggested by Weinhold and Klein. The like-charge configurations are kinetically stabilized with decreasing temperatures.

  20. Cation locations and dislocations in zeolites

    NASA Astrophysics Data System (ADS)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  1. Test procedure for cation exchange chromatography

    SciTech Connect

    Cooper, T.D.

    1994-08-24

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction.

  2. Mechanisms of fragmentation of cationic peptide ions

    NASA Astrophysics Data System (ADS)

    Zhao, Hong; Adams, Jeanette

    1993-06-01

    Fragmentation mechanisms for formation of several commonly occurring product ions in high-energy collision-induced induced decomposition spectra of either (M + Cat2+ - H)+ ions of peptides cationized with alkaline earth metal ions, (M + Ca+)+ ions cationized with alkali metal ions, or (M + H)+ ions are evaluated by using deuterium-labelled peptides. The different sources of hydrogen transferred in the reactions are identified. Our study supports some previously proposed mechanisms but also provides evidence for others.

  3. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOEpatents

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1998-04-28

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.

  4. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2016-11-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  5. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry.

    PubMed

    Bythell, Benjamin J; Abutokaikah, Maha T; Wagoner, Ashley R; Guan, Shanshan; Rabus, Jordan M

    2016-11-28

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the (0,2) A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies. Graphical Abstract ᅟ.

  6. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2017-04-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms . Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  7. Cation-dependent stability of subtilisin.

    PubMed

    Alexander, P A; Ruan, B; Bryan, P N

    2001-09-04

    Subtilisin BPN' contains two cation binding sites. One specifically binds calcium (site A), and the other can bind both divalent and monovalvent metals (site B). By binding at specific sites in the tertiary structure of subtilisin, cations contribute their binding energy to the stability of the native state and increase the activation energy of unfolding. Deconvoluting the influence of binding sites A and B on the inactivation rate of subtilisin is complicated, however. This paper examines the stabilizing effects of cation binding at site B by using a mutant of subtilisin BPN' which lacks calcium site A. Using this mutant, we show that calcium binding at site B has relatively little effect on stability in the presence of moderate concentrations of monovalent cations. At [NaCl] =100 mM, site B is >or=98% occupied with sodium, and therefore its net occupancy with a cation varies little as subtilisin is titrated with calcium. Exchanging sodium for calcium results in a 5-fold decrease in the rate of inactivation. In contrast, because of the high selectivity of site A for calcium, its occupancy changes dramatically as calcium concentration is varied, and consequently the inactivation rate of subtilisin decreases approximately 200-fold as site A becomes saturated with calcium, irrespective of the concentration of monovalent cations.

  8. Dual-transduction-mode sensing approach for chemical detection

    SciTech Connect

    Wang, Liang; Swensen, James S.

    2012-11-01

    Smart devices such as electronic nose have been developed for application in many fields like national security, defense, environmental regulation, health care, pipeline monitoring and food analysis. Despite a large array of individual sensors, these devices still lack the ability to identify a target at a very low concentration out of a mixture of odors, limited by a single type of transduction as the sensing response to distinguish one odor from another. Here, we propose a new sensor architecture empowering each individual sensor with multi-dimensional transduction signals. The resolving power of our proposed electronic nose is thereby multiplied by a set of different and independent variables which synergistically will provide a unique combined fingerprint for each analyte. We demonstrate this concept using a Light Emitting Organic Field-Effect Transistor (LEOFET). Sensing response has been observed on both electrical and optical output signals from a green LEOFET upon exposure to an explosive taggant, with optical signal exhibiting much higher sensitivity. This new sensor architecture opens a field of devices for smart detection of chemical and biological targets.

  9. Mig-6, signal transduction, stress response and cancer.

    PubMed

    Zhang, Yu-Wen; Vande Woude, George F

    2007-03-01

    The mitogen-inducible gene-6 (Mig-6) is an immediate early response gene encoding a nonkinase scaffolding adaptor protein. Mig-6 gene expression can be rapidly and robustly induced under both normal and pathological scenarios by factors including hormones, growth factors, and stresses. However, the precise role of Mig-6 has virtually been a mystery until recently, when we and others discovered that Mig-6 may play important roles in regulating stress response, maintaining homeostasis in tissues like joints or cardiac muscle, and functioning as a tumor suppressor. The discovery that Mig-6 acts as a negative feedback inhibitor of EGF receptor signaling through a direct, physical interaction with the EGF receptor opens a door for understanding the mechanism underlying Mig-6 function. Yet how Mig-6 fine tunes or integrates signal transduction in many pathophysiological situations remains to be determined. Here we will highlight recent discoveries on the role of Mig-6 in stress response, tissue homeostasis, and cancer development; review the transcriptional regulation of Mig-6 expression; share insight into its mechanism in regulating signal transduction; and discuss the paradox of its action modes under different pathophysiological conditions.

  10. Receptor domains of two-component signal transduction systems.

    PubMed

    Perry, Julie; Koteva, Kalinka; Wright, Gerard

    2011-05-01

    Two-component signal transduction systems are found ubiquitously in prokaryotes, and in archaea, fungi, yeast and some plants, where they regulate physiologic and molecular processes at both transcriptional and post-transcriptional levels. Two-component systems sense changes in environmental conditions when a specific ligand binds to the receptor domain of the histidine kinase sensory component. The structures of many histidine kinase receptors are known, including those which sense extracellular and cytoplasmic signals. In this review, we discuss the basic architecture of two-component signalling circuits, including known system ligands, structure and function of both receptor and signalling domains, the chemistry of phosphotransfer, and cross-talk between different two-component pathways. Given the importance of these systems in regulating cellular responses, many biochemical techniques have been developed for their study and analysis. We therefore also review current methods used to study two-component signalling, including a new affinity-based proteomics approach used to study inducible resistance to the antibiotic vancomycin through the VanSR two-component signal transduction system.

  11. Analysis and logical modeling of biological signaling transduction networks

    NASA Astrophysics Data System (ADS)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  12. Gravity perception and signal transduction in single cells

    NASA Astrophysics Data System (ADS)

    Block, I.; Wolke, A.; Briegleb, W.; Ivanova, K.

    Cellular signal processing in multi-, as well as in unicellular organisms, has to rely on fundamentally similar mechanisms. Free-living single cells often use the gravity vector for their spatial orientation (gravitaxis) and show distinct gravisensitivities. In this investigation the gravisensitive giant ameboid cell Physarum polycephalum (Myxomycetes, acellular slime molds) is used. Its gravitaxis and the modulation of its intrinsic rhythmic contraction activity by gravity was demonstrated in 180 °turn experiments and in simulated, as well as in actual, near-weightlessness studies (fast-rotating clinostat; Spacelab D1, IML-1). The stimulus perception was addressed in an IML-2 experiment, which provided information on the gravireceptor itself by the determination of the cell's acceleration-sensitivity threshold. Ground-based experiments designed to elucidate the subsequent steps in signal transduction leading to a motor response, suggest that an acceleration stimulus induces changes in the level of second messenger, adenosine 3',5'-cyclic monophosphate (cAMP), indicating also that the acceleration-stimulus signal transduction chain of Physarum uses an ubiquitous second messenger pathway.

  13. Cardiac hypertrophy: signal transduction, transcriptional adaptation, and altered growth control.

    PubMed

    Wagner, M; Mascareno, E; Siddiqui, M A

    1999-06-30

    Cardiac hypertrophy results from the enlargement of cardiac muscle and fibroblast cells. This abnormal pattern of growth can be elicited by a number of hypertrophic agents, such as cytokines and hormones that participate in normal cell-cell signaling events during development. Under conditions yet to be defined, these same signaling molecules can cause hypertrophy of the heart. Intracellular signal transduction pathways appear to be the prime means by which the hypertrophic signal is transduced in cardiomyocytes. There is no evidence that the signal transduction pathways in hypertrophic cardiomyocytes differ from those of normal cardiomyocytes. Perhaps the signal itself is aberrant, mistimed, misplaced, or occurring at non-physiological concentrations. Alternatively, as a quiescent cell, the cardiomyocyte may not be able to respond completely to a growth signal by turning on its proliferative machinery. Three avenues of research are described: (1) the study of the upregulation of the cardiac MLC-2 gene, (2) STAT proteins and activation of angiotensin II, and (3) hypertrophy as a perturbation of cell cycle controls.

  14. Continuous functions for the analysis of sensory transduction.

    PubMed

    Awiszus, F

    1989-01-01

    Sensory transduction at a primary receptor neuron yields a current that drives the generation of action potentials. Due to the inaccessibility of that current for direct measurements the analysis of sensory transduction requires the use of neuronal output functions that give an indirect measure for the "input" current, i.e. the current at the impulse initiating site. Three continuous neuronal output functions are investigated with respect to their ability to reconstruct the input current (i) the membrane potential recorded under sodium channel block referred to as "receptor potential", (ii) the interspike-interval function (Awiszus 1988a) and (iii) the phase lag function which is introduced in this paper. The behaviour of these three functions for constant and dynamically varying input is studied at the Hodgkin-Huxley model (Hodgkin and Huxley 1952) because for this model neuron it is possible to compare the input current estimates obtained from the output functions with the true input current. It was found that for constant and for sufficiently slow varying input all three functions allow a valid reconstruction of the input current time course. On the other hand, if the input current changes rapidly all three estimated input current time courses show considerable deviations from the true time course. The largest maximal deviation is shown by the current estimate obtained from the receptor potential whereas the phase lag function yields the smallest input current misjudgement. An experimental example to illustrate the procedure to obtain the phase lag function for a muscle spindle primary afferent is given.

  15. Modeling of nociceptor transduction in skin thermal pain sensation.

    PubMed

    Xu, F; Wen, T; Lu, T J; Seffen, K A

    2008-08-01

    All biological bodies live in a thermal environment with the human body as no exception, where skin is the interface with protecting function. When the temperature moves out of normal physiological range, skin fails to protect and pain sensation is evocated. Skin thermal pain is one of the most common problems for humans in everyday life as well as in thermal therapeutic treatments. Nocicetors (special receptor for pain) in skin play an important role in this process, converting the energy from external noxious thermal stimulus into electrical energy via nerve impulses. However, the underlying mechanisms of nociceptors are poorly understood and there have been limited efforts to model the transduction process. In this paper, a model of nociceptor transduction in skin thermal pain is developed in order to build direct relationship between stimuli and neural response, which incorporates a skin thermomechanical model for the calculation of temperature, damage and thermal stress at the location of nociceptor and a revised Hodgkin-Huxley form model for frequency modulation. The model qualitatively reproduces measured relationship between spike rate and temperature. With the addition of chemical and mechanical components, the model can reproduce the continuing perception of pain after temperature has returned to normal. The model can also predict differences in nociceptor activity as a function of nociceptor depth in skin tissue.

  16. Transduction of resistance to some macrolide antibiotics in Staphylococcus aureus.

    PubMed

    PATTEE, P A; BALDWIN, J N

    1962-11-01

    Pattee, P. A. (Iowa State University, Ames) and J. N. Baldwin. Transduction of resistance to some macrolide antibiotics in Staphylococcus aureus. J. Bacteriol. 84:1049-1055. 1962.-By use of phage 80 of the International Typing Series, propagated on appropriate strains of Staphylococcus aureus, two related markers controlling resistance to certain macrolide antibiotics (erythromycin, oleandomycin, spiramycin, and carbomycin) were transduced among a variety of strains of S. aureus. Unlike the markers controlling penicillinase production and resistance to chlortetracycline and novobiocin, the determinants of resistance to the macrolide antibiotics were transduced at normal frequencies (at least 300 transductants per 10(9) phage) only to certain of the recipient strains. One of the markers studied appears to control an inducible enzyme system which is specifically induced by sub-inhibitory concentrations of erythromycin and which controls resistance to erythromycin, oleandomycin, spiramycin, and carbomycin. The other marker examined confers resistance to erythromycin, oleandomycin, spiramycin, and carbomycin, and shows no evidence of being dependent upon an inducible mechanism.

  17. [Contractile proteins in chemical signal transduction in plant microspores].

    PubMed

    Roshchina, V V

    2005-01-01

    Involvement of contractile components in chemical signal transduction from the cell surface to the organelles was studied using unicellular systems. Neurotransmitters dopamine and serotonin as well as active forms of oxygen hydrogen peroxide and tert-butyl peroxide were used as chemical signals. Experiments were carried out on vegetative microspores of field horsetail Equisetum arvense and generative microspores (pollen) of amaryllis Hippeastrum hybridum treated with cytochalasin B (an inhibitor of actin polymerization in microfilaments), colchicine, and vinblastine (inhibitors of tubulin polymerization in microtubules). Both types of thus treated microspores demonstrated suppressed development, particularly, for cytochalasin B treatment. At the same time, an increased typical blue fluorescence of certain cell regions (along the cell wall and around nuclei and chloroplasts) where the corresponding contractile proteins could reside was observed. In contrast to anticontractile agents, dopamine, serotonin B, and the peroxides stimulated microspore germination. Microspore pretreatment with cytochalasin B and colchicine followed by the treatment with serotonin, dopamine, or the peroxides decreased the germination rate. Involvement of actin and tubulin in chemical signal transduction from the cell surface to the nucleus is proposed.

  18. Mechanical transduction mechanisms of RecA-like molecular motors.

    PubMed

    Liao, Jung-Chi

    2011-12-01

    A majority of ATP-dependent molecular motors are RecA-like proteins, performing diverse functions in biology. These RecA-like molecular motors consist of a highly conserved core containing the ATP-binding site. Here I examined how ATP binding within this core is coupled to the conformational changes of different RecA-like molecular motors. Conserved hydrogen bond networks and conformational changes revealed two major mechanical transduction mechanisms: (1) intra-domain conformational changes and (2) inter-domain conformational changes. The intra-domain mechanism has a significant hydrogen bond rearrangement within the domain containing the P-loop, causing relative motion between two parts of the protein. The inter-domain mechanism exhibits little conformational change in the P-loop domain. Instead, the major conformational change is observed between the P-loop domain and an adjacent domain or subunit containing the arginine finger. These differences in the mechanical transduction mechanisms may link to the underlying energy surface governing a Brownian ratchet or a power stroke.

  19. Graviperception in ciliates: steps in the transduction chain

    NASA Astrophysics Data System (ADS)

    Hemmersbach, R.; Krause, M.; Bräucker, R.; Ivanova, K.

    Due to their clear gravity-induced behavioural responses (gravitaxis and gravikinesis) ciliates represent suitable model systems to study the mechanisms of gravity perception and signal transduction. While the development of distinct gravisensory organelles is the exception in ciliates (e.g. mueller organelles in Loxodes), a common strategy seems to be that the whole cytoplasm acts as statolith stimulating mechanosensitive ion channels in the cell membrane. In order to test this hypothesis, electrophysiological studies were performed, revealing the proposed changes (de- or hyperpolarizations) depending on the cell's (Stylonychia mytilus) spatial orientation. In order to test the involvement of second messengers in the gravity-signal transduction-chain, cAMP levels of Paramecium were measured under altered gravitational stimulation (TEXUS 37; centrifuge). We found a decrease in cAMP in microgravity and an increase in hypergravity (5 x g) compared to the 1 x g controls. Furthermore, the behaviour of Paramecium and Stylonychia was analyzed during the variable acceleration conditions of parabolic flights (5th German Parabolic Flight Campaign) and compared to data already known from TEXUS, MAXUS, and drop facilities (ZARM, JAMIC). The feasibility of parabolic flights with respect to threshold determination will be discussed.

  20. Signal transduction abnormalities in suicide: focus on phosphoinositide signaling system.

    PubMed

    Pandey, Ghanshyam N

    2013-11-01

    Suicide is a major public health concern and each year about one million people die by suicide worldwide. Recent studies suggest that suicide may be associated with specific neurobiological abnormalities. Earlier studies of neurobiology of suicide focused on abnormalities of the serotonergic mechanism. These studies suggested that some serotonin receptor subtypes may be abnormal in the postmortem brain of suicide victims. Since these receptors are linked to signal transduction pathways, abnormalities of signaling mechanisms have been recently studied in the postmortem brain of suicide victims. Of particular interest is the 5-hydroxytryptamine2A receptor-linked phosphoinositide signaling system. Several studies have focused on the abnormalities on the component of this signaling system and these studies suggest the abnormalities of G proteins, the effectors phospholipase C and the second or the third messenger systems, such as protein kinase A. Further studies revealed abnormalities in the downstream transcription factors such as the cyclic AMP response element binding protein and some of the targeted genes of these transcription factors. The most important gene in this aspect which has been studied in the suicide is the brain-derived neurotrophic factor. Here we critically review the studies focusing on these components of the phosphoinositide signaling system in the postmortem brain of both adult and teenage suicide victims. These studies provide a better understanding of the signal transduction abnormalities in suicide focusing on the phosphoinositide signaling pathway. These studies may lead to new therapeutic agents targeting specific sites in this signaling cascade.

  1. Taste transductions in taste receptor cells: basic tastes and moreover.

    PubMed

    Iwata, Shusuke; Yoshida, Ryusuke; Ninomiya, Yuzo

    2014-01-01

    In the oral cavity, taste receptor cells dedicate to detecting chemical compounds in foodstuffs and transmitting their signals to gustatory nerve fibers. Heretofore, five taste qualities (sweet, umami, bitter, salty and sour) are generally accepted as basic tastes. Each of these may have a specific role in the detection of nutritious and poisonous substances; sweet for carbohydrate sources of calories, umami for protein and amino acid contents, bitter for harmful compounds, salty for minerals and sour for ripeness of fruits and spoiled foods. Recent studies have revealed molecular mechanisms for reception and transduction of these five basic tastes. Sweet, umami and bitter tastes are mediated by G-protein coupled receptors (GPCRs) and second-messenger signaling cascades. Salty and sour tastes are mediated by channel-type receptors. In addition to five basic tastes, taste receptor cells may have the ability to detect fat taste, which is elicited by fatty acids, and calcium taste, which is elicited by calcium. Taste compounds eliciting either fat taste or calcium taste may be detected by specific GPCRs expressed in taste receptor cells. This review will focus on transduction mechanisms and cellular characteristics responsible for each of basic tastes, fat taste and calcium taste.

  2. Caveolae as Organizers of Pharmacologically Relevant Signal Transduction Molecules

    PubMed Central

    Patel, Hemal H.; Murray, Fiona; Insel, Paul A.

    2011-01-01

    Caveolae, a subset of membrane (lipid) rafts, are flask-like invaginations of the plasma membrane that contain caveolin proteins, which serve as organizing centers for cellular signal transduction. Caveolins (-1, -2, and -3) have cytoplasmic N and C termini, palmitolylation sites, and a scaffolding domain that facilitates interaction and organization of signaling molecules so as to help provide coordinated and efficient signal transduction. Such signaling components include upstream entities (e.g., G protein–coupled receptors (GPCRs), receptor tyrosine kinases, and steroid hormone receptors) and downstream components (e.g., heterotrimeric and low-molecular-weight G proteins, effector enzymes, and ion channels). Diseases associated with aberrant signaling may result in altered localization or expression of signaling proteins in caveolae. Caveolin-knockout mice have numerous abnormalities, some of which may reflect the impact of total body knockout throughout the life span. This review provides a general overview of caveolins and caveolae, signaling molecules that localize to caveolae, the role of caveolae/caveolin in cardiac and pulmonary pathophysiology, pharmacologic implications of caveolar localization of signaling molecules, and the possibility that caveolae might serve as a therapeutic target. PMID:17914930

  3. Effective transduction of osteogenic sarcoma cells by a baculovirus vector.

    PubMed

    Song, Sun U; Shin, Seok-Hwan; Kim, Soon-Ki; Choi, Gwang-Seong; Kim, Woo-Chul; Lee, Moon-Hee; Kim, Sei-Joong; Kim, In-Ho; Choi, Mi-Sook; Hong, Young-Jin; Lee, Kwan-Hee

    2003-03-01

    Efficient gene delivery of a baculovirus-derived vector (BV-p53-lacZ) to a human osteogenic sarcoma cell line, Saos-2, was serendipitously found while evaluating the vector for gene delivery to human p53-null tumour cells in a previous study. Therefore, we investigated other human, rat and mouse osteogenic sarcoma and other types of tumour cell lines for transduction efficiency via baculovirus vectors containing a lacZ reporter gene under the control of either a cytomegalovirus or Rous sarcoma virus promoter. The expression of beta-galactosidase protein, assessed by X-Gal staining and beta-galactosidase ELISA, demonstrated an extremely high level of transduction efficiency in some osteogenic sarcoma cell lines, such as U-2OS, Saos-2 and Saos-LM2. These human osteogenic sarcoma cell lines showed levels of beta-galactosidase expression 5-40 times greater than HepG2 cells, which were previously thought to be the mammalian cells most susceptible to baculovirus-mediated gene delivery. The level of acetylated histone proteins in these tumour lines did not correlate well with the high level of reporter gene expression. These results strongly suggest that some osteogenic sarcoma cells are highly susceptible to baculovirus-mediated gene delivery and that a baculovirus-derived vector is an efficient gene delivery vehicle into human osteogenic sarcoma cells.

  4. Fetus Sound Stimulation: Cilia Memristor Effect of Signal Transduction

    PubMed Central

    Jankovic-Raznatovic, Svetlana; Dragojevic-Dikic, Svetlana; Rakic, Snezana; Nikolic, Branka; Plesinac, Snezana; Tasic, Lidija; Perisic, Zivko; Sovilj, Mirjana; Adamovic, Tatjana; Koruga, Djuro

    2014-01-01

    Background. This experimental study evaluates fetal middle cerebral artery (MCA) circulation after the defined prenatal acoustical stimulation (PAS) and the role of cilia in hearing and memory and could explain signal transduction and memory according to cilia optical-acoustical properties. Methods. PAS was performed twice on 119 no-risk term pregnancies. We analyzed fetal MCA circulation before, after first and second PAS. Results. Analysis of the Pulsatility index basic (PIB) and before PAS and Pulsatility index reactive after the first PAS (PIR 1) shows high statistical difference, representing high influence on the brain circulation. Analysis of PIB and Pulsatility index reactive after the second PAS (PIR 2) shows no statistical difference. Cilia as nanoscale structure possess magnetic flux linkage that depends on the amount of charge that has passed between two-terminal variable resistors of cilia. Microtubule resistance, as a function of the current through and voltage across the structure, leads to appearance of cilia memory with the “memristor” property. Conclusion. Acoustical and optical cilia properties play crucial role in hearing and memory processes. We suggest that fetuses are getting used to sound, developing a kind of memory patterns, considering acoustical and electromagnetically waves and involving cilia and microtubules and try to explain signal transduction. PMID:24719851

  5. Power-law models of signal transduction pathways.

    PubMed

    Vera, Julio; Balsa-Canto, Eva; Wellstead, Peter; Banga, Julio R; Wolkenhauer, Olaf

    2007-07-01

    The mathematical modelling of signal transduction pathways has become a valuable aid to understanding the complex interactions involved in intracellular signalling mechanisms. An important aspect of the mathematical modelling process is the selection of the model type and structure. Until recently, the convention has been to use a standard kinetic model, often with the Michaelis-Menten steady state assumption. However this model form, although valuable, is only one of a number of choices, and the aim of this article is to consider the mathematical structure and essential features of an alternative model form--the power-law model. Specifically, we analyse how power-law models can be applied to increase our understanding of signal transduction pathways when there may be limited prior information. We distinguish between two kinds of power law models: a) Detailed power-law models, as a tool for investigating pathways when the structure of protein-protein interactions is completely known, and; b) Simplified power-law models, for the analysis of systems with incomplete structural information or insufficient quantitative data for generating detailed models. If sufficient data of high quality are available, the advantage of detailed power-law models is that they are more realistic representations of non-homogenous or crowded cellular environments. The advantages of the simplified power-law model formulation are illustrated using some case studies in cell signalling. In particular, the investigation on the effects of signal inhibition and feedback loops and the validation of structural hypotheses are discussed.

  6. Phosphoglycerolipids are master players in plant hormone signal transduction.

    PubMed

    Janda, Martin; Planchais, Severine; Djafi, Nabila; Martinec, Jan; Burketova, Lenka; Valentova, Olga; Zachowski, Alain; Ruelland, Eric

    2013-06-01

    Phosphoglycerolipids are essential structural constituents of membranes and some also have important cell signalling roles. In this review, we focus on phosphoglycerolipids that are mediators in hormone signal transduction in plants. We first describe the structures of the main signalling phosphoglycerolipids and the metabolic pathways that generate them, namely the phospholipase and lipid kinase pathways. In silico analysis of Arabidopsis transcriptome data provides evidence that the genes encoding the enzymes of these pathways are transcriptionally regulated in responses to hormones, suggesting some link with hormone signal transduction. The involvement of phosphoglycerolipid signalling in the early responses to abscisic acid, salicylic acid and auxins is then detailed. One of the most important signalling lipids in plants is phosphatidic acid. It can activate or inactivate protein kinases and/or protein phosphatases involved in hormone signalling. It can also activate NADPH oxidase leading to the production of reactive oxygen species. We will interrogate the mechanisms that allow the activation/deactivation of the lipid pathways, in particular the roles of G proteins and calcium. Mediating lipids thus appear as master players of cell signalling, modulating, if not controlling, major transducing steps of hormone signals.

  7. Fetus sound stimulation: cilia memristor effect of signal transduction.

    PubMed

    Jankovic-Raznatovic, Svetlana; Dragojevic-Dikic, Svetlana; Rakic, Snezana; Nikolic, Branka; Plesinac, Snezana; Tasic, Lidija; Perisic, Zivko; Sovilj, Mirjana; Adamovic, Tatjana; Koruga, Djuro

    2014-01-01

    This experimental study evaluates fetal middle cerebral artery (MCA) circulation after the defined prenatal acoustical stimulation (PAS) and the role of cilia in hearing and memory and could explain signal transduction and memory according to cilia optical-acoustical properties. PAS was performed twice on 119 no-risk term pregnancies. We analyzed fetal MCA circulation before, after first and second PAS. Analysis of the Pulsatility index basic (PIB) and before PAS and Pulsatility index reactive after the first PAS (PIR 1) shows high statistical difference, representing high influence on the brain circulation. Analysis of PIB and Pulsatility index reactive after the second PAS (PIR 2) shows no statistical difference. Cilia as nanoscale structure possess magnetic flux linkage that depends on the amount of charge that has passed between two-terminal variable resistors of cilia. Microtubule resistance, as a function of the current through and voltage across the structure, leads to appearance of cilia memory with the "memristor" property. Acoustical and optical cilia properties play crucial role in hearing and memory processes. We suggest that fetuses are getting used to sound, developing a kind of memory patterns, considering acoustical and electromagnetically waves and involving cilia and microtubules and try to explain signal transduction.

  8. Neutrophil cell surface receptors and their intracellular signal transduction pathways☆

    PubMed Central

    Futosi, Krisztina; Fodor, Szabina; Mócsai, Attila

    2013-01-01

    Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. PMID:23994464

  9. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation

    NASA Astrophysics Data System (ADS)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-01

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  10. Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel

    SciTech Connect

    Leng, Q.; Mercier, R.W.; Yao, W.; Berkowitz, G.A.

    1999-11-01

    Cyclic nucleotide-gated (cng) non-selective cation channels have been cloned from a number of animal systems. These channels are characterized by direct gating upon cAMO or cGMO binding to the intracellular portion of the channel protein, which leads to an increase in channel conductance. Animal cng channels are involved in signal transduction systems; they translate stimulus-induced changes in cytosolic cyclic nucleotide into altered cell membrane potential and/or cation flux as part of a signal cascade pathway. Putative plant homologs of animal cng channels have been identified. However, functional characterization (i.e., demonstration of cyclic-nucleotide-dependent ion currents) of a plant cng channel has not yet been accomplished. The authors report the cloning and first functional characterization of a plant member of this family of ion channels. The Arabidopsis cDNA AtCNGC2 encodes a polypeptide with deduced homology to the {alpha}-subunit of animal channels, and facilitates cyclic nucleotide-dependent cation currents upon expression in a number of heterologous systems. AtCNGC2 expression in a yeast mutant lacking a low-affinity K{sup +} uptake system complements growth inhibition only when lipophilic nucleotides are present in the culture medium. Voltage clamp analysis indicates that Xenopus lawvis oocytes injected with AtCNGC2 cRNA demonstrate cyclic-nucleotide-dependent, inward-rectifying K{sup +} currents. Human embryonic kidney cells (HEK293) transfected with AtCNGC2 cDNA demonstrate increased permeability to Ca{sup 2+} only in the presence of lipophilic cyclic nucleotides. The evidence presented here supports the functional classification of AtCNGC2 as a cyclic-nucleotide-gated cation channel, and presents the first direct evidence identifying a plant member of this ion channel family.

  11. Genetic analysis of gravity signal transduction in roots

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Strohm, Allison; Baldwin, Katherine

    To grow downward into the soil, roots use gravity as a guide. Specialized cells, named stato-cytes, enable this directional growth response by perceiving gravity. Located in the columella region of the cap, these cells sense a reorientation of the root within the gravity field through the sedimentation of, and/or tension/pressure exerted by, dense amyloplasts. This process trig-gers a gravity signal transduction pathway that leads to a fast alkalinization of the cytoplasm and a change in the distribution of the plasma membrane-associated auxin-efflux carrier PIN3. The latter protein is uniformly distributed within the plasma membrane on all sides of the cell in vertically oriented roots. However, it quickly accumulates at the bottom side upon gravis-timulation. This process correlates with a preferential transport of auxin to the bottom side of the root cap, resulting in a lateral gradient across the tip. This gradient is then transported to the elongation zone where it promotes differential cellular elongation, resulting in downward curvature. We isolated mutations that affect gravity signal transduction at a step that pre-cedes cytoplasmic alkalinization and/or PIN3 relocalization and lateral auxin transport across the cap. arg1 and arl2 mutations identify a common genetic pathway that is needed for all three gravity-induced processes in the cap statocytes, indicating these genes function early in the pathway. On the other hand, adk1 affects gravity-induced PIN3 relocalization and lateral auxin transport, but it does not interfere with cytoplasmic alkalinization. ARG1 and ARL2 encode J-domain proteins that are associated with membranes of the vesicular trafficking path-way whereas ADK1 encodes adenosine kinase, an enzyme that converts adenosine derived from nucleic acid metabolism and the AdoMet cycle into AMP, thereby alleviating feedback inhibi-tion of this important methyl-donor cycle. Because mutations in ARG1 (and ARL2) do not completely eliminate

  12. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  13. Conservation and Divergence of Ligand Recognition and Signal Transduction Mechanisms in Toll-Like Receptors.

    PubMed

    Ohto, Umeharu

    2017-01-01

    Toll-like receptors (TLRs) play a central role in innate immunity as pathogen sensors. During the last decade, structural analyses of TLRs have revealed the mechanisms of ligand recognition and signal transduction. Each TLR recognizes its cognate ligand in a different manner, whereas signal transduction is achieved by a common mechanism. In this review, the mechanisms of ligand recognition and signal transduction by TLRs are summarized based on recent structural information.

  14. Evaluation of Conformity of a First Prescription of Lipid-Based Formulation of Amphotericin B in a University-Teaching Pediatric Hospital

    PubMed Central

    Agogué, Claire; Bussières, Jean-François; Dehaut, Catherine; Lebel, Denis; Brochet, Marie-Sophie

    2006-01-01

    OBJECTIVE Invasive fungal infections are an important cause of morbidity and mortality in immunodeficient children. Amphotericin B is an important therapeutic agent for the treatment of invasive fungal infections but is associated with significant toxicities and high acquisition costs. The purpose of this study was to evaluate physician adherence to a local guideline for the use of lipid-based amphotericin B. METHODS The study was approved through Pharmacology & Therapeutics (P&T) committee activities. A retrospective drug utilization review (DUR) was conducted. All orders written between January 1, 2003, and December 31, 2004, were reviewed. Demographic and descriptive clinical data were collected as well as variables related to the drug order process. Conformity rates were calculated for the primary objective criteria (authorized prescribers – infectious disease members; recommended drug of choice—Abelcet; accepted indications; and presence of underlying conditions). RESULTS A total of 109 orders for 70 patients were reviewed by a single research assistant for a 2-year period. Global conformity rate for all four criteria was calculated at 7.3%. Non-conformity was mostly associated with the absence of underlying conditions (e.g., prerenal insufficiency or presence of nephrotoxicity due to amphotericin B desoxycholate) in 84.5% of the cases. Infusionrelated adverse drug reactions partly explained a switch to a non-formulary lipid-based amphotericin B product. External factors (newly published results since the adoption of the guideline and continuous marketing practices) and internal factors (availability of non-formulary process, inefficient DUR process) could have contributed to non-adherence to a local guideline. CONCLUSION This study shows low adherence to P&T committee drug guidelines on lipid-based amphotericin B. Continuous and efficient DUR processes should be in place to monitor drug guideline adherence. PMID:23118649

  15. Patterned Thread-like Micelles and DNA-Tethered Nanoparticles: A Structural Study of PEGylated Cationic Liposome–DNA Assemblies

    PubMed Central

    Majzoub, Ramsey N.; Ewert, Kai K.; Jacovetty, Erica L.; Carragher, Bridget; Potter, Clinton S.; Li, Youli; Safinya, Cyrus R.

    2015-01-01

    The self-assembly of oppositely charged biomacromolecules has been extensively studied due to its pertinence in the design of functional nanomaterials. Using cryo electronic microscopy (cryo-EM), optical light scattering and fluorescence microscopy, we investigated the structure and phase behavior of PEGylated (PEG: poly(ethylene-glycol)) cationic liposome–DNA nanoparticles (CL–DNA NPs) as a function of DNA length, topology (linear and circular) and ρchg (the molar charge ratio of cationic lipid to anionic DNA). Although all NPs studied showed a lamellar internal nanostructure, NPs formed with short (~ 2 kbps), linear, polydisperse DNA were defect-rich and contained smaller domains. Unexpectedly, we found distinctly different equilibrium structures away from the isoelectric point. At ρchg > 1, in the excess cationic lipid regime, thread-like micelles rich in PEG-lipid were found to coexist with NPs, cationic liposomes and spherical micelles. At high concentrations these PEGylated thread-like micelles formed a well-ordered, patterned morphology with highly uniform inter-micellar spacing. At ρchg < 1, in the excess DNA regime and with no added salt, individual NPs were tethered together via long, linear DNA (48 kbps λ-phage DNA) into a biopolymer-mediated floc. Our results provide insight on what equilibrium nanostructures can form when oppositely charged macromolecules self-assemble in aqueous media. Self-assembled, well-ordered thread-like micelles and tethered nanoparticles may have a broad range of applications in bionanotechnology, including nanoscale lithograpy and the development of lipid-based multi-functional nanoparticle networks. PMID:26048043

  16. ZP3-dependent activation of sperm cation channels regulates acrosomal secretion during mammalian fertilization

    PubMed Central

    1996-01-01

    The sperm acrosome reaction is a Ca(2+)-dependent secretory event required for fertilization. Adhesion to the egg's zona pellucida promotes Ca2+ influx through voltage-sensitive channels, thereby initiating secretion. We used potentiometric fluorescent probes to determine the role of sperm membrane potential in regulating Ca2+ entry. ZP3, the glycoprotein agonist of the zona pellucida, depolarizes sperm membranes by activating a pertussis toxin-insensitive mechanism with the characteristics of a poorly selective cation channel. ZP3 also activates a pertussis toxin-sensitive pathway that produces a transient rise in internal pH. The concerted effects of depolarization and alkalinization open voltage-sensitive Ca2+ channels. These observations suggest that mammalian sperm utilize membrane potential-dependent signal transduction mechanisms and that a depolarization pathway is an upstream transducing element coupling adhesion to secretion during fertilization. PMID:8707844

  17. Third colloquium in biological sciences: Cellular signal transduction

    SciTech Connect

    Strand, F.L.

    1987-01-01

    This book contains over 100 papers. Some of the paper titles are: Characterization of Antibodies to DNA by Immunoadsorption on Cation-Complexed DNA; Simultaneous Evaluation of Radiochromatography Strips Using Gamma Camera Interfaced to a Computer; Simultaneous Quantification of Procine Myocardial Adenine Nucleotides and Creatine Phosphate by Ion-Pair Reverse-Phase High-Performance Liquid Chromatography; HPLC Analysis of Proteins from Alzheimer Paired Helical Filaments; and Internal Dosimetry Evaluations of Various Organs in Humans Using a Computerized Model.

  18. Mechanosensory calcium-selective cation channels in epidermal cells

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    This paper explores the properties and likely functions of an epidermal Ca(2+)-selective cation channel complex activated by tension. As many as eight or nine linked or linkable equivalent conductance units or co-channels can open together. Open time for co-channel quadruplets and quintuplets tends to be relatively long with millimolar Mg2+ (but not millimolar Ca2+) at the cytosolic face of excised plasma membrane. Sensitivity to tension is regulated by transmembrane voltage and temperature. Under some circumstances channel activity is sychronized in rhythmic pulses. Certain lanthanides and a cytoskeleton-disturbing herbicide that inhibit gravitropic reception act on the channel system at low concentrations. Specifically, ethyl-N-phenylcarbamate promotes tension-dependent activity at micromolar levels. With moderate suction, Gd3+ provided at about 0.5 micromole at the extracellular face of the membrane promotes for several seconds but may then become inhibitory. Provision at 1-2 micromoles promotes and subsequently inhibits more vigorously (often abruptly and totally), and at high levels inhibits immediately. La3+, a poor gravitropic inhibitor, acts similarly but much more gradually and only at much higher concentrations. These properties, particularly these susceptibilities to modulation, indicate that in vivo the mechanosensitive channel must be mechanosensory and mechanoregulatory. It could serve to transduce the shear forces generated in the integrated wall-membrane-cytoskeleton system during turgor changes and cell expansion as well as transducing the stresses induced by gravity, touch and flexure. In so far as such transduction is modulated by voltage and temperature, the channels would also be sensors for these modalities as long as the wall-membrane-cytoskeleton system experiences mechanical stress.

  19. Mechanosensory calcium-selective cation channels in epidermal cells

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    This paper explores the properties and likely functions of an epidermal Ca(2+)-selective cation channel complex activated by tension. As many as eight or nine linked or linkable equivalent conductance units or co-channels can open together. Open time for co-channel quadruplets and quintuplets tends to be relatively long with millimolar Mg2+ (but not millimolar Ca2+) at the cytosolic face of excised plasma membrane. Sensitivity to tension is regulated by transmembrane voltage and temperature. Under some circumstances channel activity is sychronized in rhythmic pulses. Certain lanthanides and a cytoskeleton-disturbing herbicide that inhibit gravitropic reception act on the channel system at low concentrations. Specifically, ethyl-N-phenylcarbamate promotes tension-dependent activity at micromolar levels. With moderate suction, Gd3+ provided at about 0.5 micromole at the extracellular face of the membrane promotes for several seconds but may then become inhibitory. Provision at 1-2 micromoles promotes and subsequently inhibits more vigorously (often abruptly and totally), and at high levels inhibits immediately. La3+, a poor gravitropic inhibitor, acts similarly but much more gradually and only at much higher concentrations. These properties, particularly these susceptibilities to modulation, indicate that in vivo the mechanosensitive channel must be mechanosensory and mechanoregulatory. It could serve to transduce the shear forces generated in the integrated wall-membrane-cytoskeleton system during turgor changes and cell expansion as well as transducing the stresses induced by gravity, touch and flexure. In so far as such transduction is modulated by voltage and temperature, the channels would also be sensors for these modalities as long as the wall-membrane-cytoskeleton system experiences mechanical stress.

  20. INORGANIC CATIONS IN THE CELL NUCLEUS

    PubMed Central

    Tres, Laura L.; Kierszenbaum, A. L.; Tandler, C. J.

    1972-01-01

    Earlier reports indicated the presence of significant amounts of inorganic salts in the nucleus. In the present study the possibility that this might be related to the transcription process was tested on seminiferous epithelium of the adult mouse, using potassium pyroantimonate as a fixative. The results indicated that a correlation exists between the inorganic cations comprising the pyroantimonate-precipitable fraction and the RNA synthetic activity. During meiotic prophase an accumulation of cation-antimonate precipitates occurs dispersed through the middle pachytene nuclei, the stage in which RNA synthesis reaches a maximum. At other stages (zygotene to diplotene), where RNA synthesis falls to a low level, that pattern is not seen; cation-antimonate deposits are restricted to a few masses in areas apparently free of chromatin. The condensed sex chromosomes, the heterochromatin of the "basal knobs," the axial elements, and the synaptonemal complexes are devoid of antimonate deposits during the meiotic prophase. The Sertoli cells, active in RNA synthesis in both nucleoplasm and nucleolus, show cation-antimonate deposits at these sites. In the nucleoplasm some "patches" of precipitates appear coincident with clusters of interchromatin granules; in the nucleolus the inorganic cations are mainly located in the fibrillar and/or amorphous areas, whereas relatively few are shown by the granular component. The condensed chromatin bodies associated with the nucleolus were always free of antimonate precipitates. It is suggested that the observed sites of inorganic cation accumulation within the nucleus may at least partially indicate the presence of RNA polymerases, the activity of which is dependent on divalent cations. PMID:4112542

  1. Analysis of the gravitaxis signal transduction chain in Euglena gracilis

    NASA Astrophysics Data System (ADS)

    Nasir, Adeel

    Abstract Euglena gracilis is a photosynthetic, eukaryotic flagellate. It can adapt autotrophic and heterotrophic mode of growth and respond to different stimuli, this makes it an organism of choice for different research disciplines. It swims to reach a suitable niche by employing different stimuli such as oxygen, light, gravity and different chemicals. Among these stimuli light and gravity are the most important. Phototaxis (locomotion under light stimulus) and gravitaxis (locomotion under gravity stimulus) synergistically help cells to attain an optimal niche in the environment. However, in the complete absence of light or under scarcity of detectable light, cells can totally depend on gravity to find its swimming path. Therefore gravity has certain advantages over other stimuli.Unlike phototatic signal transduction chain of Euglena gracilis no clear primary gravity receptor has been identified in Euglena cells so far. However, there are some convincing evidence that TRP like channels act as a primary gravity receptor in Euglena gracilis.Use of different inhibitors gave rise to the involvement of protein kinase and calmodulin proteins in signal transduction chain of Euglena gracilis. Recently, specific calmodulin (Calmodulin 2) and protein kinase (PKA) have been identified as potential candidates of gravitactic signal transduction chain. Further characterization and investigation of these candidates was required. Therefore a combination of biochemical and genetic techniques was employed to localize proteins in cells and also to find interacting partners. For localization studies, specific antibodies were raised and characterized. Specificity of antibodies was validated by knockdown mutants, Invitro-translated proteins and heterologously expressed proteins. Cell fractionation studies, involving separation of the cell body and flagella for western blot analysis and confocal immunofluorescence studies were performed for subcellular localization. In order to find

  2. Sensory Transduction of the CO2 Response of Guard Cells

    SciTech Connect

    Dr. Eduardo Zeiger

    2003-06-30

    Stomata have a key role in the regulation of gas exchange and intercellular CO2 concentrations of leaves. Guard cells sense internal and external signals in the leaf environment and transduce these signals into osmoregulatory processes that control stomatal apertures. This research proposal addresses the characterization of the sensory transduction of the CO2 signal in guard cells. Recent studies have shown that in Vicia leaves kept at constant light and temperature in a growth chamber, changes in ambient CO2 concentrations cause large changes in guard cell zeaxanthin that are linear with CO2-dependent changes in stomatal apertures. Research proposed here will test the hypothesis that zeaxanthin function as a transducer of CO2 signals in guard cells. Three central aspects of this hypothesis will be investigated: CO2 sensing by the carboxylation reaction of Rubisco in the guard cell chloroplast, which would modulate zeaxanthin concentrations via changes in lumen pH; transduction of the CO2 signal by zeaxanthin via a transducing cascade that controls guard cell osmoregulation; and blue light dependence of the CO2 signal transduction by zeaxanthin, required for the formation of an isomeric form of zeaxanthin that is physiologically active as a transducer. The role of Rubisco in CO2 sensing will be investigated in experiments characterizing the stomatal response to CO2 in the Arabidopsis mutants R100 and rca-, which have reduced rates of Rubisco-dependent carboxylation. The role of zeaxanthin as a CO2 transducer will be studied in npq1, a zeaxanthin-less mutant. The blue light-dependence of CO2 sensing will be studied in experiments characterizing the stomatal response to CO2 under red light. Arabidopsis mutants will also be used in further studies of an acclimation of the stomatal response to CO2, and a possible role of the xanthophyll cycle of the guard cell chloroplast in acclimations of the stomatal response to CO2. Studies on the osmoregulatory role of sucrose in

  3. Protein Phylogenetic Analysis of Ca2+/cation Antiporters and Insights into their Evolution in Plants

    PubMed Central

    Emery, Laura; Whelan, Simon; Hirschi, Kendal D.; Pittman, Jon K.

    2012-01-01

    Cation transport is a critical process in all organisms and is essential for mineral nutrition, ion stress tolerance, and signal transduction. Transporters that are members of the Ca2+/cation antiporter (CaCA) superfamily are involved in the transport of Ca2+ and/or other cations using the counter exchange of another ion such as H+ or Na+. The CaCA superfamily has been previously divided into five transporter families: the YRBG, Na+/Ca2+ exchanger (NCX), Na+/Ca2+, K+ exchanger (NCKX), H+/cation exchanger (CAX), and cation/Ca2+ exchanger (CCX) families, which include the well-characterized NCX and CAX transporters. To examine the evolution of CaCA transporters within higher plants and the green plant lineage, CaCA genes were identified from the genomes of sequenced flowering plants, a bryophyte, lycophyte, and freshwater and marine algae, and compared with those from non-plant species. We found evidence of the expansion and increased diversity of flowering plant genes within the CAX and CCX families. Genes related to the NCX family are present in land plant though they encode distinct MHX homologs which probably have an altered transport function. In contrast, the NCX and NCKX genes which are absent in land plants have been retained in many species of algae, especially the marine algae, indicating that these organisms may share “animal-like” characteristics of Ca2+ homeostasis and signaling. A group of genes encoding novel CAX-like proteins containing an EF-hand domain were identified from plants and selected algae but appeared to be lacking in any other species. Lack of functional data for most of the CaCA proteins make it impossible to reliably predict substrate specificity and function for many of the groups or individual proteins. The abundance and diversity of CaCA genes throughout all branches of life indicates the importance of this class of cation transporter, and that many transporters with novel functions are waiting to be discovered. PMID:22645563

  4. Optimization of a retroviral vector for transduction of human CD34 positive cells.

    PubMed

    Szyda, Anna; Paprocka, Maria; Krawczenko, Agnieszka; Lenart, Katarzyna; Heimrath, Jerzy; Grabarczyk, Piotr; Mackiewicz, Andrzej; Duś, Danuta

    2006-01-01

    Human stem and progenitor cells have recently become objects of intensive studies as an important target for gene therapy and regenerative medicine. Retroviral vectors are among the most effective tools for genetic modification of these cells. However, their transduction efficiency strongly depends on the choice of the ex vivo transduction system. The aim of this study was to elaborate a system for retroviral vector transduction of human CD34 positive cells isolated from cord blood. The retroviral vector pMINV EGFP was chosen for transduction of two human erythroblastoid cell lines: KG-1a (CD34 positive) and K562 (CD34 negative). For vector construction, three promoters and two retroviral vector packaging cell lines were used. To optimize the physicochemical conditions of the transduction process, different temperatures of supernatant harvesting, the influence of centrifugation and the presence of transduction enhancing agents were tested. The conditions elaborated with KG-1a cells were further applied for transduction of CD34 positive cells isolated from cord blood. The optimal efficiency of transduction of CD34 positive cells with pMINV EGFP retroviral vector (26% of EGFP positive cells), was obtained using infective vector with LTR retroviral promoter, produced by TE FLY GA MINV EGFP packaging cell line. The transduction was performed in the presence of serum, at 37 degrees C, with co-centrifugation of cells with viral supernatants and the use of transduction enhancing agents. This study confirmed that for gene transfer into CD34 positive cells, the detailed optimization of each element of the transduction process is of great importance.

  5. Using Ylide Functionalization to Stabilize Boron Cations

    PubMed Central

    Scherpf, Thorsten; Feichtner, Kai‐Stephan

    2017-01-01

    Abstract The metalated ylide YNa [Y=(Ph3PCSO2Tol)−] was employed as X,L‐donor ligand for the preparation of a series of boron cations. Treatment of the bis‐ylide functionalized borane Y2BH with different trityl salts or B(C6F5)3 for hydride abstraction readily results in the formation of the bis‐ylide functionalized boron cation [Y−B−Y]+ (2). The high donor capacity of the ylide ligands allowed the isolation of the cationic species and its characterization in solution as well as in solid state. DFT calculations demonstrate that the cation is efficiently stabilized through electrostatic effects as well as π‐donation from the ylide ligands, which results in its high stability. Despite the high stability of 2 [Y−B−Y]+ serves as viable source for the preparation of further borenium cations of type Y2B+←LB by addition of Lewis bases such as amines and amides. Primary and secondary amines react to tris(amino)boranes via N−H activation across the B−C bond. PMID:28185370

  6. Development of a liquid chromatographic method for the simultaneous quantification of curcumin, β-arteether, tetrahydrocurcumin and dihydroartemisinin. Application to lipid-based formulations.

    PubMed

    Memvanga, Patrick B; Mbinze, Jérémie K; Rozet, Eric; Hubert, Philippe; Préat, Véronique; Marini, Roland D

    2014-01-01

    A liquid chromatographic method was developed for the simultaneous separation of curcumin, β-arteether, tetrahydrocurcumin and dihydroartemisinin based on the design of experiments and the design space methodology. The influence of the percentage of organic modifier, flow rate of the mobile phase and column temperature on the analytes separation was investigated. The optimal chromatographic separation was achieved on a C18 column (125mm×4mm, 5μm) using an isocratic elution with a mobile phase consisting of methanol-ammonium acetate (pH 4; 10mM) (80:20, v/v) at a flow rate of 0.45ml/min and a column temperature of 32.5°C. This method was then validated for simultaneous quantification of curcumin and β-arteether contained in lipid-based formulations taking into account the β-expectation tolerance interval for the total error measurement. Finally, the suitability of the proposed liquid chromatographic method for routine analysis of curcumin and β-arteether loaded in lipid-based formulations has been proven.

  7. Dissolution of Lipid-Based Matrices in Simulated Gastrointestinal Solutions to Evaluate Their Potential for the Encapsulation of Bioactive Ingredients for Foods.

    PubMed

    Raymond, Yves; Champagne, Claude P

    2014-01-01

    The goal of the study was to compare the dissolution of chocolate to other lipid-based matrices suitable for the microencapsulation of bioactive ingredients in simulated gastrointestinal solutions. Particles having approximately 750 μm or 2.5 mm were prepared from the following lipid-based matrices: cocoa butter, fractionated palm kernel oil (FPKO), chocolate, beeswax, carnauba wax, and paraffin. They were added to solutions designed to simulate gastric secretions (GS) or duodenum secretions (DS) at 37°C. Paraffin, carnauba wax, and bees wax did not dissolve in either the GS or DS media. Cocoa butter, FPKO, and chocolate dissolved in the DS medium. Cocoa butter, and to a lesser extent chocolate, also dissolved in the GS medium. With chocolate, dissolution was twice as fast as that with small particles (750 μm) as compared to the larger (2.5 mm) ones. With 750 μm particle sizes, 90% dissolution of chocolate beads was attained after only 60 minutes in the DS medium, while it took 120 minutes for 70% of FPKO beads to dissolve in the same conditions. The data are discussed from the perspective of controlled release in the gastrointestinal tract of encapsulated ingredients (minerals, oils, probiotic bacteria, enzymes, vitamins, and peptides) used in the development of functional foods.

  8. Dissolution of Lipid-Based Matrices in Simulated Gastrointestinal Solutions to Evaluate Their Potential for the Encapsulation of Bioactive Ingredients for Foods

    PubMed Central

    Champagne, Claude P.

    2014-01-01

    The goal of the study was to compare the dissolution of chocolate to other lipid-based matrices suitable for the microencapsulation of bioactive ingredients in simulated gastrointestinal solutions. Particles having approximately 750 μm or 2.5 mm were prepared from the following lipid-based matrices: cocoa butter, fractionated palm kernel oil (FPKO), chocolate, beeswax, carnauba wax, and paraffin. They were added to solutions designed to simulate gastric secretions (GS) or duodenum secretions (DS) at 37°C. Paraffin, carnauba wax, and bees wax did not dissolve in either the GS or DS media. Cocoa butter, FPKO, and chocolate dissolved in the DS medium. Cocoa butter, and to a lesser extent chocolate, also dissolved in the GS medium. With chocolate, dissolution was twice as fast as that with small particles (750 μm) as compared to the larger (2.5 mm) ones. With 750 μm particle sizes, 90% dissolution of chocolate beads was attained after only 60 minutes in the DS medium, while it took 120 minutes for 70% of FPKO beads to dissolve in the same conditions. The data are discussed from the perspective of controlled release in the gastrointestinal tract of encapsulated ingredients (minerals, oils, probiotic bacteria, enzymes, vitamins, and peptides) used in the development of functional foods. PMID:26904647

  9. Computational Models of the Gastrointestinal Environment. 2. Phase Behavior and Drug Solubilization Capacity of a Type I Lipid-Based Drug Formulation after Digestion.

    PubMed

    Birru, Woldeamanuel A; Warren, Dallas B; Han, Sifei; Benameur, Hassan; Porter, Christopher J H; Pouton, Colin W; Chalmers, David K

    2017-03-06

    Lipid-based drug formulations can greatly enhance the bioavailability of poorly water-soluble drugs. Following the oral administration of formulations containing tri- or diglycerides, the digestive processes occurring within the gastrointestinal (GI) tract hydrolyze the glycerides to mixtures of free fatty acids and monoglycerides that are, in turn, solubilized by bile. The behavior of drugs within the resulting colloidal mixtures is currently not well characterized. This work presents matched in vitro experimental and molecular dynamics (MD) theoretical models of the GI microenvironment containing a digested triglyceride-based (Type I) drug formulation. Both the experimental and theoretical models consist of molecular species representing bile (glycodeoxycholic acid), digested triglyceride (1:2 glyceryl-1-monooleate and oleic acid), and water. We have characterized the phase behavior of the physical system using nephelometry, dynamic light scattering, and polarizing light microscopy and compared these measurements to phase behavior observed in multiple MD simulations. Using this model microenvironment, we have investigated the dissolution of the poorly water-soluble drug danazol experimentally using LC-MS and theoretically by MD simulation. The results show how the formulation lipids alter the environment of the GI tract and improve the solubility of danazol. The MD simulations successfully reproduce the experimental results showing the utility of MD in modeling the fate of drugs after digestion of lipid-based formulations within the intestinal lumen.

  10. Signal transduction in Mimosa pudica: biologically closed electrical circuits.

    PubMed

    Volkov, Alexander G; Foster, Justin C; Markin, Vladislav S

    2010-05-01

    Biologically closed electrical circuits operate over large distances in biological tissues. The activation of such circuits can lead to various physiological and biophysical responses. Here, we analyse the biologically closed electrical circuits of the sensitive plant Mimosa pudica Linn. using electrostimulation of a petiole or pulvinus by the charged capacitor method, and evaluate the equivalent electrical scheme of electrical signal transduction inside the plant. The discharge of a 100 microF capacitor in the pulvinus resulted in the downward fall of the petiole in a few seconds, if the capacitor was charged beforehand by a 1.5 V power supply. Upon disconnection of the capacitor from Ag/AgCl electrodes, the petiole slowly relaxed to the initial position. The electrical properties of the M. pudica were investigated, and an equivalent electrical circuit was proposed that explains the experimental data.

  11. Mechanistic Insights in Ethylene Perception and Signal Transduction.

    PubMed

    Ju, Chuanli; Chang, Caren

    2015-09-01

    The gaseous hormone ethylene profoundly affects plant growth, development, and stress responses. Ethylene perception occurs at the endoplasmic reticulum membrane, and signal transduction leads to a transcriptional cascade that initiates diverse responses, often in conjunction with other signals. Recent findings provide a more complete picture of the components and mechanisms in ethylene signaling, now rendering a more dynamic view of this conserved pathway. This includes newly identified protein-protein interactions at the endoplasmic reticulum membrane, as well as the major discoveries that the central regulator ETHYLENE INSENSITIVE2 (EIN2) is the long-sought phosphorylation substrate for the CONSTITUTIVE RESPONSE1 protein kinase, and that cleavage of EIN2 transmits the signal to the nucleus. In the nucleus, hundreds of potential gene targets of the EIN3 master transcription factor have been identified and found to be induced in transcriptional waves, and transcriptional coregulation has been shown to be a mechanism of ethylene cross talk.

  12. Molecular biology of thermosensory transduction in C. elegans.

    PubMed

    Aoki, Ichiro; Mori, Ikue

    2015-10-01

    As the environmental temperature prominently influences diverse biological aspects of the animals, thermosensation and the subsequent information processing in the nervous system has attracted much attention in biology. Thermotaxis in the nematode Caenorhabditis elegans is an ideal behavioral paradigm by which to address the molecular mechanism underlying thermosensory transduction. Molecular genetic analysis in combination with other physiological and behavioral studies revealed that sensation of ambient temperature is mediated mainly by cyclic guanosine monophosphate (cGMP) signaling in thermosensory neurons. The information of the previously perceived temperature is also stored within the thermosensory neurons, and the consequence of the comparison between the past and the present temperature is conveyed to the downstream interneurons to further regulate the motor-circuits that encode the locomotion.

  13. The mechanism of signal transduction by two-component systems.

    PubMed

    Casino, Patricia; Rubio, Vicente; Marina, Alberto

    2010-12-01

    Two-component systems, composed of a homodimeric histidine kinase (HK) and a response regulator (RR), are major signal transduction devices in bacteria. Typically the signal triggers HK autophosphorylation at one His residue, followed by phosphoryl transfer from the phospho-His to an Asp residue in the RR. Signal extinction frequently involves phospho-RR dephosphorylation by a phosphatase activity of the HK. Our understanding of these reactions and of the determinants of partner specificity among HK-RR couples has been greatly increased by recent crystal structures and biochemical experiments on HK-RR complexes. Cis-autophosphorylation (one subunit phosphorylates itself) occurs in some HKs while trans-autophosphorylation takes place in others. We review and integrate this new information, discuss the mechanism of the three reactions and propose a model for transmembrane signaling by these systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Determinants of specificity in two-component signal transduction.

    PubMed

    Podgornaia, Anna I; Laub, Michael T

    2013-04-01

    Maintaining the faithful flow of information through signal transduction pathways is critical to the survival and proliferation of organisms. This problem is particularly challenging as many signaling proteins are part of large, paralogous families that are highly similar at the sequence and structural levels, increasing the risk of unwanted cross-talk. To detect environmental signals and process information, bacteria rely heavily on two-component signaling systems comprised of sensor histidine kinases and their cognate response regulators. Although most species encode dozens of these signaling pathways, there is relatively little cross-talk, indicating that individual pathways are well insulated and highly specific. Here, we review the molecular mechanisms that enforce this specificity. Further, we highlight recent studies that have revealed how these mechanisms evolve to accommodate the introduction of new pathways by gene duplication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Molecular Mechanisms of Two-Component Signal Transduction.

    PubMed

    Zschiedrich, Christopher P; Keidel, Victoria; Szurmant, Hendrik

    2016-09-25

    Two-component systems (TCS) comprising sensor histidine kinases and response regulator proteins are among the most important players in bacterial and archaeal signal transduction and also occur in reduced numbers in some eukaryotic organisms. Given their importance to cellular survival, virulence, and cellular development, these systems are among the most scrutinized bacterial proteins. In the recent years, a flurry of bioinformatics, genetic, biochemical, and structural studies have provided detailed insights into many molecular mechanisms that underlie the detection of signals and the generation of the appropriate response by TCS. Importantly, it has become clear that there is significant diversity in the mechanisms employed by individual systems. This review discusses the current knowledge on common themes and divergences from the paradigm of TCS signaling. An emphasis is on the information gained by a flurry of recent structural and bioinformatics studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. MAPK Assays in Arabidopsis MAMP-PRR Signal Transduction.

    PubMed

    Chung, Hoo Sun; Sheen, Jen

    2017-01-01

    Activation of MAPK (Mitogen-Activated Protein Kinase) cascades after MAMP (Microbe-Associated Molecular Pattern) perception through PRR (Pattern Recognition Receptor) is one of the first conserved responses when plants encounter microbial organisms. Phosphorylation of various cellular factors in the MAMP-PRR pathway by MAPK cascades is critical for broad-spectrum plant innate immunity. Measurement of MAPK activation and identification of MAPK phosphorylation targets in the MAMP-PRR signal transduction pathway are essential to understand how plants reprogram their cellular processes to cope with unfavorable microbial attack. Here, we describe detailed protocols of three assays measuring MAPK activity after MAMP perception: (1) immune-blotting analysis with anti-phospho ERK1/2 antibody; (2) in-gel kinase assay using a general substrate myelin basic protein (MBP); (3) an in vitro kinase assay to evaluate phosphorylation of MAPK substrate candidates during MAMP-PRR signaling based on a protoplast expression system.

  17. Signal Transduction by Vascular Endothelial Growth Factor Receptors

    PubMed Central

    Koch, Sina; Claesson-Welsh, Lena

    2012-01-01

    Vascular endothelial growth factors (VEGFs) are master regulators of vascular development and of blood and lymphatic vessel function during health and disease in the adult. It is therefore important to understand the mechanism of action of this family of five mammalian ligands, which act through three receptor tyrosine kinases (RTKs). In addition, coreceptors like neuropilins (NRPs) and integrins associate with the ligand/receptor signaling complex and modulate the output. Therapeutics to block several of the VEGF signaling components have been developed with the aim to halt blood vessel formation, angiogenesis, in diseases that involve tissue growth and inflammation, such as cancer. In this review, we outline the current information on VEGF signal transduction in relation to blood and lymphatic vessel biology. PMID:22762016

  18. Graviperception in ciliates: Steps in the transduction chain

    NASA Astrophysics Data System (ADS)

    Hemmersbach, R.; Krause, M.; Bräucker, R.; Ivanova, K.

    Ciliates represent suitable model systems to study the mechanisms of graviperception and signal transduction as they show clear gravity-induced behavioural responses (gravitaxis and gravikinesis). The cytoplasm seems to act as a "statolith" stimulating mechanosensitive ion channels in the cell membrane. In order to test this hypothesis, electrophysiological studies with Stylonychia mytilus were performed, revealing the proposed changes (de- or hyperpolarization) depending on the cell's spatial orientation. The behaviour of Paramecium and Stylonychia was also analyzed during variable acceleration conditions of parabolic flights (5th German Parabolic Flight Campaign, 2003). The corresponding data confirm the relaxation of the graviresponses in microgravity as well as the existence of thresholds of graviresponses, which are found to be in the range of 0.4× g (gravikinesis) and 0.6× g (gravitaxis).

  19. Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2014-01-01

    A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.

  20. Protein transduction: cell penetrating peptides and their therapeutic applications.

    PubMed

    Wagstaff, Kylie M; Jans, David A

    2006-01-01

    Cell penetrating proteins or peptides (CPPs) have the ability to cross the plasma membranes of mammalian cells in an apparently energy- and receptor-independent fashion. Although there is much debate over the mechanism by which this "protein transduction" occurs, the ability of CPPs to translocate rapidly into cells is being exploited to deliver a broad range of therapeutics including proteins, DNA, antibodies, oligonucleotides, imaging agents and liposomes in a variety of situations and biological systems. The current review looks at the delivery of many such molecules by various CPPs, and their potential therapeutic application in a wide range of areas. CPP ability to deliver different cargoes in a relatively efficient and non-invasive manner has implications as far reaching as drug delivery, gene transfer, DNA vaccination and beyond. Although many questions remain to be answered and limitations on the use of CPPs exist, it is clear that this emerging technology has much to offer in a clinical setting.

  1. A Model for Axon Guidance: Sensing, Transduction and Movement

    NASA Astrophysics Data System (ADS)

    Aletti, Giacomo; Causin, Paola; Naldi, Giovanni

    2008-07-01

    Axon guidance by graded diffusible ligands plays a crucial role in the developing nervous system. In this paper, we extend the mathematical description of the growth cone transduction cascade of [1] by adding a model of the gradient sensing process related to the theory of [2]. The resulting model is composed by a series of subsystems characterized by suitable input/output relations. The study of the transmission of the noise-to-signal ratio allows to predict the variability of the gradient assay as a function of experimental parameters as the ligand concentration, both in the single and in the multiple ligand tests. For this latter condition, we address the biologically relevant case of silencing in commissural axons. We also consider a phenomenological model which reproduces the results of the experiments of [3]. This simple model allows to test hypotheses on receptor functions and regulation in time.

  2. A unifying metric for comparing thermomagnetic transduction utilizing magnetic entropy

    NASA Astrophysics Data System (ADS)

    Wetzlar, Kyle P.; Keller, Scott M.; Phillips, Makita R.; Carman, Gregory P.

    2016-12-01

    A method to compare the thermal to magnetic transduction efficiencies of different thermomagnetic systems was developed. The efficiencies of operating about a spin reorientation transition and the alternative ferromagnetic to paramagnetic transformation at the Curie point were directly compared. A case study was performed comparing Gd operating about its spin reorientation temperature and its Curie point. Additionally, a case study on NdCo5 operating about its spin reorientation temperature using experimentally derived values of the materials' temperature dependent magnetic properties was conducted. Analysis suggests that choosing the appropriate material and operating it about its transition produces considerable efficiencies (˜22%) as well as large harvestable energy densities (˜2.6 MJ/m3), which is an order of magnitude larger than Gd single domains operating about their Curie point (˜100 kJ/m3).

  3. Signal Transduction Cascades Regulating Fungal Development and Virulence

    PubMed Central

    Lengeler, Klaus B.; Davidson, Robert C.; D'souza, Cletus; Harashima, Toshiaki; Shen, Wei-Chiang; Wang, Ping; Pan, Xuewen; Waugh, Michael; Heitman, Joseph

    2000-01-01

    Cellular differentiation, mating, and filamentous growth are regulated in many fungi by environmental and nutritional signals. For example, in response to nitrogen limitation, diploid cells of the yeast Saccharomyces cerevisiae undergo a dimorphic transition to filamentous growth referred to as pseudohyphal differentiation. Yeast filamentous growth is regulated, in part, by two conserved signal transduction cascades: a mitogen-activated protein kinase cascade and a G-protein regulated cyclic AMP signaling pathway. Related signaling cascades play an analogous role in regulating mating and virulence in the plant fungal pathogen Ustilago maydis and the human fungal pathogens Cryptococcus neoformans and Candida albicans. We review here studies on the signaling cascades that regulate development of these and other fungi. This analysis illustrates both how the model yeast S. cerevisiae can serve as a paradigm for signaling in other organisms and also how studies in other fungi provide insights into conserved signaling pathways that operate in many divergent organisms. PMID:11104818

  4. Lymphatic Vessel Abnormalities Arising from Disorders of Ras Signal Transduction

    PubMed Central

    Sevick-Muraca, Eva M.; King, Philip D.

    2013-01-01

    A number of genetic diseases in man have been described in which abnormalities in the development and function of the lymphatic vascular (LV) system are prominent features. The genes that are mutated in these diseases are varied and include genes that encode lymphatic endothelial cell (LEC) growth factor receptors and their ligands and transcription factors that control LEC fate and function. In addition, an increasing number of genes have been identified that encode components of the Ras signal transduction pathway that conveys signals from cell surface receptors to regulate cell growth, proliferation and differentiation. Gene targeting studies performed in mice have confirmed that the LV system is particularly susceptible to perturbations in the Ras pathway. PMID:24183794

  5. Incremental Transductive Learning Approaches to Schistosomiasis Vector Classification

    NASA Astrophysics Data System (ADS)

    Fusco, Terence; Bi, Yaxin; Wang, Haiying; Browne, Fiona

    2016-08-01

    The key issues pertaining to collection of epidemic disease data for our analysis purposes are that it is a labour intensive, time consuming and expensive process resulting in availability of sparse sample data which we use to develop prediction models. To address this sparse data issue, we present the novel Incremental Transductive methods to circumvent the data collection process by applying previously acquired data to provide consistent, confidence-based labelling alternatives to field survey research. We investigated various reasoning approaches for semi-supervised machine learning including Bayesian models for labelling data. The results show that using the proposed methods, we can label instances of data with a class of vector density at a high level of confidence. By applying the Liberal and Strict Training Approaches, we provide a labelling and classification alternative to standalone algorithms. The methods in this paper are components in the process of reducing the proliferation of the Schistosomiasis disease and its effects.

  6. Interferons, Signal Transduction Pathways, and the Central Nervous System

    PubMed Central

    Nallar, Shreeram C.

    2014-01-01

    The interferon (IFN) family of cytokines participates in the development of innate and acquired immune defenses against various pathogens and pathogenic stimuli. Discovered originally as a proteinaceous substance secreted from virus-infected cells that afforded immunity to neighboring cells from virus infection, these cytokines are now implicated in various human pathologies, including control of tumor development, cell differentiation, and autoimmunity. It is now believed that the IFN system (IFN genes and the genes induced by them, and the factors that regulate these processes) is a generalized alarm of cellular stress, including DNA damage. IFNs exert both beneficial and deleterious effects on the central nervous system (CNS). Our knowledge of the IFN-regulated processes in the CNS is far from being clear. In this article, we reviewed the current understanding of IFN signal transduction pathways and gene products that might have potential relevance to diseases of the CNS. PMID:25084173

  7. Effect of divalent cations on RED performance and cation exchange membrane selection to enhance power densities.

    PubMed

    Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty

    2017-09-26

    Reverse Electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain - next to monovalent ions - also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities due to both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg2+ and Ca2+) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The newly developed multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.

  8. Intrinsic disorder mediates cooperative signal transduction in STIM1.

    PubMed

    Furukawa, Yukio; Teraguchi, Shunsuke; Ikegami, Takahisa; Dagliyan, Onur; Jin, Lin; Hall, Damien; Dokholyan, Nikolay V; Namba, Keiichi; Akira, Shizuo; Kurosaki, Tomohiro; Baba, Yoshihiro; Standley, Daron M

    2014-05-15

    Intrinsically disordered domains have been reported to play important roles in signal transduction networks by introducing cooperativity into protein-protein interactions. Unlike intrinsically disordered domains that become ordered upon binding, the EF-SAM domain in the stromal interaction molecule (STIM) 1 is distinct in that it is ordered in the monomeric state and partially unfolded in its oligomeric state, with the population of the two states depending on the local Ca(2+) concentration. The oligomerization of STIM1, which triggers extracellular Ca(2+) influx, exhibits cooperativity with respect to the local endoplasmic reticulum Ca(2+) concentration. Although the physiological importance of the oligomerization reaction is well established, the mechanism of the observed cooperativity is not known. Here, we examine the response of the STIM1 EF-SAM domain to changes in Ca(2+) concentration using mathematical modeling based on in vitro experiments. We find that the EF-SAM domain partially unfolds and dimerizes cooperatively with respect to Ca(2+) concentration, with Hill coefficients and half-maximal activation concentrations very close to the values observed in vivo for STIM1 redistribution and extracellular Ca(2+) influx. Our mathematical model of the dimerization reaction agrees quantitatively with our analytical ultracentrifugation-based measurements and previously published free energies of unfolding. A simple interpretation of these results is that Ca(2+) loss effectively acts as a denaturant, enabling cooperative dimerization and robust signal transduction. We present a structural model of the Ca(2+)-unbound EF-SAM domain that is consistent with a wide range of evidence, including resistance to proteolytic cleavage of the putative dimerization portion.

  9. Influence of Unweighting on Insulin Signal Transduction in Muscle

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.

    2002-01-01

    Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.

  10. Gene Expressions for Signal Transduction under Acidic Conditions

    PubMed Central

    Fukamachi, Toshihiko; Ikeda, Syunsuke; Wang, Xin; Saito, Hiromi; Tagawa, Masatoshi; Kobayashi, Hiroshi

    2013-01-01

    Although it is now well known that some diseased areas, such as cancer nests, inflammation loci, and infarction areas, are acidified, little is known about cellular signal transduction, gene expression, and cellular functions under acidic conditions. Our group showed that different signal proteins were activated under acidic conditions compared with those observed in a typical medium of around pH 7.4 that has been used until now. Investigations of gene expression under acidic conditions may be crucial to our understanding of signal transduction in acidic diseased areas. In this study, we investigated gene expression in mesothelioma cells cultured at an acidic pH using a DNA microarray technique. After 24 h culture at pH 6.7, expressions of 379 genes were increased more than twofold compared with those in cells cultured at pH 7.5. Genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors numbered 35, 32, and 17 among the 379 genes, respectively. Since the functions of 78 genes are unknown, it can be argued that cells may have other genes for signaling under acidic conditions. The expressions of 37 of the 379 genes were observed to increase after as little as 2 h. After 24 h culture at pH 6.7, expressions of 412 genes were repressed more than twofold compared with those in cells cultured at pH 7.5, and the 412 genes contained 35, 76, and 7 genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors, respectively. These results suggest that the signal pathways in acidic diseased areas are different, at least in part, from those examined with cells cultured at a pH of around 7.4. PMID:24705103

  11. Lipid phosphate phosphatases regulate signal transduction through glycerolipids and sphingolipids.

    PubMed

    Brindley, David N; English, Denis; Pilquil, Carlos; Buri, Katherine; Ling, Zong Chao

    2002-05-23

    Lipid phosphate esters including lysophosphatidate (LPA), phosphatidate (PA), sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) are bioactive in mammalian cells and serve as mediators of signal transduction. LPA and S1P are present in biological fluids and activate cells through stimulation of their respective G-protein-coupled receptors, LPA(1-3) and S1P(1-5). LPA stimulates fibroblast division and is important in wound repair. It is also active in maintaining the growth of ovarian cancers. S1P stimulates chemotaxis, proliferation and differentiation of vascular endothelial and smooth muscle cells and is an important participant in the angiogenic response and neovessel maturation. PA and C1P are believed to act primarily inside the cell where they facilitate vesicle transport. The lipid phosphates are substrates for a family of lipid phosphate phosphatases (LPPs) that dramatically alter the signaling balance between the phosphate esters and their dephosphorylated products. In the case of PA, S1P and C1P, the products are diacylglycerol (DAG), sphingosine and ceramide, respectively. These latter lipids are also bioactive and, thus, the LPPs change signals that the cell receives. The LPPs are integral membrane proteins that act both inside and outside the cell. The "ecto-activity" of the LPPs regulates the circulating and locally effective concentrations of LPA and S1P. Conversely, the internal activity controls the relative accumulation of PA or C1P in response to stimulation by various agonists thereby affecting cell signaling downstream of EDG and other receptors. This article will review the various LPPs and discuss how these enzymes could regulate signal transduction by lipid mediators.

  12. Aptamer modification improves the adenoviral transduction of malignant glioma cells.

    PubMed

    Chen, Hao; Zheng, Xiaojing; Di, BingYan; Wang, Dongyang; Zhang, Yaling; Xia, Haibin; Mao, Qinwen

    2013-12-01

    Adenovirus has shown increasing promise in the gene-viral therapy for glioblastoma, a treatment strategy that relies on the delivery of viruses or transgenes into tumor cells. However, targeting of adenovirus to human glioblastoma remains a challenge due to the low expression level of coxsackie and adenovirus receptor (CAR) in glioma cells. Aptamers are small and highly structured single-stranded oligonucleotides that bind at high affinity to a target molecule, and are good candidates for targeted imaging and therapy. In this study, to construct an aptamer-modified Ad5, we first genetically modified the HVR5 of Ad hexon by biotin acceptor peptide (BAP), which would be metabolically biotinylated during production in HEK293 cells, and then attached the biotin labeled aptamer to the modified Ad through avidin–biotin binding. The aptamers used in this study includes AS1411 and GBI-10. The former is a DNA aptamer that can bind to nucleolin, a nuclear matrix protein found on the surface of cancer cells. The latter is a DNA aptamer that can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. To examine if aptamer-modification of the hexon protein could improve the adenoviral transduction efficiency, a glioblastoma cell line, U251, was transduced with aptamer-modified Ads. The transduction efficiency of AS1411- or GBI-10-modified Ad was approximately 4.1-fold or 5.2-fold higher than that of the control. The data indicated that aptamer modified adenovirus would be a useful tool for cancer gene therapy. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  13. Prolactin receptor and signal transduction to milk protein genes

    SciTech Connect

    Djiane, J.; Daniel, N.; Bignon, C.

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  14. Efficient gene transfection using novel cationic polymers poly(hydroxyalkylene imines).

    PubMed

    Zaliauskiene, Lolita; Bernadisiute, Ula; Vareikis, Ausvydas; Makuska, Ricardas; Volungeviciene, Ieva; Petuskaite, Agne; Riauba, Laurynas; Lagunavicius, Arunas; Zigmantas, Sarunas

    2010-09-15

    A series of novel cationic polymers poly(hydroxyalkylene imines) were synthesized and tested for their ability to transfect cells in vitro and in vivo. Poly(hydroxyalkylene imines), in particular, poly(2-hydroxypropylene imine) (pHP), poly(2-hydroxypropylene imine ethylene imine) (pHPE), and poly(hydroxypropylene imine propylene imine) (pHPP) were synthesized by polycondensation reaction from 1,3-diamino-2-propanol and the appropriate dibromide. Electron microscopic examination demonstrated that the resulting polymers condensed DNA into toroid shape complexes of 100-150 nm in size. Transfection studies showed that all three polymers were able to deliver genetic material into the cell, with pHP being superior to pHPP and pHPE. pHP acted as an efficient gene delivery agent in a variety of different cell lines and outcompeted most of the widely used polymer or lipid based transfection reagents. Intravenous administration of pHP-DNA polyplexes in mice followed by the reporter gene analysis showed that the reagent was suitable for in vivo applications. In summary, the results indicate that pHP is a new efficient reagent for gene delivery in vitro and in vivo.

  15. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  16. Forging Colloidal Nanostructures via Cation Exchange Reactions

    PubMed Central

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  17. Cationically polymerizable monomers derived from renewable sources

    SciTech Connect

    Crivello, J.V.

    1991-10-01

    The objective of this project is to make use of products obtained from renewable plant sources as monomers for the direct production of polymers which can be used for a wide range of plastic applications. In this report is described progress in the synthesis and polymerization of cationically polymerizable monomers and oligomers derived from botanical oils, terpenes, natural rubber, and lignin. Nine different botanical oils were obtained from various sources, characterized and then epoxidized. Their photopolymerization was carried out using cationic photoinitiators and the mechanical properties of the resulting polymers characterized. Preliminary biodegradation studies are being conducted on the photopolymerized films from several of these oils. Limonene was cationically polymerized to give dimers and the dimers epoxidized to yield highly reactive monomers suitable for coatings, inks and adhesives. The direct phase transfer epoxidation of squalene and natural rubber was carried out. The modified rubbers undergo facile photocrosslinking in the presence of onium salts to give crosslinked elastomers. 12 refs., 3 figs., 10 tabs.

  18. Divalent cation signaling in immune cells

    PubMed Central

    Chaigne-Delalande, Benjamin

    2016-01-01

    Divalent cations of two alkaline earth metals Ca2+ and Mg2+ and the transition metal Zn2+ play vital roles in the immune system, and several immune disorders are associated with disturbances of their function. Until recently, only Ca2+ was considered to serve as a second messenger. However, signaling roles for Mg2+ and Zn2+ have been recently described, leading to a reevaluation of their role as potential second messengers. Here we review the roles of these cations as second messengers in light of recent advances in Ca2+, Mg2+ and Zn2+ signaling in the immune system. Developing a better understanding of these signaling cations may lead to new therapeutic strategies for immune disorders. PMID:24932518

  19. Cationic acrylamide emulsion polymer brine thickeners

    SciTech Connect

    Gleason, P.A.; Piccoline, M.A.

    1986-12-02

    This patent describes a thickened, solids free, aqueous drilling and servicing brine having a density of at least 14.4 ppg. comprising (a) an aqueous solution of at least one water-soluble salt of a multivalent metal, and (b) a cationic water-in-oil emulsion polymer of acrylamide or methacrylamide and a cationic monomer selected from the group consisting of a dialkylaminoalkyl acrylamide or methacrylamide, a trialkylaminoalkyl acrylamide or methacrylamide, a trialkylaminoalkyl acrylate or methacrylate, and a dialkyldialkyl ammonium halide. The acrylamide or methacrylamide to cationic monomer molar ratio of the polymer is about 70:30 to 95:5, the polymer having an I.V. in 1.0N KCl of about 1.0 to 7.0 dl/g and being present in a compatible and viscosifying amount; the thickened brine characterized by being substantially non-dilatent.

  20. Blood Pressure Increases in OSA due to Maintained Neurovascular Sympathetic Transduction: Impact of CPAP

    PubMed Central

    Tamisier, Renaud; Tan, Can Ozan; Pepin, Jean-Louis; Levy, Patrick; Taylor, J. Andrew

    2015-01-01

    Study Objectives: To test the hypothesis that greater resting sympathetic activity in obstructive sleep apnea (OSA) syndrome would not induce a lesser sympathetic neurovascular transduction. Design: Case-controlled cohort study. Participants: 33 patients with newly diagnosed OSA without comorbidities and 14 healthy controls. Interventions: 6 months of continuous positive airway pressure (CPAP) treatment for OSA patients and follow-up for 9 healthy controls. Measurements and Results: We assessed resting sympathetic outflow and sympathetic neurovascular transduction. Sympathetic activity was directly measured (microneurography) at rest and in response to sustained isometric handgrip exercise. Neurovascular transduction was derived from the relationship of sympathetic activity and blood pressure to leg blood flow during exercise. Despite an elevated sympathetic activity of ∼50% in OSA compared to controls, neurovascular transduction was not different (i.e., absence of tachyphylaxis). After six months of CPAP, there were significant declines in diastolic pressure, averaging ∼4 mm Hg, and in sympathetic activity, averaging ∼20% with no change in transduction. Conclusions: Greater sympathetic activity in obstructive sleep apnea does not appear to be associated with lesser neurovascular transduction. Hence, elevated sympathetic outflow without lesser transduction may underlie the prevalent development of hypertension in this population that is well controlled by continuous positive airway pressure treatment. Citation: Tamisier R, Tan CO, Pepin JL, Levy P, Taylor JA. Blood pressure increases in OSA due to maintained neurovascular sympathetic transduction: impact of CPAP. SLEEP 2015;38(12):1973–1980. PMID:26039959

  1. Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells

    SciTech Connect

    Chen, Hong-Zhang; Wu, Carol P.; Chao, Yu-Chan; Liu, Catherine Yen-Yen

    2011-02-11

    Research highlights: {yields} Ligation of CTP with GP64 enhances baculovirus transduction into mammalian cells. {yields} Fusion of PTD with VP39 enhances baculovirus transduction into mammalian cells. {yields} CTP and PTD-carrying viruses improve the transduction of co-transduced baculoviruses. {yields} Virus entry and gene expression can be separate events in different cell types. -- Abstract: The baculovirus group of insect viruses is widely used for foreign gene introduction into mammalian cells for gene expression and protein production; however, the efficiency of baculovirus entry into mammalian cells is in general still low. In this study, two recombinant baculoviruses were engineered and their ability to improve viral entry was examined: (1) cytoplasmic transduction peptide (CTP) was fused with baculovirus envelope protein, GP64, to produce a cytoplasmic membrane penetrating baculovirus (vE-CTP); and (2) the protein transduction domain (PTD) of HIV TAT protein was fused with the baculovirus capsid protein VP39 to form a nuclear membrane penetrating baculovirus (vE-PTD). Transduction experiments showed that both viruses had better transduction efficiency than vE, a control virus that only expresses EGFP in mammalian cells. Interestingly, vE-CTP and vE-PTD were also able to improve the transduction efficiency of a co-transduced baculovirus, resulting in higher levels of gene expression. Our results have described new routes to further enhance the development of baculovirus as a tool for gene delivery into mammalian cells.

  2. Metalated Nitriles: Cation-Controlled Cyclizations

    PubMed Central

    Fleming, Fraser F.; Wei, Yunjing; Liu, Wang; Zhang, Zhiyu

    2008-01-01

    Judicious choice of cation allows the selective cyclization of substituted γ-hydroxynitriles to trans- or cis-decalins and trans- or cis-bicyclo[5.4.0]-undecanes. The stereoselectivities are consistent with deprotonations generating two distinctly different metalated nitriles: an internally coordinated nitrile anion with BuLi, and a C-magnesiated nitrile with i-PrMgCl. Employing cations to control the geometry of metalated nitriles permits stereodivergent cyclizations with complete control over the stereochemistry of the quaternary, nitrile-bearing carbon. PMID:17579448

  3. ABSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOEpatents

    Tompkins, E.R.; Parker, G.W.

    1959-03-10

    An improved method is presented for the chromatographic separation of fission products wherein a substantial reduction in liquid volume is obtained. The process consists in contacting a solution containing fission products with a body of ion-exchange adsorbent to effect adsorption of fission product cations. The loaded exchange resin is then contacted with a small volume of a carboxylic acid eluant, thereby recovering the fission products. The fission product carrying eluate is acidified without increasing its volume to the volume of the original solution, and the acidified eluate is then used as a feed solution for a smaller body of ion-exchange resin effecting readsorption of the fission product cations.

  4. Cationically polymerizable monomers derived from renewable sources

    SciTech Connect

    Crivello, J.V.

    1992-10-01

    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  5. Limits on information transduction through amplitude and frequency regulation of transcription factor activity.

    PubMed

    Hansen, Anders S; O'Shea, Erin K

    2015-05-18

    Signaling pathways often transmit multiple signals through a single shared transcription factor (TF) and encode signal information by differentially regulating TF dynamics. However, signal information will be lost unless it can be reliably decoded by downstream genes. To understand the limits on dynamic information transduction, we apply information theory to quantify how much gene expression information the yeast TF Msn2 can transduce to target genes in the amplitude or frequency of its activation dynamics. We find that although the amount of information transmitted by Msn2 to single target genes is limited, information transduction can be increased by modulating promoter cis-elements or by integrating information from multiple genes. By correcting for extrinsic noise, we estimate an upper bound on information transduction. Overall, we find that information transduction through amplitude and frequency regulation of Msn2 is limited to error-free transduction of signal identity, but not signal intensity information.

  6. Distinct roles of TRP channels in auditory transduction and amplification in Drosophila.

    PubMed

    Lehnert, Brendan P; Baker, Allison E; Gaudry, Quentin; Chiang, Ann-Shyn; Wilson, Rachel I

    2013-01-09

    Auditory receptor cells rely on mechanically gated channels to transform sound stimuli into neural activity. Several TRP channels have been implicated in Drosophila auditory transduction, but mechanistic studies have been hampered by the inability to record subthreshold signals from receptor neurons. Here, we develop a non-invasive method for measuring these signals by recording from a central neuron that is electrically coupled to a genetically defined population of auditory receptor cells. We find that the TRPN family member NompC, which is necessary for the active amplification of sound-evoked motion by the auditory organ, is not required for transduction in auditory receptor cells. Instead, NompC sensitizes the transduction complex to movement and precisely regulates the static forces on the complex. In contrast, the TRPV channels Nanchung and Inactive are required for responses to sound, suggesting they are components of the transduction complex. Thus, transduction and active amplification are genetically separable processes in Drosophila hearing.

  7. Chemical and mechanical stimuli act on common signal transduction and cytoskeletal networks

    PubMed Central

    Artemenko, Yulia; Axiotakis, Lucas; Borleis, Jane; Iglesias, Pablo A.; Devreotes, Peter N.

    2016-01-01

    Signal transduction pathways activated by chemoattractants have been extensively studied, but little is known about the events mediating responses to mechanical stimuli. We discovered that acute mechanical perturbation of cells triggered transient activation of all tested components of the chemotactic signal transduction network, as well as actin polymerization. Similarly to chemoattractants, the shear flow-induced signal transduction events displayed features of excitability, including the ability to mount a full response irrespective of the length of the stimulation and a refractory period that is shared with that generated by chemoattractants. Loss of G protein subunits, inhibition of multiple signal transduction events, or disruption of calcium signaling attenuated the response to acute mechanical stimulation. Unlike the response to chemoattractants, an intact actin cytoskeleton was essential for reacting to mechanical perturbation. These results taken together suggest that chemotactic and mechanical stimuli trigger activation of a common signal transduction network that integrates external cues to regulate cytoskeletal activity and drive cell migration. PMID:27821730

  8. Chemical and mechanical stimuli act on common signal transduction and cytoskeletal networks.

    PubMed

    Artemenko, Yulia; Axiotakis, Lucas; Borleis, Jane; Iglesias, Pablo A; Devreotes, Peter N

    2016-11-22

    Signal transduction pathways activated by chemoattractants have been extensively studied, but little is known about the events mediating responses to mechanical stimuli. We discovered that acute mechanical perturbation of cells triggered transient activation of all tested components of the chemotactic signal transduction network, as well as actin polymerization. Similarly to chemoattractants, the shear flow-induced signal transduction events displayed features of excitability, including the ability to mount a full response irrespective of the length of the stimulation and a refractory period that is shared with that generated by chemoattractants. Loss of G protein subunits, inhibition of multiple signal transduction events, or disruption of calcium signaling attenuated the response to acute mechanical stimulation. Unlike the response to chemoattractants, an intact actin cytoskeleton was essential for reacting to mechanical perturbation. These results taken together suggest that chemotactic and mechanical stimuli trigger activation of a common signal transduction network that integrates external cues to regulate cytoskeletal activity and drive cell migration.

  9. Calcium-modulated ciliary membrane guanylate cyclase transduction machinery: constitution and operational principles.

    PubMed

    Duda, Teresa; Fik-Rymarkiewicz, Ewa; Venkataraman, Venkateswar; Krishnan, Anuradha; Sharma, Rameshwar K

    2004-12-01

    Odorant transduction is a biochemical process by which the odorant signal generates the electric signal. The cilia of the olfactory neuroepithelium are the sites of this process. This study documents the detailed biochemical, structural and functional description of an odorant-responsive Ca2+ -modulated membrane guanylate cyclase transduction machinery in the cilia. Myristoylated (myr)-neurocalcin delta is the Ca2+ -sensor component and the cyclase, ONE-GC, the transduction component of the machinery. Myr-neurocalcin delta senses increments in free Ca2+, binds to a defined domain of ONE-GC and stimulates the cyclase. The findings enable the formulation of an odorant transduction model in which three pivotal signaling components--Ca2+, myr-neurocalcin delta and ONE-GC--of the transduction machinery are locked. A glaring feature of the model is that its Ca2+ -dependent operational principle is opposite to the phototransduction model.

  10. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery.

    PubMed

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2015-01-28

    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  11. Generalized transduction: new aspects of the events in the water column

    NASA Astrophysics Data System (ADS)

    Velimirov, B.; Chiura, H. X.; Kogure, K.

    2003-04-01

    Virus mediated transfer of genetic elements among bacteria in nature has become a major research topic in the last decade. Along with conjugation and transformation, transduction is a well-known mechanism resulting in horizontal gene transfer in procaryotic organisms. In the case of generalized transduction, all regions of the procaryotic chromosome or other genetic elements in the donor cell are transferred with nearly the same frequency to the recipient. The injection of this DNA induces the generation of stable transductants. Both virulent and temperate phages have the capability to induce general transduction.Within the frame of a study on intergeneric phage-mediated gene transfer between marine bacteria and enteric bacteria, namely an auxotrophic mutant of Escherichia coli (AB1157) we used virus like particles (VLPs) from an oligotrophic marine environment (Mediterranean Sea, West coast of Corsica) and obtained gene transfer frequencies ranging between 10-2 to 10-6 per viral particle. Consequently we had to assume that an important fraction of the VLPs obtained via ultrafiltration (Minitan Ultrafiltration System, Millipore, USA. 30 kDA cut-off filter) from surface seawater have the capability to induce general transduction. In the process of this investigation we made a number of new observations which were not compatible with the concept of general transduction. The obtained transductants were able to produce new VLPs, which had again the capability to induce transduction. In an attempt to characterize these particles we show that their appearance in the experiment was neither related to plaque formation nor to cell lysis and we discuss the concept of transduction in the light of new experimental evidence concerning transducing particles. Furthermore, a preliminary numerical model allowing an estimation of the transduction events, taking place in the water column within a year is presented.

  12. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    SciTech Connect

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1996-12-31

    The problems associated with the disposal of toxic metals in an environmentally acceptable manner continues to plague industry. Such metals as nickel, vanadium, molybdenum, cobalt, iron, and antimony present physiological and ecological challenges that are best addressed through minimization of exposure and dispersion. A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  13. Restructuring of a Peat in Interaction with Multivalent Cations: Effect of Cation Type and Aging Time

    PubMed Central

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J. A.; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al3+, Ca2+ or Na+, respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for Ca

  14. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    PubMed

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J A; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+), Ca(2+) or Na(+), respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for

  15. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation

    PubMed Central

    Finnerty, Justin John

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores. PMID:26460827

  16. Stabilization of 2,6-Diarylanilinum Cation by Through-Space Cation-π Interactions.

    PubMed

    Simó Padial, Joan; Poater, Jordi; Nguyen, D Thao; Tinnemans, Paul; Bickelhaupt, F Matthias; Mecinović, Jasmin

    2017-09-15

    Energetically favorable cation-π interactions play important roles in numerous molecular recognition processes in chemistry and biology. Herein, we present synergistic experimental and computational physical-organic chemistry studies on 2,6-diarylanilines that contain flanking meta/para-substituted aromatic rings adjacent to the central anilinium ion. A combination of measurements of pKa values, structural analyses of 2,6-diarylanilinium cations, and quantum chemical analyses based on the quantitative molecular orbital theory and a canonical energy decomposition analysis (EDA) scheme reveal that through-space cation-π interactions essentially contribute to observed trends in proton affinities and pKa values of 2,6-diarylanilines.

  17. Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding

    NASA Astrophysics Data System (ADS)

    Rosilo, Henna; McKee, Jason R.; Kontturi, Eero; Koho, Tiia; Hytönen, Vesa P.; Ikkala, Olli; Kostiainen, Mauri A.

    2014-09-01

    Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications.Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface

  18. Signal transduction in esophageal and LES circular muscle contraction.

    PubMed Central

    Harnett, K. M.; Cao, W.; Kim, N.; Sohn, U. D.; Rich, H.; Behar, J.; Biancani, P.

    1999-01-01

    Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to M2 muscarinic receptors activating at least three intracellular phospholipases, i.e., phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD), and the high molecular weight (85 kDa) cytosolic phospholipase A2 (cPLA2) to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic M3 receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the G(q/11) type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate (PIP2), producing inositol 1,4,5-trisphosphate (IP3) and DAG. IP3 causes release of intracellular Ca++ and formation of a Ca++-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway. Signal transduction pathways responsible for maintenance of LES tone are quite distinct from those activated during contraction in response to maximally effective doses of agonists (e.g., ACh). Resting LES tone is associated with activity of a low molecular weight (approximately 14 kDa) pancreatic-like (group 1) secreted phospholipase A2 (sPLA2) and production of arachidonic acid (AA), which is metabolized to prostaglandins and thromboxanes. These AA metabolites act on receptors linked to G-proteins to induce activation of PI- and PC-specific phospholipases, and production of second messengers. Resting LES tone is associated with submaximal PI hydrolysis resulting in submaximal levels of inositol trisphosphate (IP3-induced Ca++ release, and interaction with DAG to activate PKC. In an animal model of acute esophagitis, acid-induced inflammation alters the contractile pathway of ESO and LES. In LES circular

  19. Transduction for pheromones in the main olfactory epithelium is mediated by the Ca2+ -activated channel TRPM5.

    PubMed

    López, Fabián; Delgado, Ricardo; López, Roberto; Bacigalupo, Juan; Restrepo, Diego

    2014-02-26

    Growing evidence suggests that the main olfactory epithelium contains a subset of olfactory sensory neurons (OSNs) responding to pheromones. One candidate subpopulation expresses the calcium activated cation channel TRPM5 (transient receptor potential channel M5). Using GFP driven by the TRPM5 promoter in mice, we show that this subpopulation responds to putative pheromones, urine, and major histocompatibility complex peptides, but not to regular odors or a pheromone detected by other species. In addition, this subpopulation of TRPM5-GFP+ OSNs uses novel transduction. In regular OSNs, odorants elicit activation of the cyclic nucleotide-gated (CNG) channel, leading to Ca2+ gating of Cl- channels; in TRPM5-GFP+ OSNs, the Ca2+ -activated Cl- ANO2 (anoctamin 2) channel is not expressed, and pheromones elicit activation of the CNG channel leading to Ca2+ gating of TRPM5. In conclusion, we show that OSNs expressing TRPM5 respond to pheromones, but not to regular odors through the opening of CNG channels leading to Ca2+ gating of TRPM5.

  20. Transduction for Pheromones in the Main Olfactory Epithelium Is Mediated by the Ca2+-Activated Channel TRPM5

    PubMed Central

    López, Fabián; Delgado, Ricardo; López, Roberto; Bacigalupo, Juan

    2014-01-01

    Growing evidence suggests that the main olfactory epithelium contains a subset of olfactory sensory neurons (OSNs) responding to pheromones. One candidate subpopulation expresses the calcium activated cation channel TRPM5 (transient receptor potential channel M5). Using GFP driven by the TRPM5 promoter in mice, we show that this subpopulation responds to putative pheromones, urine, and major histocompatibility complex peptides, but not to regular odors or a pheromone detected by other species. In addition, this subpopulation of TRPM5-GFP+ OSNs uses novel transduction. In regular OSNs, odorants elicit activation of the cyclic nucleotide-gated (CNG) channel, leading to Ca2+ gating of Cl− channels; in TRPM5-GFP+ OSNs, the Ca2+-activated Cl− ANO2 (anoctamin 2) channel is not expressed, and pheromones elicit activation of the CNG channel leading to Ca2+ gating of TRPM5. In conclusion, we show that OSNs expressing TRPM5 respond to pheromones, but not to regular odors through the opening of CNG channels leading to Ca2+ gating of TRPM5. PMID:24573286