Science.gov

Sample records for cationic liposome-dna complexes

  1. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes.

    PubMed

    Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R

    2016-03-15

    Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles.

  2. Cationic Liposome-DNA Complexes: From supramolecular assembly toward gene delivery

    NASA Astrophysics Data System (ADS)

    Evans, Heather M.; Ahmad, A.; Ewert, K.; Martin, A.; Safinya, Cr

    2003-03-01

    Cationic liposomes (CL) present a viable alternative to viral delivery of therapeutic DNA and peptides to cells. We complex CL with DNA to deliver foreign DNA (genes) to cells. Typical self-assembly of CL-DNA shown by x-ray diffraction reveals multilamellar lipids with DNA intercalated between the lipid layers, having a DNA interaxial spacing d(DNA)[1]. The length d(DNA) can be tuned at the subnanometer level (from 35 down to 5 angstroms) by control of the membrane charge density and other parameters. Three distinct DNA-DNA interaction regimes were found due to repulsive long-range electrostatic forces, repulsive short-range hydration forces, and a polymer induced attractive depletion force [2-4]. We correlate d(DNA) to transfection in mammalian cells. These compact DNA structures suggest use for high density storage of genetic information, as well as for biological templates. Supported by NSF DMR-0203755, NIH GM59288. 1. J Radler et al, Science 275, 810 (1997). 2. AJ Lin et al, Biophys. J. (in press). 3. K Ewert, A Ahmad, H Evans et al, J. Med. Chem. 45, 5023 (2002). 4. A Martin et al, (submitted).

  3. Three-Dimensional Imaging of Lipid Gene-Carriers: Membrane Charge Density Controls Universal Transfection Behavior in Lamellar Cationic Liposome-DNA Complexes

    PubMed Central

    Lin, Alison J.; Slack, Nelle L.; Ahmad, Ayesha; George, Cyril X.; Samuel, Charles E.; Safinya, Cyrus R.

    2003-01-01

    Cationic liposomes (CLs) are used worldwide as gene vectors (carriers) in nonviral clinical applications of gene delivery, albeit with unacceptably low transfection efficiencies (TE). We present three-dimensional laser scanning confocal microscopy studies revealing distinct interactions between CL-DNA complexes, for both lamellar LαC and inverted hexagonal HIIC nanostructures, and mouse fibroblast cells. Confocal images of LαC complexes in cells identified two regimes. For low membrane charge density (σM), DNA remained trapped in CL-vectors. By contrast, for high σM, released DNA was observed in the cytoplasm, indicative of escape from endosomes through fusion. Remarkably, firefly luciferase reporter gene studies in the highly complex LαC-mammalian cell system revealed an unexpected simplicity where, at a constant cationic to anionic charge ratio, TE data for univalent and multivalent cationic lipids merged into a single curve as a function of σM, identifying it as a key universal parameter. The universal curve for transfection by LαC complexes climbs exponentially over ≈ four decades with increasing σM below an optimal charge density (σM*), and saturates for \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\sigma}_{{\\mathrm{M}}}>{\\sigma}_{M}^{{^\\ast}}\\end{equation*}\\end{document} at a value rivaling the high transfection efficiency of HIIC complexes. In contrast, the transfection efficiency of HIIC complexes is independent of σM. The exponential dependence of TE on σM for LαC complexes, suggests the existence of a kinetic barrier against endosomal fusion, where an increase in σM lowers the barrier. In the saturated TE regime, for both LαC complexes and HIIC, confocal microscopy reveals the dissociation of lipid and DNA. However, the lipid-released DNA is

  4. Cationic liposome-DNA complexes (CLDC) adjuvant enhances the immunogenicity and cross-protective efficacy of a pre-pandemic influenza A H5N1 vaccine in mice.

    PubMed

    Dong, Libo; Liu, Feng; Fairman, Jeffery; Hong, David K; Lewis, David B; Monath, Thomas; Warner, John F; Belser, Jessica A; Patel, Jenish; Hancock, Kathy; Katz, Jacqueline M; Lu, Xiuhua

    2012-01-05

    The development of pre-pandemic influenza A H5N1 vaccines that confer both antigen-sparing and cross-clade protection are a high priority given the limited worldwide capacity for influenza vaccine production, and the antigenic and genetic heterogeneity of circulating H5N1 viruses. The inclusion of potent adjuvants in vaccine formulations may achieve both of these aims. Here we show that the addition of JVRS-100, an adjuvant consisting of cationic liposome-DNA complexes (CLDC) to a clade 1-derived H5N1 split vaccine induced significantly higher virus-specific antibody than unadjuvanted formulations, with a >30-fold dose-sparing effect and induction of increased antigen-specific CD4(+) T-cell responses in mice. All mice that received one dose of adjuvanted vaccine and subsequent H5N1 viral challenges exhibited mild illness, lower lung viral titers, undetectable spleen and brain viral titers, and 100% survival after either homologous clade 1 or heterologous clade 2 H5N1 viral challenges, whereas unadjuvanted vaccine recipients showed significantly increased weight loss, viral titers, and mortality. The protective immunity induced by JVRS-100 adjuvanted H5N1 vaccine was shown to last for over one year without significant waning. Thus, JVRS-100 adjuvanted H5N1 vaccine elicited enhanced humoral and T-cell responses, dose-sparing, and cross-clade protection in mice. CLDC holds promise as an adjuvant for human pre-pandemic inactivated H5N1 vaccines.

  5. A cationic liposome-DNA complexes adjuvant (JVRS-100) enhances the immunogenicity and cross-protective efficacy of pre-pandemic influenza A (H5N1) vaccine in ferrets.

    PubMed

    Liu, Feng; Sun, Xiangjie; Fairman, Jeffery; Lewis, David B; Katz, Jacqueline M; Levine, Min; Tumpey, Terrence M; Lu, Xiuhua

    2016-05-01

    Influenza A (H5N1) viruses continue to pose a public health threat. As inactivated H5N1 vaccines are poorly immunogenic, adjuvants are needed to improve the immunogenicity of H5N1 vaccine in humans. Here, we investigated the immunogenicity and cross-protective efficacy in ferrets of a clade 2.2-derived vaccine with addition of JVRS-100, an adjuvant consisting of cationic liposome-DNA complexes (CLDC). After the first vaccination, significantly higher levels of hemagglutination-inhibition (HAI) and neutralizing antibody titers were detected in ferrets immunized with adjuvanted vaccine compared to unadjuvanted vaccine. Following a second dose of adjuvanted vaccine, HAI antibody titers of ≥ 40 were detected against viruses from multiple H5N1 clades. HAI antibodies against newly isolated H5N2 and H5N8 viruses were also augmented by JVRS-100. Ferrets were challenged with a heterologous H5N1 virus. All ferrets that received two doses of adjuvanted vaccine exhibited mild illness, significantly reduced nasal wash virus titers and protection from lethal challenge. In contrast, ferrets that received unadjuvanted vaccine showed greater weight loss, high viral titers and 3 of 6 animals succumbed to the lethal challenge. Our results indicate that the addition of JVRS-100 to H5N1 vaccine enhanced immunogenicity and cross-protection against lethal H5N1 virus disease in ferrets. JVRS-100 warrants further investigation as a potential adjuvant for influenza vaccines.

  6. A review of scanning probe microscopy investigations of liposome-DNA complexes.

    PubMed

    Mozafari, M R; Reed, C J; Rostron, C; Hasirci, V

    2005-01-01

    Liposome-DNA complexes are one of the most promising systems for the protection and delivery of nucleic acids to combat neoplastic, viral, and genetic diseases. In addition, they are being used as models in the elucidation of many biological phenomena such as viral infection and transduction. In order to understand these phenomena and to realize the mechanism of nucleic acid transfer by liposome-DNA complexes, studies at the molecular level are required. To this end, scanning probe microscopy (SPM) is increasingly being used in the characterization of lipid layers, lipid aggregates, liposomes, and their complexes with nucleic acid molecules. The most attractive attributes of SPM are the potential to image samples with subnanometer spatial resolution under physiological conditions and provide information on their physical and mechanical properties. This review describes the application of scanning tunneling microscopy and atomic force microscopy, the two most commonly applied SPM techniques, in the characterisation of liposome-DNA complexes.

  7. Genetic Immunization With In Vivo Dendritic Cell-targeting Liposomal DNA Vaccine Carrier Induces Long-lasting Antitumor Immune Response

    PubMed Central

    Garu, Arup; Moku, Gopikrishna; Gulla, Suresh Kumar; Chaudhuri, Arabinda

    2016-01-01

    A major limiting factor retarding the clinical success of dendritic cell (DC)-based genetic immunizations (DNA vaccination) is the scarcity of biologically safe and effective carrier systems for targeting the antigen-encoded DNA vaccines to DCs under in vivo settings. Herein, we report on a potent, mannose receptor selective in vivo DC-targeting liposomes of a novel cationic amphiphile with mannose-mimicking shikimoyl head-group. Flow cytometric experiments with cells isolated from draining lymph nodes of mice s.c. immunized with lipoplexes of pGFP plasmid (model DNA vaccine) using anti-CD11c antibody-labeled magnetic beads revealed in vivo DC-targeting properties of the presently described liposomal DNA vaccine carrier. Importantly, s.c. immunizations of mice with electrostatic complex of the in vivo DC-targeting liposome and melanoma antigen-encoded DNA vaccine (p-CMV-MART1) induced long-lasting antimelanoma immune response (100 days post melanoma tumor challenge) with remarkable memory response (more than 6 months after the second tumor challenge). The presently described direct in vivo DC-targeting liposomal DNA vaccine carrier is expected to find future exploitations toward designing effective vaccines for various infectious diseases and cancers. PMID:26666450

  8. A novel cationic liposome formulation for efficient gene delivery via a pulmonary route

    NASA Astrophysics Data System (ADS)

    Li, Peng; Liu, Donghua; Sun, Xiaoli; Liu, Chunxi; Liu, Yongjun; Zhang, Na

    2011-06-01

    The clinical success of gene therapy for lung cancer is not only dependent on efficient gene carriers but also on a suitable delivery route. A pulmonary delivery route can directly deliver gene vectors to the lung which is more efficient than a systemic delivery route. For gene carriers, cationic liposomes have recently emerged as leading non-viral vectors in worldwide gene therapy clinical trials. However, cytotoxic effects or apoptosis are often observed which is mostly dependent on the cationic lipid used. Therefore, an efficient and safe cationic lipid, 6-lauroxyhexyl lysinate (LHLN), previously synthesized by our group was first used to prepare cationic liposomes. Physicochemical and biological properties of LHLN-liposomes were investigated. LHLN-liposome/DNA complexes showed positive surface charge, spherical morphology, a relatively narrow particle size distribution and strong DNA binding capability. Compared with Lipofectamine2000, the new cationic liposome formulation using LHLN exhibited not only lower cytotoxicity (P < 0.05) but also similar transfection efficiency in A549 and HepG2 lung cancer cells for in vitro tests. When administered by intratracheal instillation into rat lungs for in vivo evaluation, LHLN-liposome/DNA complexes exhibited higher pulmonary gene transfection efficiency than Lipofectamine2000/DNA complexes (P < 0.05). These results suggested that LHLN-liposomes may have great potential for efficient pulmonary gene delivery.

  9. Cationic aluminum alkyl complexes incorporating aminotroponiminate ligands.

    PubMed

    Korolev, A V; Ihara, E; Guzei, I A; Young, V G; Jordan, R F

    2001-08-29

    The synthesis, structures, and reactivity of cationic aluminum complexes containing the N,N'-diisopropylaminotroponiminate ligand ((i)Pr(2)-ATI(-)) are described. The reaction of ((i)Pr(2)-ATI)AlR(2) (1a-e,g,h; R = H (a), Me (b), Et (c), Pr (d), (i)Bu (e), Cy (g), CH(2)Ph (h)) with [Ph(3)C][B(C(6)F(5))(4)] yields ((i)()Pr(2)-ATI)AlR(+) species whose fate depends on the properties of the R ligand. 1a and 1b react with 0.5 equiv of [Ph(3)C][B(C(6)F(5))(4)] to produce dinuclear monocationic complexes [([(i)Pr(2)-ATI] AlR)(2)(mu-R)][(C(6)F(5))(4)] (2a,b). The cation of 2b contains two ((i)()Pr(2)-ATI)AlMe(+) units linked by an almost linear Al-Me-Al bridge; 2a is presumed to have an analogous structure. 2b does not react further with [Ph(3)C][B(C(6)F(5))(4)]. However, 1a reacts with 1 equiv of [Ph(3)C][B(C(6)F(5))(4)] to afford ((i Pr(2)-ATI)Al(C(6)F(5))(mu-H)(2)B(C(6)F(5))(2) (3) and other products, presumably via C(6)F(5)(-) transfer and ligand redistribution of a [((i)()Pr(2)-ATI)AlH][(C(6)F(5))(4)] intermediate. 1c-e react with 1 equiv of [Ph(3)C][B(C(6)F(5))(4)] to yield stable base-free [((i)Pr(2)-ATI)AlR][B(C(6)F(5))(4)] complexes (4c-e). 4c crystallizes from chlorobenzene as 4c(ClPh).0.5PhCl, which has been characterized by X-ray crystallography. In the solid state the PhCl ligand of 4c(ClPh) is coordinated by a dative PhCl-Al bond and an ATI/Ph pi-stacking interaction. 1g,h react with [Ph(3)C][B(C(6)F(5))(4)] to yield ((i)Pr(2)-ATI)Al(R)(C(6)F(5)) (5g,h) via C(6)F(5)(-) transfer of [((i)Pr(2)-ATI)AlR][(BC(6)F(5))(4)] intermediates. 1c,h react with B(C(6)F(5))(3) to yield ((i)Pr(2)-ATI)Al(R)(C(6)F(5)) (5c,h) via C(6)F(5)(-) transfer of [((i)Pr(2)-ATI)AlR][RB(C(6)F(5))(3)] intermediates. The reaction of 4c-e with MeCN or acetone yields [((i)Pr(2)-ATI)Al(R)(L)][B(C(6)F(5))(4)] adducts (L = MeCN (8c-e), acetone (9c-e)), which undergo associative intermolecular L exchange. 9c-e undergo slow beta-H transfer to afford the dinuclear dicationic alkoxide complex [(((i

  10. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O`Neill, M.A.; Pellerin, P.J.M.; Warrenfeltz, D.; Vidal, S.; Darvill, A.G.; Albersheim, P.

    1999-03-02

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations. 15 figs.

  11. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O'Neill, Malcolm A.; Pellerin, Patrice J. M.; Warrenfeltz, Dennis; Vidal, Stephane; Darvill, Alan G.; Albersheim, Peter

    1999-01-01

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations.

  12. Complexation Between Cationic Diblock Copolymers and Plasmid DNA

    NASA Astrophysics Data System (ADS)

    Jung, Seyoung; Reineke, Theresa; Lodge, Timothy

    Deoxyribonucleic acids (DNA), as polyanions, can spontaneously bind with polycations to form polyelectrolyte complexes. When the polycation is a diblock copolymer with one cationic block and one uncharged hydrophilic block, the polyelectrolyte complexes formed with plasmid DNA (pDNA) are often colloidally stable, and show great promise in the field of polymeric gene therapy. While the resulting properties (size, stability, and toxicity to biological systems) of the complexes have been studied for numerous cationic diblocks, the fundamentals of the pDNA-diblock binding process have not been extensively investigated. Herein, we report how the cationic block content of a diblock influences the pDNA-diblock interactions. pDNA with 7164 base pairs and poly(2-deoxy-2-methacrylamido glucopyranose)-block-poly(N-(2-aminoethyl) methacrylamide) (PMAG-b-PAEMA) are used as the model pDNA and cationic diblock, respectively. To vary the cationic block content, two PMAG-b-PAEMA copolymers with similar PMAG block lengths but distinct PAEMA block lengths and a PAEMA homopolymer are utilized. We show that the enthalpy change from pDNA-diblock interactions is dependent on the cationic diblock composition, and is closely associated with both the binding strength and the pDNA tertiary structure.

  13. [Synthesis of functionalized cyanines. Fluorescence properties following complexation of cations].

    PubMed

    Mazières, M R; Duprat, C; Sutra, E; Lamandé, L; Bergon, M; Bellan, J; Wolf, J G; Roques, C

    2003-01-01

    The ionophoric properties of podands containing dioxazaphosphocane moieties linked by inactive spacers were studied. To increase the detection sensibility of these compounds we introduced a cyanine as spacer. Fluorescence analysis demonstrated the interest of cyanines as active spacers since the complexation by cations as Ca2+ and Mg2+ gives an enhancement of the emission intensity.

  14. Computational and analytical modeling of cationic lipid-DNA complexes.

    PubMed

    Farago, Oded; Grønbech-Jensen, Niels

    2007-05-01

    We present a theoretical study of the physical properties of cationic lipid-DNA (CL-DNA) complexes--a promising synthetically based nonviral carrier of DNA for gene therapy. The study is based on a coarse-grained molecular model, which is used in Monte Carlo simulations of mesoscopically large systems over timescales long enough to address experimental reality. In the present work, we focus on the statistical-mechanical behavior of lamellar complexes, which in Monte Carlo simulations self-assemble spontaneously from a disordered random initial state. We measure the DNA-interaxial spacing, d(DNA), and the local cationic area charge density, sigma(M), for a wide range of values of the parameter (c) representing the fraction of cationic lipids. For weakly charged complexes (low values of (c)), we find that d(DNA) has a linear dependence on (c)(-1), which is in excellent agreement with x-ray diffraction experimental data. We also observe, in qualitative agreement with previous Poisson-Boltzmann calculations of the system, large fluctuations in the local area charge density with a pronounced minimum of sigma(M) halfway between adjacent DNA molecules. For highly-charged complexes (large (c)), we find moderate charge density fluctuations and observe deviations from linear dependence of d(DNA) on (c)(-1). This last result, together with other findings such as the decrease in the effective stretching modulus of the complex and the increased rate at which pores are formed in the complex membranes, are indicative of the gradual loss of mechanical stability of the complex, which occurs when (c) becomes large. We suggest that this may be the origin of the recently observed enhanced transfection efficiency of lamellar CL-DNA complexes at high charge densities, because the completion of the transfection process requires the disassembly of the complex and the release of the DNA into the cytoplasm. Some of the structural properties of the system are also predicted by a continuum

  15. The phase behavior of cationic lipid-DNA complexes.

    PubMed Central

    May, S; Harries, D; Ben-Shaul, A

    2000-01-01

    We present a theoretical analysis of the phase behavior of solutions containing DNA, cationic lipids, and nonionic (helper) lipids. Our model allows for five possible structures, treated as incompressible macroscopic phases: two lipid-DNA composite (lipoplex) phases, namely, the lamellar (L(alpha)(C)) and hexagonal (H(II)(C)) complexes; two binary (cationic/neutral) lipid phases, that is, the bilayer (L(alpha)) and inverse-hexagonal (H(II)) structures, and uncomplexed DNA. The free energy of the four lipid-containing phases is expressed as a sum of composition-dependent electrostatic, elastic, and mixing terms. The electrostatic free energies of all phases are calculated based on Poisson-Boltzmann theory. The phase diagram of the system is evaluated by minimizing the total free energy of the three-component mixture with respect to all the compositional degrees of freedom. We show that the phase behavior, in particular the preferred lipid-DNA complex geometry, is governed by a subtle interplay between the electrostatic, elastic, and mixing terms, which depend, in turn, on the lipid composition and lipid/DNA ratio. Detailed calculations are presented for three prototypical systems, exhibiting markedly different phase behaviors. The simplest mixture corresponds to a rigid planar membrane as the lipid source, in which case, only lamellar complexes appear in solution. When the membranes are "soft" (i.e., low bending modulus) the system exhibits the formation of both lamellar and hexagonal complexes, sometimes coexisting with each other, and with pure lipid or DNA phases. The last system corresponds to a lipid mixture involving helper lipids with strong propensity toward the inverse-hexagonal phase. Here, again, the phase diagram is rather complex, revealing a multitude of phase transitions and coexistences. Lamellar and hexagonal complexes appear, sometimes together, in different regions of the phase diagram. PMID:10733951

  16. Neisseria lactamica antigens complexed with a novel cationic adjuvant.

    PubMed

    Gaspar, Emanuelle B; Rosetti, Andreza S; Lincopan, Nilton; De Gaspari, Elizabeth

    2013-03-01

    Colonization of the nasopharynx by non-pathogenic Neisseria species, including N. lactamica, has been suggested to lead to the acquisition of natural immunity against Neisseria meningitidis in young children. The aim of this study was to identify a model complex of antigens and adjuvant for immunological preparation against N. meningitidis B, based on cross reactivity with N. lactamica outer membrane vesicles (OMV) antigens and the (DDA-BF) adjuvant. Complexes of 25 µg of OMV in 0.1 mM of DDA-BF were colloidally stable, exhibiting a mean diameter and charge optimal for antigen presentation. Immunogenicity tests for these complexes were performed in mice. A single dose of OMV/DDA-BF was sufficient to induce a (DTH) response, while the same result was achieved only after two doses of OMV/alum. In addition, to achieve total IgG levels that are similar to a single immunization with OMV/DDA-BF, it was necessary to give the mice a second dose of OMV/alum. Moreover, the antibodies induced from a single immunization with OMV/DDA-BF had an intermediate avidity, but antibodies with a similar avidity were only induced by OMV/alum after two immunizations. The use of this novel cationic adjuvant for the first time with a N. lactamica OMV preparation revealed good potential for future vaccine design.

  17. Insights into dynamic processes of cations in pyrochlores and other complex oxides

    SciTech Connect

    Uberuaga, Blas Pedro; Perriot, Romain

    2015-08-26

    Complex oxides are critical components of many key technologies, from solid oxide fuel cells and superionics to inert matrix fuels and nuclear waste forms. In many cases, understanding mass transport is important for predicting performance and, thus, extensive effort has been devoted to understanding mass transport in these materials. However, most work has focused on the behavior of oxygen while cation transport has received relatively little attention, even though cation diffusion is responsible for many phenomena, including sintering, radiation damage evolution, and deformation processes. Here, we use accelerated molecular dynamics simulations to examine the kinetics of cation defects in one class of complex oxides, A₂B₂O₇ pyrochlore. In some pyrochlore chemistries, B cation defects are kinetically unstable, transforming to A cation defects and antisites at rates faster than they can diffuse. When this occurs, transport of B cations occurs through defect processes on the A sublattice. Further, these A cation defects, either interstitials or vacancies, can interact with antisite disorder, reordering the material locally, though this process is much more efficient for interstitials than vacancies. Whether this behavior occurs in a given pyrochlore depends on the A and B chemistry. Pyrochlores with a smaller ratio of cation radii exhibit this complex behavior, while those with larger ratios exhibit direct migration of B interstitials. Similar behavior has been reported in other complex oxides such as spinels and perovskites, suggesting that this coupling of transport between the A and B cation sublattices, while not universal, occurs in many complex oxide.

  18. A theoretical study of complexes formed between cations and curved aromatic systems: electrostatics does not always control cation-π interaction.

    PubMed

    Carrazana-García, Jorge A; Cabaleiro-Lago, Enrique M; Rodríguez-Otero, Jesús

    2017-04-10

    The present work studies the interaction of two extended curved π-systems (corannulene and sumanene) with various cations (sodium, potassium, ammonium, tetramethylammonium, guanidinium and imidazolium). Polyatomic cations are models of groups found in important biomolecules in which cation-π interaction plays a fundamental role. The results indicate an important size effect: with extended π systems and cations of the size of potassium and larger, dispersion is much more important than has been generally recognized for cation-π interactions. In most of the systems studied here, the stability of the cationcomplexes is the result of a balanced combination of electrostatic, induction and dispersion contributions. None of the systems studied here owes its stability to the electrostatic interaction more than 42%. Induction dominates stabilization in complexes with sodium, and in some of the potassium and ammonium complexes. In complexes with large cations and with flat cations dispersion is the major stabilizing contribution and can provide more than 50% of the stabilization energy. This implies that theoretical studies of the cation-π interaction involving large or even medium-size fragments require a level of calculation capable of properly modelling dispersion. The separation between the cation and the π system is another important factor to take into account, especially when the fragments of the cationcomplex are bound (for example, to a protein backbone) and cannot interact at the most favourable distance.

  19. Alkali metal cation-hexacyclen complexes: effects of alkali metal cation size on the structure and binding energy.

    PubMed

    Austin, C A; Rodgers, M T

    2014-07-24

    Threshold collision-induced dissociation (CID) of alkali metal cation-hexacyclen (ha18C6) complexes, M(+)(ha18C6), with xenon is studied using guided ion beam tandem mass spectrometry techniques. The alkali metal cations examined here include: Na(+), K(+), Rb(+), and Cs(+). In all cases, M(+) is the only product observed, corresponding to endothermic loss of the intact ha18C6 ligand. The cross-section thresholds are analyzed to extract zero and 298 K M(+)-ha18C6 bond dissociation energies (BDEs) after properly accounting for the effects of multiple M(+)(ha18C6)-Xe collisions, the kinetic and internal energy distributions of the M(+)(ha18C6) and Xe reactants, and the lifetimes for dissociation of the activated M(+)(ha18C6) complexes. Ab initio and density functional theory calculations are used to determine the structures of ha18C6 and the M(+)(ha18C6) complexes, provide molecular constants necessary for the thermodynamic analysis of the energy-resolved CID data, and theoretical estimates for the M(+)-ha18C6 BDEs. Calculations using a polarizable continuum model are also performed to examine solvent effects on the binding. In the absence of solvent, the M(+)-ha18C6 BDEs decrease as the size of the alkali metal cation increases, consistent with the noncovalent nature of the binding in these complexes. However, in the presence of solvent, the ha18C6 ligand exhibits selectivity for K(+) over the other alkali metal cations. The M(+)(ha18C6) structures and BDEs are compared to those previously reported for the analogous M(+)(18-crown-6) and M(+)(cyclen) complexes to examine the effects of the nature of the donor atom (N versus O) and the number donor atoms (six vs four) on the nature and strength of binding.

  20. Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids.

    PubMed

    Pouton, C W; Lucas, P; Thomas, B J; Uduehi, A N; Milroy, D A; Moss, S H

    1998-04-30

    DNA plasmids formed particulate complexes with a variety of cationic polyamino acids and cationic lipids, which were used to transfect mammalian cells in culture. Complexation was studied by assaying for exclusion of ethidium using a fluorometric assay, which indicated that complexation with cationic polyamino acids took place with utilisation of the majority of charged functional groups. The particle sizes and zeta potentials of a range of complexes were determined. Generally polyamino acids formed uniform particles 80-120 nm in diameter in water, but their particle size increased on dilution of the particles in electrolytes or cell culture media. The efficiency of transfection was compared using complexes of pRSVlacZ, a reporter construct which expressed beta-galactosidase under the control of the Rous sarcoma virus promoter. Positively charged DNA/polyamino acid complexes were taken up by cells but required an endosomolytic agent, such as chloroquine, to facilitate transfection. Polyornithine complexes resulted in the highest levels of expression, in comparison with other homopolyamino acids (polyornithine>poly-L-lysine=poly-D-lysine>polyarginine). Copolyamino acids of lysine and alanine condensed DNA but were less active in transfection experiments. Copoly(L-Lys, L-Ala 1:1) was inactive even in the presence of chloroquine. In contrast DNA/cationic lipid complexes transfected cells spontaneously, and chloroquine did not improve the extent of expression, rather it usually reduced efficiency. There was little correlation between comparative efficiencies of lipid complexes between cell lines suggesting that the nature of the cell membrane and differences in mechanisms of internalisation were determinants of efficiency. In an effort to explore better cell culture models for gene delivery, monolayers of Caco-2 cells were transfected in filter culture. As the cells differentiated and formed a polarized monolayer, expression of beta-galactosidase was reduced until at

  1. Hydrogen release reactions of Al-based complex hydrides enhanced by vibrational dynamics and valences of metal cations.

    PubMed

    Sato, T; Ramirez-Cuesta, A J; Daemen, L; Cheng, Y-Q; Tomiyasu, K; Takagi, S; Orimo, S

    2016-09-27

    Hydrogen release from Al-based complex hydrides composed of metal cation(s) and [AlH4](-) was investigated using inelastic neutron scattering viewed from vibrational dynamics. The hydrogen release followed the softening of translational and [AlH4](-) librational modes, which was enhanced by vibrational dynamics and the valence(s) of the metal cation(s).

  2. Hydrogen release reactions of Al-based complex hydrides enhanced by vibrational dynamics and valences of metal cations

    DOE PAGES

    Sato, T.; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.; ...

    2016-08-31

    Hydrogen release from Al-based complex hydrides composed of metal cation(s) and [AlH4]– was investigated using inelastic neutron scattering viewed from vibrational dynamics. Here, the hydrogen release followed the softening of translational and [AlH4]– librational modes, which was enhanced by vibrational dynamics and the valence(s) of the metal cation(s).

  3. Thermochromic and solvatochromic Nafion films incorporating cationic metal-chelate complexes.

    PubMed

    Funasako, Yusuke; Mochida, Tomoyuki

    2013-05-21

    Nafion films incorporating cationic nickel complexes [Ni(II)(acac)(R4en)](+) (acac = acetylacetonato, R4en = tetraalkylethylenediamine) that exhibit chromic behavior in response to temperature changes and solvent molecules in the vapor and liquid phases have been prepared.

  4. The diastereoselective synthesis of octahedral cationic iridium hydride complexes with a stereogenic metal centre.

    PubMed

    Humbert, Nicolas; Mazet, Clément

    2016-08-23

    We report herein the highly diastereoselective synthesis of octahedral cationic Ir(iii) hydride complexes with a stereogenic metal centre following various strategies. The configurational stability of these compounds has also been investigated.

  5. Cationic Liposomes Modified with Polyallylamine as a Gene Carrier: Preparation, Characterization and Transfection Efficiency Evaluation

    PubMed Central

    Kazemi Oskuee, Reza; Mahmoudi, Asma; Gholami, Leila; Rahmatkhah, Alireza; Malaekeh-Nikouei, Bizhan

    2016-01-01

    Purpose: Cationic polymers and cationic liposomes have shown to be effective non-viral gene delivery vectors. In this study, we tried to improve the transfection efficiency by employing the advantages of both. Methods: For this purpose, modified polyallylamines (PAAs) were synthesized. These modifications were done through the reaction of PAA (15 KDa) with acrylate and 6-bromoalkanoic acid derivatives. Liposomes comprising of these cationic polymers and cationic lipid were prepared and extruded through polycarbonate filters to obtain desired size. Liposome-DNA nanocomplexes were prepared in three carrier to plasmid (C/P) ratios. Size, zeta potential and DNA condensation ability of each complex were characterized separately and finally transfection efficiency and cytotoxicity of prepared vectors were evaluated in Neuro2A cell line. Results: The results showed that mean particle size of all these nanocomplexes was lower than 266 nm with surface charge of 22.0 to 33.9 mV. Almost the same condensation pattern was observed in all vectors and complete condensation was occurred at C/P ratio of 1.5. The lipoplexes containing modified PAA 15 kDa with 10% hexyl acrylate showed the highest transfection efficacy and lowest cytotoxicity in C/P ratio of 0.5. Conclusion: In some cases nanocomplexes consisting of cationic liposome and modified PAA showed better transfection activity and lower cytotoxicity compared to PAA. PMID:28101458

  6. Insights into dynamic processes of cations in pyrochlores and other complex oxides

    DOE PAGES

    Uberuaga, Blas Pedro; Perriot, Romain

    2015-08-26

    Complex oxides are critical components of many key technologies, from solid oxide fuel cells and superionics to inert matrix fuels and nuclear waste forms. In many cases, understanding mass transport is important for predicting performance and, thus, extensive effort has been devoted to understanding mass transport in these materials. However, most work has focused on the behavior of oxygen while cation transport has received relatively little attention, even though cation diffusion is responsible for many phenomena, including sintering, radiation damage evolution, and deformation processes. Here, we use accelerated molecular dynamics simulations to examine the kinetics of cation defects in onemore » class of complex oxides, A₂B₂O₇ pyrochlore. In some pyrochlore chemistries, B cation defects are kinetically unstable, transforming to A cation defects and antisites at rates faster than they can diffuse. When this occurs, transport of B cations occurs through defect processes on the A sublattice. Further, these A cation defects, either interstitials or vacancies, can interact with antisite disorder, reordering the material locally, though this process is much more efficient for interstitials than vacancies. Whether this behavior occurs in a given pyrochlore depends on the A and B chemistry. Pyrochlores with a smaller ratio of cation radii exhibit this complex behavior, while those with larger ratios exhibit direct migration of B interstitials. Similar behavior has been reported in other complex oxides such as spinels and perovskites, suggesting that this coupling of transport between the A and B cation sublattices, while not universal, occurs in many complex oxide.« less

  7. Comparison of covalency in the complexes of trivalent actinide and lanthanide cations.

    PubMed

    Jensen, Mark P; Bond, Andrew H

    2002-08-21

    The complexes of trivalent actinide (Am(III) and Cm(III)) and lanthanide (Nd(III) and Sm(III)) cations with bis(2,4,4-trimethylpentyl)phosphinic acid, bis(2,4,4-trimethylpentyl)monothiophosphinic acid, and bis(2,4,4-trimethylpentyl)dithiophosphinic acid in n-dodecane have been studied by visible absorption spectroscopy and X-ray absorption fine structure (XAFS) measurements in order to understand the chemical interactions responsible for the great selectivity the dithiophosphinate ligand exhibits for trivalent actinide cations in liquid-liquid extraction. Under the conditions studied, each type of ligand displays a different coordination mode with trivalent f-element cations. The phosphinate ligand coordinates as hydrogen-bonded dimers, forming M(HL2)3. Both the oxygen and the sulfur donor of the monothiophosphinate ligand can bind the cations, affording both bidentate and monodentate ligands. The dithiophosphinate ligand forms neutral bidentate complexes, ML3, with no discernible nitrate or water molecules in the inner coordination sphere. Comparison of the Cm(III), Nd(III), and Sm(III) XAFS shows that the structure and metal-donor atom bond distances are indistinguishable within experimental error for similarly sized trivalent lanthanide and actinide cations, despite the selectivity of bis(2,4,4-trimethylpentyl)dithiophosphinic acid for trivalent actinide cations over trivalent lanthanide cations.

  8. Time-resolved fluorescence spectroscopic investigation of cationic polymer/DNA complex formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, Cosimo; Bassi, Andrea; Taroni, Paola; Pezzoli, Daniele; Volonterio, Alessandro; Candiani, Gabriele

    2011-07-01

    Since DNA is not internalized efficiently by cells, the success of gene therapy depends on the availability of carriers to efficiently deliver genetic material into target cells. Gene delivery vectors can be broadly categorized into viral and non-viral ones. Non-viral gene delivery systems are represented by cationic lipids and polymers rely on the basics of supramolecular chemistry termed "self-assembling": at physiological pH, they are cations and spontaneously form lipoplexes (for lipids) and polyplexes (for polymers) complexing nucleic acids. In this scenario, cationic polymers are commonly used as non-viral vehicles. Their effectiveness is strongly related to key parameters including DNA binding ability and stability in different environments. Time-resolved fluorescence spectroscopy of SYBR Green I (DNA dye) was carried out to characterize cationic polymer/DNA complex (polyplex) formation dispersed in aqueous solution. Both fluorescence amplitude and lifetime proved to be very sensitive to the polymer/DNA ratio (N/P ratio, +/-).

  9. Enhancing electrocatalytic hydrogen evolution by nickel salicylaldimine complexes with alkali metal cations in aqueous media.

    PubMed

    Shao, Haiyan; Muduli, Subas K; Tran, Phong D; Soo, Han Sen

    2016-02-18

    New salicylaldimine nickel complexes, comprising only earth-abundant elements, have been developed for electrocatalytic hydrogen evolution in aqueous media. The second-sphere ether functionalities on the periphery of the complexes enhance the electrocatalytic activity in the presence of alkali metal cations. The electrocatalysts demonstrate improved performances especially in the economical and sustainable seawater reaction medium.

  10. Neutral and Cationic Alkyl Tantalum Imido Complexes: Synthesis and Migratory Insertion Reactions

    PubMed Central

    Anderson, Laura L.; Schmidt, Joseph A. R.; Arnold, John; Bergman, Robert G.

    2008-01-01

    The synthesis and reactivity of dibenzyl cationic tantalum imido complexes is described. The trialkyl tantalum imido compounds Bn3Ta=NCMe3 (1) and Np3Ta=NCMe3 (2) were synthesized as starting materials for the study of dialkyl cationic tantalum imido complexes. Compound 1 undergoes insertion reactions with diisopropylcarbodiimide and 2,6-dimethylphenylisocyanide to give (bisamidinate)imido complex 5 and (bisimino-acyl)imido complex 6, respectively. Treatment of compound 1 with B(C6F5)3 gives the zwitterionic tantalum complex [Bn2Ta=NCMe3][BnB(C6F5)3] (7) which is stabilized by η6-coordination of the benzyl triaryl borate anion. Coordination of the aryl anion can be displaced by three equivalents of pyridine to give the Lewis base complex 8. Treatment of compound 1 with [Ph3C][B(C6F5)4] gives the cationic tantalum imido complex [Bn2Ta=NCMe3][B(C6F5)4] (3). This salt forms insoluble aggregates unless trapped by THF coordination or an insertion reaction with an alkyne or an alkene. Cation 3 undergoes migratory insertion reactions with diphenylacetylene, phenylacetylene, norbornene, and cis-cyclooctene to give the corresponding alkenyl or modified alkyl imido complexes. The characterization of these products and the significance of these insertion reactions with respect to Ziegler-Natta polymerizations and hydroamination reactions are described. PMID:19079787

  11. Vanadyl cationic complexes as catalysts in olefin oxidation.

    PubMed

    Nunes, Carla D; Vaz, Pedro D; Félix, Vítor; Veiros, Luis F; Moniz, Tânia; Rangel, Maria; Realista, Sara; Mourato, Ana C; Calhorda, Maria José

    2015-03-21

    Three new mononuclear oxovanadium(IV) complexes [VO(acac)(R-BIAN)]Cl (BIAN = 1,2-bis{(R-phenyl)imino}acenaphthene, R = H, 1; CH3, 2; Cl, 3) were prepared and characterized. They promoted the catalytic oxidation of olefins such as cyclohexene, cis-cyclooctene, and styrene with both tbhp (tert-butylhydroperoxide) and H2O2, and of enantiopure olefins (S(-)- and R(+)-pinene, and S(-)- and R(+)-limonene) selectively to their epoxides, with tbhp as the oxidant. The TOFs for styrene epoxidation promoted by complex 3 with H2O2 (290 mol mol(-1)V h(-1)) and for cis-cyclooctene epoxidation by 2 with tbhp (248 mol mol(-1)V h(-1)) are particularly good. Conversions reached 90% for several systems with tbhp, and were lower with H2O2. A preference for the internal C=C bond, rather than the terminal one, was found for limonene. Kinetic data indicate an associative process as the first step of the reaction and complex [VO(acac)(H-BIAN)](+) (1(+)) was isolated in an FTICR cell after adding tbhp to 1. EPR studies provide evidence for the presence of a V(IV) species in solution, until at least 48 hours after the addition of tbhp and cis-cyclooctene, and cyclic voltammetry studies revealed an oxidation potential above 1 V for complex 1. DFT calculations suggest that a [VO(H-BIAN)(MeOO)](+) complex is the likely active V(IV) species in the catalytic cycle from which two competitive mechanisms for the reaction proceed, an outer sphere path with an external attack of the olefin at the coordinated peroxide, and an inner sphere mechanism starting with a complex with the olefin coordinated to vanadium.

  12. ESI MS, spectroscopic and semiempirical characterization of a macrobicyclic complex with Er (III) cation

    NASA Astrophysics Data System (ADS)

    Przybylski, Piotr; Kołodziej, Beata; Leniec, Grzegorz; Kaczmarek, Sławomir M.; Grech, Eugeniusz; Typek, Janusz; Brzezinski, Bogumil

    2008-04-01

    Erbium cryptate [(MSB-H+NO 3+H 2O) Er] NO 3 has been synthesized as a result of the Schiff base condensation and investigated by FT-IR, ESI MS and EPR methods. In the ESI MS spectrum of this complex [(MSB-H+NO 3+H 2O) Er] NO 3 in the range of cv = 10-30V two main signals at m/z = 422 and m/z = 842 were observed corresponding to the [(MSB-H) Er] 2+ and [(MSB-2H) Er] + fragmentary cations, respectively. Besides these main peaks, a low intensity signals at m/z = 903 and m/z = 921 assigned to the [(MSB-H+NO 3) Er] + and [(MSB-H+NO 3+H 2O) Er] + complexes were also found. FT-IR spectrum revealed a broad band at 3403 cm -1 assigned to the ν(OH) vibrations of hydrogen bonded water molecule within the 1:1 macrobicyclic Schiff base-Er 3+ complex as well as the bands at 1335 cm -1 and 1355 cm -1 assigned to the ν(NO3-) vibrations of both bonded and non-bonded with the metal cations nitrate groups, respectively. DTA-TG analysis confirmed the presence of one water molecule in the complex. Full geometry optimization and heat of formation calculations of macrobicyclic Schiff base ligand and its complexes including nitrate anion and one water molecule were carried out. A comparison of these data suggests that the complexation of Er 3+ cation by the macrobicyclic Schiff base molecule with the involvement of water molecule is less energetically favourable. EPR measurements confirmed the presence of one Er 3+ cation in the complex structure. Computer simulation of the recorded EPR spectra revealed the presence of low symmetry at the Er ion site. The semiempirical MM/AM1d calculations indicated an asymmetrical location of the Er 3+ cation within the complex structure.

  13. Hydrogen release reactions of Al-based complex hydrides enhanced by vibrational dynamics and valences of metal cations

    SciTech Connect

    Sato, T.; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.; Cheng, Yong -Qiang; Tomiyasu, Keisuke; Takagi, Shigeyuki; Orimo, Shin-ichi

    2016-08-31

    Hydrogen release from Al-based complex hydrides composed of metal cation(s) and [AlH4] was investigated using inelastic neutron scattering viewed from vibrational dynamics. Here, the hydrogen release followed the softening of translational and [AlH4] librational modes, which was enhanced by vibrational dynamics and the valence(s) of the metal cation(s).

  14. Cationic PCP iridaepoxide and carbene complexes for facile water elimination and activation processes.

    PubMed

    Doyle, Lauren E; Piers, Warren E; Bi, David W

    2017-03-13

    Iridaepoxide dihydride complexes of a PCP ligand bearing benzo[b]thiophene linkers are synthesized through ligand coopertive N2O and H2 activations. These neutral complexes also eliminate water at elevated temperatures to form the corresponding PCcarbeneP complexes which results in the formal hydrogenation of N2O to water. The synthesis of cationic iridaepoxide dihydride complexes are reported herein where the room temperature elimination of water is observed when a donating solvent is used. This supports a previously proposed mechanism for this water elimination where hydrides cis to the epoxide are required. Ir(i) and Ir(iii) cationic PCcarbeneP complexes are also synthesized through protonation and through O-H oxidation additions of water and phenol.

  15. Acetohydroxamic Acid Complexes with Trivalent f-Block Metal Cations

    SciTech Connect

    Sinkov, Serguei I.; Choppin, Gregory

    2003-11-01

    Acetohydroxamic acid has been studied by optical absorbance spectroscopy as a complex forming reagent for the lighter trivalent lanthanides and actinides (Pu(III) and Am(III)) in aqueous solution at 2.0 M (NaClO4) ionic strength. The highest stoichiometry in all the cases studied has been found to be a 1:4 metal-to-ligand ratio; formation of tetrahydroxamato species requires a high excess of the ligand and alkaline pH, Spectrophotometric monitoring confirmed the presence of Pu(III) by electrochemical reduction of Pu(IV) in the course of the pH titration experiment. The formation constants can be used for optimization of processing flowsheets in the advanced PUREX process.

  16. Chiroptical properties of cation complexes of chiral phenazino-18-crown-6 ether-type hosts.

    PubMed

    Szarvas, Szilvia; Szalay, Luca; Vass, Elemér; Hollósi, Miklós; Samu, Erika; Huszthy, Péter

    2005-06-01

    Herein we report CD spectroscopic studies on complexes of (R,R)-dimethyl-, (R,R)-diisobutyl-, and (S,S)-di-sec-butyl-phenazino-18-crown-6 ligands (Scheme 1) with selected alkali (Na+, K+), alkaline earth (Mg2+, Ca2+), and transition-metal (Ag+, Zn2+, Ni2+, Cd2+, Pb2+) cations. The complexation was monitored in the 300- to 240-nm region of the CD spectra comprising mainly the 1Bb band of the heteroaromatic subunit. The CD spectra of the complexes showed an unexpected diversity. In the most characteristic 1Bb spectral region, the number, position, and intensity of band(s) depend not only on the heteroaromatic subunit and the size of the substituents but also on the diameter, ion strength, and coordination geometry of the cation. The appearance of two weak 1Bb CD bands (type-I spectra) with the sign pattern of the host is an indication of two complexes of comparable stability. The "type-II" spectra differ from that of the host in the number, sign pattern, and intensity of the bands. Complexes of transition-metal cations generally show CD spectra with more intense bands. The CD spectra of complexes of (S,S)-di-sec-butyl-phenazino-18-crown-6 ligand with Na+, K+, and Pb2+ (type III) strongly suggest exciton coupling caused by the closeness of the heteroaromatic rings of two 1:1 complex molecules.

  17. Cation transport by the respiratory NADH:quinone oxidoreductase (complex I): facts and hypotheses.

    PubMed

    Steffen, Wojtek; Steuber, Julia

    2013-10-01

    The respiratory complex I (electrogenic NADH:quinone oxidoreductase) has been considered to act exclusively as a H+ pump. This was questioned when the search for the NADH-driven respiratory Na+ pump in Klebsiella pneumoniae initiated by Peter Dimroth led to the discovery of a Na+-translocating complex in this enterobacterium. The 3D structures of complex I from different organisms support the idea that the mechanism of cation transport by complex I involves conformational changes of the membrane-bound NuoL, NuoM and NuoN subunits. In vitro methods to follow Na+ transport were compared with in vivo approaches to test whether complex I, or its individual NuoL, NuoM or NuoN subunits, extrude Na+ from the cytoplasm to the periplasm of bacterial host cells. The truncated NuoL subunit of the Escherichia coli complex I which comprises amino acids 1-369 exhibits Na+ transport activity in vitro. This observation, together with an analysis of putative cation channels in NuoL, suggests that there exists in NuoL at least one continuous pathway for cations lined by amino acid residues from transmembrane segments 3, 4, 5, 7 and 8. Finally, we discuss recent studies on Na+ transport by mitochondrial complex I with respect to its putative role in the cycling of Na+ ions across the inner mitochondrial membrane.

  18. [Sorption and desorption of phenanthrene by organo-mineral complexes with different bridge cations].

    PubMed

    Ni, Jin-zhi; Luo, Yong-ming; Wei, Ran; Li, Xiu-hua; Qian, Wei

    2008-12-01

    Sorption and desorption of phenanthrene by organo-mineral complexes with Ca2+, Fe3+ and Al3+ as bridge cations were studied according to the association type between organic matter and minerals in natural soils. The results showed that the data of phenanthrene sorption and desorption by different cation saturated montmorillonite and their corresponding humic acid and mineral complexes could be fitted with Freundlich model, and the order of the sorption capacities (Kf) were Ca-Mont (0.184) > Fe-Mont (0.028) > Al-Mont (0.015) and Fe-Mont-HA (2.341) > Ca-Mont-HA (1.557) > Al-Mont-HA (1.136), respectively. The Kf values of humic acid and mineral complexes were far greater than those of minerals, which demonstrated that humic acid made great contributions to the sorption of phenanthrene in the organo-mineral complexes. However, the Kf values of the organo-mineral complexes with different bridge cations were not consistent with their organic carbon content, which indicated that both the organic carbon content and the combined types between organic matter and mineral could affect the sorption capacity of phenanthrene by the organo-mineral complexes. The desorption hysteresis of phenanthrene was significant for Ca2+ and Al3+ bridged organo-mineral complexes. Desorption hysteresis of phenanthrene was mainly from the sorption of phenanthrene by organic matter, and the contributions of mineral to the desorption hysteresis were not significant.

  19. Investigation of the structural organization of cationic nanoemulsion/antisense oligonucleotide complexes.

    PubMed

    Bruxel, Fernanda; Vilela, José Mario Carneiro; Andrade, Margareth Spangler; Malachias, Ângelo; Perez, Carlos A; Magalhães-Paniago, Rogério; Oliveira, Mônica Cristina; Teixeira, Helder F

    2013-12-01

    Atomic force microscopy image analysis and energy dispersive X-ray diffraction experiments were used to investigate the structural organization of cationic nanoemulsion/oligonucleotide complexes. Oligonucleotides targeting topoisomerase II gene were adsorbed on cationic nanoemulsions obtained by means of spontaneous emulsification procedure. Topographical analysis by atomic force microscopy allowed the observation of the nanoemulsion/oligonucleotide complexes through three-dimensional high-resolution images. Flattening of the oil droplets was observed, which was reduced in the complexes obtained at high amount of adsorbed oligonucleotides. In such conditions, complexes exhibit droplet size in the 600nm range. The oligonucleotides molecules were detected on the surface of the droplets, preventing their fusion during aggregation. A lamellar structure organization was identified by energy dispersive X-ray diffraction experiments. The presence of the nucleic acid molecules led to a disorganization of the lipid arrangement and an expansion in the lattice spacing, which was proportional to the amount of oligonucleotides added.

  20. Rates and Mechanisms of Complexation Reactions of Cations with Crown Ethers and Related Macrocycles

    DTIC Science & Technology

    1989-01-23

    as stability constants and entropies of solvation t, be of paramount importance. Complexation rate constants alone seldom disclose a great deal more...sample equilibrium to assure detectability of the reaction. Disadvantages include 1) the need for high solute concentrations in order to detect small...ultrasonic techniques. In principle, the stability constants of macrocycles complexing various cations can be deduced from the amplitudes of the experimental

  1. DFT and TDDFT study on cationcomplexes of diboryne (NHC → B ≡ B←NHC)

    NASA Astrophysics Data System (ADS)

    Bania, Kusum K.; Guha, Ankur Kanti; Bhattacharyya, Pradip K.

    2016-11-01

    In this study, density functional theory calculation on mono-cationic cationcomplexes of diborynes has been made to understand the interaction in cationcomplexes of diboryne. Results suggest that apart from the smaller cations Li+ and Na+, larger cation like K+ ion could also form complexes with diboryne compounds via cation-π interaction. From the calculated structural and spectroscopic analysis 11B, 13C NMR (Nuclear Magnetic Resonance), FTIR (Fourier Transform Infra red) (force constant, value), and UV-vis spectra, it is found that the interaction between the cations and π-electron cloud of the diboryne is purely electrostatic. It is also observed that smaller cation (Li+) with high electronegativity interacts more strongly compared to larger cation (K+). Calculated interaction energy advocates that the π-electron cloud of the B2 unit contributes more to the cation-π interaction than the two aromatic phenyl rings of the NHC (N-heterocyclic carbene) substituted with 2,6-diisopropylphenyl group. The aryl substituent at the NHC-ligands undergoes a change in spatial orientation with respect to the size of cations in order to provide suitable space to the cations for effective cation-π interaction. Quantum theory of atoms in molecules study clarifies further the nature and extent of B-B and B2-cation interactions.11B-NMR, 13C-NMR, and time dependent density functional theory analysis indicate that cation-π interaction annihilates the B → C (NHC) π-back donation and favours the B≡B bond formation.

  2. DFT and TDDFT study on cationcomplexes of diboryne (NHC → B ≡ B←NHC).

    PubMed

    Bania, Kusum K; Guha, Ankur Kanti; Bhattacharyya, Pradip K

    2016-11-14

    In this study, density functional theory calculation on mono-cationic cationcomplexes of diborynes has been made to understand the interaction in cationcomplexes of diboryne. Results suggest that apart from the smaller cations Li(+) and Na(+), larger cation like K(+) ion could also form complexes with diboryne compounds via cation-π interaction. From the calculated structural and spectroscopic analysis (11)B, (13)C NMR (Nuclear Magnetic Resonance), FTIR (Fourier Transform Infra red) (force constant, value), and UV-vis spectra, it is found that the interaction between the cations and π-electron cloud of the diboryne is purely electrostatic. It is also observed that smaller cation (Li(+)) with high electronegativity interacts more strongly compared to larger cation (K(+)). Calculated interaction energy advocates that the π-electron cloud of the B2 unit contributes more to the cation-π interaction than the two aromatic phenyl rings of the NHC (N-heterocyclic carbene) substituted with 2,6-diisopropylphenyl group. The aryl substituent at the NHC-ligands undergoes a change in spatial orientation with respect to the size of cations in order to provide suitable space to the cations for effective cation-π interaction. Quantum theory of atoms in molecules study clarifies further the nature and extent of B-B and B2-cation interactions.(11)B-NMR, (13)C-NMR, and time dependent density functional theory analysis indicate that cation-π interaction annihilates the B → C (NHC) π-back donation and favours the B≡B bond formation.

  3. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection.

    PubMed

    Gershon, H; Ghirlando, R; Guttman, S B; Minsky, A

    1993-07-20

    Complexes formed between cationic liposomes and nucleic acids represent a highly efficient vehicle for delivery of DNA and RNA molecules into a large variety of eukaryotic cells. By using fluorescence, gel electrophoresis, and metal-shadowing electron microscopy techniques, the factors that affect the, yet unclear, interactions between DNA and cationic liposomes as well as the structural features of the resulting complexes have been elucidated. A model is suggested according to which cationic liposomes bind initially to DNA molecules to form clusters of aggregated vesicles along the nucleic acids. At a critical liposome density, two processes occur, namely, DNA-induced membrane fusion, indicated by lipid mixing studies, and liposome-induced DNA collapse, pointed out by the marked cooperativity of the encapsulation processes, by their modulations by DNA-condensing agents, and also by their conspicuous independence upon DNA length. The DNA collapse leads to the formation of condensed structures which can be completely encapsulated within the fused lipid bilayers in a fast, highly cooperative process since their exposed surface is substantially smaller than that of extended DNA molecules. The formation of the transfecting DNA-liposome complexes in which the nucleic acids are fully encapsulated within a positively-charged lipid bilayer is proposed, consequently, to be dominated by mutual effects exerted by the DNA and the cationic liposomes, leading to interrelated lipid fusion and DNA collapse.

  4. Capillary electrophoretic and computational study of the complexation of valinomycin with rubidium cation.

    PubMed

    Ehala, Sille; Dybal, Jirí; Makrlík, Emanuel; Kasicka, Václav

    2009-03-01

    This study is focused on the characterization of interactions of valinomycin (Val), a macrocyclic dodecadepsipeptide antibiotic ionophore, with rubidium cation, Rb(+). Capillary affinity electrophoresis was employed for the experimental evaluation of the strength of the Val-Rb(+) complex. The study involved the measurement of the change of effective electrophoretic mobility of Val at increasing concentration of Rb(+) cation in the BGE. From the dependence of Val effective electrophoretic mobility on the Rb(+) cation concentration in the BGE (methanolic solution of 100 mM Tris, 50 mM acetic acid, 0-1 mM RbCl), the apparent binding (stability) constant (K(b)) of the Val-Rb(+) complex in methanol was evaluated as log K(b)=4.63+/-0.27. According to the quantum mechanical density functional theory calculations employed to predict the most probable structure of Val-Rb(+) complex, Val is stabilized by strong non-covalent bond interactions of Rb(+) with six ester carbonyl oxygen atoms so that the position of the "central" Rb(+) cation in the Val cage is symmetric.

  5. Complexation of Trivalent Metal Cations to Mannuronate Type Alginate Models from a Density Functional Study.

    PubMed

    Menakbi, Chemseddine; Quignard, Francoise; Mineva, Tzonka

    2016-04-21

    Complexation of alginate models, built of β-d-mannuronic units (M) linked by a 1-4 glycosidic bridge, to Al(3+), Sc(3+), Cr(3+), Fe(3+), Ga(3+), and La(3+) cations was studied by applying the quantum chemical density functional theory (DFT) based method. The binding modes and energies were obtained for complexes with one, two, and three truncated alginate chain(s). In all the hydrated structures a monodentate binding mode is established to be the energetically most favored with shorter M(3+)···O(COO(-)) bonds than M(3+)···O(OH) bonds. Coordination bond lengths are found to be specific to each cation and to depend very little on the water in the coordination sphere and on the number of saccharide units used to model an alginate chain. The binding energy tendency Fe(3+) ≈ Cr(3+) > Al(3+) ≈ Ga(3+) ≫ Sc(3+) ≥ La(3+) is not affected by the alginate models, the coordination to water molecules, and the number of chains. A significant covalent contribution that arises predominantly from a charge donation from the carboxylate oxygen to the metal cation was established from the orbital population analysis. An exothermic chain-chain association is predicted by the computed enthalpy variations. A comparison between the structural features of alginate complexation to trivalent and divalent cations is provided and discussed.

  6. Complexation of the calcium cation with antamanide: an experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Makrlík, Emanuel; Böhm, Stanislav; Vaňura, Petr; Ruzza, Paolo

    2015-06-01

    By using extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Ca2+(aq) + 1 .Sr2+(nb) ? 1 .Ca2+(nb) + Sr2+(aq) occurring in the two-phase water-nitrobenzene system (1 = antamanide; aq = aqueous phase, nb = nitrobenzene phase) was determined as log Kex (Ca2+, 1 .Sr2+) = 1.6 ± 0.1. Further, the stability constant of the 1 .Ca2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (1 .Ca2+) = 10.9 ± 0.2. Finally, applying quantum mechanical density functional level of theory calculations, the most probable structure of the cationic complex species 1 .Ca2+ was derived. In the resulting complex, the 'central' cation Ca2+ is bound by six strong bonding interactions to the corresponding six carbonyl oxygen atoms of the parent ligand 1. Besides, the whole 1 .Ca2+ complex structure is stabilised by two intramolecular hydrogen bonds. The interaction energy of the considered 1 .Ca2+ complex, involving the Boys-Bernardi counterpoise corrections of the basis set superposition error, was found to be -1219.3 kJ/mol, confirming the formation of this cationic species.

  7. Structure And Gene Silencing Activities of Monovalent And Pentavalent Cationic Lipid Vectors Complexed With Sirna

    SciTech Connect

    Bouxsein, N.F.; McAllister, C.S.; Ewert, K.K.; Samuel, C.E.; Safinya, C.R.; /UC, Santa Barbara

    2007-07-03

    Small interfering RNAs (siRNAs) of 19-25 bp mediate the cleavage of complementary mRNA, leading to post-transcriptional gene silencing. We examined cationic lipid (CL)-mediated delivery of siRNA into mammalian cells and made comparisons to CL-based DNA delivery. The effect of lipid composition and headgroup charge on the biophysical and biological properties of CL-siRNA vectors was determined. X-ray diffraction revealed that CL-siRNA complexes exhibited lamellar and inverted hexagonal phases, qualitatively similar to CL-DNA complexes, but also formed other nonlamellar structures. Surprisingly, optimally formulated inverted hexagonal 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) CL-siRNA complexes exhibited high toxicity and much lower target-specific gene silencing than lamellar CL-siRNA complexes even though optimally formulated, inverted hexagonal CL-DNA complexes show high transfection efficiency in cell culture. We further found that efficient silencing required cationic lipid/nucleic acid molar charge ratios (chg) nearly an order of magnitude larger than those yielding efficiently transfecting CL-DNA complexes. This second unexpected finding has implications for cell toxicity. Multivalent lipids (MVLs) require a smaller number of cationic lipids at a given chg of the complex. Consistent with this observation, the pentavalent lipid MVL5 exhibited lower toxicity and superior silencing efficiency over a large range in both the lipid composition and chg when compared to monovalent DOTAP. Most importantly, MVL5 achieved much higher total knockdown of the target gene in CL-siRNA complex regimes where toxicity was low. This property of CL-siRNA complexes contrasts to CL-DNA complexes, where the optimized transfection efficiencies of multivalent and monovalent lipids are comparable.

  8. Synthesis and SMM behaviour of trinuclear versus dinuclear 3d-5f uranyl(v)-cobalt(ii) cation-cation complexes.

    PubMed

    Chatelain, Lucile; Tuna, Floriana; Pécaut, Jacques; Mazzanti, Marinella

    2017-01-17

    Trinuclear versus dinuclear heterodimetallic U(V)O2(+)Co(2+) complexes were selectively assembled via a cation-cation interaction by tuning the ligand. The trimeric complex 2, with a linear [Co-O[double bond, length as m-dash]U[double bond, length as m-dash]O-Co] core, exhibits magnetic exchange and slow relaxation with a reversal barrier of 30.5 ± 0.9 K providing the first example of a U-Co exchange-coupled SMM.

  9. Emergent ion-gated binding of cationic host-guest complexes within cationic M12L24 molecular flasks.

    PubMed

    Bruns, Carson J; Fujita, Daishi; Hoshino, Manabu; Sato, Sota; Stoddart, J Fraser; Fujita, Makoto

    2014-08-27

    "Molecular flasks" are well-defined supramolecular cages that can encapsulate one or more molecular guests within their cavities and, in so doing, change the physical properties and reactivities of the guests. Although molecular flasks are powerful tools for manipulating matter on the nanoscale, most of them are limited in their scope because of size restrictions. Recently, however, increasingly large and diverse supramolecular cages have become available with enough space in their cavities for larger chemical systems such as polymers, nanoparticles, and biomolecules. Here we report how a class of metallosupramolecular cages known as M12L24 polyhedra have been adapted to serve as nanometer-scale containers for solutions of a pseudorotaxane host-guest complex based on a tetracationic cyclophane host, cyclobis(paraquat-p-phenylene) (CBPQT(4+)), and a 1,5-dioxynaphthalene (DNP) guest. Remarkably, the hierarchical integration of pseudorotaxanes and M12L24 superhosts causes the system to express stimulus-responsive behavior, a property which can be described as emergent because neither the DNP⊂CBPQT(4+) nor the M12L24 assemblies exhibit this behavior independently. The DNP-containing M12L24 molecular flasks are effectively "sealed off" to CBPQT(4+) until ions are added as a stimulus to "open" them. The electrolyte stimulus reduces the electrostatic screening distance in solution, allowing favorable DNP⊂CBPQT(4+) host-guest interactions to overcome repulsive Coulombic interactions between the cationic M12L24 cages and CBPQT(4+) rings. This unusual example of ion-gated transport into chemical nanocontainers is reminiscent of transmembrane ion channels which act as gates to the cell, with the important difference that this system is reversible and operates at equilibrium.

  10. Cationic lipophilic complexes of /sup 99/ /SUP m/ Tc and their use for myocardial and hepatobiliary imaging

    SciTech Connect

    Deutsch, E. A.; Glavan, K. A.

    1984-12-18

    A method of imaging organs with /sup 99/ /SUP m/ Tc radiopharmaceuticals, especially of hepatobiliary imaging and negative myocardial infarct imaging in a mammal which comprises administering to the mammal a hepatobiliary or myocardial imaging amount of a cationic lipophilic complex of Tc-99m and detecting the Tc-99m complex in the mammal. A method for the preparation of cationic lipophilic complexes of Tc-99m.

  11. Isolation of homoleptic platinum oxyanionic complexes with doubly protonated diazacrown cation

    NASA Astrophysics Data System (ADS)

    Vasilchenko, Danila; Tkachev, Sergey; Baidina, Iraida; Romanenko, Galina; Korenev, Sergey

    2017-02-01

    Doubly protonated diazacrown ether cation (1,4,10,13-tetraoxa-7,16-diazoniacyclooctadecane DCH22+) was used for the efficient isolation of the homoleptic platinum complexes [Pt(NO3)6]2- and [Pt(C2O4)2]2- to crystalline solid phases from solutions containing mixtures of related platinum complexes. DCH22+ molecules in nitric acid solution were shown to prevent the condensation of mononuclear [Pt(H2O)n(NO3)6-n]n-2 species.

  12. Thermodynamics of cationic lipid-DNA complex formation as studied by isothermal titration calorimetry.

    PubMed

    Pozharski, Edwin; MacDonald, Robert C

    2002-07-01

    The detailed analysis of the cationic lipid-DNA complex formation by means of isothermal titration calorimetry is presented. Most experiments were done using 1,2-dioleyl-sn-glycero-3-ethylphosphocholine (EDOPC), but basic titrations were also done using DOTAP, DOTAP:DOPC, and DOTAP:DOPE mixtures. Complex formation was endothermic with less than 1 kcal absorbed per mole of lipid or DNA charge. This enthalpy change was attributed to DNA-DNA mutual repulsion within the lamellar complex. The exception was DOTAP:DOPE-containing lipoplex for which the enthalpy of formation was exothermic, presumably because of DOPE amine group protonation. Experimental conditions, namely, direction and titration increment as well as concentration of titrant, which dictate the structure of resulting lipoplex (whether lamellar complex or DNA-coated vesicle), were found to affect the apparent thermodynamics of complex formation. The structure, in turn, influences the biological properties of the lipoplex. If the titration of lipid into DNA was carried out in large increments, the DeltaH was larger than when the injection increments were smaller, a finding that is consistent with increased vesicle disruption under large increments and which is expected theoretically. Cationic lipid-DNA binding was weak in high ionic strength solutions, however, the effective binding constant is within micromolar range because of macromolecular nature of the interaction.

  13. Thermodynamics of cationic lipid-DNA complex formation as studied by isothermal titration calorimetry.

    PubMed Central

    Pozharski, Edwin; MacDonald, Robert C

    2002-01-01

    The detailed analysis of the cationic lipid-DNA complex formation by means of isothermal titration calorimetry is presented. Most experiments were done using 1,2-dioleyl-sn-glycero-3-ethylphosphocholine (EDOPC), but basic titrations were also done using DOTAP, DOTAP:DOPC, and DOTAP:DOPE mixtures. Complex formation was endothermic with less than 1 kcal absorbed per mole of lipid or DNA charge. This enthalpy change was attributed to DNA-DNA mutual repulsion within the lamellar complex. The exception was DOTAP:DOPE-containing lipoplex for which the enthalpy of formation was exothermic, presumably because of DOPE amine group protonation. Experimental conditions, namely, direction and titration increment as well as concentration of titrant, which dictate the structure of resulting lipoplex (whether lamellar complex or DNA-coated vesicle), were found to affect the apparent thermodynamics of complex formation. The structure, in turn, influences the biological properties of the lipoplex. If the titration of lipid into DNA was carried out in large increments, the DeltaH was larger than when the injection increments were smaller, a finding that is consistent with increased vesicle disruption under large increments and which is expected theoretically. Cationic lipid-DNA binding was weak in high ionic strength solutions, however, the effective binding constant is within micromolar range because of macromolecular nature of the interaction. PMID:12080142

  14. Aza-crown ether complex cation ionic liquids: preparation and applications in organic reactions.

    PubMed

    Song, Yingying; Cheng, Chen; Jing, Huanwang

    2014-09-26

    Aza-crown ether complex cation ionic liquids (aCECILs) were devised, fabricated, and characterized by using NMR spectroscopy, MS, thermogravimetric differential thermal analysis (TG-DTA), elemental analysis and physical properties. These new and room-temperature ILs were utilized as catalysts in various organic reactions, such as the cycloaddition reaction of CO2 to epoxides, esterification of acetic acid and alcohols, the condensation reaction of aniline and propylene carbonate, and Friedel-Crafts alkylation of indole with aldehydes were investigated carefully. In these reactions, the ionic liquid exhibited cooperative catalytic activity between the anion and cation. In addition, the aza-[18-C-6HK][HSO4]2 was the best acidic catalyst in the reactions of esterification and Friedel-Crafts alkylation under mild reaction conditions.

  15. Fluctuation analysis of nonselective cation currents induced by AIF complex in guinea-pig chromaffin cells.

    PubMed

    Inoue, M; Imanaga, I

    1996-11-11

    Properties of aluminium fluoride (AIF) complex-activated nonselective cation (NS) channels in guinea-pig chromaffin cells were investigated using the patch clamp technique. As the membrane potential was hyperpolarized from the holding potential of -55 mV, the AIF-induced nonselective cation current (INS) diminished progressively. With hyperpolarizations to -100 mV or more negative potentials, the AIF.INS almost instantaneously disappeared. The apparent unit conductance of AIF INS was estimated to be 3 pS by fluctuation analysis. The open state probability of AIF-activated NS channels became large with a decrease in concentration of free Mg2+ ions inside the cell and was less than 0.5 at 12 microM Mg2+. It is concluded that NS channels in the chromaffin cell apparently differ from those in smooth muscle cells.

  16. Cationic and anionic polyelectrolyte complexes of xylan and chitosan. Interaction with lignocellulosic surfaces.

    PubMed

    Mocchiutti, Paulina; Schnell, Carla N; Rossi, Gerardo D; Peresin, María S; Zanuttini, Miguel A; Galván, María V

    2016-10-05

    Cationic (CatPECs) and anionic (AnPECs) polyelectrolyte complexes from xylan and chitosan were formed, characterized and adsorbed onto unbleached fibers for improving the papermaking properties. They were prepared at a level of 30% of neutralization charge ratio by modifying the order of addition of polyelectrolytes and the ionic strength (0.01N and 0.1N NaCl). The charge density, colloidal stability and particle size of polyelectrolyte complexes (PECs) was measured using polyelectrolyte titration method, Turbiscan and Zetasizer Nano equipments, respectively. All the complexes were stable even after seven days from PEC formation. DRIFT spectra of complexes were also analyzed. The adsorption behavior of them onto cellulose nanofibrils model surfaces was studied using quartz crystal microbalance with dissipation monitoring, and surface plasmon resonance. It was found that the PEC layers were viscoelastic and highly hydrated. Finally, it is shown that the adsorbed PECs onto cellulosic fibers markedly improved the tensile and crushing strengths of paper.

  17. Synthesis and styrene polymerisation catalysis of eta5- and eta1-pyrrolyl-ligated cationic rare earth metal aminobenzyl complexes.

    PubMed

    Nishiura, Masayoshi; Mashiko, Tomohiro; Hou, Zhaomin

    2008-05-07

    The cationic rare earth metal aminobenzyl complexes bearing mono(pyrrolyl) ligands are synthesised and structurally characterised, and the coordination mode of the pyrrolyl ligands is found to show significant influence on the polymerisation of styrene.

  18. Comparing Gene Silencing and Physiochemical Properties in siRNA Bound Cationic Star-Polymer Complexes.

    PubMed

    Dearnley, Megan; Reynolds, Nicholas P; Cass, Peter; Wei, Xiaohu; Shi, Shuning; Mohammed, A Aalam; Le, Tam; Gunatillake, Pathiraja; Tizard, Mark L; Thang, San H; Hinton, Tracey M

    2016-11-14

    The translation of siRNA into clinical therapies has been significantly delayed by issues surrounding the delivery of naked siRNA to target cells. Here we investigate siRNA delivery by cationic acrylic polymers developed by Reversible Addition-Fragmentation chain Transfer (RAFT) mediated free radical polymerization. We investigated cell uptake and gene silencing of a series of siRNA-star polymer complexes both in the presence and absence of a protein "corona". Using a multidisciplinary approach including quantitative nanoscale mechanical-atomic force microscopy, dynamic light scattering and nanoparticle tracking analysis we have characterized the nanoscale morphology, stiffness, and surface charge of the complexes with and without the protein corona. This is one of the first examples of a comprehensive physiochemical analysis of siRNA-polymer complexes being performed alongside in vitro biological assays, allowing us to describe a set of desirable physical features of cationic polymer complexes that promote gene silencing. Multifaceted studies such as this will improve our understanding of structure-function relationships in nanotherapeutics, facilitating the rational design of polymer-mediated siRNA delivery systems for novel treatment strategies.

  19. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    SciTech Connect

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  20. Cationic complexation with dissolved organic matter: Insights from molecular dynamics computer simulations and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalinichev, A. G.; Xu, X.; Kirkpatrick, R.

    2006-12-01

    Dissolved organic matter (DOM) is ubiquitous in soil and surface water and plays many important geochemical and environmental roles acting as a proton donor/acceptor and pH buffer and interacting with metal ions, minerals and organic species to form water-soluble and water-insoluble complexes of widely differing chemical and biological stabilities. There are strong correlations among the concentration of DOM and the speciation, solubility and toxicity of many trace metals in soil and water due to metal-DOM interaction. DOM can also significantly negatively affect the performance of nanofiltration and reverse osmosis membranes used industrially for water purification and desalination, being one of the major causes of a so-called `membrane bio- fouling'. The molecular scale mechanisms and dynamics of the DOM interactions with metals and membranes are, however, quite poorly understood. Methods of computational molecular modeling, combined with element- specific nuclear magnetic resonance (NMR) spectroscopy, can serve as highly effective tools to probe and quantify on a fundamental molecular level the DOM interactions with metal cations in aqueous solutions, and to develop predictive models of the molecular mechanisms responsible for the metal-DOM complexation in the environment. This paper presents the results of molecular dynamics (MD) computer simulations of the interaction of DOM with dissolved Na+, Cs+, Mg2+, and Ca2+. Na+ forms only very weak outer-sphere complexes with DOM. These results and the results of other recent molecular modeling efforts (e.g., Sutton et al., Environmental Toxicology and Chemistry, 24, 1902-1911, 2005), clearly indicate that both the structural and dynamic aspects of the cation-DOM complexation follow a simple trend in terms of the charge/size ratio for the ions. Due to the competition between ion hydration in bulk aqueous solution and adsorption of these cations by the negatively charged DOM functional groups (primarily carboxylate

  1. Density Functional Theory and Mass Spectrometry of Phthalate Fragmentations Mechanisms: Modeling Hyperconjugated Carbocation and Radical Cation Complexes with Neutral Molecules

    NASA Astrophysics Data System (ADS)

    Jeilani, Yassin A.; Cardelino, Beatriz H.; Ibeanusi, Victor M.

    2011-11-01

    This is the first ab initio study of the energetics of the fragmentation mechanisms of phthalate, by mass spectrometry, leading to protonated phthalic anhydride ( m/z 149). Phthalates fragment by two major pathways; namely, the McLafferty + 1 rearrangement and the loss of alkoxy. Both pathways involve a carbonyl oxygen attack to the ortho-carbonyl carbon leading to structures with tetrahedral carbon intermediates that eventually give m/z 149. These pathways were studied by collision induced dissociation (CID) using triple quadrupole mass spectrometry. The proposed McLafferty + 1 pathway proceeds through a distonic M•+, leading to the loss of an allylic-stabilized alkene radical. The McLafferty rearrangement step proceeds through a six-membered ring transition state with a small activation energy ranging 0.4-6.2 kcal/mol; the transfer of a second H from the distonic ion of the rearrangement step proceeds through a radical cation molecule complex. Based on quantum chemical modeling of the cation molecule complexes, two kinds of cation molecule complexes were identified as radical cation molecule complex and hyperconjugated cation molecule complex. This distinction is based on the cation and simplifies future modeling of similar complexes. Optimization of important fragments in these pathways showed cyclized and hydrogen-bonded structures to be favored. An exception was the optimized structure of the protonated phthalic anhydride ( m/z 149) that showed a structure with an open anhydride ring.

  2. Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes.

    PubMed

    Wormit, Michael; Dreuw, Andreas

    2007-06-21

    Light harvesting complexes (LHCs) have been identified in all photosynthetic organisms. To understand their function in light harvesting and energy dissipation, detailed knowledge about possible excitation energy transfer (EET) and electron transfer (ET) processes in these pigment proteins is of prime importance. This again requires the study of electronically excited states of the involved pigment molecules, in LHCs of chlorophylls and carotenoids. This paper represents a critical review of recent quantum chemical calculations on EET and ET processes between pigment pairs relevant for the major LHCs of green plants (LHC-II) and of purple bacteria (LH2). The theoretical methodology for a meaningful investigation of such processes is described in detail, and benefits and limitations of standard methods are discussed. The current status of excited state calculations on chlorophylls and carotenoids is outlined. It is focused on the possibility of EET and ET in the context of chlorophyll fluorescence quenching in LHC-II and carotenoid radical cation formation in LH2. In the context of non-photochemical quenching of green plants, it is shown that replacement of the carotenoid violaxanthin by zeaxanthin in its binding pocket of LHC-II can not result in efficient quenching. In LH2, our computational results give strong evidence that the S(1) states of the carotenoids are involved in carotenoid cation formation. By comparison of theoretical findings with recent experimental data, a general mechanism for carotenoid radical cation formation is suggested.

  3. Chapter 17 - Engineering cationic liposome siRNA complexes for in vitro and in vivo delivery.

    PubMed

    Podesta, Jennifer E; Kostarelos, Kostas

    2009-01-01

    RNA interference, the sequence-specific silencing of gene expression by introduction of short interfering RNA (siRNA) is a powerful tool that that the potential to act as a therapeutic agent and the advantage of decreasing toxic effects on normal tissue sometimes seen with conventional treatments i.e. small molecule inhibitors. Naked, unmodified siRNA is poorly taken up by cells and is subject to degradation when exposed to blood proteins during systemic administration. It has also been shown to produce non-specific immune response as well as having the potential to generate 'off-target' effects. Therefore there is a requirement for a delivery system to not only protect the siRNA and facilitate its uptake, but additionally to offer the potential for targeted delivery with an aim of exploiting the high specificity afforded by RNA interference. Cationic liposomes are the most studied, non-viral delivery system used for nucleic acid delivery. As such, the use of cationic liposomes is promising for siRNA for delivery. Furthermore, polyethylene glycol (PEG) can be incorporated into the liposome formulation to create sterically stabilized or 'stealth' liposomes. Addition of PEG can reduce recognition by the reticuloendothelial system (RES) thereby prolonging circulation time. Here we describe a methodology for the complexation of siRNA with cationic liposomes and PEGylated liposomes using two protocols: mixing and encapsulation. Moreover, the different formulations are compared head to head to demonstrate their efficacy for gene silencing.

  4. Effect of monovalent cations on the kinetics of hypoxic conformational change of mitochondrial complex I

    PubMed Central

    Stepanova, Anna; Valls, Alba; Galkin, Alexander

    2015-01-01

    Mitochondrial complex I is a large, membrane-bound enzyme central to energy metabolism, and its dysfunction is implicated in cardiovascular and neurodegenerative diseases. An interesting feature of mammalian complex I is the so-called A/D transition, when the idle enzyme spontaneously converts from the active (A) to the de-active, dormant (D) form. The A/D transition plays an important role in tissue response to ischemia and rate of the conversion can be a crucial factor determining outcome of ischemia/reperfusion. Here, we describe the effects of alkali cations on the rate of the D-to-A transition to define whether A/D conversion may be regulated by sodium. At neutral pH (7–7.5) sodium resulted in a clear increase of rates of activation (D-to-A conversion) while other cations had minor effects. The stimulating effect of sodium in this pH range was not caused by an increase in ionic strength. EIPA, an inhibitor of Na+/H+ antiporters, decreased the rate of D-to-A conversion and sodium partially eliminated this effect of EIPA. At higher pH (> 8.0), acceleration of the D-to-A conversion by sodium was abolished, and all tested cations decreased the rate of activation, probably due to the effect of ionic strength. The implications of this finding for the mechanism of complex I energy transduction and possible physiological importance of sodium stimulation of the D-to-A conversion at pathophysiological conditions in vivo are discussed. PMID:26009015

  5. Zinc (II) complex with a cationic Schiff base ligand: Synthesis, characterization, and biological studies

    NASA Astrophysics Data System (ADS)

    Lee, Sze Koon; Tan, Kong Wai; Ng, Seik Weng; Ooi, Kah Kooi; Ang, Kok Pian; Abdah, Md Akim

    2014-03-01

    A cationic Schiff base ligand, TSB (L) and its Zn (II) complex (1) were synthesized and characterized by using CHN, 1H-NMR, FT-IR, UV, LC-MS, and X-ray methods. Their ability to inhibit topoisomerase I, DNA cleavage activities, and cytotoxicity were studied. X-ray diffraction study shows that the mononuclear complex 1 is four coordinated with distorted tetrahedral geometry. The singly deprotonated Schiff base ligand L acts as a bidentate ON-donor ligand. Complexation of L increases the inhibitory strength on topoisomerase I activity. Complex 1 could fully inhibit topoisomerase I activity at 250 μM, while L did not show any inhibitory effect on topoisomerase I activity. In addition, L and complex 1 could cleave pBR322 DNA in a concentration and time dependent profile. Surprisingly, L has better DNA cleavage activity than complex 1. The cleavage of DNA by complex 1 is altered in the presence of hydrogen peroxide. Furthermore, L and complex 1 are mildly cytotoxic towards human ovarian cancer A2780 and hepatocellular carcinoma HepG2.

  6. Cesium complexes of naphthalimide substituted carboxylate ligands: Unusual geometries and extensive cation-π interactions

    NASA Astrophysics Data System (ADS)

    Reger, Daniel L.; Leitner, Andrew; Smith, Mark D.

    2015-07-01

    The reactions of (1,8-naphthalimido)ethanoic acid (HLgly), and (S)-2-(1,8-naphthalimido)-3-hydroxypropanoic acid (HLser), protonated forms of ligands that contain a carboxylate donor group and a 1,8-naphthalimide π⋯π stacking supramolecular tecton, with cesium hydroxide followed by solvothermal treatment in ethanol led to the formation of crystalline Cs(Lgly) (1) and Cs(Lene) (2), where the Lene- ligand, 2-(1,8-naphthalimido)acrylate, is formed from the dehydration of the HLser starting material. The X-ray studies show that 1 crystallizes in the monoclinic space group C2/c with unit cell dimensions a = 30.430(7) Å, b = 4.9820(12) Å, c = 16.566(4) Å, β = 101.951(4)° and 2 in the monoclinic space group P21/n with unit cell dimensions a = 13.6049(15) Å, b = 6.8100(8) Å, c = 14.4187(16) Å, β = 105.345(2)°. The solid state structure of 1 contains two types of 6-coordinate cesium cations linked into sheets by bridging carboxylate oxygen atoms. One cation has a distorted octahedral environment, while the other is in an unusual planar, hexagonal O6-coordination geometry. The latter geometry is stabilized on both sides of the plane by η2-coordination of naphthalimide rings. The 1,8-naphthalimide rings are involved in intra-sheet π⋯π stacking interactions. The O6 coordination sphere of complex 2 is distorted and only half-filled with the oxygen atoms, which link the cations into rods that are further linked into sheets by bridging interactions of naphthalimide carbonyls with cesium cations from adjacent rods. The open face on the cation has unique η2:η1 interactions with two methylene groups in the ligands. These sheets are linked into a 3D supramolecular structure by interdigitated 1,8-naphthalimide rings involved in strong π⋯π interactions. Both complexes show naphthalimide based fluorescence.

  7. Cationic Platinum(II) σ-SiH Complexes in Carbon Dioxide Hydrosilation.

    PubMed

    Ríos, Pablo; Díez, Josefina; López-Serrano, Joaquín; Rodríguez, Amor; Conejero, Salvador

    2016-11-14

    The low-electron-count cationic platinum complex [Pt(ItBu')(ItBu)][BAr(F) ], 1, interacts with primary and secondary silanes to form the corresponding σ-SiH complexes. According to DFT calculations, the most stable coordination mode is the uncommon η(1) -SiH. The reaction of 1 with Et2 SiH2 leads to the X-ray structurally characterized 14-electron Pt(II) species [Pt(SiEt2 H)(ItBu)2 ][BAr(F) ], 2, which is stabilized by an agostic interaction. Complexes 1, 2, and the hydride [Pt(H)(ItBu)2 ][BAr(F) ], 3, catalyze the hydrosilation of CO2 , leading to the exclusive formation of the corresponding silyl formates at room temperature.

  8. Cationic Group-IV pincer-type complexes for polymerization and hydroamination catalysis.

    PubMed

    Luconi, Lapo; Klosin, Jerzy; Smith, Austin J; Germain, Stéphane; Schulz, Emmanuelle; Hannedouche, Jérôme; Giambastiani, Giuliano

    2014-03-21

    Neutral Zr(IV) and Hf(IV) dimethyl complexes stabilized by unsymmetrical dianionic {N,C,N'} pincer ligands have been prepared from their corresponding bis-amido complexes upon treatment with AlMe₃. Their structure consists of a central ó-bonded aryl donor group (C) capable of forming robust M-C bonds with the metal center, enforced by the synergic effect of both the coordination of peripheral donor groups (N) and the chelating rigid structure of the {N,C,N} ligand framework. Such a combination translates into systems having a unique balance between stability and reactivity. These Zr(IV) and Hf(IV) dimethyl complexes were converted in situ into cationic species [M(IV){N⁻,C⁻,N}Me][B(C₆F₅)₄] which are active catalysts for the room temperature (r.t.) intramolecular hydroamination/cyclization of primary and secondary aminoalkenes as well as for the high temperature ethylene-1-octene copolymerizations.

  9. Characterization of the interaction between cationic Erbium (III)-porphyrin complex with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Lu, Xi-Liang; Fan, Jian-Jun; Liu, Yi; Hou, An-Xin

    2009-09-01

    The interaction of cationic Erbium (III)-porphyrin complex (Er-Porp) with bovine serum albumin (BSA) has been investigated by fluorescence quenching spectra, UV-vis absorbance, circular dichroism (CD) and three-dimensional (3D) fluorescence spectra. It is proved that the fluorescence quenching of BSA by Er-Porp was mainly for the formation of Er-Porp-BSA complex. The Stern-Volmer quenching constants KSV and corresponding thermodynamic parameters ΔH, ΔG and ΔS were estimated by fluorescence quenching method. The results indicated that the electrostatic and hydrophobic interactions were the predominant intermolecular forces in stabilizing the complex. The binding distance was obtained according to Förster's non-radiative energy transfer theory. Displacement experiment and the number of binding sites calculation show that the cationic Er-Porp ring can inset in site-I (in subdomain IIA) of BSA. The effect of Er-Porp on the conformation of BSA was observed using CD, UV and 3D fluorescence spectra methods. The results show that the conformation of BSA was changed dramatically in the presence of Er-Porp by binding to the Trp residues of BSA. The interaction between BSA and Er-Porp can be used as a model for drug design and pharmaceutical research.

  10. Bell Curve for Transfection by Lamellar Cationic Lipid--DNA Complexes

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Evans, Heather M.; Ewert, K.; George, C. X.; Samuel, C. E.; Safinya, C. R.

    2004-03-01

    Cationic liposomes (CL) present a viable alternative to viral delivery of therapeutic DNA to cells. We combine CL with DNA in order to form complexes that can deliver foreign DNA (genes) to cells. In trying to improve the transfection efficiency (TE) of lamellar CL-DNA complexes, we have identified universal trends depending on the headgroup size and charge of the cationic lipid. By using new multivalent lipids ranging from 2+ to 16+ (e.g. Ewert et al, J. Med. Chem. 2002; 45: 5023) we are able to access a wide range of membrane charge density values, or σ _M. TE plots vs. σ M for multivalent lipids merge onto a universal curve with a Gaussian shape. The optimal σ M depends on the overall CL/DNA charge. The universal TE curve shows three regimes related to cellular obstacles: at low σ _M, TE is limited by endosomal escape of CL-DNA, while at high σ M TE is limited by complex dissociation and DNA release into the cytoplasm. Funded by NIH GM-59288 and NSF DMR-0203755.

  11. Controlled Hydrosilylation of Carbonyls and Imines Catalyzed by a Cationic Alkyl Complex

    SciTech Connect

    Koller, Jurgen; Bergman, Robert G.

    2012-04-09

    The synthesis, characterization, and unprecedented catalytic activity of cationic aluminum alkyl complexes toward hydrosilylation are described. X-ray crystallographic analysis of Tp*AlMe₂ (1) and [Tp*AlMe][I₃] (3) revealed the preference of Al for a tetrahedral coordination environment and the versatility of the Tp* ligand in stabilizing Al in bi- and tridentate coordination modes. [Tp*AlMe][MeB(C₆F₅)₃] (2) is highly active toward the hydrosilylation of a wide variety of carbonyls and imines, thus providing an inexpensive and versatile alternative to late transition metal catalysts.

  12. Functional Mn–Mg{sub k} cation complexes in GaN featured by Raman spectroscopy

    SciTech Connect

    Devillers, T. Bonanni, A.; Leite, D. M. G.; Dias da Silva, J. H.

    2013-11-18

    The evolution of the optical branch in the Raman spectra of (Ga,Mn)N:Mg epitaxial layers as a function of the Mn and Mg concentrations, reveals the interplay between the two dopants. We demonstrate that the various Mn-Mg-induced vibrational modes can be understood in the picture of functional Mn–Mg{sub k} complexes formed when substitutional Mn cations are bound to k substitutional Mg through nitrogen atoms, the number of ligands k being driven by the ratio between the Mg and the Mn concentrations.

  13. Biocompatible Double-Membrane Hydrogels from Cationic Cellulose Nanocrystals and Anionic Alginate as Complexing Drugs Codelivery.

    PubMed

    Lin, Ning; Gèze, Annabelle; Wouessidjewe, Denis; Huang, Jin; Dufresne, Alain

    2016-03-23

    A biocompatible hydrogel with a double-membrane structure is developed from cationic cellulose nanocrystals (CNC) and anionic alginate. The architecture of the double-membrane hydrogel involves an external membrane composed of neat alginate, and an internal composite hydrogel consolidates by electrostatic interactions between cationic CNC and anionic alginate. The thickness of the outer layer can be regulated by the adsorption duration of neat alginate, and the shape of the inner layer can directly determine the morphology and dimensions of the double-membrane hydrogel (microsphere, capsule, and filmlike shapes). Two drugs are introduced into the different membranes of the hydrogel, which will ensure the complexing drugs codelivery and the varied drugs release behaviors from two membranes (rapid drug release of the outer hydrogel, and prolonged drug release of the inner hydrogel). The double-membrane hydrogel containing the chemically modified cellulose nanocrystals (CCNC) in the inner membrane hydrogel can provide the sustained drug release ascribed to the "nano-obstruction effect" and "nanolocking effect" induced by the presence of CCNC components in the hydrogels. Derived from natural polysaccharides (cellulose and alginate), the novel double-membrane structure hydrogel material developed in this study is biocompatible and can realize the complexing drugs release with the first quick release of one drug and the successively slow release of another drug, which is expected to achieve the synergistic release effects or potentially provide the solution to drug resistance in biomedical application.

  14. Cationic liposome–nucleic acid complexes for gene delivery and gene silencing

    PubMed Central

    Ewert, Kai K.; Majzoub, Ramsey N.; Leal, Cecília

    2014-01-01

    Cationic liposomes (CLs) are studied worldwide as carriers of DNA and short interfering RNA (siRNA) for gene delivery and gene silencing, and related clinical trials are ongoing. Optimization of transfection efficiency and silencing efficiency by cationic liposome carriers requires a comprehensive understanding of the structures of CL–nucleic acid complexes and the nature of their interactions with cell membranes as well as events leading to release of active nucleic acids within the cytoplasm. Synchrotron x-ray scattering has revealed that CL–nucleic acid complexes spontaneously assemble into distinct liquid crystalline phases including the lamellar, inverse hexagonal, hexagonal, and gyroid cubic phases, and fluorescence microscopy has revealed CL–DNA pathways and interactions with cells. The combining of custom synthesis with characterization techniques and gene expression and silencing assays has begun to unveil structure–function relations in vitro. As a recent example, this review will briefly describe experiments with surface-functionalized PEGylated CL–DNA nanoparticles. The functionalization, which is achieved through custom synthesis, is intended to address and overcome cell targeting and endosomal escape barriers to nucleic acid delivery faced by PEGylated nanoparticles designed for in vivo applications. PMID:25587216

  15. Emergence of symmetry and chirality in crown ether complexes with alkali metal cations.

    PubMed

    Martínez-Haya, Bruno; Hurtado, Paola; Hortal, Ana R; Hamad, Said; Steill, Jeffrey D; Oomens, Jos

    2010-07-08

    Crown ethers provide a valuable benchmark for the comprehension of molecular recognition mediated by inclusion complexes. One of the most relevant crown ethers, 18-crown-6 (18c6), features a flexible six-oxygen cyclic backbone that is well-known for its selective cation binding. This study employs infrared spectroscopy and quantum mechanical calculations to elucidate the structure of the gas-phase complexes formed by the 18c6 ether with the alkali metal cations. It is shown that symmetric and chiral arrangements play a dominant role in the conformational landscape of the 18c6-alkali system. Most stable 18c6-M(+) conformers are found to have symmetries C(3v) and C(2) for Cs(+), D(3d) for K(+), C(1) and D(3d) for Na(+), and D(2) for Li(+). Remarkably, whereas the bare 18c6 ether is achiral, chirality emerges in the C(2) and D(2) 18c6-M(+) conformations, both of which involve pairs of stable atropoisomers capable of acting as enantiomeric selective substrates.

  16. Green Phosphorescence and Electroluminescence of Sulfur Pentafluoride-Functionalized Cationic Iridium(III) Complexes.

    PubMed

    Shavaleev, Nail M; Xie, Guohua; Varghese, Shinto; Cordes, David B; Slawin, Alexandra M Z; Momblona, Cristina; Ortí, Enrique; Bolink, Henk J; Samuel, Ifor D W; Zysman-Colman, Eli

    2015-06-15

    We report on four cationic iridium(III) complexes [Ir(C^N)2(dtBubpy)](PF6) that have sulfur pentafluoride-modified 1-phenylpyrazole and 2-phenylpyridine cyclometalating (C^N) ligands (dtBubpy = 4,4'-di-tert-butyl-2,2'-bipyridyl). Three of the complexes were characterized by single-crystal X-ray structure analysis. In cyclic voltammetry, the complexes undergo reversible oxidation of iridium(III) and irreversible reduction of the SF5 group. They emit bright green phosphorescence in acetonitrile solution and in thin films at room temperature, with emission maxima in the range of 482-519 nm and photoluminescence quantum yields of up to 79%. The electron-withdrawing sulfur pentafluoride group on the cyclometalating ligands increases the oxidation potential and the redox gap and blue-shifts the phosphorescence of the iridium complexes more so than the commonly employed fluoro and trifluoromethyl groups. The irreversible reduction of the SF5 group may be a problem in organic electronics; for example, the complexes do not exhibit electroluminescence in light-emitting electrochemical cells (LEECs). Nevertheless, the complexes exhibit green to yellow-green electroluminescence in doped multilayer organic light-emitting diodes (OLEDs) with emission maxima ranging from 501 nm to 520 nm and with an external quantum efficiency (EQE) of up to 1.7% in solution-processed devices.

  17. Synthesis and chemistry of cationic d sup 0 metal alkyl complexes

    SciTech Connect

    Jordan, R.F.

    1991-01-01

    The objective of this project is to develop new types of electrophilic metal alkyl complexes for catalytic C-H activation and olefin polymerization chemistry, and associated fundamental mechanistic studies. We have focused our efforts on four classes of early metal alkyl complexes: (1) cationic group 4 Cp{sub 2}M(R){sup +} complexes (1) which are active species in Cp{sub 2}MX{sub 2}-based Ziegler-Natta olefin polymerization catalyst systems and which catalyze productive C-H activation reactions of heterocycles, (2) neutral (dicarbollide)(Cp*)M(R) complexes (2) which are structurally are electronically very similar to 1, (3) half-sandwich complexes CpM(R){sub 2}(L){sub n}{sup +} which are highly coordinatively and electronically unsaturated, and (4) new group 5 (dicarbollide)(Cp)MR{sub 2} and (dicarbollide){sub 2} MR complexes which are more unsaturated than group 5 Cp{sub 2}M systems due to incorporation of the dicarbollide ligand.

  18. Polyanionic Biopolymers for the Delivery of Pt(II) Cationic Antiproliferative Complexes

    PubMed Central

    2016-01-01

    Phenanthriplatin, that is, (SP-4-3)-diamminechlorido(phenanthridine)platinum(II) nitrate, an effective antitumor cationic Pt(II) complex, was loaded on negatively charged dextran sulfate (DS) as a model vector for drug delivery via electrostatic interactions. The free complex and the corresponding conjugate with DS were tested on two standard human tumor cell lines, namely, ovarian A2780 and colon HCT 116, and on several malignant pleural mesothelioma cell lines (namely, epithelioid BR95, mixed/biphasic MG06, sarcomatoid MM98, and sarcomatoid cisplatin-resistant MM98R). The in vitro results suggest that the conjugate releases the active metabolite phenanthriplatin with a biphasic fashion. In these experimental conditions, the conjugate is slightly less active than free phenanthriplatin; but both exhibited antiproliferative potency higher than the reference metallodrug cisplatin and were able to overcome the acquired cisplatin chemoresistance in MM98R cells. PMID:27774043

  19. A Study of Complexation-ability of Neutral Schiff Bases to Some Metal Cations

    PubMed Central

    Topal, Giray; Tümerdem, Recep; Basaran, Ismet; Gümüş, Arzu; Cakir, Umit

    2007-01-01

    The constants of the extraction equilibrium and the distribution for dichloromethane as an organic solvent having low dielectric constant of metal cations with chiral Schiff bases, benzaldehydene-(S)-2-amino-3-phenylpropanol (I), ohydroxybenzaldehydene-( S)-2-amino-3-phenyl-propanol (II), benzaldehydene-(S)-2- amino-3-methylbutanol (III) with anionic dyes [4-(2-pyridylazo)-resorcinol mono sodium monohydrate (NaPar), sodium picrat (NaPic) and potassium picrat (KPic)] and some heavy metal chlorides were determined at 25 ºC. All the ligands have given strongest complexation for NaPar. In contrast, similar behaviour for both alkali metal picrates is not apparent in the complexation of corresponding ligands.

  20. In vitro anticancer activity evaluation of new cationic platinum(II) complexes based on imidazole moiety.

    PubMed

    Rimoldi, Isabella; Facchetti, Giorgio; Lucchini, Giorgio; Castiglioni, Elisa; Marchianò, Silvia; Ferri, Nicola

    2017-03-15

    The development and the synthesis of cationic platinum(II) complexes were realized and their cytotoxic activity was tested on triple negative breast cancer MDA-MB-231 cell line and in two cell lines poorly responsive to cisplatin (DLD-1 and MCF-7). The complex 2c resulted the most potent cytotoxic agent in MDA-MB-231 (IC50=61.9µM) and more effective than cisplatin on both DLD-1 (IC50=57.4µM) and MCF-7 (IC50=79.9µM) cell lines. 2c showed different cellular uptake and pharmacodynamic properties than cisplatin, interfering with the progression of the M phase of the cell cycle. Thus, 2c represents a lead compound of a new class of cytotoxic agents with promising antitumor activity.

  1. Borinium cations as sigma-B-H ligands in osmium complexes.

    PubMed

    Esteruelas, Miguel A; Fernández-Alvarez, Francisco J; López, Ana M; Mora, Malka; Oñate, Enrique

    2010-04-28

    The complex OsH(2)Cl(2)(P(i)Pr(3))(2) reacts with pinacolborane, Me(2)NH-BH(3), and (t)BuNH(2)-BH(3) to give the complexes OsH(2)Cl{eta(2)-HBOC(CH(3))(2)C(CH(3))(2)OBpin}(P(i)Pr(3))(2) and OsH(2)Cl(eta(2)-HBNR(1)R(2))(P(i)Pr(3))(2) (R(1) = R(2) = Me; R(1) = H, R(2) = (t)Bu) containing monosubstituted alkoxy- and amidoborinium cations coordinated as sigma-B-H ligands. The process is proposed to take place via the electrophilic 14-valence-electron fragment OsHCl(P(i)Pr(3))(2), which promotes hydride transfer from the corresponding borane to the osmium atom.

  2. Cationic technetium-99m complexes of N-substituted pyridoxal derivatives as renal function agents

    SciTech Connect

    Karube, Yoshiharu; Iwamoto, Koji; Takata, Jiro

    1994-10-01

    New cationic technetium-chelating agents containing a pyridinium group have been synthesized and evaluated as potential renal radiopharmaceuticals. The pyridinium compounds used in the study are N-methyl pyridoxal chloride, N-ethyl pyridoxal chloride, N-propyl pyridoxal chloride, 1-methyl-3-hydroxy-4-formylpyridinium chloride, 1-methyl-2-formyl-3-hydroxpyridinium chloride and the Schiff`s bases of N-methyl pyridoxal chloride with amino acid, amino acid ester and amino acid amide. Complexes of these chelating agents with {sup 22m}Tc were prepared using a Na{sub 2}S{sub 2}O{sub 4} or a SnCl{sub 2} solution as a reducing agent. The purity of the {sup 99m}Tc complexes was determined by paper electrophoresis in 0.1 Mtris buffer. Electrophoresis indicates slightly positive-charged species. The log P values of these complexes showed a hydrophilic nature. Urinary excretion of the {sup 99m}Tc N-alkylated pyridoxal derivatives, {sup 99m}Tc-diethylenetriaminepentaacetic acid, {sup 99m}Tc-mercaptoacetylglycylglycylglycine (MAG3) and {sup 131}I-o-iodohippurate were determined in mice and rats at different time intervals. In a rat model, the pyridoxal-derived {sup 99m}Tc complexes are rapidly excreted in urine and provide clear renal scintigrams. Hepatobiliary excretion was negligible, reducing scan interference from the intestines. Total clearances were lower than that of {sup 131}I-hippurate and {sup 99m}Tc-MAG3. The rate of urinary clearance of the new tracers was not significantly faster than {sup 99m}Tc diethylenetriaminepentaacetic acid and the inhibitor N{sup 1}-methylnicotinamide had only a minimal effect on the renal behavior. Though the new tracers have cationic properties, the pyridinium group did not contribute largely to the excretion of active transport. 21 refs., 4 figs., 4 tabs.

  3. Optical tweezers reveal a dynamic mechanical response of cationic peptide-DNA complexes

    NASA Astrophysics Data System (ADS)

    Lee, Amy; Zheng, Tai; Sucayan, Sarah; Chou, Szu-Ting; Tricoli, Lucas; Hustedt, Jason; Kahn, Jason; Mixson, A. James; Seog, Joonil

    2013-03-01

    Nonviral carriers have been developed to deliver nucleic acids by forming nanoscale complexes; however, there has been limited success in achieving high transfection efficiency. Our hypothesis is that a factor affecting gene delivery efficiency is the mechanical response of the condensed complex. To begin to test this hypothesis, we directly measured the mechanical properties of DNA-carrier complexes using optical tweezers. Histidine-lysine (HK) polymer, Asparagine-lysine (NK) polymer and poly-L-lysine were used to form complexes with a single DNA molecule. As carriers were introduced, a sudden decrease in DNA extension occurrs at a force level which is defined as critical force (Fc). Fc is carrier and concentration dependent. Pulling revealed reduction in DNA extension length for HK-DNA complexes. The characteristics of force profiles vary by agent and can be dynamically manipulated by changes in environmental conditions such as ionic strength of the buffer as well as pH. Heparin can remove cationic reagents which are otherwise irreversibly bound to DNA. The implications for optimizing molecular interactions to enhance transfection efficiency will be discussed.

  4. Alkali Cation Chelation in Cold β-O-4 Tetralignol Complexes

    NASA Astrophysics Data System (ADS)

    DeBlase, Andrew F.; Dziekonski, Eric T.; Hopkins, John R.; Burke, Nicole L.; Kenttamaa, Hilkka I.; McLuckey, Scott A.; Zwier, Timothy S.

    2016-06-01

    Lignins are the second most abundant naturally occurring polymer class, contributing to about 30% of the organic carbon in the biosphere. Their primary function is to provide the structural integrity of plant cell walls and have recently come under consideration as a potential source of biofuels because they have an energy content similar to coal. Herein, we employ cold ion spectroscopy (UV action and IR-UV double resonance) to unravel the spectroscopic signatures of G-type alkali metal cationized (X = Li+, Na+, K+) lignin tetramers connected by β-O-4 linkages. The conformation-specific spectroscopy reveals a variety of conformers, each containing distinct infrared spectra in the OH stretching region building on recent studies on the neutral and alkali metal cationized β-O-4 dimers. Based on comparisons of our infrared spectra to density functional theory [M05-2X/6-31+G*] harmonic level calculations for structures derived from a Monte Carlo conformational search, the alkali metal ion is discovered to engage in M+-OH-O interactions as important motifs that determine the secondary structures of these complexes. This interaction disappears in the major conformer of the K+ adduct, suggesting a reemergence of a neutral dimer segment as the metal binding energy decreases. Chelation of the metal cation by oxygen lone pair(s) of nearby oxygens in the β-O-4 linkage is observed to be the predominant driving force for 3D structure around the charge site, relegating OH-O H-bonds as secondary stabilizing elements.

  5. Preparation, stability and antimicrobial activity of cationic cross-linked starch-iodine complexes.

    PubMed

    Klimaviciute, Rima; Bendoraitiene, Joana; Rutkaite, Ramune; Siugzdaite, Jurate; Zemaitaitis, Algirdas

    2012-12-01

    Cationic cross-linked starch (CCS)-iodine complexes containing different amounts of quaternary ammonium groups (different degrees of substitution (DS)) and iodine have been obtained by iodine adsorption on CCS from aqueous iodine potassium iodide solution. Equilibrium adsorption studies showed that with an increase of DS the amount of iodine adsorbed on CCS and the affinity of iodine to CCS increased linearly. The influences of the DS of CCS and the amount of adsorbed iodine on the stability of CCS-iodine complexes in a solution of 0.02M sodium acetate and reactivity toward l-tyrosine have been investigated. At the same DS, the stability of CCS-iodine complexes decreased with an increase of the amount of adsorbed iodine. With increasing the DS, the stability of CCS-iodine complexes increased. The iodine consumption in the reaction with l-tyrosine increased significantly with an increase of the amount of adsorbed iodine. The influence of DS on iodine consumption was lower and depended on the amount of adsorbed iodine. The antibacterial activity of CCS-iodine complexes against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli was determined by the broth-dilution and spread-plate methods. The obtained results have demonstrated that an appropriate selection of the CCS-iodine complex composition (the DS of CCS and the amount of adsorbed iodine) could ensure good antimicrobial properties by keeping a low concentration of free iodine in the system. The main advantage of using CCS-iodine complexes as antimicrobial agents is the biodegradability of the polymeric matrix.

  6. Modulation of pyridinium cationic lipid-DNA complex properties by pyridinium gemini surfactants and its impact on lipoplex transfection properties.

    PubMed

    Sharma, Vishnu Dutt; Lees, Julia; Hoffman, Nicholas E; Brailoiu, Eugen; Madesh, Muniswamy; Wunder, Stephanie L; Ilies, Marc A

    2014-02-03

    The study presents the effects of blending a cationic gemini surfactant into cationic lipid bilayers and its impact on the plasmid DNA compaction and delivery process. Using nanoDSC, dynamic light scattering, zeta potential, and electrophoretic mobility measurements, together with transfection (2D- and 3D-) and viability assays, we identified the main physicochemical parameters of the lipid bilayers, liposomes, and lipoplexes that are affected by the gemini surfactant addition. We also correlated the cationic bilayer composition with the dynamics of the DNA compaction process and with transfection efficiency, cytotoxicity, and the internalization mechanism of the resultant nucleic acid complexes. We found that the blending of gemini surfactant into the cationic bilayers fluidized the supramolecular assemblies, reduced the amount of positive charge required to fully compact the plasmid DNA and, in certain cases, changed the internalization mechanism of the lipoplexes. The transfection efficiency of select ternary lipoplexes derived from cationic gemini surfactants and lipids was several times superior to the transfection efficiency of corresponding binary lipoplexes, also surpassing standard transfection systems. The overall impact of gemini surfactants into the formation and dynamic of cationic bilayers was found to depend heavily on the presence of colipids, their nature, and amount present in lipoplexes. The study confirmed the possibility of combining the specific properties of pyridinium gemini surfactants and cationic lipids synergistically to obtain efficient synthetic transfection systems with negligible cytotoxicity useful for therapeutic gene delivery.

  7. A cationic Rh(III) complex that efficiently catalyzes hydrogen isotope exchange in hydrosilanes.

    PubMed

    Campos, Jesús; Esqueda, Ana C; López-Serrano, Joaquín; Sánchez, Luis; Cossio, Fernando P; de Cozar, Abel; Alvarez, Eleuterio; Maya, Celia; Carmona, Ernesto

    2010-12-01

    The synthesis and structural characterization of a mixed-sandwich (η(5)-C(5)Me(5))Rh(III) complex of the cyclometalated phosphine PMeXyl(2) (Xyl = 2,6-C(6)H(3)Me(2)) with unusual κ(4)-P,C,C',C'' coordination (compound 1-BAr(f); BAr(f) = B(3,5-C(6)H(3)(CF(3))(2))(4)) are reported. A reversible κ(4) to κ(2) change in the binding of the chelating phosphine in cation 1(+) induced by dihydrogen and hydrosilanes triggers a highly efficient Si-H/Si-D (or Si-T) exchange applicable to a wide range of hydrosilanes. Catalysis can be carried out in an organic solvent solution or without solvent, with catalyst loadings as low as 0.001 mol %, and the catalyst may be recycled a number of times.

  8. A square-planar hydrated cationic tetrakis(methimazole)gold(III) complex.

    PubMed

    Lynch, Will E; Padgett, Clifford W; Quillian, Brandon; Haddock, John

    2015-04-01

    The cationic pseudo-square-planar complex tetrakis(1-methyl-2,3-dihydro-1H-imidazole-2-thione-κS)gold(III) trichloride sesquihydrate, [Au(C4H6N2S)4]Cl3·1.5H2O, was isolated as dark-red crystals from the reaction of chloroauric acid trihydrate (HAuCl4·3H2O) with four equivalents of methimazole in methanol. The Au(III) atoms reside at the corners of the unit cell on an inversion center and are bound by the S atoms of four methimazole ligands in a planar arrangement, with S-Au-S bond angles of approximately 90°.

  9. Unexpected Actinyl Cation-Directed Structural Variation in Neptunyl(VI) A-Type Tri-lacunary Heteropolyoxotungstate Complexes

    DOE PAGES

    Berg, John M.; Gaunt, Andrew J.; May, Iain; ...

    2015-04-22

    A-type tri-lacunary heteropolyoxotungstate anions (e.g., [PW9O34]9-, [AsW9O34]9-, [SiW9O34]10- and [GeW9O34]10-) are multi-dentate oxygen donor ligands that readily form sandwich complexes with actinyl cations ({UO2}2+, {NpO2}+, {NpO2}2+ & {PuO2}2+) in near neutral/slightly alkaline aqueous solutions. Two or three actinyl cations are sandwiched between two trilacunary anions, with additional cations (Na+, K+ or NH4 +) also often held within the cluster. Studies thus far have indicated that it is these additional +I cations, rather than the specific actinyl cation, that direct the structural variation in the complexes formed. We now report the structural characterization of the neptunyl (VI) cluster complex (NH4)13 [Na(NpO2)2(A-α-more » PW9O34)2]·12H2O. The anion in this complex, [Na(NpO2)2(PW9O34)2]13-, contains one Na+ cation and two {NpO2}2+ cations held between two [PW9O34]9- anions – with an additional partial occupancy NH4 + or {NpO2}2+ cation also present. In the analogous uranium (VI) system, under similar reaction conditions that includes an excess of NH4Cl in the parent solution, it was previously shown that [(NH4)2(UVIO2)2(A-PW9O34)2]12- is the dominant species in both solution and the crystallized salt. Spectroscopic studies provide further proof of differences in the observed chemistry for the {NpO2}2+/[PW9O34]9- and {UO2}2+/[PW9O34]9- systems, both in solution and in solid state complexes crystallized from comparable salt solutions. The work revealed that varying the actinide element (Np vs. U) can indeed measurably impact structure and complex stability in the cluster chemistry of actinyl (VI) cations with A-type tri-lacunary heteropolyoxotungstate anions.« less

  10. Surface complexation of heavy metal cations on clay edges: insights from first principles molecular dynamics simulation of Ni(II)

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Liu, Xiandong; Lu, Xiancai; He, Mengjia; Jan Meijer, Evert; Wang, Rucheng

    2017-04-01

    Aiming at an atomistic mechanism of heavy metal cation complexing on clay surfaces, we carried out systematic first principles molecular dynamics (FPMD) simulations to investigate the structures, free energies and acidity constants of Ni(II) complexes formed on edge surfaces of 2:1 phyllosilicates. Three representative complexes were studied, including monodentate complex on the tbnd SiO site, bidentate complex on the tbnd Al(OH)2 site, and tetradentate complex on the octahedral vacancy where Ni(II) fits well into the lattice. The complexes structures were characterized in detail. Computed free energy values indicate that the tetradentate complex is significantly more stable than the other two. The calculated acidity constants indicate that the tetradentate complex can get deprotonated (pKa = 8.4) at the ambient conditions whereas the other two hardly deprotonate due to extremely high pKa values. By comparing with the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) model, the vacant site has been assigned to the strong site and the other two to the weak site, respectively. Thus a link has been built between atomistic simulations and macroscopic experiments and it is deduced that this should also apply to other heavy metal cations based on additional simulations of Co(II) and Cu(II) and previous simulations of Fe(II) and Cd(II)). This study forms a physical basis for understanding the transport and fixation of heavy metal elements in many geologic environments.

  11. Cation-complexation behavior of template-assembled synthetic G-quartets.

    PubMed

    Nikan, Mehran; Sherman, John C

    2009-08-07

    We report the preparation and solution study of a set of template-assembled synthetic G-quartets (TASQs) bound to different cations. These G-quartet baskets effectively extract cations of different sizes and valencies. They form isolated G-quartets with small cations such as Na+ and Sr(2+), and dimeric assemblies with larger cations such as Cs+. Their structures were determined by using (1)H NMR spectroscopy, and their sizes were evaluated by using a series of pulsed-field gradient NMR experiments. The effect of anion has been studied, and the cation selectivities have been investigated by a series of competition experiments.

  12. Cationic Group-IV pincer-type complexes for polymerization and hydroamination catalysis.

    PubMed

    Luconi, Lapo; Klosin, Jerzy; Smith, Austin J; Germain, Stéphane; Schulz, Emmanuelle; Hannedouche, Jérôme; Giambastiani, Giuliano

    2013-12-07

    Neutral Zr(IV) and Hf(IV) dimethyl complexes stabilized by unsymmetrical dianionic {N,C,N'} pincer ligands have been prepared from their corresponding bis-amido complexes upon treatment with AlMe3. Their structure consists of a central σ-bonded aryl donor group (C) capable of forming robust M-C bonds with the metal center, enforced by the synergic effect of both the coordination of peripheral donor groups (N) and the chelating rigid structure of the {N,C,N} ligand framework. Such a combination translates into systems having a unique balance between stability and reactivity. These Zr(IV) and Hf(IV) dimethyl complexes were converted in situ into cationic species [M(IV){N(-),C(-),N}Me][B(C6F5)4] which are active catalysts for the room temperature (r.t.) intramolecular hydroamination/cyclization of primary and secondary aminoalkenes as well as for the high temperature ethylene-1-octene copolymerizations.

  13. Computational study on the complexation behavior of tetrapropyl diglycolamide with Ln3+ (Ln = Nd, Pm, Sm, and Eu) cation series

    NASA Astrophysics Data System (ADS)

    Hosseinnejad, Tayebeh; Nikoo, Sepideh

    2015-09-01

    In the present study, we have focused mainly on the survey of interactions in Ln3+ (Ln = Nd, Pm, Sm, Eu) complexes with tetrapropyl diglycolamide (TPDGA) by means of density functional theory (DFT) methods. In the first step, the interaction of TPDGA ligand with Ln3+ cation series has been assessed thermodynamically in the gas phase and in presence of three solvents: n-hexane, chloroform and toluene, via polarized continuum model (PCM) calculations. The trend of metal-ligand interaction strength has been investigated and compared with the trend of ionic hardness within the series of lanthanide cations. Our results for the gas and solution phases demonstrate a consistency between the increasing trend in the hardness of Ln3+ cation series with the increasing in thermodynamical stability of [Ln(TPDGA)]3+ complex series. Moreover, our PCM calculations show that using n-hexane as a solvent is more favorable thermodynamically than chloroform and toluene for the complexation reaction of all [Ln(TPDGA)]3+ complex series. It should be stated that this issue has been observed in many experimental calculations. Finally the assessment of calculated deformation energies and also the variation in bond order of some selected key bonds in [Ln(TPDGA)]3+ complex series shows a similar trend with increasing in the hardness of Ln3+ cation series.

  14. Halide, amide, cationic, manganese carbonylate, and oxide derivatives of triamidosilylamine uranium complexes.

    PubMed

    Gardner, Benedict M; Lewis, William; Blake, Alexander J; Liddle, Stephen T

    2011-10-03

    Treatment of the complex [U(Tren(TMS))(Cl)(THF)] [1, Tren(TMS) = N(CH(2)CH(2)NSiMe(3))(3)] with Me(3)SiI at room temperature afforded known crystalline [U(Tren(TMS))(I)(THF)] (2), which is reported as a new polymorph. Sublimation of 2 at 160 °C and 10(-6) mmHg afforded the solvent-free dimer complex [{U(Tren(TMS))(μ-I)}(2)] (3), which crystallizes in two polymorphic forms. During routine preparations of 1, an additional complex identified as [U(Cl)(5)(THF)][Li(THF)(4)] (4) was isolated in very low yield due to the presence of a slight excess of [U(Cl)(4)(THF)(3)] in one batch. Reaction of 1 with one equivalent of lithium dicyclohexylamide or bis(trimethylsilyl)amide gave the corresponding amide complexes [U(Tren(TMS))(NR(2))] (5, R = cyclohexyl; 6, R = trimethylsilyl), which both afforded the cationic, separated ion pair complex [U(Tren(TMS))(THF)(2)][BPh(4)] (7) following treatment of the respective amides with Et(3)NH·BPh(4). The analogous reaction of 5 with Et(3)NH·BAr(f)(4) [Ar(f) = C(6)H(3)-3,5-(CF(3))(2)] afforded, following addition of 1 to give a crystallizable compound, the cationic, separated ion pair complex [{U(Tren(TMS))(THF)}(2)(μ-Cl)][BAr(f)(4)] (8). Reaction of 7 with K[Mn(CO)(5)] or 5 or 6 with [HMn(CO)(5)] in THF afforded [U(Tren(TMS))(THF)(μ-OC)Mn(CO)(4)] (9); when these reactions were repeated in the presence of 1,2-dimethoxyethane (DME), the separated ion pair [U(Tren(TMS))(DME)][Mn(CO)(5)] (10) was isolated instead. Reaction of 5 with [HMn(CO)(5)] in toluene afforded [{U(Tren(TMS))(μ-OC)(2)Mn(CO)(3)}(2)] (11). Similarly, reaction of the cyclometalated complex [U{N(CH(2)CH(2)NSiMe(2)Bu(t))(2)(CH(2)CH(2)NSiMeBu(t)CH(2))}] with [HMn(CO)(5)] gave [{U(Tren(DMSB))(μ-OC)(2)Mn(CO)(3)}(2)] [12, Tren(DMSB) = N(CH(2)CH(2)NSiMe(2)Bu(t))(3)]. Attempts to prepare the manganocene derivative [U(Tren(TMS))MnCp(2)] from 7 and K[MnCp(2)] were unsuccessful and resulted in formation of [{U(Tren(TMS))}(2)(μ-O)] (13) and [MnCp(2)]. Complexes 3-13 have been

  15. Methodology for the calculation of the potential of mean force for a cation-pi complex in water.

    PubMed

    Ghoufi, Aziz; Archirel, Pierre; Morel, Jean-Pierre; Morel-Desrosiers, Nicole; Boutin, Anne; Malfreyt, Patrice

    2007-08-06

    We report potential of mean force (PMF) calculations on the interaction between the p-sulfonatocalix[4]arene and a monovalent cation (Cs(+)). It has been recently shown from microcalorimetry and (133)Cs NMR experiments that the association with Cs(+) is governed by favourable cation-pi interactions and is characterized by the insertion of the cation into the cavity of the macrocycle. We show that the PMF calculation based upon a classical model is not able to reproduce both the thermodynamic properties of association and the insertion of the cation. In order to take into account the different contributions of the cation-pi interactions, we develop a new methodology consisting of changing the standard PMF by an additional contribution resulting from quantum calculations. The calculated thermodynamic properties of association are thus in line with the microcalorimetry and (133)Cs NMR experiments and the structure of the complex at the Gibbs free-energy minimum shows the insertion of the cation into the cavity of the calixarene.

  16. Interaction and complex formation between catalase and cationic polyelectrolytes: chitosan and Eudragit E100.

    PubMed

    Boeris, Valeria; Romanini, Diana; Farruggia, Beatriz; Picó, Guillemo

    2009-08-01

    Interactions between catalase and the cationic polyelectrolytes: chitosan and Eudragit E100 have been investigated owing to their scientific and technological importance. These interactions have been characterized by turbidimetry, circular dichroism and fluorescence spectroscopy. It was found that the catalase conformation does not change significantly during the chain entanglements between the protein and the polyelectrolytes. The effects of pH, ionic strength and anions which modify the water structure were evaluated on the polymer-protein complex formation. A net coulombic interaction force between them was found since the insoluble complex formation decreased after the NaCl addition. Both polymers were found to precipitate around 80% of the protein in solution. No modification of the tertiary and secondary protein structure or the enzymatic activity was observed when the precipitate was dissolved by changing the pH of the medium. Chitosan and Eudragit E100 proved to be a useful framework to isolate catalase or proteins with a slightly acid isoelectrical pH by means of precipitation.

  17. Mono- and dinuclear cationic iridium(III) complexes bearing a 2,5-dipyridylpyrazine (2,5-dpp) ligand.

    PubMed

    Donato, Loïc; McCusker, Catherine E; Castellano, Felix N; Zysman-Colman, Eli

    2013-08-05

    The synthesis, X-ray structures, photophysical, and electrochemical characterization of mono- (1) and dinuclear (2) cationic iridium(III) complexes bearing a 2,5-dipyridylpyrazine (2,5-dpp) ancillary ligand are reported. Upon the complexation of a first equivalent of iridium, the photoluminescence shifts markedly into the deep red (λem = 710 nm, ΦPL = 0.9%) compared to other cationic iridium complexes such as [Ir(ppy)2(bpy)]PF6. With the coordination of a second equivalent of iridium, room temperature luminescence is completely quenched. Both 1 and 2 are luminescent at low temperatures but with distinct excited state decay kinetics; the emission of 2 is significantly red-shifted compared to 1. Emission both at 298 and 77 K results from a mixed charge-transfer state. Density functional theory (DFT) calculations and electrochemical behavior point to an electronic communication between the two iridium complexes.

  18. Vanillic Acid Ameliorates Cationic Bovine Serum Albumin Induced Immune Complex Glomerulonephritis in BALB/c Mice.

    PubMed

    Motiram Kakalij, Rahul; Tejaswini, G; Patil, Madhoosudan A; Dinesh Kumar, B; Diwan, Prakash V

    2016-06-01

    Preclinical Research Vanillic acid (VA) is a dihydroxybenzoic acid derivative widely used as a flavoring agent. It has chemopreventive effects on experimentally-induced carcinogenesis and in ulcerative colitis. The object of the present study was to investigate the effects of VA, alone and in combination with methylprednisolone (MP), on cationic bovine serum albumin (cBSA induced immune-complex glomerulonephritis in female BALB/c mice. Pre-immunization was carried out with cBSA in BALB/c mice and repeated (cBSA, 13 mg/kg, 3 times/week, i.v.) for 6 weeks to induce glomerulonephritis which was confirmed by the presence of severe proteinuria. The effect of VA (50, 100, and 200 mg/kg, p.o.) and its combination with MP (12.5 mg/kg, p.o.) was assessed in the nephrotic disease model. Treatment with VA decreased inflammatory nephrotic injury as evidenced by decreased proteinuria, serum creatinine, blood urea nitrogen, serum IgG1 and TNF-α levels. Co-administration of VA with MP showed an improvement in the immunohistochemistry of glomerular nephrin and podocin. The present results indicate that VA has a nephroprotective effect in the management of autoimmune nephritis. Drug Dev Res 77 : 171-179, 2016.   © 2016 Wiley Periodicals, Inc.

  19. Thermochromic Magnetic Ionic Liquids from Cationic Nickel(II) Complexes Exhibiting Intramolecular Coordination Equilibrium.

    PubMed

    Lan, Xue; Mochida, Tomoyuki; Funasako, Yusuke; Takahashi, Kazuyuki; Sakurai, Takahiro; Ohta, Hitoshi

    2017-01-18

    Among the various thermochromic materials, liquid thermochromic materials are comparatively rare. To produce functional thermochromic liquids, we have designed ionic liquids based on cationic nickel complexes with ether side chains, [Ni(acac)(Me2 NC2 H4 NR(1) R(2) )]Tf2 N ([1]Tf2 N: R(1) =C3 H6 OEt, R(2) =Me; [2]Tf2 N: R(1) =C3 H6 OMe, R(2) =Me; [3]Tf2 N: R(1) =R(2) =C3 H6 OMe), where acac=acetylacetonate and Tf2 N=(F3 CSO2 )2 N(-) . The side chains (R(1) , R(2) ) can moderately coordinate to the metal center, enabling temperature-dependent coordination equilibria in the liquid state. [1]Tf2 N is a liquid at room temperature. [2]Tf2 N is obtained as a solid (Tm =352.7 K) but remains liquid at room temperature after melting. [3]Tf2 N is a solid with a high melting point (Tm =422.3 K). These salts display thermochromism in the liquid state, appearing red at high temperatures and orange, light-blue, or bluish-green at lower temperatures, and exhibiting concomitant changes in their magnetic properties. This phenomenon is based on temperature-dependent equilibrium between a square-planar diamagnetic species and a paramagnetic species with intramolecular ether coordination.

  20. Conformation Transformation Determined by Different Self-Assembled Phases in a DNA Complex with Cationic Polyhedral Oligomeric Silsesquioxane Lipid

    SciTech Connect

    Cui,L.; Chen, D.; Zhu, L.

    2008-01-01

    In this work, a novel cube-shaped cationic lipid based on the imidazolium salt of polyhedral oligomeric silsesquioxane (POSS) was complexed with double-stranded DNA. Because of the negative spontaneous curvature of the cationic POSS imidazolium lipid, an inverted hexagonal phase resulted above the melting point of POSS crystals. Depending on the competition between the crystallization of POSS molecules and the negative spontaneous curvature of cationic POSS imidazolium lipids, different self-assembled phase morphologies were obtained. A lamellar phase was obtained when the POSS crystallization was relatively slow. When the POSS crystallization was fast, an inverted hexagonal phase was obtained with POSS lamellar crystals grown in the interstitials of DNA cylinders. On the basis of a circular dichroism study, double-stranded DNA adopted the B-form helical conformation in the inverted hexagonal phase, whereas the helical conformation was largely destroyed in the lamellar phase.

  1. Successful gene transfer into dendritic cells with cationized gelatin and plasmid DNA complexes via a phagocytosis-dependent mechanism.

    PubMed

    Inada, Satoshi; Fujiwara, Hitoshi; Atsuji, Kiyoto; Takashima, Kazuhiro; Araki, Yasunobu; Kubota, Takeshi; Tabata, Yasuhiko; Yamagishi, Hisakazu

    2006-01-01

    The use of gene-modified dendritic cells (DC) is a powerful tool to enhance antitumor immune responses stimulated by these cells in cancer immunotherapy. Cationized gelatin is preferably incorporated via phagocytosis and is gradually degraded by proteolysis while buffering lysosomal activity. This may be appropriate for gene transfer into phagocytic cells, such as immature DC. In the present study, successful transfection into monocyte-derived immature DC was demonstrated using cationized gelatin and plasmid DNA complexes. A high transfection efficiency, approaching 16%, was obtained upon transfection of the enhanced green fluorescent protein (EGFP) gene as evaluated by flow cytometry. Transgene expression of EGFP and murine interleukin 12 were also detected by RT-PCR. The antigen-presenting capacity of the transfected DC was equal to that of untransfected DC as evaluated by the allogeneic mixed lymphocyte reaction. Cationized gelatin has the potential to be a unique non-viral vector for gene transfer into DC.

  2. Influence of complexation phenomena with multivalent cations on the analysis of glyphosate and aminomethyl phosphonic acid in water.

    PubMed

    Freuze, Ingrid; Jadas-Hecart, Alain; Royer, Alain; Communal, Pierre-Yves

    2007-12-21

    Experimental and theoretical influence of multivalent cations on the analysis of glyphosate and aminomethyl phosphonic acid (AMPA) was studied in pure water and in one surface water. The procedure chosen, based on derivatization with FMOC-Cl, HPLC separation, and fluorescence detection, appears highly affected at cations concentrations current in natural waters. A detailed speciation study performed with the VMINTEQ software strongly suggests that the complexes formed between analytes and cations do not dissociate during the reaction and do not react with the derivatization agent, so that only the free forms are derivatized. These results point out the necessity of a pre-treatment to prevent these interferences, even in low salinity waters. The different ways conceivable are discussed in terms of kinetic and thermodynamic considerations.

  3. Solid-State and Solution Metallophilic Aggregation of a Cationic [Pt(NCN)L](+) Cyclometalated Complex.

    PubMed

    Sivchik, Vasily V; Grachova, Elena V; Melnikov, Alexei S; Smirnov, Sergey N; Ivanov, Alexander Yu; Hirva, Pipsa; Tunik, Sergey P; Koshevoy, Igor O

    2016-04-04

    The noncovalent intermolecular interactions (π-π stacking, metallophilic bonding) of the cyclometalated complexes [Pt(NCN)L](+)X(-) (NCN = dipyridylbenzene, L = pyridine (1), acetonitrile (2)) are determined by the steric properties of the ancillary ligands L in the solid state and in solution, while the nature of the counterion X(-) (X(-) = PF6(-), ClO4(-), CF3SO3(-)) affects the molecular arrangement of 2·X in the crystal medium. According to the variable-temperature X-ray diffraction measurements, the extensive Pt···Pt interactions and π-stacking in 2·X are significantly temperature-dependent. The variable concentration (1)H and diffusion coefficients NMR measurements reveal that 2·X exists in the monomeric form in dilute solutions at 298 K, while upon increase in concentration [Pt(NCN)(NCMe)](+) cations undergo the formation of the ground-state oligomeric aggregates with an average aggregation number of ∼3. The photoluminescent characteristics of 1 and 2·X are largely determined by the intermolecular aggregation. For the discrete molecules the emission properties are assigned to metal perturbed IL charge transfer mixed with some MLCT contribution. In the case of oligomers 2·X the luminescence is significantly red-shifted with respect to 1 and originates mainly from the (3)MMLCT excited states. The emission energies depend on the structural arrangement in the crystal and on the complex concentration in solution, variation of which allows for the modulation of the emission color from greenish to deep red. In the solid state the lability of the ligands L leads to vapor-induced reversible transformation 1 ↔ 2 that is accompanied by the molecular reorganization and, consequently, dramatic change of the photophysical properties. Time-dependent density functional theory calculations adequately support the models proposed for the rationalization of the experimental observations.

  4. Solvation of Ucl (6)**2- Anionic Complex By Mebu (3) N+, Bume (2) Im+, And Bumeim+ Cations

    SciTech Connect

    Bosse, E.; Auwer, C.Den; Berthon, C.; Guilbaud, P.; Grigoriev, M.S.; Nikitenko, S.; Naour, C.Le; Cannes, C.; Moisy, P.

    2009-05-11

    The complexes [MeBu{sub 3}N]{sub 2}[UCl{sub 6}] and [BuMe{sub 2}Im]{sub 2}[UCl{sub 6}] were characterized in the solid state and in solution of [MeBu{sub 3}N][Tf{sub 2}N], [BuMe{sub 2}Im][Tf{sub 2}N], and [BuMeIm][Tf{sub 2}N] room-temperature ionic liquids using single-crystal XRD, EXAFS, electrochemistry, UV-visible absorption spectroscopy, and NMR. In the solid state and in solution, the existence of hydrogen bonding between the UCl{sub 6}{sup 2-} complex and the ionic liquid cations was revealed by these techniques. The MeBu{sub 3}N{sup +} cation interacts with UCl{sub 6}{sup 2-} via the protons on the {alpha}-carbon atoms of nitrogen. The protons of the imidazolium ring account for the interaction between the BuMe{sub 2}Im{sup +} cation and the UCl{sub 6}{sup 2-} anion. For the BuMeIm{sup +} cation the major interaction was confirmed between the most acidic proton on C(2) and the chlorides of UCl{sub 6}{sup 2-}. The experimental results also show that the intensity of the interaction between the UCl{sub 6}{sup 2-} anion and the cation varies with the ionic liquid cation in the following order: MeBu{sub 3}N{sup +} {approx} BuMe{sub 2}Im{sup +} << BuMeIm{sup +}.

  5. Aminoclay as a highly effective cationic vehicle for enhancing adenovirus-mediated gene transfer through nanobiohybrid complex formation.

    PubMed

    Kim, Soo-Yeon; Lee, Sang-Jin; Han, Hyo-Kyung; Lim, Soo-Jeong

    2017-02-01

    Electrostatic complexation of adenovirus (Ad) with cationic lipids or polymers has been shown to be an effective means for overcoming the limitations of adenoviral vectors and enhancing gene-transfer efficacy. However, such complexation causes cytotoxicity, limiting the use of this strategy. The present study explored the potential of 3-aminopropyl functionalized magnesium phyllosilicate (aminoclay) as a cationic vehicle for improving Ad-mediated gene transfer without inducing cytotoxicity. Aminoclay complexation produced a dose-dependent increase in Ad-mediated transgene expression in both Ad infection-sensitive and -refractory cells, thereby greatly lowering the Ad dose required for transgene expression. Unlike the case for cationic lipids (Lipofectamine) or polymers (Polybrene), the enhancement effect of aminoclay was not accompanied by significant cytotoxicity regardless of cell lines and it was not observed for nonviral plasmid vectors. Physical characterization studies revealed that nanobiohybrid complexes formed between aminoclay and Ad particles through electrostatic interactions, creating aggregates of Ad particles whose surface was shielded with aminoclay nanosheet oligomers. It appears that aminoclay complexation changes the surface charge of Ad particles from a negative to a highly positive value and thus increases Ad binding to cellular membranes, thereby providing an additional cellular entry mechanism, namely caveolae-dependent endocytosis. Aminoclay-Ad nanobiohybrids may serve as a next-generation efficient, versatile and biocompatible gene-delivery carrier.

  6. Influence of anion on the quadratic nonlinearity and depolarization ratios of scattered second harmonic light from cationcomplexes.

    PubMed

    Pandey, Ravindra; Mukhopadhyay, S; Ramasesha, S; Das, Puspendu K; Zyss, Joseph

    2012-05-21

    We have investigated quadratic nonlinearity (β(HRS)) and linear and circular depolarization ratios (D and D('), respectively) of a series of 1:1 complexes of tropyliumtetrafluoroborate as a cation and methyl-substituted benzenes as π-donors by making polarization resolved hyper-Rayleigh scattering measurements in solution. The measured D and D(') values are much lower than the values expected from a typical sandwich or a T-shaped geometry of a complex. In the cationcomplexes studied here, the D value varies from 1.36 to 1.46 and D(') from 1.62 to 1.72 depending on the number of methyl substitutions on the benzene ring. In order to probe it further, β, D and D(') were computed using the Zerner intermediate neglect of differential overlap-correction vector self-consistent reaction field technique including single and double configuration interactions in the absence and presence of BF(4) (-) anion. In the absence of the anion, the calculated value of D varies from 4.20 to 4.60 and that of D(') from 2.45 to 2.72 which disagree with experimental values. However, by arranging three cation-π BF(4)(-) complexes in a trigonal symmetry, the computed values are brought to agreement with experiments. When such an arrangement was not considered, the calculated β values were lower than the experimental values by more than a factor of two. This unprecedented influence of the otherwise "unimportant" anion in solution on the β value and depolarization ratios of these cationcomplexes is highlighted and emphasized in this paper.

  7. Unexpected Actinyl Cation-Directed Structural Variation in Neptunyl(VI) A-Type Tri-lacunary Heteropolyoxotungstate Complexes

    SciTech Connect

    Berg, John M.; Gaunt, Andrew J.; May, Iain; Pugmire, Alison L.; Reilly, Sean D.; Scott, Brian L.; Wilkerson, Marianne P.

    2015-04-22

    A-type tri-lacunary heteropolyoxotungstate anions (e.g., [PW9O34]9-, [AsW9O34]9-, [SiW9O34]10- and [GeW9O34]10-) are multi-dentate oxygen donor ligands that readily form sandwich complexes with actinyl cations ({UO2}2+, {NpO2}+, {NpO2}2+ & {PuO2}2+) in near neutral/slightly alkaline aqueous solutions. Two or three actinyl cations are sandwiched between two trilacunary anions, with additional cations (Na+, K+ or NH4 +) also often held within the cluster. Studies thus far have indicated that it is these additional +I cations, rather than the specific actinyl cation, that direct the structural variation in the complexes formed. We now report the structural characterization of the neptunyl (VI) cluster complex (NH4)13 [Na(NpO2)2(A-α- PW9O34)2]·12H2O. The anion in this complex, [Na(NpO2)2(PW9O34)2]13-, contains one Na+ cation and two {NpO2}2+ cations held between two [PW9O34]9- anions – with an additional partial occupancy NH4 + or {NpO2}2+ cation also present. In the analogous uranium (VI) system, under similar reaction conditions that includes an excess of NH4Cl in the parent solution, it was previously shown that [(NH4)2(UVIO2)2(A-PW9O34)2]12- is the dominant species in both solution and the crystallized salt. Spectroscopic studies provide further proof of differences in the observed chemistry for the {NpO2}2+

  8. Thermal treatment effects imposed on solid DNA cationic lipid complex with hexadecyltrimethylammonium chloride, observed by variable angle spectroscopic ellipsometry

    SciTech Connect

    Nizioł, Jacek

    2014-12-21

    DNA cationic lipid complexes are materials of properties required for applications in organic electronics and optoelectronics. Often, their thermal stability demonstrated by thermogravimetry is cited in the literature as important issue. However, little is known about processes occurring in heated solid DNA cationic lipid complexes. In frame of this work, thin films of Deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-CTMA) were deposited on silicon wafers. Samples were thermally annealed, and simultaneously, their optical functions were measured by spectroscopic ellipsometry. At lower temperatures, thermal expansion coefficient of solid DNA-CTMA was negative, but at higher temperatures positive. Thermally induced modification of absorption spectrum in UV-vis was observed. It occurred at a range of temperatures higher than this of DNA denaturation in solution. The observed phenomenon was irreversible, at least in time scale of the experiment (one day)

  9. Characterization of the nanostructure of complexes formed by single- or double-stranded oligonucleotides with a cationic surfactant.

    PubMed

    Liu, Xiaoyang; Abbott, Nicholas L

    2010-12-02

    We report the use of dynamic light scattering (DLS), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) to characterize the nanostructure of complexes formed by either single- or double-stranded oligonucleotides with a cationic surfactant (cetyltrimethylammonium bromide, CTAB) in aqueous solution (1 mM Li(2)SO(4)). For single-stranded oligonucleotides 5'-A(20)-3' and 5'-CCCCATTCTAGCAGCCCGGG-3', both the appearance of two Bragg peaks (at 0.14 and 0.28 Å(-1)) in SAXS spectra with a spacing of 1:2 and form factor fits to SANS spectra are consistent with the presence of multilamellar vesicles (with, on average, 6-9 layers with a periodicity of 45-48 Å). Some samples showed evidence of an additional Bragg peak (at 0.20 Å(-1)) associated with periodic packing (with a periodicity of 31 Å) of the oligonucleotides within the lamellae of the nanostructure. The nucleotide composition of the single-stranded oligonucleotides was also found to impact the number and size of the complexes formed with CTAB. In contrast to 5'-A(20)-3' and 5'-CCCCATTCTAGCAGCCCGGG-3', 5'-T(20)-3' did not change the state of aggregation of CTAB (globular micelles) over a wide range of oligonucleotide:CTAB charge ratios. These results support the proposition that hydrophobic interactions, as well as electrostatics, play a central role in the formation of complexes between cationic amphiphiles and single-stranded oligonucleotides and thus give rise to nanostructures that depend on nucleotide composition. In contrast to the single-stranded oligonucleotides, for double-stranded oligonucleotides mixed with CTAB, three Bragg peaks (0.13, 0.23, and 0.25 Å(-1)) in SAXS spectra with a spacing ratio of 1:√3:√4 and characteristic changes in SANS spectra indicate formation of a hexagonal nanostructure. Also, the composition of the double-stranded oligonucleotides did not measurably impact the nanostructure of complexes formed with CTAB, suggesting that electrostatic

  10. Probing the ubiquinone reduction site of mitochondrial complex I using novel cationic inhibitors.

    PubMed

    Miyoshi, H; Inoue, M; Okamoto, S; Ohshima, M; Sakamoto, K; Iwamura, H

    1997-06-27

    A wide variety of N-methylpyridinium and quinolinium cationic inhibitors of mitochondrial complex I was synthesized to develop potent and specific inhibitors acting selectively at one of the two proposed ubiquinone binding sites of this enzyme (Gluck, M. R., Krueger, M. J., Ramsay, R. R., Sablin, S. O., Singer, T. P., and Nicklas, W. J. (1994) J. Biol. Chem. 269, 3167-3174). N-Methyl-2-n-dodecyl-3-methylquinolinium (MQ18) inhibited electron transfer of complex I at under microM order regardless of whether exogenous or endogenous ubiquinone was used as an electron acceptor. The presence of tetraphenylboron (TPB-) potentiated the inhibition by MQ18 in a different way depending upon the molar ratio of TPB- to MQ18. In the presence of a catalytic amount of TPB-, the inhibitory potency of MQ18 was remarkably enhanced, and the extent of inhibition was almost complete. The presence of equimolar TPB- partially reactivated the enzyme activity, and the inhibition was saturated at an incomplete level (approximately 50%). These results are explained by the proposed dual binding sites model for ubiquinone (cited above). The inhibition behavior of MQ18 for proton pumping activity was similar to that for electron transfer activity. The good correlation of the inhibition behavior for the two activities indicates that both ubiquinone binding sites contribute to redox-driven proton pumping. On the other hand, N-methyl-4-[2-methyl-3-(p-tert-butylphenyl)]propylpyridinium (MP6) without TPB- brought about approximately 50% inhibition at 5 microM, but the inhibition reached a plateau at this level over a wide range of concentrations. Almost complete inhibition was readily obtained at low concentrations of MP6 in the presence of TPB-. Thus MP6 appears to be a selective inhibitor of one of the two ubiquinone binding sites. With a combined use of MP6 and 2,3-diethoxy-5-methyl-6-geranyl-1,4-benzoquinone, we also provided kinetic evidence for the existence of two ubiquinone binding sites.

  11. Cation-π and CH-π Interactions in the Coordination and Solvation of Cu(+)(acetylene)n Complexes.

    PubMed

    Brathwaite, Antonio D; Ward, Timothy B; Walters, Richard S; Duncan, Michael A

    2015-06-04

    Copper-acetylene cation complexes of the form Cu(C2H2)n(+) (n = 1-8) are produced by laser ablation in a supersonic expansion of acetylene/argon. The ions are mass selected and studied via infrared laser photodissociation spectroscopy in the C-H stretching region (3000-3500 cm(-1)). The structure and bonding of these complexes are investigated through the number of infrared active bands, their relative intensities and their frequency positions. Density functional theory calculations are carried out in support of the experimental data. The combined data show that cationcomplexes are formed for the n = 1-3 species, resulting in red-shifted C-H stretches on the acetylene ligands. The coordination of the copper cation is completed with three acetylene ligands, forming a "propeller" structure with D3 symmetry. Surprisingly, complexes with even greater numbers of acetylenes than this (4-6) have distinctive infrared band patterns quite different from those of the smaller complexes. Experiment combined with theory establishes that there is a fascinating pattern of second-sphere solvation involving the binding of acetylenes in bifurcated CH-π binding sites at the apex of two core ligands. This binding motif leads to three equivalent sites for second-sphere ligands, which when filled form a highly symmetrical Cu(+)(C2H2)6 complex. Solvent binding in this complex induces a structural change to planarity in the core, producing an appealing "core-shell" structure with D(3h) symmetry.

  12. Variational first hyperpolarizabilities of 2,3-naphtho-15-crown-5 ether derivatives with cation-complexing: a potential and selective cation detector.

    PubMed

    Yu, Hai-Ling; Wang, Wen-Yong; Hong, Bo; Zong, Ying; Si, Yan-Ling; Hu, Zhong-Qiang

    2016-09-29

    Crown ethers, as a kind of heterocycle, have been the subject of great interest over recent decades due to their selective capability to bind to metal cations. The use of a constant crown ether, such as naphtho-15-crown-5 (N15C5), and varied metal cations (Li(+), Na(+), K(+), Be(2+), Mg(2+), Ca(2+), Co(2+), Ni(2+), Cu(2+)) makes it possible to determine the contributions of the metal cations to nonlinear optical (NLO) responses and to design an appropriate NLO-based cation detector. N15C5 and its metal cation derivatives have been systematically investigated by density functional theory. It is found that the dependency of the first hyperpolarizability relies on the metal cation, especially for transition metals. The decrease of the first hyperpolarizabilities for alkali metal cation derivatives is due to their relatively low oscillator strengths, whereas the significant increase of the first hyperpolarizabilities for transition metal cation derivatives can be further illustrated by their low transition energies, large amplitudes and separate distributions of first hyperpolarizability density. Thus, the alkali metal and transition metal cations are distinguishable and the transition metal cations are easier to detect by utilizing the variations in NLO responses.

  13. The role of multivalent metal cations and organic complexing agents in bitumen-mineral interactions in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Gan, Weibing

    A systematic investigation was carried out to study the interactions between bitumen (or hexadecane) and minerals (quartz, kaolinite and illite) in aqueous solutions containing multivalent metal cations Ca2+, Mg2+ and Fe2+/Fe3+, in the absence and presence of organic complexing agents (oxalic acid, EDTA and citric acid). A range of experimental techniques, including coagulation measurement, visualization of bitumen-mineral attachment, metal ion adsorption measurement, zeta potential measurement, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopic analyses, were employed in the investigation. Free energy changes of adsorption of metal cations on the minerals and bitumen were evaluated using the James & Healy thermodynamic model. Total interaction energies between the minerals and bitumen were calculated using classical DLVO theory. It was observed that while the tested minerals showed varying degrees of mutual-coagulation with bitumen (or hexadecane), the presence of the multivalent metal cations could prominently increase the mutual coagulation. It was also found that such enhancement of the mutual coagulation was only significant when the metal cations formed first-order hydroxyl complexes (such as CaOH +, MgOH+, etc.) or metal hydroxides (such as Fe(OH) 3, Mg(OH)2, etc.). Therefore, the increase of the bitumen-mineral mutual coagulation by the metal cations was strongly pH dependent. Organic complexing agents (oxalic acid, citric acid and EDTA) used in this study, citric acid in particular, significantly reduced or virtually eliminated the mutual coagulation between bitumen (or hexadecane) and minerals caused by metal cations Ca2+, Mg2+, Fe 2+ and Fe3+. Due to its ability to substantially lower the mutual coagulation between bitumen and mineral particles, citric acid was found the most effective in improving bitumen-mineral liberation in solutions containing the multivalent metal cations at pH 8--10. In small scale flotation experiments

  14. Promoted adipogenesis of rat mesenchymal stem cells by transfection of small interfering RNA complexed with a cationized dextran.

    PubMed

    Nagane, Kentaro; Jo, Jun-ichiro; Tabata, Yasuhiko

    2010-01-01

    The objective of this study is to investigate the possibility of small interfering RNA (siRNA) complexed with a cationized dextran of nonviral carrier to biologically modify the adipogenesis extent of bone marrow-derived mesenchymal stem cells (MSC). Spermine was chemically introduced to the hydroxyl groups of dextran to prepare the cationized dextran (spermine-dextran). The spermine-dextran could form a complex with siRNA, and the physicochemical properties were changed by the molecular weight of dextran, the molar percentage of spermine introduced to dextran, and the molar ratio of nitrogen molecule of spermine-dextran to the phosphorous ones of siRNA (N/P ratio). The gene expression level of luciferase or green fluorescence protein was significantly suppressed by transfection with the complex of spermine-dextran and siRNA. The gene expression level by the complex decreased with an increase in the extent of complex internalized. Biochemical experiments revealed that culture in an adipogenic differentiation medium allowed MSC to differentiate into adipogenic cells. However, upon culturing with siRNA of anti-transcription coactivator containing PDZ-binding motif (TAZ) for osteogenic differentiation complexed with the spermine-dextran, the adipogenesis of MSC was further promoted. It is concluded that the spemine-dextran was a promising nonviral carrier to suppress the expression level of differentiation gene, resulting in the modification of cell differentiation direction.

  15. Impact of Bidentate Chelators on Lipophilicity, Stability and Biodistribution Characteristics of Cationic 99mTc-Nitrido Complexes

    PubMed Central

    Liu, Shuang; He, Zhengjie; Hsieh, Wen-Yuan; Kim, Yong-Seung

    2008-01-01

    This report describes synthesis and evaluation of novel cationic 99mTc-nitrido complexes, [99mTcN(L)(PNP)]+ (L = ma, ema, tma, etma and mpo; PNP = PNP5, PNP6 and L6), as potential radiotracers for heart imaging. Cationic complexes [99mTcN(L)(PNP)]+ were prepared in two steps. For example, reaction of succinic dihydrazide with 99mTcO4− in the presence of excess stannous chloride and PDTA resulted in the [99mTcN(PDTA)n] intermediate, which then reacted Hmpo and PNP6 at 100 °C for 10 – 15 min to give [99mTcN(mpo)(PNP6)]+ in >90% yield. It was found that bidentate chelators have a significant impact on lipophilicity, solution stability, biodistribution and metabolic stability of cationic 99mTc-nitrido complexes. The fact that [99mTcN(ema)(PNP6)]+ decomposes rapidly in presence of cysteine (1 mg/mL) while [99mTcN(etma)(PNP6)]+ and [99mTcN(mpo)(PNP6)]+ remain stable for >6 h under the same conditions strongly suggests that thione-S donors in bidentate chelators increase the solution stability of their cationic 99mTc-nitrido complexes. Biodistribution studies were performed on four cationic 99mTc-nitrido complexes in Sprague-Dawley rats. [99mTcN(etma)(PNP5)]+ is of particular interest due to its high initial heart uptake (1.81±0.35 %ID/g at 5 min postinjection), and long myocardial retention (1.99±0.47 %ID/g at 120 min postinjection). The heart/liver ratio of [99mTcN(etma)(PNP5)]+ (6.06±1.48) at 30 min postinjection is almost identical that of 99mTcN-DBODC5 (6.01±1.45), and is >2 times better than that of 99mTc-sestamibi (2.90±0.22). Results from metabolism studies show that [99mTcN(etma)(PNP5)]+ has no significant metabolism in the urine; but it does show significant metabolism in feces samples at 120 min postinjection. Planar imaging studies suggest that [99mTcN(etma)(PNP5)]+ might be able to give clinically useful images of the heart as early as 30 min postinjection. [99mTcN(etma)(PNP5)]+ is a very promising candidate for more pre-clinical evaluations in

  16. Divalent cations and heparin/heparan sulfate cooperate to control assembly and activity of the fibroblast growth factor receptor complex.

    PubMed

    Kan, M; Wang, F; To, B; Gabriel, J L; McKeehan, W L

    1996-10-18

    Polypeptides of the fibroblast growth factor (FGF) family are ubiquitous bioregulators within tissues whose activity is controlled by heparan sulfates within the pericellular matrix. FGF and the ectodomain of their transmembrane tyrosine kinase receptors (FGFR) exhibit heparin-binding domains that when juxtaposed in a FGF middle dotFGFR complex can accommodate a single, potentially bivalent, decameric polysaccharide chain in a ternary complex. Here we show that the interaction of heparin with FGF ligands is not affected by divalent cations. In contrast, the high affinity interaction (apparent Kd = 10 nM) of heparin with FGFR requires Ca2+ or Mg2+ at physiological concentrations. Divalent cations maintain FGFR in a heparan sulfate-dependent state in respect to FGF binding and an FGF- and heparan sulfate-dependent state in respect to autophosphorylation. A model is proposed where divalent cations and heparan sulfate cooperate to maintain FGFR in a conformation that restricts trans-phosphorylation between intracellular kinase domains. The restriction is overcome by FGF or constitutively as a common consequence of diverse mutations in FGFR associated with skeletal and craniofacial abnormalities.

  17. Photoluminescence of water-soluble CdSe/ZnS nanoparticles in complexes with cationic and anionic polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Strekal', N.; Kulakovich, O.; Belyaev, A.; Stsiapura, V.; Maskevich, S.

    2008-01-01

    The data on the influence of polyelectrolytes on the photon emission probability of water-soluble CdSe/ZnS nanoparticles are obtained. The decrease in the photoluminescence quantum yield of nanoparticles occurring upon their transfer to aqueous solutions from toluene (in the course of solubilization) depends on the ionic nature of an agent applied for the replacement of trioctylphosphine oxide residues on the surface of nanoparticles. It turns out that such a cationic modifying agent as cysteamine leads to an insignificant (˜10%) decrease in the photoluminescence quantum yield of nanoparticles. The use of such an anionic agent as mercaptoacetic acid causes a significant (˜80%) decrease in the quantum yield and the average decay time of photoluminescence. For nanoparticles modified by mercaptoacetic acid (anionic nanoparticles), this decrease is partially compensated if these particles interact with polyelectrolytes whose backbone is oppositely charged (cationic polyelectrolytes), such as polyallylamine and polydiallyldimethylammonium chloride. In this case, the photoluminescence quantum yield shows a reverse increase by 40%, remaining the same within a matter of months or longer. In contrast to this, cationic nanoparticles, only slightly quenched by cysteamine at the stage of solubilization, are appreciably degraded in complexes with anionic polyelectrolytes in solutions and upon immobilization of complexes on a substrate, so that their photoluminescence quantum yield irreversible decreases to zero within a few days. Possible mechanisms of the effects observed are discussed and their consideration in polyelectrolyte-based molecular lithography.

  18. Interactions and hybrid complex formation of anionic algal polysaccharides with a cationic glycine betaine-derived surfactant.

    PubMed

    Covis, Rudy; Vives, Thomas; Gaillard, Cédric; Benoit, Maud; Benvegnu, Thierry

    2015-05-05

    The interaction between anionic algal polysaccharides ((κ)-, (ι)-, (λ)-carrageenans, alginate and ulvan) and a cationic glycine betaine (GB) amide surfactant possessing a C18:1 alkyl chain has been studied using isothermal titration calorimetry (ITC), zeta-potential measurements, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), and surface tension measurements. It was observed that this cationic surfactant derived from renewable raw materials induced cooperative binding with the anionic polymers at critical aggregation concentration (CAC) and the CAC values are significantly lower than the corresponding critical micelle concentration (CMC) for the surfactant. The CMC of cationic GB surfactant was obtained at higher surfactant concentration in polysaccharide solution than in pure water. More interestingly, the presence of original polysaccharide/surfactant hybrid complexes formed above the CMC value was evidenced from (κ)-carrageenan by microscopy (TEM and AFM). Preliminary investigations of the structure of these complexes revealed the existence of surfactant nanoparticles surrounded with polysaccharide matrix, probably resulting from electrostatic attraction. In addition, ITC measurements clearly showed that the interactions of the κ-carrageenan was stronger than for other polysaccharides ((ι)-, (λ)-carrageenans, alginate and ulvan). These results may have important impact on the use of the GB amide surfactant in formulations based on algal polysaccharides for several applications such as in food, cosmetics, and detergency fields.

  19. Broad Scope Aminocyclization of Enynes with Cationic JohnPhos-Gold(I) Complex as the Catalyst.

    PubMed

    Miller, Ricarda; Carreras, Javier; Muratore, Michael E; Gaydou, Morgane; Camponovo, Francesco; Echavarren, Antonio M

    2016-03-04

    A practical aminocyclization of 1,6-enynes with a wide variety of substituted anilines, including N-alkyl anilines, has been achived by using cationic [JohnPhosAu(MeCN)]SbF6 as a general purpose catalyst. The resulting adducts can be easily converted into polycyclic compounds by palladium- and gold-catalyzed reactions.

  20. Broad Scope Aminocyclization of Enynes with Cationic JohnPhos–Gold(I) Complex as the Catalyst

    PubMed Central

    2016-01-01

    A practical aminocyclization of 1,6-enynes with a wide variety of substituted anilines, including N-alkyl anilines, has been achived by using cationic [JohnPhosAu(MeCN)]SbF6 as a general purpose catalyst. The resulting adducts can be easily converted into polycyclic compounds by palladium- and gold-catalyzed reactions. PMID:26839084

  1. Polyampholyte nanoparticles prepared by self-complexation of cationized poly(γ-glutamic acid) for protein carriers.

    PubMed

    Shen, Heyun; Akagi, Takami; Akashi, Mitsuru

    2012-08-01

    A novel amphoteric poly(amino acid) is synthesized by grafting a cationic amino acid (L-Arg) to γ-PGA to prepare charged NPs. γ-PGA-Arg NPs can be prepared by the self-complexation of a single polymer by intra-/inter-molecular electrostatic interactions when the polymer is dispersed in water. The size and surface charge of the NPs can be regulated by the grafting degree of Arg (41, 56, and 83%). The smallest NPs are obtained at 56% grafting degree of the γ-PGA-Arg copolymer. The 56 and 83% grafting degree NPs are stable for at least 1 week. Depending on their surface charge, these NPs can selectively adsorb anionically or cationically charged proteins.

  2. Cationic terminal gallylene complexes by halide abstraction: coordination chemistry of a valence isoelectronic analogue of CO and N2.

    PubMed

    Coombs, Natalie D; Vidovic, Dragoslav; Day, Joanna K; Thompson, Amber L; Le Pevelen, Delphine D; Stasch, Andreas; Clegg, William; Russo, Luca; Male, Louise; Hursthouse, Michael B; Willock, David J; Aldridge, Simon

    2008-11-26

    While N(2) and CO have played central roles in developing models of electronic structure, and their interactions with transition metals have been widely investigated, the valence isoelectronic diatomic molecules EX (E = group 13 element, X = group 17 element) have yet to be isolated under ambient conditions, either as the "free" molecule or as a ligand in a simple metal complex. As part of a program designed to address this deficiency, together with wider issues of the chemistry of cationic systems [L(n)M(ER)](+) (E = B, Al, Ga; R = aryl, amido, halide), we have targeted complexes of the type [L(n)M(GaX)](+). Halide abstraction is shown to be a viable method for the generation of mononuclear cationic complexes containing gallium donor ligands. The ability to isolate tractable two-coordinate products, however, is strongly dependent on the steric and electronic properties of the metal/ligand fragment. In the case of complexes containing ancillary pi-acceptor ligands such as CO, cationic complexes can only be isolated as base-trapped adducts, even with bulky aryl substituents at gallium. Base-free gallylene species such as [Cp*Fe(CO)(2)(GaMes)](+) can be identified only in the vapor phase by electrospray mass spectrometry experiments. With bis(phosphine) donor sets at the metal, the more favorable steric/electronic environment allows for the isolation of two-coordinate ligand systems, even with halide substituents at gallium. Thus, [Cp*Fe(dppe)(GaI)](+)[BAr(f)(4)](-) (9) can be synthesized and shown crystallographically to feature a terminally bound GaI ligand; 9 represents the first experimental realization of a complex containing a valence isoelectronic group 13/group 17 analogue of CO and N(2). DFT calculations reveal a relatively weakly bound GaI ligand, which is confirmed experimentally by the reaction of 9 with CO to give [Cp*Fe(dppe)(CO)](+)[BAr(f)(4)](-). In the absence of such reagents, 9 is stable for weeks in fluorobenzene solution, presumably reflecting (i

  3. Effects of crystal lattice and counterions on the geometries of metal complexes: Hexaaquomagnesium cation as a case study

    NASA Astrophysics Data System (ADS)

    Nascimento, Agrinaldo J.; Moura, Gustavo L. C.; Lima, Nathalia B. D.; Simas, Alfredo M.

    2017-04-01

    We address how diverse are crystallographic geometries of several compounds of the same metal complex cation, and also how they contrast from those resulting from quantum chemical calculations on isolated molecules. In a crystal, besides the desired molecule or molecular ion of interest, there are usually present co-crystallized molecules and/or counterions, that, together with the crystal lattice, perturb its geometry. In order to examine the nature and intensity of each of these effects, we present a novel methodology to separate and quantify them. Accordingly, we compared the crystallographic geometries of the hexaaquomagnesium cation in 45 different compounds, each one with different counter ions and other co-crystallized molecules. We show that the resulting perturbations of the counterions on the geometry of the complex behave as pseudorandom around a mean, and are subject to suitable probability distributions. Results indicate that the crystal lattice effect seems to compress the hexaaquomagnesium complex cation by a magnitude which we estimate to be 0.047 Å in its distances, and 6.6% in its volume. This crystal lattice effect is then superimposed to the effect of the counter ions and other molecules, which provokes a further ±0.035 Å variation on the geometries of the compounds. Consequently, perturbations of counterions and the lattice effect, together, amount to a statistical difference of ≈0.05 Å for distances, and ≈5° for the angles. As such, only within these boundaries, may quantum chemical calculations on isolated complexes be compared to crystallographic results.

  4. Time resolved SAXS to study the complexation of siRNA with cationic micelles of divalent surfactants.

    PubMed

    Falsini, Sara; Ristori, Sandra; Ciani, Laura; Di Cola, Emanuela; Supuran, Claudiu T; Arcangeli, Annarosa; In, Martin

    2014-04-07

    The complexation of siRNA (small interfering RNA) with cationic micelles was studied using time dependent synchrotron SAXS. Micelles were formed by two types of divalent cationic surfactants, i.e. Gemini bis(quaternary ammonium) bromide with variable spacer length (12-3-12, 12-6-12, 12-12-12) and a weak electrolyte surfactant (SH14) with triazine head. Immediately after mixing (t < 50 ms), new large aggregates appeared in solution and the scattering intensity at low q increased. Concomitantly, the presence of a quasi-Bragg peak at q ∼ 1.5 nm(-1) indicated core structuring within the complexes. We hypothesize that siRNA and micelles are alternately arranged into "sandwiches", forming domains with internal structural coherence. The process of complex reorganization followed a first-order kinetics and was completed in less than about 5 minutes, after which a steady state was reached. Aggregates containing Geminis were compact globular structures whose gyration radii Rg depended on the spacer length and were in the order of 7-27 nm. Complexes containing SH14 (Rg = 14-16 nm) were less ordered and possessed a looser internal arrangement. The obtained data, joint with previous structural investigation using Dynamic Light Scattering, Zeta Potential and Small Angle Neutron Scattering, are encouraging evidence for using these systems in biological trials. In fact we showed that transfection agents can be obtained by simply mixing a micelle solution of the cationic surfactant and a siRNA solution, both of which are easily prepared and stable.

  5. Photophysical and antibacterial properties of complex systems based on smectite, a cationic surfactant and methylene blue.

    PubMed

    Donauerová, Alena; Bujdák, Juraj; Smolinská, Miroslava; Bujdáková, Helena

    2015-10-01

    Solid or colloidal materials with embedded photosensitizers are promising agents from the medical or environmental perspective, where the direct use of photoactive solutions appears to be problematic. Colloids based on layered silicates of the saponite (Sap) and montmorillonite (Mon) type, including those modified with dodecylammonium cations (C12) and photosensitizer--methylene blue (MB) were studied. Two representatives of bacteria, namely Enterobacter cloacae and Escherichia coli, were selected for this work. A spectral study showed that MB solutions and also colloids with Sap including C12 exhibited the highest photoactivities. The antimicrobial properties of the smectite colloids were not directly linked to the photoactivity of the adsorbed MB cations. They were also influenced by other parameters, such as light vs. dark conditions, the spectrum, power and duration of the light used for the irradiation; growth phases, and the pre-treatment of microorganisms. Both the photoactivity and antimicrobial properties of the colloids were improved upon pre-modification with C12. Significantly higher antimicrobial properties were observed for the colloids based on Mon with MB in the form of molecular aggregates without significant photoactivities. The MB/Mon colloids, both modified and non-modified with C12 cations, exhibited higher antimicrobial effects than pure MB solution. Besides the direct effect of photosensitization, the surface properties of the silicate particles likely played a crucial role in the interactions with microorganisms.

  6. Temperature-induced collapse of alkaline Earth cation-polyacrylate anion complexes.

    PubMed

    Lages, Sebastian; Schweins, Ralf; Huber, Klaus

    2007-09-06

    Polyacrylate anions are used to inhibit CaCO3 precipitation and may be a promising additive to control formation of inorganic nanoparticles. The origin of this applicability lies in specific interactions between the alkaline earth cations and the carboxylate functions along the polyacrylate chains. In the absence of CO32- anions, these interactions eventually cause precipitation of polyelectrolytes. Extended investigation of dilute sodium polyacrylate solutions approaching this precipitation threshold revealed a dramatic shrinking of the PA coil dimensions once the threshold is reached (Eur. Phys. J. E 2001, 5, 117). Recent isothermal calorimetric titration experiments by Antonietti et al. (Macromolecules 2004, 37, 3444) indicated that the driving force of this precipitation is entropic in nature. In the present work, we investigated the impact of temperature on the structural changes of dissolved polyacrylate chains decorated with alkaline earth cations. To this end, large polyacrylate chains were brought close to the precipitation threshold by the addition of distinct amounts of Ca2+ or Sr2+ cations. The resulting structural intermediates were then subjected to temperature variations in the range of 15 degrees C

  7. Cation-limited kinetic model for microbial extracellular electron transport via an outer membrane cytochrome C complex

    PubMed Central

    Okamoto, Akihiro; Tokunou, Yoshihide; Saito, Junki

    2016-01-01

    Outer-membrane c-type cytochrome (OM c-Cyt) complexes in several genera of iron-reducing bacteria, such as Shewanella and Geobacter, are capable of transporting electrons from the cell interior to extracellular solids as a terminal step of anaerobic respiration. The kinetics of this electron transport has implications for controlling the rate of microbial electron transport during bioenergy or biochemical production, iron corrosion, and natural mineral cycling. Herein, we review the findings from in-vivo and in-vitro studies examining electron transport kinetics through single OM c-Cyt complexes in Shewanella oneidensis MR-1. In-vitro electron flux via a purified OM c-Cyt complex, comprised of MtrA, B, and C proteins from S. oneidensis MR-1, embedded in a proteoliposome system is reported to be 10- to 100-fold faster compared with in-vivo estimates based on measurements of electron flux per cell and OM c-Cyts density. As the proteoliposome system is estimated to have 10-fold higher cation flux via potassium channels than electrons, we speculate that the slower rate of electron-coupled cation transport across the OM is responsible for the significantly lower electron transport rate that is observed in-vivo. As most studies to date have primarily focused on the energetics or kinetics of interheme electron hopping in OM c-Cyts in this microbial electron transport mechanism, the proposed model involving cation transport provides new insight into the rate detemining step of EET, as well as the role of self-secreted flavin molecules bound to OM c-Cyt and proton management for energy conservation and production in S. oneidensis MR-1. PMID:27924259

  8. Is the formation of cationic lipid-DNA complexes a thermodynamically driven phenomenon? Structure and phase behavior of DC-Chol/DNA complexes say not

    NASA Astrophysics Data System (ADS)

    Caracciolo, Giulio; Pozzi, Daniela; Caminiti, Ruggero

    2006-07-01

    The currently accepted mechanism of formation of cationic lipid-DNA complexes (lipoplexes) relies on the basic assumption that equilibrium structure of lipoplexes is regulated by thermodynamics. The main consequence is that neutral lipoplexes are one phase whereas positively (or negatively) charged ones coexist with excess lipid (or excess DNA). The authors report a small angle x-ray diffraction study on the structure of lipoplexes made of the cationic lipid 3β-[N-(N ,N-dimethylaminoethane)-carbamoyl]cholesterol and calf thymus Na-DNA. Here the authors show that positively charged lipoplexes can coexist with unbound DNA and they claim that steric size effects are definitely important to determine the equilibrium structure of lipoplexes.

  9. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex.

    PubMed

    Hou, Jianghui; Renigunta, Aparna; Konrad, Martin; Gomes, Antonio S; Schneeberger, Eveline E; Paul, David L; Waldegger, Siegfried; Goodenough, Daniel A

    2008-02-01

    Tight junctions (TJs) play a key role in mediating paracellular ion reabsorption in the kidney. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an inherited disorder caused by mutations in the genes encoding the TJ proteins claudin-16 (CLDN16) and CLDN19; however, the mechanisms underlying the roles of these claudins in mediating paracellular ion reabsorption in the kidney are not understood. Here we showed that in pig kidney epithelial cells, CLDN19 functioned as a Cl(-) blocker, whereas CLDN16 functioned as a Na(+) channel. Mutant forms of CLDN19 that are associated with FHHNC were unable to block Cl(-) permeation. Coexpression of CLDN16 and CLDN19 generated cation selectivity of the TJ in a synergistic manner, and CLDN16 and CLDN19 were observed to interact using several criteria. In addition, disruption of this interaction by introduction of FHHNC-causing mutant forms of either CLDN16 or CLDN19 abolished their synergistic effect. Our data show that CLDN16 interacts with CLDN19 and that their association confers a TJ with cation selectivity, suggesting a mechanism for the role of mutant forms of CLDN16 and CLDN19 in the development of FHHNC.

  10. Al3Li4(BH4)13: a complex double-cation borohydride with a new structure.

    PubMed

    Lindemann, Inge; Domènech Ferrer, Roger; Dunsch, Lothar; Filinchuk, Yaroslav; Cerný, Radovan; Hagemann, Hans; D'Anna, Vincenza; Lawson Daku, Latévi Max; Schultz, Ludwig; Gutfleisch, Oliver

    2010-08-02

    The new double-cation Al-Li-borohydride is an attractive candidate material for hydrogen storage due to a very low hydrogen desorption temperature (approximately 70 degrees C) combined with a high hydrogen density (17.2 wt%). It was synthesised by high-energy ball milling of AlCl(3) and LiBH(4). The structure of the compound was determined from image-plate synchrotron powder diffraction supported by DFT calculations. The material shows a unique 3D framework structure within the borohydrides (space group=P-43n, a=11.3640(3) A). The unexpected composition Al(3)Li(4)(BH(4))(13) can be rationalized on the basis of a complex cation [(BH(4))Li(4)](3+) and a complex anion [Al(BH(4))(4)](-). The refinements from synchrotron powder diffraction of different samples revealed the presence of limited amounts of chloride ions replacing the borohydride on one site. In situ Raman spectroscopy, differential scanning calorimetry (DSC), thermogravimetry (TG) and thermal desorption measurements were used to study the decomposition pathway of the compound. Al-Li-borohydride decomposes at approximately 70 degrees C, forming LiBH(4). The high mass loss of about 20 % during the decomposition indicates the release of not only hydrogen but also diborane.

  11. Electron transfer from aromatic amino acids to guanine and adenine radical cations in pi stacked and T-shaped complexes.

    PubMed

    Butchosa, Cristina; Simon, Sílvia; Voityuk, Alexander A

    2010-04-21

    Similar redox properties of the natural nucleobases and aromatic amino acids make it possible for electron transfer (ET) to occur between these sites in protein-nucleic acid complexes. Using DFT calculations, we estimate the ET rate from aromatic amino acid X (X = Phe, His, Tyr and Trp) to radical cations of guanine (G) and adenine (A) in dimers G-X and A-X with different arrangement of the subunits. We show that irrespective of the mutual orientation of the aromatic rings, the electronic interaction in the systems is strong enough to ensure effective ET from X to G(+) or A(+). Surprisingly, relatively high ET rates are found in T-shaped dimers. This suggests that pi stacking of nucleobases and aromatic amino acids is not required for feasible ET. In most complexes [G-X](+) and [A-X](+), we find the excess charge to be confined to a single site, either the nucleobase or amino acid X. Then, conformational changes may initiate migration of the radical cation state from the nucleobase to X and back. The ET process from Trp and Tyr to G(+) is found to be faster than deprotonation of G(+). Because the last reaction may lead to the formation of highly mutagenic species, the efficient repair of G(+) may play an important role in the protection of genomic DNA from oxidative damage.

  12. Enhanced suppression of tumor growth using a combination of NK4 plasmid DNA-PEG engrafted cationized dextran complex and ultrasound irradiation.

    PubMed

    Hosseinkhani, H; Kushibiki, T; Matsumoto, K; Nakamura, T; Tabata, Y

    2006-05-01

    This investigation aims to determine experimentally whether or not ultrasound (US) irradiation is effective in enhancing the in vivo gene expression of NK4 plasmid DNA and suppressing tumor growth. NK4, composed of the NH2-terminal hairpin and subsequent four-kringle domains of hepatocyte growth factor (HGF), acts as an HGF-antagonist and angiogenesis inhibitor. Dextran was cationized by introducing spermine to the hydroxyl groups to allow for polyionic complexation with NK4 plasmid DNA. The cationized dextran was additionally modified with poly(ethylene glycol) (PEG) molecules giving PEG engrafted cationized dextran. Significant suppression of tumor growth was observed when PEG engrafted cationized dextran-NK4 plasmid DNA complexes were intravenously injected into mice carrying a subcutaneous Lewis lung carcinoma tumor mass with subsequent US irradiation when compared with the cationized dextran-NK4 plasmid DNA complex and naked NK4 plasmid DNA with or without US irradiation. We conclude that complexation with PEG-engrafted cationized dextran in combination with US irradiation is a promising way to target the NK4 plasmid DNA to the tumor for gene expression.

  13. Tuning the Emission of Cationic Iridium (III) Complexes Towards the Red Through Methoxy Substitution of the Cyclometalating Ligand

    NASA Astrophysics Data System (ADS)

    Hasan, Kamrul; Bansal, Ashu K.; Samuel, Ifor D. W.; Roldán-Carmona, Cristina; Bolink, Henk J.; Zysman-Colman, Eli

    2015-07-01

    The synthesis, characterization and evaluation in solid-state devices of a series of 8 cationic iridium complexes bearing different numbers of methoxy groups on the cyclometallating ligands are reported. The optoelectronic characterization showed a dramatic red shift in the absorption and the emission and a reduction of the electrochemical gap of the complexes when a methoxy group was introduced para to the Ir-C bond. The addition of a second or third methoxy group did not lead to a significant further red shift in these spectra. Emission maxima over the series ranged from 595 to 730 nm. All complexes possessing a motif with a methoxy group at the 3-position of the cyclometalating ligands showed very short emission lifetimes and poor photoluminescence quantum yields whereas complexes having a methoxy group at the 4-position were slightly blue shifted compared to the unsubstituted parent complexes, resulting from the inductively electron withdrawing nature of this directing group on the Ir-C bond. Light-emitting electrochemical cells were fabricated and evaluated. These deep red emitters generally showed poor performance with electroluminescence mirroring photoluminescence. DFT calculations accurately modelled the observed photophysical and electrochemical behavior of the complexes and point to an emission from a mixed charge transfer state.

  14. Tuning the Emission of Cationic Iridium (III) Complexes Towards the Red Through Methoxy Substitution of the Cyclometalating Ligand

    PubMed Central

    Hasan, Kamrul; Bansal, Ashu K.; Samuel, Ifor D.W.; Roldán-Carmona, Cristina; Bolink, Henk J.; Zysman-Colman, Eli

    2015-01-01

    The synthesis, characterization and evaluation in solid-state devices of a series of 8 cationic iridium complexes bearing different numbers of methoxy groups on the cyclometallating ligands are reported. The optoelectronic characterization showed a dramatic red shift in the absorption and the emission and a reduction of the electrochemical gap of the complexes when a methoxy group was introduced para to the Ir-C bond. The addition of a second or third methoxy group did not lead to a significant further red shift in these spectra. Emission maxima over the series ranged from 595 to 730 nm. All complexes possessing a motif with a methoxy group at the 3-position of the cyclometalating ligands showed very short emission lifetimes and poor photoluminescence quantum yields whereas complexes having a methoxy group at the 4-position were slightly blue shifted compared to the unsubstituted parent complexes, resulting from the inductively electron withdrawing nature of this directing group on the Ir-C bond. Light-emitting electrochemical cells were fabricated and evaluated. These deep red emitters generally showed poor performance with electroluminescence mirroring photoluminescence. DFT calculations accurately modelled the observed photophysical and electrochemical behavior of the complexes and point to an emission from a mixed charge transfer state. PMID:26179641

  15. Synthesis and chemistry of cationic d{sup 0} metal alkyl complexes. Progress report, July 1988--May 1991

    SciTech Connect

    Jordan, R.F.

    1991-12-31

    The objective of this project is to develop new types of electrophilic metal alkyl complexes for catalytic C-H activation and olefin polymerization chemistry, and associated fundamental mechanistic studies. We have focused our efforts on four classes of early metal alkyl complexes: (1) cationic group 4 Cp{sub 2}M(R){sup +} complexes (1) which are active species in Cp{sub 2}MX{sub 2}-based Ziegler-Natta olefin polymerization catalyst systems and which catalyze productive C-H activation reactions of heterocycles, (2) neutral (dicarbollide)(Cp*)M(R) complexes (2) which are structurally are electronically very similar to 1, (3) half-sandwich complexes CpM(R){sub 2}(L){sub n}{sup +} which are highly coordinatively and electronically unsaturated, and (4) new group 5 (dicarbollide)(Cp)MR{sub 2} and (dicarbollide){sub 2} MR complexes which are more unsaturated than group 5 Cp{sub 2}M systems due to incorporation of the dicarbollide ligand.

  16. Cationic lanthanide complexes of neutral tripodal N,O ligands: enthalpy versus entropy-driven podate formation in water.

    PubMed

    Bravard, Florence; Rosset, Caroline; Delangle, Pascale

    2004-07-07

    The cationic lanthanide complexes of two neutral tripodal N,O ligands, tpa (tris[(2-pyridyl)methyl]amine) and tpaam (tris[6-((2-N,N-diethylcarbamoyl)pyridyl)methyl]amine) are studied in water. The analysis of the proton lanthanide induced NMR shifts indicate that there is no abrupt structural change in the middle of the rare-earth series. Unexpectedly, the formation constant values of the lanthanide podates of tpaam and tpa in D2O at 298 K are similar, suggesting that the addition of the three amide groups to the ligand tpa does not lead to any increase in stability of the lanthanide complexes of tpaam in respect to tpa, even though the amide groups are coordinated to the metal in aqueous solution. The measurement of the enthalpy and entropy changes of the complexation reactions shows that the two similar ligands tpa and tpaam have different driving forces for lanthanide complexation. Indeed, the formation of tpa podates benefits from an exothermic enthalpy change associated with a small entropy change, whereas the complexation reaction with tpaam is clearly entropy-driven though opposed by a positive enthalpy change. The hydration states of the europium complexes were measured by luminescence and show the coordination of 4-5 water ligands in [Eu(tpa)]3+ whereas there are only 2 in [Eu(tpaam)]3+. Therefore the heptadentate ligand tpaam releases the translational entropy of more water molecules than does the tetradentate ligand tpa.

  17. Microcalorimetric and spectroscopic investigation of the antibacterial properties of cationic ytterbium(III)-porphyrin complexes lacking charged peripheral groups.

    PubMed

    Hou, An-Xin; Xue, Zhi; Liu, Yi; Qu, Song-Sheng; Wong, Wai-Kwok

    2007-12-01

    The antibacterial activities towards Escherichia coli of two cationic Yb(III)-monoporphyrin complexes, [Yb(III)(TMP)(H2O)3]Cl (1) and [Yb(III)(TTP)(H2O)3]Cl (2), were investigated at the cellular and sub-cellular levels. The biological effects of the complexes on the growth of E. coli were evaluated by microcalorimetry and by analysis of the resulting metabolic thermogenic curves, from which IC50 values and metabolic parameters such as growth rate and generation time were derived. At the subcellular level, DNA-binding experiments were performed by means of UV/VIS- and fluorescence-titration experiments, as well as by near-infrared (NIR) emission, which revealed that 1 and 2 strongly bind to herring-sperm DNA (HS-DNA), though by different binding modes.

  18. Aqueous complexation of trivalent lanthanide and actinide cations by N,N,N'{sub 2},N'-tetrakis(2-pyridylmethyl)ethylenediamine.

    SciTech Connect

    Beitz, J. V.; Ensor, D. D.; Jensen, M. P.; Morss, L. R.

    1999-06-16

    The aqueous complexation reactions of trivalent lanthanide and actinide cations with the hexadentate ligand N,N,N{prime},N{prime}-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), have been characterized using potentiometric and spectroscopic techniques in 0.1 M NaClO{sub 4} At 25 C, the stability constant of Am(TPEN){sup 3+} is two orders of magnitude larger than that of Sm(TPEN){sup 3+}, reflecting the stronger interactions of the trivalent actinide cations with softer ligands as compared to lanthanide cations.

  19. Role of cholesterol on the transfection barriers of cationic lipid/DNA complexes

    NASA Astrophysics Data System (ADS)

    Pozzi, Daniela; Cardarelli, Francesco; Salomone, Fabrizio; Marchini, Cristina; Amenitsch, Heinz; Barbera, Giorgia La; Caracciolo, Giulio

    2014-08-01

    Most lipid formulations need cholesterol for efficient transfection, but the precise motivation remains unclear. Here, we have investigated the effect of cholesterol on the transfection efficiency (TE) of cationic liposomes made of 1,2-dioleoyl-3-trimethylammonium-propane and dioleoylphosphocholine in Chinese hamster ovary cells. The transfection mechanisms of cholesterol-containing lipoplexes have been investigated by TE, synchrotron small angle X-ray scattering, and laser scanning confocal microscopy experiments. We prove that cholesterol-containing lipoplexes enter the cells using different endocytosis pathways. Formulations with high cholesterol content efficiently escape from endosomes and exhibit a lamellar-nonlamellar phase transition in mixture with biomembrane mimicking lipid formulations. This might explain both the DNA release ability and the high transfection efficiency. These studies highlight the enrichment in cholesterol as a decisive factor for transfection and will contribute to the rational design of lipid nanocarriers with superior TE.

  20. Solution-phase mechanistic study and solid-state structure of a tris(bipyridinium radical cation) inclusion complex.

    PubMed

    Fahrenbach, Albert C; Barnes, Jonathan C; Lanfranchi, Don Antoine; Li, Hao; Coskun, Ali; Gassensmith, Jeremiah J; Liu, Zhichang; Benítez, Diego; Trabolsi, Ali; Goddard, William A; Elhabiri, Mourad; Stoddart, J Fraser

    2012-02-15

    The ability of the diradical dicationic cyclobis(paraquat-p-phenylene) (CBPQT(2(•+))) ring to form inclusion complexes with 1,1'-dialkyl-4,4'-bipyridinium radical cationic (BIPY(•+)) guests has been investigated mechanistically and quantitatively. Two BIPY(•+) radical cations, methyl viologen (MV(•+)) and a dibutynyl derivative (V(•+)), were investigated as guests for the CBPQT(2(•+)) ring. Both guests form trisradical complexes, namely, CBPQT(2(•+))⊂MV(•+) and CBPQT(2(•+))⊂V(•+), respectively. The structural details of the CBPQT(2(•+))⊂MV(•+) complex, which were ascertained by single-crystal X-ray crystallography, reveal that MV(•+) is located inside the cavity of the ring in a centrosymmetric fashion: the 1:1 complexes pack in continuous radical cation stacks. A similar solid-state packing was observed in the case of CBPQT(2(•+)) by itself. Quantum mechanical calculations agree well with the superstructure revealed by X-ray crystallography for CBPQT(2(•+))⊂MV(•+) and further suggest an electronic asymmetry in the SOMO caused by radical-pairing interactions. The electronic asymmetry is maintained in solution. The thermodynamic stability of the CBPQT(2(•+))⊂MV(•+) complex was probed by both isothermal titration calorimetry (ITC) and UV/vis spectroscopy, leading to binding constants of (5.0 ± 0.6) × 10(4) M(-1) and (7.9 ± 5.5) × 10(4) M(-1), respectively. The kinetics of association and dissociation were determined by stopped-flow spectroscopy, yielding a k(f) and k(b) of (2.1 ± 0.3) × 10(6) M(-1) s(-1) and 250 ± 50 s(-1), respectively. The electrochemical mechanistic details were studied by variable scan rate cyclic voltammetry (CV), and the experimental data were compared digitally with simulated data, modeled on the proposed mechanism using the thermodynamic and kinetic parameters obtained from ITC, UV/vis, and stopped-flow spectroscopy. In particular, the electrochemical mechanism of association

  1. Long term stable deep red light-emitting electrochemical cells based on an emissive, rigid cationic Ir(iii) complex

    DOE PAGES

    Namanga, Jude E.; Gerlitzki, Niels; Mallick, Bert; ...

    2017-02-17

    Here, the new cationic iridium complex [Ir(bzq)2(biq)][PF6] (bzq = benzo[h]quinolinato and biq = 2,2'-biquinoline) has been synthesized for application as an emitter in light emitting electrochemical cells (LECs). The molecular structure and crystal packing of this complex were established by single X-ray diffraction (SXRD). The electrochemical and photophysical properties of the complex were examined to determine the frontier orbital energies as well as the optical transitions that led to photoemission. The complex was found to emit at 644 nm and 662 nm for powder and thin films, respectively. A high powder photoluminescence quantum yield of 25% was determined, which ismore » attributed to a reduction in vibrational modes of the complex due to the use of the rigid cyclometalated (C^N) bzq ligand. A LEC with [Ir(bzq)2(biq)][PF6] as the emitter was fabricated which showed a deep red emission (662 nm) with a luminance of 33.65 cd m–2, yielding a current efficiency of 0.33 cd A–1 and a power efficiency of 0.2 lm W–1. Most importantly, the LEC based on [Ir(bzq)2(biq)][PF6] demonstrated a lifetime of 280 hours which is among the longest device lifetimes reported for any deep red light emitting LEC.« less

  2. DNA-METAFECTENE PRO complexation: a physical chemistry study.

    PubMed

    Alatorre-Meda, Manuel; González-Pérez, Alfredo; Rodríguez, Julio R

    2010-07-21

    Complexes formed between cationic liposomes and DNA (also known as lipoplexes or genosomes) have proven, for years now, to be a suitable option for gene delivery to cells, transfection, however, some aspects regarding the liposome-DNA interaction mechanism and complex stability remain still unclear. This work aims to improve the understanding of the poorly defined mechanisms and structural conformation associated with the interaction of METAFECTENE PRO (MEP), a commercial liposomal transfection reagent, with poly-anion DNA at mass ratios around the mass ratio recommended for transfection (L/D congruent with 700). A physical chemistry characterization was conducted at a pH of 6.5 and at a temperature of 25 degrees C by means of dynamic light scattering (DLS), electrophoretic mobility (zeta-potential), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Five parameters important for transfection were determined for the lipoplexes: (i) the hydrodynamic radius, R(H), (ii) the stability with time, (iii) the mass ratio of at which both moieties start to interact, (L/D)(i), (iv) the overall charge, and (v) the morphology. Results in ensemble point to a "beads on a string" conformation, with the lipoplex formation occurring well below isoneutrality from (L/D)(i) congruent with 600. The lipoplexes were found to be stable within at least seven days presenting an average R(H) of 135 nm.

  3. Alkali metal cation complexation by 1,3-alternate, mono-ionisable calix[4]arene-benzocrown-6 compounds

    SciTech Connect

    Surowiec, Malgorzata A.; Custelcean, Radu; Surowiec, Kazimierz; Bartsch, Richard A.

    2014-04-23

    Alkali metal cation extraction behavior for two series of 1,3-alternate, mono-ionizable calix[4]arene-benzocrown-6 compounds is examined. In Series 1, the proton-ionizable group is a substituent on the benzo group of the polyether ring that directs it away from the crown ether cavity. In Series 2, the proton-ionizable group is attached to one para position in the calixarene framework, thus positioning it over the crown ether ring. Competitive solvent extraction of alkali metal cations from aqueous solutions into chloroform shows high Cs+ efficiency and selectivity. Single-species extraction pH profiles of Cs+ for Series 1 and 2 ligands with the same proton-ionizable group are very similar. Thus, association of Cs+ with the calixcrown ring is more important than the the proton-ionizable group’s position in relation to the crown ether cavity. Solid-state structures are presented for two unionized ligands from Series 2, as is a crystal containing two different ionized ligand–Cs+ complexes.

  4. Cationic cluster formation versus disproportionation of low-valent indium and gallium complexes of 2,2'-bipyridine

    PubMed Central

    Lichtenthaler, Martin R.; Stahl, Florian; Kratzert, Daniel; Heidinger, Lorenz; Schleicher, Erik; Hamann, Julian; Himmel, Daniel; Weber, Stefan; Krossing, Ingo

    2015-01-01

    Group 13 MI compounds often disproportionate into M0 and MIII. Here, however, we show that the reaction of the MI salt of the weakly coordinating alkoxyaluminate [GaI(C6H5F)2]+[Al(ORF)4]− (RF=C(CF3)3) with 2,2'-bipyridine (bipy) yields the paramagnetic and distorted octahedral [Ga(bipy)3]2+•{[Al(ORF)4]−}2 complex salt. While the latter appears to be a GaII compound, both, EPR and DFT investigations assign a ligand-centred [GaIII{(bipy)3}•]2+ radical dication. Surprisingly, the application of the heavier homologue [InI(C6H5F)2]+[Al(ORF)4]− leads to aggregation and formation of the homonuclear cationic triangular and rhombic [In3(bipy)6]3+, [In3(bipy)5]3+ and [In4(bipy)6]4+ metal atom clusters. Typically, such clusters are formed under strongly reductive conditions. Analysing the unexpected redox-neutral cationic cluster formation, DFT studies suggest a stepwise formation of the clusters, possibly via their triplet state and further investigations attribute the overall driving force of the reactions to the strong In−In bonds and the high lattice enthalpies of the resultant ligand stabilized [M3]3+{[Al(ORF)4]−}3 and [M4]4+{[Al(ORF)4]−}4 salts. PMID:26478464

  5. Alkali metal cation complexation by 1,3-alternate, mono-ionisable calix[4]arene-benzocrown-6 compounds

    DOE PAGES

    Surowiec, Malgorzata A.; Custelcean, Radu; Surowiec, Kazimierz; ...

    2014-04-23

    Alkali metal cation extraction behavior for two series of 1,3-alternate, mono-ionizable calix[4]arene-benzocrown-6 compounds is examined. In Series 1, the proton-ionizable group is a substituent on the benzo group of the polyether ring that directs it away from the crown ether cavity. In Series 2, the proton-ionizable group is attached to one para position in the calixarene framework, thus positioning it over the crown ether ring. Competitive solvent extraction of alkali metal cations from aqueous solutions into chloroform shows high Cs+ efficiency and selectivity. Single-species extraction pH profiles of Cs+ for Series 1 and 2 ligands with the same proton-ionizable groupmore » are very similar. Thus, association of Cs+ with the calixcrown ring is more important than the the proton-ionizable group’s position in relation to the crown ether cavity. Solid-state structures are presented for two unionized ligands from Series 2, as is a crystal containing two different ionized ligand–Cs+ complexes.« less

  6. Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents.

    PubMed

    Epand, Raquel F; Mor, Amram; Epand, Richard M

    2011-07-01

    Antimicrobial agents are toxic to bacteria by a variety of mechanisms. One mechanism that is very dependent on the lipid composition of the bacterial membrane is the clustering of anionic lipid by cationic antimicrobial agents. Certain species of oligo-acyl-lysine (OAK) antimicrobial agents are particularly effective in clustering anionic lipids in mixtures mimicking the composition of bacterial membranes. The clustering of anionic lipids by certain cationic antimicrobial agents contributes to the anti-bacterial action of these agents. Bacterial membrane lipids are a determining factor, resulting in some species of bacteria being more susceptible than others. In addition, lipids can be used to increase the effectiveness of antimicrobial agents when administered in vivo. Therefore, we review some of the structures in which lipid mixtures can assemble, to more effectively be utilized as antimicrobial delivery systems. We describe in more detail the complexes formed between mixtures of lipids mimicking bacterial membranes and an OAK and their usefulness in synergizing with antibiotics to overcome bacterial multidrug resistance.

  7. Cationic Lipid-Nucleic Acid Complexes for Gene Delivery And Silencing: Pathways And Mechanisms for Plasmid Dna And Sirna

    SciTech Connect

    Ewert, K.K.; Zidovska, A.; Ahmad, A.; Bouxsein, N.F.; Evans, H.M.; McAllister, C.S.; Samuel, C.E.; Safinya, C.R.; /SLAC

    2012-07-17

    Motivated by the promises of gene therapy, there is great interest in developing non-viral lipid-based vectors for therapeutic applications due to their low immunogenicity, low toxicity, ease of production, and the potential of transferring large pieces of DNA into cells. In fact, cationic liposome (CL) based vectors are among the prevalent synthetic carriers of nucleic acids (NAs) currently used in gene therapy clinical trials worldwide. These vectors are studied both for gene delivery with CL-DNA complexes and gene silencing with CL-siRNA (short interfering RNA) complexes. However, their transfection efficiencies and silencing efficiencies remain low compared to those of engineered viral vectors. This reflects the currently poor understanding of transfection-related mechanisms at the molecular and self-assembled levels, including a lack of knowledge about interactions between membranes and double stranded NAs and between CL-NA complexes and cellular components. In this review we describe our recent efforts to improve the mechanistic understanding of transfection by CL-NA complexes, which will help to design optimal lipid-based carriers of DNA and siRNA for therapeutic gene delivery and gene silencing.

  8. Organelle-specific expression of subunit ND5 of human complex I (NADH dehydrogenase) alters cation homeostasis in Saccharomyces cerevisiae.

    PubMed

    Steffen, Wojtek; Gemperli, Anja C; Cvetesic, Nevena; Steuber, Julia

    2010-09-01

    The ND5 component of the respiratory complex I is a large, hydrophobic subunit encoded by the mitochondrial genome. Its bacterial homologue, the NDH-1 subunit NuoL, acts as a cation transporter in the absence of other NDH-1 subunits. Mutations in human ND5 are frequently observed in neurodegenerative diseases. Wild type and mutant variants of ND5 fused to GFP or a FLAG peptide were targeted to the endoplasmatic reticulum (ER) or the inner mitochondrial membrane of Saccharomyces cerevisiae, which lacks an endogenous complex I. The localization of ND5 fusion proteins was confirmed by microscopic analyses of S. cerevisiae cells, followed by cellular fractionation and immunostaining. The impact of the expression of ND5 fusion proteins on the growth of S. cerevisiae in the presence and absence of added salts was studied. ER-resident ND5 conferred Li(+) sensitivity to S. cerevisiae, which was lost when the E145V variant of ND5 was expressed. All variants of ND5 tested led to increased resistance of S. cerevisiae at high external concentrations of Na(+) or K(+). The data seem to indicate that ND5 influences the salt homeostasis of S. cerevisiae independent of other complex I subunits, and paves the way for functional studies of mutations found in mitochondrially encoded complex I genes.

  9. Gel-derived cation-π stacking films of carbon nanotube-graphene complexes as oxygen cathodes.

    PubMed

    Zhang, Tao; Matsuda, Hirofumi; Zhou, Haoshen

    2014-10-01

    A key challenge in processing carbon nanotubes and their composites for large-scale applications is aggregation. Cation-π stacking interactions have been discovered to disperse heavily entangled single-walled carbon nanotube (SWNT) bundles in ionic liquids (ILs). In this work, we found that a dispersible, silky single-layer graphene (SLG) can be readily gathered together to form a crosslinked gel after entrapping sufficient IL molecular via the likely noncovalent interaction. By incorporating the dispersed SWNTs into the gathered SLG gel synchronously, we prepared solid, finely crosslinked SWNTs-SLG films, assisted by an avenue of 2-step extraction to remove the IL completely. The gel-derived SWNTs-SLG complex film was applied as a support material of oxygen cathodes for Li-O2 batteries. It exhibited a remarkable improved cycleability in comparison to made of SWNTs and SLG alone due to the finely crosslinked feature. Decorated SWNTs and SLG can also form gel-derived complexes via the same process to construct support-catalyst complexes. A SWNTs-SLG film loaded with Ru nanoparticles exhibited not only catalytic effects, but also the ability to suppress the side reactions, and hence stabilized the whole Li-O2 battery. Our research introduces a gel-derived, high-dispersed processing of carbon nanotube-graphene complexes and demonstrates their favorable applications on Li-O2 batteries.

  10. Stabilization of Curcumin by Complexation with Divalent Cations in Glycerol/Water System

    PubMed Central

    Zebib, Bachar; Mouloungui, Zéphirin; Noirot, Virginie

    2010-01-01

    The purpose of present study was to stabilize curcumin food pigment by its complexation with divalent ions like (Zn2+, Cu2+, Mg2+, Se2+), in “green media” and evaluate its stability in vitro compared to curcumin alone. The curcumin complexes were prepared by mechanical mixture of curcumin and sulfate salts of each metal (metal : curcumin 1/1mol) into unconventional and nontoxic glycerol/water solvent. Two stoichiometry of complex were obtained, 1 : 1 and 1 : 2 (metal/curcumin), respectively. On evaluation of in vitro stability, all complexes were found to provide a higher stability from curcumin alone. PMID:20634909

  11. Electronic structure and luminescence of tellurium (IV) halide complexes with guanidine and caesium cations

    NASA Astrophysics Data System (ADS)

    Dotsenko, A. A.; Shcheka, O. L.; Vovna, V. I.; Korochentsev, V. V.; Mirochnik, A. G.; Sedakova, T. V.

    2016-04-01

    The present paper continues a series of publications on the investigation of complex compounds of s2 ions and their properties. The structure of the valence levels of Cs2TeX6, (HGu)2TeCl6 complexes (where X = Cl, Br; HGu+ - guanidinium) is examined, the orbital nature of luminescence excitation is established, and the relationship of properties with the electronic structure is determined by means of X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT).

  12. Mercaptobenzoic acid-palladium(0) complexes as active catalysts for S-benzylation with benzylic alcohols via (η(3)-benzyl)palladium(II) cations in water.

    PubMed

    Hikawa, Hidemasa; Azumaya, Isao

    2014-08-21

    Mercaptobenzoic acid-palladium(0) complexes show high catalytic activity for S-benzylation with benzylic alcohols via the (η(3)-benzyl)palladium(II) cation in water. Notably, these palladium(0) complexes could play an important role in formation of active (η(3)-benzyl)palladium(II) cation complexes followed by S-benzylation. Hammett studies on the rate constants of S-benzylation by various substituted alcohols show good correlation between log(kX/kH) and the σ(+) value of the respective substituents. From the slope, negative ρ values are obtained, suggesting that there is a build-up of positive charge in the transition state. Water plays an important role in the catalytic system for sp(3) C-O bond activation and stabilization of the activated Pd(II) cation species. The catalytic system can be performed using only 2.5 mol% Pd2(dba)3 without the phosphine ligand or other additives.

  13. Cationized bovine serum albumin as gene carrier: Influence of specific secondary structure on DNA complexibility and gene transfection.

    PubMed

    Du, Jianwei; Li, Bangbang; Zhang, Peng; Wang, Youxiang

    2016-07-01

    In this research, BSA, one of the natural rigid globular proteins with ca. 51% of α-helix secondary structure, was utilized to prepare cationized BSA (cBSA) as gene carrier. Tetraethylenepentamine (TEPA) or polyethylenimine (PEI1800) was grafted to BSA with different grafting levels. Based on the circular dichoism (CD) spectra, all cBSA remained α-helical structure to some degree. This was exciting to endow cBSA with quite different DNA complexibility and cellular biology behavior from the random coiled and flexible polycations such as PEI and poly-l-lysine (PLL). Strangely, the DNA condensability decreased with the increment of TEPA or PEI1800 grafting level. Also, the cBSA could condense DNA effectively to form irregular nanoparticles around 50-200nm above N/P ratio of 10. On account of the excellent hydration of BSA, the cBSA/DNA complexes revealed good colloidal stability under physiological salt condition. Cell culture experiments indicated this BSA-based gene carrier possessed good cellular compatibility. Surprisingly, cBSA/DNA complexes could be uptaken excellently by up to 90% cells. This might be owing to the agitation effect of α-helical structure and the positive potential of these complexes. BSA-PEI1800/DNA complexes with quick endosome escape even had transfection efficiency as high as PEI25k/DNA complexes. Overall, this paper provided us the potential of cBSA as gene carrier and might have some instructions in the design of protein-based gene delivery system.

  14. Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.

    PubMed

    Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela

    2010-02-19

    The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition.

  15. Correlation between pH dependence of O2 evolution and sensitivity of Mn cations in the oxygen-evolving complex to exogenous reductants.

    PubMed

    Semin, Boris K; Davletshina, Lira N; Rubin, Andrei B

    2015-08-01

    Effects of pH, Ca(2+), and Cl(-) ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous reductants hydroquinone (H2Q) and H2O2 were studied. Two of 4 Mn cations are released by H2Q and H2O2 at pHs 5.7, 6.5, and 7.5, and their extraction does not depend on the presence of Ca(2+) and Cl(-) ions. One of Mn cations ("resistant" Mn cation) cannot be extracted by H2Q and H2O2 at any pH. Extraction of 4th Mn ion ("flexible" Mn cation) is sensitive to pH, Ca(2+), and Cl(-). This Mn cation is released by reductants at pH 6.5 but not at pHs 5.7 and 7.5. A pH dependence curve of the oxygen-evolving activity in PSII(-Ca) membranes (in the presence of exogenous Ca(2+)) has a bell-shaped form with the maximum at pH 6.5. Thus, the increase in the resistance of flexible Mn cation in OEC to the action of reductants at acidic and alkaline pHs coincides with the decrease in oxygen evolution activity at these pHs. Exogenous Ca(2+) protects the extraction of flexible Mn cation at pH 6.5. High concentration of Cl(-) anions (100 mM) shifts the pH optimum of oxygen evolution to alkaline region (around pH 7.5), while the pH of flexible Mn extraction is also shifted to alkaline pH. This result suggests that flexible Mn cation plays a key role in the water-splitting reaction. The obtained results also demonstrate that only one Mn cation in Mn4 cluster is under strong control of calcium. The change in the flexible Mn cation resistance to exogenous reductants in the presence of Ca(2+) suggests that Ca(2+) can control the redox potential of this cation.

  16. A Cationic Unsaturated Platinum(II) Complex that Promotes the Tautomerization of Acetylene to Vinylidene.

    PubMed

    Ortega-Moreno, Laura; Peloso, Riccardo; López-Serrano, Joaquín; Iglesias-Sigüenza, Javier; Maya, Celia; Carmona, Ernesto

    2017-03-01

    Complex [PtMe2 (PMe2 ArDipp2 )] (1), which contains a tethered terphenyl phosphine (ArDipp2 =2,6-(2,6-(i) Pr2 C6 H3 )2 C6 H3 ), reacts with [H(Et2 O)2 ]BArF (BArF(-) =B[3,5-(CF3 )2 C6 H3 ]4(-) ) to give the solvent (S) complex [PtMe(S)(PMe2 ArDipp2 )](+) (2⋅S). Although the solvent molecule is easily displaced by a Lewis base (e.g., CO or C2 H4 ) to afford the corresponding adducts, treatment of 2⋅S with C2 H2 yielded instead the allyl complex [Pt(η(3) -C3 H5 )(PMe2 ArDipp2 )](+) (6) via the alkyne intermediate [PtMe(η(2) -C2 H2 )(PMe2 ArDipp2 )](+) (5). Deuteration experiments with C2 D2 , and kinetic and theoretical investigations demonstrated that the conversion of 5 into 6 involves a Pt(II) -promoted HC≡CH to :C=CH2 tautomerization in preference over acetylene migratory insertion into the Pt-Me bond.

  17. Highly sensitive and selective difunctional ruthenium(II) complex-based chemosensor for dihydrogen phosphate anion and ferrous cation.

    PubMed

    Zheng, Ze-Bao; Duan, Zhi-Ming; Ma, Ying-Ying; Wang, Ke-Zhi

    2013-03-04

    The anion-interaction properties of a Ru(II) complex of [Ru(bpy)2(Htppip)](ClO4)2·H2O·DMF (RuL) {bpy =2,2'-bipyridine and Htppip =2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} were thoroughly investigated in CH3CN and CH3CN/H2O (50:1, v/v) solutions by UV-visible absorption, emission, and (1)H NMR spectra. These analyses revealed that RuL acts as an efficient "turn on" emission sensor for H2PO4(-), and a "turn off" sensor for F(-) and OAc(-); in addition, RuL exhibited slightly disturbed emission spectra in the presence of the other anions studied (Cl(-), Br(-), I(-), NO3(-), and ClO4(-)). The cation-sensing properties of RuL were also studied in both neat CH3CN and aqueous 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer (pH = 7.2)/CH3CN (71/1, v/v) solutions. RuL was found to exhibit a colorimetric sensing ability that was highly selective for Fe(2+), as evidenced by an obvious color change from pale yellow to light red-purple to the naked eye over the other cations studied (Na(+), Mg(2+), Ba(2+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), and Ag(+)). To obtain insights into the possible binding modes and the sensing mechanisms, (1)H NMR spectral analysis, luminescence lifetime measurements, and density functional theoretical calculations were also performed.

  18. Reversible dissociation and ligand-glutathione exchange reaction in binuclear cationic tetranitrosyl iron complex with penicillamine.

    PubMed

    Syrtsova, Lidia; Sanina, Natalia; Lyssenko, Konstantin; Kabachkov, Evgeniy; Psikha, Boris; Shkondina, Natal'ja; Pokidova, Olesia; Kotelnikov, Alexander; Aldoshin, Sergey

    2014-01-01

    This paper describes a comparative study of the decomposition of two nitrosyl iron complexes (NICs) with penicillamine thiolic ligands [Fe2(SC5H11NO2)2(NO)4]SO4 ·5H2O (I) and glutathione- (GSH-) ligands [Fe2(SC10H17N3O6)2(NO)4]SO4 ·2H2O (II), which spontaneously evolve to NO in aqueous medium. NO formation was measured by a sensor electrode and by spectrophotometric methods by measuring the formation of a hemoglobin- (Hb-) NO complex. The NO evolution reaction rate from (I)  k 1 = (4.6 ± 0.1)·10(-3) s(-1) and the elimination rate constant of the penicillamine ligand k 2 = (1.8 ± 0.2)·10(-3) s(-1) at 25°C in 0.05 M phosphate buffer,  pH 7.0, was calculated using kinetic modeling based on the experimental data. Both reactions are reversible. Spectrophotometry and mass-spectrometry methods have firmly shown that the penicillamine ligand is exchanged for GS(-) during decomposition of 1.5·10(-4) M (I) in the presence of 10(-3) M GSH, with 76% yield in 24 h. As has been established, such behaviour is caused by the resistance of (II) to decomposition due to the higher affinity of iron to GSH in the complex. The discovered reaction may impede S-glutathionylation of the essential enzyme systems in the presence of (I) and is important for metabolism of NIC, connected with its antitumor activity.

  19. The Relation between the Physical Properties of Self-Assembling Cationic Lipid:DNA Complexes and Gene Delivery

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Slack, N. L.; Evans, Heather M.; Lin, Alison; Martin, A.; Safinya, C. R.

    2000-03-01

    The use of cationic lipids (CL) as carriers of genes (DNA sequences) for delivery in cells is a promising alternative to viral-carriers. Previous work on CL:DNA complexes has focused on binary mixtures of lipids and has shown that the optimal gene delivery vehicle may be mediated by physical properties of the lipid self-assembly(1). Using x-ray diffraction and biological assays, we show that membrane charge density and geometric shape may be universal parameters for successful gene delivery by binary CL mixtures in vitro. Preliminary results from complexes containing novel ternary CL mixtures further elucidate key parameters for gene delivery. Funded by NIH R01-GM59288-01 and R37-AI12520-24, UCBiotechnology Research and Education Program (97-02), NSF-DMR-9972246. 1. J. Raedler et al, Science 275, 810 (1997), Koltover et al Science 281, 78-81 (1998), Koltover et al, Biophysical Journal 77, 95 (1999), A. J. Lin, N. L. Slack, A. Ahmad, I. Koltover, C. X. George, C. E. Samuel, C. R. Safinya, Journal of Drug Targeting (to appear)

  20. Large Size Color-tunable Electroluminescence from Cationic Iridium Complexes-based Light-emitting Electrochemical Cells

    PubMed Central

    Zeng, Qunying; Li, Fushan; Guo, Tailiang; Shan, Guogang; Su, Zhongmin

    2016-01-01

    Solution-processable light-emitting electrochemical cells (LECs) with simple device architecture have become an attractive candidate for application in next generation lighting and flat-panel displays. Herein, single layer LECs employing two cationic Ir(III) complexes showing highly efficient blue-green and yellow electroluminescence with peak current efficiency of 31.6 cd A−1 and 40.6 cd A−1, respectively, have been reported. By using both complexes in the device, color-tunable LECs with a single spectral peak in the wavelength range from 499 to 570 nm were obtained by varying their rations. In addition, the fabrication of efficient LECs was demonstrated based on low cost doctor-blade coating technique, which was compatible with the roll to roll fabrication process for the large size production. In this work, for the first time, 4 inch LEC devices by doctor-blade coating were fabricated, which exhibit the efficiencies of 23.4 cd A−1 and 25.4 cd A−1 for the blue-green and yellow emission, respectively. The exciting results indicated that highly efficient LECs with controllable color could be realized and find practical application in large size lighting and displays. PMID:27278527

  1. Large Size Color-tunable Electroluminescence from Cationic Iridium Complexes-based Light-emitting Electrochemical Cells

    NASA Astrophysics Data System (ADS)

    Zeng, Qunying; Li, Fushan; Guo, Tailiang; Shan, Guogang; Su, Zhongmin

    2016-06-01

    Solution-processable light-emitting electrochemical cells (LECs) with simple device architecture have become an attractive candidate for application in next generation lighting and flat-panel displays. Herein, single layer LECs employing two cationic Ir(III) complexes showing highly efficient blue-green and yellow electroluminescence with peak current efficiency of 31.6 cd A‑1 and 40.6 cd A‑1, respectively, have been reported. By using both complexes in the device, color-tunable LECs with a single spectral peak in the wavelength range from 499 to 570 nm were obtained by varying their rations. In addition, the fabrication of efficient LECs was demonstrated based on low cost doctor-blade coating technique, which was compatible with the roll to roll fabrication process for the large size production. In this work, for the first time, 4 inch LEC devices by doctor-blade coating were fabricated, which exhibit the efficiencies of 23.4 cd A‑1 and 25.4 cd A‑1 for the blue-green and yellow emission, respectively. The exciting results indicated that highly efficient LECs with controllable color could be realized and find practical application in large size lighting and displays.

  2. Determination of the comparative complexing ability of cyclophosphate anions with respect to the yttrium cation

    SciTech Connect

    Lazarevski, E.V.; Chudinova, N.N.; Kubasova, L.V.

    1987-08-01

    On the basis of our study of the solubility of YPO/sub 4/ x 2H/sub 2/O in solutions of the cyclophosphates Na/sub 3/P/sub 3/O/sub 9/, Na/sub 4/P/sub 4/O/sub 12/, and Na/sub 8/P/sub 8/O/sub 24/ and the chain phosphates Na/sub 4/P/sub 2/O/sub 7/, Na/sub 5/P/sub 3/O/sub 10/, and Graham's salt we have established that according to effective complexing ability (per phosphorus atom) the indicated ligands form the series (PO/sub 3/)/sub x//sup x-/ > P/sub 8/O/sub 24//sup 8 -/ infinity P/sub 6/O/sub 18//sup 6 -/ > P/sub 3/O/sub 10//sup 5 -/ > P/sub 4/O/sub 12//sup 4 -/ > P/sub 2/O/sub 7//sup 4 -/ > P/sub 3/O/sub 9//sup 3 -/, which correlates with the anion charge. The authors have obtained estimated values of 2.5 x 10/sup -6/, 4.8 x 10/sup -7/, 2.5 x 10/sup -8/, and 1.4 x 10/sup -8/ for the instability constants of the complexes YP/sub 3/O/sub 9/, YP/sub 4/O/sub 12/-, YP/sub 6/O/sub 18//sup 3 -/, and YP/sub 8/O/sub 14//sup 5 -/, respectively.

  3. Lariat ethers with fluoroaryl side-arms: a study of CFmetal cation interaction in the complexes of N-(o-fluoroaryl)azacrown ethers.

    PubMed

    Sazonov, Petr K; Minacheva, Lidiya Kh; Churakov, Andrei V; Sergienko, Vladimir S; Artamkina, Galina A; Oprunenko, Yuri F; Beletskaya, Irina P

    2009-02-07

    New lariat ethers, N-(o-fluorophenyl)aza-15-crown-5 (F-A15C5) and N,N'-bis(o-fluorophenyl)diaza-18-crown-6 (F(2)-A(2)18C6), were prepared by the N-arylation of the corresponding azacrown ethers. The interaction of the ligands with metal cations was studied in solution by (1)H and (19)F NMR (in acetone-d(6)) and UV spectroscopy (MeOH) confirming the formation of complexes of F(2)-A(2)18C6 with K(+), Na(+), Ag(+), Ba(2+), Pb(2+) and of F-A15C5 with Na(+) and giving evidence of CFmetal cation interaction. Cation binding constants (beta, evaluated by UV titration method), demonstrate that F-A15C5 and F(2)-A(2)18C6 form more stable complexes than their fluorine-free analogs. The effect depends on the nature of the metal cation and is at a maximum for hard, singly charged cations (up to 3 logbeta units for K(+) complex of F(2)-A(2)18C6). The X-ray structures of complexes [Pb(F(2)-A(2)18C6)(H(2)O)](ClO(4))(2) () and [Ba(F(2)-A(2)18C6)(ClO(4))(2)] () reveal short Pb-F (2.805 A) and Ba-F (2.965 A) contacts. Complex is centrosymmetric (C(i)), while complex has C(2) symmetry with one-side coordination of o-fluorophenyl groups to Pb(2+). This "one-side" coordination mode of Pb(2+) is indicative of a partial localization of the Pb(2+) lone pair.

  4. Cationic boranes for the complexation of fluoride ions in water below the 4 ppm maximum contaminant level.

    PubMed

    Kim, Youngmin; Gabbaï, François P

    2009-03-11

    In search of a molecular receptor that could bind fluoride ions in water below the maximum contaminant level of 4 ppm set by the Environmental Protection Agency (EPA), we have investigated the water stability and fluoride binding properties of a series of phosphonium boranes of general formula [p-(Mes(2)B)C(6)H(4)(PPh(2)R)](+) with R = Me ([1](+)), Et ([2](+)), n-Pr ([3](+)), and Ph ([4](+)). These phosphonium boranes are water stable and react reversibly with water to form the corresponding zwitterionic hydroxide complexes of general formula p-(Mes(2)(HO)B)C(6)H(4)(PPh(2)R). They also react with fluoride ions to form the corresponding zwitterionic fluoride complexes of general formula p-(Mes(2)(F)B)C(6)H(4)(PPh(2)R). Spectrophotometric acid-base titrations carried out in H(2)O/MeOH (9:1 vol.) afford pK(R+) values of 7.3(+/-0.07) for [1](+), 6.92(+/-0.1) for [2](+), 6.59(+/-0.08) for [3](+), and 6.08(+/-0.09) for [4](+), thereby indicating that the Lewis acidity of the cationic boranes increases in following order: [1](+) < [2](+) < [3](+) < [4](+). In agreement with this observation, fluoride titration experiments in H(2)O/MeOH (9:1 vol.) show that the fluoride binding constants (K = 840(+/-50) M(-1) for [1](+), 2500(+/-200) M(-1) for [2](+), 4000(+/-300) M(-1) for [3](+), and 10 500(+/-1000) M(-1) for [4](+)) increase in the same order. These results show that the Lewis acidity of the cationic boranes increases with their hydrophobicity. The resulting Lewis acidity increase is substantial and exceeds 1 order of magnitude on going from [1](+) to [4](+). In turn, [4](+) is sufficiently fluorophilic to bind fluoride ions below the EPA contaminant level in pure water. These results indicate that phosphonium boranes related to [4](+) could be used as molecular recognition units in chemosensors for drinking water analysis.

  5. On the stability of cationic complexes of neon with helium--solving an experimental discrepancy.

    PubMed

    Bartl, Peter; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2013-10-21

    Helium nanodroplets are doped with neon and ionized by electrons. The size-dependence of the ion abundance of HenNex(+), identified in high-resolution mass spectra, is deduced for complexes containing up to seven neon atoms and dozens of helium atoms. Particularly stable ions are inferred from anomalies in the abundance distributions. Two pronounced anomalies at n = 11 and 13 in the HenNe(+) series confirm drift-tube data reported by Kojima et al. [T. M. Kojima et al., Z. Phys. D, 1992, 22, 645]. The discrepancy with previously published spectra of neon-doped helium droplets, which did not reveal any abundance anomalies [T. Ruchti et al., J. Chem. Phys., 1998, 109, 10679-10687; C. A. Brindle et al., J. Chem. Phys., 2005, 123, 064312], is most likely due to limited mass resolution, which precluded unambiguous analysis of contributions from different ions with identical nominal mass. However, calculated dissociation energies of HenNe(+) reported so far do not correlate with the present data, possibly because of challenges in correctly treating the linear, asymmetric [He-Ne-He](+) ionic core in HenNe(+). Anomalies identified in the distributions of HenNex(+) for x > 1, including prominent ones at He12Ne2(+) and He14Ne2(+), may help to better understand solvation of Ne(+) and Nex(+) in helium.

  6. Infrared consequence spectroscopy of gaseous protonated and metal ion cationized complexes.

    PubMed

    Fridgen, Travis D

    2009-01-01

    In this article, the new and exciting techniques of infrared consequence spectroscopy (sometimes called action spectroscopy) of gaseous ions are reviewed. These techniques include vibrational predissociation spectroscopy and infrared multiple photon dissociation spectroscopy and they typically complement one another in the systems studied and the information gained. In recent years infrared consequence spectroscopy has provided long-awaited direct evidence into the structures of gaseous ions from organometallic species to strong ionic hydrogen bonded structures to large biomolecules. Much is being learned with respect to the structures of ions without their stabilizing solvent which can be used to better understand the effect of solvent on their structures. This review mainly covers the topics with which the author has been directly involved in research: structures of proton-bound dimers, protonated amino acids and DNA bases, amino acid and DNA bases bound to metal ions and, more recently, solvated ionic complexes. It is hoped that this review reveals the impact that infrared consequence spectroscopy has had on the field of gaseous ion chemistry.

  7. Highly luminescent and stable lyotropic liquid crystals based on a europium β-diketonate complex bridged by an ethylammonium cation.

    PubMed

    Yi, Sijing; Yao, Meihuan; Wang, Jiao; Chen, Xiao

    2016-10-05

    Soft lanthanide luminescent materials are impressive because of their tunable and self-assembling characteristics, which make them an attractive emerging materials field of research. In this report, novel luminescent lyotropic liquid crystals (LLCs) with four different mesophases have been fabricated by a protic ionic liquid (IL) based europium β-diketonate complex EA[Eu(TTA)4] (EA = ethylammonium, TTA = 2-thenoyltrifluoro-acetone) and an amphiphilic block copolymer (Pluronic P123). The protic IL, ethylammonium nitrate (EAN), was used as both the solvent and linkage to stabilize the doped complexes. Analyses by single-crystal X-ray diffraction for EA[Eu(TTA)4] and Fourier transform infrared spectroscopy for the LLC materials reveal convincingly that the ethylammonium cations establish an effective connection with both the carbonyl group of the β-diketonate ligand and the EO blocks of the amphiphilic block copolymer P123 via strong hydrogen bonding interactions. Due to this, an extremely long decay time of the excited state is obtained in EA[Eu(TTA)4] and excellent photostability of the luminescent LLCs could be achieved. The long-period ordered structures of the luminescent LLCs have been investigated by small-angle X-ray scattering measurements and the best luminescence performance was found in the most organized mesophase. Noteworthy, the LLCs could yield an effective confining effect on the europium complex accompanied by a sizeable elongation of the excited-state lifetime and an enhancement of the energy transfer efficiency, which reaches a remarkably high value of 52.6%. More importantly, the modulated luminescence properties observed in the four mesophase structures offer the potential and powerful possibility for these unique composite LLCs to be used in the fabrication of soft luminescent materials with tunable functions.

  8. Ternary complexes between cationic GdIII chelates and anionic metabolites in aqueous solution: an NMR relaxometric study.

    PubMed

    Botta, Mauro; Aime, Silvio; Barge, Alessandro; Bobba, Gabriella; Dickins, Rachel S; Parker, David; Terreno, Enzo

    2003-05-09

    The (1)H and (17)O NMR relaxometric properties of two cationic complexes formed by Gd(III) with a macrocyclic heptadentate triamide ligand, L(1), and its Nmethylated analogue, L(2), have been investigated in aqueous media as a function of pH, temperature and magnetic field strength. The complexes possess two water molecules in their inner coordination sphere for which the rate of exchange has been found to be sensibly faster for the Nmethylated derivative and explained in terms of electronic effects (decrease of the charge density at the metal center) and perturbation of the network of hydrogen-bonded water molecules in the outer hydration sphere. The proton relaxivity shows a marked dependence from pH and decreases of about six units in the pH range 6.5 to 9.0. This has been accounted for by the displacement of the two water molecules by dissolved carbonate which acts as a chelating anion. The formation of ternary complexes with lactate, malonate, citrate, acetate, fluoride and hydrogenphosphate has been monitored by (1)H NMR relaxometric titrations at 20 MHz and pH 6.3 and the value of the affinity constant, K, and of the relaxivity of the adducts could be obtained. Lactate, malonate and citrate interact strongly with the complexes (log K > or =3.7) and coordinate in a bidendate mode by displacing both water molecules. Larger affinity constants have been measured for GdL(2). Acetate, fluoride and hydrogenphosphate form monoaqua ternary complexes which were investigated in detail with regard to their relaxometric properties. The NMR dispersion (NMRD) profiles indicate a large contribution to the relaxivity of the adducts from water molecules belonging to the second hydration shell of the complexes and hydrogen-bonded to the anion. A VT (17)O NMR study has shown a marked increase of the rate of water exchange upon binding which is explained by coordination of the anion in an equatorial site, thus leaving the water molecule in an apical position, more accessible for

  9. Infrared Multiple Photon Dissociation Action Spectroscopy and Theoretical Studies of Triethyl Phosphate Complexes: Effects of Protonation and Sodium Cationization on Structure

    NASA Astrophysics Data System (ADS)

    Fales, B. S.; Fujamade, N. O.; Oomens, J.; Rodgers, M. T.

    2011-10-01

    The gas-phase structures of protonated and sodium cationized complexes of triethyl phosphate, [TEP + H]+ and [TEP + Na]+, are examined via infrared multiple photon dissociation (IRMPD) action spectroscopy using tunable IR radiation generated by a free electron laser, a Fourier transform ion cyclotron resonance mass spectrometer with an electrospray ionization source, and theoretical electronic structure calculations. Measured IRMPD action spectra are compared to linear IR spectra calculated at the B3LYP/6-31 G(d,p) level of theory to identify the structures accessed in the experimental studies. For comparison, theoretical studies of neutral TEP are also performed. Sodium cationization and protonation produce changes in the central phosphate geometry, including an increase in the alkoxy ∠OPO bond angle and shortening of the alkoxy P-O bond. Changes associated with protonation are more pronounced than those produced by sodium cationization.

  10. Effect of cation species on surface-induced phase transition observed for platinum complex anions in platinum electrodeposition using nanoporous silicon

    NASA Astrophysics Data System (ADS)

    Koda, Ryo; Koyama, Akira; Fukami, Kazuhiro; Nishi, Naoya; Sakka, Tetsuo; Abe, Takeshi; Kitada, Atsushi; Murase, Kuniaki; Kinoshita, Masahiro

    2014-08-01

    In an earlier work [K. Fukami et al., J. Chem. Phys. 138, 094702 (2013)], we reported a transition phenomenon observed for platinum complex anions in our platinum electrodeposition experiment using nanoporous silicon. The pore wall surface of the silicon electrode was made hydrophobic by covering it with organic molecules. The anions are only weakly hydrated due to their large size and excluded from the bulk aqueous solution to the hydrophobic surface. When the anion concentration in the bulk was gradually increased, at a threshold the deposition behavior exhibited a sudden change, leading to drastic acceleration of the electrochemical deposition. It was shown that this change originates from a surface-induced phase transition: The space within a nanopore is abruptly filled with the second phase in which the anion concentration is orders of magnitude higher than that in the bulk. Here we examine how the platinum electrodeposition behavior is affected by the cation species coexisting with the anions. We compare the experimental results obtained using three different cation species: K+, (CH3)4N+, and (C2H5)4N+. One of the cation species coexists with platinum complex anions [PtCl4]2-. It is shown that the threshold concentration, beyond which the electrochemical deposition within nanopores is drastically accelerated, is considerably dependent on the cation species. The threshold concentration becomes lower as the cation size increases. Our theoretical analysis suggests that not only the anions but also the cations are remarkably enriched in the second phase. The remarkable enrichment of the anions alone would give rise to the energetic instability due to electrostatic repulsive interactions among the anions. We argue that the result obtained cannot be elucidated by the prevailing view based on classical electrochemistry. It is necessitated to consult a statistical-mechanical theory of confined aqueous solutions using a molecular model for water.

  11. Phosphorus dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer-photosensitizer complexes: Cationic phosphorus dendrimer with rose bengal and anionic phosphorus dendrimer with methylene blue.

    PubMed

    Dabrzalska, Monika; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2015-08-15

    Dendrimers due to their unique architecture may play an important role in drug delivery systems including chemotherapy, gene therapy and recently, photodynamic therapy as well. We investigated two dendrimer-photosensitizer systems in context of potential use of these systems in photodynamic therapy. The mixtures of an anionic phosphorus dendrimer of the second generation and methylene blue were studied by UV-vis spectroscopy while that of a cationic phosphorus dendrimer (third generation) and rose bengal were investigated by spectrofluorimetric methods. Spectroscopic analysis of these two systems revealed the formation of dendrimer-photosensitizer complexes via electrostatic interactions as well as π stacking. The stoichiometry of the rose bengal-cationic dendrimer complex was estimated to be 7:1 and 9:1 for the methylene blue-anionic dendrimer complex. The results suggest that these polyanionic or polycationic phosphorus dendrimers can be promising candidates as carriers in photodynamic therapy.

  12. Asymmetric Hydrogenation of Quinoline Derivatives Catalyzed by Cationic Transition Metal Complexes of Chiral Diamine Ligands: Scope, Mechanism and Catalyst Recycling.

    PubMed

    Luo, Yi-Er; He, Yan-Mei; Fan, Qing-Hua

    2016-12-01

    This personal account is focused on the asymmetric hydrogenation of quinolines and their analogues recently developed by using phosphorus-free chiral cationic ruthenium(II)/η(6) -arene-N-monosulfonylated diamine complexes. In our initial study, the chiral Ru-diamine complexes were found to be highly effective catalysts for the asymmetric hydrogenation of difficult quinoline substrates in room temperature ionic liquids (RTILs) with unprecedentedly excellent enantioselectivity. Our further systematic study revealed that a wide range of quinoline derivatives could be efficiently hydrogenated in alcoholic solvents, or under solvent-free and concentrated conditions with good to excellent stereoselectivity. Complexes of iridium analogues could also efficiently catalyze the asymmetric hydrogenation of quinolines in undegassed solvent. Asymmetric tandem reduction of various 2-(aroylmethyl)quinolines was achieved in high yield with excellent enantioselectivity and good diastereoselectivity. More challenging substrates, alkyl- and aryl-substituted 1,5- and 1,8-naphthyridine derivatives were successfully hydrogenated with these chiral ruthenium catalysts to give 1,2,3,4-tetrahydronaphthyridines with good to excellent enantioselectivity. Unlike the asymmetric hydrogenation of ketones, quinoline is reduced via a stepwise H(+) /H(-) transfer process outside the coordination sphere rather than a concerted mechanism. The enantioselectivity originates from the CH/π attraction between the η(6) -arene ligand in the Ru-complex and the fused phenyl ring of dihydroquinoline via a 10-membered ring transition state with the participation of TfO(-) anion. In addition, the Ru-catalyzed asymmetric hydrogenation of quinolines could be carried out in some environmentally benign reaction media, such as undegassed water, RTILs and oligo(ethylene glycol)s (OEGs). In the latter two cases, unique chemoselectivity and/or reactivity were observed. Catalyst recycling could also be realized by using

  13. Uranyl and uranyl-3d block cation complexes with 1,3-adamantanedicarboxylate: crystal structures, luminescence, and magnetic properties.

    PubMed

    Thuéry, Pierre; Rivière, Eric; Harrowfield, Jack

    2015-03-16

    The reaction of 1,3-adamantanedicarboxylic acid (LH2) with uranyl nitrate under solvo-hydrothermal conditions, either alone or in the presence of additional metal cations (Co(2+), Ni(2+), or Cu(2+)) gives a series of nine complexes displaying a wide range of architectures. While [UO2(L)(H2O)]·1.25CH3CN (1) and [UO2(L)(DMF)] (2) are one-dimensional (1D) species analogous to that previously known, [H2NMe2]2[(UO2)2(L)3]·1.5H2O (3), which includes dimethylammonium counterions generated in situ, is a three-dimensional (3D) framework, and [UO2(L)(NMP)] (4) (NMP = N-methyl-2-pyrrolidone) is a braid-shaped 1D polymer. When 3d block metal ions are present and bound to 2,2'-bipyridine (bipy) coligands, their role is reduced to that of decorating species attached to uranyl-containing 1D polymers, as in [UO2M(L)2(bipy)2]·0.5H2O with M = Co (5) or Ni (6), and [(UO2)2Cu2(L)3(NO3)2(bipy)2]·0.5H2O (9), or of counterions, as in [Ni(bipy)3][(UO2)4(O)2(L)3]·3H2O (7), in which a two-dimensional (2D) assembly is built from tetranuclear uranyl-containing building units. In contrast, the heterometallic 3D framework [UO2Cu(L)2] (8) can be isolated in the absence of bipy. The emission spectra measured in the solid state display the usual uranyl vibronic fine structure, with various degrees of resolution and quenching, except for that of complex 7, which shows emission from the nickel(II) centers. The magnetic properties of complexes 5, 6, 8, and 9 were investigated, showing, in particular, the presence of zero-field splitting effects in 6 and weak antiferromagnetic interactions in 9.

  14. Anchoring a cationic ligand: the structure of the Fab fragment of the anti-morphine antibody 9B1 and its complex with morphine.

    PubMed

    Pozharski, Edwin; Wilson, Mark A; Hewagama, Anura; Shanafelt, Armen B; Petsko, Gregory; Ringe, Dagmar

    2004-03-26

    The crystal structures of an anti-morphine antibody 9B1 (to 1.6A resolution) and its complex with morphine (to 2.0 A resolution) are reported. The morphine-binding site is described as a shallow depression on the protein surface, an unusual topology for a high-affinity ( Ka approximately 10(9) M(-1)) antibody against a small antigen. The polar part of the ligand is exposed to solvent, and the cationic nitrogen atom of the morphine molecule is anchored at the bottom of the binding site by a salt-bridge to a glutamate side-chain. Additional affinity is provided by a double cation-pi interaction with two tryptophan residues. Comparison of the morphine complex with the structure of the free Fab shows that a domain closure occurs upon binding of the ligand.

  15. Cationic rare-earth metal trimethylsilylmethyl complexes supported by THF and 12-crown-4 ligands: synthesis and structural characterization.

    PubMed

    Elvidge, Benjamin R; Arndt, Stefan; Zeimentz, Peter M; Spaniol, Thomas P; Okuda, Jun

    2005-09-19

    To expand the limited range of rare-earth metal cationic alkyl complexes known, a series of mono- and dicationic trimethylsilylmethyl complexes supported by THF and 12-crown-4 ligands with [BPh4]-, [BPh3(CH2SiMe3)]-, [B(C6F5)4]-, [B(C6F5)3(CH2SiMe3)]-, and [Al(CH2SiMe3)4]- anions were prepared from corresponding neutral precursors [Ln(CH2SiMe3)3Ln] (Ln = Sc, Y, Lu; L = THF, n = 2 or 3; L = 12-crown-4, n = 1) as solvent-separated ion pairs. The syntheses of the monocationic derivatives [Ln(CH2SiMe3)2(12-crown-4)n(THF)m]+[A]- are all high yielding and proceed rapidly in THF solution at room temperature. A "one pot" procedure using the neutral species directly for the syntheses of a number of lutetium and yttrium dicationic derivatives [Ln(CH2SiMe3)(12-crown-4)n(THF)m]2+[A]-2 with a variety of different anions, a class of compounds previously limited to just a few examples, is presented. When BPh3 is used to generate the ion triple, the presence of 12-crown-4 is required for complete conversion. Addition of a second equiv of 12-crown-4 and a third equiv of [NMe2PhH]+[B(C6F5)4]- abstracts a third alkyl group from [Ln(CH2SiMe3)(12-crown-4)2(THF)x]2+[B(C6F5)4]-2 (Ln = Y, Lu). X-ray crystallography and variable-temperature (VT) NMR spectroscopy reveal a structural diversity within the known series of neutral 12-crown-4 supported tris(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)3(12-crown-4)] (Ln = Sc, Y, Sm, Gd-Lu) in the solid and solution states. The X-ray structure of [Sc(CH2SiMe3)3(12-crown-4)] exhibits incomplete 12-crown-4 coordination. VT NMR spectroscopy indicates fluxional 12-crown-4 coordination on the NMR time scale. X-ray crystallography of only the second structurally characterized dicationic rare-earth metal alkyl complex [Y(CH2SiMe3)(12-crown-4)(THF)3]2+[BPh4]-2 shows exocyclic 12-crown-4 coordination at the 8-coordinate metal center with well separated counteranions. 11B and 19F NMR spectroscopy of all mono- and dicationic rare-earth metal complexes

  16. The energetic and structural effects of steric crowding in phosphate and dithiophosphinate complexes of lanthanide cations M3+: a computational study.

    PubMed

    Boehme, C; Wipff, G

    2001-04-01

    Metal-ligand binding strength and selectivity result from antagonistic metal-ligand M-L attractions and ligand-ligand L-L repulsions. On the basis of quantum-mechanical (QM) calculations on lanthanide complexes, we show that this interplay determines the binding affinities in the gas phase. In the series of [ML3] complexes (M = La, Eu, and Yb) with negatively charged phosphoryl ligands L- = (MeO)2PO2- and Me2PS2-, the binding energies follow the order Yb3+ > Eu3+ > La3- for a given ligand, and (MeO)2PO2- > Me2PS2- for a given cation. However, adding a neutral LH ligand to [ML3] changes the order to Eu3+ > Yb3+ > La3+ for the oxygen ligand and La3+ > Eu3- > Yb3+ for the sulfur ligand, indicating that steric strain in the first coordination sphere is largest for the smallest cation and for sulfur binding sites. We investigated the question of additional hydration of the [ML3LH] complexes in aqueous solution by molecular dynamics (MD) simulations, using two sets of atomic charges. It was found that pairwise additive potentials overestimate the coordination and hydration numbers of the cations, while adding polarization energy terms for the ligands yields better agreement between QM and MD results and supports the concept of steric strain in the first coordination sphere.

  17. Highly luminescent yellow and yellowish-green light-emitting electrochemical cells based on cationic iridium complexes with phenanthroline based ancillary ligands

    NASA Astrophysics Data System (ADS)

    Sunesh, Chozhidakath Damodharan; Chandran, Midhun; Mathai, George; Choe, Youngson

    2013-01-01

    Highly luminescent light-emitting electrochemical cells (LECs) based on cationic iridium complexes [Ir(ppz)2(dpphen)]PF6 (1) and [Ir(ppz)2(tmphen)]PF6 (2) (ppz is 1-phenylpyrazole, dpphen is 4,7-diphenyl-1,10-phenanthroline and tmphen is 3,4,7,8-tetramethyl-1,10-phenanthroline) with phenanthroline based ancillary ligands were fabricated using air stable electrodes and their electroluminescent properties were investigated. LECs based on complex 1 emitted yellow electroluminescence (λmax 574 nm) with Commission Internationale de L'Eclairage (CIE) coordinates of (0.49, 0.50) while the complex 2 gave yellowish-green electroluminescence (λmax 537 nm) with CIE coordinates of (0.35, 0.58). The work done here reveals that the alkyl substituted phenanthroline ancillary ligand, tmphen shifts the light emission to the shorter wavelength region than the phenyl substituted dpphen ligand, resulting in the color tuning of the light-emitting devices. Density functional theory (DFT) calculations were performed to gain insight into the molecular surfaces of cationic iridium complexes and their electrochemical behaviors. Single layer LECs based on these complexes exhibited a high luminescence of 5199 and 4751 cd/m2 for complexes 1 and 2 respectively. The ionic liquid, 1-ethyl-3-methylimidazolium hexafluorophosphate (EMIMPF6) was added to the light emitting layer and hence higher luminances were obtained than the pristine device.

  18. The electronic structure of vanadium monochloride cation (VCl{sup +}): Tackling the complexities of transition metal species

    SciTech Connect

    DeYonker, Nathan J.; Halfen, DeWayne T.; Ziurys, Lucy M.; Allen, Wesley D.

    2014-11-28

    Six electronic states (X {sup 4}Σ{sup −}, A {sup 4}Π, B {sup 4}Δ, {sup 2}Φ, {sup 2}Δ, {sup 2}Σ{sup +}) of the vanadium monochloride cation (VCl{sup +}) are described using large basis set coupled cluster theory. For the two lowest quartet states (X {sup 4}Σ{sup −} and A {sup 4}Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T{sub 0}) and spectroscopic constants (r{sub e}, r{sub 0}, B{sub e}, B{sub 0}, D{sup ¯}{sub e}, H{sub e}, ω{sub e}, v{sub 0}, α{sub e}, ω{sub e}x{sub e}) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X {sup 4}Σ{sup −}), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state ({sup 2}Γ) has a T{sub e} of ∼11 200 cm{sup −1}. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.

  19. Blue-green emitting cationic iridium complexes with 1,3,4-oxadiazole cyclometallating ligands: synthesis, photophysical and electrochemical properties, theoretical investigation and electroluminescent devices.

    PubMed

    Wang, Zhen; He, Lei; Duan, Lian; Yan, Jun; Tang, Ruiren; Pan, Chunyue; Song, Xiangzhi

    2015-09-28

    Two cationic iridium complexes, namely [Ir(dph-oxd)2(bpy)]PF6 (1) and [Ir(dph-oxd)2(pzpy)]PF6 (2), using 2,5-diphenyl-1,3,4-oxadiazole (dph-oxd) as the cyclometallating ligand and 2,2'-bipyridine (bpy) or 2-(1H-pyrazol-1-yl)pyridine (pzpy) as the ancillary ligands, have been synthesized, and their photophysical and electrochemical properties have been comprehensively investigated. In solution, both complexes emit efficient blue-green light. For complex 1, the light emission in a neat film is remarkably red-shifted; in solid state, it gives an intriguing piezochromic phenomenon. Compared with archetype [Ir(ppy)2(bpy)]PF6 (ppy is 2-phenylpyridine), complex 1 shows a largely stabilized HOMO (highest occupied molecular orbital) level, induced by the electron-deficient 1,3,4-oxadiazole (oxd) heterocycle of dph-oxd, which results in an enlarged energy gap and blue-shifted emission. Compared with complex 1, complex 2 shows an enhanced LUMO (lowest unoccupied molecular orbital) level, caused by the electron-rich pzpy ancillary ligand, but they exhibit similar emission energy in solution. For both complexes, theoretical calculations reveal that their blue-green emission in solution arises primarily from the (3)π-π* states centered on dph-oxd; moreover, complex 1 bears close-lying (3)π-π* and (3)CT (charge-transfer) states, underlying its remarkably red-shifted emission in the neat film and unique piezochromic behavior in the solid state. Solid state light emitting electrochemical cells (LECs) based on complexes 1 and 2 give efficient yellow and green-blue light, with peak current efficiencies of 18.3 and 5.2 cd A(-1), respectively. It is demonstrated that oxd-type cyclometallating ligands are promising as an avenue to stabilize the HOMOs and tune emission properties of cationic iridium complexes to a large extent.

  20. CATION-π and CH-π Interactions in the Coordination and Solvation of Cu+ (ACETYLENE)n (n=1-6) Complexes Investigated via Infrared Photodissociation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brathwaite, Antonio David; Walters, Richard S.; Ward, Timothy B.; Duncan, Michael A.

    2015-06-01

    Mass-selected copper-acetylene cation complexes of the form Cu(C2H2)n+ are produced by laser ablation and studied via infrared laser photodissociation spectroscopy in the C-H stretching region (3000-3500 wn). Spectra for larger species are measured via ligand elimination, whereas argon tagging is employed to enhance dissociation yields in smaller complexes. The number of infrared active bands, their frequency positions and their relative intensities provide insight into the structure and bonding of these ions. Density functional theory calculations are carried out in support of this work. The combined data show that cation-π bonds are formed for the n=1-3 species, resulting in red-shifted C-H stretches on the acetylene ligands. Three acetylene ligands complete the coordination of the copper cation. Additional ligands (n=4-6) solvate the n=3 core by forming CH-pi bonds. Distinctive vibrational patterns are exhibited for coordinated vs. solvent ligands. Theory reproduces these results.

  1. Delivery of siRNA using ternary complexes containing branched cationic peptides: the role of peptide sequence, branching and targeting.

    PubMed

    Kudsiova, Laila; Welser, Katharina; Campbell, Frederick; Mohammadi, Atefeh; Dawson, Natalie; Cui, Lili; Hailes, Helen C; Lawrence, M Jayne; Tabor, Alethea B

    2016-03-01

    Ternary nanocomplexes, composed of bifunctional cationic peptides, lipids and siRNA, as delivery vehicles for siRNA have been investigated. The study is the first to determine the optimal sequence and architecture of the bifunctional cationic peptide used for siRNA packaging and delivery using lipopolyplexes. Specifically three series of cationic peptides of differing sequence, degrees of branching and cell-targeting sequences were co-formulated with siRNA and vesicles prepared from a 1 : 1 molar ratio of the cationic lipid DOTMA and the helper lipid, DOPE. The level of siRNA knockdown achieved in the human alveolar cell line, A549-luc cells, in both reduced serum and in serum supplemented media was evaluated, and the results correlated to the nanocomplex structure (established using a range of physico-chemical tools, namely small angle neutron scattering, transmission electron microscopy, dynamic light scattering and zeta potential measurement); the conformational properties of each component (circular dichroism); the degree of protection of the siRNA in the lipopolyplex (using gel shift assays) and to the cellular uptake, localisation and toxicity of the nanocomplexes (confocal microscopy). Although the size, charge, structure and stability of the various lipopolyplexes were broadly similar, it was clear that lipopolyplexes formulated from branched peptides containing His-Lys sequences perform best as siRNA delivery agents in serum, with protection of the siRNA in serum balanced against efficient release of the siRNA into the cytoplasm of the cell.

  2. One-dimensional polymers based on silver(I) cations and organometallic cyclo-P3 ligand complexes.

    PubMed

    Gregoriades, Laurence J; Wegley, Brian K; Sierka, Marek; Brunner, Eike; Gröger, Christian; Peresypkina, Eugenia V; Virovets, Alexander V; Zabel, Manfred; Scheer, Manfred

    2009-10-05

    The synthesis and characterization of the first supramolecular aggregates incorporating the organometallic cyclo-P3 ligand complexes [CpRMo(CO)2(eta3-P3)] (CpR=Cp (C5H5; 1a), Cp* (C5(CH3)5; 1b)) as linking units is described. The reaction of the Cp derivative 1a with AgX (X=CF3SO3, Al{OC(CF3)3}4) yields the one-dimensional (1D) coordination polymers [Ag{CpMo(CO)2(mu,eta3:eta1:eta1-P3)}2]n[Al{OC(CF3)3}4]n (2) and [Ag{CpMo(CO)2(mu,eta3:eta1:eta1-P3)}3]n[X]n (X=CF3SO3 (3a), Al{OC(CF3)3}4 (3b)). The solid-state structures of these polymers were revealed by X-ray crystallography and shown to comprise polycationic chains well-separated from the weakly coordinating anions. If AgCF3SO3 is used, polymer 3a is obtained regardless of reactant stoichiometry whereas in the case of Ag[Al{OC(CF3)3}4], reactant stoichiometry plays a decisive role in determining the structure and composition of the resulting product. Moreover, polymers 3a, b are the first examples of homoleptic silver complexes in which Ag(I) centers are found octahedrally coordinated to six phosphorus atoms. The Cp* derivative 1b reacts with Ag[Al{OC(CF3)3}4] to yield the 1D polymer [Ag{Cp*Mo(CO)2(mu,eta3:eta2:eta1-P3)}2]n[Al{OC(CF3)3}4]n (4), the crystal structure of which differs from that of polymer 2 in the coordination mode of the cyclo-P3 ligands: in 2, the Ag+ cations are bridged by the cyclo-P3 ligands in a eta1:eta1 (edge bridging) fashion whereas in 4, they are bridged exclusively in a eta2:eta1 mode (face bridging). Thus, one third of the phosphorus atoms in 2 are not coordinated to silver while in 4, all phosphorus atoms are engaged in coordination with silver. Comprehensive spectroscopic and analytical measurements revealed that the polymers 2, 3a, b, and 4 depolymerize extensively upon dissolution and display dynamic behavior in solution, as evidenced in particular by variable temperature 31P NMR spectroscopy. Solid-state 31P magic angle spinning (MAS) NMR measurements, performed on the polymers 2, 3

  3. Study of complexation process between 4'-nitrobenzo-15-crown-5 and yttrium(III) cation in binary mixed non-aqueous solvents using conductometric method

    NASA Astrophysics Data System (ADS)

    Habibi, N.; Rounaghi, G. H.; Mohajeri, M.

    2012-12-01

    The complexation reaction of macrocyclic ligand (4'-nitrobenzo-15C5) with Y3+ cation was studied in acetonitrile-methanol (AN-MeOH), acetonitrile-ethanol (AN-EtOH), acetonitrile-dimethylformamide (AN-DMF) and ethylacetate-methanol (EtOAc-MeOH) binary mixtures at different temperatures using conductometry method. The conductivity data show that in all solvent systems, the stoichiometry of the complex formed between 4'-nitrobenzo-15C5 and Y3+ cation is 1: 1 (ML). The stability order of (4'-nitrobenzo-15C5). Y3+ complex in pure non-aqueous solvents at 25°C was found to be: EtOAc > EtOH > AN ≈ DMF > MeOH, and in the case of most compositions of the binary mixed solvents at 25°C it was: AN≈MeOH ≈ AN-EtOH > AN-DMF > EtOAc-MeOH. But the results indicate that the sequence of the stability of the complex in the binary mixed solutions changes with temperature. A non-linear behavior was observed for changes of log K f of (4'-nitrobenzo-15C5 · Y3+) complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions and also the hetero-selective solvation of the species involved in the complexation reaction. The values of thermodynamic parameters (Δ H {c/ℴ} and Δ S {c/ℴ}) for formation of the complex were obtained from temperature dependent of the stability constant using the van't Hoff plots. The results represent that in most cases, the complex is both enthalpy and entropy stabilized and the values and also the sign of thermodynamic parameters are influenced by the nature and composition of the mixed solvents.

  4. Analysis of self-assembled cationic lipid-DNA gene carrier complexes using flow field-flow fractionation and light scattering.

    PubMed

    Lee, H; Williams, S K; Allison, S D; Anchordoquy, T J

    2001-02-15

    Self-assembled cationic lipid-DNA complexes have shown an ability to facilitate the delivery of heterologous DNA across outer cell membranes and nuclear membranes (transfection) for gene therapy applications. While the size of the complex and the surface charge (which is a function of the lipid-to-DNA mass ratio) are important factors that determine transfection efficiency, lipid-DNA complex preparations are heterogeneous with respect to particle size and net charge. This heterogeneity contributes to the low transfection efficiency and instability of cationic lipid-DNA vectors. Efforts to define structure-activity relations and stable vector populations have been hampered by the lack of analytical techniques that can separate this type of particle and analyze both the physical characteristics and biological activity of the resulting fractions. In this study, we investigated the feasibility of flow field-flow fractionation (flow FFF) to separate cationic lipid-DNA complexes prepared at various lipid-DNA ratios. The compatibility of the lipid-DNA particles with several combinations of FFF carrier liquids and channel membranes was assessed. In addition, changes in elution profiles (or size distributions) were monitored as a function of time using on-line ultraviolet, multiangle light scattering, and refractive index detectors. Multiangle light scattering detected the formation of particle aggregates during storage, which were not observed with the other detectors. In comparison to population-averaged techniques, such as photon correlation spectroscopy, flow FFF allows a detailed examination of subtle changes in the physical properties of nonviral vectors and provides a basis for the definition of structure-activity relations for this novel class of pharmaceutical agents.

  5. Ratiometric Molecular Probes Based on Dual Emission of a Blue Fluorescent Coumarin and a Red Phosphorescent Cationic Iridium(III) Complex for Intracellular Oxygen Sensing.

    PubMed

    Yoshihara, Toshitada; Murayama, Saori; Tobita, Seiji

    2015-06-09

    Ratiometric molecular probes RP1 and RP2 consisting of a blue fluorescent coumarin and a red phosphorescent cationic iridium complex connected by a tetra- or octaproline linker, respectively, were designed and synthesized for sensing oxygen levels in living cells. These probes exhibited dual emission with good spectral separation in acetonitrile. The photorelaxation processes, including intramolecular energy transfer, were revealed by emission quantum yield and lifetime measurements. The ratios (R(I) = (I(p)/I(f))) between the phosphorescence (I(p)) and fluorescence (I(f)) intensities showed excellent oxygen responses; the ratio of R(I) under degassed and aerated conditions ( R(I)(0) was 20.3 and 19.6 for RP1 and RP2. The introduction of the cationic Ir (III) complex improved the cellular uptake efficiency compared to that of a neutral analogue with a tetraproline linker. The emission spectra of the ratiometric probes internalized into living HeLa or MCF-7 cells could be obtained using a conventional microplate reader. The complex RP2 with an octaproline linker provided ratios comparable to the ratiometric measurements obtained using a microplate reader: the ratio of the R(I)) value of RP2 under hypoxia (2.5% O2) to that under normoxia (21% O2) was 1.5 and 1.7 for HeLa and MCF-7 cells, respectively. Thus, the intracellular oxygen levels of MCF-7 cells could be imaged by ratiometric emission measurements using the complex RP2.

  6. Ratiometric Molecular Probes Based on Dual Emission of a Blue Fluorescent Coumarin and a Red Phosphorescent Cationic Iridium(III) Complex for Intracellular Oxygen Sensing

    PubMed Central

    Yoshihara, Toshitada; Murayama, Saori; Tobita, Seiji

    2015-01-01

    Ratiometric molecular probes RP1 and RP2 consisting of a blue fluorescent coumarin and a red phosphorescent cationic iridium complex connected by a tetra- or octaproline linker, respectively, were designed and synthesized for sensing oxygen levels in living cells. These probes exhibited dual emission with good spectral separation in acetonitrile. The photorelaxation processes, including intramolecular energy transfer, were revealed by emission quantum yield and lifetime measurements. The ratios (RI=(Ip/If)) between the phosphorescence (Ip) and fluorescence (If) intensities showed excellent oxygen responses; the ratio of RI under degassed and aerated conditions (RI0/RI) was 20.3 and 19.6 for RP1 and RP2. The introduction of the cationic Ir (III) complex improved the cellular uptake efficiency compared to that of a neutral analogue with a tetraproline linker. The emission spectra of the ratiometric probes internalized into living HeLa or MCF-7 cells could be obtained using a conventional microplate reader. The complex RP2 with an octaproline linker provided ratios comparable to the ratiometric measurements obtained using a microplate reader: the ratio of the RI value of RP2 under hypoxia (2.5% O2) to that under normoxia (21% O2) was 1.5 and 1.7 for HeLa and MCF-7 cells, respectively. Thus, the intracellular oxygen levels of MCF-7 cells could be imaged by ratiometric emission measurements using the complex RP2. PMID:26066988

  7. Strong ionic interactions in noncovalent complexes between poly(ethylene imine), a cationic electrolyte, and Cibacron Blue, a nucleotide mimic--implications for oligonucleotide vectors.

    PubMed

    Çelikbıçak, Ömür; Salih, Bekir; Wesdemiotis, Chrys

    2014-07-01

    Cationic polymers can bind DNA to form polyplexes, which are noncovalent complexes used for gene delivery into the targeted cells. For more insight on such biologically relevant systems, the noncovalent complexes between the cationic polymer poly(ethylene imine) (PEI) and the nucleotide mimicking dye Cibacron Blue F3G-A (CB) were investigated using mass spectrometry methods. Two PEIs of low molecular weight were utilized (Mn  ≈ 423 and 600 Da). The different types of CB anions produced by Na(+)/H(+) exchanges on the three sulfonic acid groups of CB and their dehydrated counterparts were responsible for complex formation with PEI. The CB anions underwent noncovalent complex formation with protonated, but not with sodiated PEI. A higher proportion of cyclic oligomers were detected in PEI423 than PEI600, but both architectures formed association products with CB. Tandem mass spectrometry studies revealed a significantly stronger noncovalent interaction between PEI and dehydrated CB than between PEI and intact CB.

  8. A Highly Effective Strategy for Encapsulating Potassium Cations in Small Crown Ether Rings on a Dinuclear Palladium Complex.

    PubMed

    Lucio-Martínez, Fátima; Bermúdez, Brais; Ortigueira, Juan M; Adams, Harry; Fernández, Alberto; Pereira, M Teresa; Vila, José M

    2017-03-16

    The potential of 15-crown-5 ethers to link large cations, such as potassium, is limited by the quasi-parallel arrangement of two oxygen donor moieties upon appropriate orientation of the corresponding ether-ring-containing molecules. Substrates bearing the two crown ethers that are capable of achieving such coordination are hitherto unknown. The synthesis and isolation of a tailor-made dinuclear palladacycle bearing 15-crown-5 ether rings on the metallated phenyls offers such a possibility, providing the adequate environment for the formation of the sandwiched [K(metallacycle-15-crown-5)2 ] moiety. This synthetic strategy also culminates in the isolation of the first palladacycle able to entrap a potassium cation through bonding to two 15-crown-5 ether rings in a single molecule.

  9. Possible conformational change within the desolvated and cationized sBBI/trypsin non-covalent complex during the collision-induced dissociation process.

    PubMed

    Darii, Ekaterina; Saravanamuthu, Gunalini; Afonso, Carlos; Alves, Sandra; Gut, Ivo; Tabet, Jean-Claude

    2011-06-30

    Electrospray ionization mass spectrometry (ESI-MS) has become an analytical technique widely used for the investigation of non-covalent protein-protein and protein-ligand complexes due to the soft desolvation conditions that preserve the stoichiometry of the interacting partners. Dissociation studies of solvated or desolvated complexes (in the source and in the collision cell, respectively) allow access to information on protein conformation and localization of the metal ions involved in protein structure stabilization and biological activity. The complex of bovine trypsin and small soybean Bowman-Birk inhibitor (sBBI) was studied by ESI-MS to determine changes occurring within the complex during its transfer from droplets to the gas phase independently of the ion polarity. Under collision-induced dissociation (CID) conditions, unexpected binding of the Ca(2+) ion (cofactor of native trypsin) to the inhibitor molecule was observed within the desolvated sBBI/trypsin/Ca(2+) complex (with a 1:1:1 stoichiometry). This formal gas-phase migration of the calcium ion from trypsin to the inhibitor may be related to conformational rearrangements in the solvent-free and likely collapsed complex. However, under conditions leading to the increase in complex charge state, the appearance of the cationized trypsin molecule was detected during complex dissociation, thus reflecting different pathways of the evolution of complex conformation.

  10. Light-emitting properties of cationic iridium complexes containing phenanthroline based ancillary ligand with blue-green and green emission colors

    NASA Astrophysics Data System (ADS)

    Kwon, Yiseul; Sunesh, Chozhidakath Damodharan; Choe, Youngson

    2015-01-01

    We report here two new cationic iridium(III) complexes with phenanthroline-based ancillary ligands, [Ir(dfppy)2(dibutyl-phen)]PF6 (Complex 1) and [Ir(ppz)2(dibutyl-phen)]PF6 (Complex 2) and their uses in light-emitting electrochemical cells (LECs). The design is based on 2-(2,4-difluorophenyl)pyridine (dfppy) and 1-phenylpyrazole (ppz) as the cyclometalating ligands and 2,9-dibutyl-1,10-phenanthroline (dibutyl-phen) as the ancillary ligand. The photophysical and electrochemical properties of the complexes were studied and the results obtained were corroborated with theoretical density functional theory (DFT) calculations. LECs were fabricated incorporating each complexes which resulted in blue-green light emission (502 nm) with Commission Internationale de l'Eclairage (CIE) coordinates of (0.26, 0.49) for Complex 1 and green (530 nm) electroluminescence with CIE coordinates of (0.33, 0.54) for Complex 2. The luminance and the current efficiency of the LECs based on Complex 1 are 947 cd m-2 and 0.25 cd A-1, respectively, which are relatively higher than that of Complex 2 with a maximum luminance of 773 cd m-2 and an efficiency of 0.16 cd A-1.

  11. A Novel Ternary Ligand System Useful for Preparation of Cationic 99mTc-Diazenido Complexes and 99mTc-Labeling of Small Biomolecules

    PubMed Central

    Kim, Young-Seung; He, Zhengjie; Hsieh, Wen-Yuan; Liu, Shuang

    2008-01-01

    This report describes a novel ternary ligand system composed of a phenylhydrazine, a crown ether-containing dithiocarbamate (DTC) and a PNP-type bisphosphine (PNP). The combination of three different ligands with 99mTc results in cationic 99mTc-diazenido complexes,[99mTc(NNAr)(DTC)(PNP)]+, with potential radiopharmaceuticals for heart imaging. Synthesis of cationic 99mTc-diazenido complexes can be accomplished in two steps with high yield. For example, the reaction of phenylhydrazine with 99mTcO4− at 100 °C in the presence of excess stannous chloride and 1,2-diaminopropane-N,N,N’,N’-tetraacetic acid (PDTA) results in the [99mTc(NNPh)(PDTA)n] intermediate, which then reacts with sodium N-(dithiocarbamato)-2-aminimethyl-15-Crown-5 (L4) and N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]ethoxy-ethylamine (PNP6) at 100 °C for 15 min to give the complex, [99mTc(NNPh)(L4)(PNP6)]+ in high yield (> 90%). Cationic complexes [99mTc(NNPh)(DTC)(PNP)]+ are stable for ≥6 h. Their composition was determined to be 1:1:1:1 for Tc:NNPh:DTC:PNP using the mixed-ligand experiments on the tracer (99mTc) level, and was further confirmed by the ESI-MS spectral data of a model compound [Re(NNPh)(L4)(L6)]+. It was found that both DTCs and bisphosphines have a significant impact on the lipophilicity of their cationic 99mTc-diazenido complexes. Results from a 99mTc-labeling efficiency experiment showed that 4-hydrazinobenzoic acid (HYBA) might be useful as a bifunctional coupling agent for 99mTc-labeling of small biomolecules. However, the 99mTc-labeling efficiency of HYBA is much lower than that of 6-hydrazinonicotinic acid (HYNIC) with tricine and trisodium triphenylphosphine-3,3’,3”-trisulfonate (TPPTS) as coligands. PMID:16536480

  12. Influence of cations on the complexation yield of DOTATATE with yttrium and lutetium: a perspective study for enhancing the 90Y and 177Lu labeling conditions.

    PubMed

    Asti, Mattia; Tegoni, Matteo; Farioli, Daniela; Iori, Michele; Guidotti, Claudio; Cutler, Cathy S; Mayer, Pat; Versari, Annibale; Salvo, Diana

    2012-05-01

    The DOTA macrocyclic ligand can form stable complexes with many cations besides yttrium and lutetium. For this reason, the presence of competing cationic metals in yttrium-90 and lutetium-177 chloride solutions can dramatically influence the radiolabeling yield. The aim of this study was to evaluate the coordination yield of yttrium- and lutetium-DOTATATE complexes when the reaction is performed in the presence of varying amounts of competing cationic impurities. In the first set of experiments, the preparation of the samples was performed by using natural yttrium and lutetium (20.4 nmol). The molar ratio between DOTATATE and these metals was 1 to 1. Metal competitors (Pb(2+), Zn(2+), Cu(2+), Fe(3+), Al(3+), Ni(2+), Co(2+), Cr(3+)) were added separately to obtain samples with varying molar ratio with respect to yttrium or lutetium (0.1, 0.5, 1, 2 and 10). The final solutions were analyzed through ultra high-performance liquid chromatography with an UV detector. In the second set of experiments, an amount of (90)Y or (177)Lu chloride (6 MBq corresponding to 3.3 and 45 pmol, respectively) was added to the samples, and a radio-thin layer chromatography analysis was carried out. The coordination of Y(3+) and Lu(3+) was dramatically influenced by low levels of Zn(2+), Cu(2+) and Co(2+). Pb(2+) and Ni(2+) were also shown to be strong competitors at higher concentrations. Fe(3+) was expected to be a strong competitor, but the effect on the incorporation was only partly dependent on its concentration. Al(3+) and Cr(3+) did not compete with Y(3+) and Lu(3+) in the formation of DOTATATE complexes.

  13. A cationic iridium(III) complex showing aggregation-induced phosphorescent emission (AIPE) in the solid state: synthesis, characterization and properties.

    PubMed

    Shan, Guo-Gang; Zhang, Ling-Yu; Li, Hai-Bin; Wang, Shuang; Zhu, Dong-Xia; Li, Peng; Wang, Chun-Gang; Su, Zhong-Min; Liao, Yi

    2012-01-14

    We report the synthesis and characterization of two cationic iridium(III) complexes with dendritic carbazole ligands as ancillary ligands, namely, [Ir(ppy)(2)L3]PF(6) (1) and [Ir(ppy)(2)L4]PF(6) (2), where L3 and L4 represent 3,8-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,10-phenanthroline and 3,8-bis(3',6'-di-tert-butyl-6-(3,6-di-tert-butyl-9H-carbazol-9-yl)-3,9'-bi(9H-carbazol)-9-yl)-1,10-phenanthroline, respectively. Their photophysical properties have been investigated and compared. The results have shown that complex 2 is aggregation-induced phosphorescent emission (AIPE) active and exhibits the highest photoluminescent quantum yield (PLQY) of 16.2% in neat film among the reported cationic Ir(III) complexes with AIPE activity. In addition, it also enjoys redox reversibility, good film-forming ability, excellent thermal stability as well as off/on luminescence switching properties, revealing its potential application as a candidate for light-emitting electrochemical cells and organic vapor sensing. To explore applications in biology, 2 was used to image cells.

  14. Infrared Multiple Photon Dissociation Action Spectroscopy and Theoretical Studies of Diethyl Phosphate Complexes: Effects of Protonation and Sodium Cationization on Structure

    NASA Astrophysics Data System (ADS)

    Fales, B. S.; Fujamade, N. O.; Nei, Y.-W.; Oomens, J.; Rodgers, M. T.

    2011-01-01

    The gas-phase structures of deprotonated, protonated, and sodium-cationized complexes of diethyl phosphate (DEP) including [DEP - H]-, [DEP + H]+, [DEP + Na]+, and [DEP - H + 2Na]+ are examined via infrared multiple photon dissociation (IRMPD) action spectroscopy using tunable IR radiation generated by a free electron laser, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) with an electrospray ionization (ESI) source, and theoretical electronic structure calculations. Measured IRMPD spectra are compared to linear IR spectra calculated at the B3LYP/6-31G(d,p) level of theory to identify the structures accessed in the experimental studies. For comparison, theoretical studies of neutral complexes are also performed. These experiments and calculations suggest that specific geometric changes occur upon the binding of protons and/or sodium cations, including changes correlating to nucleic acid backbone geometry, specifically P-O bond lengths and ∠OPO bond angles. Information from these observations may be used to gain insight into the structures of more complex systems, such as nucleotides and solvated nucleic acids.

  15. Thermochemistry and infrared spectroscopy of neutral and cationic iron-polycyclic aromatic hydrocarbon complexes of astrophysical interest: fundamental density functional theory studies.

    PubMed

    Simon, Aude; Joblin, Christine

    2007-10-04

    This paper reports extensive calculations on the structural, thermodynamic, and mid-infrared spectroscopic properties of neutral and cationic model iron-polycyclic aromatic hydrocarbon (PAH) complexes of astrophysical interest for three PAHs of increasing size, namely, naphthalene (C10H8), pyrene (C16H10), and coronene (C24H12). Geometry optimizations and frequency calculations were performed using hybrid Hartree-Fock/density functional theory (DFT) methods. The use of DFT methods is mandatory in terms of computational cost and efficiency to describe the electronic and vibrational structures of such large organometallic unsaturated species that present several low-energy isomers of different structures and electronic and spin states. The calculated structures for the low-energy isomers of the model Fe-PAH and Fe-PAH+ complexes are presented and discussed. Iron-PAH binding energies are extracted, and the consequences of the coordination of iron on the infrared spectra of neutral and cationic PAHs are shown with systematic effects on band intensities and positions being demonstrated. The first results are discussed in terms of astrophysical implications. This work is the first step of an ongoing effort in our group to understand the photophysics and spectroscopy of iron-PAH complexes in the conditions of the interstellar medium using a synergy between observations, laboratory experiments, and theory.

  16. Influences of the propyl group on the van der Waals structures of 4-propylaniline complexes with one and two argon atoms studied by electronic and cationic spectroscopy.

    PubMed

    Yang, Zhijun; Gu, Quanli; Trindle, Carl O; Knee, J L

    2015-07-21

    4-propylaniline complexes with one and two argon atoms formed in the molecular beam were studied in the first excited electronic state, S1, using resonance enhanced two-photon ionization spectroscopy and in the cation ground state, D0, using mass analyzed threshold ionization spectroscopy. The combination of electronic and cationic spectra of the clusters allows two conformations to be identified in both aniline-Ar1 and aniline-Ar2, which are assigned to either the gauche configuration or anti-configuration of 4-propylaniline. The gauche isomer exhibits complex bands shifted 29 cm(-1) and 89 cm(-1) from the S1 origin bands and 83 cm(-1) and 148 cm(-1) from the ionization potential assigned to the Ar1 and Ar2 complexes, respectively. For the anti-rotamer, the corresponding shifts actually become nearly additive, 53 cm(-1) and 109 cm(-1) for the S1 origin bands, and 61 cm(-1) and 125 cm(-1) for the ionization potentials. Ab initio calculations provide insights into the influences of the propyl and amino groups on the positions of the argon atoms within the clusters. In addition, the binding energy of one argon with the gauche isomer of 4-propylaniline has been measured to be 550 ± 5 cm(-1) in the D0 state, 496 ± 5 cm(-1) in the S1 state, and 467 ± 5 cm(-1) in the neutral ground state, S0.

  17. Endosomal Escape and Transfection Efficiency of PEGylated Cationic Lipid–DNA Complexes Prepared with an Acid-Labile PEG-Lipid

    PubMed Central

    Chan, Chia-Ling; Majzoub, Ramsey N.; Shirazi, Rahau S.; Ewert, Kai K.; Chen, Yen-Ju; Liang, Keng S.

    2012-01-01

    Cationic liposome–DNA (CL–DNA) complexes are being pursued as nonviral gene delivery systems for use in applications that include clinic trials. However, to compete with viral vectors for systemic delivery in vivo, their efficiencies and pharmacokinetics need to be improved. The addition of poly (ethylene glycol)-lipids (PEGylation) prolongs circulation lifetimes of liposomes, but inhibits cellular uptake and endosomal escape of CL–DNA complexes. We show that this limits their transfection efficiency (TE) in a manner dependent on the amount of PEG-lipid, the lipid/DNA charge ratio, and the lipid membrane charge density. To improve endosomal escape of PEGylated CL–DNA complexes, we prepared an acid-labile PEG-lipid (HPEG2K-lipid, PEG MW 2000) which is designed to lose its PEG chains at the pH of late endosomes. The HPEG2K-lipid and a similar but acid-stable PEG-lipid were used to prepare PEGylated CL–DNA complexes. TLC and dynamic light scattering showed that HPEG2K-CL–DNA complexes are stable at pH 7.4 for more than 24 hours, but the PEG chains are cleaved at pH 5 within one hour, leading to complex aggregation. The acid-labile HPEG2K-CL–DNA complexes showed enhanced TE over complexes stabilized with the acid-stable PEG-lipid. Live-cell imaging showed that both types of complexes were internalized to quantitatively similar particle distributions within the first 2 hours of incubation with cells. Thus, we attribute the increased TE of the HPEG2K-CL–DNA complexes to efficient endosomal escape, enabled by the acid-labile HPEG2K-lipid which sheds its PEG chains in the low-pH environment of late endosomes, effectively switching on the electrostatic interactions that promote fusion of the membranes of complex and endosome. PMID:22469293

  18. Role of organic cation/carnitine transporter 1 in uptake of phenformin and inhibitory effect on complex I respiration in mitochondria.

    PubMed

    Shitara, Yoshihisa; Nakamichi, Noritaka; Norioka, Misaki; Shima, Hiroyo; Kato, Yukio; Horie, Toshiharu

    2013-03-01

    Phenformin causes lactic acidosis in clinical situations due to inhibition of mitochondrial respiratory chain complex I. It is reportedly taken up by hepatocytes and exhibits mitochondrial toxicity in the liver. In this study, uptake of phenformin and [(14)C]tetraethylammonium (TEA) and complex I inhibition by phenformin were examined in isolated liver and heart mitochondria. Uptake of phenformin into isolated rat liver mitochondria was higher than that into heart mitochondria. It was inhibited by several cat ionic compounds, which suggests the involvement of multispecific transport system(s). Similar characteristics were also observed for uptake of TEA; however, uptake of phenformin into mitochondria of organic cation/carnitine transporter 1 (OCTN1) knockout mice was lower than that in wild-type mice, whereas uptake of TEA was comparable between the two strains, suggesting the involvement of distinct transport mechanisms for these two cations in mitochondria. Inhibition by phenformin of oxygen consumption via complex I respiration in isolated rat liver mitochondria was greater than that in heart mitochondria, whereas inhibitory effect of phenformin on complex I respiration was similar in inside-out structured submitochondrial particles prepared from rat livers and hearts. Lactic acidosis provoked by iv infusion of phenformin was weaker in octn1(-/-) mice than that in wild-type mice. These observations suggest that uptake of phenformin into liver mitochondria is at least partly mediated by OCTN1 and functionally relevant to its inhibition potential of complex I respiration. This study was, thus, the first to demonstrate OCTN1-mediated mitochondrial transport and toxicity of biguanide in vivo in rodents.

  19. Human 17β-hydroxysteroid dehydrogenase-ligand complexes: crystals of different space groups with various cations and combined seeding and co-crystallization

    NASA Astrophysics Data System (ADS)

    Zhu, D.-W.; Han, Q.; Qiu, W.; Campbell, R. L.; Xie, B.-X.; Azzi, A.; Lin, S.-X.

    1999-01-01

    Human estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD1) is responsible for the synthesis of active estrogens that stimulate the proliferation of breast cancer cells. The enzyme has been crystallized using a Mg 2+/PEG (3500)/β-octyl glucoside system [Zhu et al., J. Mol. Biol. 234 (1993) 242]. The space group of these crystals is C2. Here we report that cations can affect 17β-HSD1 crystallization significantly. In the presence of Mn 2+ instead of Mg 2+, crystals have been obtained in the same space group with similar unit cell dimensions. In the presence of Li + and Na + instead of Mg 2+, the space group has been changed to P2 12 12 1. A whole data set for a crystal of 17ß-HSD1 complex with progesterone grown in the presence of Li + has been collected to 1.95 Å resolution with a synchrotron source. The cell dimensions are a=41.91 Å, b=108.21 Å, c=117.00 Å. The structure has been preliminarily determined by molecular replacement, yielding important information on crystal packing in the presence of different cations. In order to further understand the structure-function relationship of 17β-HSD1, enzyme complexes with several ligands have been crystallized. As the steroids have very low aqueous solubility, we used a combined method of seeding and co-crystallization to obtain crystals of 17β-HSD1 complexed with various ligands. This method provides ideal conditions for growing complex crystals, with ligands such as 20α-hydroxysteroid progesterone, testosterone and 17β-methyl-estradiol-NADP +. Several complex structures have been determined with reliable electronic density of the bound ligands.

  20. Self-Assembly of Nanostructured, Complex, Multi-cation Films via Spontaneous Phase Separation and Strain-driven Ordering

    SciTech Connect

    Goyal, Amit; Wee, Sung Hun; Stocks, George Malcolm; Zuev, Yuri L; More, Karren Leslie; Meng, Jianyong; Zhong, Jianxin

    2013-01-01

    Spontaneous self-assembly of a multi-cation nanophase in another multi-cation matrix phase is a promising bottom-up approach to fabricate novel, nanocomposite structures for a range of applications. In an effort to understand the mechanisms for such self-assembly, we report on complimentary experimental and theoretical studies to first understand and then control or guide the self-assembly of insulating BaZrO3 (BZO) nanodots within REBa2Cu3O7- (RE=rare earth elements including Y, REBCO) superconducting films. It was determined that the strain field developed around BZO nanodots embedded in REBCO matrix is a key driving force dictating the self-assembly of BZO nanodots along REBCO c-axis. The size selection and spatial ordering of BZO self-assembly were simulated using thermodynamic and kinetic models. The BZO self-assembly was controllable by tuning the interphase strain field. REBCO superconducting films with BZO defects arrays self-assembled to align in both vertical (REBCO c-axis) and horizontal (REBCO ab-planes) directions, resulted in the maximized pinning and Jc performance for all field angles with smaller angular Jc anisotropy. The work has broad implications for fabrication of controlled self-assembled nanostructures for a range of applications via strain-tuning.

  1. Highly Active Electrolytes for Rechargeable Mg Batteries Based on [Mg2(μ-Cl)2]2+ Cation Complex in Dimethoxyethane

    SciTech Connect

    Cheng, Yingwen; Stolley, Ryan M.; Han, Kee Sung; Shao, Yuyan; Arey, Bruce W.; Washton, Nancy M.; Mueller, Karl T.; Helm, Monte L.; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng

    2015-01-01

    Highly active electrolytes based on a novel [Mg2(μ-Cl)2]2+ cation complex for reversible Mg deposition were developed and analyzed in this work. These electrolytes were formulated in dimethoxyethane through dehalodimerization of non-nucleophilic MgCl2 by reacting with either Mg salts (such as Mg(TFSI)2, TFSI= bis(trifluoromethane)sulfonylimide) or Lewis acid salts (such as AlEtCl2 or AlCl3). The cation complex was identified for the first time as [Mg2(μ-Cl)2(DME)4]2+ (DME=dimethoxyethane) and its molecular structure was characterized by single crystal X-ray diffraction, Raman spectroscopy and NMR. The electrolyte synthesis process was studied and rational approaches for formulating highly active electrolytes were proposed. Through control of the anions, electrolytes with efficiency close to 100%, wide electrochemical window (up to 3.5V) and high ionic conductivity (> 6 mS/cm) were obtained. The electrolyte synthesis and understandings developed in this work could bring significant opportunities for rational formulation of electrolytes with the general formula [Mg2(μ-Cl)2(DME)4][anion]x for practical Mg batteries.

  2. Inclusion complexes of trivalent lutetium cations with an acidic derivative of per(3,6-anhydro)-alpha-cyclodextrin.

    PubMed

    Bonnet, Célia; Gadelle, Andrée; Pécaut, Jacques; Fries, Pascal H; Delangle, Pascale

    2005-02-07

    The cyclodextrin derivative (hexakis (2-O-carboxymethyl-3,6-anhydro)-alpha-cyclodextrin) forms mono- and bimetallic complexes with lutetium(III) in aqueous solution; the X-ray structure of the binuclear complex [Lu2(ACX)(H2O)2] is the first example of a lanthanide-cyclodextrin inclusion complex.

  3. A manganese(V)-oxo π-cation radical complex: influence of one-electron oxidation on oxygen-atom transfer.

    PubMed

    Prokop, Katharine A; Neu, Heather M; de Visser, Sam P; Goldberg, David P

    2011-10-12

    One-electron oxidation of Mn(V)-oxo corrolazine 2 affords 2(+), the first example of a Mn(V)(O) π-cation radical porphyrinoid complex, which was characterized by UV-vis, EPR, LDI-MS, and DFT methods. Access to 2 and 2(+) allowed for a direct comparison of their reactivities in oxygen-atom transfer (OAT) reactions. Both complexes are capable of OAT to PPh(3) and RSR substrates, and 2(+) was found to be a more potent oxidant than 2. Analysis of rate constants and activation parameters, together with DFT calculations, points to a concerted OAT mechanism for 2(+) and 2 and indicates that the greater electrophilicity of 2(+) likely plays a dominant role in enhancing its reactivity. These results are relevant to comparisons between Compound I and Compound II in heme enzymes.

  4. Influences of the propyl group on the van der Waals structures of 4-propylaniline complexes with one and two argon atoms studied by electronic and cationic spectroscopy

    SciTech Connect

    Yang, Zhijun; Gu, Quanli; Trindle, Carl O.; Knee, J. L.

    2015-07-21

    4-propylaniline complexes with one and two argon atoms formed in the molecular beam were studied in the first excited electronic state, S{sub 1}, using resonance enhanced two-photon ionization spectroscopy and in the cation ground state, D{sub 0}, using mass analyzed threshold ionization spectroscopy. The combination of electronic and cationic spectra of the clusters allows two conformations to be identified in both aniline-Ar{sub 1} and aniline-Ar{sub 2}, which are assigned to either the gauche configuration or anti-configuration of 4-propylaniline. The gauche isomer exhibits complex bands shifted 29 cm{sup −1} and 89 cm{sup −1} from the S{sub 1} origin bands and 83 cm{sup −1} and 148 cm{sup −1} from the ionization potential assigned to the Ar{sub 1} and Ar{sub 2} complexes, respectively. For the anti-rotamer, the corresponding shifts actually become nearly additive, 53 cm{sup −1} and 109 cm{sup −1} for the S{sub 1} origin bands, and 61 cm{sup −1} and 125 cm{sup −1} for the ionization potentials. Ab initio calculations provide insights into the influences of the propyl and amino groups on the positions of the argon atoms within the clusters. In addition, the binding energy of one argon with the gauche isomer of 4-propylaniline has been measured to be 550 ± 5 cm{sup −1} in the D{sub 0} state, 496 ± 5 cm{sup −1} in the S{sub 1} state, and 467 ± 5 cm{sup −1} in the neutral ground state, S{sub 0}.

  5. Influence of biological media on the structure and behavior of ferrocene-containing cationic lipid/DNA complexes used for DNA delivery.

    PubMed

    Golan, Sharon; Aytar, Burcu S; Muller, John P E; Kondo, Yukishige; Lynn, David M; Abbott, Nicholas L; Talmon, Yeshayahu

    2011-06-07

    Biological media affect the physicochemical properties of cationic lipid-DNA complexes (lipoplexes) and can influence their ability to transfect cells. To develop new lipids for efficient DNA delivery, the influence of serum-containing media on the structures and properties of the resulting lipoplexes must be understood. To date, however, a clear and general picture of how serum-containing media influences the structures of lipoplexes has not been established. Some studies suggest that serum can disintegrate lipoplexes formed using certain types of cationic lipids, resulting in the inhibition of transfection. Other studies have demonstrated that lipoplexes formulated from other lipids are stable in the presence of serum and are able to transfect cells efficiently. In this article, we describe the influence of serum-containing media on lipoplexes formed using the redox-active cationic lipid bis(n-ferrocenylundecyl)dimethylammonium bromide (BFDMA). This lipoplex system promotes markedly decreased levels of transgene expression in COS-7 cells as serum concentrations are increased from 0 to 2, 5, 10, and 50% (v/v). To understand the cause of this decrease in transfection efficiency, we used cryogenic transmission electron microscopy (cryo-TEM) and measurements of zeta potential to characterize lipoplexes in cell culture media supplemented with 0, 2, 5, 10, and 50% serum. Cryo-TEM revealed that in serum-free media BFDMA lipoplexes form onionlike, multilamellar nanostructures. However, the presence of serum in the media caused disassociation of the intact multilamellar lipoplexes. At low serum concentrations (2 and 5%), DNA threads appeared to separate from the complex, leaving the nanostructure of the lipoplexes disrupted. At higher serum concentration (10%), disassociation increased and bundles of multilamellae were discharged from the main multilamellar complex. In contrast, lipoplexes characterized in serum-free aqueous salt (Li(2)SO(4)) medium and in OptiMEM cell

  6. Quantitative investigations of cation complexation of photochromic 8-benzothiazole-substituted benzopyran: towards metal-ion sensors.

    PubMed

    Zakharova, Marianna I; Coudret, Christophe; Pimienta, Véronique; Micheau, Jean Claude; Delbaere, Stéphanie; Vermeersch, Gaston; Metelitsa, Anatoly V; Voloshin, Nikolai; Minkin, Vladimir I

    2010-02-01

    The photochromic, thermochromic and metallochromic behaviour of a series of three spiro[indoline-8-(benzothiazol-2-yl)-benzopyrans] has been investigated. The thermodynamic and kinetic parameters of their thermal equilibrium between the ring-closed (spiro) and ring-opened (merocyanine) isomeric forms have been determined using UV-Vis absorption and (1)H NMR spectroscopies. By adding Co(ii) and Ni(ii) ions in acetonitrile solution, 1 : 1 and 1 : 2 metal : merocyanine complexes are formed simultaneously. Using appropriate numerical methods, the kinetic analysis of the complexation allowed us to determine accurately key thermodynamic and spectroscopic parameters of the metal complexes. Results showed that the complexation strength is very sensitive to the size of the indoline nitrogen substituent. Complexation can be reversed by shining white light on the coloured complexes which regenerates the inactive spiropyran form, and releases the metallic ion; hence, these systems display fully reversible negative photochromism. The Zn(ii) complexes exhibit intense fluorescence in the 600-800 nm wavelength range. All these behaviours make these spiropyrans bearing benzothiazole heterocycles promising building blocks for the future construction of photodynamic chemosensors for transition metal ions.

  7. DNA-binding and oxidative properties of cationic phthalocyanines and their dimeric complexes with anionic phthalocyanines covalently linked to oligonucleotides.

    PubMed

    Kuznetsova, A A; Lukyanets, E A; Solovyeva, L I; Knorre, D G; Fedorova, O S

    2008-12-01

    Design of chemically modified oligonucleotides for regulation of gene expression has attracted considerable attention over the past decades. One actively pursued approach involves antisense or antigene oligonucleotide constructs carrying reactive groups, many of these based on transition metal complexes. The complexes of Fe(II) and Co(II) with phthalocyanines are extremely good catalysts of oxidation of organic compounds with molecular oxygen and hydrogen peroxide. The binding of positively charged Fe(II) and Co(II) phthalocyanines with single- and double-stranded DNA was investigated. It was shown that these phthalocyanines interact with nucleic acids through an outside binding mode. The site-directed modification of single-stranded DNA by O2 and H2O2 in the presence of dimeric complexes of negatively and positively charged Fe(II) and Co(II) phthalocyanines was investigated. These complexes were formed directly on single-stranded DNA through interaction between negatively charged phthalocyanine in conjugate and positively charged phthalocyanine in solution. The resulting oppositely charged phthalocyanine complexes showed significant increase of catalytic activity compared with monomeric forms of phthalocyanines Fe(II) and Co(II). These complexes catalyzed the DNA oxidation with high efficacy and led to direct DNA strand cleavage. It was determined that oxidation of DNA by molecular oxygen catalyzed by complex of Fe(II)-phthalocyanines proceeds with higher rate than in the case of Co(II)-phthalocyanines but the latter led to a greater extent of target DNA modification.

  8. Self-assembled ternary complexes of neutral liposomes, deoxyribonucleic acid, and bivalent metal cations. Promising vectors for gene transfer?

    NASA Astrophysics Data System (ADS)

    Bruni, P.; Pisani, M.; Amici, A.; Marchini, C.; Montani, M.; Francescangeli, O.

    2006-02-01

    By means of synchrotron x-ray diffraction we demonstrate the self-assembled formation of the neutral ternary dioleoyl-phosphatidylcholine-deoxyribonucleic acid (plasmid)-Me2+ (Me=Ca and Mn) complexes in the liquid-crystalline Lα phase. We also report an attempt of an in vitro transfection on mouse fibroplast NIH 3T3 cell lines, which shows the capability of these complexes to transfect DNA. Based on the reported results, efficient encapsulation of DNA plasmids in these ternary neutral complexes may represent an important alternative to current systemic gene approaches.

  9. Simultaneous detection of [metal(II)-tpen]2+ as kinetically inert cationic complexes using pre-capillary derivatization electrophoresis: an application to biological samples.

    PubMed

    Saito, Shingo; Sasamura, Satoru; Hoshi, Suwaru

    2005-05-01

    A high resolution of doubly charged first row transition (Fe, Cu, Zn, Ni, Co, Mn) and heavy metal (Pb, Cd, Hg) ions was achieved in capillary electrophoresis (CE) with high sensitivity (sub-micromol dm(-3) level), using NN,N'N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) as a pre-capillary derivatizing agent. The non-charged reagent, TPEN, was applied to capillary zone electrophoresis (CZE) for the first time. Since complete spatial separation between the complexes and the ligand was carried out in a carrier buffer, which was free of TPEN, kinetic inertness of metal complexes was necessary for the detection in this pre-capillary method. All the nine listed metal complexes were detected: Ca(2+), Mg(2+), Al(3+), Fe(3+), and Co(3+) complexes were undetectable. This, interestingly, suggests that those nine cations form kinetically inert tpen complexes without strong charge-charge interactions between the metal ion and the ligand. It is expected that the hard-soft-acid-base (HSAB) principle governed the kinetics selectivity. With respect to the electrophoretic behavior, the addition of chloride ion and methanol to the carrier significantly improved the resolution. This is due to the formation of ternary complexes or ion aggregates and the solvation effect, respectively. These effects provided a satisfactory baseline resolution among the nine metal ions. An application to biological samples was demonstrated. Some metal ions in human serum and urine were successfully detected in a simple process without the need for deproteinization using a non-coated fused-silica capillary because of the differenciation in the direction of migration between organic matter and complexes.

  10. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin.

    PubMed

    Kumar, Sunny; Kesharwani, Siddharth S; Mathur, Himanshi; Tyagi, Mohit; Bhat, G Jayarama; Tummala, Hemachand

    2016-01-20

    Curcumin is a natural dietary compound with demonstrated potential in preventing/treating several chronic diseases in animal models. However, this success is yet to be translated to humans mainly because of its poor oral bioavailability caused by extremely low water solubility. This manuscript demonstrates that water insoluble curcumin (~1μg/ml) forms highly aqueous soluble complexes (>2mg/ml) with a safe pH sensitive polymer, poly(butyl-methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl-methacrylate) when precipitated together in water. The complexation process was optimized to enhance curcumin loading by varying several formulation factors. Acetone as a solvent and polyvinyl alcohol as a stabilizer with 1:2 ratio of drug to polymer yielded complexes with relatively high loading (~280μg/ml) and enhanced solubility (>2mg/ml). The complexes were amorphous in solid and were soluble only in buffers with pHs less than 5.0. Hydrogen bond formation and hydrophobic interactions between curcumin and the polymer were recorded by infrared spectroscopy and nuclear magnetic resonance spectroscopy, respectively. Molecular complexes of curcumin were more stable at various pHs compared to unformulated curcumin. In mice, these complexes increased peak plasma concentration of curcumin by 6 times and oral bioavailability by ~20 times. This is a simple, economic and safer strategy of enhancing the oral bioavailability of curcumin.

  11. Synthesis, Properties, and Light-Emitting Electrochemical Cell (LEEC) Device Fabrication of Cationic Ir(III) Complexes Bearing Electron-Withdrawing Groups on the Cyclometallating Ligands

    PubMed Central

    2016-01-01

    The structure–property relationship study of a series of cationic Ir(III) complexes in the form of [Ir(C^N)2(dtBubpy)]PF6 [where dtBubpy = 4,4′-di-tert-butyl-2,2′-bipyridine and C^N = cyclometallating ligand bearing an electron-withdrawing group (EWG) at C4 of the phenyl substituent, i.e., −CF3 (1), −OCF3 (2), −SCF3 (3), −SO2CF3 (4)] has been investigated. The physical and optoelectronic properties of the four complexes were comprehensively characterized, including by X-ray diffraction analysis. All the complexes exhibit quasireversible dtBubpy-based reductions from −1.29 to −1.34 V (vs SCE). The oxidation processes are likewise quasireversible (metal + C^N ligand) and are between 1.54 and 1.72 V (vs SCE). The relative oxidation potentials follow a general trend associated with the Hammett parameter (σ) of the EWGs. Surprisingly, complex 4 bearing the strongest EWG does not adhere to the expected Hammett behavior and was found to exhibit red-shifted absorption and emission maxima. Nevertheless, the concept of introducing EWGs was found to be generally useful in blue-shifting the emission maxima of the complexes (λem = 484–545 nm) compared to that of the prototype complex [Ir(ppy)2(dtBubpy)]PF6 (where ppy = 2-phenylpyridinato) (λem = 591 nm). The complexes were found to be bright emitters in solution at room temperature (ΦPL = 45–66%) with microsecond excited-state lifetimes (τe = 1.14–4.28 μs). The photophysical properties along with density functional theory (DFT) calculations suggest that the emission of these complexes originates from mixed contributions from ligand-centered (LC) transitions and mixed metal-to-ligand and ligand-to-ligand charge transfer (LLCT/MLCT) transitions, depending on the EWG. In complexes 1, 3, and 4 the 3LC character is prominent over the mixed 3CT character, while in complex 2, the mixed 3CT character is much more pronounced, as demonstrated by DFT calculations and the observed positive solvatochromism

  12. Synthesis, Properties, and Light-Emitting Electrochemical Cell (LEEC) Device Fabrication of Cationic Ir(III) Complexes Bearing Electron-Withdrawing Groups on the Cyclometallating Ligands.

    PubMed

    Pal, Amlan K; Cordes, David B; Slawin, Alexandra M Z; Momblona, Cristina; Ortı, Enrique; Samuel, Ifor D W; Bolink, Henk J; Zysman-Colman, Eli

    2016-10-17

    The structure-property relationship study of a series of cationic Ir(III) complexes in the form of [Ir(C^N)2(dtBubpy)]PF6 [where dtBubpy = 4,4'-di-tert-butyl-2,2'-bipyridine and C^N = cyclometallating ligand bearing an electron-withdrawing group (EWG) at C4 of the phenyl substituent, i.e., -CF3 (1), -OCF3 (2), -SCF3 (3), -SO2CF3 (4)] has been investigated. The physical and optoelectronic properties of the four complexes were comprehensively characterized, including by X-ray diffraction analysis. All the complexes exhibit quasireversible dtBubpy-based reductions from -1.29 to -1.34 V (vs SCE). The oxidation processes are likewise quasireversible (metal + C^N ligand) and are between 1.54 and 1.72 V (vs SCE). The relative oxidation potentials follow a general trend associated with the Hammett parameter (σ) of the EWGs. Surprisingly, complex 4 bearing the strongest EWG does not adhere to the expected Hammett behavior and was found to exhibit red-shifted absorption and emission maxima. Nevertheless, the concept of introducing EWGs was found to be generally useful in blue-shifting the emission maxima of the complexes (λem = 484-545 nm) compared to that of the prototype complex [Ir(ppy)2(dtBubpy)]PF6 (where ppy = 2-phenylpyridinato) (λem = 591 nm). The complexes were found to be bright emitters in solution at room temperature (ΦPL = 45-66%) with microsecond excited-state lifetimes (τe = 1.14-4.28 μs). The photophysical properties along with density functional theory (DFT) calculations suggest that the emission of these complexes originates from mixed contributions from ligand-centered (LC) transitions and mixed metal-to-ligand and ligand-to-ligand charge transfer (LLCT/MLCT) transitions, depending on the EWG. In complexes 1, 3, and 4 the (3)LC character is prominent over the mixed (3)CT character, while in complex 2, the mixed (3)CT character is much more pronounced, as demonstrated by DFT calculations and the observed positive solvatochromism effect. Due to the

  13. Zn(2+) and Cd(2+) cationized serine complexes: infrared multiple photon dissociation spectroscopy and density functional theory investigations.

    PubMed

    Coates, Rebecca A; Boles, Georgia C; McNary, Christopher P; Berden, Giel; Oomens, Jos; Armentrout, P B

    2016-08-10

    The gas-phase structures of zinc and cadmium dications bound to serine (Ser) are investigated by infrared multiple photon dissociation (IRMPD) action spectroscopy using the free electron laser FELIX, in combination with ab initio calculations. To identify the structures of the experimentally observed species, [Zn(Ser-H)CH3CN](+) and CdCl(+)(Ser), the measured action spectra are compared to linear absorption spectra calculated at the B3LYP/6-311+G(d,p) level for Zn(2+) containing complexes and B3LYP/def2-TZVP levels for Cd(2+) containing complexes. Good agreement between the observed IRMPD spectra and the predicted spectra allows identification of the isomers present. The intact amino acid interacting with cadmium chloride adopts a tridentate chelation involving the amino acid backbone amine and carbonyl groups as well as the hydroxyl group of the side-chain, [N,CO,OH]. The presence of two low-energy conformers is observed for the deprotonated serine-zinc complex, with the same tridentate coordination as for the cadmium complex but proton loss occurs at both the hydroxyl side-chain, [N,CO,O(-)], and the carboxylic acid of the amino acid backbone, [N,CO(-),OH]. These results are profitably compared with the analogous results previously obtained for comparable complexes with cysteine.

  14. SO2-Binding Properties of Cationic η6,η1-NCN-Pincer Arene Ruthenium Platinum Complexes: Spectroscopic and Theoretical Studies

    SciTech Connect

    Bonnet, Sylvestre A.; Van Lenthe, Joop H.; van Dam, Hubertus JJ; van Koten, Gerard; Klein Gebbink, Robertus J M

    2011-03-01

    The SO2-binding properties of a series of η6,η1-NCN-pincer ruthenium platinum complexes have been studied by both UV-visible spectroscopy, and theoretical calculations. When an electronwithdrawing [Ru(C5R5)]+ fragment (R = H or Me) is η6-coordinated to the phenyl ring of the NCNpincer platinum fragment (cf. [2]+ and [3]+, see scheme 1), the characteristic orange coloration (pointing to η1- SO2 binding to Pt) of a solution of the parent NCN-pincer platinum complex 1 in dichloromethane upon SO2-bubbling is not observed. However, when the ruthenium center is η6- coordinated to a phenyl substituent linked in para-position to the carbon-to-platinum bond, i.e. complex [4]+, the SO2-binding property of the NCN-platinum center seems to be retained, as bubbling SO2 into a solution of the latter complex produces the characteristic orange color. We performed theoretical calculations at the MP2 level of approximation and TD-DFT studies, which enabled us to interpret the absence of color change in the case of [2]+ as an absence of coordination of SO2 to platinum. We analyze this absence or weaker SO2-coordination in dichloromethane to be a consequence of the relative electron-poorness of the platinum center in the respective η6- ruthenium coordinated NCN-pincer platinum complexes, that leads to a lower binding energy and an elongated calculated Pt-S bond distance. We also discuss the effects of electrostatic interactions in these cationic systems, which also seems to play a destabilizing role for complex [2(SO2)]+.

  15. Chemiluminescence reactions with cationic, neutral, and anionic ruthenium(II) complexes containing 2,2'-bipyridine and bathophenanthroline disulfonate ligands.

    PubMed

    Francis, Paul S; Papettas, Dimitra; Zammit, Elizabeth M; Barnett, Neil W

    2010-07-15

    Ruthenium complexes containing 4,7-diphenyl-1,10-phenanthroline disulfonate (bathophenanthroline disulfonate; BPS) ligands, Ru(BPS)(3)(4-), Ru(BPS)(2)(bipy)(2-) and Ru(BPS)(bipy)(2), were compared to tris(2,2'-bipyridine)ruthenium(II) (Ru(bipy)(3)(2+)), including examination of the wavelengths of maximum absorption and corrected emission intensity, photoluminescence quantum yield, stability of their oxidised ruthenium(III) form, and relative chemiluminescence intensities and signal-to-blank ratios with cerium(IV) sulfate and six analytes (codeine, morphine cocaine, potassium oxalate, furosemide and hydrochlorothiazide) in acidic aqueous solution. The presence of BPS ligands in the complex increased the photoluminescence quantum yield, but decreased the stability of the oxidised form of the reagent. In contrast to previous evidence showing much greater electrochemiluminescence intensities using Ru(BPS)(2)(bipy)(2-) and Ru(BPS)(bipy)(2), these complexes did not provide superior chemiluminescence signals than their homoleptic analogues.

  16. Calculation of structural parameters of a Van Der Waals complex of the CO molecule with a Li+ cation

    NASA Astrophysics Data System (ADS)

    Bulanin, K. M.; Bulychev, V. P.; Buturlimova, M. V.

    2015-12-01

    The equilibrium nuclear configuration and the potential energy and dipole moment component surfaces of an isolated Li+-CO complex are calculated quantum-mechanically in the MP4(SDQ)/6-311++G(3df) approximation. The geometrical parameters and the binding energy of the complex are determined. The frequencies and intensities for the fundamental transitions are calculated in the harmonic approximation. The one-, two-, and three-dimensional anharmonic vibrational Schrödinger equations are solved using the variational method. The energies of states of a three-dimensional vibrational system, anharmonic constants, and the frequencies and intensities of fundamental transitions are determined with the anharmonic interactions taken into account. The changes in the frequency and intensity of the C-O stretching vibration upon the formation of the complex are predicted.

  17. Synthesis and X-ray crystal structures of amine bis(phenolate) lanthanide complexes containing alkali metal cation

    NASA Astrophysics Data System (ADS)

    Ma, Mengtao; Xu, Xiaoping; Yao, Yingming; Zhang, Yong; Shen, Qi

    2005-04-01

    Three lanthanide "ate" complexes L 2YbM(THF) n supported by amine bis(phenolate) ligand [L=Me 2NCH 2CH 2N{CH 2-(2-O-C 6H 2-Bu t2-2,4)} 2; M=Li, n=2 ( 1); M=Na, n=2 ( 2); M=K, n=3 ( 3)] were synthesized by the metathesis reactions of LM 2 with anhydrous YbCl 3 in 2:1 molar ratio in high yield. All the complexes were characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The influence of the alkali metal ions on the molecular structure of these lanthanide complexes has been elucidated.

  18. Ligand-Controlled CO2 Activation Mediated by Cationic Titanium Hydride Complexes, [LTiH](+) (L=Cp2 , O).

    PubMed

    Tang, Shi-Ya; Rijs, Nicole J; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2015-06-01

    CO2 activation mediated by [LTiH](+) (L=Cp2 , O) is observed in the gas phase at room temperature using electrospray-ionization mass spectrometry, and reaction details are derived from traveling wave ion-mobility mass spectrometry. Wheresas oxygen-atom transfer prevails in the reaction of the oxide complex [OTiH](+) with CO2 , generating [OTi(OH)](+) under the elimination of CO, insertion of CO2 into the metal-hydrogen bond of the cyclopentadienyl complex, [Cp2 TiH](+) , gives rise to the formate complex [Cp2 Ti(O2 CH)](+) . DFT-based methods were employed to understand how the ligand controls the observed variation in reactivity toward CO2 . Insertion of CO2 into the Ti-H bond constitutes the initial step for the reaction of both [Cp2 TiH](+) and [OTiH](+) , thus generating formate complexes as intermediates. In contrast to [Cp2 Ti(O2 CH)](+) which is kinetically stable, facile decarbonylation of [OTi(O2 CH)](+) results in the hydroxo complex [OTi(OH)](+) . The longer lifetime of [Cp2 Ti(O2 CH)](+) allows for secondary reactions with background water, as a result of which, [Cp2 Ti(OH)](+) is formed. Further, computational studies reveal a good linear correlation between the hydride affinity of [LTi](2+) and the barrier for CO2 insertion into various [LTiH](+) complexes. Understanding the intrinsic ligand effects may provide insight into the selective activation of CO2 .

  19. Synthesis, one- and two-photon photophysical and excited-state properties, and sensing application of a new phosphorescent dinuclear cationic iridium(III) complex.

    PubMed

    Xu, Wen-Juan; Liu, Shu-Juan; Zhao, Xin; Zhao, Ning; Liu, Zhi-Qiang; Xu, Hang; Liang, Hua; Zhao, Qiang; Yu, Xiao-Qiang; Huang, Wei

    2013-01-07

    A new phosphorescent dinuclear cationic iridium(III) complex (Ir1) with a donor-acceptor-π-bridge-acceptor-donor (D-A-π-A-D)-conjugated oligomer (L1) as a N^N ligand and a triarylboron compound as a C^N ligand has been synthesized. The photophysical and excited-state properties of Ir1 and L1 were investigated by UV/Vis absorption spectroscopy, photoluminescence spectroscopy, and molecular-orbital calculations, and they were compared with those of the mononuclear iridium(III) complex [Ir(Bpq)(2)(bpy)](+)PF(6)(-) (Ir0). Compared with Ir0, complex Ir1 shows a more-intense optical-absorption capability, especially in the visible-light region. For example, complex Ir1 shows an intense absorption band that is centered at λ=448 nm with a molar extinction coefficient (ε) of about 10(4) , which is rarely observed for iridium(III) complexes. Complex Ir1 displays highly efficient orange-red phosphorescent emission with an emission wavelength of 606 nm and a quantum efficiency of 0.13 at room temperature. We also investigated the two-photon-absorption properties of complexes Ir0, Ir1, and L1. The free ligand (L1) has a relatively small two-photon absorption cross-section (δ(max) =195 GM), but, when complexed with iridium(III) to afford dinuclear complex Ir1, it exhibits a higher two-photon-absorption cross-section than ligand L1 in the near-infrared region and an intense two-photon-excited phosphorescent emission. The maximum two-photon-absorption cross-section of Ir1 is 481 GM, which is also significantly larger than that of Ir0. In addition, because the strong B-F interaction between the dimesitylboryl groups and F(-) ions interrupts the extended π-conjugation, complex Ir1 can be used as an excellent one- and two-photon-excited "ON-OFF" phosphorescent probe for F(-) ions.

  20. Inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    NASA Astrophysics Data System (ADS)

    Ridley, Moira K.; Hiemstra, Tjisse; van Riemsdijk, Willem H.; Machesky, Michael L.

    2009-04-01

    Acid-base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multi-component mineral-aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488-508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca 2+ and Sr 2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 1 1 0 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Předota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Bénézeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile-water interface: linking molecular and macroscopic

  1. inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    SciTech Connect

    Ridley, Mora K.; Hiemstra, T; Van Riemsdijk, Willem H.; Machesky, Michael L.

    2009-01-01

    Acid base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multicomponent mineral aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488 508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 110 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pr edota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Be ne zeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile water interface: linking molecular and macroscopic

  2. Strong Lewis acid air-stable cationic titanocene perfluoroalkyl(aryl)sulfonate complexes as highly efficient and recyclable catalysts for C-C bond forming reactions.

    PubMed

    Li, Ningbo; Wang, Jinying; Zhang, Xiaohong; Qiu, Renhua; Wang, Xie; Chen, Jinyang; Yin, Shuang-Feng; Xu, Xinhua

    2014-08-14

    A series of strong Lewis acid air-stable titanocene perfluoroalkyl(aryl)sulfonate complexes Cp2Ti(OH2)2(OSO2X)2·THF (X = C8F17, 1·THF; X = C4F9, 2·H2O·THF; X = C6F5, 3) were successfully synthesized by the treatment of Cp2TiCl2 with C8F17SO3Ag, C4F9SO3Ag and C6F5SO3Ag, respectively. In contrast to well-known titanocene bis(triflate), these complexes showed no change in open air over three months. TG-DSC analysis showed that 1·THF, 2·H2O·THF and 3 were thermally stable at 230 °C, 220 °C and 280 °C, respectively. Conductivity measurements showed that these complexes underwent ionic dissociation in CH3CN solution. X-ray analysis results confirmed that 2·H2O·THF and 3 were cationic. ESR spectra showed that the Lewis acidity of 1·THF (1.06 eV) was higher than that of Sc(3+) (1.00 eV) and Y(3+) (0.85 eV). UV/Vis spectra showed a significant red shift due to the strong complex formation between 10-methylacridone and 2·H2O·THF. Fluorescence spectra showed that the Lewis acidity of 2 (λ(em) = 477 nm) was higher than that of Sc(3+) (λ(em) = 474 nm). These complexes showed high catalytic ability in various carbon-carbon bond forming reactions. Moreover, they show good reusability. Compared with 1·THF, 2·H2O·THF and 3 exhibit higher solubility and better catalytic activity, and will find broad applications in organic synthesis.

  3. Cationic allyl complexes of the rare-earth metals: synthesis, structural characterization, and 1,3-butadiene polymerization catalysis.

    PubMed

    Robert, Dominique; Abinet, Elise; Spaniol, Thomas P; Okuda, Jun

    2009-11-09

    Monocationic bis-allyl complexes [Ln(eta(3)-C(3)H(5))(2)(thf)(3)](+)[B(C(6)X(5))(4)](-) (Ln = Y, La, Nd; X = H, F) and dicationic mono-allyl complexes of yttrium and the early lanthanides [Ln(eta(3)-C(3)H(5))(thf)(6)](2+)[BPh(4)](2)(-) (Ln = La, Nd) were prepared by protonolysis of the tris-allyl complexes [Ln(eta(3)-C(3)H(5))(3)(diox)] (Ln = Y, La, Ce, Pr, Nd, Sm; diox = 1,4-dioxane) isolated as a 1,4-dioxane-bridged dimer (Ln = Ce) or THF adducts [Ln(eta(3)-C(3)H(5))(3)(thf)(2)] (Ln = Ce, Pr). Allyl abstraction from the neutral tris-allyl complex by a Lewis acid, ER(3) (Al(CH(2)SiMe(3))(3), BPh(3)) gave the ion pair [Ln(eta(3)-C(3)H(5))(2)(thf)(3)](+)[ER(3)(eta(1)-CH(2)CH=CH(2))](-) (Ln = Y, La; ER(3) = Al(CH(2)SiMe(3))(3), BPh(3)). Benzophenone inserts into the La-C(allyl) bond of [La(eta(3)-C(3)H(5))(2)(thf)(3)](+)[BPh(4)](-) to form the alkoxy complex [La{OCPh(2)(CH(2)CH=CH(2))}(2)(thf)(3)](+)[BPh(4)](-). The monocationic half-sandwich complexes [Ln(eta(5)-C(5)Me(4)SiMe(3))(eta(3)-C(3)H(5))(thf)(2)](+)[B(C(6)X(5))(4)](-) (Ln = Y, La; X = H, F) were synthesized from the neutral precursors [Ln(eta(5)-C(5)Me(4)SiMe(3))(eta(3)-C(3)H(5))(2)(thf)] by protonolysis. For 1,3-butadiene polymerization catalysis, the yttrium-based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90% 1,4-cis stereoselectivity.

  4. Catalysis of the carbonylation of olefins by the cationic chromium complexes allyl(arene)dicarbonylchromium(I) tetrafluoroborates

    SciTech Connect

    Magomedov, G.K.I.; Morozova, L.V.; Sigachev, S.A.; Krivykh, V.V.; Taits, E.S.; Rybinskaya, M.I.

    1986-11-10

    A qualitative comparison of the catalytic activities of the title complexes and cobalt carbonyl showed that (arene)allyldicarbonylchromium(I) tetrafluoroborates are more active than cobalt carbonyl, and this applies particularly to (C/sub 6/H/sub 6/Cr(CO)/sub 2/..pi..-C/sub 3/H/sub 5/)/sup +/BF/sub 4/. The possibility is not ruled out that in the course of the synthesis the acid HBF/sub 4/ is generated, and this is known to be a catalyst for the Koch reaction, but in this reaction only secondary and tertiary carboxy derivatives, i.e., only products of addition in accordance with the Markovnikov rule, are formed. In view of these results the authors investigated the activity of the title complexes in the hydroformylation process, an important industrial method for the preparation of aldehydes and alcohols.

  5. Catalytic ability of a cationic Ru(II) monochloro complex for the asymmetric hydrogenation of dimethyl itaconate and enamides.

    PubMed

    Serrano, Isabel; Rodríguez, Montserrat; Romero, Isabel; Llobet, Antoni; Parella, Teodor; Campelo, Juan M; Luna, Diego; Marinas, José M; Benet-Buchholz, Jordi

    2006-03-20

    The synthesis of two Ru chloro complexes, Ru(III)Cl(3)(bpea), 1, and cis-fac-Delta-[Ru(II)Cl{(R)-(bpea)}{(S)-(BINAP)}](BF(4)), cis-fac-Delta-(R)-(S)-2, (bpea = N,N-bis(2-pyridylmethyl)ethylamine; (S)-BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl), is described. Complex 2 is characterized in solution through UV-vis, cyclic voltammetry (CV), and 1D and 2D NMR spectroscopy. X-ray diffraction analysis indicates that in the solid state it possesses the same structure as in solution, as expected for a low-spin d(6) Ru(II)-type complex. The molecular structure of cis-fac-Delta-(R)-(S)-2, consists of a nonsymmetric complex, where the Ru metal center has a significantly distorted octahedral-type coordination because of the bulkiness of the (S)-BINAP ligand. cis-fac-Delta-(R)-(S)-2 has a remarkable catalytic performance at P = 6.8 atm of H2 and T = 70 degrees C toward the hydrogenation of prochiral double bonds both from efficiency and from stereoselectivity viewpoints. As an example, prochiral olefins of technological interest such as dimethyl itaconate, methyl 2-acetamidoacrylate or methyl 2-acetamidocinnamate are catalytically hydrogenated by cis-fac-Delta-(R)-(S)-2, with conversions higher than 99.9% and ee > 99. Furthermore, cis-fac-Delta-(R)-(S)-2, also catalyzes the selective hydrogenation of beta-keto esters, although the reaction rates are lower than those found with the former substrates.

  6. Reaction of the coordinate complexes of inositol hexaphosphate with first row transition series cations and Cd(II) with calf intestinal alkaline phosphatase.

    PubMed

    Martin, C J

    1995-05-01

    The reaction of alkaline phosphatase (APase) with the complexes of myo-inositol hexakisphosphate (IHP) and various cations at pH 7.2 results in a decrease in activity. Singly, neither IHP nor metal ions induce such changes. IHP-Mn(II) complexes were the least effective. Using the ions of nickel or cadmium, activity was reduced by > 95%. A similar large decrease (> 99%) was seen previously in the reaction of APase with IHP-Cu(II) complexes. With Co(II) and IHP as reactants, the activity was reduced to 10-12% of that of the native enzyme. When the apoprotein, prepared by reaction of the enzyme with either EDTA or 1,10-phenanthroline, was titrated with Co(II), the activity was equal to that resulting from the reaction of the enzyme with IHP-Co(II) complexes. Titration with zinc restored 95% of the original activity. The products are metal-substituted derivatives in which the resident catalytic (A-site) zinc ions, at least, are replaced by the cation of the IHP complex that was used. The rates of such reactions were fastest with the complexes of Cu(II) and Cd(II) (0.12 min-1), less so with Co(II) as the ion (0.056 min-1), and slowest with complexes of nickel and manganese (0.01 min-1). In every case, the rate of reaction, but not its extent of change, was inhibited by zinc ions that reduced rate constants to 0.0014-0.0054 min-1. Magnesium ions had no effect. Likewise, Mn(II), with but one exception, did not affect the reactions. When present along with IHP-Ni(II) complexes, the rate was increased and the enzyme activity further decreased. If Zn(II) was also present, this enhancement was eliminated. All changes in enzyme activity were reversible by treatment with EDTA followed by reconstitution with zinc. Approximately 95% conversion to the original activity could be attained. Reactivation of modified APase preparation also could be attained, in some cases, by pre-incubation with Zn(II) at pH 8. For example, conversion of the Cd(II)-substituted APase to the zinc enzyme

  7. The phosphate clamp: sequence selective nucleic acid binding profiles and conformational induction of endonuclease inhibition by cationic Triplatin complexes

    PubMed Central

    Prisecaru, Andreea; Molphy, Zara; Kipping, Ralph G.; Peterson, Erica J.; Qu, Yun; Kellett, Andrew; Farrell, Nicholas P.

    2014-01-01

    The substitution-inert polynuclear platinum(II) complex (PPC) series, [{trans-Pt(NH3)2(NH2(CH2)nNH3)}2-μ-(trans-Pt(NH3)2(NH2(CH2)nNH2)2}](NO3)8, where n = 5 (AH78P), 6 (AH78 TriplatinNC) and 7 (AH78H), are potent non-covalent DNA binding agents where nucleic acid recognition is achieved through use of the ‘phosphate clamp' where the square-planar tetra-am(m)ine Pt(II) coordination units all form bidentate N–O–N complexes through hydrogen bonding with phosphate oxygens. The modular nature of PPC–DNA interactions results in high affinity for calf thymus DNA (Kapp ∼5 × 107 M−1). The phosphate clamp–DNA interactions result in condensation of superhelical and B-DNA, displacement of intercalated ethidium bromide and facilitate cooperative binding of Hoechst 33258 at the minor groove. The effect of linker chain length on DNA conformational changes was examined and the pentane-bridged complex, AH78P, was optimal for condensing DNA with results in the nanomolar region. Analysis of binding affinity and conformational changes for sequence-specific oligonucleotides by ITC, dialysis, ICP-MS, CD and 2D-1H NMR experiments indicate that two limiting modes of phosphate clamp binding can be distinguished through their conformational changes and strongly suggest that DNA condensation is driven by minor-groove spanning. Triplatin-DNA binding prevents endonuclease activity by type II restriction enzymes BamHI, EcoRI and SalI, and inhibition was confirmed through the development of an on-chip microfluidic protocol. PMID:25414347

  8. Stoichiometric and catalytic deuterium and tritium labeling of "unactivated" organic substrates with cationic Ir(III) complexes.

    PubMed

    Skaddan, Marc B; Yung, Cathleen M; Bergman, Robert G

    2004-01-08

    [reaction: see text] Ir(III) complex [Cp(PMe(3))IrMe(CH(2)Cl(2))][BAr(f)] (1) was used to introduce deuterium stoichiometrically into substituted naphthalene/benzene templates and several "drug-like" entities. The exchange process is tolerant of a wide array of functional groups. Labeling of warfarin using subatmospheric pressures of T(2) led to specific activities and total activities rivaling current functional group directed tritium labeling methods. When paired with the appropriate deuterium donor, Cp(PMe(3))Ir(H(3))OTf (4) was found to deuterate a number of organic compounds catalytically.

  9. Raman spectroscopic studies of dimyristoylphosphatidic acid and its interactions with ferricytochrome c in cationic binary and ternary lipid-protein complexes.

    PubMed Central

    Vincent, J. S.; Levin, I. W.

    1991-01-01

    stretching modes at 2,103 cm-1 provide a sensitive measure of the conformational and dynamic properties of the perdeuterated lipid component, while the 3,000 cm-1 C-H spectral region reflects the bilayer characteristics of the DMPA species in the complex. Although calcium clearly induces a lateral phase separation in the DMPA/DMPC-d54 system at pH 7.5 (Kouaouci, R., J.R. Silvius, I. Grah, and M. Pezolet. 1985. Biochemistry. 24:7132-7140), no distinct lateral segregation of the lipid components is observed in the mixed DMPA/DMPC-d54 lipid system in the presence of either ferricytochrome c or the sodium and calcium cations at pH 4.0. However, domain formation, consisting of regions rich in DMPA and DMPC-d54, respectively, is suggested for the calcium binary lipid mixture at pH 4.0 by the different values for Tm and AT characterizing the DMPA and DMPC-d54 species.Spectral evidence strongly suggests that ferricytochrome c also induces domain formation in the ternary lipid-protein mixtures at pH 7.0, but only for the sodium cation. PMID:1651120

  10. Lipophilic Cationic Cyanines Are Potent Complex I Inhibitors and Specific in Vitro Dopaminergic Toxins with Mechanistic Similarities to Both Rotenone and MPP(.).

    PubMed

    Kadigamuwa, Chamila C; Mapa, Mapa S T; Wimalasena, Kandatege

    2016-09-19

    We have recently reported that simple lipophilic cationic cyanines are specific and potent dopaminergic toxins with a mechanism of toxicity similar to that of the Parkinsonian toxin MPP(+). In the present study, a group of fluorescent lipophilic cyanines have been used to further exploit the structure-activity relationship of the specific dopaminergic toxicity of cyanines. Here, we report that all cyanines tested were highly toxic to dopaminergic MN9D cells with IC50s in the range of 60-100 nM and not toxic to non-neuronal HepG2 cells parallel to that previously reported for 2,2'- and 4,4'-cyanines. All cyanines nonspecifically accumulate in the mitochondria of both MN9D and HepG2 cells at high concentrations, inhibit the mitochondrial complex I with the inhibition potencies similar to the potent complex I inhibitor, rotenone. They increase the reactive oxygen species (ROS) production specifically in dopaminergic cells causing apoptotic cell death. These and other findings suggest that the complex I inhibition, the expression of low levels of antioxidant enzymes, and presence of high levels of oxidatively labile radical propagator, dopamine, could be responsible for the specific increase in ROS production in dopaminergic cells. Thus, the predisposition of dopaminergic cells to produce high levels of ROS in response to mitochondrial toxins together with their inherent greater demand for energy may contribute to their specific vulnerability toward these toxins. The novel findings that cyanines are an unusual class of potent mitochondrial toxins with specific dopaminergic toxicity suggest that their presence in the environment could contribute to the etiology of PD similar to that of MPP(+) and rotenone.

  11. Clarifying the mechanism of cation exchange in Ca(II)[15-MC(Cu(II)ligand)-5] complexes.

    PubMed

    Lim, Choong-Sun; Tegoni, Matteo; Jakusch, Tamás; Kampf, Jeff W; Pecoraro, Vincent L

    2012-11-05

    The calcium metallacrown Ca(II)[15-MC(Cu(II)N(Trpha))-5](2+) was obtained by self-assembly of Ca(II), Cu(II), and tryptophanhydroxamic acid. Its X-ray structure shows that the core calcium ion is well-encapsulated in the five oxygen cavity of the metallacrown scaffold. The kinetics of Ca-Ln core metal substitution was studied by visible spectrophotometry by addition of Ln(III) nitrate to solutions of Ca(II)[15-MC(Cu(II)N(Trpha))-5](2+) in methanol solution at pH 6.2 (Ln(III) = La(III), Nd(III), Gd(III), Dy(III), Er(III)) to obtain the corresponding Ln(III)[15-MC(Cu(II)N(Trpha))-5](3+) complexes on the hours time scale. The reaction is first order in the two reactants (second order overall) with different rate constants across the lanthanide series. In particular, the rate for the Ca-Ln substitution decreases from La(III) to Gd(III) and then increases slightly from Gd(III) to Er(III). This substitution reaction occurs with second order rate constants ranging from 0.1543(3) M(-1) min(-1) for La(III) to 0.0720(6) M(-1) min(-1) for Gd(III). By means of the thermodynamic log K constants for the same reaction previously reported, the rate constants for the inverse Ln-Ca substitution were also determined. In this study, we demonstrated that the substitution reaction proceeds through a direct metal substitution and does not involve the disassembly of the MC scaffold. These observations in concert allow the proposition of a hypothesis that the dimension of the core metals play the major role in determining the rate constants of the substitution reaction. In particular, the largest lanthanides, which do not require complete encapsulation in the MC cavity, displace the Ca(II) ion faster, whereas in the back reaction Ca(II) displaces the smaller lanthanides faster as they interact relatively weakly with the metallacrown oxygen cavity.

  12. Luminescence dynamics and {sup 13}C NMR characteristics of dinuclear complexes exhibiting coupled lanthanide(III) cation pairs

    SciTech Connect

    Matthews, K.D.; Bailey-Folkes, S.A.; Kahwa, I.A.

    1992-08-20

    Luminescence and cross-polarization magic angle spinning (CP-MAS) {sup 13}C NMR properties of lanthanide dinuclear macrocyclic complexes of a compartmental Schiff base chelate (1) derived from the condensation of 2,6-diformyl-p-cresol and 3,6-dioxa-1,8-octanediamine are reported. The Schiff base chromophore in 1 is a strong light absorber and an efficient sensitizer for intense Tb{sup 3+}({sup 5}D{sub 4}) and Eu{sup 3+}({sup 5}D{sub 0})(T < 110 K ) emission which does not exhibit self-quenching effects. Emission from Tb{sup 3+} is sensitized by the ligand singlet state; in striking contrast, Eu{sup 3+} emission is sensitized by the triplet state and reveals an unusual nonradiative quenching process at T > 110 K with a thermal barrier of {approx} 2300 cm{sup {minus}1}. Weak emission is observed from Dy{sup 3+}({sup 4}F{sub 9/2}), Sm{sup 3+}({sup 4}G{sub 5/2}), and Pr{sup 3+}({sup 1}D{sub 2}) diluted in Gd{sup 3+} (i.e., from Gd{sup 3+}-Ln{sup 3+} heteropairs, Ln = Pr, Sm, Dy). Intramolecular metal-metal (Ln-Ln = 4 {Angstrom}) interactions account for the greatly quenched emission from Sm{sup 3+}-Sm{sup 3+} and Dy{sup 3+}-Dy{sup 3+} homopairs compared to Gd{sup 3+}-Ln heteropairs (Ln = Sm, Dy). Gd{sup 3+}-Ln{sup 3+} emission lifetimes at 77 K are 1610 (Tb{sup 3+}), 890 (Eu{sup 3+}), 14 (Dy{sup 3+}) and {approx} 13 {mu}s (Sm{sup 3+}). Nonradiative relaxation processes at 77 K in dilute Ln{sup 3+}:Gd{sub 2}1(NO{sub 3}){sub 4}{center_dot}H{sub 2}O, being temperature independent for Sm{sup 3+} and Eu{sup 3+} but temperature dependent for Tb{sup 3+}, follow the energy gap law with {alpha} {approx} - 10{sup {minus}3} cm and B {approx} 2 x 10{sup 8} s{sup {minus}1}. CP-MAS data show paramagnetic broadening of {sup 13}C resonances which increases with the magnetic moment of Ln{sup 3+}. Surprisingly, no significant shifts in resonance positions corresponding to the changing nature of paramagnetic Ln{sup 3+} ions are observed. 43 refs., 8 figs., 2 tabs.

  13. Cyclometalated Iminophosphorane Gold(III) and Platinum(II) Complexes. A Highly Permeable Cationic Platinum(II) Compound with Promising Anticancer Properties.

    PubMed

    Frik, Malgorzata; Fernández-Gallardo, Jacob; Gonzalo, Oscar; Mangas-Sanjuan, Víctor; González-Alvarez, Marta; Serrano del Valle, Alfonso; Hu, Chunhua; González-Alvarez, Isabel; Bermejo, Marival; Marzo, Isabel; Contel, María

    2015-08-13

    New organometallic gold(III) and platinum(II) complexes containing iminophosphorane ligands are described. Most of them are more cytotoxic to a number of human cancer cell lines than cisplatin. Cationic Pt(II) derivatives 4 and 5, which differ only in the anion, Hg2Cl6(2-) or PF6(-) respectively, display almost identical IC50 values in the sub-micromolar range (25-335-fold more active than cisplatin on these cell lines). The gold compounds induced mainly caspase-independent cell death, as previously reported for related cycloaurated compounds containing IM ligands. Cycloplatinated compounds 3, 4, and 5 can also activate alternative caspase-independent mechanisms of death. However, at short incubation times cell death seems to be mainly caspase dependent, suggesting that the main mechanism of cell death for these compounds is apoptosis. Mercury-free compound 5 does not interact with plasmid (pBR322) DNA or with calf thymus DNA. Permeability studies of 5 by two different assays, in vitro Caco-2 monolayers and a rat perfusion model, have revealed a high permeability profile for this compound (comparable to that of metoprolol or caffeine) and an estimated oral fraction absorbed of 100%, which potentially makes it a good candidate for oral administration.

  14. Cyclometalated Iminophosphorane Gold(III) and Platinum(II) Complexes. A Highly Permeable Cationic Platinum(II) Compound with Promising Anticancer Properties

    PubMed Central

    2015-01-01

    New organometallic gold(III) and platinum(II) complexes containing iminophosphorane ligands are described. Most of them are more cytotoxic to a number of human cancer cell lines than cisplatin. Cationic Pt(II) derivatives 4 and 5, which differ only in the anion, Hg2Cl62– or PF6– respectively, display almost identical IC50 values in the sub-micromolar range (25–335-fold more active than cisplatin on these cell lines). The gold compounds induced mainly caspase-independent cell death, as previously reported for related cycloaurated compounds containing IM ligands. Cycloplatinated compounds 3, 4, and 5 can also activate alternative caspase-independent mechanisms of death. However, at short incubation times cell death seems to be mainly caspase dependent, suggesting that the main mechanism of cell death for these compounds is apoptosis. Mercury-free compound 5 does not interact with plasmid (pBR322) DNA or with calf thymus DNA. Permeability studies of 5 by two different assays, in vitro Caco-2 monolayers and a rat perfusion model, have revealed a high permeability profile for this compound (comparable to that of metoprolol or caffeine) and an estimated oral fraction absorbed of 100%, which potentially makes it a good candidate for oral administration. PMID:26147404

  15. Human granulocyte-macrophage colony-stimulating factor DNA cationic-lipid complexed autologous tumour cell vaccination in the treatment of canine B-cell multicentric lymphoma.

    PubMed

    Turek, M M; Thamm, D H; Mitzey, A; Kurzman, I D; Huelsmeyer, M K; Dubielzig, R R; Vail, D M

    2007-12-01

    This study describes the development of an human granulocyte-macrophage colony-stimulating factor DNA cationic-lipid complexed autologous tumour cell vaccine (hGM-CSF CLDC ATCV) and its implementation, following a chemotherapy treatment protocol, in a randomized, placebo-controlled, double-blinded clinical trial in pet dogs with naturally occurring lymphoma. We hypothesized that the use of this vaccine would result in an antitumour immune response leading to improved first remission duration and overall survival in dogs with B-cell lymphoma when compared with chemotherapy alone. Immune stimulation generated by hGM-CSF CLDC ATCV was assessed by means of surrogate in vivo analysis (delayed-type hypersensitivity [DTH]) as well as an ex vivo cellular assay (lymphocyte proliferation assay). The vaccine approach considered in the current report did not result in clinically improved outcomes. A small measure of immunomodulation was documented by DTH and several modifications to the approach are suggested. This report illustrates the feasibility of clinical trials with vaccine strategies using companion animals with non-Hodgkin's lymphoma.

  16. Formation of Polyion Complex (PIC) Micelles and Vesicles with Anionic pH-Responsive Unimer Micelles and Cationic Diblock Copolymers in Water.

    PubMed

    Ohno, Sayaka; Ishihara, Kazuhiko; Yusa, Shin-Ichi

    2016-04-26

    A random copolymer (p(A/MaU)) of sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS) and sodium 11-methacrylamidoundecanate (MaU) was prepared via conventional radical polymerization, which formed a unimer micelle under acidic conditions due to intramolecular hydrophobic interactions between the pendant undecanoic acid groups. Under basic conditions, unimer micelles were opened up to an expanded chain conformation by electrostatic repulsion between the pendant sulfonate and undecanoate anions. A cationic diblock copolymer (P163M99) consisting of poly(3-(methacrylamido)propyl)trimethylammonium chloride (PMAPTAC) and hydrophilic polybetaine, 2-(methacryloyloxy)ethylphosphorylcholine (MPC), blocks was prepared via controlled radical polymerization. Mixing of p(A/MaU) and P163M99 in 0.1 M aqueous NaCl under acidic conditions resulted in the formation of spherical polyion complex (PIC) micelles and vesicles, depending on polymer concentration before mixing. Shapes of the PIC micelles and vesicles changed under basic conditions due to collapse of the charge balance between p(A/MaU) and P163M99. The PIC vesicles can incorporate nonionic hydrophilic guest molecules, and the PIC micelles and vesicles can accept hydrophobic guest molecules in the hydrophobic core formed from p(A/MaU).

  17. Synthesis and application of hypercrosslinked polymers with weak cation-exchange character for the selective extraction of basic pharmaceuticals from complex environmental water samples.

    PubMed

    Bratkowska, D; Marcé, R M; Cormack, P A G; Sherrington, D C; Borrull, F; Fontanals, N

    2010-03-05

    The synthesis of high specific surface area sorbents (HXLPP-WCX) in the form of hypercrosslinked polymer microspheres with narrow particle size distributions, average particle diameters around 6 microm, and weak cation-exchange (WCX) character, is described. The WCX character arises from carboxylic acid moieties in the polymers, derived from the comonomer methacrylic acid. A novel HXLPP-WCX sorbent with an attractive set of chemical and physical properties was then used in an off-line solid-phase extraction (SPE) protocol for the selective extraction of a group of basic compounds from complex environmental samples, a priority being the clean separation of the basic compounds of interest from acidic compounds and interferences. The separation power of the new sorbent for basic pharmaceuticals was compared to two commercially available, mixed-mode sorbents, namely Oasis WCX and Strata-X-CW. Under identical experimental conditions, HXLPP-WCX was found to deliver both higher capacity and better selectivity in SPE than either of the two commercially available materials. In an optimised SPE protocol, the HXLPP-WCX sorbent gave rise to quantitative and selective extractions of low microg l(-1) levels of basic pharmaceuticals present in 500 ml of river water and 250 ml of effluent waste water.

  18. Energy-resolved collision-induced dissociation studies of 1,10-phenanthroline complexes of the late first-row divalent transition metal cations: determination of the third sequential binding energies.

    PubMed

    Nose, Holliness; Chen, Yu; Rodgers, M T

    2013-05-23

    The third sequential binding energies of the late first-row divalent transition metal cations to 1,10-phenanthroline (Phen) are determined by energy-resolved collision-induced dissociation (CID) techniques using a guided ion beam tandem mass spectrometer. Five late first-row transition metal cations in their +2 oxidation states are examined including: Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). The kinetic energy dependent CID cross sections for loss of an intact Phen ligand from the M(2+)(Phen)3 complexes are modeled to obtain 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of the internal energy of the complexes, multiple ion-neutral collisions, and unimolecular decay rates. Electronic structure theory calculations at the B3LYP, BHandHLYP, and M06 levels of theory are employed to determine the structures and theoretical estimates for the first, second, and third sequential BDEs of the M(2+)(Phen)x complexes. B3LYP was found to deliver results that are most consistent with the measured values. Periodic trends in the binding of these complexes are examined and compared to the analogous complexes to the late first-row monovalent transition metal cations, Co(+), Ni(+), Cu(+), and Zn(+), previously investigated.

  19. Effect of water vapors on the luminescence of cation-exchange membranes modified by Pt(II) and Ru(II) complexes and Nile blue

    NASA Astrophysics Data System (ADS)

    Khakhalina, M. S.; Musaeva, D. N.; Tikhomirova, I. Yu.; Puzyk, M. V.

    2010-04-01

    The surface of a cation-exchange membrane was modified by the [PtEnPpy]+, [PtEnBt]+, [PtEnTpy]+, [RuBpy3]+2, and NB+, (En is ethylenediamine; Ppy, Bt, Tpy are α-deprotonated forms of 2-phenylpyridine, 2-phenylbenzothiazole, and 2-(2'-thienyl)pyridine, respectively; Bpy is 2,2'-bipyridyl, and NB+ is Nile blue) ions, which exhibit intense luminescence. It is found that the quenching of the luminescence of the modified cation-exchange membrane by water vapors depends on the nature of the excited electronic state of the immobilized cation.

  20. Addition, cycloaddition, and metathesis reactions of the cationic carbyne complexes [Cp(CO)[sub 2]Mn[triple bond]CCH[sub 2]R][sup +] and neutral vinylidene complexes Cp(CO)[sub 2]M=C=C(H)R (M = Mn, Re)

    SciTech Connect

    Terry, M.R.; Mercando, L.A.; Kelley, C.; Geoffroy, G.L. ); Nombel, P.; Lugan, N.; Mathieu, R. ); Ostrander, R.L.; Owens-Waltermire, B.E.; Rheingold, A.L. )

    1994-03-01

    The cationic alkylidyne complexes [Cp(CO)[sub 2]M=VCCH[sub 2]R][sup +] (M = Re, R = H; M = Mn, R = H, Me, Ph) undergo facile deprotonation to give the corresponding neutral vinylidene complexes Cp(CO)[sub 2]M=C=C(H)R. For [Cp(CO)[sub 2]Re=VCCH[sub 3

  1. Interaction between anions and cationic metal complexes containing tridentate ligands with exo-C-H groups: complex stability and hydrogen bonding.

    PubMed

    Martínez-García, Héctor; Morales, Dolores; Pérez, Julio; Puerto, Marcos; del Río, Ignacio

    2014-05-05

    [Re(CO)3 ([9]aneS3 )][BAr'4 ] (1), prepared by reaction of ReBr(CO)5 , 1,4,7-trithiacyclononane ([9]aneS3 ) and NaBAr'4 , forms stable, soluble supramolecular adducts with chloride (2), bromide, methanosulfonate (3) and fluoride (4) anions. These new species were characterized by IR, NMR spectroscopy and, for 2 and 3, also by X-ray diffraction. The results of the solid state structure determinations indicate the formation of CH⋅⋅⋅X hydrogen bonds between the anion (X) and the exo-CH groups of the [9]aneS3 ligand, in accord with the relatively large shifts found by (1) H NMR spectroscopy in dichloromethane solution for those hydrogens. The stability of the chloride adduct contrasts with the lability of the [9]aneS3 ligand in allyldicarbonyl molybdenum complexes recently studied by us. With fluoride, in dichloromethane solution, a second, minor neutral dimeric species 5 is formed in addition to 4. In 4, the deprotonation of a CH group of the [9]aneS3 ligand, accompanied by CS bond cleavage and dimerization, afforded 5, featuring bridging thiolates. Compounds [Mo(η(3) -methallyl)(CO)2 (TpyN)][BAr'4 ] (6) and [Mo(η(3) -methallyl)(CO)2 (TpyCH)][BAr'4 ] (7) were synthesized by the reactions of [MoCl(η(3) -methallyl)(CO)2 (NCMe)2 ], NaBAr'4 and tris(2-pyridyl)amine (TpyN) or tris(2-pyridyl)methane (TpyCH) respectively, and characterized by IR and (1) H and (13) C NMR spectroscopy in solution, and by X-ray diffraction in the solid state. Compound 6 undergoes facile substitution of one of the 2-pyridyl groups by chloride, bromide, and methanosulfonate anions. Stable supramolecular adducts were formed between 7 and chloride, bromide, iodide, nitrate, and perrhenate anions. The solid state structures of these adducts (12-16) were determined by X-ray diffraction. Binding constants in dichloromethane were calculated from (1) H NMR titration data for all the new supramolecular adducts. The signal of the bridgehead CH group is the one that undergoes a

  2. Dehydrogenation of ammonia-borane by cationic Pd(II) and Ni(II) complexes in a nitromethane medium: hydrogen release and spent fuel characterization.

    PubMed

    Kim, Sung-Kwan; Hong, Sung-Ahn; Son, Ho-Jin; Han, Won-Sik; Michalak, Artur; Hwang, Son-Jong; Kang, Sang Ook

    2015-04-28

    A highly electrophilic cationic Pd(II) complex, [Pd(MeCN)4][BF4]2 (1), brings about the preferential activation of the B-H bond in ammonia-borane (NH3·BH3, AB). At room temperature, the reaction between 1 in CH3NO2 and AB in tetraglyme leads to Pd nanoparticles and formation of spent fuels of the general formula MeNHxBOy as reaction byproducts, while 2 equiv. of H2 is efficiently released per AB equiv. at room temperature within 60 seconds. For a mechanistic understanding of dehydrogenation by 1, the chemical structures of spent fuels were intensely characterized by a series of analyses such as elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), solid state magic-angle-spinning (MAS) NMR spectra ((2)H, (13)C, (15)N, and (11)B), and cross polarization (CP) MAS methods. During AB dehydrogenation, the involvement of MeNO2 in the spent fuels showed that the mechanism of dehydrogenation catalyzed by 1 is different from that found in the previously reported results. This AB dehydrogenation derived from MeNO2 is supported by a subsequent digestion experiment of the AB spent fuel: B(OMe)3 and N-methylhydroxylamine ([Me(OH)N]2CH2), which are formed by the methanolysis of the AB spent fuel (MeNHxBOy), were identified by means of (11)B NMR and single crystal structural analysis, respectively. A similar catalytic behavior was also observed in the AB dehydrogenation catalyzed by a nickel catalyst, [Ni(MeCN)6][BF4]2 (2).

  3. Strong Inhibition of O-Atom Transfer Reactivity for Mn(IV)(O)(π-Radical-Cation)(Lewis Acid) versus Mn(V)(O) Porphyrinoid Complexes.

    PubMed

    Zaragoza, Jan Paulo T; Baglia, Regina A; Siegler, Maxime A; Goldberg, David P

    2015-05-27

    The oxygen atom transfer (OAT) reactivity of two valence tautomers of a Mn(V)(O) porphyrinoid complex was compared. The OAT kinetics of Mn(V)(O)(TBP8Cz) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato(3-)) reacting with a series of triarylphosphine (PAr3) substrates were monitored by stopped-flow UV-vis spectroscopy, and revealed second-order rate constants ranging from 16(1) to 1.43(6) × 10(4) M(-1) s(-1). Characterization of the OAT transition state analogues Mn(III)(OPPh3)(TBP8Cz) and Mn(III)(OP(o-tolyl)3)(TBP8Cz) was carried out by single-crystal X-ray diffraction (XRD). A valence tautomer of the closed-shell Mn(V)(O)(TBP8Cz) can be stabilized by the addition of Lewis and Brønsted acids, resulting in the open-shell Mn(IV)(O)(TBP8Cz(•+)):LA (LA = Zn(II), B(C6F5)3, H(+)) complexes. These Mn(IV)(O)(π-radical-cation) derivatives exhibit dramatically inhibited rates of OAT with the PAr3 substrates (k = 8.5(2) × 10(-3) - 8.7 M(-1) s(-1)), contrasting the previously observed rate increase of H-atom transfer (HAT) for Mn(IV)(O)(TBP8Cz(•+)):LA with phenols. A Hammett analysis showed that the OAT reactivity for Mn(IV)(O)(TBP8Cz(•+)):LA is influenced by the Lewis acid strength. Spectral redox titration of Mn(IV)(O)(TBP8Cz(•+)):Zn(II) gives Ered = 0.69 V vs SCE, which is nearly +700 mV above its valence tautomer Mn(V)(O)(TBP8Cz) (Ered = -0.05 V). These data suggest that the two-electron electrophilicity of the Mn(O) valence tautomers dominate OAT reactivity and do not follow the trend in one-electron redox potentials, which appear to dominate HAT reactivity. This study provides new fundamental insights regarding the relative OAT and HAT reactivity of valence tautomers such as M(V)(O)(porph) versus M(IV)(O)(porph(•+)) (M = Mn or Fe) found in heme enzymes.

  4. Low-dimensional compounds containing bioactive ligands. Part VIII: DNA interaction, antimicrobial and antitumor activities of ionic 5,7-dihalo-8-quinolinolato palladium(II) complexes with K(+) and Cs(+) cations.

    PubMed

    Farkasová, Veronika; Drweesh, Sayed Ali; Lüköová, Andrea; Sabolová, Danica; Radojević, Ivana D; Čomić, Ljiljana R; Vasić, Sava M; Paulíková, Helena; Fečko, Stanislav; Balašková, Tatiana; Vilková, Mária; Imrich, Ján; Potočňák, Ivan

    2017-02-01

    Starting from well-defined NH2(CH3)2[PdCl2(XQ)] complexes, coordination compounds of general formula Cat[PdCl2(XQ)] have been prepared by cationic exchange of NH2(CH3)2(+) and Cat cations, where XQ are biologically active halogen derivatives of quinolin-8-ol (5-chloro-7-iodo-quinolin-8-ol (CQ), 5,7-dibromo-quinolin-8-ol (dBrQ) and 5,7-dichloro-quinolin-8-ol (dClQ)) and Cat is K(+) or Cs(+). The cation exchange of all prepared complexes, K[PdCl2(CQ)] (1), K[PdCl2(dClQ)] (2), K[PdCl2(dBrQ)] (3), Cs[PdCl2(CQ)] (4), Cs[PdCl2(dClQ)] (5) and Cs[PdCl2(dBrQ)] (6) was approved using IR spectroscopy, their structures in DMSO solution were elucidated by one- and two-dimensional NMR experiments, whereas their stability in solution was verified by UV-VIS spectroscopy. Interaction of complexes to ctDNA was investigated using UV-VIS and fluorescence emission spectroscopy. The minimum inhibitory concentration and the minimum microbicidal concentration values were detected against 15 bacterial strains and 4 yeast strains to examine the antimicrobial activity for the complexes. The in vitro antitumor properties of the complexes were studied by testing the complexes on leukemic cell line L1210, ovarian cancer cell line A2780 and non-cancerous cell line HEK293. The majority of the prepared compounds exhibited moderate antimicrobial and very high cytotoxic activity.

  5. Biological activity of neutral and cationic iridium(III) complexes with κP and κP,κS coordinated Ph₂PCH₂S(O)xPh (x = 0-2) ligands.

    PubMed

    Ludwig, Gerd; Mijatović, Sanja; Ranđelović, Ivan; Bulatović, Mirna; Miljković, Djordje; Maksimović-Ivanić, Danijela; Korb, Marcus; Lang, Heinrich; Steinborn, Dirk; Kaluđerović, Goran N

    2013-11-01

    Neutral iridium(III) complexes of the type [Ir(η(5)-C₅Me₅)Cl₂{Ph₂PCH₂S(O)xPh-κP}] (1-3) with diphenylphosphino-functionalized methyl phenyl sulfides, sulfoxides, and sulfones Ph₂PCH₂S(O)xPh (x = 0, L1; 1, L2; 2, L3) and the cationic complex [Ir(η(5)-C₅Me₅)Cl{Ph₂PCH₂SPh-κP,κS}][PF6] (4) were synthesized and fully characterized analytically and spectroscopically. Furthermore, the structure of 2 was determined by X-ray diffraction analysis. The biological potential of the neutral and cationic iridium(III) complexes was tested in vitro against the cell lines 8505C, A253, MCF-7, SW480 and 518A2. Complex [Ir(η(5)-C₅Me₅)Cl₂{Ph₂PCH₂S(O)Ph-κP}] (2), with ligand L2 κP coordinated containing a pendent sulfinyl group, is the most active one (IC₅₀ values of about 3 μM), thus, with activities comparable to cisplatin. Complex 2 proved to have an even a higher antiproliferative activity than cisplatin against 8505C and SW480 cell lines, used as a model system of highly anaplastic cancers with low sensitivity to conventional chemotherapeutics such as cisplatin. Additional experiments demonstrated that apoptosis and autophagic cell death contribute to the drug's tumoricidal action.

  6. Structural and energetic study of cation-π-cation interactions in proteins.

    PubMed

    Pinheiro, Silvana; Soteras, Ignacio; Gelpí, Josep Lluis; Dehez, François; Chipot, Christophe; Luque, F Javier; Curutchet, Carles

    2017-04-12

    Cation-π interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-π-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins. We present a statistical analysis of the occurrence, composition and geometrical preferences of cation-π-cation interactions identified in a set of non-redundant protein structures taken from the Protein Data Bank. Our results demonstrate that this structural motif is observed at a small, albeit non-negligible frequency in proteins, and suggest a preference to establish cation-π-cation motifs with Trp, followed by Tyr and Phe. Furthermore, we have found that cation-π-cation interactions tend to be highly conserved, which supports their structural or functional role. Finally, we have performed an energetic analysis of a representative subset of cation-π-cation complexes combining quantum-chemical and continuum solvation calculations. Our results point out that the protein environment can strongly screen the cation-cation repulsion, leading to an attractive interaction in 64% of the complexes analyzed. Together with the high degree of conservation observed, these results suggest a potential stabilizing role in the protein fold, as demonstrated recently for a miniature protein (Craven et al., J. Am. Chem. Soc. 2016, 138, 1543). From a computational point of view, the significant contribution of non-additive three-body terms challenges the suitability of standard additive force fields for describing cation-π-cation motifs in molecular simulations.

  7. Cationic Pd(II)/Pt(II) 5,5-diethylbarbiturate complexes with bis(2-pyridylmethyl)amine and terpyridine: Synthesis, structures,DNA/BSA interactions, intracellular distribution, cytotoxic activity and induction of apoptosis.

    PubMed

    Icsel, Ceyda; Yilmaz, Veysel T; Kaya, Yunus; Durmus, Selvi; Sarimahmut, Mehmet; Buyukgungor, Orhan; Ulukaya, Engin

    2015-11-01

    Four new cationic Pd(II) and Pt(II) 5,5-diethylbarbiturate (barb) complexes, [M(barb)(bpma)]X·H2O [M = Pd(II), X = Cl (1); M = Pt(II), X = NO3(-) (2)] and [M(barb)(terpy)]NO3·0.5H2O [M = Pd(II) (3); M = Pt(II) (4)], where bpma = bis(2-pyridylmethyl)amine and terpy = terpyridine, were synthesized and characterized by elemental analysis, IR, UV–vis, NMR, ESI-MS and X-ray crystallography. The DNA binding properties of the cationic complexes were investigated by spectroscopic titrations, displacement experiments, viscosity, DNA melting and electrophoresis measurements. The results revealed that the complexes effectively bind to FS-DNA (fish sperm DNA) via intercalative/minor groove binding modes with intrinsic binding constants (Kb) in the range of 0.50 × 10(4)–1.67 × 10(5) M(-1). Absorption, emission and synchronous fluorescence measurements showed strong association of the complexes with protein (BSA) through a static mechanism. The mode of interaction of complexes towards DNA and protein was also supported by molecular docking. Complexes 1 and 3 showed significant nuclear uptake in HT-29 cells. In addition, 1 and 3 showed higher inhibition than cisplatin on the growth of MCF-7 and HT-29 cells and induced apoptosis on these cells much more effectively than the rest of the complexes as evidenced by pyknotic nuclear morphology. The levels of caspase-cleaved cytokeratin 18 (M30 antigen) in HT-29 cells treated with 1 and 3 increased in a dose-dependent manner, suggesting apoptosis. Moreover, qRT-PCR experiments showed that 1 and 3 caused significant increases in the expression of TNFRSF10B in HT-29 cells, indicating the initiation of apoptosis via cell surface death receptors.

  8. A complete map of the ion chemistry of the naphthalene radical cation? DFT and RRKM modeling of a complex potential energy surface

    SciTech Connect

    Solano, Eduardo A.; Mayer, Paul M.

    2015-09-14

    The fragmentation mechanisms of the naphthalene molecular ion to [M–C{sub 4}H{sub 2}]{sup +•}, [M–C{sub 2}H{sub 2}]{sup +•}, [M–H{sub 2}]{sup +•}, and [M–H{sup •}]{sup +} were obtained at the UB3LYP/6-311+G(3df,2p)//UB3LYP/6-31G(d) level of theory and were subsequently used to calculate the microcanonical rate constants, k(E)’s, for all the steps by the Rice-Ramsperger-Kassel-Marcus formalism. The pre-equilibrium and steady state approximations were applied on different regions of the potential energy profiles to obtain the fragmentation k(E)’s and calculate the relative abundances of the ions as a function of energy. These results reproduce acceptably well the imaging photoelectron-photoion coincidence spectra of naphthalene, in the photon-energy range 14.0–18.8 eV that was previously reported by our group. Prior to dissociation, the molecular ion rapidly equilibrates with a set of isomers that includes the Z- and E-phenylvinylacetylene (PVA) radical cations. The naphthalene ion is the predominant isomer below 10 eV internal energy, with the other isomers remaining at steady state concentrations. Later on, new steady-state intermediates are formed, such as the azulene and 1-phenyl-butatriene radical cations. The naphthalene ion does not eject an H atom directly but eliminates an H{sub 2} molecule in a two-step fragmentation. H{sup •} loss occurs instead from the 1-phenyl-butatriene ion. The PVA ions initiate the ejection of diacetylene (C{sub 4}H{sub 2}) to yield the benzene radical cation. Acetylene elimination yields the pentalene cation at low energies (where it can account for 45.9%–100.0% of the rate constant of this channel), in a three-step mechanism starting from the azulene ion. However, above 7.6 eV, the major [M–C{sub 2}H{sub 2}]{sup +•} structure is the phenylacetylene cation.

  9. A complete map of the ion chemistry of the naphthalene radical cation? DFT and RRKM modeling of a complex potential energy surface.

    PubMed

    Solano, Eduardo A; Mayer, Paul M

    2015-09-14

    The fragmentation mechanisms of the naphthalene molecular ion to [M-C4H2](+•), [M-C2H2](+•), [M-H2](+•), and [M-H(•)](+) were obtained at the UB3LYP/6-311+G(3df,2p)//UB3LYP/6-31G(d) level of theory and were subsequently used to calculate the microcanonical rate constants, k(E)'s, for all the steps by the Rice-Ramsperger-Kassel-Marcus formalism. The pre-equilibrium and steady state approximations were applied on different regions of the potential energy profiles to obtain the fragmentation k(E)'s and calculate the relative abundances of the ions as a function of energy. These results reproduce acceptably well the imaging photoelectron-photoion coincidence spectra of naphthalene, in the photon-energy range 14.0-18.8 eV that was previously reported by our group. Prior to dissociation, the molecular ion rapidly equilibrates with a set of isomers that includes the Z- and E-phenylvinylacetylene (PVA) radical cations. The naphthalene ion is the predominant isomer below 10 eV internal energy, with the other isomers remaining at steady state concentrations. Later on, new steady-state intermediates are formed, such as the azulene and 1-phenyl-butatriene radical cations. The naphthalene ion does not eject an H atom directly but eliminates an H2 molecule in a two-step fragmentation. H(•) loss occurs instead from the 1-phenyl-butatriene ion. The PVA ions initiate the ejection of diacetylene (C4H2) to yield the benzene radical cation. Acetylene elimination yields the pentalene cation at low energies (where it can account for 45.9%-100.0% of the rate constant of this channel), in a three-step mechanism starting from the azulene ion. However, above 7.6 eV, the major [M-C2H2](+•) structure is the phenylacetylene cation.

  10. A complete map of the ion chemistry of the naphthalene radical cation? DFT and RRKM modeling of a complex potential energy surface

    NASA Astrophysics Data System (ADS)

    Solano, Eduardo A.; Mayer, Paul M.

    2015-09-01

    The fragmentation mechanisms of the naphthalene molecular ion to [M-C4H2]+•, [M-C2H2]+•, [M-H2]+•, and [M-H•]+ were obtained at the UB3LYP/6-311+G(3df,2p)//UB3LYP/6-31G(d) level of theory and were subsequently used to calculate the microcanonical rate constants, k(E)'s, for all the steps by the Rice-Ramsperger-Kassel-Marcus formalism. The pre-equilibrium and steady state approximations were applied on different regions of the potential energy profiles to obtain the fragmentation k(E)'s and calculate the relative abundances of the ions as a function of energy. These results reproduce acceptably well the imaging photoelectron-photoion coincidence spectra of naphthalene, in the photon-energy range 14.0-18.8 eV that was previously reported by our group. Prior to dissociation, the molecular ion rapidly equilibrates with a set of isomers that includes the Z- and E-phenylvinylacetylene (PVA) radical cations. The naphthalene ion is the predominant isomer below 10 eV internal energy, with the other isomers remaining at steady state concentrations. Later on, new steady-state intermediates are formed, such as the azulene and 1-phenyl-butatriene radical cations. The naphthalene ion does not eject an H atom directly but eliminates an H2 molecule in a two-step fragmentation. H• loss occurs instead from the 1-phenyl-butatriene ion. The PVA ions initiate the ejection of diacetylene (C4H2) to yield the benzene radical cation. Acetylene elimination yields the pentalene cation at low energies (where it can account for 45.9%-100.0% of the rate constant of this channel), in a three-step mechanism starting from the azulene ion. However, above 7.6 eV, the major [M-C2H2]+• structure is the phenylacetylene cation.

  11. Photochemistry of framework-supported M(diimine)(CO)3X complexes in three-dimensional lithium carboxylate metal-organic frameworks: monitoring the effect of framework cations.

    PubMed

    Reade, Thomas J; Murphy, Thomas S; Calladine, James A; Horvath, Raphael; Clark, Ian P; Greetham, Gregory M; Towrie, Michael; Lewis, William; George, Michael W; Champness, Neil R

    2017-01-13

    The structures and photochemical behaviour of two new metal-organic frameworks (MOFs) are reported. Reaction of Re(2,2'-bipy-5,5'-dicarboxylic acid)(CO)3Cl or Mn(2,2'-bipy-5,5'-dicarboxylic acid)(CO)3Br with LiCl or LiBr, respectively, produces single crystals of {Li2(DMF)2 [(2,2'-bipy-5,5'-dicarboxylate)Re(CO)3Cl]}n ( RELI: ) or {Li2(DMF)2[(2,2'-bipy-5,5'-dicarboxylate)Mn(CO)3Br]}n ( MNLI: ). The structures formed by the two MOFs comprise one-dimensional chains of carboxylate-bridged Li(I) cations that are cross-linked by units of Re(2,2'-bipy-5,5'-dicarboxylate)(CO)3Cl ( RELI: ) or Mn(2,2'-bipy-5,5'- dicarboxylate)(CO)3Br ( MNLI: ). The photophysical and photochemical behaviour of both RELI: and MNLI: are probed. The rhenium-containing MOF, RELI: , exhibits luminescence and the excited state behaviour, as established by time-resolved infrared measurements, is closer in behaviour to that of unsubstituted [Re(bipy)(CO)3Cl] rather than a related MOF where the Li(I) cations are replaced by Mn(II) cations. These observations are further supported by density functional theory calculations. Upon excitation MNLI: forms a dicarbonyl species which rapidly recombines with the dissociated CO, in a fashion consistent with the majority of the photoejected CO not escaping the MOF channels.This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.

  12. Cationic iridium(III) complexes bearing ancillary 2,5-dipyridyl(pyrazine) (2,5-dpp) and 2,2':5',2''-terpyridine (2,5-tpy) ligands: synthesis, optoelectronic characterization and light-emitting electrochemical cells.

    PubMed

    Hasan, Kamrul; Donato, Loïc; Shen, Yulong; Slinker, Jason D; Zysman-Colman, Eli

    2014-09-28

    Four cationic iridium(III) complexes of the form [Ir(C^N)2(N^N)](+) bearing either a 2,5-dipyridylpyrazine (2,5-dpp) or a 2,2':5',2''-terpyridine (2,5-tpy) ancillary ligand and either 2-phenylpyridine (ppy) or a 2-(2,4-difluorophenyl)-5-methylpyridine (dFMeppy) cyclometalating ligands were synthesized. The optoelectronic properties of all complexes have been fully characterized by UV-visible absorption, cyclic voltammetry and emission spectroscopy. The conclusions drawn from these studies have been corroborated by DFT and TDDFT calculations. The four complexes were assessed as emitters in light-emitting electrochemical cells. Complex 1a, [Ir(ppy)2(2,5-dpp)]PF6, was found to be a deep red emitter (666 nm) both in acetonitrile solution and in the electroluminescent device. Complex 2a, [Ir(ppy)2(2,5-tpy)]PF6 was found to be an orange emitter (604 nm) both in solution and in the LEEC. LEECs incorporating both of these complexes were stable over the course of around 4-6 hours. Complex 1b, [Ir(dFMeppy)2(2,5-dpp)]PF6, was also determined to emit in the orange (605 nm) but with a photoluminescent quantum yield (ΦPL) double that of 2a. Complex 2b, [Ir(dFMeppy)2(2,5-tpy)]PF6 is an extremely bright green emitter (544 nm, 93%). All four complexes exhibited quasireversible electrochemistry and all four complexes phosphoresce from a mixed charge-transfer excited state.

  13. Theoretical study of alkali cation-benzene complexes: potential energy surfaces and binding energies with improved results for rubidium and cesium.

    PubMed

    Coletti, Cecilia; Re, Nazzareno

    2006-05-25

    High level ab initio quantum chemical calculations have been carried out on the binding of alkali metal to benzene with special attention to heavier metals for which the agreement between the most recent theoretical investigations and the experimental bond dissociation energies (BDEs) is not very good. We performed BSSE-corrected geometry optimizations employing the MP2 level of theory with large basis sets and a modified Stuttgart RSC 1997 basis set for rubidium and cesium and carried out single point energy calculations at the MP4 level, obtaining, also for the latter metals, BDE values in good agreement with the experimental results. Furthermore, in view of the development of empirical correction terms to force fields to describe cation-pi interactions, we evaluated the potential energy surface along the benzene symmetry axis and discussed the role of the BSSE correction on the accuracy of our results.

  14. The cubyl cation rearrangements.

    PubMed

    Jalife, Said; Mondal, Sukanta; Cabellos, Jose Luis; Martinez-Guajardo, Gerardo; Fernandez-Herrera, Maria A; Merino, Gabriel

    2016-02-25

    Born-Oppenheimer molecular dynamics simulations and high-level ab initio computations predict that the cage-opening rearrangement of the cubyl cation to the 7H(+)-pentalenyl cation is feasible in the gas phase. The rate-determining step is the formation of the cuneyl cation with an activation barrier of 25.3 kcal mol(-1) at the CCSD(T)/def2-TZVP//MP2/def2-TZVP level. Thus, the cubyl cation is kinetically stable enough to be formed and trapped at moderate temperatures, but it may be rearranged at higher temperatures.

  15. Cation-π interaction of the univalent silver cation with meso-octamethylcalix[4]pyrrole: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Polášek, Miroslav; Kvíčala, Jaroslav; Makrlík, Emanuel; Křížová, Věra; Vaňura, Petr

    2017-02-01

    By using electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent silver cation Ag+ forms with meso-octamethylcalix[4]pyrrole (abbrev. 1) the cationic complex species 1·Ag+. Further, applying quantum chemical DFT calculations, four different conformations of the resulting complex 1·Ag+ were derived. It means that under the present experimental conditions, this ligand 1 can be considered as a macrocyclic receptor for the silver cation.

  16. Incorporation of transition metals into Mg-Al layered double hydroxides: Coprecipitation of cations vs. their pre-complexation with an anionic chelator

    SciTech Connect

    Tsyganok, Andrey; Sayari, Abdelhamid . E-mail: Abdel.Sayari@science.uottawa.ca

    2006-06-15

    A comparative study on two different methods for preparing Mg-Al layered double hydroxides (LDH) containing various divalent transition metals M (M=Co, Ni, Cu) has been carried out. The first (conventional) method involved coprecipitation of divalent metals M(II) with Mg(II) and Al(III) cations using carbonate under basic conditions. The second approach was based on the ability of transition metals to form stable anionic chelates with edta{sup 4-} (edta{sup 4-}=ethylenediaminetetraacetate) that were synthesized and further introduced into LDH by coprecipitation with Mg and Al. The synthesized LDHs were characterized by X-ray diffraction (XRD) and X-ray fluorescence (XRF) methods, thermogravimetry with mass-selective detection of decomposition products (TG-MSD), Fourier transform infrared (FTIR) and Raman spectroscopy techniques. The results obtained were discussed in terms of efficiency of transition metal incorporation into the LDH structure, thermal stability of materials and the ability of metal chelates to intercalate the interlayer space of Mg-Al LDH. Vibrational spectroscopy studies confirmed that the integrity of the metal chelates was preserved upon incorporation into the LDH. - Graphical abstract: Two ways for introducing transition metals M(II) into Mg-Al layered double hydroxides (MY{sup 2-} denotes the edta chelate of transition metal M(II)).0.

  17. Gas-phase and solution-phase polymerization of epoxides by Cr(salen) complexes: evidence for a dinuclear cationic mechanism.

    PubMed

    Schön, Eva; Zhang, Xiangyang; Zhou, Zhiping; Chisholm, Malcolm H; Chen, Peter

    2004-11-15

    The gas-phase reactions of a series of mass-selected mononuclear and dinuclear Cr(salen) complexes with propylene oxide suggest that the enhanced reactivity of the dinuclear complexes in gas-phase and in solution may derive from a dicationic mechanism in which the alkoxide chain is mu(2)-coordinated to two Lewis acidic metal centers. The double coordination is proposed to suppress backbiting, and hence chain-transfer in the gas-phase homopolymerization of epoxides.

  18. Notable effects of the metal salts on the formation and decay reactions of α-tocopheroxyl radical in acetonitrile solution. The complex formation between α-tocopheroxyl and metal cations.

    PubMed

    Kohno, Yutaro; Fujii, Miyabi; Matsuoka, Chihiro; Hashimoto, Haruka; Ouchi, Aya; Nagaoka, Shin-ichi; Mukai, Kazuo

    2011-08-18

    The measurement of the UV-vis absorption spectrum of α-tocopheroxyl (α-Toc(•)) radical was performed by reacting aroxyl (ArO(•)) radical with α-tocopherol (α-TocH) in acetonitrile solution including four kinds of alkali and alkaline earth metal salts (MX or MX(2)) (LiClO(4), LiI, NaClO(4), and Mg(ClO(4))(2)), using stopped-flow spectrophotometry. The maximum wavelength (λ(max)) of the absorption spectrum of the α-Toc(•) at 425.0 nm increased with increasing concentration of metal salts (0-0.500 M) in acetonitrile, and it approached constant values, suggesting an [α-Toc(•)-M(+) (or M(2+))] complex formation. The stability constants (K) were determined to be 9.2, 2.8, and 45 M(-1) for LiClO(4), NaClO(4), and Mg(ClO(4))(2), respectively. By reacting ArO(•) with α-TocH in acetonitrile, the absorption of ArO(•) disappeared rapidly, while that of α-Toc(•) appeared and then decreased gradually as a result of the bimolecular self-reaction of α-Toc(•) after passing through the maximum. The second-order rate constants (k(s)) obtained for the reaction of α-TocH with ArO(•) increased linearly with an increasing concentration of metal salts. The results indicate that the hydrogen transfer reaction of α-TocH proceeds via an electron transfer intermediate from α-TocH to ArO(•) radicals followed by proton transfer. Both the coordination of metal cations to the one-electron reduced anions of ArO(•) (ArO:(-)) and the coordination of counteranions to the one-electron oxidized cations of α-TocH (α-TocH(•)(+)) may stabilize the intermediate, resulting in the acceleration of electron transfer. A remarkable effect of metal salts on the rate of bimolecular self-reaction (2k(d)) of the α-Toc(•) radical was also observed. The rate constant (2k(d)) decreased rapidly with increasing concentrations of the metal salts. The 2k(d) value decreased at the same concentration of the metal salts in the following order: no metal salt > NaClO(4) > LiClO(4) > Mg

  19. Cation recognition of thiacalix[2]thianthrene and p-tert-butylthiacalix[2]thianthrene and their conformers and complexes with Zn(II), Cd(II) and Hg(II): a theoretical investigation.

    PubMed

    Kaenkaew, Saowapak; Sae-Khow, Ornchuree; Ruangpornvisuti, Vithaya

    2010-02-01

    The structures of thiacalix[2]thianthrene, p-tert-butylthiacalix[2]thianthrene and their complexes with Zn(2+), Cd(2+) and Hg(2+) were obtained using B3LYP/LanL2DZ and HF/LanL2DZ calculations. The structures of the most stable conformers of thiacalix[2]thianthrene and p-tert-butylthiacalix[2]thianthrene optimized at either the B3LYP/LanL2DZ or HF/LanL2DZ level are in good agreement with their corresponding X-ray crystallographic structures. The binding energies of cations, Zn(2+), Cd(2+) and Hg(2+) to thiacalix[2]thianthrene and to p-tert-butylthiacalix[2]thianthrene conformers, and the thermodynamic properties of their associations were obtained. The relative selectivities of both thiacalix[2]thianthrene and thiacalix[2]thianthrene conformer are in same order: Zn(2+) > Hg(2+) > Cd(2+).

  20. A band Lanczos approach for calculation of vibrational coupled cluster response functions: simultaneous calculation of IR and Raman anharmonic spectra for the complex of pyridine and a silver cation.

    PubMed

    Godtliebsen, Ian H; Christiansen, Ove

    2013-07-07

    We describe new methods for the calculation of IR and Raman spectra using vibrational response theory. Using damped linear response functions that incorporate a Lorentzian line-shape function from the outset, it is shown how the calculation of Raman spectra can be carried out through the calculation of a set of vibrational response functions in the same manner as described previously for IR spectra. The necessary set of response functions can be calculated for both vibrational coupled cluster (VCC) and vibrational configuration interaction (VCI) anharmonic vibrational wave-functions. For the efficient and simultaneous calculation of the full set of necessary response functions, a non-hermitian band Lanczos algorithm is implemented for VCC, and a hermitian band Lanczos algorithm is implemented for VCI. It is shown that the simultaneous calculation of several response functions is often advantageous. Sample calculations are presented for pyridine and the complex between pyridine and the silver cation.

  1. The renaissance of high-energy CID for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols.

    PubMed

    Pittenauer, Ernst; Allmaier, Günter

    2009-06-01

    Triacylglycerols were analyzed as cationized species (Li(+), Na(+), K(+)) by high-energy CID at 20 keV collisions utilizing MALDI-TOF/RTOF mass spectrometry. Precursor ions, based on [M + Li](+)-adduct ions exhibited incomplete fragmentation in the high and low m/z region whereas [M + K](+)-adducts did not show useful fragmentation. Only sodiated precursor ions yielded product ion spectra with structurally diagnostic product ions across the whole m/z range. The high m/z region of the CID spectra is dominated by abundant charge-remote fragmentation of the fatty acid substituents. In favorable cases also positions of double bonds or of hydroxy groups of the fatty acid alkyl chains could be determined. A-type product ions represent the end products of these charge-remote fragmentations. B- and C-type product ions yield the fatty acid composition of individual triacylglycerol species based on loss of either one neutral fatty acid or one sodium carboxylate residue, respectively. Product ions allowing fatty acid substituent positional determination were present in the low m/z range enabling identification of either the sn-1/sn-3 substituents (E-, F-, and G-type ions) or the sn-2 substituent (J-type ion). These findings were demonstrated with synthetic triacylglycerols and plant oils such as cocoa butter, olive oil, and castor bean oil. Typical features of 20 keV CID spectra of sodiated triacylglycerols obtained by MALDI-TOF/RTOF MS were an even distribution of product ions over the entire m/z range and a mass accuracy of +/-0.1 to 0.2 u. One limitation of the application of this technique is mainly the insufficient precursor ion gating after MS1 (gating window at 4 u) of species separated by 2 u.

  2. Experimental and theoretical studies on the DNA-binding of cationic yttrium(III) complex containing 2,2‧-bipyridine

    NASA Astrophysics Data System (ADS)

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Akbari, Alireza; Mirkazehi-Rigi, Sohaila

    2015-03-01

    The interaction of DNA with [Y(bpy)(OH2)6]+3, where bpy is 2,2‧-bipyridine has been studied at physiological pH in Tris-HCl buffer. Fluorescence and absorption spectroscopy, agarose gel electrophoresis as well as EB quenching experiments are used to study DNA binding of the complex. The results reveal that DNA have the strong ability to bind with Y(III) complex. The binding constant, Kb and the Stern-Volmer quenching constant, KSV are determined. For characterization of the binding mode between the Y(III) complex and DNA various procedures such as: iodide quenching assay, salt effect and thermodynamical investigation are used. The results suggest that minor groove binding should be the interaction mode of complex to DNA. A gel electrophoresis assay demonstrates the ability of the complex to cleave the DNA via oxidative pathway. Electronic structure of [Y(bpy)(OH2)6]+3 was also carried out applying the density functional theory (DFT) method and applied to explain some obtained experimental observations.

  3. Polymer light-emitting diodes based on cationic iridium(III) complexes with a 1,10-phenanthroline derivative containing a bipolar carbazole-oxadiazole unit as the auxiliary ligand

    NASA Astrophysics Data System (ADS)

    Tang, Huaijun; Wei, Liying; Meng, Guoyun; Li, Yanhu; Wang, Guanze; Yang, Furui; Wu, Hongbin; Yang, Wei; Cao, Yong

    2014-11-01

    A 1,10-phenanthroline derivative (co-phen) containing a bipolar carbazole-oxadiazole unit was synthesized and used as the auxiliary ligand in cationic iridium(III) complexes [(ppy)2Ir(co-phen)]PF6 (ppy: 2-phenylpyridine) and [(npy)2Ir(co-phen)]PF6 (npy: 2-(naphthalen-1-yl)pyridine). Two complexes have high thermal stability with the glass-transition temperatures (Tg) of 207 °C and 241 °C, and the same 5% weight-reduction temperatures (ΔT5%) of 402 °C. Both of them were used as phosphorescent dopants in solution-processed polymer light-emitting diodes (PLEDs): ITO/PEDOT: PSS/PVK: PBD: complex (mass ratios 100: 40: x, x = 1.0, 2.0, and 4.0)/CsF/Al. The maximum luminances of the PLEDs using [(ppy)2Ir(co-phen)]PF6 and [(npy)2Ir(co-phen)]PF6 were 12567 cd m-2 and 11032 cd m-2, the maximum luminance efficiencies were 17.3 cd A-1 and 20.4 cd A-1, the maximum power efficiencies were 9.8 lm W-1 and 10.3 lm W-1, and the maximum external quantum efficiencies were 9.3% and 11.4% respectively. The CIE color coordinates were around (0.37, 0.57) and (0.44, 0.54) respectively, corresponding to the yellow green region.

  4. Halogenated silanes, radicals, and cations

    NASA Astrophysics Data System (ADS)

    Wang, Liming; He, Yi-Liang

    2008-09-01

    Quantum chemistry study has been carried out on the structure and energetics of halogenated silanes, radicals, and cations (SiHxXy0,+1, X = F, Cl, Br; x + y = 1-4). The geometries are optimized at B3LYP/6-31+G(2df,p) level. The adiabatic ionization energiess (IEas), relative energetics of cations, proton affinities (PAs) of silanes, and the enthalpies of formation are predicted using G3(CC) model chemistry. Non-classical ion complex structures are found for hydrogenated cations and transition states connecting classical and non-classical structures are also located. The most stable cations for silylene and silyl radicals have their classical divalent and trivalent structures, and those for silanes have non-classical structures except for SiH3Br+ and SiH2Br2+. The non-classical structures for halosilane cations imply difficulty in experimentally measurement of the adiabatic ionization energies using photoionization or photoelectron studies. For SiH3X, SiH2X2, and SiHX3, the G3(CC) adiabatic IEas to classical ionic structures closest to their neutrals agree better with the photoelectron spectroscopic measurements. The transition states between classical and non-classical structures also hamper the photoionization determination of the appearance energies for silylene cations from silanes. The G3(CC) results for SiHx0,+1 agree excellently with the photoionization mass spectrometric study, and the results for fluorinated and chlorinated species also agree with the previous theoretical predictions at correlation levels from BAC-MP4 to CCSD(T)/CBS. The predicted enthalpy differences between SiH2Cl+, SiHCl2+, and SiCl3+ are also in accordance with previous kinetics study. The G3(CC) results show large discrepancies to the collision-induced charge transfer and/or dissociation reactions involving SiFx+ and SiClx+ ions, for which the G3(CC) enthalpies of formation are also significantly differed from the previous theoretical predictions, especially on SiFx+ (x = 2-4). The G3

  5. A series of three-dimensional architectures constructed from lanthanide-substituted polyoxometalosilicates and lanthanide cations or lanthanide-organic complexes as linkers.

    PubMed

    An, Haiyan; Zhang, Hua; Chen, Zhaofei; Li, Yangguang; Liu, Xuan; Chen, Hao

    2012-07-21

    Six 3D architectures based on lanthanide-substituted polyoxometalosilicates, KLn[(H(2)O)(6)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 1, n = 42; Ce 2, n = 40), H[(H(2)O)(6)Nd](2)[(H(2)O)(7)Nd][(H(2)O)(4)NdSiW(11)O(39)][(H(2)O)(3)NdSiW(11)O(39)]·13H(2)O (3), H(2)K(2)[(Hpic)(H(2)O)(5)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 4, n = 18.5; Ce 5, n = 35; Nd 6, n = 36; Hpic = 4-picolinic acid), have been synthesized and characterized by elemental analysis, IR and UV-vis spectroscopy, TG analysis, powder X-ray diffraction and single crystal X-ray diffraction. Compounds 1 and 2 are isostructural, built up of lanthanide-substituted polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by Ln(3+) cations to form a 3D open framework with 1D channels. The polyoxoanion [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) consists of two α(1)-type mono-Ln-substituted Keggin anions. When Nd(3+) ion was used instead of La(3+) or Ce(3+) ions, compound 3 with a different structure was obtained, containing two kinds of polyoxoanions [{(H(2)O)(4)Nd(SiW(11)O(39))}(2)](10-) and [{(H(2)O)(3)Nd(SiW(11)O(39))}(2)](10-) which are connected together by Nd(3+) ions to yield a 3D framework. When 4-picolinic acid was added to the reaction system of 1-3, isostructural compounds 4-6 were obtained, constructed from the polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by picolinate-chelated lanthanide centers to form a 3D channel framework. From a topological viewpoint, the 3D nets of 1, 2, 4, 5 and 6 exhibit a (3,6)-connected rutile topology, whereas the 3D structure of 3 possesses a rare (3,3,6,10)-connected topology. The magnetic properties of 2, 3, 5 and 6 have been studied by measuring their magnetic susceptibilities in the temperature range 2-300 K.

  6. Cationic half-sandwich Ru(II) complexes containing (N,N)-bound Schiff-base ligands: Synthesis, crystal structure analysis and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Tao, Li; Miao, Qian; Tehrani, Alireza Azhdari; Hajiashrafi, Taraneh; Hu, Mao-Lin; Morsali, Ali

    2016-08-01

    Three Ru(II) half-sandwich complexes containing (N,N)-bound Schiff-base ligands, [(η6-C6H6) RuCl(L1)]PF6 (1) L1 = (E)-1-(6-methylpyridin-2-yl)-N-(p-tolyl)methanimine, [(η6-p-cymene)RuCl(L1)]PF6 (2) and [(η6-p-cymene)RuCl(L2)]PF6(3) L2 = (E)-1-(6-bromopyridin-2-yl)-N-(p-tolyl)methanimine, were synthesized, characterized and their supramolecular structures were analyzed. The crystal packing of these compounds was studied using geometrical analysis and Hirshfeld surface analysis. The fluorescence behavior of these compounds was also studied. TD-DFT calculations were carried out to better understand the fluorescence properties of complexes 1-3. These compounds could be promising for the design of organometallic dye systems.

  7. Cation locations and dislocations in zeolites

    NASA Astrophysics Data System (ADS)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  8. Detachable strong cation exchange monolith, integrated with capillary zone electrophoresis and coupled with pH gradient elution, produces improved sensitivity and numbers of peptide identifications during bottom-up analysis of complex proteomes.

    PubMed

    Zhang, Zhenbin; Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J

    2015-04-21

    A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary.

  9. (N-pyrrolyl)B(C6F5)2--a new organometallic Lewis acid for the generation of group 4 metallocene cation complexes.

    PubMed

    Kehr, G; Fröhlich, R; Wibbeling, B; Erker, G

    2000-01-01

    Treatment of the (C6F5)2BF x OEt2 (3) complex with N-pyrrolyl lithium gives bis(pentafluorophenyl)(N-pyrrolyl)borane (2), a strong organometallic Lewis acid, which was characterized by X-ray diffraction (B-N bond length: 1.401(5) A). It exhibits a columnar superstructure in the crystal and contains pi-stacks of pyrrolyl units. Compound 2 readily abstracts alkyl anions from a variety of alkyl Group 4 metallocene-type complexes and leads to the clean formation of the respective metallocene ions or ion pairs. For example, the treatment of Cp3ZrCH3 (9) with 2 transfers a methyl anion to yield the ion pair [Cp3Zr]+[(C4H4N)B(CH3)(C6F5)2]- (12). The X-ray crystal structure analysis of 12 shows a close contact between zirconium and the pyrrolyl-beta-carbon (2.641(2) A). The borane 2 adds to (butadiene)zirconocene (13) to yield the betaine system [Cp2Zr]+[(C4H6)B- (NC4H4)(C6F)2]- (15). Complex 15 contains a distorted eta3-allyl moiety inside the metallacyclic framework and it features an internal Zr+...(pyrrolyl)B- ion pair interaction with a Zr...pyrrolyl-alphacarbon separation of 2.723(3) A (determined by X-ray diffraction). From the dynamic NMR spectra of 15 the bond strength of the internal ion pair interaction was estimated to be deltaGdiss (223 K) approximately = to15 kcalmol(-1). Treatment of dimethylzirconocene (16) with 2 yields the metallocene borate salt [Cp2ZrCH3]+[(C4H4N)B(CH3)(C6F5)2]- (17), which is an active catalyst for the polymerization of ethene.

  10. Neutral, cationic, and anionic low-spin iron(III) complexes stabilized by amidophenolate and iminobenzosemiquinonate radical in N,N,O ligands.

    PubMed

    Rajput, Amit; Sharma, Anuj K; Barman, Suman K; Koley, Debasis; Steinert, Markus; Mukherjee, Rabindranath

    2014-01-06

    A brownish-black complex [Fe(III)(L)2] (1) (S = 0), supported by two tridentate redox-active azo-appended o-amidophenolates [H2L = 2-(2-phenylazo)-anilino-4,6-di-tert-butylphenol], has been synthesized and structurally characterized. In CH2Cl2 1 displays two oxidative and two reductive 1e(-) redox processes at E1/2 values of 0.48 and 1.06 V and -0.42 and -1.48 V vs SCE, respectively. The one-electron oxidized form [1](+) isolated as a green solid [Fe(III)(L)2][BF4] (2) (S = 1/2) has been structurally characterized. Isolation of a dark ink-blue one-electron reduced form [1](-) has also been achieved [Co(III)(η(5)-C10H15)2][Fe(III)(L)2] (3) (S = 1/2). Mössbauer spectral parameters unequivocally establish that 1 is a low-spin (LS) Fe(III) complex. Careful analysis of Mössbauer spectral data of 2 and 3 at 200 and 80 K reveal that each complex has a major LS Fe(III) and a minor LS Fe(II) component (redox isomers): [Fe(III){(L(ISQ))(-•)}2](+) and [Fe(II){(L(IBQ))(0)}{(L(ISQ))(-•)}](+) (2) and [Fe(III){(L(AP))(2-)}2](-) and [Fe(II){(L(ISQ))(-•)}{(L(AP))(2-)}](-) (3). Notably, for both at 8 K mainly the major component exists. Broken-Symmetry (BS) Density Functional Theory (DFT) calculations at the B3LYP level reveals that in 1 the unpaired electron of LS Fe(III) is strongly antiferromagnetically coupled with a π-radical of o-iminobenzosemiquinonate(1-) (L(ISQ))(-•) form of the ligand, delocalized over two ligands providing 3- charge (X-ray structure). DFT calculations reveal that the unpaired electron in 2 is due to (L(ISQ))(-•) [LS Fe(III) (SFe = 1/2) is strongly antiferromagnetically coupled to one of the (L(ISQ))(-•) radicals (Srad = 1/2)] and 3 is primarily a LS Fe(III) complex, supported by two o-amidophenolate(2-) ligands. Time-Dependent-DFT calculations shed light on the origin of UV-vis-NIR spectral absorptions for 1-3. The collective consideration of Mössbauer, variable-temperature (77-298 K) electron paramagnetic resonance (EPR), and absorption

  11. A divalent cation stabilizes the active conformation of the B. subtilis RNase P x pre-tRNA complex: a role for an inner-sphere metal ion in RNase P.

    PubMed

    Hsieh, John; Koutmou, Kristin S; Rueda, David; Koutmos, Markos; Walter, Nils G; Fierke, Carol A

    2010-07-02

    Metal ions interact with RNA to enhance folding, stabilize structure, and, in some cases, facilitate catalysis. Assigning functional roles to specifically bound metal ions presents a major challenge in analyzing the catalytic mechanisms of ribozymes. Bacillus subtilis ribonuclease P (RNase P), composed of a catalytically active RNA subunit (PRNA) and a small protein subunit (P protein), catalyzes the 5'-end maturation of precursor tRNAs (pre-tRNAs). Inner-sphere coordination of divalent metal ions to PRNA is essential for catalytic activity but not for the formation of the RNase P x pre-tRNA (enzyme-substrate, ES) complex. Previous studies have demonstrated that this ES complex undergoes an essential conformational change (to the ES* conformer) before the cleavage step. Here, we show that the ES* conformer is stabilized by a high-affinity divalent cation capable of inner-sphere coordination, such as Ca(II) or Mg(II). Additionally, a second, lower-affinity Mg(II) activates cleavage catalyzed by RNase P. Structural changes that occur upon binding Ca(II) to the ES complex were determined by time-resolved Förster resonance energy transfer measurements of the distances between donor-acceptor fluorophores introduced at specific locations on the P protein and pre-tRNA 5' leader. These data demonstrate that the 5' leader of pre-tRNA moves 4 to 6 A closer to the PRNA x P protein interface during the ES-to-ES* transition and suggest that the metal-dependent conformational change reorganizes the bound substrate in the active site to form a catalytically competent ES* complex.

  12. Protein quantitation by complexation of fluorescent tetraphenylthiophene cation to anion-terminated poly(N-isopropylacrylamide): aggregation-enhanced emission and electrostatic interaction.

    PubMed

    Deng, Shiang-Lin; Hsiao, Tai-Shen; Shih, Ke-Ying; Hong, Jin-Long

    2014-09-05

    A fluorescent biological sensor utilizing aggregation-enhanced emission (AEE) property was developed in our laboratory. First, the AEE-active fluorescent tetraphenylthiophene (TP) unit was synthetically connected to poly(N-isopropylacrylamide) by covalent and ionic bonds, resulting in the respective c- and i-TP-PNIPAM for the detection and quantification of the bovine serum albumin (BSA) model protein. When bind to BSA, the ionic i-TP-PNIPAM shows much better fluorescence (FL) sensitivity compared to c-PNIPAM. The fluorescence (FL) intensity of i-TP-PNIAPM displays a good linear dependence on concentration of BSA (0-1 mg/mL), indicating quantitative fluorimetric protein detection can be achieved. Further addition of anionic surfactant of sodium dodecylsulfate (SDS) considerably raised the FL intensity of the complex solution. All the FL response was discussed in term of conformational freedom of the TP unit under different environmental constraints.

  13. Binding of fluoroanions by a cationic cobalt(III) complex: Syntheses, characterization and single crystal X-ray structure determination of [Co(phen) 2CO 3]BF 4 and [Co(phen) 2CO 3]PF 6·3H 2O

    NASA Astrophysics Data System (ADS)

    Sharma, Raj Pal; Singh, Ajnesh; Venugopalan, Paloth; Harrison, William T. A.

    2011-05-01

    In an effort to utilize the cationic cobalt(III) complex as a binding agent for fluoroanions, the reaction of carbonatobis(1,10-phenanthroline)cobalt(III) chloride with sodium tetrafluoroborate and sodium hexafluorophosphate in water (1:1 M ratio) leads to the formation of [Co(phen) 2CO 3]BF 4 ( 1) and [Co(phen) 2CO 3]PF 6·3H 2O ( 2). These cobalt(III) complex salts have been characterized by elemental analyses, spectroscopic techniques (multinuclear NMR, UV/Visible and FT-IR), solubility product and conductance measurements. X-ray structure determination of these complex salts revealed the presence of ionic structures i.e., one complex cation [Co(phen) 2CO 3] + and one BF4- anion in 1 and one complex cation [Co(phen) 2CO 3] +, one PF6- anion and three water molecules of crystallisation in 2. The packings in both complex salts are stabilized by C sbnd H⋯F, C sbnd H⋯O(carbonato) hydrogen bonds and anion⋯π interactions beside electrostatic forces of attraction. In addition to these non-covalent interactions, O sbnd H⋯O(water) and π-π stacking interactions are also observed in 2. The formation of complex salts of definite composition with tetrafluoroborate and hexafluorophosphate ions suggest that [Co(phen) 2CO 3] + may be used as binding agent for weakly coordinating fluoroanions i.e. BF4- and PF6-.

  14. Predictive complexation models of the impact of natural organic matter and cations on scaling in cooling water pipes: A case study of power generation plants in South Africa

    NASA Astrophysics Data System (ADS)

    Bosire, G. O.; Ngila, J. C.; Mbugua, J. M.

    This work discusses simulative models of Ca and Mg complexation with natural organic matter (NOM), in order to control the incidence of scaling in pipes carrying cooling water at the Eskom power generating stations in South Africa. In particular, the paper reports how parameters such as pH and trace element levels influence the distribution of scaling species and their interactions, over and above mineral phase saturation indices. In order to generate modelling inputs, two experimental scenarios were created in the model solutions: Firstly, the trace metals Cu, Pb and Zn were used as markers for Ca and Mg complexation to humic acid and secondly the effect of natural organic matter in cooling water was determined by spiking model solutions. Labile metal ions and total elements in model solutions and water samples were analysed by square wave anodic stripping voltammetry and inductively coupled plasma optical emission spectrometry (ICP-OES), respectively. ICP-OES results revealed high levels of K, Na, S, Mg and Ca and low levels of trace elements (Cd, Se, Pb, Cu, Mn, Mo, Ni, Al and Zn) in the cooling water samples. Using the Tipping and Hurley's database WHAM in PHREEQC format (T_H.DAT), the total elemental concentrations were run as inputs on a PHREEQC code, at pH 6.8 and defined charge as alkalinity (as HCO3-) For model solutions, PHREEQC inputs were based on (i) free metal differences attributed to competitive effect of Ca and the effect of Ca + Mg, respectively; (ii) total Ca and Mg used in the model solutions and (iii) alkalinity described as hydrogen carbonate. Anodic stripping peak heights were used to calculate the concentration of the free/uncomplexed/labile metal ions (used as tracers) in the model solutions. The objective of modelling was to describe scaling in terms of saturation indices of mineral phases. Accordingly, the minerals most likely to generate scale were further simulated (over a range of pH (3-10) to yield results that mimicked changing p

  15. Molecular structure and vibrational properties of pyramidal MPc+ phthalocyanine cation in InPcI and LuPc(OAc) complexes

    NASA Astrophysics Data System (ADS)

    Hanuza, J.; Godlewska, P.; Kadłubański, P.; Ptak, M.; Mączka, M.; Gerasymchuk, Y. S.; Legendziewicz, J.

    2017-02-01

    Room temperature FT-IR spectra in the range 30-4000 cm-1 and FT-Raman spectra in the range 80-4000 cm-1 of indium and lutetium MPX-type phthalocyanines have been compared. The assignment of the observed bands has been accomplished on the basis of DFT chemical calculations using the B3LYP functional and its long range corrected version - CAM-B3LYP. The calculations were carried out for the indium derivative using the LANL2DZ, CC-PVDZ basis sets, i.e. the following approximations were used: B3LYP/CC-PVDZ, B3LYP/CC-PVTZ, B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ and CAM-B3LYP/LANL2DZ. The molecular structures of these derivatives have been discussed in terms of group theory and geometry optimisation taking into account the shape and number of the bands corresponding to the stretching and bending vibrations of MN4 coordination polyhedron as well as the whole studied complex. The calculated structural parameters have been related to those from XRD studies. The usefulness of the proposed theoretical approaches in the prediction of the structural and vibrational data were analysed.

  16. Reducible cationic lipids for gene transfer.

    PubMed Central

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-01-01

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization. PMID:11389682

  17. Reducible cationic lipids for gene transfer.

    PubMed

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-06-15

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization.

  18. Novel biscapped and monocapped tris(dioxime) Mn(II) complexes: x-ray crystal structure of the first cationic tris(dioxime) Mn(II) complex [Mn(CDOH)3BPh]OH (CDOH2= 1,2-cyclohexanedione dioxime).

    PubMed

    Hsieh, Wen-Yuan; Liu, Shuang

    2006-06-26

    This report describes the synthesis and characterization of a series of novel biscapped and monocapped tris(dioxime) Mn(II) complexes [Mn(dioxime)3(BR)2] and [Mn(dioxime)3BR]+ (dioxime = cyclohexanedione dioxime (CDOH2) and 1,2-dimethylglyoxyl dioxime (DMGH(2)); R = Me, n-Bu, and Ph). All tris(dioxime) Mn(II) complexes have been characterized by elemental analysis, IR, UV/vis, cyclic voltammetry, ESI-MS, and, in the cases of [Mn(CDOH)3BPh]OH.CHCl3 and [Mn(CDO)(CDOH)2(BBu(OC2H5))2], X-ray crystallography. It was found that biscapped Mn(II) complexes [Mn(dioxime)3(BR)2] are not stable in the presence of water and readily hydrolyze to form monocapped cationic complexes [M(dioxime)3BR]+. This instability is most likely caused by mismatch between the size of Mn(II) and the coordination cavity of the biscapped tris(dioxime) ligands. In contrast, monocapped cationic complexes [M(dioxime)3BR]+ are very stable in aqueous solution even in the presence of PDTA (1,2-diaminopropane-N,N,N',N'-tetraacetic acid) because of the kinetic inertness imposed by the monocapped tris(dioxime) chelators that are able to completely "wrap" Mn(II) into their N6 coordination cavity. [Mn(CDO)3BPh]OH has a distorted trigonal prismatic coordination geometry, with the Mn(II) being bonded by six imine-N donors. The hydroxyl groups from three dioxime chelating arms form very strong intramolecular hydrogen bonds with the hydroxide counterion so that the structure of [Mn(CDOH)3BPh]OH can be considered as being the clathrochelate with the hydroxide counterion as a "cap".

  19. The formation of singly and doubly cationized oligomers in SIMS

    NASA Astrophysics Data System (ADS)

    Delcorte, A.; Wojciechowski, I.; Gonze, X.; Garrison, B. J.; Bertrand, P.

    2003-01-01

    The cationization of sputtered organic species via metal particle adduction is investigated using poly-4-methylstyrene molecules in combination with Cu, Pd, Ag and Au substrates. Metal-cationization occurs for these four substrates. The cationized molecule yields vary with the considered substrate and they are not correlated with the metal ion yields. In addition, double cationization with two metal particles is observed with a very significant intensity for Cu, Ag and Au supports. We interpret the results with an emission scheme in which excited molecules and metal atoms recombine above the surface and decay via electron emission, thereby locking the complex in the ionic state.

  20. Cation-Poor Complex Metallic Alloys in Ba(Eu)-Au-Al(Ga) Systems: Identifying the Keys that Control Structural Arrangements and Atom Distributions at the Atomic Level.

    PubMed

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J; Mudring, Anja-Verena

    2015-11-02

    Four complex intermetallic compounds BaAu(6±x)Ga(6±y) (x = 1, y = 0.9) (I), BaAu(6±x)Al(6±y) (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104-112, Fm3̅c), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution ("coloring scheme"). Chemical bonding analyses for two different "EuAu6Tr6" models reveal maximization of the number of heteroatomic Au-Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the "EuAu6Tr6" models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. The effective moments of 8.3 μB/f.u., determined from Curie-Weiss fits, point to divalent oxidation states for europium in both III and IV.

  1. Cationic Bolaamphiphiles for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  2. A new nanohybrid material constructed from Keggin-type polyoxometalate and Cd(II) semicarbazone Schiff base complex with excellent adsorption properties for the removal of cationic dye pollutants

    NASA Astrophysics Data System (ADS)

    Farhadi, Saeed; Amini, Mostafa M.; Dusek, Michal; Kucerakova, Monika; Mahmoudi, Farzaneh

    2017-02-01

    A novel nanohybrid material containing a Cd(II) semicarbazone Schiff base complex and phosphomolybdic acid, [Cd(H2L+)6][H2L]+4[PMo12O40]4·18CH3OH·4H2O (1), [HL = pyridine-2-carbaldehyde semicarbazone] was prepared by a simple sonochemical route and characterized by 1HNMR, 13CNMR, FT-IR, UV-vis, PXRD, FESEM, TG-DTA and BET-BJH surface area analysis. Also the single crystal 1, was characterized by single-crystal X-ray diffraction analysis. It crystallizes in the triclinic system with space group P-1 and is assembled into 3D supramolecular structure via hydrogen intermolecular interactions. The nanohybrid 1 was tested for the adsorption and removal of organic dyes such as methylene blue (MB), Rhodamine B (RhB) and methyl orange (MO) from aqueous solutions. The effects of parameters such as the dosage of adsorbent, the initial concentration and pH of dye solution were investigated on the removal efficiency of methylene blue. The nanohybrid 1 exhibited excellent adsorption ability towards cationic dyes. Moreover, it could be easily separated from the reaction solution and recycled up to three times without significant loss of adsorption activity.

  3. Organic cation transporter 3 (OCT3) is localized to intracellular and surface membranes in select glial and neuronal cells within the basolateral amygdaloid complex of both rats and mice.

    PubMed

    Gasser, Paul J; Hurley, Matthew M; Chan, June; Pickel, Virginia M

    2016-09-22

    Organic cation transporter 3 (OCT3) is a high-capacity, low-affinity transporter that mediates corticosterone-sensitive uptake of monoamines including norepinephrine, epinephrine, dopamine, histamine and serotonin. OCT3 is expressed widely throughout the amygdaloid complex and other brain regions where monoamines are key regulators of emotional behaviors affected by stress. However, assessing the contribution of OCT3 to the regulation of monoaminergic neurotransmission and monoamine-dependent regulation of behavior requires fundamental information about the subcellular distribution of OCT3 expression. We used immunofluorescence and immuno-electron microscopy to examine the cellular and subcellular distribution of the transporter in the basolateral amygdaloid complex of the rat and mouse brain. OCT3-immunoreactivity was observed in both glial and neuronal perikarya in both rat and mouse amygdala. Electron microscopic immunolabeling revealed plasma membrane-associated OCT3 immunoreactivity on axonal, dendritic, and astrocytic processes adjacent to a variety of synapses, as well as on neuronal somata. In addition to plasma membrane sites, OCT3 immunolabeling was also observed associated with neuronal and glial endomembranes, including Golgi, mitochondrial and nuclear membranes. Particularly prominent labeling of the outer nuclear membrane was observed in neuronal, astrocytic, microglial and endothelial perikarya. The localization of OCT3 to neuronal and glial plasma membranes adjacent to synaptic sites is consistent with an important role for this transporter in regulating the amplitude, duration, and physical spread of released monoamines, while its localization to mitochondrial and outer nuclear membranes suggests previously undescribed roles for the transporter in the intracellular disposition of monoamines.

  4. Forging Colloidal Nanostructures via Cation Exchange Reactions

    PubMed Central

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  5. Cationic derivatives of dextran and hydroxypropylcellulose as novel potential heparin antagonists.

    PubMed

    Kamiński, Kamil; Płonka, Monika; Ciejka, Justyna; Szczubiałka, Krzysztof; Nowakowska, Maria; Lorkowska, Barbara; Korbut, Ryszard; Lach, Radosław

    2011-10-13

    Cationic derivatives of dextran (Dex) and hydroxypropylcellulose (HPC) were studied as potential alternatives of protamine sulfate (PS) used in the reversal of anticoagulant activity of heparin. The modification was performed by the attachment of cationic groups to the Dex main chain or by grafting short side chains of a polycation onto HPC. The cationic derivatives of these polysaccharides were found to bind heparin with the efficiency increasing with growing degree of cationic modification. The degree of cationic modification and consequently the ζ potential of the polymers do not have to be high to achieve effective heparin binding. The size of the complexes of cationic Dex with unfractionated heparin (UFH) is a few micrometers. For complexes of cationic HPC and UFH the size is much below 1 μm, both below and above the lower critical solution temperature of HPC. None of the cationic polysaccharides studied caused hemolysis. The concentrations of the polymers inducing the aggregation of human erythrocytes in vitro were determined.

  6. Efficacy of HGF carried by ultrasound microbubble-cationic nano-liposomes complex for treating hepatic fibrosis in a bile duct ligation rat model, and its relationship with the diffusion-weighted MRI parameters.

    PubMed

    Zhang, Shou-hong; Wen, Kun-ming; Wu, Wei; Li, Wen-yan; Zhao, Jian-nong

    2013-12-01

    Hepatic fibrosis is a major consequence of liver aggression. Finding novel ways for counteracting this damaging process, and for evaluating fibrosis with a non-invasive imaging approach, represent important therapeutic and diagnostic challenges. Hepatocyte growth factor (HGF) is an anti-fibrosis cell growth factor that induces apoptosis in activated hepatic stellate cells, reduces excessive collagen deposition, and stimulates hepatocyte regeneration. Thus, using HGF in gene therapy against liver fibrosis is an attractive approach. The aims of the present study were: (i) to explore the efficacy of treating liver fibrosis using HGF expression vector carried by a novel ultrasound microbubble delivery system; (ii) to explore the diagnostic interest of diffusion-weighted MRI (DWI-MRI) in evaluating liver fibrosis. We established a rat model of hepatic fibrosis. The rats were administered HGF linked to novel ultrasound micro-bubbles. Progression of hepatic fibrosis was evaluated by histopathology, hydroxyproline content, and DWI-MRI to determine the apparent diffusion coefficient (ADC). Our targeted gene therapy produced a significant anti-fibrosis effect, as shown by liver histology and significant reduction of hydroxyproline content. Moreover, using DWI-MRI, the b value (diffusion gradient factor) was equal to 300s/mm(2), and the ADC values significantly decreased as the severity of hepatic fibrosis increased. Using this methodology, F0-F2 could be distinguished from F3 and F4 (P<0.01). This is the first in vivo report of using an ultrasound microbubble-cationic nano-liposome complex for gene delivery. The data indicate that, this approach is efficient to counteract the fibrosis process. DWI-MRI appears a promising imaging technique for evaluating liver fibrosis.

  7. Preparation of poly(ethylene glycol)-introduced cationized gelatin as a non-viral gene carrier.

    PubMed

    Kushibiki, Toshihiro; Tabata, Yasuhiko

    2005-01-01

    The objective of this study was to prepare cationized gelatins grafted with poly(ethylene glycol) (PEG) (PEG-cationized gelatin) and evaluate the in vivo efficiency as a non-viral gene carrier. Cationized gelatin was prepared by chemical introduction of ethylenediamine to the carboxyl groups of gelatin. PEG with one terminal of active ester group was coupled to the amino groups of cationized gelatin to prepare PEG-cationized gelatins. Electrophoretic experiments revealed that the PEG-cationized gelatin with low PEGylation degrees was complexed with a plasmid DNA of luciferase, in remarked contrast to that with high PEGylation degrees. When the plasmid DNA complexed with the cationized gelatin or PEG-cationized gelatin was mixed with deoxyribonuclease I (DNase I) in solution to evaluate the resistance to enzymatic degradation, stronger protection effect of the PEG-cationized gelatin was observed than that of the cationized gelatin. The complex of plasmid DNA and PEG-cationized gelatin had an apparent molecular size of about 300 nm and almost zero surface charge. These findings indicate that the PEG-cationized gelatin-plasmid DNA complex has a nano-order structure where the plasmid DNA is covered with PEG molecules. When the PEG-cationized gelatin-plasmid DNA complex was intramuscularly injected, the level of gene expression was significantly increased compared with the injection of plasmid DNA solution. It is concluded that the PEG-cationized gelatin was a promising non-viral gene carrier to enhance gene expression in vivo.

  8. Complexity.

    PubMed

    Gómez-Hernández, J Jaime

    2006-01-01

    It is difficult to define complexity in modeling. Complexity is often associated with uncertainty since modeling uncertainty is an intrinsically difficult task. However, modeling uncertainty does not require, necessarily, complex models, in the sense of a model requiring an unmanageable number of degrees of freedom to characterize the aquifer. The relationship between complexity, uncertainty, heterogeneity, and stochastic modeling is not simple. Aquifer models should be able to quantify the uncertainty of their predictions, which can be done using stochastic models that produce heterogeneous realizations of aquifer parameters. This is the type of complexity addressed in this article.

  9. Cation diffusion in titanomagnetites

    NASA Astrophysics Data System (ADS)

    Aragon, R.; McCallister, R. H.; Harrison, H. R.

    1984-02-01

    Interdiffusion couple experiments were performed with titanomagnetite single crystals at 1,000°C, 1,100° C and 1,200° C in various buffered atmospheres. The dependence of the interdiffusion coefficient on oxygen fugacity, composition and temperature was interpreted in terms of point defect structure. Estimates of the cation tracer diffusivities indicate that Fe migrates via a point defect mechanism, involving mixed tetrahedral-octahedral site jumps, with an activation energy of 33 Kcal/mole; whereas Ti migration is one to two orders of magnitude slower, is restricted to octahedral sites and has an activation energy of 60 Kcal/mole.

  10. Generation of oxoiron (IV) tetramesitylporphyrin pi-cation radical complexes by m-CPBA oxidation of ferric tetramesitylporphyrin derivatives in butyronitrile at - 78 degrees C. Evidence for the formation of six-coordinate oxoiron (IV) tetramesitylporphyrin pi-cation radical complexes FeIV = O(tmp*)X (X = Cl-, Br-), by Mössbauer and X-ray absorption spectroscopy.

    PubMed

    Wolter, T; Meyer-Klaucke, W; Müther, M; Mandon, D; Winkler, H; Trautwein, A X; Weiss, R

    2000-01-30

    The generation of six-coordinate oxoiron (IV) tetramesitylporphyrin pi-caption radical complexes by m-CPBA (meta-chloroperbenzoic acid) oxidation of ferric tetramesitylporphyrin derivatives in butyronitrile at - 78 degrees C was investigated. UV-Vis and EPR spectroscopies indicate that the axial ligand present in the ferric starting derivatives is retained in the high-valent iron complexes. Indirect evidence for the formation of six-coordinate oxoiron (IV) tetramesitylporphyrin complexes FeIV = O(tmp*)X (X=Cl-, Br-) by m-CPBA oxidation of FeX(tmp) (X=Cl-, Br-) in butyronitrile at - 78 degrees C was also obtained by Mössbauer spectroscopy. Direct confirmation of the presence of a halide ion as second axial ligand of iron in these high-valent iron species was obtained by X-ray absorption spectroscopy. The EXAFS spectra of the samples obtained by m-CPBA oxidation of FeX(tmp) (X=Cl-, Br-) were refined using two different coordination models including both four porphyrinato-nitrogens and the axial oxo group. The two models include (model I) or exclude (model II) the axial halogen. The statistical tests indicate the presence of a halide ion as second axial ligand of iron in both derivatives. The refinements led to the following bond distances: FeIV=O(tmp*)Cl(3):Fe-O=1.66(1),Fe-Cl=2.39(2) and Fe-Np=1.99(1) A;FeIV=O(tmp*)Br(4):Fe-O=1.65(1),Fe-Br=2.93(2), Fe-Np=2.02(1) A. The lengthening of the Fe-X(X=Cl-, Br-) distances relative to those occurring in the ferric precursor porphyrins is, most probably, related to the strong trans influence of the oxoiron(IV) fragment present in 3 or 4.

  11. Dissecting the cation-cation interaction between two uranyl units.

    PubMed

    Tecmer, Paweł; Hong, Sung W; Boguslawski, Katharina

    2016-07-21

    We present a state-of-the-art computational study of the uranyl(vi) and uranyl(v) cation-cation interactions (dications) in aqueous solution. Reliable electronic structures of two interacting uranyl(vi) and uranyl(v) subunits as well as those of the uranyl(vi) and uranyl(v) clusters are presented for the first time. Our theoretical study elucidates the impact of cation-cation interactions on changes in the molecular structure as well as changes in vibrational and UV-Vis spectra of the bare uranyl(vi) and uranyl(v) moieties for different total spin-states and total charges of the dications.

  12. Tubular cationized pullulan hydrogels as local reservoirs for plasmid DNA.

    PubMed

    San Juan, Aurélie; Ducrocq, Grégory; Hlawaty, Hanna; Bataille, Isabelle; Guénin, Erwann; Letourneur, Didier; Feldman, Laurent J

    2007-12-01

    In the present study, we measured the ability of various cationized pullulan tubular hydrogels to retain plasmid DNA, and tested the ability of retained plasmid DNA to transfect vascular smooth muscle cells (VSMCs). Cationized pullulans were obtained by grafting at different charge densities ethylamine (EA) or diethylaminoethylamine (DEAE) on the pullulan backbone. Polymers were characterized by elemental analysis, acid-base titration, size exclusion chromatography, Fourier-transform infrared spectroscopy, and proton nuclear magnetic resonance. The complexation of cationized pullulans in solution with plasmid DNA was evidenced by fluorescence quenching with PicoGreen. Cationized pullulans were then chemically crosslinked with phosphorus oxychloride to obtain tubular cationized pullulan hydrogels. Native pullulan tubes did not retain loaded plasmid DNA. In contrast, the ability of cationized pullulan tubes to retain plasmid DNA was dependent on both the amine content and the type of amine. The functional integrity of plasmid DNA in cationized pullulan tubes was demonstrated by in vitro transfection of VSMCs. Hence, cationized pullulan hydrogels can be designed as tubular structures with high affinity for plasmid DNA, which may provide new biomaterials to enhance the efficiency of local arterial gene transfer strategies.

  13. Controlling Cesium Cation Recognition via Cation Metathesis within and Ion Pair Receptor

    SciTech Connect

    Kim, Sung Kuk; Vargas-Zuniga, Gabriela; Hay, Benjamin; Young, Neil J; Delmau, Laetitia Helene; Lee, Prof. Chang-Hee; Kim, Jong Seung; Lynch, Vincent M.; Sessler, Jonathan L.

    2012-01-01

    Ion pair receptor 3 bearing an anion binding site and multiple cation binding sites has been synthesized and shown to function in a novel binding-release cycle that does not necessarily require displacement to effect release. The receptor forms stable complexes with the test cesium salts, CsCl and CsNO{sub 3}, in solution (10% methanol-d{sub 4} in chloroform-d) as inferred from {sup 1}H NMR spectroscopic analyses. The addition of KClO{sub 4} to these cesium salt complexes leads to a novel type of cation metathesis in which the 'exchanged' cations occupy different binding sites. Specifically, K{sup +} becomes bound at the expense of the Cs{sup +} cation initially present in the complex. Under liquid-liquid conditions, receptor 3 is able to extract CsNO{sub 3} and CsCl from an aqueous D{sub 2}O layer into nitrobenzene-d{sub 5} as inferred from {sup 1}H NMR spectroscopic analyses and radiotracer measurements. The Cs{sup +} cation of the CsNO{sub 3} extracted into the nitrobenzene phase by receptor 3 may be released into the aqueous phase by contacting the loaded nitrobenzene phase with an aqueous KClO{sub 4} solution. Additional exposure of the nitrobenzene layer to chloroform and water gives 3 in its uncomplexed, ion-free form. This allows receptor 3 to be recovered for subsequent use. Support for the underlying complexation chemistry came from single-crystal X-ray diffraction analyses and gas-phase energy-minimization studies.

  14. Binding of monovalent metal cations by the p-sulfonatocalix[4]arene: experimental evidence for cation-pi interactions in water.

    PubMed

    Morel, Jean-Pierre; Morel-Desrosiers, Nicole

    2006-02-07

    Gibbs free energies, enthalpies and entropies for the binding of Na+, K+, Rb+, Cs+, Ag+, Tl+ and NH4+ by the p-sulfonatocalix[4]arene in water are determined by microcalorimetry. Whereas no significant heat effect is detected with Na+ or Ag+, suggesting that these cations are not complexed, weak but selective binding is observed with the other cations. The whole set of thermodynamic parameters, which demonstrate that the cations bind inside the cavity of the calixarene, evidence the importance of the cation-pi interactions for these complexes in water.

  15. Cationic Polymerization of Vinyl Ethers Controlled by Visible Light.

    PubMed

    Kottisch, Veronika; Michaudel, Quentin; Fors, Brett P

    2016-12-07

    Photoinitiated cationic polymerizations are widely used in industrial processes; however, gaining photocontrol over chain growth would expand the utility of these methods and facilitate the design of novel complex architectures. We report herein a cationic polymerization regulated by visible light. This polymerization proceeds under mild conditions: a combination of a metal-free photocatalyst, a chain-transfer agent, and light irradiation enables the synthesis of various poly(vinyl ether)s with good control over molecular weight and dispersity as well as excellent chain-end fidelity. Significantly, photoreversible cation formation in this system enables efficient control over polymer chain growth with light.

  16. Infrared multiple photon dissociation spectroscopy of cationized asparagine: effects of metal cation size on gas-phase conformation.

    PubMed

    Heaton, A L; Bowman, V N; Oomens, J; Steill, J D; Armentrout, P B

    2009-05-14

    Gas-phase structures of cationized asparagine (Asn) including complexes with Li(+), Na(+), K(+), Rb(+), Cs(+), and Ba(2+), as well as protonated Asn, are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by a free electron laser. Experimental spectra for the alkali metal cation complexes exhibit systematic trends, whereas spectra for Ba(2+)(Asn) and H(+)(Asn) are more distinct. To identify the structures formed experimentally, measured IRMPD spectra are compared to spectra calculated at a B3LYP/6-311+G(d,p) level with several effective core potentials and basis sets evaluated for the heavy metal systems. The dominant conformation ascertained for complexes with the smaller metal cations, Li(+)(Asn) and Na(+)(Asn), is a charge-solvated, tridentate [N,CO,CO] structure that binds the metal cation with the amine group of the amino acid backbone and to the carbonyl oxygen atoms of the backbone and amino acid side chain. For the larger alkali metal cation complexes, K(+)(Asn), Rb(+)(Asn), and Cs(+)(Asn), an additional charge-solvated, tridentate [COOH,CO] structure that binds the metal cation with the two oxygen atoms of the backbone carboxylic acid group and the carbonyl oxygen atom of the Asn side chain may also be present. The Ba(2+)(Asn) spectrum is characteristic of a single charge-solvated [N,CO,CO] conformation, in contrast to Gly, Trp, Arg, Gln, Pro, Ser, Val, and Glu, which all take on a zwitterionic structure when complexed to Ba(2+). In no case do the cationized Asn complexes show definitive evidence of forming a zwitterionic structure in the complexes studied here. For H(+)(Asn), a mixture of two [N,CO] structures, which differ only in the orientation the side chain and are calculated to be nearly identical in energy, explains the experimental spectrum well.

  17. Focused fluorescent probe library for metal cations and biological anions.

    PubMed

    Rhee, Hyun-Woo; Lee, Sang Wook; Lee, Jun-Seok; Chang, Young-Tae; Hong, Jong-In

    2013-09-09

    A focused fluorescent probe library for metal cations was developed by combining metal chelators and picolinium/quinolinium moieties as combinatorial blocks connected through a styryl group. Furthermore, metal complexes derived from metal chelators having high binding affinities for metal cations were used to construct a focused probe library for phosphorylated biomolecules. More than 250 fluorescent probes were screened for identifying an ultraselective probe for dTTP.

  18. Interaction of the cesium cation with meso-octamethylcalix[4]pyrrole: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Polášek, Miroslav; Makrlík, Emanuel; Kvíčala, Jaroslav; Křížová, Věra; Petr Vaňura

    2017-02-01

    By using electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent cesium cation (Cs+) forms with meso-octamethylcalix[4]pyrrole (abbrev. 1) the cationic complex species 1.Cs+. Further, applying quantum chemical DFT calculations, four different conformations of the resulting complex 1.Cs+ were derived. It means that under the present experimental conditions, this ligand 1 can be considered as a macrocyclic receptor for the cesium cation.

  19. Nanoheterostructure cation exchange: anionic framework conservation.

    PubMed

    Jain, Prashant K; Amirav, Lilac; Aloni, Shaul; Alivisatos, A Paul

    2010-07-28

    In ionic nanocrystals the cationic sublattice can be replaced with a different metal ion via a fast, simple, and reversible place exchange, allowing postsynthetic modification of the composition of the nanocrystal, while preserving its size and shape. Here, we demonstrate that, during such an exchange, the anionic framework of the crystal is preserved. When applied to nanoheterostructures, this phenomenon ensures that compositional interfaces within the heterostructure are conserved throughout the transformation. For instance, a morphology composed of a CdSe nanocrystal embedded in a CdS rod (CdSe/CdS) was exchanged to a PbSe/PbS nanorod via a Cu(2)Se/Cu(2)S structure. During every exchange cycle, the seed size and position within the nanorod were preserved, as evident by excitonic features, Z-contrast imaging, and elemental line scans. Anionic framework conservation extends the domain of cation exchange to the design of more complex and unique nanostructures.

  20. In vitro transfection of plasmid DNA by cationized gelatin prepared from different amine compounds.

    PubMed

    Kushibiki, Toshihiro; Tomoshige, Ryuji; Iwanaga, Kazunori; Kakemi, Masawo; Tabata, Yasuhiko

    2006-01-01

    The objective of this paper is to compare the in vitro transfection efficiency of a luciferase plasmid DNA using cationized gelatin prepared from different amine compounds. The compounds used here were ethylenediamine, putrescine, spermidine and spermine, chemically introduced to the carboxyl group of gelatin for the cationization. Complexation of the cationized gelatin with the plasmid DNA was performed by simply mixing the two materials at various N+/P- mixing ratios (the molar number ratio of amino groups of gelatin to the phosphate groups of DNA) in aqueous solution. Gel retardation studies revealed that the formation of cationized-gelatin-plasmid DNA complexes depended on the N+/P- mixing ratio. The stronger interaction of plasmid DNA with the cationized gelatin of spermine compared to the other cationized gelatins was observed by an ethidium bromide intercalation assay and Scatchard binding analysis. When the transfection efficiency of plasmid DNA complexed with the various cationized gelatins at different N+/P- mixing ratios was evaluated for mouse L929 fibroblasts, the highest transfection efficiency was observed for the complex prepared from the cationized gelatin of spermine at a N+/P- mixing ratio of 2. The present study indicates that there is an optimal N+/P- mixing ratio and a type of amine compound or cationization extent of cationized gelatin to enhance the transfection efficiency of plasmid DNA.

  1. Cationic liposomes as vaccine adjuvants.

    PubMed

    Christensen, Dennis; Korsholm, Karen Smith; Andersen, Peter; Agger, Else Marie

    2011-04-01

    The application of cationic liposomes as vaccine delivery systems and adjuvants has been investigated extensively over the last few decades. However, cationic liposomes are, in general, not sufficiently immunostimulatory, which is why the combination of liposomes with immunostimulating ligands has arisen as a strategy in the development of novel adjuvant systems. Within the last 5 years, two novel adjuvant systems based on cationic liposomes incorporating Toll-like receptor or non-Toll-like receptor immunostimulating ligands have progressed from preclinical testing in smaller animal species to clinical testing in humans. The immune responses that these clinical candidates induce are primarily of the Th1 type for which there is a profound unmet need. Furthermore, a number of new cationic liposome-forming surfactants with notable immunostimulatory properties have been discovered. In this article we review the recent progress on the application of cationic liposomes as vaccine delivery systems/adjuvants.

  2. The influence of cationic lipid type on in-vitro release kinetic profiles of antisense oligonucleotide from cationic nanoemulsions.

    PubMed

    Hagigit, Tal; Nassar, Taher; Behar-Cohen, Francine; Lambert, Gregory; Benita, Simon

    2008-09-01

    Novel formulations of cationic nanoemulsions based on three different lipids were developed to strengthen the attraction of the polyanionic oligonucleotide (ODN) macromolecules to the cationic moieties on the oil nanodroplets. These formulations were developed to prolong the release of the ODN from the nanoemulsion under appropriate physiological dilutions as encountered in the eye following topical application. Increasing the concentration of the new cationic lipid exhibiting two cationic amine groups (AOA) in the emulsion from 0.05% to 0.4% did not alter markedly the particle size or zeta potential value of the blank cationic nanoemulsion. The extent of ODN association did not vary significantly when the initial concentration of ODN remained constant at 10 microM irrespective of the cationic lipid nature. However, the zeta potential value dropped consistently with the low concentrations of 0.05% and 0.1% of AOA in the emulsions suggesting that an electrostatic attraction occurred between the cationic lipids and the polyanionic ODN molecules at the o/w interface. Only the nanoemulsion prepared with N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium salts (DOTAP) remained physically stable over time. DOTAP cationic lipid nanoemulsion was the most efficient formulation capable of retaining the ODN despite the high dilution of 1:100 with simulated tear solution (STS). Less than 10% of the ODN was exchanged in contrast to 40-50% with the other cationic nanoemulsions. The in-vitro release kinetic behavior of ODN exchange with physiological anions present in the STS appears to be complex and difficult to characterize using mathematical fitting model equations. Further pharmacokinetic studies are needed to verify our kinetic assumptions and confirm the in-vitro ODN release profile from DOTAP cationic nanoemulsions.

  3. Cationization of organometallo carbonyl compounds by fast ion bombardment

    NASA Astrophysics Data System (ADS)

    Siuzdak, Gary; Wendeborn, Sebastian V.; Nicolaou, K. C.

    1992-01-01

    Organodicobalt, organochromium, and organomolybdenum carbonyl complexes have been studied using fast ion bombardment mass spectrometry. It has been found that the addition of cesium iodide to the liquid matrix, m-NBA, can significantly enhance the ability to observed the precursor ions of these organometallics through charge localization. In most cases the [M + Cs]+ ions were more abundant than the radical cations M-, the protonated molecules [M + H]+, or the sodium cationized molecules [M + Na]+ which were either unobservable or less intense than those treated with the cesium iodide salt solution. The decomposition of the compounds took place primarily through the successive loss of carbonyls from the radical cation with some carbonyl loss observed through the protonated and cationized species. The FAB matrix ions produced when cesium iodide was added to m-NBA also allowed for internal calibration.

  4. Amylose-Based Cationic Star Polymers for siRNA Delivery

    PubMed Central

    Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2015-01-01

    A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials. PMID:26539548

  5. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions

    NASA Astrophysics Data System (ADS)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho

    2011-01-01

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  6. Cation–cation interactions and cation exchange in a series of isostructural framework uranyl tungstates

    SciTech Connect

    Balboni, Enrica; Burns, Peter C.

    2014-05-01

    The isotypical compounds (UO{sub 2}){sub 3}(WO{sub 6})(H{sub 2}O){sub 5} (1), Ag(UO{sub 2}){sub 3}(WO{sub 6})(OH)(H{sub 2}O){sub 3} (2), K(UO{sub 2}){sub 3}(WO{sub 6})OH(H{sub 2}O){sub 4} (3), Rb(UO{sub 2}){sub 3}(WO{sub 6})(OH)(H{sub 2}O){sub 3.5} (4), and Cs(UO{sub 2}){sub 3}(WO{sub 6})OH(H{sub 2}O){sub 3} (5) were synthesized, characterized, and their structures determined. Each crystallizes in space group Cc. (1): a=12.979 (3), b=10.238 (2), c=11.302 (2), β=102.044 (2); (2): a=13.148 (2), b=9.520 (1), c=11.083 (2), β=101.568 (2); (3): a=13.111 (8), b=9.930 (6), c=11.242 (7), β=101.024 (7); (4): a=12.940 (2), b=10.231 (2), c=11.259(2), β=102.205 (2); (5): a=12.983 (3), b=10.191 (3), c=11.263 (4), β=101.661 (4). Compounds 1–5 are a framework of uranyl and tungsten polyhedra containing cation–cation interactions. The framework has three symmetrically distinct U(VI) cations, one tungsten, sixteen to eighteen oxygen atoms, and in 2–5, one monovalent cation. Each atom occupies a general position. Each U(VI) cation is present as a typical (UO{sub 2}){sup 2+} uranyl ion in an overall pentagonal bipyramidal coordination environment. Each pentagonal bipyramid shares two equatorial edges with two other pentagonal bipyramids, forming a trimer. Trimers are connected into chains by edge-sharing with WO{sub 6} octahedra. Chains are linked through cation–cation interactions between two symmetrically independent uranyl ions. This yields a remarkably complex system of intersecting channels that extend along [0 0 1] and [−1 1 0]. The cation exchange properties of 2 and 3 were characterized at room temperature and at 140 °C. - Graphical abstract: Chains of uranium and tungsten polyhedra are connected into a three dimensional framework by cation–cation interactions occurring between two symmetrically independent uranyl pentagonal bipyramids. Monovalent cations present in channels within the structure can be exchanged by room temperature or mild hydrothermal

  7. Alkaline earth metal cation exchange: effect of mobile counterion and dissolved organic matter.

    PubMed

    Indarawis, Katrina; Boyer, Treavor H

    2012-04-17

    The goal of this research was to provide an improved understanding of the interactions between alkaline earth metals and DOM under conditions that are encountered during drinking water treatment with particular focus on cation exchange. Both magnetically enhanced and nonmagnetic cation exchange resins were converted to Na, Mg, Ca, Sr, and Ba mobile counterion forms as a novel approach to investigate the exchange behavior between the cations and the interactions between the cations and DOM. The results show that cation exchange is a robust process for removal of Ca(2+) and Mg(2+) considering competition with cations on the resin surface and presence of DOM. DOM was actively involved during the cation exchange process through complexation, adsorption, and coprecipitation reactions. In addition to advancing the understanding of ion exchange processes for water treatment, the results of this work are applicable to membrane pretreatment to minimize fouling, treatment of membrane concentrate, and precipitative softening.

  8. Interaction of Hyaluronan with Cationic Nanoparticles.

    PubMed

    Bano, Fouzia; Carril, Mónica; Di Gianvincenzo, Paolo; Richter, Ralf P

    2015-08-04

    The polysaccharide hyaluronan (HA) is a main component of peri- and extracellular matrix, and an attractive molecule for materials design in tissue engineering and nanomedicine. Here, we study the morphology of complexes that form upon interaction of nanometer-sized amine-coated gold particles with this anionic, linear, and regular biopolymer in solution and grafted to a surface. We find that cationic nanoparticles (NPs) have profound effects on HA morphology on the molecular and supramolecular scale. Quartz crystal microbalance (QCM-D) shows that depending on their relative abundance, cationic NPs promote either strong compaction or swelling of films of surface-grafted HA polymers (HA brushes). Transmission electron and atomic force microscopy reveal that the NPs do also give rise to complexes of distinct morphologies-compact nanoscopic spheres and extended microscopic fibers-upon interaction with HA polymers in solution. In particular, stable and hydrated spherical complexes of single HA polymers with NPs can be prepared when balancing the ionizable groups on HA and NPs. The observed self-assembly phenomena could be useful for the design of drug delivery vehicles and a better understanding of the reorganization of HA-rich synthetic or biological matrices.

  9. Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2005-11-28

    This study is an investigation to experimentally confirm whether or not ultrasound (US) irradiation is effective in enhancing the in vivo gene expression of plasmid DNA in tumor. Dextran was cationized by introducing spermine to the hydroxyl groups to allow to polyionically complex with a plasmid DNA. The cationized dextran prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have an active ester and methoxy groups at each terminal, to obtain cationized dextran with different percentages of PEG introduced. Various cationized dextrans with or without PEG introduction were mixed with a plasmid DNA of LacZ to form cationized dextran-plasmid DNA complexes. Electrophoretical examination revealed that the plasmid DNA was complexed both with the cationized dextran and PEG-introduced cationized dextran, irrespective of the PEG introduction percentage, although the higher N/P ratio was needed for plasmid DNA complexation with the latter. By complexation with the cationized dextran, the zeta potential of plasmid DNA was changed to be positive. The charge of PEG-introduced cationized dextran-plasmid DNA complexes became close to 0 mV as their percentage of PEG introduced increased, although the molecular size was about 250 nm, irrespective of the PEG introduction. When cationized dextran-plasmid DNA complexes with or without PEG introduction were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass and the subsequent US irradiation to the tumor mass percutaneously, the PEG-introduced cationized dextran-plasmid DNA complex plus US irradiation enhanced the tumor level of gene expression to a significantly high extent compared with the cationized dextran-plasmid DNA complex and free plasmid DNA with or without US irradiation. The enhanced level depended on the time period and timing of US irradiation. Fluorescent microscopic studies revealed that the localization of plasmid DNA and the gene expression were observed in

  10. Study of complex formation of 5,5'-(2 E, 2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) (HYT) macrocyclic ligand with Cd2+ cation in non-aqueous solution by spectroscopic and conductometric methods

    NASA Astrophysics Data System (ADS)

    Mallaekeh, Hassan; Shams, Alireza; Shaker, Mohammad; Bahramzadeh, Ehsan; Arefi, Donya

    2014-12-01

    In this paper the complexation reaction of the 5,5'-(2 E,2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) ligand (HYT) with Cd2+ education was studied in some binary mixtures of methanol (MeOH), n-propanol (PrOH) and dimethyl-formamide (DMF) at different temperatures using the conductometry and spectrophotometry. The stability constants of the complex was determined using a GENPLOT computer program. The conductance data and absorbance-mole ratio plots show that in all solvent systems, the stoichiometry of the complex formed between (HYT) and Cd2+ cation is 1: 1. The obtained results show that the stability of (HYT)-Cd complex is sensitive to the mixed solvents composition. The values of thermodynamic parameters (Δ G ∘, Δ H ∘, and Δ S ∘) for formation of (HYT)-Cd complex were obtained from temperature dependence of the stability constant using the van't Hoff plots. The results show that in most cases, the complex are enthalpy destabilized but entropy stabilized and the complex formation is affected by pH, time, temperature and the nature of the solvent.

  11. A Photo Touch on Amines: New Synthetic Adventures of Nitrogen Radical Cations

    PubMed Central

    Maity, Soumitira; Zheng, Nan

    2013-01-01

    Amines have been used as sacrificial electron donors to reduce photoexcited Ru(II) or Ir(III) complexes, during which they are oxidized to nitrogen radical cations. Recently, the synthetic potential of these nitrogen radical cations have caught synthetic organic chemists’ attention. They have been exploited in various transformations yielding a number of elegant methods for amine synthesis. This article highlights recent developments on nitrogen radical cation chemistry under visible-light photocatalysis. PMID:23419975

  12. Investigation of low ionic strength effect on passive monovalent cation transport through erythrocyte membranes.

    PubMed

    Bernhardt, I; Ihrig, I; Erdmann, A

    1993-01-01

    Effect of low ionic force on the passive transport of univalent cations through the erythrocyte membranes is considered. It is postulated that this effect is complex and cannot be explained on the basis of electrodiffusion. Data are presented on the already known transport pathways in the erythrocyte membranes for univalent cations. Characteristics of residual cation transport (the "leak" flux) through the erythrocyte membranes also affected by the low ionic force are presented.

  13. Structure of alginate gels: interaction of diuronate units with divalent cations from density functional calculations.

    PubMed

    Agulhon, Pierre; Markova, Velina; Robitzer, Mike; Quignard, Françoise; Mineva, Tzonka

    2012-06-11

    The complexation of (1→4) linked α-L-guluronate (G) and β-D-mannuronate (M) disaccharides with Mg(2+), Ca(2+), Sr(2+), Mn(2+), Co(2+), Cu(2+), and Zn(2+) cations have been studied with quantum chemical density functional theory (DFT)-based method. A large number of possible cation-diuronate complexes, with one and two GG or MM disaccharide units and with or without water molecules in the inner coordination shells have been considered. The computed bond distances, cation interaction energies, and molecular orbital composition analysis revealed that the complexation of the transition metal (TM) ions to the disaccharides occurs via the formation of strong coordination-covalent bonds. On the contrary, the alkaline earth cations form ionic bonds with the uronates. The unidentate binding is found to be the most favored one in the TM hydrated and water-free complexes. By removing water molecules, the bidentate chelating binding also occurs, although it is found to be energetically less favored by 1 to 1.5 eV than the unidentate one. A good correlation is obtained between the alginate affinity trend toward TM cations and the interaction energies of the TM cations in all studied complexes, which suggests that the alginate affinities are strongly related to the chemical interaction strength of TM cations-uronate complexes. The trend of the interaction energies of the alkaline earth cations in the ionic complexes is opposite to the alginate affinity order. The binding strength is thus not a limiting factor in the alginate gelation in the presence of alkaline earth cations at variance with the TM cations.

  14. Transition-Metal Hydride Radical Cations.

    PubMed

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  15. Physical and biological properties of cationic triesters of phosphatidylcholine

    PubMed Central

    MacDonald, RC; Ashley, GW; Shida, MM; Rakhmanova, VA; Tarahovsky, YS; Pantazatos, DP; Kennedy, MT; Pozharski, EV; Baker, KA; Jones, RD; Rosenzweig, HS; Choi, KL; Qiu, R; McIntosh, TJ

    1999-01-01

    The properties of a new class of phospholipids, alkyl phosphocholine triesters, are described. These compounds were prepared from phosphatidylcholines through substitution of the phosphate oxygen by reaction with alkyl trifluoromethylsulfonates. Their unusual behavior is ascribed to their net positive charge and absence of intermolecular hydrogen bonding. The O-ethyl, unsaturated derivatives hydrated to generate large, unilamellar liposomes. The phase transition temperature of the saturated derivatives is very similar to that of the precursor phosphatidylcholine and quite insensitive to ionic strength. The dissociation of single molecules from bilayers is unusually facile, as revealed by the surface activity of aqueous liposome dispersions. Vesicles of cationic phospholipids fused with vesicles of anionic lipids. Liquid crystalline cationic phospholipids such as 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine triflate formed normal lipid bilayers in aqueous phases that interacted with short, linear DNA and supercoiled plasmid DNA to form a sandwich-structured complex in which bilayers were separated by strands of DNA. DNA in a 1:1 (mol) complex with cationic lipid was shielded from the aqueous phase, but was released by neutralizing the cationic charge with anionic lipid. DNA-lipid complexes transfected DNA into cells very effectively. Transfection efficiency depended upon the form of the lipid dispersion used to generate DNA-lipid complexes; in the case of the O-ethyl derivative described here, large vesicle preparations in the liquid crystalline phase were most effective. PMID:10545361

  16. A Scale Model of Cation Exchange for Classroom Demonstration.

    ERIC Educational Resources Information Center

    Guertal, E. A.; Hattey, J. A.

    1996-01-01

    Describes a project that developed a scale model of cation exchange that can be used for a classroom demonstration. The model uses kaolinite clay, nails, plywood, and foam balls to enable students to gain a better understanding of the exchange complex of soil clays. (DDR)

  17. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    ERIC Educational Resources Information Center

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  18. Cationic metal complex, carbonatobis(1,10-phenanthroline)cobalt(III) as anion receptor: Synthesis, characterization, single crystal X-ray structure and packing analysis of [Co(phen) 2CO 3](3,5-dinitrobenzoate)·5H 2O

    NASA Astrophysics Data System (ADS)

    Sharma, Raj Pal; Singh, Ajnesh; Brandão, Paula; Felix, Vitor; Venugopalan, Paloth

    2009-03-01

    To explore the potential of [Co(phen) 2CO 3] + as anion receptor, red coloured single crystals of [Co(phen) 2CO 3](dnb)·5H 2O (dnb = 3,5-dinitrobenzoate) were obtained by recrystallizing the red microcrystalline product synthesised by the reaction of carbonatobis (1,10-phenanthroline)cobalt(III)chloride with sodium salt of 3,5-dinitrobenzoic acid in aqueous medium (1:1 molar ratio). The newly synthesized complex salt has been characterized by elemental analysis, spectroscopic studies (IR, UV/visible, 1H and 13C NMR), solubility and conductance measurements. The complex salt crystallizes in the triclinic crystal system with space group P1¯, having the cell dimensions a = 10.3140(8), b = 12.2885(11), c = 12.8747(13), α = 82.095(4), β = 85.617(4), γ = 79.221(4)°, V = 1585.6(2) Å 3, Z = 2. Single crystal X-ray structure determination revealed ionic structure consisting of cationic carbonatobis(1,10-phenanthroline)cobalt(III), dnb anion and five lattice water molecule. In the complex cation [Co(phen) 2CO 3] +, the cobalt(III) is bonded to four nitrogen atoms, originating from two phenanthroline ligands and two oxygen atoms from the bidentate carbonato group showing an octahedral geometry around cobalt(III) center. Supramolecular networks between ionic groups [ CHphen+⋯Xanion-] by second sphere coordination i.e. C sbnd H⋯O (benzoate), C sbnd H⋯O (nitro), C sbnd H⋯O (water) besides electrostatic forces of attraction alongwith π-π interactions stabilize the crystal lattice.

  19. Cation affinity numbers of Lewis bases.

    PubMed

    Lindner, Christoph; Tandon, Raman; Maryasin, Boris; Larionov, Evgeny; Zipse, Hendrik

    2012-01-01

    Using selected theoretical methods the affinity of a large range of Lewis bases towards model cations has been quantified. The range of model cations includes the methyl cation as the smallest carbon-centered electrophile, the benzhydryl and trityl cations as models for electrophilic substrates encountered in Lewis base-catalyzed synthetic procedures, and the acetyl cation as a substrate model for acyl-transfer reactions. Affinities towards these cationic electrophiles are complemented by data for Lewis-base addition to Michael acceptors as prototypical neutral electrophiles.

  20. Versatile cation transport in imidazolium based polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Evans, Christopher; Segalman, Rachel

    Polymerized ionic liquids (PIL) with tethered imidazolium groups are able to conduct a diverse array of cations relevant for energy applications. The well-known complexation of imidazolium with transition metals is exploited to bind ions such as H +, Li+, Cu2+, and Ni2+ by doping the neutral PIL with the appropriate Cation-TFSI- salt. Conductivities were first determined via AC impedance indicating that H+ salts lead to the highest conductivity (due to low ion mass and potential Grotthus mechanism) followed by Cu2+, Li+, Ag+, and Ni2+. The equilibrium constant for imidazolium complexation is larger for Cu2+ relative to Li-, Ag-, and Ni-imidazolium complexes leading to greater salt dissociation and higher conductivities. For LiTFSI and CuTFSI2 salts, metallic lithium or copper electrodes were employed in battery cells to pass a steady DC current and confirm that the cations are in fact carrying current. Interestingly, the divalent Cu2+ also ionically crosslinks the polymer leading to a plateau in the viscosity. Thus, divalent ions provide an unique route to high conductivity, high modulus polymeric electrolytes. Future studies involving ZnTFSI2 and MgTFSI2 for battery applications are proposed to examine how versatile the PIL platform is for cation transport.

  1. Different structural preference of Ag(I) and Au(I) in neutral and cationic luminescent heteropolynuclear platinum(II) complexes: Z (U)-shaped Pt2M2 type vs. trinuclear PtM2 type.

    PubMed

    Nishihara, Kazuki; Ueda, Misa; Higashitani, Ami; Nakao, Yoshihide; Arikawa, Yasuhiro; Horiuchi, Shinnosuke; Sakuda, Eri; Umakoshi, Keisuke

    2016-03-28

    The reactions of monocationic Pt(II) complexes bearing N^C chelate ligands and Me2pzH, [Pt(N^C)(Me2pzH)2]PF6 (N^C = 2-phenylpyridinate (ppy(-)), 2-(2,4-difluorophenyl)pyridinate (dfppy(-)), benzo[h]quinolinate (bzq(-)); Me2pzH = 3,5-dimethylpyrazole), with Ag(I) ions gave Z (or U)-shaped neutral tetranuclear Pt2Ag2 complexes [Pt2Ag2(N^C)2(Me2pz)4], while those with Au(I) ions gave neutral trinuclear PtAu2 complexes [PtAu2(N^C)(Me2pz)3]. On the contrary, the reactions of the dicationic Pt(II) complex bearing a N^N chelate ligand and Me2pzH, [Pt(bpy)(Me2pzH)2](PF6)2 (bpy = 2,2'-bipyridine), with Ag(I) and Au(I) ions both gave Z (or U)-shaped dicationic tetranuclear Pt2M2 complexes, [Pt2M2(bpy)2(Me2pz)4](PF6)2 (M = Ag, Au). The structures of heteropolynuclear Pt(II) complexes were dominated by the nature of incorporated group 11 metal ions and the charge of complexes.

  2. Role of the multipolar electrostatic interaction energy components in strong and weak cation-π interactions.

    PubMed

    Kadlubanski, Pawel; Calderón-Mojica, Katherine; Rodriguez, Weyshla A; Majumdar, D; Roszak, Szczepan; Leszczynski, Jerzy

    2013-08-22

    Density functional and Møller-Plesset second-order perturbation (MP2) calculations have been carried out on various model cationcomplexes formed through the interactions of Mg(2+), Ca(2+), and NH4(+) cations with benzene, p-methylphenol, and 3-methylindole. Partial hydration of the metal cations was also considered in these model studies to monitor the effect of hydration of cations in cation-π interactions. The binding energies of these complexes were computed from the fully optimized structures using coupled cluster calculations including triple excitations (CCSD(T)) and Gaussian-G4-MP2 (G4MP2) techniques. An analysis of the charge sharing between the donor (the π-systems) and the acceptors (the cations) together with the partitioning of total interaction energies revealed that the strong and weak cation-π interactions have similar electrostatic interaction properties. Further decomposition of such electrostatic terms into their multipolar components showed the importance of the charge-dipole, charge-quadrupole, and charge-octopole terms in shaping the electrostatic forces in such interactions. The computed vibrational spectra of the complexes were analyzed for the specific cation-π interaction modes and have been shown to contain the signature of higher order electrostatic interaction energy components (quadrupole and octopole) in such interactions.

  3. Layered Molecule-Based Magnets Formed by Decamethylmetallocenium Cations and Two-Dimensional Bimetallic Complexes [ MIIRu III(ox) 3] -( MII=;Mn, Fe, Co, Cu and Zn; ox=oxalate)

    NASA Astrophysics Data System (ADS)

    Coronado, Eugenio; Galán-Mascarós, José R.; Gómez-García, Carlos J.; Martínez-Agudo, José M.; Martínez-Ferrero, Eugenia; Waerenborgh, Joao C.; Almeida, Manuel

    2001-07-01

    A new series of hybrid organometallic-inorganic layered magnets with formula [ZIIICp*2] [MIIRuIII(ox)3] (ZIII=Co and Fe; MII=Mn, Fe, Co, Cu, and Zn; ox=oxalate: Cp*=pentamethylcyclopentadienyl) has been prepared. All of these compounds are isostructural to the previously reported [ZIIICp*2] [MIIMIII(ox)3] (MIII=Cr, Fe) series and crystallize in the monoclinic space group C2/m, as found by powder X-ray diffraction analysis. They are novel examples of magnetic materials formed by bimetallic oxalate-based extended layers separated by layers of organometallic cations. The magnetic properties of all these compounds have been investigated (ac and dc magnetic susceptibilities and field dependence of the isothermal magnetization at 2 K). In particular, it has been found that FeII and CoII derivatives behave as magnets with ordering temperatures of 12.8 and 2.8 K, respectively, while no long-range magnetic ordering has been detected down to 2 K in the MnII and CuII derivatives. The magnetic ordering in the FeII derivatives has been confirmed through Mössbauer spectroscopy. This technique has also made it possible to observe the spin polarization of the paramagnetic [FeCp*2]+ units caused by the internal magnetic field created by the bimetallic layers in the ordered state.

  4. THE INTRACELLULAR LOCALIZATION OF INORGANIC CATIONS WITH POTASSIUM PYROANTIMONATE

    PubMed Central

    Tandler, Carlos J.; Libanati, César M.; Sanchis, Carlos A.

    1970-01-01

    Potassium pyroantimonate, when used as fixative (saturated or half-saturated, without addition of any conventional fixative) has been demonstrated to produce intracellular precipitates of the insoluble salts of calcium, magnesium, and sodium and to preserve the general cell morphology. In both animal and plant tissues, the electron-opaque antimonate precipitates were found deposited in the nucleus—as well as within the nucleolus—and in the cytoplasm, largely at the site of the ribonucleoprotein particles; the condensed chromatin appeared relatively free of precipitates. The inorganic cations are probably in a loosely bound state since they are not retained by conventional fixatives. The implications of this inorganic cation distribution in the intact cell are discussed in connection with their anionic counterparts, i.e., complexing of cations by fixed anionic charges and the coexistence of a large pool of inorganic orthophosphate anions in the nucleus and nucleolus. PMID:4935442

  5. Electronic absorptions of the benzylium cation

    NASA Astrophysics Data System (ADS)

    Dryza, Viktoras; Chalyavi, Nahid; Sanelli, Julian A.; Bieske, Evan J.

    2012-11-01

    The electronic transitions of the benzylium cation (Bz+) are investigated over the 250-550 nm range by monitoring the photodissociation of mass-selected C7H7+-Arn (n = 1, 2) complexes in a tandem mass spectrometer. The Bz+-Ar spectrum displays two distinct band systems, the S1←S0 band system extending from 370 to 530 nm with an origin at 19 067 ± 15 cm-1, and a much stronger S3←S0 band system extending from 270 to 320 nm with an origin at 32 035 ± 15 cm-1. Whereas the S1←S0 absorption exhibits well resolved vibrational progressions, the S3←S0 absorption is broad and relatively structureless. Vibronic structure of the S1←S0 system, which is interpreted with the aid of time-dependent density functional theory and Franck-Condon simulations, reflects the activity of four totally symmetric ring deformation modes (ν5, ν6, ν9, ν13). We find no evidence for the ultraviolet absorption of the tropylium cation, which according to the neon matrix spectrum should occur over the 260 - 275 nm range [A. Nagy, J. Fulara, I. Garkusha, and J. Maier, Angew. Chem., Int. Ed. 50, 3022 (2011)], 10.1002/anie.201008036.

  6. Nanoheterostructure Cation Exchange: Anionic Framework Conservation

    SciTech Connect

    Jain, Prashant K.; Amirav, Lilac; Aloni, Shaul; Alivisatos, A. Paul

    2010-05-11

    In ionic nanocrystals the cationic sub-lattice can be replaced with a different metal ion via a fast, simple, and reversible place-exchange, allowing post-synthetic modification of the composition of the nanocrystal, while preserving its size and shape. Here, we demonstrate for the first time that during such an exchange, the anionic framework of the crystal is preserved. When applied to nanoheterostructures, this phenomenon ensures that compositional interfaces within the heterostructure are conserved throughout the transformation. For instance, a morphology composed of a CdSe nanocrystal embedded in a CdS rod (CdSe/CdS) was exchanged to a PbSe/PbS nanorod via a Cu2Se/Cu2S structure. During every exchange cycle, the seed size and position within the nanorod were preserved, as evident by excitonic features, Z-contrast imaging, and elemental line-scans. Anionic framework conservation extends the domain of cation exchange to the design of more complex and unique nanostructures.

  7. PEGylation enhances tumor targeting of plasmid DNA by an artificial cationized protein with repeated RGD sequences, Pronectin.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2004-05-31

    The objective of this study is to investigate feasibility of a non-viral gene carrier with repeated RGD sequences (Pronectin F+) in tumor targeting for gene expression. The Pronectin F+ was cationized by introducing spermine (Sm) to the hydroxyl groups to allow to polyionically complex with plasmid DNA. The cationized Pronectin F+ prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have active ester and methoxy groups at the terminal, to form various PEG-introduced cationized Pronectin F+. The cationized Pronectin F+ with or without PEGylation at different extents was mixed with a plasmid DNA of LacZ to form respective cationized Pronectin F+-plasmid DNA complexes. The plasmid DNA was electrophoretically complexed with cationized Pronectin F+ and PEG-introduced cationized Pronectin F+, irrespective of the PEGylation extent, although the higher N/P ratio of complexes was needed for complexation with the latter Pronectin F+. The molecular size and zeta potential measurements revealed that the plasmid DNA was reduced in size to about 250 nm and the charge was changed to be positive by the complexation with cationized Pronectin F+. For the complexation with PEG-introduced cationized Pronectin F+, the charge of complex became neutral being almost 0 mV with the increasing PEGylation extents, while the molecular size was similar to that of cationized Pronectin F+. When cationized Pronectin F+-plasmid DNA complexes with or without PEGylation were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass, the PEG-introduced cationized Pronectin F+-plasmid DNA complex specifically enhanced the level of gene expression in the tumor, to a significantly high extent compared with the cationized Pronectin F+-plasmid DNA complexes and free plasmid DNA. The enhanced level of gene expression depended on the percentage of PEG introduced, the N/P ratio, and the plasmid DNA dose. A fluorescent microscopic study revealed that the

  8. In situ remediation process using divalent metal cations

    DOEpatents

    Brady, Patrick V.; Khandaker, Nadim R.; Krumhansl, James L.; Teter, David M.

    2004-12-14

    An in situ process for treating ambient solid materials (e.g., soils, aquifer solids, sludges) by adding one or more divalent metal cations to the ambient solid material. The added divalent metal cations, such as Cu.sup.2+ or Zn.sup.2+, combine with metal oxide/hydroxides (e.g., ferric oxide/hydroxide or aluminum oxide/hydroxide) already present in the ambient solid material to form an effective sorbent material having a large number of positively-charged surface complexes that binds and immobilizes anionic contaminant species (e.g., arsenic or chromate). Divalent metal cations can be added, for example, by injecting an aqueous solution of CuSO.sub.4 into an aquifer contaminated with arsenic or chromate. Also, sludges can be stabilized against leaching of anionic contaminants through the addition of divalent metal cations. Also, an inexpensive sorbent material can be easily formed by mixing divalent metal cations with soil that has been removed from the ground.

  9. Cation-pi interactions in protein-protein interfaces.

    PubMed

    Crowley, Peter B; Golovin, Adel

    2005-05-01

    Arginine is an abundant residue in protein-protein interfaces. The importance of this residue relates to the versatility of its side chain in intermolecular interactions. Different classes of protein-protein interfaces were surveyed for cation-pi interactions. Approximately half of the protein complexes and one-third of the homodimers analyzed were found to contain at least one intermolecular cation-pi pair. Interactions between arginine and tyrosine were found to be the most abundant. The electrostatic interaction energy was calculated to be approximately 3 kcal/mol, on average. A distance-based search of guanidinium:aromatic interactions was also performed using the Macromolecular Structure Database (MSD). This search revealed that half of the guanidinium:aromatic pairs pack in a coplanar manner. Furthermore, it was found that the cationic group of the cation-pi pair is frequently involved in intermolecular hydrogen bonds. In this manner the arginine side chain can participate in multiple interactions, providing a mechanism for inter-protein specificity. Thus, the cation-pi interaction is established as an important contributor to protein-protein interfaces.

  10. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    PubMed

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  11. Cationic cobalt(III) complex as anion receptor for biologically important anion: Synthesis, characterization and X-ray structure of [Co(phen) 3](C 7H 4NSO 3) 3.8.5H 2O where C 7H 4NSO 3 = saccharinate ion

    NASA Astrophysics Data System (ADS)

    Singh, Ajnesh; Sharma, Raj Pal; Brandão, Paula; Felix, Vitor; Venugopalan, Paloth

    2008-11-01

    In an effort to explore [Co(phen) 3] 3+ complex cation as anion receptor for biologically important saccharinate ion, yellow coloured single crystals of [Co(phen) 3](C 7H 4NSO 3) 3.8.5H 2O were obtained by slow evaporation of solution, obtained by mixing the separately dissolved, tris(1,10-phenanthroline)cobalt(III)chloride and sodium saccharinate in aqueous medium in 1:3 molar ratio. The newly synthesized complex salt was characterized by elemental analysis, TGA, conductance, solubility product measurements and spectroscopic studies (IR, UV/Visible, 1H and 13C NMR). Single crystal X-ray structure determination of [Co(phen) 3](C 7H 4NSO 3) 3.8.5H 2O revealed that compound crystallizes in the triclinic crystal system with space group P1¯ where a = 12.3795(4), b = 12.7598(4), c = 19.0414(5) Å, α = 71.544(2), β = 76.457(2), γ = 9 77.213(2)°, V = 2738.19(14) Å 3, Z = 2. The crystal lattice is stabilized by hydrogen bonding interactions of type O sbnd H⋯O and C sbnd H⋯O (through second sphere coordination) besides the electrostatic forces of attraction. The solubility product and conductance measurements indicated that the affinity of cationic tris(1,10-phenanthroline) cobalt (III), [Co(phen) 3] 3+ is greater for saccharinate ion than for chloride ion in aqueous medium. The structural studies suggest that [Co(phen) 3] 3+ is a potential anion receptor for the saccharinate ion.

  12. Cationic electrodepositable coating composition comprising lignin

    DOEpatents

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  13. Retention of Cationic Starch onto Cellulose Fibres

    NASA Astrophysics Data System (ADS)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  14. Cation Type Specific Cell Remodeling Regulates Attachment Strength

    PubMed Central

    Fuhrmann, Alexander; Li, Julie; Chien, Shu; Engler, Adam J.

    2014-01-01

    Single-molecule experiments indicate that integrin affinity is cation-type-dependent, but in spread cells integrins are engaged in complex focal adhesions (FAs), which can also regulate affinity. To better understand cation-type-dependent adhesion in fully spread cells, we investigated attachment strength by application of external shear. While cell attachment strength is indeed modulated by cations, the regulation of integrin-mediated adhesion is also exceedingly complex, cell specific, and niche dependent. In the presence of magnesium only, fibroblasts and fibrosarcoma cells remodel their cytoskeleton to align in the direction of applied shear in an α5-integrin/fibronectin-dependent manner, which allows them to withstand higher shear. In the presence of calcium or on collagen in modest shear, fibroblasts undergo piecewise detachment but fibrosarcoma cells exhibit increased attachment strength. These data augment the current understanding of force-mediated detachment by suggesting a dynamic interplay in situ between cell adhesion and integrins depending on local niche cation conditions. PMID:25014042

  15. Infrared multiple photon dissociation spectroscopy of cationized histidine: effects of metal cation size on gas-phase conformation.

    PubMed

    Citir, Murat; Hinton, Christopher S; Oomens, Jos; Steill, Jeffrey D; Armentrout, P B

    2012-02-16

    The gas phase structures of cationized histidine (His), including complexes with Li(+), Na(+), K(+), Rb(+), and Cs(+), are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by a free electron laser, in conjunction with quantum chemical calculations. To identify the structures present in the experimental studies, measured IRMPD spectra are compared to spectra calculated at B3LYP/6-311+G(d,p) (Li(+), Na(+), and K(+) complexes) and B3LYP/HW*/6-311+G(d,p) (Rb(+) and Cs(+) complexes) levels of theory, where HW* indicates that the Hay-Wadt effective core potential with additional polarization functions was used on the metals. Single point energy calculations were carried out at the B3LYP, B3P86, and MP2(full) levels using the 6-311+G(2d,2p) basis set. On the basis of these experiments and calculations, the only conformation that reproduces the IRMPD action spectra for the complexes of the smaller alkali metal cations, Li(+)(His) and Na(+)(His), is a charge-solvated, tridentate structure where the metal cation binds to the backbone carbonyl oxygen, backbone amino nitrogen, and nitrogen atom of the imidazole side chain, [CO,N(α),N(1)], in agreement with the predicted ground states of these complexes. Spectra of the larger alkali metal cation complexes, K(+)(His), Rb(+)(His), and Cs(+)(His), have very similar spectral features that are considerably more complex than the IRMPD spectra of Li(+)(His) and Na(+)(His). For these complexes, the bidentate [CO,N(1)] conformer in which the metal cation binds to the backbone carbonyl oxygen and nitrogen atom of the imidazole side chain is a dominant contributor, although features associated with the tridentate [CO,N(α),N(1)] conformer remain, and those for the [COOH] conformer are also clearly present. Theoretical results for Rb(+)(His) and Cs(+)(His) indicate that both [CO,N(1)] and [COOH] conformers are low-energy structures, with different levels of theory predicting different

  16. Charge transfer complexes of metal-free phthalocyanine radical anions with decamethylmetallocenium cations: (Cp*2Co(+))(H2Pc˙(-))·solvent and (Cp*2Cr(+))(H2Pc˙(-))·4C6H4Cl2.

    PubMed

    Konarev, Dmitri V; Khasanov, Salavat S; Ishikawa, Manabu; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2017-03-14

    Charge transfer complexes (Cp*2Co(+))(H2Pc˙(-))·0.5C6H4Cl2·0.7C6H5CN·0.3C6H14 (1) and (Cp*2Cr(+))(H2Pc˙(-))·4C6H4Cl2 (2) have been obtained as single crystals. Both complexes contain metal-free phthalocyanine (Pc) radical anions and decamethylmetallocenium cations. Reduction of the Pc macrocycle leads to the appearance of new bands at 1026-1030 nm in the NIR range and blue shifts of both Soret and Q-bands of H2Pc in the spectra of 1 and 2. The geometry of the Pc macrocycles supports the formation of H2Pc˙(-) by the alternation of shorter and longer C-N(imine) bonds in the macrocycles in 2. Complex 1 contains pairs of H2Pc˙(-) having effective π-π interactions with two sandwiched Cp*2Co(+) cations, whereas complex 2 contains stacks composed of alternating Cp*2Cr(+) and H2Pc˙(-) ions. The magnetic moment of 1 is 1.64 μB at 300 K due to the contribution of the H2Pc˙(-) spins with the S = 1/2 state and diamagnetism of Cp*2Co(+). This is supported by the observation of a narrow EPR signal of 1 with g = 2.0032-2.0036 characteristic of H2Pc˙(-). Strong antiferromagnetic coupling of spins with a Weiss temperature of -23 K is observed between H2Pc˙(-) in 1. This coupling is probably mediated by the Cp*2Co(+) cations. The magnetic moment of 2 is 4.18 μB at 300 K indicating the contribution of both paramagnetic H2Pc˙(-) (S = 1/2) and Cp*2Cr(+) (S = 3/2) species. In spite of the presence of stacks of alternating ions in 2, only weak magnetic coupling is observed with a Weiss temperature of -4 K most probably due to ineffective π-π interactions between Cp*2Cr(+) and H2Pc˙(-). The EPR spectrum of 2 contains an asymmetric signal attributed to Cr(III) (g1 = 3.9059-3.9220) and a narrow Lorentzian signal from H2Pc˙(-) with g2 = 1.9943-1.9961. In addition to these signals, a broad EPR signal grows in intensity below 80 K with g4 = 2.1085-2.2438 which can be attributed to both paramagnetic Cp*2Cr(+) and H2Pc˙(-) species having exchange interactions.

  17. Metal Cationization Extractive Electrospray Ionization Mass Spectrometry of Compounds Containing Multiple Oxygens.

    PubMed

    Swanson, Kenneth D; Spencer, Sandra E; Glish, Gary L

    2016-11-28

    Extractive electrospray ionization is an ambient ionization technique that allows real-time sampling of liquid samples, including organic aerosols. Similar to electrospray ionization, the composition of the electrospray solvent used in extractive electrospray ionization can easily be altered to form metal cationized molecules during ionization simply by adding a metal salt to the electrospray solvent. An increase in sensitivity is observed for some molecules that are lithium, sodium, or silver cationized compared with the protonated molecule formed in extractive electrospray ionization with an acid additive. Tandem mass spectrometry of metal cationized molecules can also significantly improve the ability to identify a compound. Tandem mass spectrometry of lithium and silver cationized molecules can result in an increase in the number and uniqueness of dissociation pathways relative to [M + H](+). These results highlight the potential for extractive electrospray ionization with metal cationization in analyzing complex aerosol mixtures. Graphical Abstract ᅟ.

  18. Metal Cationization Extractive Electrospray Ionization Mass Spectrometry of Compounds Containing Multiple Oxygens

    NASA Astrophysics Data System (ADS)

    Swanson, Kenneth D.; Spencer, Sandra E.; Glish, Gary L.

    2016-11-01

    Extractive electrospray ionization is an ambient ionization technique that allows real-time sampling of liquid samples, including organic aerosols. Similar to electrospray ionization, the composition of the electrospray solvent used in extractive electrospray ionization can easily be altered to form metal cationized molecules during ionization simply by adding a metal salt to the electrospray solvent. An increase in sensitivity is observed for some molecules that are lithium, sodium, or silver cationized compared with the protonated molecule formed in extractive electrospray ionization with an acid additive. Tandem mass spectrometry of metal cationized molecules can also significantly improve the ability to identify a compound. Tandem mass spectrometry of lithium and silver cationized molecules can result in an increase in the number and uniqueness of dissociation pathways relative to [M + H]+. These results highlight the potential for extractive electrospray ionization with metal cationization in analyzing complex aerosol mixtures.

  19. Nitrosonium cation in chemical and biochemical reactions: achievements and prospects

    NASA Astrophysics Data System (ADS)

    Borodkin, G. I.; Shubin, V. G.

    2017-01-01

    Data on the reactivity of nitrosonium cation in chemical reactions are systematized and integrated. The review demonstrates the structural diversity of nitrosonium complexes resulting from the specific features of the electronic structure of NO+. The use of nitrosonium salts in the synthesis of heterocyclic compounds and for the preparation of modern materials, including nanomaterials, is considered. The participation of NO+ in oxidative, catalytic and biochemical processes is discussed. The bibliography includes 332 references.

  20. Synthesis and structure of new compounds with Zn-Ga bonds: insertion of the gallium(I) bisimidinate Ga(DDP) into Zn-X (X = CH3, Cl) and the homoleptic complex cation [Zn(GaCp*)4]2+.

    PubMed

    Kempter, Andreas; Gemel, Christian; Cadenbach, Thomas; Fischer, Roland A

    2007-10-29

    Insertion reactions of the low-valent group 13 bisimidinate ligand Ga(DDP) {DDP = 2-[(2,6-diisopropylphenyl)amino]-4-[(2,6-diisopropylphenyl)imino]-2-pentene} into Zn-Me and Zn-Cl bonds are reported. The reaction of ZnMe2 with 2 equiv of Ga(DDP) yields the double-insertion product [{(DDP)GaMe}2Zn] (1), whereas the insertion of Ga(DDP) into the Zn-Cl bond of ZnCl2 in tetrahydrofuran (THF) leads to the monoinsertion product [{(DDP)GaCl}ZnCl(THF)2] (2). Treatment of 2 with Na[BArF] results in the salt [{THF.Ga(DDP)}Zn(THF)(mu-Cl)]2[BArF]2 (3), with two Cl atoms bridging the Zn centers. The structural features of the Zn-Ga-bonded compounds 1-3 were compared with related complexes and in particular with the compound [Zn(GaCp*)4][BArF]2 (4), which was synthesized by the reaction of ZnMe2, [H(OEt2)2][BArF], and GaCp* in fluorobenzene. The complex cation [Zn(GaCp*)4]2+ of 4 relates to previously reported d10 analogues [M(GaCp*)4] (M = Ni, Pd, Pt). All new compounds were fully characterized by elemental analysis, NMR spectroscopy, and single-crystal X-ray diffraction analysis.

  1. Hydrogen-bonded pillars of alternating chiral complex cations and anions: 1. Synthesis, characterization, X-ray structure and thermal stability of catena-{[Co(H(2)oxado)(3)][Cr(C(2)O(4))(3)].5H(2)O} and of its precursor (H(3)oxado)[Co(H(2)oxado)(3)](SO(4))(2).2H(2)O.

    PubMed

    Bélombé, M M; Nenwa, J; Mbiangué, Y A; Majoumo-Mbé, F; Lönnecke, P; Hey-Hawkins, E

    2009-06-21

    Compound (H(3)oxado)[Co(H(2)oxado)(3)](SO(4))(2).2H(2)O () (H(3)oxado(+) = oxamide dioximemonoximium) reacted metathetically with Ba(6)(H(2)O)(17)[Cr(C(2)O(4))(3)](4).7H(2)O in water to give the one-dimensional complex salt {[Co(H(2)oxado)(3)][Cr(C(2)O(4))(3)].5H(2)O}(infinity) () (H(2)oxado = oxamide dioxime). Compounds and were characterized by elemental analysis, FTIR, UV-Vis and by single crystal X-ray structure determination. The structure of consists of infinite pillars of alternating chiral complex cations and anions linked together along [100] by electrostatic and longitudinal O-HO interactions, with an average intrachain CoCr separation of 4.94 A. Equatorial N-HO bridges cross-link neighboring pillars (which are of opposite chirality) and consolidate a three-dimensional lattice framework which delineates elliptic nanochannels parallel to the a axis, encapsulating highly disordered water molecules. The thermal stability of both compounds was assessed by TGA, and the effective magnetic moment of , checked at room temperature, revealed considerable spin-orbit coupling.

  2. Cation ordering and superstructures in natural layered double hydroxides.

    PubMed

    Krivovichev, Sergey V; Yakovenchuk, Victor N; Zolotarev, Andrey A; Ivanyuk, Gregory N; Pakhomovsky, Yakov A

    2010-01-01

    Layered double hydroxides (LDHs) constitute an important group of materials with many applications ranging from catalysis and absorption to carriers for drug delivery, DNA intercalation and carbon dioxide sequestration. The structures of LDHs are based upon double brucite-like hydroxide layers [M(2+)(n)M(3+)(m)(OH)(2(m+n)](m+), where M(2+) = Mg(2+), Fe(2+), Mn(2+), Zn(2+), etc.; M(3+) = Al(3+), Fe(3+), Cr(3+), Mn(3+), etc. Structural features of LDHs such as cation ordering, charge distribution and polytypism have an immediate influence upon their properties. However, all the structural studies on synthetic LDHs deal with powder samples that prevent elucidation of such fine details of structure architecture as formation of superstructures due to cation ordering. In contrast to synthetic materials, natural LDHs are known to form single crystals accessible to single-crystal X-ray diffraction analysis, which provides a unique possibility to investigate 3D cation ordering in LDHs that results in formation of complex superstructures, where 2D cation order is combined with a specific order of layer stacking (polytypism). Therefore LDH minerals provide an indispensable source of structural information for modeling of structures and processes happening in LDHs at the molecular and nanoscale levels.

  3. Cation-specific effects on enzymatic catalysis driven by interactions at the tunnel mouth.

    PubMed

    Štěpánková, Veronika; Paterová, Jana; Damborský, Jiří; Jungwirth, Pavel; Chaloupková, Radka; Heyda, Jan

    2013-05-30

    Cationic specificity which follows the Hofmeister series has been established for the catalytic efficiency of haloalkane dehalogenase LinB by a combination of molecular dynamics simulations and enzyme kinetic experiments. Simulations provided a detailed molecular picture of cation interactions with negatively charged residues on the protein surface, particularly at the tunnel mouth leading to the enzyme active site. On the basis of the binding affinities, cations were ordered as Na(+) > K(+) > Rb(+) > Cs(+). In agreement with this result, a steady-state kinetic analysis disclosed that the smaller alkali cations influence formation and productivity of enzyme-substrate complexes more efficiently than the larger ones. A subsequent systematic investigation of two LinB mutants with engineered charge in the cation-binding site revealed that the observed cation affinities are enhanced by increasing the number of negatively charged residues at the tunnel mouth, and vice versa, reduced by decreasing this number. However, the cation-specific effects are overwhelmed by strong electrostatic interactions in the former case. Interestingly, the substrate inhibition of the mutant LinB L177D in the presence of chloride salts was 7 times lower than that of LinB wild type in glycine buffer. Our work provides new insight into the mechanisms of specific cation effects on enzyme activity and suggests a potential strategy for suppression of substrate inhibition by the combination of protein and medium engineering.

  4. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOEpatents

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  5. Liquid Crystalline Polymers by Cationic Polymerization,

    DTIC Science & Technology

    1986-01-01

    cation mechanism of Scholl reaction the Lewis acid and by the benzylic carbocations . Hydride transfer to benzylic carbenium ions leads to methyl groups...reviewed. Examples from ring-opening, carbocationic , and radical-cation poly- merizations and oligomerizations are discussed. Accesion For DrIC TAB3...Examples from ring- opening, carbocationic , and radical-cation polymeri- zations and oligomerizations are discussed. INTRODUCTION This paper will

  6. Cationic and Neutral Cp*M(NO)(κ(2)-Ph2PCH2CH2PPh2) Complexes of Molybdenum and Tungsten: Lewis-Acid-Induced Intramolecular C-H Activation.

    PubMed

    Handford, Rex C; Wakeham, Russell J; Patrick, Brian O; Legzdins, Peter

    2017-03-20

    Treatment of CH2Cl2 solutions of Cp*M(NO)Cl2 (Cp* = η(5)-C5(CH3)5; M = Mo, W) first with 2 equiv of AgSbF6 in the presence of PhCN and then with 1 equiv of Ph2PCH2CH2PPh2 affords the yellow-orange salts [Cp*M(NO)(PhCN)(κ(2)-Ph2PCH2CH2PPh2)](SbF6)2 in good yields (M = Mo, W). Reduction of [Cp*M(NO)(PhCN)(κ(2)-Ph2PCH2CH2PPh2)](SbF6)2 with 2 equiv of Cp2Co in C6H6 at 80 °C produces the corresponding 18e neutral compounds, Cp*M(NO)(κ(2)-Ph2PCH2CH2PPh2) which have been isolated as analytically pure orange-red solids. The addition of 1 equiv of the Lewis acid, Sc(OTf)3, to solutions of Cp*M(NO)(κ(2)-Ph2PCH2CH2PPh2) at room temperature results in the immediate formation of thermally stable Cp*M(NO→Sc(OTf)3)(H)(κ(3)-(C6H4)PhPCH2CH2PPh2) complexes in which one of the phenyl substituents of the Ph2PCH2CH2PPh2 ligands has undergone intramolecular orthometalation. In a similar manner, addition of BF3 produces the analogous Cp*M(NO→BF3)(H)(κ(3)-(C6H4)PhPCH2CH2PPh2) complexes. In contrast, B(C6F5)3 forms the 1:1 Lewis acid-base adducts, Cp*M(NO→B(C6F5)3)(κ(2)-Ph2PCH2CH2PPh2) in CH2Cl2 at room temperature. Upon warming to 80 °C, Cp*Mo(NO→B(C6F5)3)(κ(2)-Ph2PCH2CH2PPh2) converts cleanly to the orthometalated product Cp*Mo(NO→B(C6F5)3)(H)(κ(3)-(C6H4)PhPCH2CH2PPh2), but Cp*W(NO→B(C6F5)3)(κ(2)-Ph2PCH2CH2PPh2) generates a mixture of products whose identities remain to be ascertained. Attempts to extend this chemistry to include related Ph2PCH2PPh2 compounds have had only limited success. All new complexes have been characterized by conventional spectroscopic and analytical methods, and the solid-state molecular structures of most of them have been established by single-crystal X-ray crystallographic analyses.

  7. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    PubMed Central

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  8. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    PubMed

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange.

  9. SEPARATION PROCESS USING COMPLEXING AND ADSORPTION

    DOEpatents

    Spedding, J.H.; Ayers, J.A.

    1958-06-01

    An adsorption process is described for separating plutonium from a solution of neutron-irradiated uranium containing ions of a compound of plutonium and other cations. The method consists of forming a chelate complex compound with plutoniunn ions in the solution by adding a derivative of 8- hydroxyquinoline, which derivative contains a sulfonic acid group, and adsorbing the remaining cations from the solution on a cation exchange resin, while the complexed plutonium remains in the solution.

  10. Orientation Preferences of Backbone Secondary Amide Functional Groups in Peptide Nucleic Acid Complexes: Quantum Chemical Calculations Reveal an Intrinsic Preference of Cationic D-Amino Acid-Based Chiral PNA Analogues for the P-form

    SciTech Connect

    Smith, Jeremy C; Topham, Christopher

    2007-01-01

    Geometric descriptions of nonideal interresidue hydrogen bonding and backbone-base water bridging in the minor groove are established in terms of polyamide backbone carbonyl group orientation from analyses of residue junction conformers in experimentally determined peptide nucleic acid (PNA) complexes. Two types of interresidue hydrogen bonding are identified in PNA conformers in heteroduplexes with nucleic acids that adopt A-like base pair stacking. Quantum chemical calculations on the binding of a water molecule to an O2 base atom in glycine-based PNA thymine dimers indicate that junctions modeled with P-form backbone conformations are lower in energy than a dimer comprising the predominant conformation observed in A-like helices. It is further shown in model systems that PNA analogs based on D-lysine are better able to preorganize in a conformation exclusive to P-form helices than is glycine-based PNA. An intrinsic preference for this conformation is also exhibited by positively charged chiral PNA dimers carrying 3-amino-D-alanine or 4-aza-D-leucine residue units that provide for additional rigidity by side-chain hydrogen bonding to the backbone carbonyl oxygen. Structural modifications stabilizing P-form helices may obviate the need for large heterocycles to target DNA pyrimidine bases via PNADNA-PNA triplex formation. Quantum chemical modeling methods are used to propose candidate PNA Hoogsteen strand designs.

  11. Three isotypic polymeric complexes with rare earth cations, but-2-enoate anions and 4,4'-(ethane-1,2-diyl)dipyridine and 4,4'-(ethene-1,2-diyl)dipyridine bridging ligands.

    PubMed

    Atria, Ana María; Garland, Maria Teresa; Baggio, Ricardo

    2015-04-01

    Three isotypic rare earth complexes, catena-poly[[aquabis(but-2-enoato-κ(2)O,O')yttrium(III)]-bis(μ-but-2-enoato)-κ(3)O,O':O;κ(3)O:O,O'-[aquabis(but-2-enoato-κ(2)O,O')yttrium(III)]-μ-4,4'-(ethane-1,2-diyl)dipyridine-κ(2)N:N'], [Y2(C4H5O2)6(C12H12N2)(H2O)2], the gadolinium(III) analogue, [Gd2(C4H5O2)6(C12H12N2)(H2O)2], and the gadolinium(III) analogue with a 4,4'-(ethene-1,2-diyl)dipyridine bridging ligand, [Gd2(C4H5O2)6(C12H10N2)(H2O)2], are one-dimensional coordination polymers made up of centrosymmetric dinuclear [M(but-2-enoato)3(H2O)]2 units (M = rare earth), further bridged by centrosymmetric 4,4'-(ethane-1,2-diyl)dipyridine or 4,4'-(ethene-1,2-diyl)dipyridine spacers into sets of chains parallel to the [201̄] direction. There are intra-chain and inter-chain hydrogen bonds in the structures, the former providing cohesion of the linear arrays and the latter promoting the formation of broad planes parallel to (010).

  12. Effect of Mechanical Agitation on Cationic Liposome Transport across an Unstirred Water Layer in Caco-2 Cells.

    PubMed

    Kono, Yusuke; Iwasaki, Ayu; Matsuoka, Kenta; Fujita, Takuya

    2016-01-01

    To develop an effective oral delivery system for plasmid DNA (pDNA) using cationic liposomes, it is necessary to clarify the characteristics of uptake and transport of cationic liposome/pDNA complexes into the intestinal epithelium. In particular, evaluation of the involvement of an unstirred water layer (UWL), which is a considerable permeability barrier, in cationic liposome transport is very important. Here, we investigated the effects of a UWL on the transfection efficiency of cationic liposome/pDNA complexes into a Caco-2 cell monolayer. When Caco-2 cells were transfected with cationic liposome/pDNA complexes in shaking cultures to reduce the thickness of the UWL, gene expression was significantly higher in Caco-2 cells compared with static cultures. We also found that this enhancement of gene expression by shaking was not attributable to activation of transcription factors such as activator protein-1 and nuclear factor-kappaB (NF-κB). In addition, the increase in gene expression by mechanical agitation was observed at all charge ratios (1.5, 2.3, 3.1, 4.5) of cationic liposome/pDNA complexes. Transport experiments using Transwells demonstrated that mechanical agitation increased the uptake of cationic liposome/pDNA complexes by Caco-2 cells, whereas transport of the complexes across a Caco-2 cell monolayer did not occurr. Moreover, the augmentation of the gene expression of cationic liposome/pDNA complexes by shaking was observed in Madin-Darby canine kidney cells. These results indicate that a UWL greatly affects the uptake and transfection efficiency of cationic liposome/pDNA complexes into an epithelial monolayer in vitro.

  13. Cation-Coupled Bicarbonate Transporters

    PubMed Central

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2016-01-01

    Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na+-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na+-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3− transporters of the SLC4-family. PMID:25428855

  14. Cation-coupled bicarbonate transporters.

    PubMed

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2014-10-01

    Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.

  15. Cation-poor complex metallic alloys in Ba(Eu)–Au–Al(Ga) systems: Identifying the keys that control structural arrangements and atom distributions at the atomic level

    DOE PAGES

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; ...

    2015-10-19

    Four complex intermetallic compounds BaAu6±xGa6±y (x = 1, y = 0.9) (I), BaAu6±xAl6±y (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104–112, Fm3C), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successivemore » decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution (“coloring scheme”). Chemical bonding analyses for two different “EuAu6Tr6” models reveal maximization of the number of heteroatomic Au–Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the “EuAu6Tr6” models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. As a result, the effective moments of 8.3 μB/f.u., determined from Curie–Weiss fits, point to divalent oxidation states for europium in both III and IV.« less

  16. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOEpatents

    Wasserman, Stephen R.; Anderson, Kenneth B.; Song, Kang; Yuchs, Steven E.; Marshall, Christopher L.

    1998-01-01

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  17. Synthesis, characterization and cation-induced dimerization of new aza-crown ether-appended metalloporphyrins.

    PubMed

    Mikhalitsyna, Elena A; Tyurin, Vladimir S; Zamylatskov, Ilia A; Khrustalev, Victor N; Beletskaya, Irina P

    2012-07-07

    New metalloporphyrins bearing one or two aryl-aza-crown ether moieties at meso-positions have been synthesized using a palladium catalyzed amination reaction and fully characterized by spectral techniques. X-Ray structural data have been presented for the zinc and copper complexes of mono-substituted aza-crown ether appended metalloporphyrins. UV-Vis and (1)H NMR spectroscopic studies showed that addition of K(+) cations to a solution of monomeric aza-crowned porphyrins in CHCl(3)/MeOH led to cation-induced dimerization of these porphyrins, whereas addition of Na(+) cations yielded a monomeric complex. Axial coordination of the exobidentate ligand (DABCO) to zinc complexes of aza-crowned porphyrins and following binding metal ions led to formation of sandwich complexes with high stability constants.

  18. Oxoferryl porphyrin cation radicals in model systems: Evidence for variable metal-radical spin coupling

    NASA Astrophysics Data System (ADS)

    Bill, E.; Bominaar, E. L.; Ding, X.-Q.; Trautwein, A. X.; Winkler, H.; Mandon, D.; Weiss, R.; Gold, A.; Jayaraj, K.; Toney, G. E.

    1990-07-01

    Magnetic properties of frozen solutions of highly oxidized iron porphyrin complexes were investigated by EPR and Mössbauer spectroscopy. The Mössbauer spectra, recorded at low temperatures in various magnetic fields, were analyzed on the basis of spin Hamiltonian simulations. Spin coupling between ferryl iron (FeIV) and porphyrin cation radical was taken into account explicitly. Hyperfine and spin-coupling parameters are given for several complexes, together with zero-field parameters. One of the complexes exhibits weak spin coupling, it is the first model system exhibiting properties comparable to those of the oxoferryl cation radical enzyme Horse Radish Peroxidase I.

  19. Gas-phase Electronic Spectra of Coronene and Corannulene Cations

    NASA Astrophysics Data System (ADS)

    Hardy, F.-X.; Rice, Corey A.; Maier, John P.

    2017-02-01

    Gas-phase electronic spectra of the coronene ({{{C}}}24{{{{H}}}12}+) and corannulene ({{{C}}}20{{{{H}}}10}+) cations complexed with helium have been recorded in a quadrupole ion trap at 5 K by photodissociation. The electronic spectrum of {{{C}}}20{{{{H}}}10}+ with two helium atoms was also measured to estimate the perturbation. This method is sufficient for an astronomical comparison because the shift due to the weakly bound helium is on the order of 0.2 Å. {{{C}}}24{{{{H}}}12}+{--}{He} has the origin band of the {{{A}}}2{{{E}}}1g≤ftarrow X{}2{{{E}}}2u transition at 9438.3 Å and that to a much higher state {{{D}}}3≤ftarrow X{}2{{{E}}}2u at 4570 Å. The corannulene cation is subject to a Jahn–Teller distortion in the electronic ground state, leading to the {3}2{{A}}\\prime ≤ftarrow {{X}}{}2{{A}}\\prime \\prime and {3}2{{A}}\\prime \\prime ≤ftarrow {{X}}{}2{{A}}\\prime transitions with origin band maxima when complexed with helium at 5996.1 and 5882.6 Å. These absorptions lie in a region where there is a congestion of diffuse interstellar bands (DIBs). However, the recorded features have no match with astronomical observations, removing coronene and corannulene cations and probably other aromatic hydrocarbons of this size as possible carriers of the DIBs.

  20. Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery

    NASA Astrophysics Data System (ADS)

    Yu, Wangyang; Liu, Chunxi; Ye, Jiesheng; Zou, Weiwei; Zhang, Na; Xu, Wenfang

    2009-05-01

    Cationic solid lipid nanoparticles (SLN) can bind DNA directly via ionic interaction and mediate in vitro gene transfection. However, toxicity is still an obstacle, which is strongly dependent on the cationic lipid used. In the present study, a novel single-tailed cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was synthesized and used as a modifier to prepare stable SLN-DNA complexes by a nanoprecipitation method. The commonly used cationic lipid cetyltrimethylammonium bromide (CTAB) modified SLN-DNA formulation served as a contrast. These two formulations were characterized and compared in terms of morphology, particle size, surface charge, DNA binding capacity, release profile, cytotoxicity, and transfection efficiency. The LHLN SLN-DNA complexes had a similar spherical morphology, a relatively narrow particle size distribution and a more remarkable DNA loading capability compared to the CTAB ones. Most importantly, LHLN modified SLN had a higher gene transfection efficiency than the naked DNA and CTAB ones, which was approximately equal to that of Lipofectamine-DNA complexes, and a lower cytotoxicity compared with CTAB-SLN and Lipofectamine 2000. Thus, the novel cationic SLN can achieve efficient transfection of plasmid DNA, and to some extent reduce the cytotoxicity, which might overcome some drawbacks of the conventional cationic nanocarriers in vivo and may become a promising non-viral gene therapy vector.

  1. Cation-poor complex metallic alloys in Ba(Eu)–Au–Al(Ga) systems: Identifying the keys that control structural arrangements and atom distributions at the atomic level

    SciTech Connect

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J.; Mudring, Anja -Verena

    2015-10-19

    Four complex intermetallic compounds BaAu6±xGa6±y (x = 1, y = 0.9) (I), BaAu6±xAl6±y (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104–112, Fm3C), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution (“coloring scheme”). Chemical bonding analyses for two different “EuAu6Tr6” models reveal maximization of the number of heteroatomic Au–Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the “EuAu6Tr6” models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. As a result, the effective moments

  2. Separation of alkali, alkaline earth and rare earth cations by liquid membranes containing macrocyclic carriers. Third progress report, September 1, 1980-April 1, 1981

    SciTech Connect

    Christensen, J.J.

    1981-04-15

    The overall objective of this project is to study the use of liquid membrane systems employing macrocyclic ligand carriers in making separations among metal cations. During the third year of the project, work continued in the development of a mathematical model to describe cation transport. The model was originally developed to describe the relationship between cation transport rate (J/sub M/) and the cation-macrocycle stability constant (K). The model was tested by determining the rates of transport of alkali and alkaline earth cations through chloroform membranes containing carrier ligands where the stability constants for their reaction with cations in methanol were known. From the results, it is clear that the model correctly describes the dependence of J/sub M/ on log K. The model also correctly describes the effect of cation concentration and carrier concentration on cation transport rates, as detailed in the previous progress report. During the third year of the project, the transport model was expanded so as to apply to competitive transport of cations from mixtures of two cations in the source aqueous phase. Data were collected under these conditions and the ability of the model to predict the flux of each cation was tested. Representative data of this type are presented along with corresponding data which were obtained when each cation was transported by the same carrier from a source phase containing only that cation. Comparison of transport rates determined under the two experimental conditions indicates that the relationship between the two sets of data is complex. To date, a few of these data involving transport from binary cation mixtures have been tested against the transport model. It was found that the model correctly predicts the cation fluxes from cation mixtures. These preliminary results indicate that the transport model can successfully predict separation factors when cation mixtures are used.

  3. Advancements in Anion Exchange Membrane Cations

    SciTech Connect

    Sturgeon, Matthew R.; Long, Hai; Park, Andrew M.; Pivovar, Bryan S.

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  4. Cation exchange capacity of pine bark substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cation exchange capacity (CEC) is an important soil and substrate chemical property. It describes a substrate's ability to retain cation nutrients. Higher CEC values for a substrate generally result in greater amounts of nutrients retained in the substrate and available for plant uptake, and great...

  5. Tripodal Receptors for Cation and Anion Sensors

    PubMed Central

    Kuswandi, Bambang; Nuriman; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selective recognition and sensing of cations and anions. Examples on the relationship between structure and selectivity towards cations and anions are described. Furthermore, their applications as potentiometric ion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  6. Association Mechanisms of Unsaturated C2 Hydrocarbons with Their Cations: Acetylene and Ethylene

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2013-01-01

    The ion-molecule association mechanism of acetylene and ethylene with their cations is investigated by ab initio quantum chemical methods to understand the structures, association energies, and the vibrational and electronic spectra of the products. Stable puckered cyclic isomers are found as the result of first forming less stable linear and bridge isomers. The puckered cyclic complexes are calculated to be strongly bound, by 87, 35 and 56 kcal/mol for acetylene-acetylene cation, ethylene-ethylene cation and acetylene-ethylene cation, respectively. These stable complexes may be intermediates that participate in further association reactions. There are no association barriers, and no significant inter-conversion barriers, so the initial linear and bridge encounter complexes are unlikely to be observable. However, the energy gap between the bridged and cyclic puckered isomers greatly differs from complex to complex: it is 44 kcal/mol in C4H4 +, but only 6 kcal/mol in C4H8 +. The accurate CCSD(T) calculations summarized above are also compared against less computationally expensive MP2 and density functional theory (DFT) calculations for structures, relative energies, and vibrational spectra. Calculated vibrational spectra are compared against available experiments for cyclobutadiene cation. Electronic spectra are also calculated using time-dependent DFT.

  7. Inverse optimization of hydraulic, solute transport, and cation exchange parameters using HP1 and UCODE to simulate cation exchange.

    PubMed

    Jacques, Diederik; Smith, Chris; Šimůnek, Jiří; Smiles, David

    2012-11-01

    Reactive transport modeling is a powerful tool to evaluate systems with complex geochemical relations. However, parameters are not always directly measurable. This study represents one of the first attempts to obtain hydrologic, transport and geochemical parameters from an experimental dataset involving transient unsaturated water flow and solute transport, using an automatic inverse optimization (or calibration) algorithm. The data come from previously published, controlled laboratory experiments on the transport of major cations (Na, K, Mg, Ca) during water absorption into horizontal soil columns that were terminated at different times. Experimental data consisted of the depth profiles of water contents (θ), Cl concentrations, and total aqueous and sorbed concentrations of major cations. The dataset was used to optimize several parameters using the reactive transport model, HP1 and the generic optimization code, UCODE. Although the soil hydraulic and solute transport parameters were also optimized, the study focused mainly on the geochemical parameters because the soil columns were constructed from disturbed soil. The cation exchange capacity and the cation exchange coefficients for two exchange models (Gapon and Rothmund-Kornfeld) were optimized. The results suggest that both calibrated models satisfactorily described the experimental data, although the Rothmund-Kornfeld model fit was slightly better. However, information content and surface response analyses indicated that parameters of the Gapon model are well identifiable, whereas those of the Rothmund-Kornfeld model were strongly correlated. The calibrated geochemical parameters were validated using an independent dataset. In agreement with the identifiability analysis, the Gapon approach was better than the Rothmund-Kornfeld model at calculating the observed concentrations of major cations in the soil solution and on the exchange sites.

  8. Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.

  9. Closed-Shell Polycyclic Aromatic Hydrocarbon Cations: A New Category of Interstellar Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.

  10. INORGANIC CATIONS IN RAT KIDNEY

    PubMed Central

    Tandler, C. J.; Kierszenbaum, A. L.

    1971-01-01

    For localization of pyroantimonate-precipitable cations, rat kidney was fixed by perfusion with a saturated aqueous solution of potassium pyroantimonate (pH about 9.2, without addition of any conventional fixative). A remarkably good preservation of the tissue and cell morphology was obtained as well as a consistent and reproducible localization of the insoluble antimonate salts of magnesium, calcium, and sodium. All proximal and distal tubules and glomeruli were delimited by massive electron-opaque precipitates localized in the basement membrane and, to a lesser extent, in adjacent connective tissue. In the intraglomerular capillaries the antimonate precipitate was encountered in the basement membranes and also between the foot processes. In addition to a more or less uniform distribution in the cytoplasm and between the microvilli of the brush border, antimonate precipitates were found in all cell nuclei, mainly between the masses of condensed chromatin. The mitochondria usually contained a few large antimonate deposits which probably correspond to the so-called "dense granules" observed after conventional fixations. PMID:4106544

  11. Gas-Phase Chemistry of Benzyl Cations in Dissociation of N-Benzylammonium and N-Benzyliminium Ions Studied by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chai, Yunfeng; Wang, Lin; Sun, Hezhi; Guo, Cheng; Pan, Yuanjiang

    2012-05-01

    In this study, the fragmentation reactions of various N-benzylammonium and N-benzyliminium ions were investigated by electrospray ionization mass spectrometry. In general, the dissociation of N-benzylated cations generates benzyl cations easily. Formation of ion/neutral complex intermediates consisting of the benzyl cations and the neutral fragments was observed. The intra-complex reactions included electrophilic aromatic substitution, hydride transfer, electron transfer, proton transfer, and nucleophilic aromatic substitution. These five types of reactions almost covered all the potential reactivities of benzyl cations in chemical reactions. Benzyl cations are well-known as Lewis acid and electrophile in reactions, but the present study showed that the gas-phase reactivities of some suitably ring-substituted benzyl cations were far richer. The 4-methylbenzyl cation was found to react as a Brønsted acid, benzyl cations bearing a strong electron-withdrawing group were found to react as electron acceptors, and para-halogen-substituted benzyl cations could react as substrates for nucleophilic attack at the phenyl ring. The reactions of benzyl cations were also related to the neutral counterparts. For example, in electron transfer reaction, the neutral counterpart should have low ionization energy and in nucleophilic aromatic substitution reaction, the neutral counterpart should be piperazine or analogues. This study provided a panoramic view of the reactions of benzyl cations with neutral N-containing species in the gas phase.

  12. Gas-phase chemistry of benzyl cations in dissociation of N-benzylammonium and N-benzyliminium ions studied by mass spectrometry.

    PubMed

    Chai, Yunfeng; Wang, Lin; Sun, Hezhi; Guo, Cheng; Pan, Yuanjiang

    2012-05-01

    In this study, the fragmentation reactions of various N-benzylammonium and N-benzyliminium ions were investigated by electrospray ionization mass spectrometry. In general, the dissociation of N-benzylated cations generates benzyl cations easily. Formation of ion/neutral complex intermediates consisting of the benzyl cations and the neutral fragments was observed. The intra-complex reactions included electrophilic aromatic substitution, hydride transfer, electron transfer, proton transfer, and nucleophilic aromatic substitution. These five types of reactions almost covered all the potential reactivities of benzyl cations in chemical reactions. Benzyl cations are well-known as Lewis acid and electrophile in reactions, but the present study showed that the gas-phase reactivities of some suitably ring-substituted benzyl cations were far richer. The 4-methylbenzyl cation was found to react as a Brønsted acid, benzyl cations bearing a strong electron-withdrawing group were found to react as electron acceptors, and para-halogen-substituted benzyl cations could react as substrates for nucleophilic attack at the phenyl ring. The reactions of benzyl cations were also related to the neutral counterparts. For example, in electron transfer reaction, the neutral counterpart should have low ionization energy and in nucleophilic aromatic substitution reaction, the neutral counterpart should be piperazine or analogues. This study provided a panoramic view of the reactions of benzyl cations with neutral N-containing species in the gas phase.

  13. Aggregation of nucleosomes by divalent cations.

    PubMed Central

    de Frutos, M; Raspaud, E; Leforestier, A; Livolant, F

    2001-01-01

    Conditions of precipitation of nucleosome core particles (NCP) by divalent cations (Ca(2+) and Mg(2+)) have been explored over a large range of nucleosome and cation concentrations. Precipitation of NCP occurs for a threshold of divalent cation concentration, and redissolution is observed for further addition of salt. The phase diagram looks similar to those obtained with DNA and synthetic polyelectrolytes in the presence of multivalent cations, which supports the idea that NCP/NCP interactions are driven by cation condensation. In the phase separation domain the effective charge of the aggregates was determined by measurements of their electrophoretic mobility. Aggregates formed in the presence of divalent cations (Mg(2+)) remain negatively charged over the whole concentration range. They turn positively charged when aggregation is induced by trivalent (spermidine) or tetravalent (spermine) cations. The higher the valency of the counterions, the more significant is the reversal of the effective charge of the aggregates. The sign of the effective charge has no influence on the aspect of the phase diagram. We discuss the possible reasons for this charge reversal in the light of actual theoretical approaches. PMID:11463653

  14. Studying the chemistry of cationized triacylglycerols using electrospray ionization mass spectrometry and density functional theory computations.

    PubMed

    Grossert, J Stuart; Cubero Herrera, Lisandra; Ramaley, Louis; Melanson, Jeremy E

    2014-08-01

    Analysis of triacylglycerols (TAGs), found as complex mixtures in living organisms, is typically accomplished using liquid chromatography, often coupled to mass spectrometry. TAGs, weak bases not protonated using electrospray ionization, are usually ionized by adduct formation with a cation, including those present in the solvent (e.g., Na(+)). There are relatively few reports on the binding of TAGs with cations or on the mechanisms by which cationized TAGs fragment. This work examines binding efficiencies, determined by mass spectrometry and computations, for the complexation of TAGs to a range of cations (Na(+), Li(+), K(+), Ag(+), NH4(+)). While most cations bind to oxygen, Ag(+) binding to unsaturation in the acid side chains is significant. The importance of dimer formation, [2TAG + M](+) was demonstrated using several different types of mass spectrometers. From breakdown curves, it became apparent that two or three acid side chains must be attached to glycerol for strong cationization. Possible mechanisms for fragmentation of lithiated TAGs were modeled by computations on tripropionylglycerol. Viable pathways were found for losses of neutral acids and lithium salts of acids from different positions on the glycerol moiety. Novel lactone structures were proposed for the loss of a neutral acid from one position of the glycerol moiety. These were studied further using triple-stage mass spectrometry (MS(3)). These lactones can account for all the major product ions in the MS(3) spectra in both this work and the literature, which should allow for new insights into the challenging analytical methods needed for naturally occurring TAGs.

  15. Studying the Chemistry of Cationized Triacylglycerols Using Electrospray Ionization Mass Spectrometry and Density Functional Theory Computations

    NASA Astrophysics Data System (ADS)

    Grossert, J. Stuart; Herrera, Lisandra Cubero; Ramaley, Louis; Melanson, Jeremy E.

    2014-08-01

    Analysis of triacylglycerols (TAGs), found as complex mixtures in living organisms, is typically accomplished using liquid chromatography, often coupled to mass spectrometry. TAGs, weak bases not protonated using electrospray ionization, are usually ionized by adduct formation with a cation, including those present in the solvent (e.g., Na+). There are relatively few reports on the binding of TAGs with cations or on the mechanisms by which cationized TAGs fragment. This work examines binding efficiencies, determined by mass spectrometry and computations, for the complexation of TAGs to a range of cations (Na+, Li+, K+, Ag+, NH4 +). While most cations bind to oxygen, Ag+ binding to unsaturation in the acid side chains is significant. The importance of dimer formation, [2TAG + M]+ was demonstrated using several different types of mass spectrometers. From breakdown curves, it became apparent that two or three acid side chains must be attached to glycerol for strong cationization. Possible mechanisms for fragmentation of lithiated TAGs were modeled by computations on tripropionylglycerol. Viable pathways were found for losses of neutral acids and lithium salts of acids from different positions on the glycerol moiety. Novel lactone structures were proposed for the loss of a neutral acid from one position of the glycerol moiety. These were studied further using triple-stage mass spectrometry (MS3). These lactones can account for all the major product ions in the MS3 spectra in both this work and the literature, which should allow for new insights into the challenging analytical methods needed for naturally occurring TAGs.

  16. DNA interaction and photocleavage properties of porphyrins containing cationic substituents at the peripheral position.

    PubMed

    Mettath, S; Munson, B R; Pandey, R K

    1999-01-01

    A series of mono- and disubstituted cationic porphyrins (1-8) were synthesized and investigated for their ability to bind and cleave DNA in the presence of light. In these porphyrins, the cationic substituents were introduced at various peripheral positions, i.e., the non-meso positions of the porphyrin system. The modes of binding of these porphyrins to DNA were investigated by UV-vis spectroscopy, circular dichroism, and an unwinding assay. The intrinsic binding constants Kb of these porphyrins to calf thymus DNA was found to be in the range 10(4)-10(5) M-1. Two of the zinc(II) complexes of non-meso-substituted cationic porphyrins (5 and 8) were found to bind to DNA via intercalation, which is in contrast to the previously reported outside-binding mode for the Zn(II) complexes of meso-substituted cationic porphyrins. Except for monocationic porphyrin 1 and Ni(II) dicationic porphyrin 6, all the other porphyrins were found to be efficient photocleavers of DNA. The DNA photocleavage characteristics of this series of cationic porphyrins were found to depend on the structural characteristics of the poprhyrins such as (a) length of the side chain of the cationic substituents (2 vs 4), (b) the position of the side chain on the porphyrin ring (4 vs 7), and (c) the presence of the chelating metal in 3, 5, and 8 as compared to the nonmetallo porphyrins 2, 4, and 7, respectively.

  17. The complex nature of calcium cation interactions with phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz

    2016-12-01

    Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association.

  18. Cationic fac-tris(pyrazole) complexes as anion receptors.

    PubMed

    Nieto, Sonia; Pérez, Julio; Riera, Víctor; Miguel, Daniel; Alvarez, Celedonio

    2005-01-28

    New receptors fac-[Re(CO)3(pz)3]BAr'4 (pz = 3,5-dimethylpyrazole or 3(5)-tert-butylpyrazole, Ar' = 3,5-(CF3)2C6H3), synthesized from [Re(OTf)(CO)5] and the pyrazoles, have been found to show a high affinity for chloride.

  19. The complex nature of calcium cation interactions with phospholipid bilayers

    PubMed Central

    Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz

    2016-01-01

    Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association. PMID:27905555

  20. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  1. Infrared spectroscopy and theory of the formaldehyde cation and its hydroxymethylene isomer

    NASA Astrophysics Data System (ADS)

    Mauney, D. T.; Mosley, J. D.; Madison, L. R.; McCoy, A. B.; Duncan, M. A.

    2016-11-01

    Pulsed discharges in supersonic expansions containing the vapor of different precursors (formaldehyde, methanol) produce the m/z = 30 cations with formula [H2,C,O]+. The corresponding [H2,C,O]+ Ar complexes are produced under similar conditions with argon added to the expansion gas. These ions are mass selected in a time-of-flight spectrometer and studied with infrared laser photodissociation spectroscopy. Spectra in the 2300-3000 cm-1 region produce very different vibrational patterns for the ions made from different precursors. Computational studies with harmonic methods and various forms of anharmonic theory allow detailed assignment of these spectra to two isomeric species. Discharges containing formaldehyde produce primarily the corresponding formaldehyde radical cation, CH2O+, whereas those with methanol produce exclusively the cis- and trans-hydroxymethylene cations, HCOH+. The implications for the interstellar chemistry of these cations are discussed.

  2. Nutrient leaching from conifer needles in relation to foliar apoplast cation-exchange capacity

    SciTech Connect

    Turner, D.P.; van Broekhuizen, H.J.

    1992-01-01

    Limited evidence to date suggests that acidic precipitation promotes leaching of nutrient cations from conifer foliage. In order to evaluate the relative contribution of the apoplast cation exchange complex and symplast nutrient pools to the leached ions, the magnitude of potential foliar leaching in response to acidic precipitation was compared to foliar apoplast cation exchange capacity (CEC) for two conifer tree species (Pseudotsuga menziesii and Picea engelmanii). Leaching increased with decreasing pH and increasing time of immersion. At pH 2.1 and 3.1, equivalents of H+ depleted from the acidic solutions approximated equivalent of cations gained by the solutions. Maximum amounts leached were less than 40 micro equiv/g dry weight of needles for all ions combined. Measured foliar apoplast CEC for these species was approximately 120 micro equiv/g dry weight of needles. These relative magnitudes indicated that the apoplast provided the leached ions.

  3. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    PubMed

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  4. Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion.

    PubMed

    Knorr, Anne; Ludwig, Ralf

    2015-12-02

    Direct spectroscopic evidence for H-bonding between like-charged ions is reported for the ionic liquid, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. New infrared bands in the OH frequency range appear at low temperatures indicating the formation of H-bonded cation-cation clusters similar to those known for water and alcohols. Supported by DFT calculations, these vibrational bands can be assigned to attractive interaction between the hydroxyl groups of the cations. The repulsive Coulomb interaction is overcome by cooperative hydrogen bonding between ions of like charge. The transition energy from purely cation-anion interacting configurations to those including cation-cation H-bonds is determined to be 3-4 kJmol(-1). The experimental findings and DFT calculations strongly support the concept of anti-electrostatic hydrogen bonds (AEHBs) as recently suggested by Weinhold and Klein. The like-charge configurations are kinetically stabilized with decreasing temperatures.

  5. Mechanisms of fragmentation of cationic peptide ions

    NASA Astrophysics Data System (ADS)

    Zhao, Hong; Adams, Jeanette

    1993-06-01

    Fragmentation mechanisms for formation of several commonly occurring product ions in high-energy collision-induced induced decomposition spectra of either (M + Cat2+ - H)+ ions of peptides cationized with alkaline earth metal ions, (M + Ca+)+ ions cationized with alkali metal ions, or (M + H)+ ions are evaluated by using deuterium-labelled peptides. The different sources of hydrogen transferred in the reactions are identified. Our study supports some previously proposed mechanisms but also provides evidence for others.

  6. Test procedure for cation exchange chromatography

    SciTech Connect

    Cooper, T.D.

    1994-08-24

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction.

  7. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOEpatents

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1998-04-28

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.

  8. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry.

    PubMed

    Bythell, Benjamin J; Abutokaikah, Maha T; Wagoner, Ashley R; Guan, Shanshan; Rabus, Jordan M

    2016-11-28

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the (0,2) A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies. Graphical Abstract ᅟ.

  9. Cation-dependent stability of subtilisin.

    PubMed

    Alexander, P A; Ruan, B; Bryan, P N

    2001-09-04

    Subtilisin BPN' contains two cation binding sites. One specifically binds calcium (site A), and the other can bind both divalent and monovalvent metals (site B). By binding at specific sites in the tertiary structure of subtilisin, cations contribute their binding energy to the stability of the native state and increase the activation energy of unfolding. Deconvoluting the influence of binding sites A and B on the inactivation rate of subtilisin is complicated, however. This paper examines the stabilizing effects of cation binding at site B by using a mutant of subtilisin BPN' which lacks calcium site A. Using this mutant, we show that calcium binding at site B has relatively little effect on stability in the presence of moderate concentrations of monovalent cations. At [NaCl] =100 mM, site B is >or=98% occupied with sodium, and therefore its net occupancy with a cation varies little as subtilisin is titrated with calcium. Exchanging sodium for calcium results in a 5-fold decrease in the rate of inactivation. In contrast, because of the high selectivity of site A for calcium, its occupancy changes dramatically as calcium concentration is varied, and consequently the inactivation rate of subtilisin decreases approximately 200-fold as site A becomes saturated with calcium, irrespective of the concentration of monovalent cations.

  10. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2016-11-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  11. Effect of amine type on the expression of plasmid DNA by cationized dextran.

    PubMed

    Jo, Jun-ichiro; Nagane, Kentaro; Yamamoto, Masaya; Tabata, Yasuhiko

    2010-01-01

    The objective of this study is to prepare a non-viral carrier of gene expression from the polysaccharide dextran and evaluate the effect of amine compounds introduced to dextran on the level of gene expression. Dextran with a molecular weight of 74 x 10(3) was cationized by the chemical introduction of different amine compounds. The cationized dextran was complexed with a plasmid DNA and the vitro gene transfection was investigated for HeLa cells. The level of gene expression depended on the amine compound introduced to dextran. The highest level was observed for the complex of spermine-introduced dextran and plasmid DNA. The highest cellular internalization and the best buffering effect were observed among every cationized dextran. Every complex did not show any cytotoxicity. It is concluded that the superior properties of spermine-introduced dextran enabled the plasmid DNA to enhance the expression level to a great extent compared with other cationized dextrans. Cationized dextran is a promising non-viral carrier of plasmid DNA.

  12. DFT and MP2 study of the interaction between corannulene and alkali cations.

    PubMed

    Rellán-Piñeiro, Marcos; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M; Josa, Daniela

    2013-05-01

    Corannulene is an unsaturated hydrocarbon composed of fused rings, with one central five-membered ring and five peripheral six-membered rings. Its structure can be considered as a portion of C60. Corannulene is a curved π surface, but unlike C60, it has two accessible different faces: one concave (inside) and one convex (outside). In this work, computational modeling of the binding between alkali metal cations (Li(+), Na(+), and K(+)) and corannulene has been performed at the DFT and MP2 levels. Different corannulene···M(+) complexes have been studied and the transition states interconnecting local minima were located. The alkali cations can be bound to a five or six membered ring in both faces. At the DFT level, binding to the convex face (outside) is favored relative to the concave face for the three alkali cations studied, as it was previously published. This out preference was found to decrease as cation size increases. At the MP2 level, although a similar trend is found, some different conclusions related to the in/out preference were obtained. According to our results, migration of cations can take place on the convex or on the concave face. Also, there are two ways to transform a concave complex in a convex complex: migration across the edge of corannulene and bowl-to-bowl inversion.

  13. Ultrasound enhancement of in vitro transfection of plasmid DNA by a cationized gelatin.

    PubMed

    Hosseinkhani, Hossein; Aoyama, Teruyoshi; Ogawa, Osamu; Tabata, Yasuhiko

    2002-05-01

    In vitro transfection efficiency of a plasmid DNA for rat gastric mucosal (RGM)-1 cells was enhanced by ultrasound (US) irradiation. Ethylenediamine was introduced to the carboxyl groups of gelatin to prepare a cationized gelatin as the vector of plasmid DNA encoding luciferase. An electrophoresis experiment revealed that the cationized gelatin was mixed with plasmid DNA at the weight ratio of 5.0 to form a cationized gelatin-plasmid DNA complex. The complex obtained was about 200nm in diameter with a positive charge. When incubated with the cationized gelatin-plasmid DNA complex and subsequently exposed to US, RGM-1 cells exhibited a significantly enhanced luciferase activity although the extent increased with an increase in the DNA concentration, in contrast to the cationized gelatin alone with or without US irradiation and US irradiation alone. US irradiation was also effective in enhancing the activity by free plasmid DNA although the extent was less than that of the complex. The US-induced enhancement of luciferase activity was influenced by the exposure time period, frequency, and intensity of US. The activity enhancement became higher to be significant at the irradiation time period of 60 s and thereafter decreased. A series of cytotoxicity experiments revealed that an increase in the irradiation time period and intensity of US decreased the viability of cells themselves. It is possible that US irradiation under an appropriate condition enables cells to accelerate the permeation of the cationized gelatin-plasmid DNA complex through the cell membrane, resulted in enhanced transfection efficiency of plasmid DNA. These findings clearly indicate that US exposure is a simple and promising method to enhance the gene expression of plasmid DNA.

  14. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation

    NASA Astrophysics Data System (ADS)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-01

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  15. Interactions between Cytochrome c2 and the Photosynthetic Reaction Center from Rhodobacter sphaeroides : The Cation-pi Interaction†

    PubMed Central

    Paddock, M. L.; Weber, K. H.; Chang, C.; Okamura, M. Y.

    2008-01-01

    The cation-pi interaction between positively charged and aromatic groups is a common feature of many proteins and protein complexes. The structure of the complex between cytochrome c2 (cyt c2) and photosynthetic reaction center (RC) from Rhodobacter sphaeroides exhibits a cation-pi complex formed between Arg-C32 on cyt c2 and Tyr-M295 on the RC (Axelrod et. al (2002) J. Mol. Biol. 319, 501–515). The importance of the cation-pi interaction for binding and electron transfer was studied by mutating Tyr-M295 and Arg-C32. The first and second order rates for electron transfer were not affected by mutating Tyr-M295 to Ala indicating that the cation-pi complex does not greatly affect the association process or structure of the state active in electron transfer. The dissociation constant KD showed a greater increase when Try-M295 was replaced by non-aromatic Ala (3-fold) than by aromatic Phe (1.2-fold) characteristic of a cation-pi interaction. Replacement of Arg-C32 by Ala increased KD (80-fold) largely due to removal of electrostatic interactions with negatively charged residues on the RC. Replacement by Lys, increased KD (6-fold) indicating that Lys does not form a cation-pi complex. This specificity for Arg may be due to a solvation effect. Double mutant analysis indicates interaction energy between Tyr-M295 and Arg-C32 of about −24 meV (−0.6 kcal/mole). This energy is surprisingly small considering the widespread occurrence of cation-pi complexes and may be due to the trade-off between the favorable cation-pi binding energy and the unfavorable desolvation energy needed to bury Arg-C32 in the short-range contact region between the two proteins. PMID:16008347

  16. Complex oxides: Intricate disorder

    SciTech Connect

    Uberuaga, Blas Pedro

    2016-02-29

    In this study, complex oxides such as pyrochlores have a myriad of potential technological applications, including as fast ion conductors and radiation-tolerant nuclear waste forms. They are also of interest for their catalytic and spin ice properties. Many of these functional properties are enabled by the atomic structure of the cation sublattices. Pyrochlores (A2B2O7) contain two different cations (A and B), typically a 3+ rare earth and a 4+ transition metal such as Hf, Zr, or Ti. The large variety of chemistries that can form pyrochlores leads to a rich space in which to search for exotic new materials. Furthermore, how cations order or disorder on their respective sublattices for a given chemical composition influences the functional properties of the oxide. For example, oxygen ionic conductivity is directly correlated with the level of cation disorder — the swapping of A and B cations1. Further, the resistance of these materials against amorphization has also been connected with the ability of the cations to disorder2, 3. These correlations between cation structure and functionality have spurred great interest in the structure of the cation sublattice under irradiation, with significant focus on the disordering mechanisms and disordered structure. Previous studies have found that, upon irradiation, pyrochlores often undergo an order-to-disorder transformation, in which the resulting structure is, from a diffraction point of view, indistinguishable from fluorite (AO2) (ref. 3). Shamblin et al. now reveal that the structure of disordered pyrochlore is more complicated than previously thought4.

  17. Complex oxides: Intricate disorder

    DOE PAGES

    Uberuaga, Blas Pedro

    2016-02-29

    In this study, complex oxides such as pyrochlores have a myriad of potential technological applications, including as fast ion conductors and radiation-tolerant nuclear waste forms. They are also of interest for their catalytic and spin ice properties. Many of these functional properties are enabled by the atomic structure of the cation sublattices. Pyrochlores (A2B2O7) contain two different cations (A and B), typically a 3+ rare earth and a 4+ transition metal such as Hf, Zr, or Ti. The large variety of chemistries that can form pyrochlores leads to a rich space in which to search for exotic new materials. Furthermore,more » how cations order or disorder on their respective sublattices for a given chemical composition influences the functional properties of the oxide. For example, oxygen ionic conductivity is directly correlated with the level of cation disorder — the swapping of A and B cations1. Further, the resistance of these materials against amorphization has also been connected with the ability of the cations to disorder2, 3. These correlations between cation structure and functionality have spurred great interest in the structure of the cation sublattice under irradiation, with significant focus on the disordering mechanisms and disordered structure. Previous studies have found that, upon irradiation, pyrochlores often undergo an order-to-disorder transformation, in which the resulting structure is, from a diffraction point of view, indistinguishable from fluorite (AO2) (ref. 3). Shamblin et al. now reveal that the structure of disordered pyrochlore is more complicated than previously thought4.« less

  18. Preparation of Tremorine and Gemini Surfactant Precursors with Cationic Ethynyl-Bridged Digold Catalysts.

    PubMed

    Grirrane, Abdessamad; Álvarez, Eleuterio; García, Hermenegildo; Corma, Avelino

    2017-02-24

    Tremorine and precursors of gemini surfactants were synthesised in a one-pot, three-step, double-catalytic A(3) coupling reaction and characterised by structural and spectroscopic methods. The cationic [Au(I) (L1)]SbF6 complex is a more active catalyst compared to neutral L2- and L3-Au(I) bis(trifluoromethanesulfonyl)imidate complexes (L1, L2=Buchwald-type biaryl phosphane; L3=triphenylphosphine) in promoting the double A(3) coupling of ethynyltrimethylsilane, secondary amines (cyclic, aliphatic, or aromatic) and formaldehyde. The solvent influences the catalytic performance by desilylation of silyl acetylene or deactivation of the catalyst by a halide anion. Acetylide-bridged cationic digold(I) L1 and L2 complexes were isolated and characterised by means of single-crystal X-ray structure analysis and their spectroscopic properties. Iodine in the acetylene reagent deactivates the Au(I) catalyst by formation of the less active iodido-bridged cationic digold(I) L1 complex, which was fully characterised by single-crystal X-ray crystal structure analysis and spectroscopy. The nature of the phosphine ligand of the gold complexes used as catalyst affects the stability and activity of the formed cationic ethynyl-bridged Au(I)2 -L intermediates, isolation of which lends support to the proposed double A(3) coupling mechanism.

  19. Analysis of chromite by cation-exchange using ethylenediaminetetra-acetic acid.

    PubMed

    Jawaid, M; Ingman, F

    1975-12-01

    A method for the separation and determination of five major elements in chromite ore (and chrome-bearing refractories), based on complexation of the metals with EDTA is described. After removal of silica, the cations are separated into two groups by passing the solution through a cation-exchange resin (Dowex 50W-X8, in Na-form) in the presence of an excess of the complexing agent. The optimum conditions for the separation are discussed on the basis of exchange constants that were either known or determined. The first group contains Cr and Fe, which emerge in the filtrate at pH between 1.5 and 2.1, whereas A1, Mg and Ca, which are adsorbed on the resin, form another group. Complexometric titrations are used for the subsequent determination of the cations in each group. The method is simpler and more rapid and accurate for routine analysis than the current methods.

  20. Induced circular dichroism of polyoxometalates via electrostatic encapsulation with chiral organic cations.

    PubMed

    Wang, Yizhan; Shi, Lei; Yang, Yang; Li, Bao; Wu, Lixin

    2014-09-21

    To explore the principle of chiral induction in inorganic clusters, chiral organic cations with two stereocenters, R- and S-BPEA, are used to encapsulate a series of polyoxometalates (POMs) bearing different structures and transition absorption bands in aqueous solution, constructing a series of chiral supramolecular complexes. Due to the induction of chiral organic cations, POMs possessing both chiral and achiral structures show an induced circular dichroism (ICD) effect. ICD signals in the absorption bands corresponding to ligand to metal charge transfer (LMCT) transitions, d-d transitions and intervalence charge transfer (IVCT) transitions are observed for different complexes. Moreover, the ICD of the POMs exhibits a direct correlation with the degree of POM distortion and the distance between the chiral center and the POM surface. The encapsulation of POMs with chiral organic cations via electrostatic interactions provides a facile and effective method for constructing optically pure POM-based materials.

  1. Using Ylide Functionalization to Stabilize Boron Cations

    PubMed Central

    Scherpf, Thorsten; Feichtner, Kai‐Stephan

    2017-01-01

    Abstract The metalated ylide YNa [Y=(Ph3PCSO2Tol)−] was employed as X,L‐donor ligand for the preparation of a series of boron cations. Treatment of the bis‐ylide functionalized borane Y2BH with different trityl salts or B(C6F5)3 for hydride abstraction readily results in the formation of the bis‐ylide functionalized boron cation [Y−B−Y]+ (2). The high donor capacity of the ylide ligands allowed the isolation of the cationic species and its characterization in solution as well as in solid state. DFT calculations demonstrate that the cation is efficiently stabilized through electrostatic effects as well as π‐donation from the ylide ligands, which results in its high stability. Despite the high stability of 2 [Y−B−Y]+ serves as viable source for the preparation of further borenium cations of type Y2B+←LB by addition of Lewis bases such as amines and amides. Primary and secondary amines react to tris(amino)boranes via N−H activation across the B−C bond. PMID:28185370

  2. The adsorption of helium atoms on coronene cations

    NASA Astrophysics Data System (ADS)

    Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin; Lindinger, Albrecht; Scheier, Paul; Ellis, Andrew M.

    2016-08-01

    We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C24H12, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities ("magic number" peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers can be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.

  3. Structural resolution of 4-substituted proline diastereomers with ion mobility spectrometry via alkali metal ion cationization.

    PubMed

    Flick, Tawnya G; Campuzano, Iain D G; Bartberger, Michael D

    2015-03-17

    The chirality of substituents on an amino acid can significantly change its mode of binding to a metal ion, as shown here experimentally by traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) of different proline isomeric molecules complexed with alkali metal ions. Baseline separation of the cis- and trans- forms of both hydroxyproline and fluoroproline was achieved using TWIMS-MS via metal ion cationization (Li(+), Na(+), K(+), and Cs(+)). Density functional theory calculations indicate that differentiation of these diastereomers is a result of the stabilization of differing metal-complexed forms adopted by the diastereomers when cationized by an alkali metal cation, [M + X](+) where X = Li, Na, K, and Cs, versus the topologically similar structures of the protonated molecules, [M + H](+). Metal-cationized trans-proline variants exist in a linear salt-bridge form where the metal ion interacts with a deprotonated carboxylic acid and the proton is displaced onto the nitrogen atom of the pyrrolidine ring. In contrast, metal-cationized cis-proline variants adopt a compact structure where the carbonyl of the carboxylic acid, nitrogen atom, and if available, the hydroxyl and fluorine substituent solvate the metal ion. Experimentally, it was observed that the resolution between alkali metal-cationized cis- and trans-proline variants decreases as the size of the metal ion increases. Density functional theory demonstrates that this is due to the decreasing stability of the compact charge-solvated cis-proline structure with increased metal ion radius, likely a result of steric hindrance and/or weaker binding to the larger metal ion. Furthermore, the unique structures adopted by the alkali metal-cationized cis- and trans-proline variants results in these molecules having significantly different quantum mechanically calculated dipole moments, a factor that can be further exploited to improve the diastereomeric resolution when utilizing a drift gas with a

  4. Label-free quantitative analysis for studying the interactions between nanoparticles and plasma proteins.

    PubMed

    Capriotti, Anna Laura; Caracciolo, Giulio; Caruso, Giuseppe; Cavaliere, Chiara; Pozzi, Daniela; Samperi, Roberto; Laganà, Aldo

    2013-01-01

    A shotgun proteomics approach was used to compare human plasma protein binding capability with cationic liposomes, DNA-cationic lipid complexes (lipoplexes), and lipid-polycation-DNA (LPD) complexes. Nano-high-performance liquid chromatography coupled with a high-resolution LTQ Orbitrap XL mass spectrometer was used to characterize and compare their protein corona. Spectral counting and area under curve methods were used to perform label-free quantification. Substantial qualitative and quantitative differences were found among proteins bound to the three different systems investigated. Protein variety found on lipoplexes and LPD complexes was richer than that found on cationic liposomes. There were also significant differences between the amounts of protein. Such results could help in the design of gene-delivery systems, because some proteins could be more selectively bound rather than others, and their bio-distribution could be driven in vivo for more efficient and effective gene therapy.

  5. Ortho-7 bound to the active-site gorge of free and OP-conjugated acetylcholinesterase: cation-π interactions.

    PubMed

    Pathak, Arup Kumar; Bandyopadhyay, Tusar

    2016-01-01

    Despite the immense importance of cation-π interactions prevailing in bispyridinium drug acetylcholinesterase (AChE) complexes, a precise description of cation-π interactions at molecular level has remained elusive. Here, we consider a bispyridinium drug, namely, ortho-7 in three different structures of AChE, with and without complexation with organophosphorus (OP) compounds for detailed investigation using all atom molecular dynamics simulation. By quantum mechanical calculations, Y72, W86, Y124, W286, Y337, and Y341 aromatic residues of the enzyme are investigated for possible cation-π interactions with ortho-7. The cation-π interactions in each of the protein-drug complexes are studied using distance, angle, a suitable functional form of them, and electrostatic criteria. The variation of cation-π functional is remarkably consistent with that of the Columbic variation. It is clearly observed that cation-π interactions for some of the residues in the catalytic active site (CAS) and peripheral anionic site (PAS) of the enzyme are either enhanced or reduced based on the nature of OP conjugation (i.e., nerve gas, tabun or pesticide, fenamiphos) when compared with the OP-free enzyme. The strength of cation-π interaction is strongly dependent on the type OP conjugation. The effect of conjugation at CAS is also seen to influence the cation-π interaction at the PAS region. The variation of cation-π interactions on the type of conjugating OP compounds might be suggestive of a reason as to why wide spectrum drug against any OP poisoning is yet to arrive in the market.

  6. TiO 2 nano-porous photoelectrochemical cells (PECs) sensitized with mixed cationic/anionic dye systems: Role of the second cationic fluorescent dye on the photocurrent enhancement

    NASA Astrophysics Data System (ADS)

    Jayaweera, P. M.; Rajapaksha, R. M. S. P.; Tennakone, K.

    2005-08-01

    Bromopyrogallol red (BPR), an anionic dye material was used in nano-porous photoelectrochemical cells as the sensitizer in conjunction with a fluorescent cationic dye, rhodamineB (RhB) and acridine orange (AO). The overlap between absorption and emission spectra of BPR/RhB and the formation of a strong associated complex influences the photoelectron transfer rate to be enhanced and to produce enhanced photovoltaic properties. Fluorescence quenching studies indicate that photoexcited cationic dye materials deactivate efficiently by BPR following different mechanisms. FTIR and rR spectroscopic evidences suggest that the electrostatic interaction of fluorescent cationic dye takes place from the -SO3- group of the BPR molecule.

  7. Cationic Redistribution at Epitaxial Interfaces in Superconducting Two-Dimensionally Doped Lanthanum Cuprate Films.

    PubMed

    Baiutti, Federico; Gregori, Giuliano; Wang, Yi; Suyolcu, Y Eren; Cristiani, Georg; van Aken, Peter A; Maier, Joachim; Logvenov, Gennady

    2016-10-12

    The exploration of interface effects in complex oxide heterostructures has led to the discovery of novel intriguing phenomena in recent years and has opened the path toward the precise tuning of material properties at the nanoscale. One recent example is space-charge superconductivity. Among the complex range of effects which may arise from phase interaction, a crucial role is played by cationic intermixing, which defines the final chemical composition of the interface. In this work, we performed a systematic study on the local cationic redistribution of two-dimensionally doped lanthanum cuprate films grown by oxide molecular beam epitaxy, in which single LaO layers in the epitaxial crystal structure were substituted by layers of differently sized and charged dopants (Ca, Sr, Ba, and Dy). In such a model system, in which the dopant undergoes an asymmetric redistribution across the interface, the evolution of the cationic concentration profile can be effectively tracked by means of atomically resolved imaging and spectroscopic methods. This allowed for the investigation of the impact of the dopant chemistry (ionic size and charge) and of the growth conditions (temperature) on the final superconducting and structural properties. A qualitative model for interface cationic intermixing, based on thermodynamic considerations, is proposed. This work highlights the key role which cationic redistribution may have in the definition of the final interface properties and represents a further step forward the realization of heterostructures with improved quality.

  8. First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites.

    PubMed

    Fang, Hanjun; Kamakoti, Preeti; Ravikovitch, Peter I; Aronson, Matthew; Paur, Charanjit; Sholl, David S

    2013-08-21

    The development of accurate force fields is vital for predicting adsorption in porous materials. Previously, we introduced a first principles-based transferable force field for CO2 adsorption in siliceous zeolites (Fang et al., J. Phys. Chem. C, 2012, 116, 10692). In this study, we extend our approach to CO2 adsorption in cationic zeolites which possess more complex structures. Na-exchanged zeolites are chosen for demonstrating the approach. These methods account for several structural complexities including Al distribution, cation positions and cation mobility, all of which are important for predicting adsorption. The simulation results are validated with high-resolution experimental measurements of isotherms and microcalorimetric heats of adsorption on well-characterized materials. The choice of first-principles method has a significant influence on the ability of force fields to accurately describe CO2-zeolite interactions. The PBE-D2 derived force field, which performed well for CO2 adsorption in siliceous zeolites, does not do so for Na-exchanged zeolites; the PBE-D2 method overestimates CO2 adsorption energies on multi-cation sites that are common in cationic zeolites with low Si/Al ratios. In contrast, a force field derived from the DFT/CC method performed well. Agreement was obtained between simulation and experiment not only for LTA-4A on which the force field fitting is based, but for other two common adsorbents, NaX and NaY.

  9. Cationically polymerizable monomers derived from renewable sources

    SciTech Connect

    Crivello, J.V.

    1991-10-01

    The objective of this project is to make use of products obtained from renewable plant sources as monomers for the direct production of polymers which can be used for a wide range of plastic applications. In this report is described progress in the synthesis and polymerization of cationically polymerizable monomers and oligomers derived from botanical oils, terpenes, natural rubber, and lignin. Nine different botanical oils were obtained from various sources, characterized and then epoxidized. Their photopolymerization was carried out using cationic photoinitiators and the mechanical properties of the resulting polymers characterized. Preliminary biodegradation studies are being conducted on the photopolymerized films from several of these oils. Limonene was cationically polymerized to give dimers and the dimers epoxidized to yield highly reactive monomers suitable for coatings, inks and adhesives. The direct phase transfer epoxidation of squalene and natural rubber was carried out. The modified rubbers undergo facile photocrosslinking in the presence of onium salts to give crosslinked elastomers. 12 refs., 3 figs., 10 tabs.

  10. Cationic acrylamide emulsion polymer brine thickeners

    SciTech Connect

    Gleason, P.A.; Piccoline, M.A.

    1986-12-02

    This patent describes a thickened, solids free, aqueous drilling and servicing brine having a density of at least 14.4 ppg. comprising (a) an aqueous solution of at least one water-soluble salt of a multivalent metal, and (b) a cationic water-in-oil emulsion polymer of acrylamide or methacrylamide and a cationic monomer selected from the group consisting of a dialkylaminoalkyl acrylamide or methacrylamide, a trialkylaminoalkyl acrylamide or methacrylamide, a trialkylaminoalkyl acrylate or methacrylate, and a dialkyldialkyl ammonium halide. The acrylamide or methacrylamide to cationic monomer molar ratio of the polymer is about 70:30 to 95:5, the polymer having an I.V. in 1.0N KCl of about 1.0 to 7.0 dl/g and being present in a compatible and viscosifying amount; the thickened brine characterized by being substantially non-dilatent.

  11. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  12. Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines.

    PubMed

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-04-06

    In the last couple of decades, photodynamic therapy emerged as a useful tool in the treatment of basal cell carcinoma. However, it still meets limitations due to unfavorable properties of photosensitizers such as poor solubility or lack of selectivity. Dendrimers, polymers widely studied in biomedical field, may play a role as photosensitizer carriers and improve the efficacy of photodynamic treatment. Here, we describe the evaluation of an electrostatic complex of cationic phosphorus dendrimer and rose bengal in such aspects as singlet oxygen production, cellular uptake, and phototoxicity against three basal cell carcinoma cell lines. Rose bengal-cationic dendrimer complex in molar ratio 5:1 was compared to free rose bengal. Obtained results showed that the singlet oxygen production in aqueous medium was significantly higher for the complex than for free rose bengal. The cellular uptake of the complex was 2-7-fold higher compared to a free photosensitizer. Importantly, rose bengal, rose bengal-dendrimer complex, and dendrimer itself showed no dark toxicity against all three cell lines. Moreover, we observed that phototoxicity of the complex was remarkably enhanced presumably due to high cellular uptake. On the basis of the obtained results, we conclude that rose bengal-cationic dendrimer complex has a potential in photodynamic treatment of basal cell carcinoma.

  13. ABSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOEpatents

    Tompkins, E.R.; Parker, G.W.

    1959-03-10

    An improved method is presented for the chromatographic separation of fission products wherein a substantial reduction in liquid volume is obtained. The process consists in contacting a solution containing fission products with a body of ion-exchange adsorbent to effect adsorption of fission product cations. The loaded exchange resin is then contacted with a small volume of a carboxylic acid eluant, thereby recovering the fission products. The fission product carrying eluate is acidified without increasing its volume to the volume of the original solution, and the acidified eluate is then used as a feed solution for a smaller body of ion-exchange resin effecting readsorption of the fission product cations.

  14. Optimizing delivery systems for cationic biopolymers: competitive interactions of cationic polylysine with anionic κ-carrageenan and pectin.

    PubMed

    Lopez-Pena, Cynthia Lyliam; McClements, David Julian

    2014-06-15

    Polylysine is a cationic biopolymer with a strong antimicrobial activity against a wide range of microorganisms, however, its functional performance is influenced by its interactions with anionic biopolymers. We examined the stability of polylysine-pectin complexes in the presence of carrageenan, and vice versa. Polylysine-pectin or polylysine-carrageenan complexes were formed at mass ratios of 1:0 to 1:32 (pH 3.5), and then micro-electrophoresis, turbidity, microscopy, and isothermal titration calorimetry (ITC) were used to characterise them. Solutions containing polylysine-pectin complexes were slightly turbid and relatively stable to aggregation at high mass ratios, whereas those containing polylysine-carrageenan complexes were turbid and unstable to aggregation and precipitation. Pectin did not strongly interact with polylysine-carrageenan complexes, whereas carrageenan displaced pectin from polylysine-pectin complexes, which was attributed to differences in electrostatic attraction between polylysine, carrageenan, and pectin. These results have important implications for the design of effective antimicrobial delivery systems for foods and beverages.

  15. Binding of DNA to zwitterionic lipid layers mediated by divalent cations.

    PubMed

    Mengistu, Demmelash H; Bohinc, Klemen; May, Sylvio

    2009-09-10

    Divalent cations, i.e., calcium, magnesium, and others, are able to enhance the ability of DNA to interact with membranes that are composed of zwitterionic lipids such as phosphatidylcholine. The resulting condensed complexes offer potential applications as nontoxic gene delivery vehicles. The present study suggests a generic theoretical model to describe the energetics and structural features of a zwitterionic lipid-DNA complex in the presence of divalent cations. Specifically, we consider the adsorption of a single molecule of double-stranded DNA onto a planar zwitterionic lipid layer. Our theoretical model is based on the continuum Poisson-Boltzmann formalisms, which we modified so as to account for the two opposite charges and orientational freedom of the zwitterionic lipid headgroups. We find a substantially more favorable adsorption free energy of the DNA if divalent cations are present. In addition, our model predicts the divalent cations to preferentially interact with the phosphate groups of the zwitterionic lipids, given these lipids are located in close vicinity to the DNA. This is accompanied by a small but notable reorientation of the zwitterionic headgroups toward the DNA. We demonstrate that the binding of DNA onto a zwitterionic lipid layer is not driven by the release of counterions. Instead, the binding leads to a partial redistribution of the divalent cations, from the phosphate groups of the DNA (prior to the binding) to the phosphate groups of the zwitterionic lipids (after the binding). Our results thus suggest a general physical mechanism underlying complex formation between DNA and zwitterionic lipids in terms of mean-field electrostatics, i.e., neither involving correlations nor specific interactions of the divalent cations.

  16. Biogenic and synthetic polyamines bind cationic dendrimers.

    PubMed

    Mandeville, Jean-Sebastian; Bourassa, Phillipe; Thomas, Thekkumkattil John; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of K(spm-mPEG-G3) = 7.6 × 10(4) M(-1), K(spm-mPEG-PAMAM-G4) = 4.6 × 10(4) M(-1), K(spm-PAMAM-G4) = 6.6 × 10(4) M(-1), K(spmd-mPEG-G3) = 1.0 × 10(5) M(-1), K(spmd-mPEG-PAMAM-G4) = 5.5 × 10(4) M(-1), K(spmd-PAMAM-G4) = 9.2 × 10(4) M(-1), K(BE-333-mPEG-G3) = 4.2 × 10(4) M(-1), K(Be-333-mPEG-PAMAM-G4) = 3.2 × 10(4) M(-1), K(BE-333-PAMAM-G4) = 3.6 × 10(4) M(-1), K(BE-3333-mPEG-G3) = 2.2 × 10(4) M(-1), K(Be-3333-mPEG-PAMAM-G4) = 2.4 × 10(4) M(-1), K(BE-3333-PAMAM-G4) = 2.3 × 10(4) M(-1). Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: -3.2 (spermine), -3.5 (spermidine) and -3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues.

  17. Biogenic and Synthetic Polyamines Bind Cationic Dendrimers

    PubMed Central

    Mandeville, Jean-Sebastian; Bourassa, Phillipe; Thomas, Thekkumkattil John; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of Kspm-mPEG-G3 = 7.6×104 M−1, Kspm-mPEG-PAMAM-G4 = 4.6×104 M−1, Kspm-PAMAM-G4 = 6.6×104 M−1, Kspmd-mPEG-G3 = 1.0×105 M−1, Kspmd-mPEG-PAMAM-G4 = 5.5×104 M−1, Kspmd-PAMAM-G4 = 9.2×104 M−1, KBE-333-mPEG-G3 = 4.2×104 M−1, KBe-333-mPEG-PAMAM-G4 = 3.2×104 M−1, KBE-333-PAMAM-G4 = 3.6×104 M−1, KBE-3333-mPEG-G3 = 2.2×104 M−1, KBe-3333-mPEG-PAMAM-G4 = 2.4×104 M−1, KBE-3333-PAMAM-G4 = 2.3×104 M−1. Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: −3.2 (spermine), −3.5 (spermidine) and −3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues. PMID:22558341

  18. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery.

    PubMed

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2015-01-28

    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  19. Investigation of the influence on conformational transition of DNA induced by cationic lipid vesicles

    NASA Astrophysics Data System (ADS)

    Zhang, Zheling; Huang, Weimin; Wang, Erkang; Dong, Shaojun

    2003-01-01

    Recent studies have focused on the structural features of DNA-lipid assemblies. In this paper we take nile blue A (NBA) as a probe molecule to study the influence of the conformational transition of DNA induced by didodecyldimethylammonium bromide (DDAB) cationic vesicles to the interaction between DNA and the probe molecules. We find that upon binding to DNA, a secondary conformational transition of DNA induced by the cationic liposome from the native B-form to the C-form resulted in the change of binding modes of NBA to DNA and different complexes are formed between DNA, DDAB and NBA.

  20. UV/Vis Action Spectroscopy and Structures of Tyrosine Peptide Cation Radicals in the Gas Phase.

    PubMed

    Viglino, Emilie; Shaffer, Christopher J; Tureček, František

    2016-06-20

    We report the first application of UV/Vis photodissociation action spectroscopy for the structure elucidation of tyrosine peptide cation radicals produced by oxidative intramolecular electron transfer in gas-phase metal complexes. Oxidation of Tyr-Ala-Ala-Ala-Arg (YAAAR) produces Tyr-O radicals by combined electron and proton transfer involving the phenol and carboxyl groups. Oxidation of Ala-Ala-Ala-Tyr-Arg (AAAYR) produces a mixture of cation radicals involving electron abstraction from the Tyr phenol ring and N-terminal amino group in combination with hydrogen-atom transfer from the Cα positions of the peptide backbone.

  1. Restructuring of a Peat in Interaction with Multivalent Cations: Effect of Cation Type and Aging Time

    PubMed Central

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J. A.; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al3+, Ca2+ or Na+, respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for Ca

  2. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    PubMed

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J A; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+), Ca(2+) or Na(+), respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for

  3. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    SciTech Connect

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1996-12-31

    The problems associated with the disposal of toxic metals in an environmentally acceptable manner continues to plague industry. Such metals as nickel, vanadium, molybdenum, cobalt, iron, and antimony present physiological and ecological challenges that are best addressed through minimization of exposure and dispersion. A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  4. Reversible precipitation of casein micelles with a cationic hydroxyethylcellulose.

    PubMed

    Ausar, Salvador F; Bianco, Ismael D; Castagna, Leonardo F; Alasino, Roxana V; Narambuena, Claudio F; Leiva, Ezequiel P M; Beltramo, Dante M

    2005-11-16

    The cationic hydroxyethylcellulose Polyquaternium 10 (PQ10) was found to produce a dose-dependent destabilization of casein micelles from whole or skim milk without affecting the stability of most of the whey proteins. The anionic phosphate residues on caseins were not determinant in the observed interaction since the destabilization was also observed with dephosphorylated caseins to the same extent. However, the precipitation process was completely inhibited by rising NaCl concentration, indicating an important role of electrostatic interactions. Furthermore, the addition of 150 mM NaCl solubilized preformed PQ10-casein complexes, rendering a stable casein suspension without a disruption of the internal micellar structure as determined by dynamic light scattering. This casein preparation was found to contain most of the Ca2+ and only 10% of the lactose originally present in milk and remained as a stable suspension for at least 4 months at 4 degrees C. The final concentration of PQ10 determined both the size of the casein-polymer aggregates and the amount of milkfat that coprecipitates. The presence of PQ10 in the aggregates did not inhibit the activity of rennet or gastrointestinal proteases and lipases, nor did it affect the growth of several fermentative bacteria. The cationic cellulose PQ10 may cause a reversible electrostatic precipitation of casein micelles without disrupting their internal structure. The reversibility of the interaction described opens the possibility of using this cationic polysaccharide to concentrate and resuspend casein micelles from whole or skim milk in the production of new fiber-enriched lactose-reduced calcium-caseinate dairy products.

  5. Cationic Pd(II)-catalyzed C-H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies.

    PubMed

    Nishikata, Takashi; Abela, Alexander R; Huang, Shenlin; Lipshutz, Bruce H

    2016-01-01

    Cationic palladium(II) complexes have been found to be highly reactive towards aromatic C-H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN)4](BF4)2 or a nitrile-free cationic palladium(II) complex generated in situ from the reaction of Pd(OAc)2 and HBF4, effectively catalyzes C-H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C-H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1) C-H activation to generate a cationic palladacycle; (2) reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3) regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II) complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied.

  6. Cationic Pd(II)-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    PubMed Central

    Nishikata, Takashi; Abela, Alexander R; Huang, Shenlin

    2016-01-01

    Summary Cationic palladium(II) complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN)4](BF4)2 or a nitrile-free cationic palladium(II) complex generated in situ from the reaction of Pd(OAc)2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1) C–H activation to generate a cationic palladacycle; (2) reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3) regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II) complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied. PMID:27340491

  7. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  8. Viscoelastic cationic polymers containing the urethane linkage

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1972-01-01

    A method for the synthesis and manufacturing of elastomeric compositions and articles containing quaternary nitrogen centers and condensation residues along the polymeric backbone of the centers is presented. Linear and cross-linked straight chain and block polymers having a wide damping temperature range were synthesized. Formulae for the viscoelastic cationic polymers are presented.

  9. ADSORPTION OF ORGANIC CATIONS TO NATURAL MATERIALS

    EPA Science Inventory

    The factors that control the extent of adsorption of amphiphilic organic cations on environmental and pristine surfaces have been studied. The sorbents were kaolinite, montmorillonite, two aquifer materials, and a soil; solutions contained various concentrations of NaCl and CaCl,...

  10. Process and apparatus for the production of BI-213 cations

    DOEpatents

    Horwitz, E. Philip; Hines, John J.; Chiarizia, Renato; Dietz, Mark

    1998-01-01

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed.

  11. Process and apparatus for the production of Bi-213 cations

    SciTech Connect

    Horwitz, E.P.; Hines, J.J.; Chiarizia, R.; Dietz, M.

    1998-12-29

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed. 7 figs.

  12. Targeting of plasmid DNA to renal interstitial fibroblasts by cationized gelatin.

    PubMed

    Kushibiki, Toshihiro; Nagata-Nakajima, Natsuki; Sugai, Manabu; Shimizu, Akira; Tabata, Yasuhiko

    2005-10-01

    Renal interstitial fibrosis is the common pathway of chronic renal disease, while it causes end-stage renal failure. A lot of cytokines and biologically active substances are well recognized to be the candidates of primary mediators to induce accumulation of extracelluar matrix (ECM) in the interstitial fibrotic area. Interstitial fibroblasts are played a crucial role in the accumulation of excess ECM during renal interstitial fibrogenesis. Therefore, the targeting of therapeutic drugs and genes to interstitial renal fibroblasts is effective in suppressing the progress of interstitial renal failure. However, despite various approaches and techniques, few successful results have been reported on the in vivo targeting for interstitial fibroblasts. The objective of this study is to deliver an enhanced green fluorescent protein (EGFP) plasmid DNA, as a model plasmid DNA, into renal interstitial space by a cationized gelatin. After the plasmid DNA with or without complexation of the cationized gelatin was injected to the left kidney of mice via the ureter, unilateral ureteral obstruction (UUO) was performed for the mice injected to induce the renal interstitial fibrosis. When the EGFP plasmid DNA complexed with the cationized gelatin was injected, EGFP expression was observed in the fibroblasts in the interstitial area of renal cortex. It is concluded that the retrograde injection of EGFP plasmid DNA complexed with the cationized gelatin is available to target the interstitial renal fibroblasts which are currently considered as the cell source responsible for excessive ECM synthesis.

  13. Preparation of cationized polysaccharides as gene transfection carrier for bone marrow-derived mesenchymal stem cells.

    PubMed

    Jo, Jun-ichiro; Okazaki, Arimichi; Nagane, Kentaro; Yamamoto, Masaya; Tabata, Yasuhiko

    2010-01-01

    The objective of this study is to prepare a non-viral carrier of gene transfection from various polysaccharides and evaluate the feasibility in gene expression for mesenchymal stem cells (MSCs). Various amounts of spermine were chemically introduced into pullulan, dextran and mannan with a molecular weight of around 40 000 or pullulan with different molecular weights to prepare cationized polysaccharides with different extents of spermine introduced (spermine-polysaccharide). Each cationized polysaccharide was complexed with a plasmid DNA at various ratios and in vitro gene transfection was investigated for rat bone marrow-derived MSCs. The level of gene expression depended on the type of cationized polysaccharide. The highest level was observed for the complex of spermine-pullulan and plasmid DNA. Additionally, the level also depended on the molecular weight of pullulan and the extent of spermine introduced to pullulan. Suppression of gene expression with chlorpromazine and methyl-beta-cyclodextrin of endocytosis inhibitors demonstrated that the cellular uptake of spermine-pullulan-plasmid DNA complexes was mediated by clathrin- and raft/caveolae-dependent endocytic pathways. The cationized pullulan is a promising non-viral carrier of plasmid DNA for MSCs.

  14. Intermolecular forces between low generation PAMAM dendrimer condensed DNA helices: role of cation architecture.

    PubMed

    An, Min; Parkin, Sean R; DeRouchey, Jason E

    2014-01-28

    In recent years, dendriplexes, complexes of cationic dendrimers with DNA, have become attractive DNA delivery vehicles due to their well-defined chemistries. To better understand the nature of the forces condensing dendriplexes, we studied low generation poly(amidoamine) (PAMAM) dendrimer-DNA complexes and compared them to comparably charged linear arginine peptides. Using osmotic stress coupled with X-ray scattering, we have investigated the effect of molecular chain architecture on DNA-DNA intermolecular forces that determine the net attraction and equilibrium interhelical distance within these polycation condensed DNA arrays. In order to compact DNA, linear cations are believed to bind in DNA grooves and to interact with the phosphate backbone of apposing helices. We have previously shown a length dependent attraction resulting in higher packaging densities with increasing charge for linear cations. Hyperbranched polycations, such as polycationic dendrimers, presumably would not be able to bind to DNA and correlate their charges in the same manner as linear cations. We show that attractive and repulsive force amplitudes in PAMAM-DNA assemblies display significantly different trends than comparably charged linear arginines resulting in lower DNA packaging densities with increasing PAMAM generation. The salt and pH dependencies of packaging in PAMAM dendrimer-DNA and linear arginine-DNA complexes were also investigated. Significant differences in the force curve behaviour and salt and pH sensitivities suggest that different binding modes may be present in DNA condensed by dendrimers when compared to linear polycations.

  15. Silica-based cationic bilayers as immunoadjuvants

    PubMed Central

    Lincopan, Nilton; Santana, Mariana RA; Faquim-Mauro, Eliana; da Costa, Maria Helena B; Carmona-Ribeiro, Ana M

    2009-01-01

    Background Silica particles cationized by dioctadecyldimethylammonium bromide (DODAB) bilayer were previously described. This work shows the efficiency of these particulates for antigen adsorption and presentation to the immune system and proves the concept that silica-based cationic bilayers exhibit better performance than alum regarding colloid stability and cellular immune responses for vaccine design. Results Firstly, the silica/DODAB assembly was characterized at 1 mM NaCl, pH 6.3 or 5 mM Tris.HCl, pH 7.4 and 0.1 mg/ml silica over a range of DODAB concentrations (0.001–1 mM) by means of dynamic light scattering for particle sizing and zeta-potential analysis. 0.05 mM DODAB is enough to produce cationic bilayer-covered particles with good colloid stability. Secondly, conditions for maximal adsorption of bovine serum albumin (BSA) or a recombinant, heat-shock protein from Mycobacterium leprae (18 kDa-hsp) onto DODAB-covered or onto bare silica were determined. At maximal antigen adsorption, cellular immune responses in vivo from delayed-type hypersensitivity reactions determined by foot-pad swelling tests (DTH) and cytokines analysis evidenced the superior performance of the silica/DODAB adjuvant as compared to alum or antigens alone whereas humoral response from IgG in serum was equal to the one elicited by alum as adjuvant. Conclusion Cationized silica is a biocompatible, inexpensive, easily prepared and possibly general immunoadjuvant for antigen presentation which displays higher colloid stability than alum, better performance regarding cellular immune responses and employs very low, micromolar doses of cationic and toxic synthetic lipid. PMID:19152701

  16. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils.

    PubMed

    Gruba, Piotr; Mulder, Jan

    2015-04-01

    Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oakcomplexed and more adsorbed H+ than SOM from oak soils. Such differences in Al and H bonding are not only important for pH buffering and metal solubility controls, but also for stabilization of SOM via saturation of functional groups by Al and H.

  17. Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?

    PubMed

    Gebala, Magdalena; Bonilla, Steve; Bisaria, Namita; Herschlag, Daniel

    2016-08-31

    Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na(+) would outcompete Cs(+) by 1.8-2.1-fold; i.e., with Cs(+) in 2-fold excess of Na(+) the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res. 2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na(+) over Cs(+). There is an ∼25% preferential occupancy of Li(+) over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4-P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation-anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the

  18. Pressure-induced cation-cation bonding in V2O3

    DOE PAGES

    Bai, Ligang; Li, Quan; Corr, Serena A.; ...

    2015-10-09

    A pressure-induced phase transition, associated with the formation of cation-cation bonding, occurs in V2O3 by combining synchroton x-ray diffraction in a diamond anvil cell and ab initio evolutionary calculations. The high-pressure phase has a monoclinic structure with a C2/c space group, and it is both energetically and dynamically stable at pressures above 47 GPa to at least 105 GPa. this phase transition can be viewed as a two-dimensional Peierls-like distortion, where the cation-cation dimer chains are connected along the c axis of the monoclinic cell. In conclusion, this finding provides insights into the interplay of electron correlation and lattice distortionmore » in V2O3, and it may also help to understand novel properties of other early transition-metal oxides.« less

  19. Enhanced PCBs sorption on biochars as affected by environmental factors: Humic acid and metal cations.

    PubMed

    Wang, Yu; Wang, Lei; Fang, Guodong; Herath, H M S K; Wang, Yujun; Cang, Long; Xie, Zubin; Zhou, Dongmei

    2013-01-01

    Biochar plays an important role in the behaviors of organic pollutants in the soil environment. The role of humic acid (HA) and metal cations on the adsorption affinity of polychlorinated biphenyls (PCBs) to the biochars in an aqueous medium and an extracted solution from a PCBs-contaminated soil was studied using batch experiments. Biochars were produced with pine needles and wheat straw at 350 °C and 550 °C under anaerobic condition. The results showed that the biochars had high adsorption affinity for PCBs. Pine needle chars adsorbed less nonplanar PCBs than planar ones due to dispersive interactions and separation. Coexistence of HA and metal cations increased PCBs sorption on the biochars accounted for HA adsorption and cation complexation. The results will aid in a better understanding of biochar sorption mechanism of contaminants in the environment.

  20. Activation of Methane by the Pyridine Radical Cation and its Substituted Forms in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Wu, Guohua; Stewart, Hamish; Liu, Zeyu; Wang, Yongcheng; Stace, Anthony J.

    2015-08-01

    We present an experimental study of methane activation by pyridine cation and its substituents in the gas phase. Mass spectrometric experiments in an ion trap demonstrate that pyridine cation and some of its substituent cations are able to react with methane. The deuterated methane experiment has confirmed that the hydrogen atom in the ionic product of reaction does come from methane. The collected information about kinetic isotope effects has been used to distinguish the nature of the bond activation as a hydrogen abstraction. Furthermore, experimental results demonstrated that the substituent groups on the pyridine ring can crucially influence their reactivity in methane bond activation processes. Density functional calculation (DFT) was employed to study the electronic structures of the complex and reaction mechanism of CH4+C5H5N+. The calculations confirmed the hypothesis from the experimental observation, namely, the reaction is rapid with no energy barrier.

  1. Formation and Dissociation of Phosphorylated Peptide Radical Cations

    NASA Astrophysics Data System (ADS)

    Kong, Ricky P. W.; Quan, Quan; Hao, Qiang; Lai, Cheuk-Kuen; Siu, Chi-Kit; Chu, Ivan K.

    2012-12-01

    In this study, we generated phosphoserine- and phosphothreonine-containing peptide radical cations through low-energy collision-induced dissociation (CID) of the ternary metal-ligand phosphorylated peptide complexes [CuII(terpy) p M]·2+ and [CoIII(salen) p M]·+ [ p M: phosphorylated angiotensin III derivative; terpy: 2,2':6',2''-terpyridine; salen: N, N '-ethylenebis(salicylideneiminato)]. Subsequent CID of the phosphorylated peptide radical cations ( p M·+) revealed fascinating gas-phase radical chemistry, yielding (1) charge-directed b- and y-type product ions, (2) radical-driven product ions through cleavages of peptide backbones and side chains, and (3) different degrees of formation of [M - H3PO4]·+ species through phosphate ester bond cleavage. The CID spectra of the p M·+ species and their non-phosphorylated analogues featured fragment ions of similar sequence, suggesting that the phosphoryl group did not play a significant role in the fragmentation of the peptide backbone or side chain. The extent of neutral H3PO4 loss was influenced by the peptide sequence and the initial sites of the charge and radical. A preliminary density functional theory study, at the B3LYP 6-311++G(d,p) level of theory, of the neutral loss of H3PO4 from a prototypical model— N-acetylphosphorylserine methylamide—revealed several factors governing the elimination of neutral phosphoryl groups through charge- and radical-induced mechanisms.

  2. Role of Reverse Divalent Cation Diffusion in Forward Osmosis Biofouling.

    PubMed

    Xie, Ming; Bar-Zeev, Edo; Hashmi, Sara M; Nghiem, Long D; Elimelech, Menachem

    2015-11-17

    We investigated the role of reverse divalent cation diffusion in forward osmosis (FO) biofouling. FO biofouling by Pseudomonas aeruginosa was simulated using pristine and chlorine-treated thin-film composite polyamide membranes with either MgCl2 or CaCl2 draw solution. We related FO biofouling behavior-water flux decline, biofilm architecture, and biofilm composition-to reverse cation diffusion. Experimental results demonstrated that reverse calcium diffusion led to significantly more severe water flux decline in comparison with reverse magnesium permeation. Unlike magnesium, reverse calcium permeation dramatically altered the biofilm architecture and composition, where extracellular polymeric substances (EPS) formed a thicker, denser, and more stable biofilm. We propose that FO biofouling was enhanced by complexation of calcium ions to bacterial EPS. This hypothesis was confirmed by dynamic and static light scattering measurements using extracted bacterial EPS with the addition of either MgCl2 or CaCl2 solution. We observed a dramatic increase in the hydrodynamic radius of bacterial EPS with the addition of CaCl2, but no change was observed after addition of MgCl2. Static light scattering revealed that the radius of gyration of bacterial EPS with addition of CaCl2 was 20 times larger than that with the addition of MgCl2. These observations were further confirmed by transmission electron microscopy imaging, where bacterial EPS in the presence of calcium ions was globular, while that with magnesium ions was rod-shaped.

  3. Mixed-valent neptunium(IV/V) compound with cation-cation-bound six-membered neptunyl rings.

    PubMed

    Jin, Geng Bang

    2013-11-04

    A new mixed-valent neptunium(IV/V) compound has been synthesized by evaporation of a neptunium(V) acidic solution. The structure of the compound features cation-cation-bound six-membered neptunyl(V) rings. These rings are further connected by Np(IV) ions through cation-cation interactions (CCIs) into a three-dimensional neptunium cationic open framework. This example illustrates the possibility of isolating neptunyl(V) CCI oligomers in inorganic systems using other cations to compete with Np(V) in bonding with the neptunyl oxygen.

  4. Sorption mechanism and predictive models for removal of cationic organic contaminants by cation exchange resins.

    PubMed

    Jadbabaei, Nastaran; Zhang, Huichun

    2014-12-16

    Understanding the sorption mechanism of organic contaminants on cation exchange resins (CXRs) will enable application of these resins for the removal of cationic organic compounds from contaminated water. In this study, sorption of a diverse set of 12 organic cations and 8 neutral aromatic solutes on two polystyrene CXRs, MN500 and Amberlite 200, was examined. MN500 showed higher sorbed concentrations due to its microporous structure. The sorbed concentrations followed the same trend of aromatic cations > aliphatic cations > neutral solutes for both resins. Generally, solute-solvent interactions, nonpolar moiety of the solutes, and resin matrix can affect selectivity of the cations. Sorbed concentrations of the neutral compounds were significantly less than those of the cations, indicating a combined effect of electrostatic and nonelectrostatic interactions. By conducting multiple linear regression between Gibbs free energy of sorption and Abraham descriptors for all 20 compounds, polarity/polarizability (S), H-bond acidity (A), induced dipole (E), and electrostatic (J(+)) interactions were found to be involved in the sorption of the cations by the resins. After converting the aqueous sorption isotherms to sorption from the ideal gas-phase by water-wet resins, a more significant effect of J(+) was observed. Predictive models were then developed based on the linear regressions and validated by accurately estimating the sorption of different test set compounds with a root-mean-square error range of 0.91-1.1 and 0.76-0.85 for MN500 and Amberlite 200, respectively. The models also accurately predicted sorption behavior of aniline and imidazole between pH 3 and 10.

  5. Eosinophil granule cationic proteins regulate the classical pathway of complement.

    PubMed Central

    Weiler, J M; Edens, R E; Bell, C S; Gleich, G J

    1995-01-01

    Major basic protein, the primary constituent of eosinophil granules, regulates the alternative and classical pathways of complement. Major basic protein and other eosinophil granule cationic proteins, which are important in mediating tissue damage in allergic disease, regulate the alternative pathway by interfering with C3b interaction with factor B to assemble an alternative pathway C3 convertase. In the present study, eosinophil peroxidase, eosinophil cationic protein and eosinophil-derived neurotoxin, as well as major basic protein, were examined for capacity to regulate the classical pathway. Eosinophil peroxidase, eosinophil cationic protein and major basic protein inhibited formation of cell-bound classical pathway C3 convertase (EAC1,4b,2a), causing 50% inhibition of complement-mediated lysis at about 0.19, 0.75 and 0.5 micrograms/10(7) cellular intermediates, respectively. Eosinophil-derived neurotoxin had no activity on this pathway of complement. The eosinophil granule proteins were examined for activity on the formation of the membrane attack complex. Major basic protein and eosinophil cationic protein had no activity on terminal lysis. In contrast, eosinophil peroxidase inhibited lysis of EAC1,4b,2a,3b,5b, but had only minimal activity on later events in complement lysis. These polycations were then examined to determine the site(s) at which they regulated the early classical pathway. Eosinophil granule polycationic proteins: (1) reduced the Zmax at all time points but had only minimal effect on the Tmax during the formation of the classical pathway C3 convertase (EAC1,4b,2a); (2) inhibited formation of EAC1,4b,2a proportional to C4 but independent of C2 concentration; (3) inhibited fluid phase formation of C1,4b,2a, as reflected by a decrease in C1-induced consumption of C2 over time; and (4) inhibited C1 activity over time without a direct effect on either C4 or C2. These observations suggest that polycations regulate the early classical pathway by

  6. Independent adsorption of monovalent cations and cationic polymers at PE/PG lipid membranes

    NASA Astrophysics Data System (ADS)

    Khomich, Daria A.; Nesterenko, Alexey M.; Kostritskii, Andrei Yu; Kondinskaia, Diana A.; Ermakov, Yuri A.; Gurtovenko, Andrey A.

    2017-01-01

    Synthetic cationic polymers constitute a wide class of polymeric biocides. Commonly their antimicrobial effect is associated to their interaction with bacterial membranes. In the present study we analyze the interaction of various cationic polymers with model bacterial membranes comprised of a mixture of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). We describe a polymer-membrane interaction as a process of modification of the surface charge. It is well known that small monovalent inorganic cations (Na+, K+) cannot overcharge the surface of a bilayer containing anionic lipids. In contrast, polycations are able to overcharge anionic membranes and demonstrate a very large input to the electric field distribution at the membrane-water interface. We aimed here to study the electrostatic effects associated with the interaction of polycations of different types with a model lipid membrane whose composition closely resembles that of bacterial membranes (PE:PG = 1:4). Four different cationic polymers (polyvinylamine, polyallylamine, poly-L-lysine and polyethylenimine) were adsorbed at a model PE/PG bilayer in MD simulations. Adsorption of sodium cations was inspected separately for PE/PG bilayers of different composition and cation’s binding parameters were determined. From computational experiments and consequent theoretical analysis we concluded that sodium adsorption at anionic binding sites does not depend on the presence of polycations. Therefore, we hypothesize that antimicrobial activity of the studied cationic polymers should depend on the ionic composition of the medium.

  7. Oligomeric cationic polymethacrylates: a comparison of methods for determining molecular weight.

    PubMed

    Locock, Katherine E S; Meagher, Laurence; Haeussler, Matthias

    2014-02-18

    This study compares three common laboratory methods, size-exclusion chromatography (SEC), (1)H nuclear magnetic resonance (NMR), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), to determine the molecular weight of oligomeric cationic copolymers. The potential bias for each method was examined across a series of polymers that varied in molecular weight and cationic character (both choice of cation (amine versus guanidine) and relative proportion present). SEC was found to be the least accurate, overestimating Mn by an average of 140%, owing to the lack of appropriate cationic standards available, and the complexity involved in estimating the hydrodynamic volume of copolymers. MALDI-TOF approximated Mn well for the highly monodisperse (Đ < 1.1), low molecular weight (degree of polymerization (DP) <50) species but appeared unsuitable for the largest polymers in the series due to the mass bias associated with the technique. (1)H NMR was found to most accurately estimate Mn in this study, differing to theoretical values by only 5.2%. (1)H NMR end-group analysis is therefore an inexpensive and facile, primary quantitative method to estimate the molecular weight of oliogomeric cationic polymethacrylates if suitably distinct end-groups signals are present in the spectrum.

  8. Cationic-modified cyclodextrin nanosphere/anionic polymer as flocculation/sorption systems.

    PubMed

    Xiao, Huining; Cezar, Norlito

    2005-03-15

    Simultaneous removal of dissolved and colloidal substances has been a challenging task. The cationic-modified beta-cyclodextrin nanospheres synthesized in this work, in conjunction with a water-soluble polyacrylamide-based anionic polymer, potentially provide a novel approach to address the problem. The cyclodextrin was rendered cationic using (2,3-epoxypropyl)trimethylammonium chloride as a reagent. The cationicity of the modified cyclodextrin and the reaction between cyclodextrin and the reagent were characterized by electrophoresis measurement, polyelectrolyte titration, and NMR. As a dual-component flocculation system, the cationic cyclodextrin/anionic polymer significantly induced clay flocculation, lowering the relative turbidity of the clay suspension over a wide pH range. Meanwhile, as a nanospherical absorbent, the modified cyclodextrins exhibited strong affinity toward aromatic compounds via inclusion complex formation in the hydrophobic cavities, which was monitored by UV spectroscopy. These systems facilitated the simultaneous removal of dissolved and colloidal substances, which was unachievable previously. In addition, the interaction between anionic polymers and the clay particles pretreated with cationic cyclodextrin was investigated in order to reveal the flocculation mechanism.

  9. Active-Site Monovalent Cations Revealed in a 1.55 Å Resolution Hammerhead Ribozyme Structure

    PubMed Central

    Anderson, Michael; Schultz, Eric P.; Martick, Monika; Scott, William G.

    2013-01-01

    We have obtained a 1.55 Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni in conditions that permit detailed observations of Na+ ion binding in the ribozyme's active site. At least two such Na+ ions are observed. The first Na+ ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical to that previously observed for divalent cations. A second Na+ ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na+, but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na+ directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest resolution ribozyme structure in the protein data bank. PMID:23711504

  10. Improving the alkaline stability of imidazolium cations by substitution.

    PubMed

    Dong, Huilong; Gu, Fenglou; Li, Min; Lin, Bencai; Si, Zhihong; Hou, Tingjun; Yan, Feng; Lee, Shuit-Tong; Li, Youyong

    2014-10-06

    Imidazolium cations are promising candidates for preparing anion-exchange membranes because of their good alkaline stability. Substitution of imidazolium cations is an efficient way to improve their alkaline stability. By combining density functional theory calculations with experimental results, it is found that the LUMO energy correlates with the alkaline stability of imidazolium cations. The results indicate that alkyl groups are the most suitable substituents for the N3 position of imidazolium cations, and the LUMO energies of alkyl-substituted imidazolium cations depend on the electron-donating effect and the hyperconjugation effect. Comparing 1,2-dimethylimidazolium cations (1,2-DMIm+) and 1,3-dimethylimidazolium cations (1,3-DMIm+) with the same substituents reveals that the hyperconjugation effect is more significant in influencing the LUMO energy of 1,3-DMIms. This investigation reveals that LUMO energy is a helpful aid in predicting the alkaline stability of imidazolium cations.

  11. Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes

    DTIC Science & Technology

    2015-04-29

    Organic Cations for Polymer Hydroxide Exchange Membranes Hydroxide exchange membranes (HEMs) are important polymer electrolytes for electrochemical...Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes Report Title Hydroxide exchange membranes (HEMs) are important polymer ...constructing HEMs. EXPLORING ALKALINE STABLE ORGANIC CATIONS FOR POLYMER HYDROXIDE EXCHANGE MEMBRANES by Bingzi Zhang

  12. N-Acetylglycine Cation Tautomerization Enabled by the Peptide Bond.

    PubMed

    Kocisek, Jaroslav; Piekarski, Dariusz Grzegorz; Delaunay, Rudy; Huber, Bernd A; Adoui, Lamri; Martín, Fernando; Alcamí, Manuel; Rousseau, Patrick; Domaracka, Alicja; Kopyra, Janina; Díaz-Tendero, Sergio

    2015-09-17

    We present a combined experimental and theoretical study of the ionization of N-acetylglycine molecules by 48 keV O(6+) ions. We focus on the single ionization channel of this interaction. In addition to the prompt fragmentation of the N-acetylglycine cation, we also observe the formation of metastable parent ions with lifetimes in the microsecond range. On the basis of density functional theory calculations, we assign these metastable ions to the diol tautomer of N-acetylglycine. In comparison with the simple amino acids, the tautomerization rate is higher because of the presence of the peptide bond. The study of a simple biologically relevant molecule containing a peptide bond allows us to demonstrate how increasing the complexity of the structure influences the behavior of the ionized molecule.

  13. Chiral DNA packaging in DNA-cationic liposome assemblies.

    PubMed

    Zuidam, N J; Barenholz, Y; Minsky, A

    1999-09-03

    Recent studies have indicated that the structural features of DNA-lipid assemblies, dictated by the lipid composition and cationic lipid-to-DNA ratio, critically affect the efficiency of these complexes in acting as vehicles for cellular delivery of genetic material. Using circular dichroism we find that upon binding DNA, positively-charged liposomes induce a secondary conformational transition of the DNA molecules from the native B form to the C motif. Liposomes composed of positively-charged and neutral 'helper' lipids, found to be particularly effective as transfecting agents, induce - in addition to secondary conformational changes - DNA condensation into a left-handed cholesteric-like phase. A structural model is presented according to which two distinct, yet inter-related modes of DNA packaging coexist within such assemblies. The results underline the notion that subtle changes in the components of a supramolecular assembly may substantially modulate the interplay of interactions which dictate its structure and functional properties.

  14. Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes.

    PubMed

    Jeon, Jong-Rok; Kim, Eun-Ju; Kim, Young-Mo; Murugesan, Kumarasamy; Kim, Jae-Hwan; Chang, Yoon-Seok

    2009-11-01

    Natural organic coagulants (NOCs) such as chitosan and Moringa oleifera seeds have been extensively characterized for potential application in water treatment as an alternative to metal-based coagulants. However, the action of both chitosan and M. oleifera seeds is mainly restricted to anionic organic pollutants because of their cationic functional groups affording poor cationic pollutant coagulation by electrostatic repulsion. In this study, we employed ethanolic grape seed extract (GSE) and grape seed-derived polyphenols such as tannic acid and catechin in an effort to find novel NOCs showing stable anionic forms for removal of cationic organic pollutants. The target substances tested were malachite green (MG) and crystal violet (CV), both mutagenic cationic dyes. Polyphenol treatment induced fast decolorization followed by gradual floc formation concomitant with red or blue shifts in maximum absorbance wavelengths of the cationic dyes. Liquid chromatography analysis of flocs formed by polyphenols directly showed that initial supramolecular complexes attributed mainly to electrostatic attraction between polyphenol hydroxyphenyl groups and cationic dyes further progressed into stronger aggregates, leading to precipitation of dye-polyphenol complexes. Consistent with the results obtained using catechin and tannic acid, use of GSE also resulted in effective decolorization and coagulation of soluble MG and CV in aqueous solutions. Screening of several organic GSE components for NOC activity strongly suggested that natural polyphenols are the main organic ingredients causing MG and CV removal via gradual floc formation. The treatment by natural polyphenols and GSE decreased toxicity of MG- or CV-contaminated water.

  15. Electrochemical and Fluorescent Ferrocene-Imidazole-Based Dyads as Ion-Pair Receptors for Divalent Metal Cations and Oxoanions.

    PubMed

    Alfonso, María; Espinosa Ferao, Arturo; Tárraga, Alberto; Molina, Pedro

    2015-08-03

    In the tricyclic bis(heteroaryl)substituted ferrocenyl-imidazo-quinoxalines 7 and 8, the presence of redox and fluorescent units at the heteroaromatic core, which can act as a ditopic binding site, made these molecules potential candidates as electro-optical ion-pair recognition receptors. In this context, both molecules behave as ion-pair receptors for cations and anions, which individually had demonstrated their ability to form the corresponding cationic and anionic complexes. These receptors also show an important enhancement of anion binding by co-bound cations, whereas no affinity of the free receptors by the anion is observed. Similarly, receptors 7 and 8 display a dramatic increase in the cation binding by the action of their anionic complexes, while no affinity of the free receptors by the cations was detected. Interestingly, both receptors exhibit a remarkable enhancement of anions and cations binding, although no affinity of the free receptors by the ions is observed. In all cases, the ion-pair formation is detected by a perturbation of the redox potential of the ferrocene moiety and a remarkable enhancement in the emission band.

  16. Expanding the Palette of Phenanthridinium Cations

    PubMed Central

    Cairns, Andrew G; Senn, Hans Martin; Murphy, Michael P; Hartley, Richard C

    2014-01-01

    5,6-Disubstituted phenanthridinium cations have a range of redox, fluorescence and biological properties. Some properties rely on phenanthridiniums intercalating into DNA, but the use of these cations as exomarkers for the reactive oxygen species (ROS), superoxide, and as inhibitors of acetylcholine esterase (AChE) do not require intercalation. A versatile modular synthesis of 5,6-disubstituted phenanthridiniums that introduces diversity by Suzuki–Miyaura coupling, imine formation and microwave-assisted cyclisation is presented. Computational modelling at the density functional theory (DFT) level reveals that the novel displacement of the aryl halide by an acyclic N-alkylimine proceeds by an SNAr mechanism rather than electrocyclisation. It is found that the displacement of halide is concerted and there is no stable Meisenheimer intermediate, provided the calculations consistently use a polarisable solvent model and a diffuse basis set. PMID:24677631

  17. Cation channels in the Arabidopsis plasma membrane.

    PubMed

    Véry, Anne Aliénor; Sentenac, Hervé

    2002-04-01

    In vivo analyses have identified different functional types of ion channels in various plant tissues and cells. The Arabidopsis genome contains approximately 70 genes for ion channels, of which 57 might be cation-selective channels (K(+), Ca(2+) or poorly discriminating channels). Here, we describe the different families of (putative) cation channels: the Shakers, the two-P-domain and Kir K(+) channels (encoded by the KCO genes), the cyclic-nucleotide-gated channels, the glutamate receptors, and the Ca(2+) channel TPC1. We also compare molecular data with the data obtained in planta, which should lead to a better understanding of the identity of these channels and provide clues about their roles in plant nutrition and cell signalling.

  18. Mechanism of metal cationization in organic SIMS

    NASA Astrophysics Data System (ADS)

    Wojciechowski, I.; Delcorte, A.; Gonze, X.; Bertrand, P.

    2001-09-01

    A mechanism for metal cationization of phenyl group containing hydrocarbons is discussed. Intact molecules and their fragments are emitted from a thin organic layer covering a metal surface bombarded by fast ions. It is shown that the process of associative ionization of a neutral hydrocarbon molecule and a neutral excited metal atom, occurring above the surface, may contribute to the yield of cationized molecules. To demonstrate this we have calculated the potential energy curves for the model system C 6H 6+Me (Me=Ag, Cu, Au) making use of the density functional theory. The initial states of the metal atoms approaching the benzene ring along the C 6 symmetry axis were set as the ground, ionic, and excited in ( n-1)d 9ns 2 electronic configuration.

  19. [PAH Cations as Viable Carriers of DIBs

    NASA Technical Reports Server (NTRS)

    Snow, Ted

    1998-01-01

    This report is intended to fill in the blanks in NASA's file system for our lab astro study of molecular ions of astrophysical interest. In order to give NASA what it needs for its files, I attach below the text of the section from our recent proposal to continue this work, in which we describe progress to date, including a large number of publications. Our initial studies were focused on PAH cations, which appear to be viable candidates as the carriers of the DIBs, an idea that has been supported by laboratory spectroscopy of PAH cations in inert matrices. Beginning with the simplest aromatic (benzene; C6H6) and moving progressively to larger species (naphthalene, C10OH8; pyrene, C16H10; and most recently chrysene, C18H12), we have been able to derive rate coefficients for reactions with neutral spices that are abundant in the diffuse interstellar medium.

  20. Planar Chiral, Ferrocene-Stabilized Silicon Cations.

    PubMed

    Schmidt, Ruth K; Klare, Hendrik F T; Fröhlich, Roland; Oestreich, Martin

    2016-04-04

    The preparation of a series of planar chiral, ferrocenyl-substituted hydrosilanes as precursors of ferrocene-stabilized silicon cations is described. These molecules also feature stereogenicity at the silicon atom. The generation and (29)Si NMR spectroscopic characterization of the corresponding silicon cations is reported, and problems arising from interactions of the electron-deficient silicon atom and adjacent C(sp(3))-H bonds or aromatic π donors are discussed. These issues are overcome by tethering another substituent at the silicon atom to the ferrocene backbone. The resulting annulation also imparts conformational rigidity and steric hindrance in such a way that the central chirality at the silicon atom is set with complete diastereocontrol. These chiral Lewis acid catalysts were then tested in difficult Diels-Alder reactions, but no enantioinduction was seen.

  1. Electronic spectrum of 9-methylanthracenium radical cation

    NASA Astrophysics Data System (ADS)

    O'Connor, Gerard D.; Sanelli, Julian A.; Dryza, Vik; Bieske, Evan J.; Schmidt, Timothy W.

    2016-04-01

    The predissociation spectrum of the cold, argon-tagged, 9-methylanthracenium radical cation is reported from 8000 cm-1 to 44 500 cm-1. The reported spectrum contains bands corresponding to at least eight electronic transitions ranging from the near infrared to the ultraviolet. These electronic transitions are assigned through comparison with ab initio energies and intensities. The infrared D1←D0 transitions exhibit significant vibronic activity, which is assigned through comparison with TD-B3LYP excited state frequencies and intensities, as well as modelled vibronic interactions. Dissociation of 9-methylanthracenium is also observed at high visible-photon energies, resulting in the loss of either CH2 or CH3. The relevance of these spectra, and the spectra of other polycyclic aromatic hydrocarbon radical cations, to the largely unassigned diffuse interstellar bands, is discussed.

  2. Regulation of Cation Balance in Saccharomyces cerevisiae

    PubMed Central

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  3. Interaction between silica and hydrophobic cations.

    PubMed Central

    Depasse, J

    1978-01-01

    The interactions between silica and some molecules which have a high affinity for its surface have been studied. The hydrophobic properties and the positive charge of these molecules are likely to be responsible for their strong adsorption on to silica. These observations should be useful in research into new inhibitors of the effects of silica. One of the cations tested, chloroquine, has been shown to be an effective inhibitor of the haemolytic activity of quartz. PMID:204326

  4. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  5. Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water

    SciTech Connect

    Moore, Robert C; Holt-Larese, Kathleen C; Bontchev, Ranko

    2013-08-13

    Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.

  6. Infrared spectroscopy of gas phase C{sub 3}H{sub 5}{sup +}: The allyl and 2-propenyl cations

    SciTech Connect

    Douberly, Gary E.; Ricks, Allen M.; Schleyer, Paul v. R.; Duncan, Michael A.

    2008-01-14

    C{sub 3}H{sub 5}{sup +} cations are probed with infrared photodissociation spectroscopy in the 800-3500 cm{sup -1} region using the method of rare gas tagging. The ions and their complexes with Ar or N{sub 2} are produced in a pulsed electric discharge supersonic expansion cluster source. Two structural isomers are characterized, namely, the allyl (CH{sub 2}CHCH{sub 2}{sup +}) and 2-propenyl (CH{sub 3}CCH{sub 2}{sup +}) cations. The infrared spectrum of the allyl cation confirms previous theoretical and condensed phase studies of the C{sub 2v} charge delocalized, resonance-stabilized structure. The 2-propenyl cation spectrum is consistent with a C{sub s} symmetry structure having a nearly linear CCC backbone and a hyperconjugatively stabilizing methyl group.

  7. Cationic carbosilane dendrimers and oligonucleotide binding: an energetic affair

    NASA Astrophysics Data System (ADS)

    Marson, D.; Laurini, E.; Posocco, P.; Fermeglia, M.; Pricl, S.

    2015-02-01

    Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔGbind,eff/Neff, i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction.Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔGbind,eff/Neff, i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction. Electronic supplementary information (ESI) available: Additional figures and tables. See DOI: 10.1039/c4nr04510f

  8. Sn cation valency dependence in cation exchange reactions involving Cu(2-x)Se nanocrystals.

    PubMed

    De Trizio, Luca; Li, Hongbo; Casu, Alberto; Genovese, Alessandro; Sathya, Ayyappan; Messina, Gabriele C; Manna, Liberato

    2014-11-19

    We studied cation exchange reactions in colloidal Cu(2-x)Se nanocrystals (NCs) involving the replacement of Cu(+) cations with either Sn(2+) or Sn(4+) cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu(2-x)Se NCs remains cubic regardless of the degree of copper deficiency (that is, "x") in the NC lattice. Also, Sn(4+) ions are comparable in size to the Cu(+) ions, while Sn(2+) ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn(4+) cations are used, alloyed Cu(2-4y)Sn(y)Se NCs (with y ≤ 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu(+) cations with Sn(4+) cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn(2+) cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu(2-x)Se/SnSe heterostructures, with no Cu-Sn-Se alloys.

  9. Sn Cation Valency Dependence in Cation Exchange Reactions Involving Cu2-xSe Nanocrystals

    PubMed Central

    2014-01-01

    We studied cation exchange reactions in colloidal Cu2-xSe nanocrystals (NCs) involving the replacement of Cu+ cations with either Sn2+ or Sn4+ cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu2-xSe NCs remains cubic regardless of the degree of copper deficiency (that is, “x”) in the NC lattice. Also, Sn4+ ions are comparable in size to the Cu+ ions, while Sn2+ ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn4+ cations are used, alloyed Cu2–4ySnySe NCs (with y ≤ 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu+ cations with Sn4+ cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn2+ cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu2-xSe/SnSe heterostructures, with no Cu–Sn–Se alloys. PMID:25340627

  10. Controlling chemistry with cations: photochemistry within zeolites.

    PubMed

    Ramamurthy, V; Shailaja, J; Kaanumalle, Lakshmi S; Sunoj, R B; Chandrasekhar, J

    2003-08-21

    The alkali ions present in the supercages of zeolites X and Y interact with included guest molecules through quadrupolar (cation-pi), and dipolar (cation-carbonyl) interactions. The presence of such interactions can be inferred through solid-state NMR spectra of the guest molecules. Alkali ions, as illustrated in this article, can be exploited to control the photochemical and photophysical behaviors of the guest molecules. For example, molecules that rarely phosphoresce can be induced to do so within heavy cation-exchanged zeolites. The nature (electronic configuration) of the lowest triplet state of carbonyl compounds can be altered with the help of light alkali metal ions. This state switch (n pi*-pi pi*) helps to bring out reactivity that normally remains dormant. Selectivity obtained during the singlet oxygen oxidation of olefins within zeolites illustrates the remarkable control that can be exerted on photoreactions with the help of a confined medium that also has active sites. The reaction cavities of zeolites, like enzymes, are not only well-defined and confined, but also have active sites that closely guide the reactant molecule from start to finish. The examples provided here illustrate that zeolites are far more useful than simple shape-selective catalysts.

  11. Low cation coordination in oxide melts

    SciTech Connect

    Skinner, Lawrie; Benmore, Chris J; Du, Jincheng; Weber, Richard; Neuefeind, Joerg C; Tumber, Sonia; Parise, John B

    2014-01-01

    The complete set of Faber-Ziman partial pair distribution functions for a rare earth oxide liquid were measured for the first time by combining aerodynamic levitation, neutron diffraction, high energy x-ray diffraction and isomorphic substitution using Y2 O3 and Ho2 O3 melts. The average Y- O coordination is measured to be 5.5(2), which is significantly less than the octahedral coordination of crystalline Y2 O3 (or Ho2 O3 ). Investigation of high temperature La2 O3 , ZrO2 , SiO2 , and Al2 O3 melts by x-ray diffraction and molecular dynamics simulations also show lower-than-crystal cation- oxygen coordination. These measurements suggest a general trend towards lower M-O coordination compared to their crystalline counterparts. It is found that this coordination number drop is larger for lower field strength, larger radius cations and is negligible for high field strength (network forming) cations. These findings have broad implications for predicting the local structure and related physical properties of metal-oxide melts and oxide glasses.

  12. Interaction of polyamines with proteins of photosystem II: Cation binding and photosynthetic oxygen evolution

    NASA Astrophysics Data System (ADS)

    Beauchemin, R.; Harnois, J.; Rouillon, R.; Tajmir-Riahi, H. A.; Carpentier, R.

    2007-05-01

    Polyamines are organic cations that function in diverse physiological processes that share as a common thread a close relationship to cell proliferation and growth. Polyamines also affect photosynthetic oxygen evolution and therefore, this study was designed to investigate the interaction of 1,3-diaminopropane, 1,4-diaminobutane (putrescine), and 1,5-diaminopentane (cadaverine) cations with proteins of photosystem II (PSII) using PSII-enriched submembrane fractions with diamine concentrations between 0.01 and 20 mM. Fourier transformed infrared (FTIR) difference spectroscopy with its self-deconvolution and second derivative