Science.gov

Sample records for causada por burkholderia

  1. Prevalencia y factores de riesgo para infecciones del tracto urinario de inicio en la comunidad causadas por Escherichia coli productor de betalactamasas de espectro extendido en Colombia

    PubMed Central

    Blanco, Victor M.; Maya, Juan J.; Correa, Adriana; Perenguez, Marcela; Muñoz, Juan S.; Motoa, Gabriel; Pallares, Christian J.; Rosso, Fernando; Matta, Lorena; Celis, Yamile; Garzon, Martha; Villegas, y María V.

    2016-01-01

    RESUMEN Introducción Las infecciones del tracto urinario (ITU) son frecuentes en la comunidad. Sin embargo, la información de aislamientos resistentes en este contexto es limitada en Latinoamérica. Este estudio tiene como objetivo determinar la prevalencia y los factores de riesgo asociados con ITU de inicio en la comunidad (ITU-IC) causadas por Escherichia coli productor de betalactamasas de espectro extendido (BLEE) en Colombia. Materiales y métodos Entre agosto y diciembre de 2011 se realizó un estudio de casos y controles en 3 instituciones de salud de tercer nivel en Colombia. Se invitó a participar a todos los pacientes admitidos a urgencias con diagnóstico probable de ITU-IC, y se les pidió una muestra de orina. En los aislamien-tos de E. coli se realizaron pruebas confirmatorias para BLEE, susceptibilidad antibiótica, caracterización molecular (PCR en tiempo real para genes bla, repetitive element palindromic PCR [rep-PCR], multilocus sequence typing [MLST] y factores de virulencia por PCR). Se obtuvo información clínica y epidemiológica, y posteriormente se realizó el análisis estadístico. Resultados De los 2.124 pacientes seleccionados, 629 tuvieron un urocultivo positivo, en 431 de estos se aisló E. coli, 54 fueron positivos para BLEE y 29 correspondieron a CTX-M-15. La mayoría de los aislamientos de E. coli productor de BLEE fueron sensibles a ertapenem, fosfomicina y amikacina. La ITU complicada se asoció fuertemente con infecciones por E. coli productor de BLEE (OR = 3,89; IC 95%: 1,10–13,89; p = 0,03). E. coli productor de CTX-M-15 mostró 10 electroferotipos diferentes; de estos, el 65% correspondieron al ST131. La mayoría de estos aislamientos tuvieron 8 de los 9 factores de virulencia analizados. Discusión E. coli portador del gen blaCTX-M-15 asociado al ST131 sigue siendo frecuente en Colombia. La presencia de ITU-IC complicada aumenta el riesgo de tener E. coli productor de BLEE, lo cual debe tenerse en cuenta para ofrecer

  2. Antibiotic resistance in Burkholderia species.

    PubMed

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. PMID:27620956

  3. Phylogenomic Study of Burkholderia glathei-like Organisms, Proposal of 13 Novel Burkholderia Species and Emended Descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae

    PubMed Central

    Peeters, Charlotte; Meier-Kolthoff, Jan P.; Verheyde, Bart; De Brandt, Evie; Cooper, Vaughn S.; Vandamme, Peter

    2016-01-01

    Partial gyrB gene sequence analysis of 17 isolates from human and environmental sources revealed 13 clusters of strains and identified them as Burkholderia glathei clade (BGC) bacteria. The taxonomic status of these clusters was examined by whole-genome sequence analysis, determination of the G+C content, whole-cell fatty acid analysis and biochemical characterization. The whole-genome sequence-based phylogeny was assessed using the Genome Blast Distance Phylogeny (GBDP) method and an extended multilocus sequence analysis (MLSA) approach. The results demonstrated that these 17 BGC isolates represented 13 novel Burkholderia species that could be distinguished by both genotypic and phenotypic characteristics. BGC strains exhibited a broad metabolic versatility and developed beneficial, symbiotic, and pathogenic interactions with different hosts. Our data also confirmed that there is no phylogenetic subdivision in the genus Burkholderia that distinguishes beneficial from pathogenic strains. We therefore propose to formally classify the 13 novel BGC Burkholderia species as Burkholderia arvi sp. nov. (type strain LMG 29317T = CCUG 68412T), Burkholderia hypogeia sp. nov. (type strain LMG 29322T = CCUG 68407T), Burkholderia ptereochthonis sp. nov. (type strain LMG 29326T = CCUG 68403T), Burkholderia glebae sp. nov. (type strain LMG 29325T = CCUG 68404T), Burkholderia pedi sp. nov. (type strain LMG 29323T = CCUG 68406T), Burkholderia arationis sp. nov. (type strain LMG 29324T = CCUG 68405T), Burkholderia fortuita sp. nov. (type strain LMG 29320T = CCUG 68409T), Burkholderia temeraria sp. nov. (type strain LMG 29319T = CCUG 68410T), Burkholderia calidae sp. nov. (type strain LMG 29321T = CCUG 68408T), Burkholderia concitans sp. nov. (type strain LMG 29315T = CCUG 68414T), Burkholderia turbans sp. nov. (type strain LMG 29316T = CCUG 68413T), Burkholderia catudaia sp. nov. (type strain LMG 29318T = CCUG 68411T) and Burkholderia peredens sp. nov. (type strain LMG 29314T = CCUG

  4. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    EPA Science Inventory

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  5. Metabolic profiling of Burkholderia cenocepacia, Burkholderia ambifaria, and Burkholderia pyrrocinia isolates from maize rhizosphere.

    PubMed

    Alisi, Chiara; Lasinio, Giovanna Jona; Dalmastri, Claudia; Sprocati, AnnaRosa; Tabacchioni, Silvia; Bevivino, Annamaria; Chiarini, Luigi

    2005-10-01

    Burkholderia cenocepacia, Burkholderia ambifaria, and Burkholderia pyrrocinia are the Burkholderia cepacia complex (Bcc) species most frequently associated with roots of crop plants. To investigate the ecophysiological diversity of these species, metabolic profiling of maize rhizosphere isolates was carried out by means of the Biolog system, using GN2 and SFN2 plates and different parameters related to optical density (OD). The metabolic profiles produced by the SFN2 and GN2 plates were identical, but the SFN2's narrower range of OD values and significantly longer reaction times made these plates less suitable for differentiation of isolates. Principal component analysis of maximum OD (ODM) and maximum substrate oxidation rate (muM) data generated by GN2 plates allowed the selection of a reduced number of carbon sources. Statistical analysis of ODM values highlighted marked differences between the metabolic profiles of B. cenocepacia and B. ambifaria, whereas metabolic profiles of B. pyrrocinia clustered very often with those of B. cenocepacia. Analysis of the mu(M) parameter resulted in a slightly lower differentiation among the three Bcc species and a higher metabolic diversity within the single species, in particular within B. cenocepacia. Finally, B. cenocepacia and B. pyrrocinia showed generally higher oxidation rates than B. ambifaria on those GN2 substrates that commonly occur in maize root exudates. PMID:16328653

  6. Comparison of Ashdown's medium, Burkholderia cepacia medium, and Burkholderia pseudomallei selective agar for clinical isolation of Burkholderia pseudomallei.

    PubMed

    Peacock, Sharon J; Chieng, Grace; Cheng, Allen C; Dance, David A B; Amornchai, Premjit; Wongsuvan, Gumphol; Teerawattanasook, Nittaya; Chierakul, Wirongrong; Day, Nicholas P J; Wuthiekanun, Vanaporn

    2005-10-01

    Ashdown's medium, Burkholderia pseudomallei selective agar (BPSA), and a commercial Burkholderia cepacia medium were compared for their abilities to grow B. pseudomallei from 155 clinical specimens that proved positive for this organism. The sensitivity of each was equivalent; the selectivity of BPSA was lower than that of Ashdown's or B. cepacia medium.

  7. Use of the phytopathogenic effect for studies of Burkholderia virulence.

    PubMed

    Molchanova, E V; Ageeva, N P

    2015-02-01

    The phytopathogenic effect of the pseudomallei group Burkholderia is demonstrated on the Peireskia aculeata model. A method for evaluation of the effect is suggested. The effect correlates with the levels of Burkholderia pseudomallei, Burkholderia mallei, and Burkholderia thailandensis virulence for laboratory animals. P. aculeata can be used as a model for preliminary studies of the virulence of the above species.

  8. Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosphere soil.

    PubMed

    Vandamme, Peter; De Brandt, Evie; Houf, Kurt; Salles, Joana Falcão; Dirk van Elsas, Jan; Spilker, Theodore; Lipuma, John J

    2013-12-01

    Analysis of partial gyrB gene sequences revealed six taxa in a group of 17 Burkholderia glathei-like isolates which were further examined by (GTG)5-PCR fingerprinting, 16S rRNA gene sequence analysis, DNA-DNA hybridizations, determination of the DNA G+C content, whole-cell fatty acid analysis and an analysis of cell and colony morphology and more than 180 biochemical characteristics. The results demonstrated that one taxon consisting of three human clinical isolates represented Burkholderia zhejiangensis, a recently described methyl-parathion-degrading bacterium isolated from a wastewater-treatment system in China. The remaining taxa represented five novel species isolated from soil or rhizosphere soil samples, and could be distinguished by both genotypic and phenotypic characteristics. We therefore propose to formally classify these bacteria as Burkholderia humi sp. nov. (type strain, LMG 22934(T) = CCUG 63059(T)), Burkholderia choica sp. nov. (type strain, LMG 22940(T) = CCUG 63063(T)), Burkholderia telluris sp. nov. (type strain, LMG 22936(T) = CCUG 63060(T)), Burkholderia udeis sp. nov. (type strain, LMG 27134(T) = CCUG 63061(T)) and Burkholderia terrestris sp. nov. (type strain, LMG 22937(T) = CCUG 63062(T)).

  9. Strategies toward vaccines against Burkholderia mallei and Burkholderia pseudomallei

    PubMed Central

    Bondi, Sara K; Goldberg, Joanna B

    2009-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative, rod-shaped bacteria, and are the causative agents of the diseases glanders and melioidosis, respectively. These bacteria have been recognized as important pathogens for over 100 years, yet a relative dearth of available information exists regarding their virulence determinants and immunopathology. Infection with either of these bacteria presents with nonspecific symptoms and can be either acute or chronic, impeding rapid diagnosis. The lack of a vaccine for either bacterium also makes them potential candidates for bioweaponization. Together with their high rate of infectivity via aerosols and resistance to many common antibiotics, both bacteria have been classified as category B priority pathogens by the US NIH and US CDC, which has spurred a dramatic increase in interest in these microorganisms. Attempts have been made to develop vaccines for these infections, which would not only benefit military personnel, a group most likely to be targeted in an intentional release, but also individuals who may come in contact with glanders-infected animals or live in areas where melioidosis is endemic. This review highlights some recent attempts of vaccine development for these infections and the strategies used to improve the efficacy of vaccine approaches. PMID:18980539

  10. Volatile-sulfur-compound profile distinguishes Burkholderia pseudomallei from Burkholderia thailandensis.

    PubMed

    Inglis, Timothy J J; Hahne, Dorothee R; Merritt, Adam J; Clarke, Michael W

    2015-03-01

    Solid-phase microextraction gas chromatography-mass spectrometry (SPME-GCMS) was used to show that dimethyl sulfide produced by Burkholderia pseudomallei is responsible for its unusual truffle-like smell and distinguishes the species from Burkholderia thailandensis. SPME-GCMS can be safely used to detect dimethyl sulfide produced by agar-grown B. pseudomallei.

  11. Burkholderia humisilvae sp. nov., Burkholderia solisilvae sp. nov. and Burkholderia rhizosphaerae sp. nov., isolated from forest soil and rhizosphere soil.

    PubMed

    Lee, Jae-Chan; Whang, Kyung-Sook

    2015-09-01

    Strains Y-12(T) and Y-47(T) were isolated from mountain forest soil and strain WR43(T) was isolated from rhizosphere soil, at Daejeon, Korea. The three strains grew at 10-55 °C (optimal growth at 28-30 °C), at pH 3.0-8.0 (optimal growth at pH 6.0) and in the presence of 0-4.0% (w/v) NaCl, growing optimally in the absence of added NaCl. On the basis of 16S rRNA gene sequence analysis, the three strains were found to belong to the genus Burkholderia, showing the closest phylogenetic similarity to Burkholderia diazotrophica JPY461(T) (97.2-97.7%); the similarity between the three sequences ranged from 98.3 to 98.7%. Additionally, the three strains formed a distinct group in phylogenetic trees based on the housekeeping genes recA and gyrB. The predominant ubiquinone was Q-8, the major fatty acids were C16 : 0 and C17  : 0 cyclo and the DNA G+C content of the novel isolates was 61.6-64.4 mol%. DNA-DNA relatedness among the three strains and the type strains of the closest species of the genus Burkholderia was less than 50%. On the basis of 16S rRNA, recA and gyrB gene sequence similarities, chemotaxonomic and phenotypic data, the three strains represent three novel species within the genus Burkholderia, for which the names Burkholderia humisilvae sp. nov. (type strain Y-12(T)= KACC 17601(T) = NBRC 109933(T) = NCAIM B 02543(T)), Burkholderia solisilvae sp. nov. (type strain Y-47(T) = KACC 17602(T)= NBRC 109934(T) = NCAIM B 02539(T)) and Burkholderia rhizosphaerae sp. nov. (type strain WR43(T) = KACC 17603(T) = NBRC 109935(T) = NCAIM B 02541(T)) are proposed.

  12. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Burkholderia cepacia complex. 725.1075... Specific Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism and significant new uses subject to reporting. (1) The microorganisms identified as the Burkholderia cepacia complex defined...

  13. Burkholderia cordobensis sp. nov., from agricultural soils.

    PubMed

    Draghi, Walter O; Peeters, Charlotte; Cnockaert, Margo; Snauwaert, Cindy; Wall, Luis G; Zorreguieta, Angeles; Vandamme, Peter

    2014-06-01

    Two Gram-negative, rod-shaped bacteria were isolated from agricultural soils in Córdoba province in central Argentina. Their 16S rRNA gene sequences demonstrated that they belong to the genus Burkholderia, with Burkholderia zhejiangensis as most closely related formally named species; this relationship was confirmed through comparative gyrB sequence analysis. Whole-cell fatty acid analysis supported their assignment to the genus Burkholderia. Burkholderia sp. strain YI23, for which a whole-genome sequence is available, represents the same taxon, as demonstrated by its highly similar 16S rRNA (100% similarity) and gyrB (99.1-99.7%) gene sequences. The results of DNA-DNA hybridization experiments and physiological and biochemical characterization further substantiated the genotypic and phenotypic distinctiveness of the Argentinian soil isolates, for which the name Burkholderia cordobensis sp. nov. is proposed, with strain MMP81(T) ( = LMG 27620(T) = CCUG 64368(T)) as the type strain.

  14. Burkholderia pyrrocinia in cystic fibrosis lung transplantation: a case report.

    PubMed

    Savi, D; De Biase, R Valerio; Amaddeo, A; Anile, M; Venuta, F; Ruberto, F; Simmonds, N; Cimino, G; Quattrucci, S

    2014-01-01

    Infection with Burkholderia species is typically considered a contraindication leading to transplantation in cystic fibrosis (CF). However, the risks posed by different Burkholderia species on transplantation outcomes are poorly defined. We present the case of a patient with CF who underwent lung transplantation due to a severe respiratory failure from chronic airways infection with Burkholderia pyrrocinia (B. cepacia genomovar IX) and pan-resistant Pseudomonas aeruginosa. The postoperative course was complicated by recurrent B. pyrrocinia infections, ultimately lea ding to uncontrollable sepsis and death. This is the first case report in CF of Burkholderia pyrrocinia infection and lung transplantation, providing further evidence of the high risk nature of the Burkholderia species.

  15. Host Evasion by Burkholderia cenocepacia

    PubMed Central

    Ganesan, Shyamala; Sajjan, Umadevi S.

    2012-01-01

    Burkholderia cenocepacia is an opportunistic respiratory pathogen of individuals with cystic fibrosis (CF). Some strains of B. cenocepacia are highly transmissible and resistant to almost all antibiotics. Approximately one-third of B. cenocepacia infected CF patients go on to develop fatal “cepacia syndrome.” During the last two decades, substantial progress has been made with regards to evasion of host innate defense mechanisms by B. cenocepacia. Almost all strains of B. cenocepacia have the capacity to survive and replicate intracellularly in both airway epithelial cells and macrophages, which are primary sentinels of the lung and play a pivotal role in clearance of infecting bacteria. Those strains of B. cenocepacia, which express both cable pili and the associated 22 kDa adhesin are also capable of transmigrating across airway epithelium and persist in mouse models of infection. In this review, we will discuss how this type of interaction between B. cenocepacia and host may lead to persistence of bacteria as well as lung inflammation in CF patients. PMID:22919590

  16. Evaluation of a latex agglutination assay for the identification of Burkholderia pseudomallei and Burkholderia mallei.

    PubMed

    Duval, Brea D; Elrod, Mindy G; Gee, Jay E; Chantratita, Narisara; Tandhavanant, Sarunporn; Limmathurotsakul, Direk; Hoffmaster, Alex R

    2014-06-01

    Cases of melioidosis and glanders are rare in the United States, but the etiologic agents of each disease (Burkholderia pseudomallei and Burkholderia mallei, respectively) are classified as Tier 1 select agents because of concerns about their potential use as bioterrorism agents. A rapid, highly sensitive, and portable assay for clinical laboratories and field use is required. Our laboratory has further evaluated a latex agglutination assay for its ability to identify B. pseudomallei and B. mallei isolates. This assay uses a monoclonal antibody that specifically recognizes the capsular polysaccharide produced by B. pseudomallei and B. mallei, but is absent in closely related Burkholderia species. A total of 110 B. pseudomallei and B. mallei were tested, and 36 closely related Burkholderia species. The latex agglutination assay was positive for 109 of 110 (99.1% sensitivity) B. pseudomallei and B. mallei isolates tested.

  17. Comparison of four selective media for the isolation of Burkholderia mallei and Burkholderia pseudomallei.

    PubMed

    Glass, Mindy B; Beesley, Cari A; Wilkins, Patricia P; Hoffmaster, Alex R

    2009-06-01

    Currently there are no commercially available selective media indicated for the isolation of Burkholderia mallei and Burkholderia pseudomallei. Ashdown's agar, a custom selective medium for isolation of B. pseudomallei, is well described in the literature but unavailable commercially. Three commercially available media, Burkholderia cepacia selective agar (BCSA), oxidative-fermentative-polymyxin B-bacitracin-lactose (OFPBL) agar, and Pseudomonas cepacia (PC) agar are recommended for isolation of B. cepacia from respiratory secretions of cystic fibrosis patients. We evaluated the sensitivity and selectivity of these four media using 20 B. mallei, 20 B. pseudomallei, 20 Burkholderia spp., and 15 diagnostically challenging organisms. Ashdown's agar was the most sensitive medium for the isolation of B. pseudomallei, but it was unable to support growth of B. mallei. Pseudomonas cepacia agar was highly sensitive and selective for both organisms. In non-endemic areas, we suggest the use of the commercially available PC agar for the isolation of B. mallei and B. pseudomallei.

  18. Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources.

    PubMed

    De Smet, Birgit; Mayo, Mark; Peeters, Charlotte; Zlosnik, James E A; Spilker, Theodore; Hird, Trevor J; LiPuma, John J; Kidd, Timothy J; Kaestli, Mirjam; Ginther, Jennifer L; Wagner, David M; Keim, Paul; Bell, Scott C; Jacobs, Jan A; Currie, Bart J; Vandamme, Peter

    2015-07-01

    Nine Burkholderia cepacia complex (Bcc) bacteria were isolated during environmental surveys for the ecological niche of Burkholderia pseudomallei, the aetiological agent of melioidosis, in the Northern Territory of Australia. They represented two multi-locus sequence analysis-based clusters, referred to as Bcc B and Bcc L. Three additional environmental and clinical Bcc B isolates were identified upon deposition of the sequences in the PubMLST database. Analysis of the concatenated nucleotide sequence divergence levels within both groups (1.4 and 1.9%, respectively) and towards established Bcc species (4.0 and 3.9%, respectively) demonstrated that the two taxa represented novel Bcc species. All 12 isolates were further characterized using 16S rRNA and recA gene sequence analysis, RAPD analysis, DNA base content determination, fatty acid methyl ester analysis and biochemical profiling. Analysis of recA gene sequences revealed a remarkable diversity within each of these taxa, but, together, the results supported the affiliation of the two taxa to the Bcc. Bcc B strains can be differentiated from most other Bcc members by the assimilation of maltose. Bcc L strains can be differentiated from other Bcc members by the absence of assimilation of N-acetylglucosamine. The names Burkholderia stagnalis sp. nov. with type strain LMG 28156(T) ( = CCUG 65686(T)) and Burkholderia territorii sp. nov. with type strain LMG 28158(T) ( = CCUG 65687(T)) are proposed for Bcc B and Bcc L bacteria, respectively.

  19. Burkholderia vaccines: are we moving forward?

    PubMed

    Choh, Leang-Chung; Ong, Guang-Han; Vellasamy, Kumutha M; Kalaiselvam, Kaveena; Kang, Wen-Tyng; Al-Maleki, Anis R; Mariappan, Vanitha; Vadivelu, Jamuna

    2013-01-01

    The genus Burkholderia consists of diverse species which includes both "friends" and "foes." Some of the "friendly" Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei, and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis (CF) patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei, and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines.

  20. Natural Burkholderia mallei infection in Dromedary, Bahrain.

    PubMed

    Wernery, Ulrich; Wernery, Renate; Joseph, Marina; Al-Salloom, Fajer; Johnson, Bobby; Kinne, Joerg; Jose, Shanti; Jose, Sherry; Tappendorf, Britta; Hornstra, Heidie; Scholz, Holger C

    2011-07-01

    We confirm a natural infection of dromedaries with glanders. Multilocus variable number tandem repeat analysis of a Burkholderia mallei strain isolated from a diseased dromedary in Bahrain revealed close genetic proximity to strain Dubai 7, which caused an outbreak of glanders in horses in the United Arab Emirates in 2004.

  1. Genome Sequence of Burkholderia pseudomallei NCTC 13392

    PubMed Central

    Sahl, Jason W.; Stone, Joshua K.; Gelhaus, H. Carl; Warren, Richard L.; Cruttwell, Caroline J.; Funnell, Simon G.; Keim, Paul

    2013-01-01

    Here, we describe the draft genome sequence of Burkholderia pseudomallei NCTC 13392. This isolate has been distributed as K96243, but distinct genomic differences have been identified. The genomic sequence of this isolate will provide the genomic context for previously conducted functional studies. PMID:23704173

  2. GENOME ANALYSIS OF BURKHOLDERIA CEPACIA AC1100

    EPA Science Inventory

    Burkholderia cepacia is an important organism in bioremediation of environmental pollutants and it is also of increasing interest as a human pathogen. The genomic organization of B. cepacia is being studied in order to better understand its unusual adaptive capacity and genome pl...

  3. Burkholderia monticola sp. nov., isolated from mountain soil.

    PubMed

    Baek, Inwoo; Seo, Boram; Lee, Imchang; Yi, Hana; Chun, Jongsik

    2015-02-01

    An ivory/yellow, Gram-stain-negative, short-rod-shaped, aerobic bacterial strain, designated JC2948(T), was isolated from a soil sample taken from Gwanak Mountain, Republic of Korea. 16S rRNA gene sequence analysis indicated that strain JC2948(T) belongs to the genus Burkholderia. The test strain showed highest sequence similarities to Burkholderia tropica LMG 22274(T) (97.6 %), Burkholderia acidipaludis NBRC 101816(T) (97.5 %), Burkholderia tuberum LMG 21444(T) (97.5 %), Burkholderia sprentiae LMG 27175(T) (97.4 %), Burkholderia terricola LMG 20594(T) (97.3 %) and Burkholderia diazotrophica LMG 26031(T) (97.1 %). Based on average nucleotide identity (ANI) values, the new isolate represents a novel genomic species as it shows less than 90 % ANI values with other closely related species. Also, other phylosiological and biochemical comparisons allowed the phenotypic differentiation of strain JC2948(T) from other members of the genus Burkholderia. Therefore, we suggest that this strain should be classified as the type strain of a novel species of the genus Burkholderia. The name Burkholderia monticola sp. nov. (type strain, JC2948(T) = JCM 19904(T) = KACC 17924(T)) is proposed.

  4. Burkholderia megalochromosomata sp. nov., isolated from grassland soil.

    PubMed

    Baek, Inwoo; Seo, Boram; Lee, Imchang; Lee, Kihyun; Park, Sang-Cheol; Yi, Hana; Chun, Jongsik

    2015-03-01

    A Gram-stain negative, rod-shaped, non-spore-forming, obligate aerobic bacterial strain, JC2949(T), was isolated from grassland soil in Gwanak Mountain, Seoul, Republic of Korea. Phylogenetic analysis, based on 16S rRNA sequences, indicated that strain JC2949(T) belongs to the genus Burkholderia, showing highest sequence similarities with Burkholderia grimmiae R27(T) (98.8 %), Burkholderia cordobensis LMG 27620(T) (98.6 %), Burkholderia jiangsuensis MP-1T(T) (98.6 %), Burkholderia zhejiangensis OP-1(T) (98.5 %), Burkholderia humi LMG 22934(T) (97.5 %), Burkholderia terrestris LMG 22937(T) (97.3 %), Burkholderia telluris LMG 22936(T) (97.2 %) and Burkholderia glathei ATCC 29195(T) (97.0 %). The major fatty acids of strain JC2949(T) were C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. Its predominant polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unknown amino phospholipid. The dominant isoprenoid quinone was ubiquinone Q-8. The pairwise average nucleotide identity values between strain JC2949(T) and the genomes of 30 other species of the genus Burkholderia ranged from 73.4-90.4 %, indicating that the isolate is a novel genomic species within this genus. Based on phenotypic and chemotaxonomic comparisons, it is clear that strain JC2949(T) represents a novel species of the genus Burkholderia. We propose the name for this novel species to be Burkholderia megalochromosomata sp. nov. The type strain is JC2949(T) ( = KACC 17925(T) = JCM 19905(T)).

  5. Multiplex qPCR for reliable detection and differentiation of Burkholderia mallei and Burkholderia pseudomallei

    PubMed Central

    2013-01-01

    Background Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. Methods Signature sequences for sensitive, specific detection of pathogenic Burkholderia based on published genomes were identified and a qPCR assay was designed and validated. Results A single-reaction quadruplex qPCR assay for the detection of pathogenic Burkholderia, which includes a marker for internal control of DNA extraction and amplification, was developed. The assay permits differentiation of B. mallei and B. pseudomallei strains, and probit analysis showed a very low detection limit. Use of a multicopy signature sequence permits detection of less than 1 genome equivalent per reaction. Conclusions The new assay permits rapid detection of pathogenic Burkholderia and combines enhanced sensitivity, species differentiation, and inclusion of an internal control for both DNA extraction and PCR amplification. PMID:23409683

  6. Members of the genus Burkholderia: good and bad guys

    PubMed Central

    Eberl, Leo; Vandamme, Peter

    2016-01-01

    In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains. PMID:27303639

  7. Cross-Species Comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei Quorum-Sensing Regulons

    PubMed Central

    Majerczyk, Charlotte D.; Brittnacher, Mitchell J.; Jacobs, Michael A.; Armour, Christopher D.; Radey, Matthew C.; Bunt, Richard; Hayden, Hillary S.; Bydalek, Ryland

    2014-01-01

    Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei (the Bptm group) are close relatives with very different lifestyles: B. pseudomallei is an opportunistic pathogen, B. thailandensis is a nonpathogenic saprophyte, and B. mallei is a host-restricted pathogen. The acyl-homoserine lactone quorum-sensing (QS) systems of these three species show a high level of conservation. We used transcriptome sequencing (RNA-seq) to define the quorum-sensing regulon in each species, and we performed a cross-species analysis of the QS-controlled orthologs. Our analysis revealed a core set of QS-regulated genes in all three species, as well as QS-controlled factors shared by only two species or unique to a given species. This global survey of the QS regulons of B. pseudomallei, B. thailandensis, and B. mallei serves as a platform for predicting which QS-controlled processes might be important in different bacterial niches and contribute to the pathogenesis of B. pseudomallei and B. mallei. PMID:25182491

  8. Cross-species comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei quorum-sensing regulons.

    PubMed

    Majerczyk, Charlotte D; Brittnacher, Mitchell J; Jacobs, Michael A; Armour, Christopher D; Radey, Matthew C; Bunt, Richard; Hayden, Hillary S; Bydalek, Ryland; Greenberg, E Peter

    2014-11-01

    Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei (the Bptm group) are close relatives with very different lifestyles: B. pseudomallei is an opportunistic pathogen, B. thailandensis is a nonpathogenic saprophyte, and B. mallei is a host-restricted pathogen. The acyl-homoserine lactone quorum-sensing (QS) systems of these three species show a high level of conservation. We used transcriptome sequencing (RNA-seq) to define the quorum-sensing regulon in each species, and we performed a cross-species analysis of the QS-controlled orthologs. Our analysis revealed a core set of QS-regulated genes in all three species, as well as QS-controlled factors shared by only two species or unique to a given species. This global survey of the QS regulons of B. pseudomallei, B. thailandensis, and B. mallei serves as a platform for predicting which QS-controlled processes might be important in different bacterial niches and contribute to the pathogenesis of B. pseudomallei and B. mallei.

  9. Discrimination of Burkholderia multivorans and Burkholderia vietnamiensis from Burkholderia cepacia genomovars I, III, and IV by PCR.

    PubMed

    Bauernfeind, A; Schneider, I; Jungwirth, R; Roller, C

    1999-05-01

    We present a PCR procedure for identification of Burkholderia cepacia, Burkholderia multivorans, and Burkholderia vietnamiensis. 16S and 23S ribosomal DNAs (rDNAs) of B. multivorans and B. vietnamiensis were sequenced and aligned with published sequences for definition of species-specific 18-mer oligonucleotide primers. Specific antisense 16S rDNA primers (for B. cepacia, 5'-AGC ACT CCC RCC TCT CAG-3'; for B. multivorans, 5'-AGC ACT CCC GAA TCT CTT-3') and 23S rDNA primers (for B. vietnamiensis, 5'-TCC TAC CAT GCG TGC AA-3') were paired with a general sense primer of 16S rDNAs (5'-AGR GTT YGA TYM TGG CTC AG-3') or with a sense primer of 23S rDNA (5'-CCT TTG GGT CAT CCT GGA-3'). PCR with these primers under optimized conditions is appropriate to specifically and rapidly identify B. multivorans, B. vietnamiensis, and B. cepacia (genomovars I, III, and IV are not discriminated). In comparison with the polyphasic taxonomic analyses presently necessary for species and genomovar identification within the B. cepacia complex, our procedure is more rapid and easier to perform and may contribute to clarifying the clinical significance of individual members of the complex in cystic fibrosis.

  10. Survival of Burkholderia pseudomallei on Environmental Surfaces.

    PubMed

    Shams, Alicia M; Rose, Laura J; Hodges, Lisa; Arduino, Matthew J

    2007-12-01

    The survival of the biothreat agent Burkholderia pseudomallei on the surfaces of four materials was measured by culture and esterase activity analyses. The culture results demonstrated that this organism persisted for <24 h to <7 days depending on the material, bacterial isolate, and suspension medium. The persistence determined by analysis of esterase activity, as measured with a ScanRDI solid-phase cytometer, was always longer than the persistence determined by culture analysis.

  11. Burkholderia mallei and Burkholderia pseudomallei: the causative micro-organisms of glanders and melioidosis.

    PubMed

    Gilad, Jacob

    2007-11-01

    Burkholderia mallei and Burkholderia pseudomallei are the causative micro-organisms of Glanders and Melioidosis, respectively. Although now rare in Western countries, both micro-organisms have recently gained much interest because of their unique potential as bioterrorism agents. This paper reviews the epidemiology, pathogenesis, diagnosis and treatment of Melioidosis and Glanders. Recent patents relating to these micro-organisms, especially potential vaccines, are presented. Continued research and development is urgently needed, especially in regard to rapid and accurate diagnosis of melioidosis and glanders, efficacious therapy and primary and secondary prevention.

  12. Development of Burkholderia mallei and pseudomallei vaccines.

    PubMed

    Silva, Ediane B; Dow, Steven W

    2013-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit

  13. Whole-Genome Assemblies of 56 Burkholderia Species

    PubMed Central

    Daligault, H. E.; Davenport, K. W.; Minogue, T. D.; Bishop-Lilly, K. A.; Broomall, S. M.; Bruce, D. C.; Chain, P. S.; Coyne, S. R.; Frey, K. G.; Gibbons, H. S.; Jaissle, J.; Koroleva, G. I.; Ladner, J. T.; Lo, C.-C.; Munk, C.; Palacios, G. F.; Redden, C. L.; Rosenzweig, C. N.; Scholz, M. B.

    2014-01-01

    Burkholderia is a genus of betaproteobacteria that includes three notable human pathogens: B. cepacia, B. pseudomallei, and B. mallei. While B. pseudomallei and B. mallei are considered potential biowarfare agents, B. cepacia infections are largely limited to cystic fibrosis patients. Here, we present 56 Burkholderia genomes from 8 distinct species. PMID:25414490

  14. Draft Genomes for Eight Burkholderia mallei Isolates from Turkey

    PubMed Central

    Daligault, H. E.; Davenport, K. W.; Minogue, T. D.; Bishop-Lilly, K. A.; Broomall, S. M.; Bruce, D. C.; Coyne, S. R.; Frey, K. G.; Gibbons, H. S.; Jaissle, J.; Koroleva, G. I.; Ladner, J. T.; Lo, C.-C.; Munk, C.; Wolcott, M. J.; Palacios, G. F.; Redden, C. L.; Rosenzweig, C. N.; Scholz, M. B.; Chain, P. S.

    2016-01-01

    Burkholderia mallei, the etiologic agent of glanders, is a Gram-negative, nonmotile, facultative intracellular pathogen. Although glanders has been eradicated from many parts of the world, the threat of B. mallei being used as a weapon is very real. Here we present draft genome assemblies of 8 Burkholderia mallei strains that were isolated in Turkey. PMID:26744368

  15. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Significant New Uses for Specific Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism and significant new uses subject to reporting. (1) The microorganisms identified as the Burkholderia cepacia complex defined...

  16. Draft Genomes for Eight Burkholderia mallei Isolates from Turkey

    DOE PAGESBeta

    Daligault, H. E.; Johnson, Shannon L.; Davenport, K. W.; Minogue, T. D.; Bishop-Lilly, K. A.; Broomall, S. M.; Bruce, D. C.; Coyne, S. R.; Frey, K. G.; Gibbons, H. S.; et al

    2016-01-07

    Burkholderia mallei, the etiologic agent of glanders, is a Gram-negative, nonmotile, facultative intracellular pathogen. Though glanders have been eradicated from many parts of the world, the threat ofB. malleibeing used as a weapon is very real. We, then, present draft genome assemblies of 8Burkholderia malleistrains that were isolated in Turkey.

  17. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Significant New Uses for Specific Microorganisms § 725.1075 Burkholderia cepacia complex. (a) Microorganism and significant new uses subject to reporting. (1) The microorganisms identified as the Burkholderia cepacia complex defined...

  18. Complete Genome Sequences for 59 Burkholderia Isolates, Both Pathogenic and Near Neighbor

    SciTech Connect

    Johnson, Shannon L.; Bishop-Lilly, Kimberly A.; Ladner, Jason T.; Daligault, Hajnalka E.; Davenport, Karen W.; Jaissle, James; Frey, Kenneth G.; Koroleva, Galina I.; Bruce, David C.; Coyne, Susan R.; Broomall, Stacey M.; Li, Po-E; Teshima, Hazuki; Gibbons, Henry S.; Palacios, Gustavo F.; Rosenzweig, C. Nicole; Redden, Cassie L.; Xu, Yan; Minogue, Timothy D.; Chain, Patrick S.

    2015-04-30

    The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Presented in this document are full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development.

  19. Complete Genome Sequences for 59 Burkholderia Isolates, Both Pathogenic and Near Neighbor

    PubMed Central

    Bishop-Lilly, Kimberly A.; Ladner, Jason T.; Daligault, Hajnalka E.; Davenport, Karen W.; Jaissle, James; Frey, Kenneth G.; Koroleva, Galina I.; Bruce, David C.; Coyne, Susan R.; Broomall, Stacey M.; Li, Po-E; Teshima, Hazuki; Gibbons, Henry S.; Palacios, Gustavo F.; Rosenzweig, C. Nicole; Redden, Cassie L.; Xu, Yan; Minogue, Timothy D.; Chain, Patrick S.

    2015-01-01

    The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Here we present full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development. PMID:25931592

  20. The Identification and Differentiation between Burkholderia mallei and Burkholderia pseudomallei Using One Gene Pyrosequencing

    PubMed Central

    Gilling, Damian H.; Luna, Vicki Ann; Pflugradt, Cori

    2014-01-01

    The etiologic agents for melioidosis and glanders, Burkholderia mallei and Burkholderia pseudomallei respectively, are genetically similar making identification and differentiation from other Burkholderia species and each other challenging. We used pyrosequencing to determine the presence or absence of an insertion sequence IS407A within the flagellin P (fliP) gene and to exploit the difference in orientation of this gene in the two species. Oligonucleotide primers were designed to selectively target the IS407A-fliP interface in B. mallei and the fliP gene specifically at the insertion point in B. pseudomallei. We then examined DNA from ten B. mallei, ten B. pseudomallei, 14 B. cepacia, eight other Burkholderia spp., and 17 other bacteria. Resultant pyrograms encompassed the target sequence that contained either the fliP gene with the IS407A interruption or the fully intact fliP gene with 100% sensitivity and 100% specificity. These pyrosequencing assays based upon a single gene enable investigators to reliably identify the two species. The information obtained by these assays provides more knowledge of the genomic reduction that created the new species B. mallei from B. pseudomallei and may point to new targets that can be exploited in the future. PMID:27350960

  1. Histone Deacetylase Inhibitors from Burkholderia Thailandensis

    PubMed Central

    Klausmeyer, Paul; Shipley, Suzanne; Zuck, Karina M.; McCloud, Thomas G.

    2011-01-01

    Bioactivity guided fractionation of an extract of Burkholderia thailandensis led to the isolation and identification of a new cytotoxic depsipeptide and its dimer. Both compounds potently inhibited the function of histone deacetylases 1 and 4. The monomer, spiruchostatin C (2), was tested side-by-side with the clinical depsipeptide FK228 (1, Istodax®, romidepsin) in a murine hollow fiber assay consisting of 12 implanted tumor cell lines. Spiruchostatin C (2) showed good activity towards LOX IMVI melanoma cells and NCI-H522 non small cell lung cancer cells. Overall, however, FK228 (1) showed a superior in vivo antitumor profile compared to the new compound. PMID:21967146

  2. Burkholderia rhynchosiae sp. nov., isolated from Rhynchosia ferulifolia root nodules.

    PubMed

    De Meyer, Sofie E; Cnockaert, Margo; Ardley, Julie K; Trengove, Robert D; Garau, Giovanni; Howieson, John G; Vandamme, Peter

    2013-11-01

    Two strains of Gram-stain-negative, rod-shaped bacteria were isolated from root nodules of the South African legume Rhynchosia ferulifolia and authenticated on this host. Based on phylogenetic analysis of the 16S rRNA gene, strains WSM3930 and WSM3937(T) belonged to the genus Burkholderia, with the highest degree of sequence similarity to Burkholderia terricola (98.84 %). Additionally, the housekeeping genes gyrB and recA were analysed since 16S rRNA gene sequences are highly similar between closely related species of the genus Burkholderia. The results obtained for both housekeeping genes, gyrB and recA, showed the highest degree of sequence similarity of the novel strains towards Burkholderia caledonica LMG 19076(T) (94.2 % and 94.5 %, respectively). Chemotaxonomic data, including fatty acid profiles and respiratory quinone data supported the assignment of strains WSM3930 and WSM3937(T) to the genus Burkholderia. DNA-DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strains WSM3930 and WSM3937(T) from the most closely related species of the genus Burkholderia with validly published names. We conclude, therefore, that these strains represent a novel species for which the name Burkholderia rhynchosiae sp. nov. is proposed, with strain WSM3937(T) ( = LMG 27174(T) = HAMBI 3354(T)) as the type strain.

  3. Antibacterial activity of a lectin-like Burkholderia cenocepacia protein

    PubMed Central

    Ghequire, Maarten G K; Canck, Evelien; Wattiau, Pierre; Winge, Iris; Loris, Remy; Coenye, Tom; Mot, René

    2013-01-01

    Abstract Bacteriocins of the LlpA family have previously been characterized in the γ-proteobacteria Pseudomonas and Xanthomonas. These proteins are composed of two MMBL (monocot mannose-binding lectin) domains, a module predominantly and abundantly found in lectins from monocot plants. Genes encoding four different types of LlpA-like proteins were identified in genomes from strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. A selected recombinant LlpA-like protein from the human isolate Burkholderia cenocepacia AU1054 displayed narrow-spectrum genus-specific antibacterial activity, thus representing the first functionally characterized bacteriocin within this β-proteobacterial genus. Strain-specific killing was confined to other members of the Bcc, with mostly Burkholderia ambifaria strains being susceptible. In addition to killing planktonic cells, this bacteriocin also acted as an antibiofilm agent. Bacteriocins mediate highly selective antagonism among closely related bacteria but such antimicrobial proteins have not yet been reported in Burkholderia. We identified a lectin-like protein of the LlpA family in a Burkholderia cenocepacia human isolate that strain-specifically and selectively kills planktonic and biofilm cells of other Burkholderia cepacia complex members. PMID:23737242

  4. Burkholderia humi sp. nov., isolated from peat soil.

    PubMed

    Srinivasan, Sathiyaraj; Kim, Jinsoo; Kang, Sang-Rim; Jheong, Weon-Hwa; Lee, Sang-Seob

    2013-03-01

    A Gram-negative, aerobic, short-rod-shaped, non-motile bacterium designated Rs7(T), was isolated from peat soil collected from Russia and was characterized to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that the strain Rs7(T) belongs to the class Betaproteobacteria. The highest degree of sequence similarities were determined to be with Burkholderia tropica Ppe8(T) (98.4 %), Burkholderia unamae MTI-641(T) (97.8 %), Burkholderia bannensis E25(T) (97.7 %), Burkholderia heleia SA41(T) (97.0 %), and Burkholderia sacchari IPT101(T) (97.0 %). Chemotaxonomic data revealed that the strain Rs7(T) possesses ubiquinone Q-8. The polar lipid profile of strain Rs7(T) contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, and an unknown amino phospholipid. The predominant fatty acids were C(16:0), C(19:0) cyclo ω8c, and C(17:0) cyclo, all of which corroborated the assignment of the strain to the genus Burkholderia. The DNA G+C content was 63.2 mol%. DNA-DNA hybridization experiments showed less than 37.8 % DNA relatedness with closely related type strains, thus confirming separate species status. The results of physiological and biochemical tests allowed phenotypic differentiation of strain Rs7(T) from the members of the genus Burkholderia. Based on these data, Rs7(T) (=KEMC 7302-068(T) = JCM 18069(T)) should be classified as the type strain for a novel Burkholderia species, for which the name Burkholderia humi sp. nov. is proposed.

  5. Membrane-active mechanism of LFchimera against Burkholderia pseudomallei and Burkholderia thailandensis.

    PubMed

    Kanthawong, Sakawrat; Puknun, Aekkalak; Bolscher, Jan G M; Nazmi, Kamran; van Marle, Jan; de Soet, Johannes J; Veerman, Enno C I; Wongratanacheewin, Surasakdi; Taweechaisupapong, Suwimol

    2014-10-01

    LFchimera, a construct combining two antimicrobial domains of bovine lactoferrin, lactoferrampin265-284 and lactoferricin17-30, possesses strong bactericidal activity. As yet, no experimental evidence was presented to evaluate the mechanisms of LFchimera against Burkholderia isolates. In this study we analyzed the killing activity of LFchimera on the category B pathogen Burkholderia pseudomallei in comparison to the lesser virulent Burkholderia thailandensis often used as a model for the highly virulent B. pseudomallei. Killing kinetics showed that B. thailandensis E264 was more susceptible for LFchimera than B. pseudomallei 1026b. Interestingly the bactericidal activity of LFchimera appeared highly pH dependent; B. thailandensis killing was completely abolished at and below pH 6.4. FITC-labeled LFchimera caused a rapid accumulation within 15 min in the cytoplasm of both bacterial species. Moreover, freeze-fracture electron microscopy demonstrated extreme effects on the membrane morphology of both bacterial species within 1 h of incubation, accompanied by altered membrane permeability monitored as leakage of nucleotides. These data indicate that the mechanism of action of LFchimera is similar for both species and encompasses disruption of the plasma membrane and subsequently leakage of intracellular nucleotides leading to cell dead.

  6. Antibacterial activity of a lectin-like Burkholderia cenocepacia protein.

    PubMed

    Ghequire, Maarten G K; De Canck, Evelien; Wattiau, Pierre; Van Winge, Iris; Loris, Remy; Coenye, Tom; De Mot, René

    2013-08-01

    Bacteriocins of the LlpA family have previously been characterized in the γ-proteobacteria Pseudomonas and Xanthomonas. These proteins are composed of two MMBL (monocot mannose-binding lectin) domains, a module predominantly and abundantly found in lectins from monocot plants. Genes encoding four different types of LlpA-like proteins were identified in genomes from strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. A selected recombinant LlpA-like protein from the human isolate Burkholderia cenocepacia AU1054 displayed narrow-spectrum genus-specific antibacterial activity, thus representing the first functionally characterized bacteriocin within this β-proteobacterial genus. Strain-specific killing was confined to other members of the Bcc, with mostly Burkholderia ambifaria strains being susceptible. In addition to killing planktonic cells, this bacteriocin also acted as an antibiofilm agent.

  7. Antibacterial activity of a lectin-like Burkholderia cenocepacia protein.

    PubMed

    Ghequire, Maarten G K; De Canck, Evelien; Wattiau, Pierre; Van Winge, Iris; Loris, Remy; Coenye, Tom; De Mot, René

    2013-08-01

    Bacteriocins of the LlpA family have previously been characterized in the γ-proteobacteria Pseudomonas and Xanthomonas. These proteins are composed of two MMBL (monocot mannose-binding lectin) domains, a module predominantly and abundantly found in lectins from monocot plants. Genes encoding four different types of LlpA-like proteins were identified in genomes from strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. A selected recombinant LlpA-like protein from the human isolate Burkholderia cenocepacia AU1054 displayed narrow-spectrum genus-specific antibacterial activity, thus representing the first functionally characterized bacteriocin within this β-proteobacterial genus. Strain-specific killing was confined to other members of the Bcc, with mostly Burkholderia ambifaria strains being susceptible. In addition to killing planktonic cells, this bacteriocin also acted as an antibiofilm agent. PMID:23737242

  8. Phylogenetic analysis of burkholderia species by multilocus sequence analysis.

    PubMed

    Estrada-de los Santos, Paulina; Vinuesa, Pablo; Martínez-Aguilar, Lourdes; Hirsch, Ann M; Caballero-Mellado, Jesús

    2013-07-01

    Burkholderia comprises more than 60 species of environmental, clinical, and agro-biotechnological relevance. Previous phylogenetic analyses of 16S rRNA, recA, gyrB, rpoB, and acdS gene sequences as well as genome sequence comparisons of different Burkholderia species have revealed two major species clusters. In this study, we undertook a multilocus sequence analysis of 77 type and reference strains of Burkholderia using atpD, gltB, lepA, and recA genes in combination with the 16S rRNA gene sequence and employed maximum likelihood and neighbor-joining criteria to test this further. The phylogenetic analysis revealed, with high supporting values, distinct lineages within the genus Burkholderia. The two large groups were named A and B, whereas the B. rhizoxinica/B. endofungorum, and B. andropogonis groups consisted of two and one species, respectively. The group A encompasses several plant-associated and saprophytic bacterial species. The group B comprises the B. cepacia complex (opportunistic human pathogens), the B. pseudomallei subgroup, which includes both human and animal pathogens, and an assemblage of plant pathogenic species. The distinct lineages present in Burkholderia suggest that each group might represent a different genus. However, it will be necessary to analyze the full set of Burkholderia species and explore whether enough phenotypic features exist among the different clusters to propose that these groups should be considered separate genera.

  9. Environmental Transmission of the Gut Symbiont Burkholderia to Phloem-Feeding Blissus insularis

    PubMed Central

    Xu, Yao; Buss, Eileen A.; Boucias, Drion G.

    2016-01-01

    The plant-phloem-feeding Blissus insularis possesses specialized midgut crypts, which harbor a dense population of the exocellular bacterial symbiont Burkholderia. Most individual B. insularis harbor a single Burkholderia ribotype in their midgut crypts; however, a diverse Burkholderia community exists within a host population. To understand the mechanism underlying the consistent occurrence of various Burkholderia in B. insularis and their specific association, we investigated potential gut symbiont transmission routes. PCR amplification detected a low titer of Burkholderia in adult reproductive tracts; however, fluorescence in situ hybridization assays failed to produce detectable signals in these tracts. Furthermore, no Burkholderia-specific PCR signals were detected in eggs and neonates, suggesting that it is unlikely that B. insularis prenatally transmits gut symbionts via ovarioles. In rearing experiments, most nymphs reared on St. Augustinegrass treated with cultured Burkholderia harbored the cultured Burkholderia strains. Burkholderia was detected in the untreated host grass of B. insularis, and most nymphs reared on untreated grass harbored a Burkholderia ribotype that was closely related to a plant-associated Burkholderia strain. These findings revealed that B. insularis neonates acquired Burkholderia primarily from the environment (i.e., plants and soils), even though the possibility of acquisition via egg surface cannot be excluded. In addition, our study explains how the diverse Burkholderia symbiont community in B. insularis populations can be maintained. PMID:27548682

  10. Environmental Transmission of the Gut Symbiont Burkholderia to Phloem-Feeding Blissus insularis.

    PubMed

    Xu, Yao; Buss, Eileen A; Boucias, Drion G

    2016-01-01

    The plant-phloem-feeding Blissus insularis possesses specialized midgut crypts, which harbor a dense population of the exocellular bacterial symbiont Burkholderia. Most individual B. insularis harbor a single Burkholderia ribotype in their midgut crypts; however, a diverse Burkholderia community exists within a host population. To understand the mechanism underlying the consistent occurrence of various Burkholderia in B. insularis and their specific association, we investigated potential gut symbiont transmission routes. PCR amplification detected a low titer of Burkholderia in adult reproductive tracts; however, fluorescence in situ hybridization assays failed to produce detectable signals in these tracts. Furthermore, no Burkholderia-specific PCR signals were detected in eggs and neonates, suggesting that it is unlikely that B. insularis prenatally transmits gut symbionts via ovarioles. In rearing experiments, most nymphs reared on St. Augustinegrass treated with cultured Burkholderia harbored the cultured Burkholderia strains. Burkholderia was detected in the untreated host grass of B. insularis, and most nymphs reared on untreated grass harbored a Burkholderia ribotype that was closely related to a plant-associated Burkholderia strain. These findings revealed that B. insularis neonates acquired Burkholderia primarily from the environment (i.e., plants and soils), even though the possibility of acquisition via egg surface cannot be excluded. In addition, our study explains how the diverse Burkholderia symbiont community in B. insularis populations can be maintained. PMID:27548682

  11. Exploitation of host cells by Burkholderia pseudomallei.

    PubMed

    Stevens, Mark P; Galyov, Edouard E

    2004-04-01

    Intracellular bacterial pathogens have evolved mechanisms to enter and exit eukaryotic cells using the power of actin polymerisation and to subvert the activity of cellular enzymes and signal transduction pathways. The proteins deployed by bacteria to subvert cellular processes often mimic eukaryotic proteins in their structure or function. Studies on the exploitation of host cells by the facultative intracellular pathogen Burkholderia pseudomallei are providing novel insights into the pathogenesis of melioidosis, a serious invasive disease of animals and humans that is endemic in tropical and subtropical areas. B. pseudomallei can invade epithelial cells, survive and proliferate inside phagocytes, escape from endocytic vesicles, form actin-based membrane protrusions and induce host cell fusion. Here we review current understanding of the molecular mechanisms underlying these processes.

  12. Functional Characterization of Burkholderia pseudomallei Trimeric Autotransporters

    PubMed Central

    Campos, Cristine G.; Byrd, Matthew S.

    2013-01-01

    Burkholderia pseudomallei is a tier 1 select agent and the causative agent of melioidosis, a severe and often fatal disease with symptoms ranging from acute pneumonia and septic shock to a chronic infection characterized by abscess formation in the lungs, liver, and spleen. Autotransporters (ATs) are exoproteins belonging to the type V secretion system family, with many playing roles in pathogenesis. The genome of B. pseudomallei strain 1026b encodes nine putative trimeric AT proteins, of which only four have been described. Using a bioinformatic approach, we annotated putative domains within each trimeric AT protein, excluding the well-studied BimA protein, and found short repeated sequences unique to Burkholderia species, as well as an unexpectedly large proportion of ATs with extended signal peptide regions (ESPRs). To characterize the role of trimeric ATs in pathogenesis, we constructed disruption or deletion mutations in each of eight AT-encoding genes and evaluated the resulting strains for adherence to, invasion of, and plaque formation in A549 cells. The majority of the ATs (and/or the proteins encoded downstream) contributed to adherence to and efficient invasion of A549 cells. Using a BALB/c mouse model of infection, we determined the contributions of each AT to bacterial burdens in the lungs, liver, and spleen. At 48 h postinoculation, only one strain, Bp340::pDbpaC, demonstrated a defect in dissemination and/or survival in the liver, indicating that BpaC is required for wild-type virulence in this model. PMID:23716608

  13. Contribution of gene loss to the pathogenic evolution of Burkholderia pseudomallei and Burkholderia mallei.

    PubMed

    Moore, Richard A; Reckseidler-Zenteno, Shauna; Kim, Heenam; Nierman, William; Yu, Yan; Tuanyok, Apichai; Warawa, Jonathan; DeShazer, David; Woods, Donald E

    2004-07-01

    Burkholderia pseudomallei is the causative agent of melioidosis. Burkholderia thailandensis is a closely related species that can readily utilize l-arabinose as a sole carbon source, whereas B. pseudomallei cannot. We used Tn5-OT182 mutagenesis to isolate an arabinose-negative mutant of B. thailandensis. Sequence analysis of regions flanking the transposon insertion revealed the presence of an arabinose assimilation operon consisting of nine genes. Analysis of the B. pseudomallei chromosome showed a deletion of the operon from this organism. This deletion was detected in all B. pseudomallei and Burkholderia mallei strains investigated. We cloned the B. thailandensis E264 arabinose assimilation operon and introduced the entire operon into the chromosome of B. pseudomallei 406e via homologous recombination. The resultant strain, B. pseudomallei SZ5028, was able to utilize l-arabinose as a sole carbon source. Strain SZ5028 had a significantly higher 50% lethal dose for Syrian hamsters compared to the parent strain 406e. Microarray analysis revealed that a number of genes in a type III secretion system were down-regulated in strain SZ5028 when cells were grown in l-arabinose, suggesting a regulatory role for l-arabinose or a metabolite of l-arabinose. These results suggest that the ability to metabolize l-arabinose reduces the virulence of B. pseudomallei and that the genes encoding arabinose assimilation may be considered antivirulence genes. The increase in virulence associated with the loss of these genes may have provided a selective advantage for B. pseudomallei as these organisms adapted to survival in animal hosts.

  14. Contribution of Gene Loss to the Pathogenic Evolution of Burkholderia pseudomallei and Burkholderia mallei

    PubMed Central

    Moore, Richard A.; Reckseidler-Zenteno, Shauna; Kim, Heenam; Nierman, William; Yu, Yan; Tuanyok, Apichai; Warawa, Jonathan; DeShazer, David; Woods, Donald E.

    2004-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis. Burkholderia thailandensis is a closely related species that can readily utilize l-arabinose as a sole carbon source, whereas B. pseudomallei cannot. We used Tn5-OT182 mutagenesis to isolate an arabinose-negative mutant of B. thailandensis. Sequence analysis of regions flanking the transposon insertion revealed the presence of an arabinose assimilation operon consisting of nine genes. Analysis of the B. pseudomallei chromosome showed a deletion of the operon from this organism. This deletion was detected in all B. pseudomallei and Burkholderia mallei strains investigated. We cloned the B. thailandensis E264 arabinose assimilation operon and introduced the entire operon into the chromosome of B. pseudomallei 406e via homologous recombination. The resultant strain, B. pseudomallei SZ5028, was able to utilize l-arabinose as a sole carbon source. Strain SZ5028 had a significantly higher 50% lethal dose for Syrian hamsters compared to the parent strain 406e. Microarray analysis revealed that a number of genes in a type III secretion system were down-regulated in strain SZ5028 when cells were grown in l-arabinose, suggesting a regulatory role for l-arabinose or a metabolite of l-arabinose. These results suggest that the ability to metabolize l-arabinose reduces the virulence of B. pseudomallei and that the genes encoding arabinose assimilation may be considered antivirulence genes. The increase in virulence associated with the loss of these genes may have provided a selective advantage for B. pseudomallei as these organisms adapted to survival in animal hosts. PMID:15213162

  15. Burkholderia sprentiae sp. nov., isolated from Lebeckia ambigua root nodules.

    PubMed

    De Meyer, Sofie E; Cnockaert, Margo; Ardley, Julie K; Maker, Garth; Yates, Ron; Howieson, John G; Vandamme, Peter

    2013-11-01

    Seven Gram-stain-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules and authenticated on this host. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Burkholderia, with the representative strain WSM5005(T) being most closely related to Burkholderia tuberum (98.08 % sequence similarity). Additionally, these strains formed a distinct group in phylogenetic trees based on the housekeeping genes gyrB and recA. Chemotaxonomic data including fatty acid profiles and analysis of respiratory quinones supported the assignment of the strains to the genus Burkholderia. Results of DNA-DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from the closest species of the genus Burkholderia with a validly published name. Therefore, these strains represent a novel species for which the name Burkholderia sprentiae sp. nov. (type strain WSM5005(T) = LMG 27175(T) = HAMBI 3357(T)) is proposed.

  16. Burkholderia dilworthii sp. nov., isolated from Lebeckia ambigua root nodules.

    PubMed

    De Meyer, Sofie E; Cnockaert, Margo; Ardley, Julie K; Van Wyk, Ben-Erik; Vandamme, Peter A; Howieson, John G

    2014-04-01

    Three strains of Gram-stain-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules and authenticated on this host. Based on the 16S rRNA gene sequence phylogeny, they were shown to belong to the genus Burkholderia, with the representative strain WSM3556(T) being most closely related to Burkholderia caledonica LMG 23644(T) (98.70 % 16S rRNA gene sequence similarity) and Burkholderia rhynchosiae WSM3937(T) (98.50 %). Additionally, these strains formed a distinct group in phylogenetic trees of the housekeeping genes gyrB and recA. Chemotaxonomic data, including fatty acid profiles and analysis of respiratory quinones, supported the assignment of our strains to the genus Burkholderia. Results of DNA-DNA hybridizations, MALDI-TOF MS analysis and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from their nearest neighbour species. Therefore, these strains represent a novel species, for which the name Burkholderia dilworthii sp. nov. is proposed, with the type strain WSM3556(T) ( = LMG 27173(T) = HAMBI 3353(T)).

  17. Oropharyngeal Aspiration of Burkholderia mallei and Burkholderia pseudomallei in BALB/c Mice

    PubMed Central

    Schully, Kevin L.; Bell, Matthew G.; Ward, Jerrold M.; Keane-Myers, Andrea M.

    2014-01-01

    Burkholderia mallei and Burkholderia pseudomallei are potentially lethal pathogens categorized as biothreat agents due, in part, to their ability to be disseminated via aerosol. There are no protective vaccines against these pathogens and treatment options are limited and cumbersome. Since disease severity is greatest when these agents are inhaled, efforts to develop pre- or post-exposure prophylaxis focus largely on inhalation models of infection. Here, we demonstrate a non-invasive and technically simple method for affecting the inhalational challenge of BALB/c mice with B. pseudomallei and B. mallei. In this model, two investigators utilized common laboratory tools such as forceps and a micropipette to conduct and characterize an effective and reproducible inhalational challenge of BALB/c mice with B. mallei and B. pseudomallei. Challenge by oropharyngeal aspiration resulted in acute disease. Additionally, 50% endpoints for B. pseudomallei K96243 and B. mallei ATCC 23344 were nearly identical to published aerosol challenge methods. Furthermore, the pathogens disseminated to all major organs typically targeted by these agents where they proliferated. The pro-inflammatory cytokine production in the proximal and peripheral fluids demonstrated a rapid and robust immune response comparable to previously described murine and human studies. These observations demonstrate that OA is a viable alternative to aerosol exposure. PMID:25503969

  18. Ornibactin production and transport properties in strains of Burkholderia vietnamiensis and Burkholderia cepacia (formerly Pseudomonas cepacia).

    PubMed

    Meyer, J M; Van, V T; Stintzi, A; Berge, O; Winkelmann, G

    1995-10-01

    Several strains of Burkholderia vietnamiensis, isolated from the rhizosphere of rice plants, and four strains formerly known as Pseudomonas cepacia including two collection strains and two clinical isolates were compared for siderophore production and iron uptake. The B. vietnamiensis (TVV strains) as well as the B. cepacia strains (ATCC 25416 and ATCC 17759) and the clinical isolates K132 and LMG 6999 were all found to produce ornibactins under iron starvation. The two ATCC strains of B. cepacia additionally produced the previously described siderophores, pyochelin and cepabactin. Analysis of the ratio of isolated ornibactins (C4, C6 and C8) by HPLC revealed nearly identical profiles. Supplementation of the production medium with ornithine (20 mM) resulted in a 2.5-fold increase in ornibactin synthesis. Ornibactin-mediated iron uptake was independent of the length of the acyl side chain and was observed with all strains of B. vietnamiensis and B. cepacia, but was absent with strains of Pseudomonas aeruginosa, Pseudomonas fluorescens and Pseudomonas stutzeri, known to produce pyoverdines or desferriferrioxamines as siderophores. These results suggest that ornibactin production is a common feature of all Burkholderia strains and that these strains develop an ornibactin-specific iron transport system which is distinct from the pyoverdine-specific transport in Pseudomonas strains. PMID:7580051

  19. Experimental Phage Therapy for Burkholderia pseudomallei Infection

    PubMed Central

    Leang-Chung, Choh; Vellasamy, Kumutha Malar; Mariappan, Vanitha; Li-Yen, Chang; Vadivelu, Jamuna

    2016-01-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen intrinsically resistant to a variety of antibiotics. Phages have been developed for use as an alternative treatment therapy, particularly for bacterial infections that do not respond to conventional antibiotics. In this study, we investigated the use of phages to treat cells infected with B. pseudomallei. Phage C34 isolated from seawater was purified and characterised on the basis of its host range and morphology using transmission electron microscopy (TEM). Phage C34 was able to lyse 39.5% of B. pseudomallei clinical strains. Due to the presence of contractile tail, phage C34 is classified as a member of the family Myoviridae, a tailed double-stranded DNA virus. When 2 × 105 A549 cells were exposed to 2 × 107 PFU of phage C34, 24 hours prior to infection with 2 × 106 CFU of B. pseudomallei, it was found that the survivability of the cells increased to 41.6 ± 6.8% as compared to 22.8 ± 6.0% in untreated control. Additionally, application of phage successfully rescued 33.3% of mice infected with B. pseudomallei and significantly reduced the bacterial load in the spleen of the phage-treated mice. These findings indicate that phage can be a potential antimicrobial agent for B. pseudomallei infections. PMID:27387381

  20. Experimental Phage Therapy for Burkholderia pseudomallei Infection.

    PubMed

    Guang-Han, Ong; Leang-Chung, Choh; Vellasamy, Kumutha Malar; Mariappan, Vanitha; Li-Yen, Chang; Vadivelu, Jamuna

    2016-01-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen intrinsically resistant to a variety of antibiotics. Phages have been developed for use as an alternative treatment therapy, particularly for bacterial infections that do not respond to conventional antibiotics. In this study, we investigated the use of phages to treat cells infected with B. pseudomallei. Phage C34 isolated from seawater was purified and characterised on the basis of its host range and morphology using transmission electron microscopy (TEM). Phage C34 was able to lyse 39.5% of B. pseudomallei clinical strains. Due to the presence of contractile tail, phage C34 is classified as a member of the family Myoviridae, a tailed double-stranded DNA virus. When 2 × 105 A549 cells were exposed to 2 × 107 PFU of phage C34, 24 hours prior to infection with 2 × 106 CFU of B. pseudomallei, it was found that the survivability of the cells increased to 41.6 ± 6.8% as compared to 22.8 ± 6.0% in untreated control. Additionally, application of phage successfully rescued 33.3% of mice infected with B. pseudomallei and significantly reduced the bacterial load in the spleen of the phage-treated mice. These findings indicate that phage can be a potential antimicrobial agent for B. pseudomallei infections. PMID:27387381

  1. Strategies for Intracellular Survival of Burkholderia pseudomallei

    PubMed Central

    Allwood, Elizabeth M.; Devenish, Rodney J.; Prescott, Mark; Adler, Ben; Boyce, John D.

    2011-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed. PMID:22007185

  2. Polysaccharides and virulence of Burkholderia pseudomallei.

    PubMed

    Sarkar-Tyson, M; Thwaite, J E; Harding, S V; Smither, S J; Oyston, P C F; Atkins, T P; Titball, R W

    2007-08-01

    Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease of humans and animals. Gene clusters which encode capsular polysaccharide (type I O-PS) and LPS (type II O-PS), both of which play roles in virulence, have previously been identified. Here, the identification of two further putative clusters, type III O-PS and type IV O-PS, is reported. Mice challenged with type III O-PS or type IV O-PS mutants showed increased mean times to death (7.8 and 11.6 days) compared to those challenged with wild-type B. pseudomallei (3 days). To investigate the possible roles of polysaccharides in protection, mice were immunized with killed cells of wild-type B. pseudomallei or killed cells of B. pseudomallei with mutations in the O antigen, capsular polysaccharide, type III O-PS or type IV O-PS gene clusters. Immunization with all polysaccharide mutant strains resulted in delayed time to death compared to the naïve controls, following challenge with wild-type B. pseudomallei strain K96243. However, immunization with killed polysaccharide mutant strains conferred different degrees of protection, demonstrating the immunological importance of the polysaccharide clusters on the surface of B. pseudomallei.

  3. Burkholderia cepacia Complex Vaccines: Where Do We Go from here?

    PubMed Central

    Pradenas, Gonzalo A.; Ross, Brittany N.; Torres, Alfredo G.

    2016-01-01

    Burkholderia comprises a wide variety of environmental Gram-negative bacteria. Burkholderia cepacia complex (Bcc) includes several Burkholderia species that pose a health hazard as they are able to cause respiratory infections in patients with chronic granulomatous disease and cystic fibrosis. Due to the intrinsic resistance to a wide array of antibiotics and naturally occurring immune evasion strategies, treatment of Bcc infections often proves to be unsuccessful. To date, limited work related to vaccine development has been performed for Bcc pathogens. In this review, we have gathered key aspects of Bcc research that have been reported in recent years related to vaccine efforts, virulence, immune responses, and animal models, and use this information to inform the research community of areas of opportunity toward development of a viable Bcc vaccine. PMID:27092530

  4. Efflux pump-mediated drug resistance in Burkholderia.

    PubMed

    Podnecky, Nicole L; Rhodes, Katherine A; Schweizer, Herbert P

    2015-01-01

    Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in Burkholderia cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND) family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA, and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  5. Efflux pump-mediated drug resistance in Burkholderia

    PubMed Central

    Podnecky, Nicole L.; Rhodes, Katherine A.; Schweizer, Herbert P.

    2015-01-01

    Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in Burkholderia cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND) family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA, and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance. PMID:25926825

  6. Recent Advances in Burkholderia mallei and B. pseudomallei Research

    PubMed Central

    Hatcher, Christopher L.; Muruato, Laura A.

    2015-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative organisms, which are etiological agents of glanders and melioidosis, respectively. Although only B. pseudomallei is responsible for a significant number of human cases, both organisms are classified as Tier 1 Select Agents and their diseases lack effective diagnosis and treatment. Despite a recent resurgence in research pertaining to these organisms, there are still a number of knowledge gaps. This article summarizes the latest research progress in the fields of B. mallei and B. pseudomallei pathogenesis, vaccines, and diagnostics. PMID:25932379

  7. Groundwater seeps facilitate exposure to Burkholderia pseudomallei.

    PubMed

    Baker, Anthony; Tahani, Donald; Gardiner, Christopher; Bristow, Keith L; Greenhill, Andrew R; Warner, Jeffrey

    2011-10-01

    Burkholderia pseudomallei is a saprophytic bacterium which is the causative agent of melioidosis, a common cause of fatal bacterial pneumonia and sepsis in the tropics. The incidence of melioidosis is clustered spatially and temporally and is heavily linked to rainfall and extreme weather events. Clinical case clustering has recently been reported in Townsville, Australia, and has implicated Castle Hill, a granite monolith in the city center, as a potential reservoir of infection. Topsoil and water from seasonal groundwater seeps were collected around the base of Castle Hill and analyzed by quantitative real-time PCR targeting the type III secretion system genes for the presence of B. pseudomallei. The organism was identified in 65% (95% confidence interval [CI], 49.5 to 80.4) of soil samples (n = 40) and 92.5% (95% CI, 83.9 to 100) of seasonal groundwater samples (n = 40). Further sampling of water collected from roads and gutters in nearby residential areas after an intense rainfall event found that 88.2% (95% CI, 72.9 to 100) of samples (n = 16) contained viable B. pseudomallei at concentrations up to 113 CFU/ml. Comparison of isolates using multilocus sequence typing demonstrated clinical matches and close associations between environmental isolates and isolates derived from clinical samples from patients in Townsville. This study demonstrated that waterborne B. pseudomallei from groundwater seeps around Castle Hill may facilitate exposure to B. pseudomallei and contribute to the clinical clustering at this site. Access to this type of information will advise the development and implementation of public health measures to reduce the incidence of melioidosis.

  8. Novel lytic bacteriophages from soil that lyse Burkholderia pseudomallei.

    PubMed

    Yordpratum, Umaporn; Tattawasart, Unchalee; Wongratanacheewin, Surasakdi; Sermswan, Rasana W

    2011-01-01

    Burkholderia pseudomallei is a Gram-negative saprophytic bacterium that causes severe sepsis with a high mortality rate in humans and a vaccine is not available. Bacteriophages are viruses of bacteria that are ubiquitous in nature. Several lysogenic phages of Burkholderia spp. have been found but information is scarce for lytic phages. Six phages, ST2, ST7, ST70, ST79, ST88 and ST96, which lyse B. pseudomallei, were isolated from soil in an endemic area. The phages belong to the Myoviridae family. The range of estimated genome sizes is 24.0-54.6 kb. Phages ST79 and ST96 lysed 71% and 67% of tested B. pseudomallei isolates and formed plaques on Burkholderia mallei but not other tested bacteria, with the exception of closely related Burkholderia thailandensis which was lysed by ST2 and ST96 only. ST79 and ST96 were observed to clear a mid-log culture by lysis within 6 h when infected at a multiplicity of infection of 0.1. As ST79 and ST96 phages effectively lysed B. pseudomallei, their potential use as a biocontrol of B. pseudomallei in the environment or alternative treatment in infected hosts could lead to benefits from phages that are available in nature. PMID:21091532

  9. Burkholderia pseudomallei: A potential zoonosis in the southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Burkholderia pseudomallei, the causative agent of melioidosis, is an underreported zoonosis in many countries where environmental conditions may be favorable for B. pseudomallei. This soil saprophyte is most often detected in tropical areas such as Southeast Asia and Northern Australia where the cas...

  10. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Burkholderia cepacia complex. 725.1075 Section 725.1075 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... significant new use is any use other than research and development in the degradation of chemicals...

  11. 40 CFR 725.1075 - Burkholderia cepacia complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Burkholderia cepacia complex. 725.1075 Section 725.1075 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... significant new use is any use other than research and development in the degradation of chemicals...

  12. Burkholderia pseudomallei isolates in 2 pet iguanas, California, USA.

    PubMed

    Zehnder, Ashley M; Hawkins, Michelle G; Koski, Marilyn A; Lifland, Barry; Byrne, Barbara A; Swanson, Alexandra A; Rood, Michael P; Gee, Jay E; Elrod, Mindy Glass; Beesley, Cari A; Blaney, David D; Ventura, Jean; Hoffmaster, Alex R; Beeler, Emily S

    2014-02-01

    Burkholderia pseudomallei, the causative agent of melioidosis, was isolated from abscesses of 2 pet green iguanas in California, USA. The international trade in iguanas may contribute to importation of this pathogen into countries where it is not endemic and put persons exposed to these animals at risk for infection.

  13. Removal of Burkholderia cepacia biofilms with oxidants

    NASA Technical Reports Server (NTRS)

    Koenig, D. W.; Mishra, S. K.; Pierson, D. L.

    1995-01-01

    Iodine is used to disinfect the water system aboard US space shuttles and is the anticipated biocide for the international space station. Water quality on spacecraft must be maintained at the highest possible levels for the safety of the crew. Furthermore, the treatment process used to maintain the quality of water on research must be robust and operate for long periods with minimal crew intervention. Biofilms are recalcitrant and pose a major threat with regard to chronic contamination of spacecraft water systems. We measured the effectiveness of oxidizing biocides on the removal and regrowth of Burkholderia (Pseudomonas) cepacia biofilms. B. cepacia, isolated from the water distribution system of the space shuttle Discovery, was grown in continuous culture to produce a bacterial contamination source for biofilm formation and removal studies. A 10(7) CFU ml-1 B. cepacia suspension, in distilled water, was used to form biofilms on 3000 micrometers2 glass surfaces. Rates of attachment were measured directly with image analysis and were found to be 7.8, 15.2, and 22.8 attachment events h-1 for flow rates of 20.7, 15.2, and 9.8 ml min-1, respectively. After 18 h of formation, the B. cepacia biofilms were challenged with oxidants (ozone, chlorine, and iodine) and the rates of biofilm removal determined by image analysis. Fifty percent of the biofilm material was removed in the first hour of continous treatment with 24 mg l-1 chlorine or 2 mg l-1 ozone. Iodine (48 mg l-1) did not remove any measurable cellular material after 6 h continuous contact. After this first removal of biofilms by the oxidants, the surface was allowed to refoul and was again treated with the biocide. Iodine was the only compound that was unable to remove cellular debris from either primary or secondary biofilms. Moreover, treating primary biofilms with iodine increased the rate of formation of secondary biofilms, from 4.4 to 5.8 attachment events h-1. All the oxidants tested inactivated the B

  14. Removal of Burkholderia cepacia biofilms with oxidants.

    PubMed

    Koenig, D W; Mishra, S K; Pierson, D L

    1995-01-01

    Iodine is used to disinfect the water system aboard US space shuttles and is the anticipated biocide for the international space station. Water quality on spacecraft must be maintained at the highest possible levels for the safety of the crew. Furthermore, the treatment process used to maintain the quality of water on research must be robust and operate for long periods with minimal crew intervention. Biofilms are recalcitrant and pose a major threat with regard to chronic contamination of spacecraft water systems. We measured the effectiveness of oxidizing biocides on the removal and regrowth of Burkholderia (Pseudomonas) cepacia biofilms. B. cepacia, isolated from the water distribution system of the space shuttle Discovery, was grown in continuous culture to produce a bacterial contamination source for biofilm formation and removal studies. A 10(7) CFU ml-1 B. cepacia suspension, in distilled water, was used to form biofilms on 3000 micrometers2 glass surfaces. Rates of attachment were measured directly with image analysis and were found to be 7.8, 15.2, and 22.8 attachment events h-1 for flow rates of 20.7, 15.2, and 9.8 ml min-1, respectively. After 18 h of formation, the B. cepacia biofilms were challenged with oxidants (ozone, chlorine, and iodine) and the rates of biofilm removal determined by image analysis. Fifty percent of the biofilm material was removed in the first hour of continous treatment with 24 mg l-1 chlorine or 2 mg l-1 ozone. Iodine (48 mg l-1) did not remove any measurable cellular material after 6 h continuous contact. After this first removal of biofilms by the oxidants, the surface was allowed to refoul and was again treated with the biocide. Iodine was the only compound that was unable to remove cellular debris from either primary or secondary biofilms. Moreover, treating primary biofilms with iodine increased the rate of formation of secondary biofilms, from 4.4 to 5.8 attachment events h-1. All the oxidants tested inactivated the B

  15. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers.

    PubMed

    Depoorter, Eliza; Bull, Matt J; Peeters, Charlotte; Coenye, Tom; Vandamme, Peter; Mahenthiralingam, Eshwar

    2016-06-01

    Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites. PMID:27115756

  16. Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale

    PubMed Central

    Bragina, Anastasia; Cardinale, Massimiliano; Berg, Christian; Berg, Gabriele

    2013-01-01

    The betaproteobacterial genus Burkholderia is known for its versatile interactions with its hosts that can range from beneficial to pathogenic. A plant-beneficial-environmental (PBE) Burkholderia cluster was recently separated from the pathogen cluster, yet still little is known about burkholderial diversity, distribution, colonization, and transmission patterns on plants. In our study, we applied a combination of high-throughput molecular and microscopic methods to examine the aforementioned factors for Burkholderia communities associated with Sphagnum mosses – model plants for long-term associations – in Austrian and Russian bogs. Analysis of 16S rRNA gene amplicons libraries revealed that most of the Burkholderia are part of the PBE group, but a minor fraction was closely related to B. glathei and B. andropogonis from the pathogen cluster. Notably, Burkholderia showed highly similar composition patterns for each moss species independent of the geographic region, and Burkholderia-specific fluorescent in situ hybridization of Sphagnum gametophytes exhibited similar colonization patterns in different Sphagnum species at multi-geographic scales. To explain these patterns, we compared the compositions of the surrounding water, gametophyte-, and sporophyte-associated microbiome at genus level and discovered that Burkholderia were present in the Sphagnum sporophyte and gametophyte, but were absent in the flark water. Therefore, Burkholderia is a part of the core microbiome transmitted from the moss sporophyte to the gametophyte. This suggests a vertical transmission of Burkholderia strains, and thus underlines their importance for the plants themselves. PMID:24391630

  17. Molecular method to assess the diversity of Burkholderia species in environmental samples.

    PubMed

    Salles, Joana Falcão; De Souza, Francisco Adriano; van Elsas, Jan Dirk

    2002-04-01

    In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient gel electrophoresis (DGGE), a powerful tool for studying the diversity of microbial communities, for detection and analysis of the Burkholderia diversity in soil samples. Primers specific for the genus Burkholderia were developed based on the 16S rRNA gene sequence and were evaluated in PCRs performed with genomic DNAs from Burkholderia and non-Burkholderia species as the templates. The primer system used exhibited good specificity and sensitivity for the majority of established species of the genus Burkholderia. DGGE analyses of the PCR products obtained showed that there were sufficient differences in migration behavior to distinguish the majority of the 14 Burkholderia species tested. Sequence analysis of amplicons generated with soil DNA exclusively revealed sequences affiliated with sequences of Burkholderia species, demonstrating that the PCR-DGGE method is suitable for studying the diversity of this genus in natural settings. A PCR-DGGE analysis of the Burkholderia communities in two grassland plots revealed differences in diversity mainly between bulk and rhizosphere soil samples; the communities in the latter samples produced more complex patterns.

  18. Molecular Method To Assess the Diversity of Burkholderia Species in Environmental Samples

    PubMed Central

    Salles, Joana Falcão; De Souza, Francisco Adriano; van Elsas, Jan Dirk

    2002-01-01

    In spite of the importance of many members of the genus Burkholderia in the soil microbial community, no direct method to assess the diversity of this genus has been developed so far. The aim of this work was the development of soil DNA-based PCR-denaturing gradient gel electrophoresis (DGGE), a powerful tool for studying the diversity of microbial communities, for detection and analysis of the Burkholderia diversity in soil samples. Primers specific for the genus Burkholderia were developed based on the 16S rRNA gene sequence and were evaluated in PCRs performed with genomic DNAs from Burkholderia and non-Burkholderia species as the templates. The primer system used exhibited good specificity and sensitivity for the majority of established species of the genus Burkholderia. DGGE analyses of the PCR products obtained showed that there were sufficient differences in migration behavior to distinguish the majority of the 14 Burkholderia species tested. Sequence analysis of amplicons generated with soil DNA exclusively revealed sequences affiliated with sequences of Burkholderia species, demonstrating that the PCR-DGGE method is suitable for studying the diversity of this genus in natural settings. A PCR-DGGE analysis of the Burkholderia communities in two grassland plots revealed differences in diversity mainly between bulk and rhizosphere soil samples; the communities in the latter samples produced more complex patterns. PMID:11916673

  19. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum

    PubMed Central

    Elliott, Geoffrey N.; Chen, Wen-Ming; Bontemps, Cyril; Chou, Jui-Hsing; Young, J. Peter W.; Sprent, Janet I.; James, Euan K.

    2007-01-01

    Background and Aims Species of the genus Burkholderia, from the Betaproteobacteria, have been isolated from legume nodules, but so far they have only been shown to form symbioses with species of Mimosa, sub-family Mimosoideae. This work investigates whether Burkholderia tuberum strains STM678 (isolated from Aspalathus carnosa) and DUS833 (from Aspalathus callosa) can nodulate species of the South African endemic papilionoid genera Cyclopia (tribe Podalyrieae) and Aspalathus (Crotalarieae) as well as the promiscuous legume Macroptilium atropurpureum (Phaseoleae). Method Bacterial strains and the phylogeny of their symbiosis-related (nod) genes were examined via 16S rRNA gene sequencing. Seedlings were grown in liquid culture and inoculated with one of the two strains of B. tuberum or with Sinorhizobium strain NGR 234 (from Lablab purpureus), Mesorhizobium strain DUS835 (from Aspalathus linearis) or Methylobacterium nodulans (from Crotalaria podocarpa). Some nodules, inoculated with green fluorescence protein (GFP)-tagged strains, were examined by light and electron microscopy coupled with immunogold labelling with a Burkholderia-specific antibody. The presence of active nitrogenase was checked by immunolabelling of nitrogenase and by the acetylene reduction assay. B. tuberum STM678 was also tested on a wide range of legumes from all three sub-families. Key Results Nodules were not formed on any of the Aspalathus spp. Only B. tuberum nodulated Cyclopia falcata, C. galioides, C. genistoides, C. intermedia and C. pubescens. It also effectively nodulated M. atropurpureum but no other species tested. GFP-expressing inoculant strains were located inside infected cells of C. genistoides, and bacteroids in both Cyclopia spp. and M. atropurpureum were immunogold-labelled with antibodies against Burkholderia and nitrogenase. Nitrogenase activity was also shown using the acetylene reduction assay. This is the first demonstration that a β-rhizobial strain can effectively

  20. Exploiting molecular virulence determinants in Burkholderia to develop vaccine antigens.

    PubMed

    Casey, William Thomas; McClean, Siobhán

    2015-01-01

    The Burkholderia genus is a highly diverse group of species that are distributed throughout a wide range of environments and habitats. Among this group, which is remarkable for its adaptability to a wider range of environmental conditions including disinfectants and organic solvents, are a subgroup that represents some of the most difficult to treat infections. This subgroup includes Burkholderia pseudomallei, the causative agent of melioidosis; B. mallei, the causative agent of glanders and B. cepacia complex (Bcc) which causes opportunistic infections in people with cystic fibrosis and immunocompromised patients. The latter pathogen is itself a group of 18 distinct, but, closely related species. The adaptability of this group allows the expression of a rich selection of molecular virulence determinants to facilitate its survival in the diverse habitats that it colonises. This review will describe a selection of these associated with human infection; comparing them across the three pathogens and highlighting their potential roles as vaccine candidates. Better integration of the knowledge on the pathogenesis and molecular determinants of virulence for these Burkholderia spp may allow the development of more efficacious vaccines.

  1. Accurate and rapid identification of the Burkholderia pseudomallei near-neighbour, Burkholderia ubonensis, using real-time PCR.

    PubMed

    Price, Erin P; Sarovich, Derek S; Webb, Jessica R; Ginther, Jennifer L; Mayo, Mark; Cook, James M; Seymour, Meagan L; Kaestli, Mirjam; Theobald, Vanessa; Hall, Carina M; Busch, Joseph D; Foster, Jeffrey T; Keim, Paul; Wagner, David M; Tuanyok, Apichai; Pearson, Talima; Currie, Bart J

    2013-01-01

    Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown's medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown's agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown's-positive colonies that are not B. pseudomallei.

  2. Whole-Genome Analysis of Quorum-Sensing Burkholderia sp. Strain A9

    PubMed Central

    Chen, Jian Woon; Tee, Kok Keng; Chang, Chien-Yi; Yin, Wai-Fong; Chan, Xin-Yue

    2015-01-01

    Burkholderia spp. rely on N-acyl homoserine lactone as quorum-sensing signal molecules which coordinate their phenotype at the population level. In this work, we present the whole genome of Burkholderia sp. strain A9, which enables the discovery of its N-acyl homoserine lactone synthase gene. PMID:25745000

  3. Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria.

    PubMed

    DiSalvo, Susanne; Haselkorn, Tamara S; Bashir, Usman; Jimenez, Daniela; Brock, Debra A; Queller, David C; Strassmann, Joan E

    2015-09-01

    Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed "farmers") stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon.

  4. Reliability of automated biochemical identification of Burkholderia pseudomallei is regionally dependent.

    PubMed

    Podin, Yuwana; Kaestli, Mirjam; McMahon, Nicole; Hennessy, Jann; Ngian, Hie Ung; Wong, Jin Shyan; Mohana, Anand; Wong, See Chang; William, Timothy; Mayo, Mark; Baird, Robert W; Currie, Bart J

    2013-09-01

    Misidentifications of Burkholderia pseudomallei as Burkholderia cepacia by Vitek 2 have occurred. Multidimensional scaling ordination of biochemical profiles of 217 Malaysian and Australian B. pseudomallei isolates found clustering of misidentified B. pseudomallei isolates from Malaysian Borneo. Specificity of B. pseudomallei identification in Vitek 2 and potentially other automated identification systems is regionally dependent.

  5. Draft Genome Sequence of Burkholderia cenocepacia Strain CEIB S5-2, a Methyl Parathion- and p-Nitrophenol-Degrading Bacterium, Isolated from Agricultural Soils in Morelos, Mexico

    PubMed Central

    Martínez-Ocampo, Fernando; Fernández López, Maikel Gilberto; Lozano-Aguirre Beltrán, Luis Fernando; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, M. Laura; Sánchez-Salinas, Enrique; Ramos Quintana, Fernando; Villalobos-López, Miguel A.

    2016-01-01

    Burkholderia cenocepacia is an opportunistic pathogen that belongs to Burkholderia cepacia complex (BCC). Burkholderia cenocepacia strain CEIB S5-2 was isolated from agricultural soils in Morelos, Mexico, and previously has shown its abilities for bioremediation. In this study, we report the draft genome sequence of Burkholderia cenocepacia strain CEIB S5-2. PMID:27125479

  6. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    PubMed Central

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  7. Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize.

    PubMed

    Zhang, Lixin; Xie, Guanlin

    2007-01-01

    A survey of Burkholderia cepacia complex (Bcc) species was conducted in agricultural fields within Hangzhou, China. Out of the 251 bacterial isolates recovered on the selective media from the rhizosphere of rice and maize, 112 of them were assigned to Bcc by PCR assays. The species composition of the Bcc isolates was analyzed by a combination of recA-restriction fragment length polymorphism assays, species-specific PCR tests and recA gene sequencing. The results revealed that the majority belong to B. cepacia, Burkholderia cenocepacia recA lineage IIIB, Burkholderia vietnamiensis and Burkholderia pyrrocinia. Burkholderia cenocepacia and B. vietnamiensis dominated the rhizosphere of maize and rice, respectively, indicating that species composition and abundance of Bcc may vary dramatically in different crop rhizospheres. In addition, one isolate (R456) formed a single discrete cluster within the phylogenetic analysis of the Bcc recA gene, and it may belong to a new genomovar. PMID:17233735

  8. Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples.

    PubMed

    Coenye, T; Laevens, S; Willems, A; Ohlén, M; Hannant, W; Govan, J R; Gillis, M; Falsen, E; Vandamme, P

    2001-05-01

    A polyphasic taxonomic study that included DNA-DNA hybridizations, DNA base ratio determinations, 16S rDNA sequence analyses, whole-cell protein and fatty acid analyses and an extensive biochemical characterization was performed on 16 strains isolated from the environment, animals and human clinical samples. The isolates belonged to the genus Burkholderia, were phylogenetically closely related to Burkholderia graminis, Burkholderia caribensis and Burkholderia phenazinium and had G+C contents between 61.9 and 62.2 mol%. Seven strains isolated from the rhizosphere were assigned to Burkholderia caledonica sp. nov. [type strain LMG 19076T (= CCUG 42236T)]. Nine strains isolated from the environment, animals and human clinical samples were assigned to Burkholderia fungorum sp. nov. [type strain LMG 16225T (= CCUG 31961T)]. Differential tests for B. graminis, B. caribensis, B. phenazinium, B. caledonica and B. fungorum include the following: assimilation of trehalose, citrate, DL-norleucine, adipate and sucrose; nitrate reduction; growth in the presence of 0.5% NaCl; and beta-galactosidase activity. PMID:11411678

  9. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species

    PubMed Central

    Sawana, Amandeep; Adeolu, Mobolaji; Gupta, Radhey S.

    2014-01-01

    The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for

  10. Burkholderia eburnea sp. nov., isolated from peat soil.

    PubMed

    Kang, Sang Rim; Srinivasan, Sathiyaraj; Lee, Sang Seob

    2014-04-01

    A novel aerobic bacterium, designated strain RR11(T), was isolated from peat soil and was characterized by using a polyphasic taxonomic approach and identified in order to determine its taxonomic position. Strain RR11(T) is a Gram-negative, non-sporulating, motile, short-rod-shaped bacterium. 16S rRNA gene sequence analysis identified this strain as a member of the genus Burkholderia of the class Betaproteobacteria. The highest degrees of gene sequence similarity were found with Burkholderia tropica Ppe8(T) (98.0 %), B. bannensis E25(T) (97.3 %), B. ferrariae FeGI01(T) (97.1 %), B. unamae MTI-641(T) (97.1 %) and B. heleia SA41(T) (97.1 %). Strain RR11(T) had the following chemotaxonomic characteristics: the major ubiquinone was Q-8, the DNA G+C content was 60.8 mol%, the major fatty acids were C16 : 0, C19 : 0 cyclo ω8c and C17 : 0 cyclo and the polar lipid profile contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unknown aminophospholipid. Based on its morphological, physiological and chemotaxonomic characteristics, together with 16S rRNA gene sequence comparison results, strain RR11(T) represents a novel species, for which the name Burkholderia eburnea sp. nov. is proposed. The type strain is strain RR11(T) ( = KEMC 7302-065(T) = JCM 18070(T)).

  11. Combined use of a specific probe and PCAT medium to study Burkholderia in soil.

    PubMed

    Pallud, C; Viallard, V; Balandreau, J; Normand, P; Grundmann, G

    2001-10-01

    Due to its pathogenic traits and agricultural benefits, there is some challenge in detecting Burkholderia in the soil environment. In this perspective, an existing semi-selective medium, (PCAT), was combined with a Burkholderia specific molecular probe. Using the complete 16S rRNA sequences of all available Burkholderia species type strains, we selected the following sequence: 5'-ACCCTCTGTTCCGACCATTGTATGA-3'. The probe was validated against GenBank sequences, with dot blots and colony hybridization tests. A diversity study of all strains growing on a PCAT plate after plating a soil dilution (75 strains) was carried out with ARDRA analysis and colony hybridization tests. All the hybridizing strains belonged to genus Burkholderia. The major type of non-hybridizing isolates belonged to Pseudomonas (16S rRNA sequencing). Both tools were combined to compare the Burkholderia populations in a rhizosphere (maize) and a non-rhizosphere soil. Based on hybridizing PCAT isolates, we were able to show an increase in Burkholderia populations in the maize rhizosphere. This genus represented 2% and 16% of the total cultivable microflora in the non-rhizosphere and rhizosphere soils, respectively. Although PCAT was shown not to be appropriate to routinely enumerate Burkholderia populations in soil, it allowed environmental investigations at the genus level, when combined with a molecular specific probe. PMID:11566224

  12. Comparison of diagnostic laboratory methods for identification of Burkholderia pseudomallei.

    PubMed

    Inglis, Timothy J J; Merritt, Adam; Chidlow, Glenys; Aravena-Roman, Max; Harnett, Gerry

    2005-05-01

    Limited experience and a lack of validated diagnostic reagents make Burkholderia pseudomallei, the cause of melioidosis, difficult to recognize in the diagnostic microbiology laboratory. We compared three methods of confirming the identity of presumptive B. pseudomallei strains using a collection of Burkholderia species drawn from diverse geographic, clinical, and environmental sources. The 95 isolates studied included 71 B. pseudomallei and 3 B. thailandensis isolates. The API 20NE method identified only 37% of the B. pseudomallei isolates. The agglutinating antibody test identified 82% at first the attempt and 90% including results of a repeat test with previously negative isolates. Gas-liquid chromatography analysis of bacterial fatty acid methyl esters (GLC-FAME) identified 98% of the B. pseudomallei isolates. The agglutination test produced four false positive results, one B. cepacia, one B. multivorans, and two B. thailandensis. API produced three false positive results, one positive B. cepacia and two positive B. thailandensis. GLC-FAME analysis was positive for one B. cepacia isolate. On the basis of these results, the most robust B. pseudomallei discovery pathway combines the previously recommended isolate screening tests (Gram stain, oxidase test, gentamicin and polymyxin susceptibility) with monoclonal antibody agglutination on primary culture, followed by a repeat after 24 h incubation on agglutination-negative isolates and GLC-FAME analysis. Incorporation of PCR-based identification within this schema may improve percentages of recognition further but requires more detailed evaluation. PMID:15872242

  13. Characterization of the Poly-β-1,6-N-Acetylglucosamine Polysaccharide Component of Burkholderia Biofilms ▿

    PubMed Central

    Yakandawala, Nandadeva; Gawande, Purushottam V.; LoVetri, Karen; Cardona, Silvia T.; Romeo, Tony; Nitz, Mark; Madhyastha, Srinivasa

    2011-01-01

    We demonstrated the production of poly-β-1,6-N-acetylglucosamine (PNAG) polysaccharide in the biofilms of Burkholderia multivorans, Burkholderia vietnamiensis, Burkholderia ambifaria, Burkholderia cepacia, and Burkholderia cenocepacia using an immunoblot assay for PNAG. These results were confirmed by further studies, which showed that the PNAG hydrolase, dispersin B, eliminated immunoreactivity of extracts from the species that were tested (B. cenocepacia and B. multivorans). Dispersin B also inhibited biofilm formation and dispersed preformed biofilms of Burkholderia species. These results imply a role for PNAG in the maintenance of Burkholderia biofilm integrity. While PNAG was present in biofilms of all of the wild-type test organisms, a ΔpgaBC mutant of B. multivorans (Mu5) produced no detectable PNAG, indicating that these genes are needed for Burkholderia PNAG formation. Furthermore, restoration of PNAG production in PNAG negative E. coli TRXWMGΔC (ΔpgaC) by complementation with B. multivorans pgaBCD confirmed the involvement of these genes in Burkholderia PNAG production. While the confocal scanning laser microscopy of untreated wild-type B. multivorans showed thick, multilayered biofilm, Mu5 and dispersin B-treated wild-type biofilms were thin, poorly developed, and disrupted, confirming the involvement of PNAG in B. multivorans biofilm formation. Thus, PNAG appears to be an important component of Burkholderia biofilms, potentially contributing to its resistance to multiple antibiotics and persistence during chronic infections, including cystic fibrosis-associated infection. PMID:21984237

  14. Knock-out and pull-out recombineering protocols for naturally transformable Burkholderia thailandensis and Burkholderia pseudomallei

    PubMed Central

    Kang, Yun; Norris, Michael H.; Wilcox, Bruce A.; Tuanyok, Apichai; Keim, Paul S.; Hoang, Tung T.

    2013-01-01

    Summary Phage λ Red proteins are powerful tools for pulling- and knocking-out chromosomal fragments but have been limited to the γ-proteobacteria. Procedures are described here to easily knock-out (KO) and pull-out (PO) chromosomal DNA fragments from naturally transformable Burkholderia thailandensis and Burkholderia pseudomallei. This system takes advantage of published compliant counter-selectable and selectable markers (sacB, pheS, gat, and the arabinose utilization operon) and λ Red mutant proteins. pheS-gat (KO) or oriT-ColE1ori-gat-ori1600-rep (PO) PCR fragments are generated with flanking 40–45 bp homologies to targeted regions incorporated on PCR primers. One-step recombination is achieved by incubating the PCR product with cells expressing λ Red proteins and subsequent selection on glyphosate-containing medium. This procedure takes approximately 10 days and is advantageous over previously published protocols: i) smaller PCR products reduce primer numbers and amplification steps, ii) PO fragments for downstream manipulation in E. coli, and iii) chromosomal KO increases flexibility for downstream processing. PMID:21738123

  15. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    SciTech Connect

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interim report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.

  16. BIOAUGMENTATION WITH BURKHOLDERIA CEPACIA PR1301 FOR IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE CONTAMINATED GROUNDWATER (RESEARCH BRIEF)

    EPA Science Inventory

    A pilot field study was conducted at the Moffett Federal Airfield, Mountain View, California, to determine whether effective in-situ aerobic cometabolic biodegradation of TCE could be accomplished through bioaugmentation with a genetically modified strain of Burkholderia cepacia ...

  17. AQUIFER PROTIST RESPONSE AND THE POTENTIAL FOR TCE BIOREMEDIATION WITH BURKHOLDERIA CEPACIA G4 PR1

    EPA Science Inventory

    The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of the persistence and activity of microbial population for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR123 and PR131 constitutive...

  18. A fine-scale phylogenetic analysis of free-living Burkholderia species in sugarcane field soil.

    PubMed

    Tago, Kanako; Itoh, Hideomi; Kikuchi, Yoshitomo; Hori, Tomoyuki; Sato, Yuya; Nagayama, Atsushi; Okubo, Takashi; Navarro, Ronald; Aoyagi, Tomo; Hayashi, Kentaro; Hayatsu, Masahito

    2014-01-01

    The diversity and abundance of Burkholderia species in sugarcane field soils were investigated by a 16S rRNA gene-based approach using genus-specific primers. A total of 365,721 sequences generated by the Illumina MiSeq platform were assigned to the genus Burkholderia. Nearly 58% of these sequences were placed in a previously defined cluster, including stinkbug symbionts. Quantitative PCR analysis revealed a consistent number of 16S rRNA gene copies for Burkholderia species (10(7) g(-1) soil) across the sampled fields. C/N, pH, and nitrate concentrations were important factors shaping the Burkholderia community structure; however, their impacts were not significant considering the overall genus size.

  19. An ERp57-mediated disulphide exchange promotes the interaction between Burkholderia cenocepacia and epithelial respiratory cells

    PubMed Central

    Pacello, Francesca; D’Orazio, Melania; Battistoni, Andrea

    2016-01-01

    Previous studies have demonstrated that extracellular glutathione reduces the ability of the Cystic Fibrosis pathogen Burkholderia cenocepacia to infect primary or immortalized epithelial respiratory cells. We report here that the adhesion and invasion ability of B. cenocepacia is limited also by thiol-oxidizing and disulphide-reducing agents and by protein disulfide isomerase (PDI) inhibitors. PDI inhibitors also reduce the proinflammatory response elicited by cells in response to Burkholderia. These findings indicate that a membrane-associated PDI catalyzes thiol/disulphide exchange reactions which favor bacterial infection. The combined use of selective PDI inhibitors, RNA silencing and specific antibodies identified ERp57 as a major PDI involved in the interaction between B. cenocepacia and epithelial cells. This study contributes to the elucidation of the Burkholderia pathogenic mechanisms by showing that this microorganism exploits a membrane-associated host protein to infect epithelial cells and identifies ERp57 as a putative pharmacological target for the treatment of Burkholderia lung infections. PMID:26879174

  20. The role of siderophores in metal homeostasis of members of the genus Burkholderia.

    PubMed

    Mathew, Anugraha; Jenul, Christian; Carlier, Aurelien L; Eberl, Leo

    2016-02-01

    Although members of the genus Burkholderia can utilize a high-affinity iron uptake system to sustain growth under iron-limiting conditions, many strains also produce siderophores, suggesting that they may serve alternative functions. Here we demonstrate that the two Burkholderia siderophores pyochelin and ornibactin can protect the cells from metal toxicity and thus play an alternative role in metal homeostasis. We also demonstrate that metals such as copper and zinc induce the production of ornibactin. PMID:26621188

  1. Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria

    PubMed Central

    DiSalvo, Susanne; Haselkorn, Tamara S.; Bashir, Usman; Jimenez, Daniela; Brock, Debra A.; Queller, David C.; Strassmann, Joan E.

    2015-01-01

    Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed “farmers”) stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon. PMID:26305954

  2. Burkholderia susongensis sp. nov., a mineral-weathering bacterium isolated from weathered rock surface.

    PubMed

    Gu, Jia-Yu; Zang, Sheng-Gang; Sheng, Xia-Fang; He, Lin-Yan; Huang, Zhi; Wang, Qi

    2015-03-01

    A novel type of mineral-weathering bacterium was isolated from the weathered surface of rock (mica schist) collected from Susong (Anhui, China). Cells of strain L226(T) were Gram-stain-negative. The strain grew optimally at 30 °C, with 1 % (w/v) NaCl and at pH 7.0 in trypticase soy broth. On the basis of 16S rRNA gene phylogeny, strain L226(T) was shown to belong to the genus Burkholderia and the closest phylogenetic relatives were Burkholderia sprentiae WSM5005(T) (98.3 %), Burkholderia acidipaludis NBRC 101816(T) (98.2 %), Burkholderia tuberum STM678(T) (97.2 %) and Burkholderia diazotrophica JPY461(T) (97.1 %). The DNA G+C content was 63.5 mol% and the respiratory quinone was Q-8. The major fatty acids were C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c. The polar lipid profile of strain L226(T) consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, unknown lipids and unidentified aminophospholipids. Based on the low level of DNA-DNA relatedness (ranging from 25.8 % to 34.4 %) to the tested type strains of species of the genus Burkholderia and unique phenotypic characteristics, it is suggested that strain L226(T) represents a novel species of the genus Burkholderia, for which the name Burkholderia susongensis sp. nov., is proposed. The type strain is L226(T) ( = CCTCC AB2014142(T) = JCM 30231(T)).

  3. Molecular mechanisms underlying the close association between soil Burkholderia and fungi.

    PubMed

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils. PMID:25989372

  4. Molecular mechanisms underlying the close association between soil Burkholderia and fungi.

    PubMed

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils.

  5. Genus-wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations.

    PubMed

    Stopnisek, Nejc; Bodenhausen, Natacha; Frey, Beat; Fierer, Noah; Eberl, Leo; Weisskopf, Laure

    2014-06-01

    Bacteria belonging to the genus Burkholderia are highly versatile with respect to their ecological niches and lifestyles, ranging from nodulating tropical plants to causing melioidosis and fatal infections in cystic fibrosis patients. Despite the clinical importance and agronomical relevance of Burkholderia species, information about the factors influencing their occurrence, abundance and diversity in the environment is scarce. Recent findings have demonstrated that pH is the main predictor of soil bacterial diversity and community structure, with the highest diversity observed in neutral pH soils. As many Burkholderia species have been isolated from low pH environments, we hypothesized that acid tolerance may be a general feature of this genus, and pH a good predictor of their occurrence in soils. Using a combination of environmental surveys at trans-continental and local scales, as well as in vitro assays, we show that, unlike most bacteria, Burkholderia species have a competitive advantage in acidic soils, but are outcompeted in alkaline soils. Physiological assays and diversity analysis based on 16S rRNA clone libraries demonstrate that pH tolerance is a general phenotypic trait of the genus Burkholderia. Our results provide a basis for building a predictive understanding of the biogeographical patterns exhibited by Burkholderia sp.

  6. Burkholderia Species Are Major Inhabitants of White Lupin Cluster Roots▿†

    PubMed Central

    Weisskopf, Laure; Heller, Stefanie; Eberl, Leo

    2011-01-01

    The formation of cluster roots by plants represents a highly efficient strategy for acquisition of sparingly available phosphate. This particular root type is characterized by a densely branched structure and high exudation of organic acids and protons, which are likely to influence the resident bacterial community. Until now, the identity of the bacterial populations living in cluster roots has not been investigated. We applied cultivation-dependent and cultivation-independent methods to characterize the dominant bacterial genera inhabiting the growing cluster roots of white lupin. We observed a high relative abundance of Burkholderia species (up to 58% of all isolated strains and 44% of all retrieved 16S rRNA sequences) and a significant enrichment with increasing cluster root age. Most of the sequences retrieved clustered together with known plant- or fungus-associated Burkholderia species, while only one of 98 sequences was affiliated with the Burkholderia cepacia complex. In vitro assays revealed that Burkholderia strains were much more tolerant to low pH than non-Burkholderia strains. Moreover, many strains produced large amounts of siderophores and were able to utilize citrate and oxalate as carbon sources. These features seem to represent important traits for the successful colonization and maintenance of Burkholderia species in white lupin cluster roots. PMID:21908626

  7. Detection of cultured and uncultured Burkholderia cepacia complex bacteria naturally occurring in the maize rhizosphere.

    PubMed

    Pirone, Luisa; Chiarini, Luigi; Dalmastri, Claudia; Bevivino, Annamaria; Tabacchioni, Silvia

    2005-11-01

    The species composition of a Burkholderia cepacia complex population naturally occurring in the maize rhizosphere was investigated by using both culture-dependent and culture-independent methods. B. cepacia complex isolates were recovered from maize root slurry on the two selective media Pseudomonas cepacia azelaic acid tryptamine (PCAT) and trypan blue tetracycline (TB-T) and subjected to identification by a combination of restriction fragment length polymorphism (RFLP) analysis and species-specific polymerase chain reaction (PCR) tests of the recA gene. DNA extracted directly from root slurry was examined by means of nested PCR to amplify recA gene with species-specific B. cepacia complex primers and to obtain a library of PCR amplified recA genes. Using the culture-dependent method the species Burkholderia cepacia, Burkholderia cenocepacia, Burkholderia ambifaria and Burkholderia pyrrocinia were identified, whereas using the culture-independent method also the species Burkholderia vietnamiensis was detected. The latter method also allowed us to highlight a higher diversity within the B. cenocepacia species. In fact, by using the culture-independent method the species B. cenocepacia recA lineages IIIA and IIID besides B. cenocepacia recA lineage IIIB were detected. Moreover, higher heterogeneity of recA RFLP patterns was observed among clones assigned to the species B. cenocepacia than among B. cenocepacia isolates from selective media. PMID:16232288

  8. Glanders: off to the races with Burkholderia mallei.

    PubMed

    Whitlock, Gregory C; Estes, D Mark; Torres, Alfredo G

    2007-12-01

    Burkholderia mallei, the etiologic agent of the disease known as glanders, is primarily a disease affecting horses and is transmitted to humans by direct contact with infected animals. The use of B. mallei as a biological weapon has been reported and currently, there is no vaccine available for either humans or animals. Despite the history and highly infective nature of B. mallei, as well as its potential use as a bio-weapon, B. mallei research to understand the pathogenesis and the host responses to infection remains limited. Therefore, this minireview will focus on current efforts to elucidate B. mallei virulence, the associated host immune responses elicited during infection and discuss the feasibility of vaccine development.

  9. Strains from the Burkholderia cepacia Complex: Relationship to Opportunistic Pathogens

    PubMed Central

    Vandamme, Peter; Mahenthiralingam, Eshwar

    2003-01-01

    Burkholderia cepacia-like organisms attract much interest from the agricultural industry as natural promoters of plant growth and biological control agents, and for bioremediation. Some of these organisms, however, cause life-threatening infections, particularly in cystic fibrosis patients for whom this multi-resistant bacterium is a major pathogen. The biodiversity of this group of bacteria is severely underestimated, and current identification procedures are inadequate. Presumed B. cepacia isolates belong to at least nine distinct genomic species (genomovars), referred to collectively as the B. cepacia complex. All these B. cepacia complex genomovars have been isolated from clinical and environmental sources. There are no phenotypic, genomic, or taxonomic grounds to differentiate environmental and clinical strains of the B. cepacia complex or to use the source of isolation to assess the safety of biopesticides containing members of the B. cepacia complex. PMID:19265996

  10. Aerosol Phage Therapy Efficacy in Burkholderia cepacia Complex Respiratory Infections

    PubMed Central

    Semler, Diana D.; Goudie, Amanda D.; Finlay, Warren H.

    2014-01-01

    Phage therapy has been suggested as a potential treatment for highly antibiotic-resistant bacteria, such as the species of the Burkholderia cepacia complex (BCC). To address this hypothesis, experimental B. cenocepacia respiratory infections were established in mice using a nebulizer and a nose-only inhalation device. Following infection, the mice were treated with one of five B. cenocepacia-specific phages delivered as either an aerosol or intraperitoneal injection. The bacterial and phage titers within the lungs were assayed 2 days after treatment, and mice that received the aerosolized phage therapy demonstrated significant decreases in bacterial loads. Differences in phage activity were observed in vivo. Mice that received phage treatment by intraperitoneal injection did not demonstrate significantly reduced bacterial loads, although phage particles were isolated from their lung tissue. Based on these data, aerosol phage therapy appears to be an effective method for treating highly antibiotic-resistant bacterial respiratory infections, including those caused by BCC bacteria. PMID:24798268

  11. Burkholderia pseudomallei Genotype Distribution in the Northern Territory, Australia.

    PubMed

    Chapple, Stephanie N J; Price, Erin P; Sarovich, Derek S; McRobb, Evan; Mayo, Mark; Kaestli, Mirjam; Spratt, Brian G; Currie, Bart J

    2016-01-01

    Melioidosis is a tropical disease of high mortality caused by the environmental bacterium, Burkholderia pseudomallei. We have collected clinical isolates from the highly endemic Northern Territory of Australia routinely since 1989, and animal and environmental B. pseudomallei isolates since 1991. Here we provide a complete record of all B. pseudomallei multilocus sequence types (STs) found in the Northern Territory to date, and distribution maps of the eight most common environmental STs. We observed surprisingly restricted geographic distributions of STs, which is contrary to previous reports suggesting widespread environmental dissemination of this bacterium. Our data suggest that B. pseudomallei from soil and water does not frequently disperse long distances following severe weather events or by migration of infected animals.

  12. Genetic diversity of Burkholderia pseudomallei isolates in Australia.

    PubMed

    Cheng, Allen C; Ward, Linda; Godoy, Daniel; Norton, Robert; Mayo, Mark; Gal, Daniel; Spratt, Brian G; Currie, Bart J

    2008-01-01

    Melioidosis is caused by the gram-negative saprophytic bacterium Burkholderia pseudomallei, which is endemic to southeast Asia and northern Australia. We have previously found evidence of geographic localization of strains based on multilocus sequence typing (MLST). In this study, we examined the diversity of 277 isolates from northern Australia, which were resolved into 159 different sequence types. No sequence types were common to both Queensland and the Northern Territory, and there was significant differentiation between the alleles present in the two regions. The considerable diversity in sequence types contrasts with the limited diversity of alleles at MLST loci, supporting previous work suggesting a high rate of recombination relative to mutation in B. pseudomallei, where new sequence types are primarily generated by reassortment of existing alleles.

  13. The global distribution of Burkholderia pseudomallei and melioidosis: an update.

    PubMed

    Currie, Bart J; Dance, David A B; Cheng, Allen C

    2008-12-01

    While Southeast Asia and northern Australia are well recognized as the major endemic regions for melioidosis, recent reports have expanded the endemic zone. Severe weather events and environmental disasters such as the 2004 Asian tsunami have unmasked locations of sporadic cases and have reconfirmed endemicity in Indonesia. The endemic region now includes the majority of the Indian subcontinent, southern China, Hong Kong and Taiwan. Sporadic cases have occurred in Brazil and elsewhere in the Americas and in island communities such as New Caledonia, in the Pacific Ocean, and Mauritius in the Indian Ocean. Some of the factors that are critical to further elucidating the global distribution of Burkholderia pseudomallei and melioidosis include improved access to diagnostic laboratory facilities and formal confirmation of the identity of bacterial isolates from suspected cases.

  14. Diffusion and activity of antibiotics against Burkholderia pseudomallei biofilms.

    PubMed

    Pibalpakdee, Phannarai; Wongratanacheewin, Surasakdi; Taweechaisupapong, Suwimol; Niumsup, Pannika R

    2012-04-01

    The diffusion and activity of ceftazidime (CAZ), imipenem (IPM) and trimethoprim/sulfamethoxazole (TMP/SMX) against Burkholderia pseudomallei biofilms were comparatively tested using the high biofilm-producing strain B. pseudomallei 377 and the biofilm-defective mutant B. pseudomallei M6. Biofilms were generated by inoculation of bacteria on polycarbonate membranes placed on the surface of tryptic soy agar plates. The results showed that diffusion of TMP/SMX through B. pseudomallei biofilms was similar for both strains. However, diffusion of CAZ and IPM was significantly faster through strain M6 biofilm in comparison with strain 377 biofilm. The viabilities of strain 377 biofilm were significantly higher than those observed with strain M6 for all antibiotics challenged at 4 h, suggesting that the biofilm-forming capacity may be involved in antibiotic susceptibilities in B. pseudomallei. These results re-emphasise the importance of biofilm for antibiotic resistance in B. pseudomallei.

  15. Use of the common marmoset to study Burkholderia mallei infection.

    PubMed

    Jelesijevic, Tomislav; Zimmerman, Shawn M; Harvey, Stephen B; Mead, Daniel G; Shaffer, Teresa L; Estes, D Mark; Michel, Frank; Quinn, Frederick D; Hogan, Robert J; Lafontaine, Eric R

    2015-01-01

    Burkholderia mallei is a host-adapted bacterium that does not persist outside of its equine reservoir. The organism causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by B. mallei typically occurs via the respiratory or percutaneous route, and the most common manifestations are life-threatening pneumonia and bacteremia. Glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. There is no vaccine to protect against B. mallei and there is concern regarding its use as a biothreat agent. Thus, experiments were performed to establish a non-human primate model of intranasal infection to study the organism and develop countermeasures. Groups of marmosets (Callithrix jacchus) were inoculated intranasally with B. mallei strain ATCC 23344 and monitored for clinical signs of illness for up to 13 days. We discovered that 83% of marmosets inoculated with doses of 2.5 X 10(4) to 2.5 X 10(5) bacteria developed acute lethal infection within 3-4 days. Signs of disease were severe and included lethargy, inappetence, conjunctivitis, mucopurulent and hemorrhagic nasal discharges, and increased respiratory effort with abdominal lifts. Burkholderia mallei was cultured from the lungs, spleen and liver of these animals, and pathologic examination of tissues revealed lesions characteristic of glanders. Challenge experiments also revealed that 91% of animals infected with doses ranging from 25 to 2.5 X 10(3) bacteria exhibited mild non-specific signs of illness and were culture negative. One marmoset inoculated with 2.5 X 10(3) organisms developed moderate signs of disease and reached humane end-points 8 days post-infection. The liver and spleen of this animal were colonized with the agent and pathological analysis of tissues showed nasal, splenic and hepatic lesions. Taken together, these data indicate that the marmoset is a suitable model to study respiratory infection by B. mallei.

  16. Use of the Common Marmoset to Study Burkholderia mallei Infection

    PubMed Central

    Harvey, Stephen B.; Mead, Daniel G.; Shaffer, Teresa L.; Estes, D. Mark; Michel, Frank; Quinn, Frederick D.; Hogan, Robert J.; Lafontaine, Eric R.

    2015-01-01

    Burkholderia mallei is a host-adapted bacterium that does not persist outside of its equine reservoir. The organism causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by B. mallei typically occurs via the respiratory or percutaneous route, and the most common manifestations are life-threatening pneumonia and bacteremia. Glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. There is no vaccine to protect against B. mallei and there is concern regarding its use as a biothreat agent. Thus, experiments were performed to establish a non-human primate model of intranasal infection to study the organism and develop countermeasures. Groups of marmosets (Callithrix jacchus) were inoculated intranasally with B. mallei strain ATCC 23344 and monitored for clinical signs of illness for up to 13 days. We discovered that 83% of marmosets inoculated with doses of 2.5 X 104 to 2.5 X 105 bacteria developed acute lethal infection within 3–4 days. Signs of disease were severe and included lethargy, inappetence, conjunctivitis, mucopurulent and hemorrhagic nasal discharges, and increased respiratory effort with abdominal lifts. Burkholderia mallei was cultured from the lungs, spleen and liver of these animals, and pathologic examination of tissues revealed lesions characteristic of glanders. Challenge experiments also revealed that 91% of animals infected with doses ranging from 25 to 2.5 X 103 bacteria exhibited mild non-specific signs of illness and were culture negative. One marmoset inoculated with 2.5 X 103 organisms developed moderate signs of disease and reached humane end-points 8 days post-infection. The liver and spleen of this animal were colonized with the agent and pathological analysis of tissues showed nasal, splenic and hepatic lesions. Taken together, these data indicate that the marmoset is a suitable model to study respiratory infection by B. mallei. PMID

  17. Production of bioactive volatiles by different Burkholderia ambifaria strains.

    PubMed

    Groenhagen, Ulrike; Baumgartner, Rita; Bailly, Aurélien; Gardiner, Amber; Eberl, Leo; Schulz, Stefan; Weisskopf, Laure

    2013-07-01

    Increasing evidence indicates that volatile compounds emitted by bacteria can influence the growth of other organisms. In this study, the volatiles produced by three different strains of Burkholderia ambifaria were analysed and their effects on the growth of plants and fungi, as well as on the antibiotic resistance of target bacteria, were assessed. Burkholderia ambifaria emitted highly bioactive volatiles independently of the strain origin (clinical environment, rhizosphere of pea, roots of maize). These volatile blends induced significant biomass increase in the model plant Arabidopsis thaliana as well as growth inhibition of two phytopathogenic fungi (Rhizoctonia solani and Alternaria alternata). In Escherichia coli exposed to the volatiles of B. ambifaria, resistance to the aminoglycoside antibiotics gentamicin and kanamycin was found to be increased. The volatile blends of the three strains were similar, and dimethyl disulfide was the most abundant compound. Sulfur compounds, ketones, and aromatic compounds were major groups in all three volatile profiles. When applied as pure substance, dimethyl disulfide led to increased plant biomass, as did acetophenone and 3-hexanone. Significant fungal growth reduction was observed with high concentrations of dimethyl di- and trisulfide, 4-octanone, S-methyl methanethiosulphonate, 1-phenylpropan-1-one, and 2-undecanone, while dimethyl trisulfide, 1-methylthio-3-pentanone, and o-aminoacetophenone increased resistance of E. coli to aminoglycosides. Comparison of the volatile profile produced by an engineered mutant impaired in quorum-sensing (QS) signalling with the corresponding wild-type led to the conclusion that QS is not involved in the regulation of volatile production in B. ambifaria LMG strain 19182. PMID:23832658

  18. Burkholderia denitrificans sp. nov., isolated from the soil of Dokdo Island, Korea.

    PubMed

    Lee, Chang-Muk; Weon, Hang-Yeon; Yoon, Sang-Hong; Kim, Soo-Jin; Koo, Bon-Sung; Kwon, Soon-Wo

    2012-10-01

    A novel, Gram-negative, bacterial strain KIS30-44(T) was identified from wet forest soil collected on the Korean island of Dokdo. Growth of the strain was observed at 15-30°C, pH 5-9, 0-3% NaCl, and 950 mM KNO(3). KIS30-44(T) reduced nitrate to nitrogen gas. Analysis of the 16S rRNA gene sequence showed that KIS30-44(T) was phylogenetically related to Burkholderia sacchari, Burkholderia mimosarum, and Burkholderia oxyphila (98.1%, 98.0%, and 98.0% sequence similarity, respectively). The genomic G+C content was 63.5 mol%. KIS30-44(T) exhibited less than 52% DNA-DNA relatedness with the type strains of 9 closely related Burkholderia species. The major isoprenoid quinone was Q-8. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and two unknown aminolipids. The major fatty acids in KIS30-44(T) were C(16:0), C(18:1) ω7c and summed feature 3 (iso-C(15:0) 2-OH and C(16:1) ω7c), and the strain contained half the amount of C(17:0) cyclo found in the 9 closely related Burkholderia species. The results of these phenotypic, 16S rRNA gene sequence, DNA-DNA hybridization, and chemotaxonomic data indicate that KIS30-44(T) represents a novel species within the genus Burkholderia, for which the name Burkholderia denitrificans (Type strain KIS30-44(T) =KACC 12733(T) =DSM 24336(T)) is proposed.

  19. Activity of Tobramycin against Cystic Fibrosis Isolates of Burkholderia cepacia Complex Grown as Biofilms.

    PubMed

    Kennedy, Sarah; Beaudoin, Trevor; Yau, Yvonne C W; Caraher, Emma; Zlosnik, James E A; Speert, David P; LiPuma, John J; Tullis, Elizabeth; Waters, Valerie

    2015-10-26

    Pulmonary infection with Burkholderia cepacia complex in cystic fibrosis (CF) patients is associated with more-rapid lung function decline and earlier death than in CF patients without this infection. In this study, we used confocal microscopy to visualize the effects of various concentrations of tobramycin, achievable with systemic and aerosolized drug administration, on mature B. cepacia complex biofilms, both in the presence and absence of CF sputum. After 24 h of growth, biofilm thickness was significantly reduced by exposure to 2,000 μg/ml of tobramycin for Burkholderia cepacia, Burkholderia multivorans, and Burkholderia vietnamiensis; 200 μg/ml of tobramycin was sufficient to reduce the thickness of Burkholderia dolosa biofilm. With a more mature 48-h biofilm, significant reductions in thickness were seen with tobramycin at concentrations of ≥100 μg/ml for all Burkholderia species. In addition, an increased ratio of dead to live cells was observed in comparison to control with tobramycin concentrations of ≥200 μg/ml for B. cepacia and B. dolosa (24 h) and ≥100 μg/ml for Burkholderia cenocepacia and B. dolosa (48 h). Although sputum significantly increased biofilm thickness, tobramycin concentrations of 1,000 μg/ml were still able to significantly reduce biofilm thickness of all B. cepacia complex species with the exception of B. vietnamiensis. In the presence of sputum, 1,000 μg/ml of tobramycin significantly increased the dead-to-live ratio only for B. multivorans compared to control. In summary, although killing is attenuated, high-dose tobramycin can effectively decrease the thickness of B. cepacia complex biofilms, even in the presence of sputum, suggesting a possible role as a suppressive therapy in CF.

  20. Genetic and phenotypic diversity in Burkholderia: contributions by prophage and phage-like elements

    PubMed Central

    2010-01-01

    Background Burkholderia species exhibit enormous phenotypic diversity, ranging from the nonpathogenic, soil- and water-inhabiting Burkholderia thailandensis to the virulent, host-adapted mammalian pathogen B. mallei. Genomic diversity is evident within Burkholderia species as well. Individual isolates of Burkholderia pseudomallei and B. thailandensis, for example, carry a variety of strain-specific genomic islands (GIs), including putative pathogenicity and metabolic islands, prophage-like islands, and prophages. These GIs may provide some strains with a competitive advantage in the environment and/or in the host relative to other strains. Results Here we present the results of analysis of 37 prophages, putative prophages, and prophage-like elements from six different Burkholderia species. Five of these were spontaneously induced to form bacteriophage particles from B. pseudomallei and B. thailandensis strains and were isolated and fully sequenced; 24 were computationally predicted in sequenced Burkholderia genomes; and eight are previously characterized prophages or prophage-like elements. The results reveal numerous differences in both genome structure and gene content among elements derived from different species as well as from strains within species, due in part to the incorporation of additional DNA, or 'morons' into the prophage genomes. Implications for pathogenicity are also discussed. Lastly, RNAseq analysis of gene expression showed that many of the genes in ϕ1026b that appear to contribute to phage and lysogen fitness were expressed independently of the phage structural and replication genes. Conclusions This study provides the first estimate of the relative contribution of prophages to the vast phenotypic diversity found among the Burkholderiae. PMID:20667135

  1. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans

    PubMed Central

    Kost, Thomas; Stopnisek, Nejc; Agnoli, Kirsty; Eberl, Leo

    2014-01-01

    Plant roots and shoots harbor complex bacterial communities. Early seed and plantlet colonization plays a key role in determining which bacterial populations will successfully invade plant tissues, yet the mechanisms enabling plants to select for beneficial rather than harmful populations are largely unknown. In this study, we demonstrate a role of oxalate as a determinant in this selection process, using members of the genus Burkholderia as model organisms. Oxalotrophy, i.e., the ability to use oxalate as a carbon source, was found to be a property strictly associated with plant-beneficial species of the Burkholderia genus, while plant pathogenic (B. glumae, B. plantarii) or human opportunistic pathogens (Burkholderia cepacia complex strains) were unable to degrade oxalate. We further show that oxalotrophy is required for successful plant colonization by the broad host endophyte Burkholderia phytofirmans PsJN: an engineered Δoxc mutant, which lost the ability to grow on oxalate, was significantly impaired in early colonization of both lupin and maize compared with the wild-type. This work suggests that in addition to the role of oxalate in heavy metal tolerance of plants and in virulence of phytopathogenic fungi, it is also involved in specifically recruiting plant-beneficial members from complex bacterial communities. PMID:24409174

  2. Burkholderia zhejiangensis sp. nov., a methyl-parathion-degrading bacterium isolated from a wastewater-treatment system.

    PubMed

    Lu, Peng; Zheng, Liu-Qiang; Sun, Jin-Jin; Liu, Hong-Ming; Li, Shun-Peng; Hong, Qing; Li, Wen-Jun

    2012-06-01

    The taxonomic status of a methyl-parathion-degrading strain, OP-1(T), isolated from a wastewater-treatment system in China, was determined using a polyphasic approach. The rod-shaped cells were Gram-staining-negative, non-spore-forming and non-motile. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel strain belonged to the genus Burkholderia, as it appeared closely related to Burkholderia glathei ATCC 29195(T) (97.4 % sequence similarity), Burkholderia sordidicola KCTC 12081(T) (96.5 %) and Burkholderia bryophila LMG 23644(T) (96.3 %). The major cellular fatty acids, C(16:0), C(17:0) cyclo and C(18:1)ω7c, were also similar to those found in established members of the genus Burkholderia. The genomic DNA G+C content of strain OP-1(T) was 59.4 mol%. The level of DNA-DNA relatedness between the novel strain and the closest recognized species, Burkholderia glathei ATCC 29195(T), was only 30 %. Based on the phenotypic, genotypic and phylogenetic evidence, strain OP-1(T) represents a novel species of the genus Burkholderia, for which the name Burkholderia zhejiangensis sp. nov. is proposed. The type strain is OP-1(T) ( = CCTCC AB 2010354(T) = KCTC 23300(T)).

  3. Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae)

    PubMed Central

    Kuechler, Stefan Martin; Matsuura, Yu; Dettner, Konrad; Kikuchi, Yoshitomo

    2016-01-01

    Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the “stinkbug-associated beneficial and environmental (SBE)” group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction. PMID:27265344

  4. Burkholderia of Plant-Beneficial Group are Symbiotically Associated with Bordered Plant Bugs (Heteroptera: Pyrrhocoroidea: Largidae).

    PubMed

    Takeshita, Kazutaka; Matsuura, Yu; Itoh, Hideomi; Navarro, Ronald; Hori, Tomoyuki; Sone, Teruo; Kamagata, Yoichi; Mergaert, Peter; Kikuchi, Yoshitomo

    2015-01-01

    A number of phytophagous stinkbugs (order Heteroptera: infraorder Pentatomomorpha) harbor symbiotic bacteria in a specific midgut region composed of numerous crypts. Among the five superfamilies of the infraorder Pentatomomorpha, most members of the Coreoidea and Lygaeoidea are associated with a specific group of the genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, which is not vertically transmitted, but acquired from the environment every host generation. A recent study reported that, in addition to these two stinkbug groups, the family Largidae of the superfamily Pyrrhocoroidea also possesses a Burkholderia symbiont. Despite this recent finding, the phylogenetic position and biological nature of Burkholderia associated with Largidae remains unclear. Based on the combined results of fluorescence in situ hybridization, cloning analysis, Illumina deep sequencing, and egg inspections by diagnostic PCR, we herein demonstrate that the largid species are consistently associated with the "plant-associated beneficial and environmental (PBE)" group of Burkholderia, which are phylogenetically distinct from the SBE group, and that they maintain symbiosis through the environmental acquisition of the bacteria. Since the superfamilies Coreoidea, Lygaeoidea, and Pyrrhocoroidea are monophyletic in the infraorder Pentatomomorpha, it is plausible that the symbiotic association with Burkholderia evolved at the common ancestor of the three superfamilies. However, the results of this study strongly suggest that a dynamic transition from the PBE to SBE group, or vice versa, occurred in the course of stinkbug evolution.

  5. Divergent homologs of the predicted small RNA BpCand697 in Burkholderia spp.

    NASA Astrophysics Data System (ADS)

    Damiri, Nadzirah; Mohd-Padil, Hirzahida; Firdaus-Raih, Mohd

    2015-09-01

    The small RNA (sRNA) gene candidate, BpCand697 was previously reported to be unique to Burkholderia spp. and is encoded at 3' non-coding region of a putative AraC family transcription regulator gene. This study demonstrates the conservation of BpCand697 sequence across 32 Burkholderia spp. including B. pseudomallei, B. mallei, B. thailandensis and Burkholderia sp. by integrating both sequence homology and secondary structural analyses of BpCand697 within the dataset. The divergent sequence of BpCand697 was also used as a discriminatory power in clustering the dataset according to the potential virulence of Burkholderia spp., showing that B. thailandensis was clearly secluded from the virulent cluster of B. pseudomallei and B. mallei. Finally, the differential co-transcript expression of BpCand697 and its flanking gene, bpsl2391 was detected in Burkholderia pseudomallei D286 after grown under two different culture conditions using nutrient-rich and minimal media. It is hypothesized that the differential expression of BpCand697-bpsl2391 co-transcript between the two standard prepared media might correlate with nutrient availability in the culture media, suggesting that the physical co-localization of BpCand697 in B. pseudomallei D286 might be directly or indirectly involved with the transcript regulation of bpsl2391 under the selected in vitro culture conditions.

  6. Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis.

    PubMed

    Angus, Annette A; Agapakis, Christina M; Fong, Stephanie; Yerrapragada, Shailaja; Estrada-de los Santos, Paulina; Yang, Paul; Song, Nannie; Kano, Stephanie; Caballero-Mellado, Jésus; de Faria, Sergio M; Dakora, Felix D; Weinstock, George; Hirsch, Ann M

    2014-01-01

    Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low.

  7. Genome Annotation of Burkholderia sp. SJ98 with Special Focus on Chemotaxis Genes

    PubMed Central

    Kumar, Shailesh; Vikram, Surendra; Raghava, Gajendra Pal Singh

    2013-01-01

    Burkholderia sp. strain SJ98 has the chemotactic activity towards nitroaromatic and chloronitroaromatic compounds. Recently our group published draft genome of strain SJ98. In this study, we further sequence and annotate the genome of stain SJ98 to exploit the potential of this bacterium. We specifically annotate its chemotaxis genes and methyl accepting chemotaxis proteins. Genome of Burkholderia sp. SJ98 was annotated using PGAAP pipeline that predicts 7,268 CDSs, 52 tRNAs and 3 rRNAs. Our analysis based on phylogenetic and comparative genomics suggest that Burkholderia sp. YI23 is closest neighbor of the strain SJ98. The genes involved in the chemotaxis of strain SJ98 were compared with genes of closely related Burkholderia strains (i.e. YI23, CCGE 1001, CCGE 1002, CCGE 1003) and with well characterized bacterium E. coli K12. It was found that strain SJ98 has 37 che genes including 19 methyl accepting chemotaxis proteins that involved in sensing of different attractants. Chemotaxis genes have been found in a cluster along with the flagellar motor proteins. We also developed a web resource that provides comprehensive information on strain SJ98 that includes all analysis data (http://crdd.osdd.net/raghava/genomesrs/burkholderia/). PMID:23940608

  8. The art of persistence-the secrets to Burkholderia chronic infections.

    PubMed

    Lewis, Eric R G; Torres, Alfredo G

    2016-08-01

    The Gram-negative proteobacteria genus Burkholderia encompasses multiple bacterial species that are pathogenic to humans and other vertebrates. Two pathogenic species of interest within this genus are Burkholderia pseudomallei (Bpm) and the B. cepacia complex (Bcc); the former is the causative agent of melioidosis in humans and other mammals, and the latter is associated with pneumonia in immunocompromised patients. One understudied and shared characteristic of these two pathogenic groups is their ability to persist and establish chronic infection within the host. In this review, we will explore the depth of knowledge about chronic infections caused by persistent Bpm and Bcc. We examine the host risk factors and immune responses associated with more severe chronic infections. We also discuss host adaptation and phenotypes associated with persistent Burkholderia species. Lastly, we survey how other intracellular bacteria associated with chronic infections are combatted and explore possible future applications to target Burkholderia Our goal is to highlight understudied areas that should be addressed for a more thorough understanding of chronic Burkholderia infections and how to combat them. PMID:27440810

  9. Genome annotation of Burkholderia sp. SJ98 with special focus on chemotaxis genes.

    PubMed

    Kumar, Shailesh; Vikram, Surendra; Raghava, Gajendra Pal Singh

    2013-01-01

    Burkholderia sp. strain SJ98 has the chemotactic activity towards nitroaromatic and chloronitroaromatic compounds. Recently our group published draft genome of strain SJ98. In this study, we further sequence and annotate the genome of stain SJ98 to exploit the potential of this bacterium. We specifically annotate its chemotaxis genes and methyl accepting chemotaxis proteins. Genome of Burkholderia sp. SJ98 was annotated using PGAAP pipeline that predicts 7,268 CDSs, 52 tRNAs and 3 rRNAs. Our analysis based on phylogenetic and comparative genomics suggest that Burkholderia sp. YI23 is closest neighbor of the strain SJ98. The genes involved in the chemotaxis of strain SJ98 were compared with genes of closely related Burkholderia strains (i.e. YI23, CCGE 1001, CCGE 1002, CCGE 1003) and with well characterized bacterium E. coli K12. It was found that strain SJ98 has 37 che genes including 19 methyl accepting chemotaxis proteins that involved in sensing of different attractants. Chemotaxis genes have been found in a cluster along with the flagellar motor proteins. We also developed a web resource that provides comprehensive information on strain SJ98 that includes all analysis data (http://crdd.osdd.net/raghava/genomesrs/burkholderia/).

  10. Identification of quorum sensing-controlled genes in Burkholderia ambifaria

    PubMed Central

    Chapalain, Annelise; Vial, Ludovic; Laprade, Natacha; Dekimpe, Valérie; Perreault, Jonathan; Déziel, Eric

    2013-01-01

    The Burkholderia cepacia complex (Bcc) comprises strains with a virulence potential toward immunocompromised patients as well as plant growth–promoting rhizobacteria (PGPR). Owing to the link between quorum sensing (QS) and virulence, most studies among Bcc species have been directed toward QS of pathogenic bacteria. We have investigated the QS of B. ambifaria, a PGPR only infrequently recovered from patients. The cepI gene, responsible for the synthesis of the main signaling molecule N-octanoylhomoserine lactone (C8-HSL), was inactivated. Phenotypes of the B. ambifaria cepI mutant we observed, such as increased production of siderophores and decreased proteolytic and antifungal activities, are in agreement with those of other Bcc cepI mutants. The cepI mutant was then used as background strain for a whole-genome transposon-insertion mutagenesis strategy, allowing the identification of 20 QS-controlled genes, corresponding to 17 loci. The main functions identified are linked to antifungal and antimicrobial properties, as we have identified QS-controlled genes implicated in the production of pyrrolnitrin, burkholdines (occidiofungin-like molecules), and enacyloxins. This study provides insights in the QS-regulated functions of a PGPR, which could lead to beneficial potential biotechnological applications. PMID:23382083

  11. Incidence of Burkholderia mallei infection among indigenous equines in India

    PubMed Central

    Malik, Praveen; Singha, Harisankar; Goyal, Sachin K; Khurana, Sandip K; Tripathi, Badri Naryan; Dutt, Abha; Singh, Dabal; Sharma, Neeraj; Jain, Sanjay

    2015-01-01

    Burkholderia mallei is the causative agent of glanders which is a highly contagious and fatal disease of equines. Considering the nature and severity of the disease in equines, and potential of transmission to human beings, glanders is recognised as a ‘notifiable’ disease in many countries. An increasing number of glanders outbreaks throughout the Asian continents, including India, have been noticed recently. In view of the recent re-emergence of the disease, the present study was undertaken to estimate the prevalence of glanders among indigenous equines from different parts of India. Serum samples were analysed by complement fixation test (CFT) and ELISA for the detection of B mallei specific antibodies. A total of 7794 equines, which included 4720 horses, 1881 donkeys and 1193 mules were sampled from April 2011 to December 2014 from 10 states of India. Serologically, 36 equines (pony=7, mules=10, horses=19) were found to be positive for glanders by CFT and indirect-ELISA. The highest number of cases were detected in Uttar Pradesh (n=31) followed by Himachal Pradesh (n=4) and Chhattisgarh (n=1). Isolation of B mallei was attempted from nasal and abscess swabs collected from seropositive equines. Four isolates of B mallei were cultured from nasal swabs of two mules and two ponies. Identity of the isolates was confirmed by PCR and sequencing of fliP gene fragment. The study revealed circulation of B mallei in northern India and the need for continued surveillance to support the eradication. PMID:26457190

  12. Mouse model of sublethal and lethal intraperitoneal glanders (Burkholderia mallei).

    PubMed

    Fritz, D L; Vogel, P; Brown, D R; Deshazer, D; Waag, D M

    2000-11-01

    Sixty male BALB/c mice were inoculated intraperitoneally with either a sublethal or a lethal dose of Burkholderia mallei China 7 strain, then killed at multiple time points postinoculation. Histopathologic changes were qualitatively similar in both groups and consisted of pyogranulomatous inflammation. In sublethal study mice, changes were first seen at 6 hours in mediastinal lymph nodes, then in spleen, liver, peripheral lymph nodes, and bone marrow at day 3. These changes generally reached maximal incidence and severity by day 4 but decreased by comparison in all tissues except the liver. Changes were first seen in lethal study mice also at 6 hours in mediastinal lymph nodes and in spleens. At day 1, changes were present in liver, peripheral lymph nodes, and bone marrow. The incidence and severity of these changes were maximal at day 2. In contrast to sublethal study mice, the incidence and severity of the changes did not decrease through the remainder of the study. The most significant difference between the two groups was the rapid involvement of the spleen in the lethal study mice. Changes indicative of impaired vascular perfusion were more frequently seen in the sublethal study mice. Our findings indicate that mice are susceptible to B. mallei infection and may serve as an appropriate model for glanders infection in a resistant host such as human beings. Additionally, by immunoelectron microscopy, we showed the presence of type I O-antigenic polysaccharide (capsular) antigen surrounding B. mallei.

  13. Burkholderia cenocepacia zinc metalloproteases influence resistance to antimicrobial peptides.

    PubMed

    Kooi, Cora; Sokol, Pamela A

    2009-09-01

    Burkholderia cenocepacia secretes two zinc-dependent metalloproteases, designated ZmpA and ZmpB. Previously, ZmpA and ZmpB have been shown to cleave several proteins important in host defence. In this study, the ability of ZmpA and ZmpB to digest and inactivate antimicrobial peptides involved in innate immunity was examined. ZmpB but not ZmpA cleaved beta-defensin-1. ZmpA but not ZmpB cleaved the cathelicidin LL-37. Both enzymes cleaved elafin and secretory leukocyte inhibitor, which are antimicrobial peptides as well as neutrophil elastase inhibitors. Both ZmpA and ZmpB cleaved protamine, a fish antimicrobial peptide, and a zmpA zmpB mutant was more sensitive to protamine killing than the parental strain. ZmpA or ZmpB cleavage of elafin inactivated its anti-protease activity. The effect of ZmpA and ZmpB on the neutrophil proteases elastase and cathepsin G was also examined but neither enzyme was active against these host proteases. These studies suggest that ZmpA and ZmpB may influence the resistance of B. cenocepacia to host antimicrobial peptides as well as alter the host protease/anti-protease balance in chronic respiratory infections.

  14. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis.

    PubMed

    Limmathurotsakul, Direk; Golding, Nick; Dance, David A B; Messina, Jane P; Pigott, David M; Moyes, Catherine L; Rolim, Dionne B; Bertherat, Eric; Day, Nicholas P J; Peacock, Sharon J; Hay, Simon I

    2016-01-01

    Burkholderia pseudomallei, a highly pathogenic bacterium that causes melioidosis, is commonly found in soil in Southeast Asia and Northern Australia(1,2). Melioidosis can be difficult to diagnose due to its diverse clinical manifestations and the inadequacy of conventional bacterial identification methods(3). The bacterium is intrinsically resistant to a wide range of antimicrobials, and treatment with ineffective antimicrobials may result in case fatality rates (CFRs) exceeding 70%(4,5). The importation of infected animals has, in the past, spread melioidosis to non-endemic areas(6,7). The global distribution of B. pseudomallei and the burden of melioidosis, however, remain poorly understood. Here, we map documented human and animal cases and the presence of environmental B. pseudomallei and combine this in a formal modelling framework(8-10) to estimate the global burden of melioidosis. We estimate there to be 165,000 (95% credible interval 68,000-412,000) human melioidosis cases per year worldwide, from which 89,000 (36,000-227,000) people die. Our estimates suggest that melioidosis is severely underreported in the 45 countries in which it is known to be endemic and that melioidosis is probably endemic in a further 34 countries that have never reported the disease. The large numbers of estimated cases and fatalities emphasize that the disease warrants renewed attention from public health officials and policy makers.

  15. Burkholderia pseudomallei: First case of melioidosis in Portugal.

    PubMed

    Pelerito, Ana; Nunes, Alexandra; Coelho, Susana; Piedade, Cátia; Paixão, Paulo; Cordeiro, Rita; Sampaio, Daniel; Vieira, Luís; Gomes, João Paulo; Núncio, Sofia

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacillus and the causative agent of melioidosis, a serious infection associated with high mortality rate in humans. It can be naturally found as an environmental saprophyte in soil or stagnant water, and rice paddies that predominate in regions of endemicity such as Northeast Thailand. B. pseudomallei is a Biosafety Level 3 organism due to risks of aerosolization and severe disease and is now included in formal emergency preparedness plans and guidelines issued by various authorities in the United States and Europe. Here, we report the first case of imported melioidosis in Portugal. B. pseudomallei was isolated from the patient's blood as well as from a left gluteal abscess pus. The isolate strain showed the unusual resistance profile to first-line eradication therapy trimethroprim/sulfamethoxazole. Whole genome sequencing revealed its similarity with isolates from Southeast Asia, suggesting the Thai origin of this Portuguese isolate, which is in agreement with a recent patient's travel to Thailand. PMID:26962474

  16. Incidence of Burkholderia mallei infection among indigenous equines in India.

    PubMed

    Malik, Praveen; Singha, Harisankar; Goyal, Sachin K; Khurana, Sandip K; Tripathi, Badri Naryan; Dutt, Abha; Singh, Dabal; Sharma, Neeraj; Jain, Sanjay

    2015-01-01

    Burkholderia mallei is the causative agent of glanders which is a highly contagious and fatal disease of equines. Considering the nature and severity of the disease in equines, and potential of transmission to human beings, glanders is recognised as a 'notifiable' disease in many countries. An increasing number of glanders outbreaks throughout the Asian continents, including India, have been noticed recently. In view of the recent re-emergence of the disease, the present study was undertaken to estimate the prevalence of glanders among indigenous equines from different parts of India. Serum samples were analysed by complement fixation test (CFT) and ELISA for the detection of B mallei specific antibodies. A total of 7794 equines, which included 4720 horses, 1881 donkeys and 1193 mules were sampled from April 2011 to December 2014 from 10 states of India. Serologically, 36 equines (pony=7, mules=10, horses=19) were found to be positive for glanders by CFT and indirect-ELISA. The highest number of cases were detected in Uttar Pradesh (n=31) followed by Himachal Pradesh (n=4) and Chhattisgarh (n=1). Isolation of B mallei was attempted from nasal and abscess swabs collected from seropositive equines. Four isolates of B mallei were cultured from nasal swabs of two mules and two ponies. Identity of the isolates was confirmed by PCR and sequencing of fliP gene fragment. The study revealed circulation of B mallei in northern India and the need for continued surveillance to support the eradication.

  17. Ribotype differences between clinical and environmental isolates of Burkholderia pseudomallei.

    PubMed

    Trakulsomboon, S; Dance, D A; Smith, M D; White, N J; Pitt, T L

    1997-07-01

    Burkholderia pseudomallei is isolated frequently from the soil in regions where the disease melioidosis occurs. However, recent surveys in Thailand have shown that the frequency of isolation of the organism from soil samples is not directly related to the incidence of melioidosis in an area. To determine whether strain populations of B. pseudomallei prevalent in soil are gentypically related to strains causing clinical disease, rRNA BamHI restriction fragment length polymorphisms (RFLP) of 139 soil environmental isolates and 228 human isolates were compared. Two groups of ribotype patterns were found. Group I comprised 37 different ribotype patterns which were characterised by five to eight hybridisation bands of 2.8- > 23 kb. All of these ribotypes were identified among the clinical isolates, and 18 of them were also found in 59 environmental isolates. Group II was represented by 12 ribotypes found only in environmental strains. These ribotype patterns comprised one to five bands in the size range 9- > 23 kb. All but one of the 73 isolates in this group grew on a minimal medium supplemented with L-arabinose. In contrast, only 3% of the 66 isolates from the environment with group I ribotype patterns could utilise this sugar as their sole energy source. These findings suggest that B. pseudomallei strains that utilise arabinose constitute a population that is genetically distinct from other environmental and clinical strains.

  18. Burkholderia Sepsis in Children as a Hospital-Acquired Infection

    PubMed Central

    Kim, Kyu Yeun; Yong, Dongeun; Lee, Kyungwon; Kim, Ho-Seong

    2016-01-01

    Purpose Hospital-acquired Burkholderia cepacia (B. cepacia) infection are not commonly recorded in patients without underlying lung disease, such as cystic fibrosis and chronic granulomatous disease. However, in 2014, B. cepacia appeared more frequently in pediatric blood samples than in any other year. In order to access this situation, we analyzed the clinical characteristics of B. cepacia infections in pediatric patients at our hospital. Materials and Methods We conducted a retrospective study of blood isolates of B. cepacia taken at our hospital between January 2004 and December 2014. Patient clinical data were obtained by retrospective review of electronic medical records. We constructed a dendrogram for B. cepacia isolates from two children and five adult patients. Results A total of 14 pediatric patients and 69 adult patients were identified as having B. cepacia bacteremia. In 2014, higher rates of B. cepacia bacteremia were observed in children. Most of them required Intensive Care Unit (ICU) care (12/14). In eleven children, sputum cultures were examined, and five of these children had the same strain of B. cepacia that grew out from their blood samples. Antibiotics were administered based on antibiotic sensitivity results. Four children expired despite treatment. Compared to children, there were no demonstrative differences in adults, except for history of ICU care. Conclusion Although there were not many pediatric cases at our hospital, awareness of colonization through hospital-acquired infection and effective therapy for infection of B. cepacia is needed, as it can cause mortality and morbidity. PMID:26632388

  19. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis

    PubMed Central

    Limmathurotsakul, Direk; Golding, Nick; Dance, David AB; Messina, Jane P; Pigott, David M; Moyes, Catherine L; Rolim, Dionne B; Bertherat, Eric; Day, Nicholas PJ; Peacock, Sharon J; Hay, Simon I

    2016-01-01

    Burkholderia pseudomallei, a highly pathogenic bacterium that causes melioidosis, is commonly found in soil in Southeast Asia and Northern Australia1,2. Melioidosis can be difficult to diagnose due to its diverse clinical manifestations and the inadequacy of conventional bacterial identification methods3. The bacterium is intrinsically resistant to a wide range of antimicrobials, and treatment with ineffective antimicrobials may result in case fatality rates (CFRs) exceeding 70%4,5. The importation of infected animals has, in the past, spread melioidosis to non-endemic areas6,7. The global distribution of B. pseudomallei and burden of melioidosis, however, remain poorly understood. Here, we map documented human and animal cases, and the presence of environmental B. pseudomallei, and combine this in a formal modelling framework8-10 to estimate the global burden of melioidosis. We estimate there to be 165,000 (95% credible interval 68,000-412,000) human melioidosis cases per year worldwide, of which 89,000 (36,000-227,000) die. Our estimates suggest that melioidosis is severely underreported in the 45 countries in which it is known to be endemic and that melioidosis is likely endemic in a further 34 countries which have never reported the disease. The large numbers of estimated cases and fatalities emphasise that the disease warrants renewed attention from public health officials and policy makers. PMID:26877885

  20. [Pharyngitis due to Burkholderia cepacia. Person-to-person transmission].

    PubMed

    Fajardo Olivares, M; Cordero Carrasco, J L; Beteta López, A; Escobar Izquierdo, A B; Sacristán Enciso, B

    2004-06-01

    Burkholderia cepacia is a Gram-negative bacillus that is widely distributed in nature; it is isolated from the ground, water, plants and vegetables. Generally, it produces nosocomial infection due to contamination of disinfectants, medical equipment, prosthetic material and drugs, such as anesthetics or liquids used in urological irrigation. The most probable mechanism of transmission is through hospital material or through fomites among people after contact for several weeks or months. Recently, it has been considered as an important pathogen in immunocompromised patients, or in those with significant underlying diseases, such as chronic granulomastosis or cystic fibrosis. We present a case of pharyngitis due to B. cepacia and its transmission within a few days in two immunocompetent twin siblings without previous underlying diseases. The infection disappeared after specific treatment for this microorganism was started. We believe that samples should be taken from the pharynx and nasal pits in patients with acute upper respiratory tract processes that do not respond to empiric antibiotic treatment, before classifying them as viral infection without etiologic diagnosis.

  1. Genetic Control of Weight Loss During Pneumonic Burkholderia pseudomallei Infection

    PubMed Central

    Emery, Felicia D.; Parvathareddy, Jyothi; Pandey, Ashutosh K.; Cui, Yan; Williams, Robert W.; Miller, Mark A.

    2014-01-01

    Burkholderia pseudomallei (Bp) is the causal agent of a high morbidity/mortality disease syndrome known as melioidosis. This syndrome can range from acute fulminate disease to chronic, local, and disseminated infections that are often difficult to treat because Bp exhibits resistance to many antibiotics. Bp is a prime candidate for use in biological warfare/terrorism and is classified as a Tier-1 Select Agent by HHS and APHIS. It is known that inbred mouse strains display a range of susceptibility to Bp and that the murine infection model is ideal for studying acute melioidosis. Here we exploit a powerful mouse genetics resource that consists of a large family of BXD type recombinant inbred strains, to perform genome-wide linkage analysis of the weight loss phenotype following pneumonic infection with Bp. We infected parental mice and 32 BXD strains with 50-100 CFU of Bp (strain 1026b) and monitored weight retention each day over an eleven-day time course. Using the computational tools in GeneNetwork, we performed genome-wide linkage analysis to identify an interval on chromosome 12 that appears to control the weight retention trait. We then analysed and ranked positional candidate genes in this interval, several of which have intriguing connections with innate immunity, calcium homeostasis, lipid transport, host cell growth and development, and autophagy. PMID:24687986

  2. Ultrastructural effects and antibiofilm activity of LFchimera against Burkholderia pseudomallei.

    PubMed

    Puknun, Aekkalak; Kanthawong, Sakawrat; Anutrakunchai, Chitchanok; Nazmi, Kamran; Tigchelaar, Wikky; Hoeben, Kees A; Veerman, Enno C I; Bolscher, Jan G M; Taweechaisupapong, Suwimol

    2016-02-01

    Lactoferrin chimera (LFchimera), a hybrid peptide containing the two antimicrobial stretches of the innate immunity factor bovine lactoferrin, viz. LFampin265-284 and LFcin17-30, has strikingly high antimicrobial activity against the category B pathogen Burkholderia pseudomallei. The action mechanisms of LFchimera against B. pseudomallei is not fully understood. The aim of this study was to further investigate the effect of treated B. pseudomallei with LFchimera using (immune) electron microscopy. The effects of LFchimera on biofilm formation and against preformed biofilm of B. pseudomallei were also determined. After exposure to LFchimera, transmission electron microscopy revealed swelling of the periplasmic space of B. pseudomallei and a highly inhomogeneous electron density in the intracellular DNA region. Localization of LFchimera in B. pseudomallei using immunoelectron microscopy showed gold particles in intracellular structures without accumulation on the membranes. LFchimera also possessed stronger bactericidal activity than ceftazidime against B. pseudomallei grown in biofilm. Moreover, limited exposure of B. pseudomallei to LFchimera at subcidal concentration could reduce biofilm formation. Altogether, the results indicate that LFchimera possesses antibacterial and antibiofilm activities and can modulate B. pseudomallei colonization. Therefore, the efficacy of LFchimera merits further development of this agent for the therapy of melioidosis. PMID:26754671

  3. Burkholderia pseudomallei: First case of melioidosis in Portugal

    PubMed Central

    Pelerito, Ana; Nunes, Alexandra; Coelho, Susana; Piedade, Cátia; Paixão, Paulo; Cordeiro, Rita; Sampaio, Daniel; Vieira, Luís; Gomes, João Paulo; Núncio, Sofia

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacillus and the causative agent of melioidosis, a serious infection associated with high mortality rate in humans. It can be naturally found as an environmental saprophyte in soil or stagnant water, and rice paddies that predominate in regions of endemicity such as Northeast Thailand. B. pseudomallei is a Biosafety Level 3 organism due to risks of aerosolization and severe disease and is now included in formal emergency preparedness plans and guidelines issued by various authorities in the United States and Europe. Here, we report the first case of imported melioidosis in Portugal. B. pseudomallei was isolated from the patient's blood as well as from a left gluteal abscess pus. The isolate strain showed the unusual resistance profile to first-line eradication therapy trimethroprim/sulfamethoxazole. Whole genome sequencing revealed its similarity with isolates from Southeast Asia, suggesting the Thai origin of this Portuguese isolate, which is in agreement with a recent patient's travel to Thailand. PMID:26962474

  4. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis.

    PubMed

    Limmathurotsakul, Direk; Golding, Nick; Dance, David A B; Messina, Jane P; Pigott, David M; Moyes, Catherine L; Rolim, Dionne B; Bertherat, Eric; Day, Nicholas P J; Peacock, Sharon J; Hay, Simon I

    2016-01-01

    Burkholderia pseudomallei, a highly pathogenic bacterium that causes melioidosis, is commonly found in soil in Southeast Asia and Northern Australia(1,2). Melioidosis can be difficult to diagnose due to its diverse clinical manifestations and the inadequacy of conventional bacterial identification methods(3). The bacterium is intrinsically resistant to a wide range of antimicrobials, and treatment with ineffective antimicrobials may result in case fatality rates (CFRs) exceeding 70%(4,5). The importation of infected animals has, in the past, spread melioidosis to non-endemic areas(6,7). The global distribution of B. pseudomallei and the burden of melioidosis, however, remain poorly understood. Here, we map documented human and animal cases and the presence of environmental B. pseudomallei and combine this in a formal modelling framework(8-10) to estimate the global burden of melioidosis. We estimate there to be 165,000 (95% credible interval 68,000-412,000) human melioidosis cases per year worldwide, from which 89,000 (36,000-227,000) people die. Our estimates suggest that melioidosis is severely underreported in the 45 countries in which it is known to be endemic and that melioidosis is probably endemic in a further 34 countries that have never reported the disease. The large numbers of estimated cases and fatalities emphasize that the disease warrants renewed attention from public health officials and policy makers. PMID:27571754

  5. Genetic structure of a lotic population of Burkholderia (Pseudomonas) cepacia

    SciTech Connect

    Wise, M.G.; Shimkets, L.J.; McArthur, J.V.

    1995-05-01

    The genetic structure of a population of Burkholderia (Pseudomonas) cepacia isolated from a southeastern blackwater stream was investigated by using multilocus enzyme electrophoresis to examine the allelic variation in eight structural gene loci. Overall, 213 isolates were collected at transect points along the stream continuum, from both the sediments along the bank and the water column. Multilocus enzyme electrophoresis analysis revealed 164 distinct electrophoretic types, and the mean genetic diversity of the entire population was 0.574. Genetic diversity values did not vary spatially along the stream continuum. From a canonical discriminant analysis, Mahalonobis distances (measurements of genetic similarity between populations) revealed significant differences among the subpopulations at the sediment sampling points, suggesting bacterial adaptation to a heterogeneous (or patchy) microgeographical environment. Multilocus linkage disequilibrium analysis of the isolates revealed only limited association between alleles, suggesting frequent recombination, relative to binary fission, in this population. Furthermore, the dendrogram created from the data of this study and the allele mismatch distribution are typical of a population characterized by extensive genetic mixing. We suggest that B. cepacia be added to the growing list of bacteria that are not obligatorily clonal. 41 refs., 5 figs., 3 tabs.

  6. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei.

    PubMed

    Holden, Matthew T G; Titball, Richard W; Peacock, Sharon J; Cerdeño-Tárraga, Ana M; Atkins, Timothy; Crossman, Lisa C; Pitt, Tyrone; Churcher, Carol; Mungall, Karen; Bentley, Stephen D; Sebaihia, Mohammed; Thomson, Nicholas R; Bason, Nathalie; Beacham, Ifor R; Brooks, Karen; Brown, Katherine A; Brown, Nat F; Challis, Greg L; Cherevach, Inna; Chillingworth, Tracy; Cronin, Ann; Crossett, Ben; Davis, Paul; DeShazer, David; Feltwell, Theresa; Fraser, Audrey; Hance, Zahra; Hauser, Heidi; Holroyd, Simon; Jagels, Kay; Keith, Karen E; Maddison, Mark; Moule, Sharon; Price, Claire; Quail, Michael A; Rabbinowitsch, Ester; Rutherford, Kim; Sanders, Mandy; Simmonds, Mark; Songsivilai, Sirirurg; Stevens, Kim; Tumapa, Sarinna; Vesaratchavest, Monkgol; Whitehead, Sally; Yeats, Corin; Barrell, Bart G; Oyston, Petra C F; Parkhill, Julian

    2004-09-28

    Burkholderia pseudomallei is a recognized biothreat agent and the causative agent of melioidosis. This Gram-negative bacterium exists as a soil saprophyte in melioidosis-endemic areas of the world and accounts for 20% of community-acquired septicaemias in northeastern Thailand where half of those affected die. Here we report the complete genome of B. pseudomallei, which is composed of two chromosomes of 4.07 megabase pairs and 3.17 megabase pairs, showing significant functional partitioning of genes between them. The large chromosome encodes many of the core functions associated with central metabolism and cell growth, whereas the small chromosome carries more accessory functions associated with adaptation and survival in different niches. Genomic comparisons with closely and more distantly related bacteria revealed a greater level of gene order conservation and a greater number of orthologous genes on the large chromosome, suggesting that the two replicons have distinct evolutionary origins. A striking feature of the genome was the presence of 16 genomic islands (GIs) that together made up 6.1% of the genome. Further analysis revealed these islands to be variably present in a collection of invasive and soil isolates but entirely absent from the clonally related organism B. mallei. We propose that variable horizontal gene acquisition by B. pseudomallei is an important feature of recent genetic evolution and that this has resulted in a genetically diverse pathogenic species.

  7. 2-Naphthoate catabolic pathway in Burkholderia strain JT 1500.

    PubMed

    Morawski, B; Eaton, R W; Rossiter, J T; Guoping, S; Griengl, H; Ribbons, D W

    1997-01-01

    Burkholderia strain (JT 1500), able to use 2-naphthoate as the sole source of carbon, was isolated from soil. On the basis of growth characteristics, oxygen uptake experiments, enzyme assays, and detection of intermediates, a degradation pathway of 2-naphthoate is proposed. The features of this pathway are convergent with those for phenanthrene. We propose a pathway for the conversion of 2-naphthoate to 1 mol (each) of pyruvate, succinate, and acetyl coenzyme A and 2 mol of CO2. During growth in the presence of 2-naphthoate, six metabolites were detected by thin-layer chromatography, high-performance liquid chromatography, and spectroscopy. 1-Hydroxy-2-naphthoate accumulated in the culture broth during growth on 2-naphthoate. Also, the formation of 2'-carboxybenzalpyruvate, phthalaldehydate, phthalate, protocatechuate, and beta-carboxy-cis,cis-muconic acid was demonstrated. (1R,2S)-cis-1,2-Dihydro-1,2-dihydroxy-2-naphthoate was thus considered an intermediate between 2-naphthoate and 1-hydroxy-2-naphthoate, but it was not transformed by whole cells or their extracts. We conclude that this diol is not responsible for the formation of 1-hydroxy-2-naphthoate from 2-naphthoate but that one of the other three diastereomers is not eliminated as a potential intermediate for a dehydration reaction.

  8. A Burkholderia pseudomallei Colony Variant Necessary for Gastric Colonization

    PubMed Central

    Austin, C. R.; Goodyear, A. W.; Bartek, I. L.; Stewart, A.; Sutherland, M. D.; Silva, E. B.; Zweifel, A.; Vitko, N. P.; Tuanyok, A.; Highnam, G.; Mittelman, D.; Keim, P.; Schweizer, H. P.; Vázquez-Torres, A.; Dow, S. W. C.

    2015-01-01

    ABSTRACT  Diverse colony morphologies are a hallmark of Burkholderia pseudomallei recovered from infected patients. We observed that stresses that inhibit aerobic respiration shifted populations of B. pseudomallei from the canonical white colony morphotype toward two distinct, reversible, yet relatively stable yellow colony variants (YA and YB). As accumulating evidence supports the importance of B. pseudomallei enteric infection and gastric colonization, we tested the response of yellow variants to hypoxia, acidity, and stomach colonization. Yellow variants exhibited a competitive advantage under hypoxic and acidic conditions and alkalized culture media. The YB variant, although highly attenuated in acute virulence, was the only form capable of colonization and persistence in the murine stomach. The accumulation of extracellular DNA (eDNA) was a characteristic of YB as observed by 4′,6-diamidino-2-phenylindole (DAPI) staining of gastric tissues, as well as in an in vitro stomach model where large amounts of eDNA were produced without cell lysis. Transposon mutagenesis identified a transcriptional regulator (BPSL1887, designated YelR) that when overexpressed produced the yellow phenotype. Deletion of yelR blocked a shift from white to the yellow forms. These data demonstrate that YB is a unique B. pseudomallei pathovariant controlled by YelR that is specifically adapted to the harsh gastric environment and necessary for persistent stomach colonization. PMID:25650400

  9. Morphological Alteration and Survival of Burkholderia pseudomallei in Soil Microcosms.

    PubMed

    Kamjumphol, Watcharaporn; Chareonsudjai, Pisit; Taweechaisupapong, Suwimol; Chareonsudjai, Sorujsiri

    2015-11-01

    The resilience of Burkholderia pseudomallei, the causative agent of melioidosis, was evaluated in control soil microcosms and in soil microcosms containing NaCl or FeSO4 at 30°C. Iron (Fe(II)) promoted the growth of B. pseudomallei during the 30-day observation, contrary to the presence of 1.5% and 3% NaCl. Scanning electron micrographs of B. pseudomallei in soil revealed their morphological alteration from rod to coccoid and the formation of microcolonies. The smallest B. pseudomallei cells were found in soil with 100 μM FeSO4 compared with in the control soil or soil with 0.6% NaCl (P < 0.05). The colony count on Ashdown's agar and bacterial viability assay using the LIVE/DEAD(®) BacLight(™) stain combined with flow cytometry showed that B. pseudomallei remained culturable and viable in the control soil microcosms for at least 120 days. In contrast, soil with 1.5% NaCl affected their culturability at day 90 and their viability at day 120. Our results suggested that a low salinity and iron may influence the survival of B. pseudomallei and its ability to change from a rod-like to coccoid form. The morphological changes of B. pseudomallei cells may be advantageous for their persistence in the environment and may increase the risk of their transmission to humans. PMID:26324731

  10. Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis

    PubMed Central

    Peri, Claudio; Gori, Alessandro; Gagni, Paola; Sola, Laura; Girelli, Daniela; Sottotetti, Samantha; Cariani, Lisa; Chiari, Marcella; Cretich, Marina; Colombo, Giorgio

    2016-01-01

    Efficient diagnosis of emerging and novel bacterial infections is fundamental to guide decisions on therapeutic treatments. Here, we engineered a novel rational strategy to design peptide microarray platforms, which combines structural and genomic analyses to predict the binding interfaces between diverse protein antigens and antibodies against Burkholderia cepacia complex infections present in the sera of Cystic Fibrosis (CF) patients. The predicted binding interfaces on the antigens are synthesized in the form of isolated peptides and chemically optimized for controlled orientation on the surface. Our platform displays multiple Burkholderia-related epitopes and is shown to diagnose infected individuals even in presence of superinfections caused by other prevalent CF pathogens, with limited cost and time requirements. Moreover, our data point out that the specific patterns determined by combined probe responses might provide a characterization of Burkholderia infections even at the subtype level (genomovars). The method is general and immediately applicable to other bacteria. PMID:27615705

  11. Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Peri, Claudio; Gori, Alessandro; Gagni, Paola; Sola, Laura; Girelli, Daniela; Sottotetti, Samantha; Cariani, Lisa; Chiari, Marcella; Cretich, Marina; Colombo, Giorgio

    2016-09-01

    Efficient diagnosis of emerging and novel bacterial infections is fundamental to guide decisions on therapeutic treatments. Here, we engineered a novel rational strategy to design peptide microarray platforms, which combines structural and genomic analyses to predict the binding interfaces between diverse protein antigens and antibodies against Burkholderia cepacia complex infections present in the sera of Cystic Fibrosis (CF) patients. The predicted binding interfaces on the antigens are synthesized in the form of isolated peptides and chemically optimized for controlled orientation on the surface. Our platform displays multiple Burkholderia-related epitopes and is shown to diagnose infected individuals even in presence of superinfections caused by other prevalent CF pathogens, with limited cost and time requirements. Moreover, our data point out that the specific patterns determined by combined probe responses might provide a characterization of Burkholderia infections even at the subtype level (genomovars). The method is general and immediately applicable to other bacteria.

  12. Bacterial cell motility of Burkholderia gut symbiont is required to colonize the insect gut.

    PubMed

    Lee, Jun Beom; Byeon, Jin Hee; Jang, Ho Am; Kim, Jiyeun Kate; Yoo, Jin Wook; Kikuchi, Yoshitomo; Lee, Bok Luel

    2015-09-14

    We generated a Burkholderia mutant, which is deficient of an N-acetylmuramyl-l-alanine amidase, AmiC, involved in peptidoglycan degradation. When non-motile ΔamiC mutant Burkholderia cells harboring chain form were orally administered to Riptortus insects, ΔamiC mutant cells were unable to establish symbiotic association. But, ΔamiC mutant complemented with amiC gene restored in vivo symbiotic association. ΔamiC mutant cultured in minimal medium restored their motility with single-celled morphology. When ΔamiC mutant cells harboring single-celled morphology were administered to the host insect, this mutant established normal symbiotic association, suggesting that bacterial motility is essential for the successful symbiosis between host insect and Burkholderia symbiont.

  13. Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis.

    PubMed

    Peri, Claudio; Gori, Alessandro; Gagni, Paola; Sola, Laura; Girelli, Daniela; Sottotetti, Samantha; Cariani, Lisa; Chiari, Marcella; Cretich, Marina; Colombo, Giorgio

    2016-01-01

    Efficient diagnosis of emerging and novel bacterial infections is fundamental to guide decisions on therapeutic treatments. Here, we engineered a novel rational strategy to design peptide microarray platforms, which combines structural and genomic analyses to predict the binding interfaces between diverse protein antigens and antibodies against Burkholderia cepacia complex infections present in the sera of Cystic Fibrosis (CF) patients. The predicted binding interfaces on the antigens are synthesized in the form of isolated peptides and chemically optimized for controlled orientation on the surface. Our platform displays multiple Burkholderia-related epitopes and is shown to diagnose infected individuals even in presence of superinfections caused by other prevalent CF pathogens, with limited cost and time requirements. Moreover, our data point out that the specific patterns determined by combined probe responses might provide a characterization of Burkholderia infections even at the subtype level (genomovars). The method is general and immediately applicable to other bacteria. PMID:27615705

  14. Evolving serodiagnostics by rationally designed peptide arrays: the Burkholderia paradigm in Cystic Fibrosis.

    PubMed

    Peri, Claudio; Gori, Alessandro; Gagni, Paola; Sola, Laura; Girelli, Daniela; Sottotetti, Samantha; Cariani, Lisa; Chiari, Marcella; Cretich, Marina; Colombo, Giorgio

    2016-01-01

    Efficient diagnosis of emerging and novel bacterial infections is fundamental to guide decisions on therapeutic treatments. Here, we engineered a novel rational strategy to design peptide microarray platforms, which combines structural and genomic analyses to predict the binding interfaces between diverse protein antigens and antibodies against Burkholderia cepacia complex infections present in the sera of Cystic Fibrosis (CF) patients. The predicted binding interfaces on the antigens are synthesized in the form of isolated peptides and chemically optimized for controlled orientation on the surface. Our platform displays multiple Burkholderia-related epitopes and is shown to diagnose infected individuals even in presence of superinfections caused by other prevalent CF pathogens, with limited cost and time requirements. Moreover, our data point out that the specific patterns determined by combined probe responses might provide a characterization of Burkholderia infections even at the subtype level (genomovars). The method is general and immediately applicable to other bacteria.

  15. Burkholderia species are the most common and preferred nodulating symbionts of the Piptadenia group (tribe Mimoseae).

    PubMed

    Bournaud, Caroline; de Faria, Sergio Miana; dos Santos, José Miguel Ferreira; Tisseyre, Pierre; Silva, Michele; Chaintreuil, Clémence; Gross, Eduardo; James, Euan K; Prin, Yves; Moulin, Lionel

    2013-01-01

    Burkholderia legume symbionts (also called α-rhizobia) are ancient in origin and are the main nitrogen-fixing symbionts of species belonging to the large genus Mimosa in Brazil. We investigated the extent of the affinity between Burkholderia and species in the tribe Mimoseae by studying symbionts of the genera Piptadenia (P.), Parapiptadenia (Pp.), Pseudopiptadenia (Ps.), Pityrocarpa (Py.), Anadenanthera (A.) and Microlobius (Mi.), all of which are native to Brazil and are phylogenetically close to Mimosa, and which together with Mimosa comprise the "Piptadenia group". We characterized 196 strains sampled from 18 species from 17 locations in Brazil using two neutral markers and two symbiotic genes in order to assess their species affiliations and the evolution of their symbiosis genes. We found that Burkholderia are common and highly diversified symbionts of species in the Piptadenia group, comprising nine Burkholderia species, of which three are new ones and one was never reported as symbiotic (B. phenoliruptrix). However, α-rhizobia were also detected and were occasionally dominant on a few species. A strong sampling site effect on the rhizobial nature of symbionts was detected, with the symbiont pattern of the same legume species changing drastically from location to location, even switching from β to α-rhizobia. Coinoculation assays showed a strong affinity of all the Piptadenia group species towards Burkholderia genotypes, with the exception of Mi. foetidus. Phylogenetic analyses of neutral and symbiotic markers showed that symbiosis genes in Burkholderia from the Piptadenia group have evolved mainly through vertical transfer, but also by horizontal transfer in two species.

  16. Burkholderia Species Are the Most Common and Preferred Nodulating Symbionts of the Piptadenia Group (Tribe Mimoseae)

    PubMed Central

    Bournaud, Caroline; de Faria, Sergio Miana; dos Santos, José Miguel Ferreira; Tisseyre, Pierre; Silva, Michele; Chaintreuil, Clémence; Gross, Eduardo; James, Euan K.; Prin, Yves; Moulin, Lionel

    2013-01-01

    Burkholderia legume symbionts (also called α-rhizobia) are ancient in origin and are the main nitrogen-fixing symbionts of species belonging to the large genus Mimosa in Brazil. We investigated the extent of the affinity between Burkholderia and species in the tribe Mimoseae by studying symbionts of the genera Piptadenia (P.), Parapiptadenia (Pp.), Pseudopiptadenia (Ps.), Pityrocarpa (Py.), Anadenanthera (A.) and Microlobius (Mi.), all of which are native to Brazil and are phylogenetically close to Mimosa, and which together with Mimosa comprise the “Piptadenia group”. We characterized 196 strains sampled from 18 species from 17 locations in Brazil using two neutral markers and two symbiotic genes in order to assess their species affiliations and the evolution of their symbiosis genes. We found that Burkholderia are common and highly diversified symbionts of species in the Piptadenia group, comprising nine Burkholderia species, of which three are new ones and one was never reported as symbiotic (B. phenoliruptrix). However, α-rhizobia were also detected and were occasionally dominant on a few species. A strong sampling site effect on the rhizobial nature of symbionts was detected, with the symbiont pattern of the same legume species changing drastically from location to location, even switching from β to α-rhizobia. Coinoculation assays showed a strong affinity of all the Piptadenia group species towards Burkholderia genotypes, with the exception of Mi. foetidus. Phylogenetic analyses of neutral and symbiotic markers showed that symbiosis genes in Burkholderia from the Piptadenia group have evolved mainly through vertical transfer, but also by horizontal transfer in two species. PMID:23691052

  17. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution.

    PubMed

    Estrada-De Los Santos, P; Bustillos-Cristales, R; Caballero-Mellado, J

    2001-06-01

    The genus Burkholderia comprises 19 species, including Burkholderia vietnamiensis which is the only known N(2)-fixing species of this bacterial genus. The first isolates of B. vietnamiensis were recovered from the rhizosphere of rice plants grown in a phytotron, but its existence in natural environments and its geographic distribution were not reported. In the present study, most N(2)-fixing isolates recovered from the environment of field-grown maize and coffee plants cultivated in widely separated regions of Mexico were phenotypically identified as B. cepacia using the API 20NE system. Nevertheless, a number of these isolates recovered from inside of maize roots, as well as from the rhizosphere and rhizoplane of maize and coffee plants, showed similar or identical features to those of B. vietnamiensis TVV75(T). These features include nitrogenase activity with 10 different carbon sources, identical or very similar nifHDK hybridization patterns, very similar protein electrophoregrams, identical amplified 16S rDNA restriction (ARDRA) profiles, and levels of DNA-DNA reassociation higher than 70% with total DNA from strain TVV75(T). Although the ability to fix N(2) is not reported to be a common feature among the known species of the genus Burkholderia, the results obtained show that many diazotrophic Burkholderia isolates analyzed showed phenotypic and genotypic features different from those of the known N(2)-fixing species B. vietnamiensis as well as from those of B. kururiensis, a bacterium identified in the present study as a diazotrophic species. DNA-DNA reassociation assays confirmed the existence of N(2)-fixing Burkholderia species different from B. vietnamiensis. In addition, this study shows the wide geographic distribution and substantial capability of N(2)-fixing Burkholderia spp. for colonizing diverse host plants in distantly separated environments. PMID:11375196

  18. Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil.

    PubMed

    Farh, Mohamed El-Agamy; Kim, Yeon-Ju; Van An, Hoang; Sukweenadhi, Johan; Singh, Priyanka; Huq, Md Amdadul; Yang, Deok-Chun

    2015-04-01

    Strain DCY85(T) and DCY85-1(T), isolated from rhizosphere of ginseng, were rod-shaped, Gram-reaction-negative, strictly aerobic, catalase positive and oxidase negative. 16S rRNA gene sequence analysis revealed that strain DCY85(T) as well as DCY85-1(T) belonged to the genus Burkholderia and were closely related to Burkholderia fungorum KACC 12023(T) (98.1 and 98.0 % similarity, respectively). The major polar lipids of strain DCY85(T) and DCY85-1(T) were phosphatidylethanolamine, one unidentified aminolipid and two unidentified phospholipids. The major fatty acids of both strains are C16:0, C18:1 ω7c and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). The predominant isoprenoid quinone of each strain DCY85(T) and DCY85-1(T) was ubiquinone (Q-8) and the G+C content of their genomic DNA was 66.0 and 59.4 mol%, respectively, which fulfill the characteristic range of the genus Burkholderia. The polyamine content of both DCY85(T) and DCY85-1(T) was putrescine. Although both DCY85(T) and DCY85-1(T) have highly similar 16S rRNA and identical RecA and gyrB sequences, they show differences in phenotypic and chemotaxonomic characteristics. DNA-DNA hybridization results proved the consideration of both strains as two different species. Based on the results from our polyphasic characterization, strain DCY85(T) and DCY85-1(T) are considered novel Burkholderia species for which the name Burkholderia ginsengiterrae sp. nov and Burkholderia panaciterrae sp. nov are, respectively, proposed. An emended description of those strains is also proposed. DCY85(T) and DCY85-1(T) showed antagonistic activity against the common root rot pathogen of ginseng, Cylindrocarpon destructans. The proposed type strains are DCY85(T) (KCTC 42054(T) = JCM 19888(T)) and DCY85-1(T) (KCTC 42055(T) = JCM 19889(T)). PMID:25537097

  19. Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil.

    PubMed

    Farh, Mohamed El-Agamy; Kim, Yeon-Ju; Van An, Hoang; Sukweenadhi, Johan; Singh, Priyanka; Huq, Md Amdadul; Yang, Deok-Chun

    2015-04-01

    Strain DCY85(T) and DCY85-1(T), isolated from rhizosphere of ginseng, were rod-shaped, Gram-reaction-negative, strictly aerobic, catalase positive and oxidase negative. 16S rRNA gene sequence analysis revealed that strain DCY85(T) as well as DCY85-1(T) belonged to the genus Burkholderia and were closely related to Burkholderia fungorum KACC 12023(T) (98.1 and 98.0 % similarity, respectively). The major polar lipids of strain DCY85(T) and DCY85-1(T) were phosphatidylethanolamine, one unidentified aminolipid and two unidentified phospholipids. The major fatty acids of both strains are C16:0, C18:1 ω7c and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). The predominant isoprenoid quinone of each strain DCY85(T) and DCY85-1(T) was ubiquinone (Q-8) and the G+C content of their genomic DNA was 66.0 and 59.4 mol%, respectively, which fulfill the characteristic range of the genus Burkholderia. The polyamine content of both DCY85(T) and DCY85-1(T) was putrescine. Although both DCY85(T) and DCY85-1(T) have highly similar 16S rRNA and identical RecA and gyrB sequences, they show differences in phenotypic and chemotaxonomic characteristics. DNA-DNA hybridization results proved the consideration of both strains as two different species. Based on the results from our polyphasic characterization, strain DCY85(T) and DCY85-1(T) are considered novel Burkholderia species for which the name Burkholderia ginsengiterrae sp. nov and Burkholderia panaciterrae sp. nov are, respectively, proposed. An emended description of those strains is also proposed. DCY85(T) and DCY85-1(T) showed antagonistic activity against the common root rot pathogen of ginseng, Cylindrocarpon destructans. The proposed type strains are DCY85(T) (KCTC 42054(T) = JCM 19888(T)) and DCY85-1(T) (KCTC 42055(T) = JCM 19889(T)).

  20. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil

    PubMed Central

    Song, Ok-Ryul; Lee, Seung-Jin; Lee, Yong-Seok; Lee, Sang-Cheol; Kim, Keun-Ki; Choi, Yong-Lark

    2008-01-01

    A mineral phosphate solubilizing bacterium, Burkholderia cepacia DA23 has been isolated from cultivated soils. Phosphate-solubilizing activities of the strain against three types of insoluble phosphate were quantitatively determined. When 3% of glucose concentration was used for carbon source, the strain had a marked mineral phosphate-solubilizing activity. Mineral phosphate solubilization was directly related to the pH drop by the strain. Analysis of the culture medium by high pressure liquid chromatography identified gluconic acid as the main organic acid released by Burkholderia cepacia DA23. Gluconic acid production was apparently the result of the glucose dehydrogenase activity and glucose dehydrogenase was affected by phosphate regulation. PMID:24031195

  1. Less is more: Burkholderia pseudomallei and chronic melioidosis.

    PubMed

    Nandi, Tannistha; Tan, Patrick

    2013-09-24

    The Gram-negative bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. Once considered an esoteric tropical disease confined to Southeast Asia and northern Australia, research on B. pseudomallei has recently gained global prominence due to its classification as a potential bioterrorism agent by countries such as the United States and also by increasing numbers of case reports from regions where it is not endemic. An environmental bacterium typically found in soil and water, assessing the true global prevalence of melioidosis is challenged by the fact that clinical symptoms associated with B. pseudomallei infection are extremely varied and may be confused with diverse conditions such as lung cancer, tuberculosis, or Staphyloccocus aureus infection. These diagnostic challenges, coupled with lack of awareness among clinicians, have likely contributed to underdiagnosis and the high mortality rate of melioidosis, as initial treatment is often either inappropriate or delayed. Even after antibiotic treatment, relapses are frequent, and after resolution of acute symptoms, chronic melioidosis can also occur, and the symptoms can persist for months to years. In a recent article, Price et al. [mBio 4(4):e00388-13, 2013, doi:10.1128/mBio.00388-13] demonstrate how comparative genomic sequencing can reveal the repertoire of genetic changes incurred by B. pseudomallei during chronic human infection. Their results have significant clinical ramifications and highlight B. pseudomallei's ability to survive in a wide range of potential niches within hosts, through the acquisition of genetic adaptations that optimize fitness and resource utilization.

  2. Curcumin rescues Caenorhabditis elegans from a Burkholderia pseudomallei infection

    PubMed Central

    Eng, Su-Anne; Nathan, Sheila

    2015-01-01

    The tropical pathogen Burkholderia pseudomallei requires long-term parenteral antimicrobial treatment to eradicate the pathogen from an infected patient. However, the development of antibiotic resistance is emerging as a threat to this form of treatment. To meet the need for alternative therapeutics, we proposed a screen of natural products for compounds that do not kill the pathogen, but in turn, abrogate bacterial virulence. We suggest that the use of molecules or compounds that are non-bactericidal (bacteriostatic) will reduce or abolish the development of resistance by the pathogen. In this study, we adopted the established Caenorhabditis elegans-B. pseudomallei infection model to screen a collection of natural products for any that are able to extend the survival of B. pseudomallei infected worms. Of the 42 natural products screened, only curcumin significantly improved worm survival following infection whilst not affecting bacterial growth. This suggested that curcumin promoted B. pseudomallei-infected worm survival independent of pathogen killing. To validate that the protective effect of curcumin was directed toward the pathogen, bacteria were treated with curcumin prior to infection. Worms fed with curcumin-treated bacteria survived with a significantly extended mean-time-to-death (p < 0.0001) compared to the untreated control. In in vitro assays, curcumin reduced the activity of known virulence factors (lipase and protease) and biofilm formation. To determine if other bacterial genes were also regulated in the presence of curcumin, a genome-wide transcriptome analysis was performed on curcumin-treated pathogen. A number of genes involved in iron acquisition and transport as well as genes encoding hypothetical proteins were induced in the presence of curcumin. Thus, we propose that curcumin may attenuate B. pseudomallei by modulating the expression of a number of bacterial proteins including lipase and protease as well as biofilm formation whilst

  3. Genomic islands from five strains of Burkholderia pseudomallei

    PubMed Central

    Tuanyok, Apichai; Leadem, Benjamin R; Auerbach, Raymond K; Beckstrom-Sternberg, Stephen M; Beckstrom-Sternberg, James S; Mayo, Mark; Wuthiekanun, Vanaporn; Brettin, Thomas S; Nierman, William C; Peacock, Sharon J; Currie, Bart J; Wagner, David M; Keim, Paul

    2008-01-01

    Background Burkholderia pseudomallei is the etiologic agent of melioidosis, a significant cause of morbidity and mortality where this infection is endemic. Genomic differences among strains of B. pseudomallei are predicted to be one of the major causes of the diverse clinical manifestations observed among patients with melioidosis. The purpose of this study was to examine the role of genomic islands (GIs) as sources of genomic diversity in this species. Results We found that genomic islands (GIs) vary greatly among B. pseudomallei strains. We identified 71 distinct GIs from the genome sequences of five reference strains of B. pseudomallei: K96243, 1710b, 1106a, MSHR668, and MSHR305. The genomic positions of these GIs are not random, as many of them are associated with tRNA gene loci. In particular, the 3' end sequences of tRNA genes are predicted to be involved in the integration of GIs. We propose the term "tRNA-mediated site-specific recombination" (tRNA-SSR) for this mechanism. In addition, we provide a GI nomenclature that is based upon integration hotspots identified here or previously described. Conclusion Our data suggest that acquisition of GIs is one of the major sources of genomic diversity within B. pseudomallei and the molecular mechanisms that facilitate horizontally-acquired GIs are common across multiple strains of B. pseudomallei. The differential presence of the 71 GIs across multiple strains demonstrates the importance of these mobile elements for shaping the genetic composition of individual strains and populations within this bacterial species. PMID:19038032

  4. Investigation of the multifaceted iron acquisition strategies of Burkholderia cenocepacia.

    PubMed

    Tyrrell, J; Whelan, N; Wright, C; Sá-Correia, I; McClean, S; Thomas, M; Callaghan, Máire

    2015-04-01

    Burkholderia cenocepacia is a bacterial pathogen which causes severe respiratory infections in cystic fibrosis (CF). These studies were aimed at gaining an insight into the iron acquisition strategies of B. cenocepacia. In iron restricted conditions, genes associated with the synthesis and utilisation of ornibactin (pvdA, orbA, orb F) were significantly upregulated compared to the expression of pyochelin associated genes (pchD, fptA). In the absence of alternative iron sources, B. cenocepacia J2315 and 715j utilised ferritin and haemin, but not transferrin or lactoferrin for growth. Significantly, mutants unable to produce ornibactin, (715j-orbI) or ornibactin and pyochelin, (715j-pobA), utilised haemin and ferritin more efficiently than the wild-type. Moreover, both mutants were also able to utilise lactoferrin for growth (P ≤ 0.01) and additionally 715j-pobA utilised transferrin (P ≤ 0.01), potentially facilitating adaptation to the host environment. Furthermore, B. cenocepacia increased ornibactin gene expression in response to pyoverdine from Pseudomonas aeruginosa (P ≤ 0.01), demonstrating the capacity to compete for iron in co-colonised niches. Pyoverdine also significantly diminished the growth of B. cenocepacia (P < 0.001) which was related to its iron chelating activity. In a study of three B. cenocepacia sequential clonal isolates obtained from a CF patient over a 3.5 year period, ornibactin upregulation in response to pyoverdine was less pronounced in the last isolate compared to the earlier isolates, as was growth in the presence of haemin and ferritin, indicating alternative iron acquisition mechanism(s) may dominate as chronic infection progresses. These data demonstrate the multifaceted iron acquisition strategies of B. cenocepacia and their capacity to be differentially activated in the presence of P. aeruginosa and during chronic infection. PMID:25725797

  5. Burkholderia pseudomallei Capsular Polysaccharide Conjugates Provide Protection against Acute Melioidosis

    PubMed Central

    Burtnick, Mary N.; Stokes, Margaret G. M.; Whelan, Adam O.; Williamson, E. Diane; Atkins, Timothy P.; Prior, Joann L.; Brett, Paul J.

    2014-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a CDC tier 1 select agent that causes severe disease in both humans and animals. Diagnosis and treatment of melioidosis can be challenging, and in the absence of optimal chemotherapeutic intervention, acute disease is frequently fatal. Melioidosis is an emerging infectious disease for which there are currently no licensed vaccines. Due to the potential malicious use of B. pseudomallei as well as its impact on public health in regions where the disease is endemic, there is significant interest in developing vaccines for immunization against this disease. In the present study, type A O-polysaccharide (OPS) and manno-heptose capsular polysaccharide (CPS) antigens were isolated from nonpathogenic, select-agent-excluded strains of B. pseudomallei and covalently linked to carrier proteins. By using these conjugates (OPS2B1 and CPS2B1, respectively), it was shown that although high-titer IgG responses against the OPS or CPS component of the glycoconjugates could be raised in BALB/c mice, only those animals immunized with CPS2B1 were protected against intraperitoneal challenge with B. pseudomallei. Extending upon these studies, it was also demonstrated that when the mice were immunized with a combination of CPS2B1 and recombinant B. pseudomallei LolC, rather than with CPS2B1 or LolC individually, they exhibited higher survival rates when challenged with a lethal dose of B. pseudomallei. Collectively, these results suggest that CPS-based glycoconjugates are promising candidates for the development of subunit vaccines for immunization against melioidosis. PMID:24866807

  6. In vitro activity of BAL30072 against Burkholderia pseudomallei.

    PubMed

    Mima, Takehiko; Kvitko, Brian H; Rholl, Drew A; Page, Malcolm G P; Desarbre, Eric; Schweizer, Herbert P

    2011-08-01

    Burkholderia pseudomallei is an intrinsically antibiotic-resistant Category B priority pathogen and the aetiological agent of melioidosis. Treatment of B. pseudomallei infection is biphasic and lengthy in order to combat the acute and chronic phases of the disease. Acute-phase treatment preferably involves an intravenous cephalosporin (ceftazidime) or a carbapenem (imipenem or meropenem). In this study, the anti-B. pseudomallei efficacy of a new monosulfactam, BAL30072, was tested against laboratory strains 1026b and 1710b and several isogenic mutant derivatives as well as a collection of clinical and environmental B. pseudomallei strains from Thailand. More than 93% of the isolates had minimal inhibitory concentrations (MICs) in the range 0.004-0.016 μg/mL. For the laboratory strain 1026b, the MIC of BAL30072 was 0.008 μg/mL, comparable with the MICs of 1.5 μg/mL for ceftazidime, 0.5 μg/mL for imipenem and 1 μg/mL for meropenem. Time-kill curves revealed that BAL30072 was rapidly bactericidal, killing >99% of bacteria in 2 h. BAL30072 activity was not significantly affected by efflux, it was only a marginal substrate of PenA β-lactamase, and activity was independent of malleobactin production and transport and the ability to transport pyochelin. In summary, BAL30072 has superior in vitro activity against B. pseudomallei compared with ceftazidime, meropenem or imipenem and it is rapidly bactericidal. PMID:21596528

  7. Construction and characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei

    PubMed Central

    Su, Shengchang; Bangar, Hansraj; Saldanha, Roland; Pemberton, Adin; Aronow, Bruce; Dean, Gary E; Lamkin, Thomas J; Hassett, Daniel J

    2014-01-01

    Here, we constructed stable, chromosomal, constitutively expressed, green and red fluorescent protein (GFP and RFP) as reporters in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei. Using bioinformatic approaches and other experimental analyses, we identified P0253 and P1 as potent promoters that drive the optimal expression of fluorescent reporters in single copy in B. anthracis and Burkholderia spp. as well as their surrogate strains, respectively. In comparison, Y. pestis and its surrogate strain need two chromosomal copies of cysZK promoter (P2cysZK) for optimal fluorescence. The P0253-, P2cysZK-, and P1-driven GFP and RFP fusions were first cloned into the vectors pRP1028, pUC18R6KT-mini-Tn7T-Km, pmini-Tn7-gat, or their derivatives. The resultant constructs were delivered into the respective surrogates and subsequently into the select agent strains. The chromosomal GFP- and RFP-tagged strains exhibited bright fluorescence at an exposure time of less than 200 msec and displayed the same virulence traits as their wild-type parental strains. The utility of the tagged strains was proven by the macrophage infection assays and lactate dehydrogenase release analysis. Such strains will be extremely useful in high-throughput screens for novel compounds that could either kill these organisms, or interfere with critical virulence processes in these important bioweapon agents and during infection of alveolar macrophages. PMID:25044501

  8. Construction and characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei.

    PubMed

    Su, Shengchang; Bangar, Hansraj; Saldanha, Roland; Pemberton, Adin; Aronow, Bruce; Dean, Gary E; Lamkin, Thomas J; Hassett, Daniel J

    2014-10-01

    Here, we constructed stable, chromosomal, constitutively expressed, green and red fluorescent protein (GFP and RFP) as reporters in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei. Using bioinformatic approaches and other experimental analyses, we identified P0253 and P1 as potent promoters that drive the optimal expression of fluorescent reporters in single copy in B. anthracis and Burkholderia spp. as well as their surrogate strains, respectively. In comparison, Y. pestis and its surrogate strain need two chromosomal copies of cysZK promoter (P2cysZK) for optimal fluorescence. The P0253-, P2cysZK-, and P1-driven GFP and RFP fusions were first cloned into the vectors pRP1028, pUC18R6KT-mini-Tn7T-Km, pmini-Tn7-gat, or their derivatives. The resultant constructs were delivered into the respective surrogates and subsequently into the select agent strains. The chromosomal GFP- and RFP-tagged strains exhibited bright fluorescence at an exposure time of less than 200 msec and displayed the same virulence traits as their wild-type parental strains. The utility of the tagged strains was proven by the macrophage infection assays and lactate dehydrogenase release analysis. Such strains will be extremely useful in high-throughput screens for novel compounds that could either kill these organisms, or interfere with critical virulence processes in these important bioweapon agents and during infection of alveolar macrophages.

  9. Distinct colicin M-like bacteriocin-immunity pairs in Burkholderia

    PubMed Central

    Ghequire, Maarten G. K.; De Mot, René

    2015-01-01

    The Escherichia coli bacteriocin colicin M (ColM) acts via degradation of the cell wall precursor lipid II in target cells. ColM producers avoid self-inhibition by a periplasmic immunity protein anchored in the inner membrane. In this study, we identified colM-like bacteriocin genes in genomes of several β-proteobacterial strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. Two selected Burkholderia ambifaria proteins, designated burkhocins M1 and M2, were produced recombinantly and showed antagonistic activity against Bcc strains. In their considerably sequence-diverged catalytic domain, a conserved aspartate residue equally proved pivotal for cytotoxicity. Immunity to M-type burkhocins is conferred upon susceptible strains by heterologous expression of a cognate gene located either upstream or downstream of the toxin gene. These genes lack homology with currently known ColM immunity genes and encode inner membrane-associated proteins of two distinct types, differing in predicted transmembrane topology and moiety exposed to the periplasm. The addition of burkhocins to the bacteriocin complement of Burkholderia reveals a wider phylogenetic distribution of ColM-like bacteriotoxins, beyond the γ-proteobacterial genera Escherichia, Pectobacterium and Pseudomonas, and illuminates the diversified nature of immunity-providing proteins. PMID:26610609

  10. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium

    PubMed Central

    Ho, Ying-Ning

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  11. [In vitro antibiotic susceptibility compliance with efficacy of chemotherapy in infections due to pathogenic Burkholderias].

    PubMed

    Iliukhin, V I; Senina, T V; Trushkina, M N; Shubnikova, E V; Antonov, Iu V; Andropova, N V

    2009-01-01

    Among the known species of Burkholderia only two are obligate pathogens, i.e., B. mallei and B. pseudomallei, causative agents of glanders and melioidosis respectively. The other species are saprophytes as natural inhabitants of water reservoirs and soil, still capable of causing opportunistic infections in humans and animals under definite conditions. All the species of Burkholderia are characterized by high resistance to antibacterials, including antibiotics. By the MICs, the most efficient chemotherapeutics against pathogenic burkholderias are tetracyclines, fluoroquinolones, penems and combined sulfanilamides. In the treatment of experimental glanders and melioidosis the set of the effective drugs had the inverse variation dependence on the infection severity and the desease process rate. Co-trimoxasole showed the best results, then followed doxicycline, ciprofioxacin and ceftazidime in the diminishing succession. The modification of the method for determination of antibiotic susceptibility with addition of native blood to the medium and the subculture under the atmosphere of 5% CO2 was shown useful in estimation of the prospects of the use of chemotherapeutics for the treatment of Burkholderia infections. PMID:20201399

  12. Enhanced degradation of haloacid by heterologous expression in related Burkholderia species.

    PubMed

    Su, Xianbin; Deng, Liyu; Kong, Ka Fai; Tsang, Jimmy S H

    2013-10-01

    Haloacids are environmental pollutant and can be transformed to non-toxic alkanoic acids by microbial dehalogenase. Bacterium Burkholderia species MBA4 was enriched from soil for its ability to bioremediate haloacids such as mono-chloroacetate (MCA), mono-bromoacetate (MBA), 2-mono-chloropropionate, and 2-mono-bromopropionate. MBA4 produces an inducible dehalogenase Deh4a that catalyzes the dehalogenation process. The growth of MBA4 on haloacid also relies on the presence of a haloacid-uptake system. Similar dehalogenase genes can be found in the genome of many related species. However, wildtype Burkholderia caribensis MWAP64, Burkholderia phymatum STM815, and Burkholderia xenovorans LB400 were not able to grow on MCA. When a plasmid containing the regulatory and structural gene of Deh4a was transformed to these species, they were able to grow on haloacid. The specific enzyme activities in these recombinants ranges from 2- to 30-fold that of MBA4 in similar condition. Reverse transcription-quantitative real-time PCR showed that the relative transcript levels in these recombinant strains ranges from 9 to over 1,600 times that of MBA4 in similar condition. A recombinant has produced nearly five times of dehalogenase that MBA4 could ever achieve. While the expressions of Deh4a were more relaxed in these phylogenetically related species, an MCA-uptake activity was found to be inducible. These metabolically engineered strains are better degraders than the haloacid-enriched MBA4.

  13. Antimicrobial Properties of an Oxidizer Produced by Burkholderia cenocepacia P525

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A compound with both oxidizing properties and antibiotic properties was extracted and purified from broth cultures of Burkholderia cenocepacia strain P525. A four step purification procedure was used to increase its specific activity ~ 400 fold and to yield a HPLC- UV chromatogram containing a sing...

  14. NOVEL ORGANIZATION OF THE GENES FOR PHTHALATE DEGRADATION FROM BURKHOLDERIA CEPACIA DBO1

    EPA Science Inventory

    Burkholderia cepacia DBO1 is able to utilize phthalate as the sole source of carbon and energy for growth. Two overlapping cosmid clones containing the genes for phthalate degradation were isolated from this strain. Subcloning and activity analysis localized the genes for phthala...

  15. The relationship of biofilm production to biocontrol activity of Burkholderia pyrrocinia FP62

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar biocontrol agent (BCA) efficacy is often inconsistent due to poor colonization and survival on plant surfaces. Burkholderia pyrrocinia FP62, a superior leaf colonist and BCA of Botrytis cinerea, forms unsaturated biofilms on plant surfaces. To determine the relationship between biocontrol act...

  16. Burkholderia aspalathi sp. nov., isolated from root nodules of the South African legume Aspalathus abietina Thunb.

    PubMed

    Mavengere, Natasha R; Ellis, Allan G; Le Roux, Johannes J

    2014-06-01

    During a study to investigate the diversity of rhizobia associated with native legumes in South Africa's Cape Floristic Region, a Gram-negative bacterium designated VG1C(T) was isolated from the root nodules of Aspalathus abietina Thunb. Based on phylogenetic analyses of the 16S rRNA and recA genes, VG1C(T) belongs to the genus Burkholderia, with the highest degree of sequence similarity to the type strain of Burkholderia sediminicola (98.5% and 98%, respectively). The DNA G+C content of strain VG1C(T) was 60.1 mol%, and DNA-DNA relatedness values to the type strain of closely related species were found to be substantially lower than 70%. As evidenced by results of genotypic, phenotypic and chemotaxonomic tests provided here, we conclude that isolate VG1C(T) represents a novel rhizosphere-associated species in the genus Burkholderia, for which the name Burkholderia aspalathi sp. nov. is proposed, with the type strain VG1C(T) ( = DSM 27239(T) = LMG 27731(T)).

  17. Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in southern China.

    PubMed

    Liu, XiaoYun; Wei, Shuang; Wang, Fang; James, Euan K; Guo, XiaoYe; Zagar, Catherine; Xia, Liu Gui; Dong, Xin; Wang, Yi Peng

    2012-05-01

    Rhizobia were isolated from invasive Mimosa spp. (M. diplotricha and M. pudica) in Dehong district of the province of Yunnan in subtropical southern China. Almost all of the 98 isolates were β-rhizobia in the genera Burkholderia and Cupriavidus. These strains were analysed for their distribution characteristics together with strains from a previous study from Sishuangbanna. The proportion of nodules containing each β-rhizobial genus varied between Mimosa species, with Cupriavidus being predominant in M. diplotricha nodules (63.3% compared to 36.7% occupation with Burkholderia), but with M. pudica showing a slight preference for Burkholderia over Cupriavidus, with them occupying 56.5% and 43.5% of nodules, respectively. The symbiosis-essential genes nodA and nifH were present in all the Burkholderia and Cupriavidus strains tested, and their phylogenies indicated that these Mimosa symbionts share symbiotic genes with native South American rhizobia. The evolutionary discrepancies among 16S rRNA genes, nodA and nifH of Mimosa spp. symbionts, suggests that the nod and nif genes of β-rhizobia evolved independently.

  18. Symbiotic factors in Burkholderia essential for establishing an association with the bean bug, Riptortus pedestris.

    PubMed

    Kim, Jiyeun Kate; Lee, Bok Luel

    2015-01-01

    Symbiotic bacteria are common in insects and intimately affect the various aspects of insect host biology. In a number of insect symbiosis models, it has been possible to elucidate the effects of the symbiont on host biology, whereas there is a limited understanding of the impact of the association on the bacterial symbiont, mainly due to the difficulty of cultivating insect symbionts in vitro. Furthermore, the molecular features that determine the establishment and persistence of the symbionts in their host (i.e., symbiotic factors) have remained elusive. However, the recently established model, the bean bug Riptortus pedestris, provides a good opportunity to study bacterial symbiotic factors at a molecular level through their cultivable symbionts. Bean bugs acquire genus Burkholderia cells from the environment and harbor them as gut symbionts in the specialized posterior midgut. The genome of the Burkholderia symbiont was sequenced, and the genomic information was used to generate genetically manipulated Burkholderia symbiont strains. Using mutant symbionts, we identified several novel symbiotic factors necessary for establishing a successful association with the host gut. In this review, these symbiotic factors are classified into three categories based on the colonization dynamics of the mutant symbiont strains: initiation, accommodation, and persistence factors. In addition, the molecular characteristics of the symbiotic factors are described. These newly identified symbiotic factors and on-going studies of the Riptortus-Burkholderia symbiosis are expected to contribute to the understanding of the molecular cross-talk between insects and bacterial symbionts that are of ecological and evolutionary importance.

  19. Distinct colicin M-like bacteriocin-immunity pairs in Burkholderia.

    PubMed

    Ghequire, Maarten G K; De Mot, René

    2015-11-27

    The Escherichia coli bacteriocin colicin M (ColM) acts via degradation of the cell wall precursor lipid II in target cells. ColM producers avoid self-inhibition by a periplasmic immunity protein anchored in the inner membrane. In this study, we identified colM-like bacteriocin genes in genomes of several β-proteobacterial strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. Two selected Burkholderia ambifaria proteins, designated burkhocins M1 and M2, were produced recombinantly and showed antagonistic activity against Bcc strains. In their considerably sequence-diverged catalytic domain, a conserved aspartate residue equally proved pivotal for cytotoxicity. Immunity to M-type burkhocins is conferred upon susceptible strains by heterologous expression of a cognate gene located either upstream or downstream of the toxin gene. These genes lack homology with currently known ColM immunity genes and encode inner membrane-associated proteins of two distinct types, differing in predicted transmembrane topology and moiety exposed to the periplasm. The addition of burkhocins to the bacteriocin complement of Burkholderia reveals a wider phylogenetic distribution of ColM-like bacteriotoxins, beyond the γ-proteobacterial genera Escherichia, Pectobacterium and Pseudomonas, and illuminates the diversified nature of immunity-providing proteins.

  20. Complete genome sequence of the lipase producing strain Burkholderia glumae PG1.

    PubMed

    Voget, Sonja; Knapp, Andreas; Poehlein, Anja; Vollstedt, Christel; Streit, Wolfgang; Daniel, Rolf; Jaeger, Karl-Erich

    2015-06-20

    The Gram-negative proteobacterium Burkholderia glumae PG1 produces a lipase of biotechnological interest, which is used for the production of enantiopure pharmaceuticals. In order to better understand the underlying mechanisms and provide a basis for further studies, we present here the complete genome sequence of B. glumae PG1.

  1. The symbiotic role of O-antigen of Burkholderia symbiont in association with host Riptortus pedestris.

    PubMed

    Kim, Jiyeun Kate; Park, Ha Young; Lee, Bok Luel

    2016-07-01

    Riptortus pedestris harboring Burkholderia symbiont is a useful symbiosis model to study the molecular interactions between insects and bacteria. We recently reported that the lipopolysaccharide O-antigen is absent in the Burkholderia symbionts isolated from Riptortus guts. Here, we investigated the symbiotic role of O-antigen comprehensively in the Riptortus-Burkholderia model. Firstly, Burkholderia mutant strains deficient of O-antigen biosynthesis genes were generated and confirmed for their different patterns of the lipopolysaccharide by electrophoretic analysis. The O-antigen-deficient mutant strains initially exhibited a reduction of infectivity, having significantly lower level of symbiont population at the second-instar stage. However, both the wild-type and O-antigen mutant symbionts exhibited a similar level of symbiont population from the third-instar stage, indicating that the O-antigen deficiency did not affect the bacterial persistence in the host midgut. Taken together, we showed that the lipopolysaccharide O-antigen of gut symbiont plays an exclusive role in the initial symbiotic association.

  2. Genome Sequence of the Historical Clinical Isolate Burkholderia pseudomallei PHLS 6

    DOE PAGESBeta

    D’haeseleer, Patrik; Johnson, Shannon L.; Davenport, Karen W.; Chain, Patrick S.; Schoeniger, Joe; Ray, Debjit; Sinha, Anupama; Williams, Kelly P.; Peña, José; Branda, Steven S.; et al

    2016-06-30

    We present the draft genome sequence ofBurkholderia pseudomalleiPHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. This draft genome consists of 39 contigs and is 7,322,181 bp long.

  3. Draft Genome Sequence of Burkholderia gladioli Strain UCD-UG_CHAPALOTE (Phylum Proteobacteria)

    PubMed Central

    Ettinger, Cassandra L.; Shehata, Hanan R.; Johnston-Monje, David; Raizada, Manish N.

    2015-01-01

    Here, we present the draft genome of Burkholderia gladioli strain UCD-UG_CHAPALOTE. This strain is an endophyte isolated from surface sterilized seeds of an ancient Mexican landrace of corn, Chapalote. The genome contains 8,527,129 bp in 109 scaffolds. PMID:25614570

  4. Polyphasic characterisation of Burkholderia cepacia complex species isolated from children with cystic fibrosis

    PubMed Central

    Vicenzi, Fernando José; Pillonetto, Marcelo; de Souza, Helena Aguilar Peres Homem de Mello; Palmeiro, Jussara Kasuko; Riedi, Carlos Antônio; Rosario-Filho, Nelson Augusto; Dalla-Costa, Libera Maria

    2016-01-01

    Cystic fibrosis (CF) patients with Burkholderia cepacia complex (Bcc) pulmonary infections have high morbidity and mortality. The aim of this study was to compare different methods for identification of Bcc species isolated from paediatric CF patients. Oropharyngeal swabs from children with CF were used to obtain isolates of Bcc samples to evaluate six different tests for strain identification. Conventional (CPT) and automatised (APT) phenotypic tests, polymerase chain reaction (PCR)-recA, restriction fragment length polymorphism-recA, recAsequencing, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) were applied. Bacterial isolates were also tested for antimicrobial susceptibility. PCR-recA analysis showed that 36 out of the 54 isolates were Bcc. Kappa index data indicated almost perfect agreement between CPT and APT, CPT and PCR-recA, and APT and PCR-recA to identify Bcc, and MALDI-TOF and recAsequencing to identify Bcc species. The recAsequencing data and the MALDI-TOF data agreed in 97.2% of the isolates. Based on recA sequencing, the most common species identified were Burkholderia cenocepacia IIIA (33.4%),Burkholderia vietnamiensis (30.6%), B. cenocepaciaIIIB (27.8%), Burkholderia multivorans (5.5%), and B. cepacia (2.7%). MALDI-TOF proved to be a useful tool for identification of Bcc species obtained from CF patients, although it was not able to identify B. cenocepacia subtypes. PMID:26814642

  5. Burkholderia phymatum Strains Capable of Nodulating Phaseolus vulgaris Are Present in Moroccan Soils ▿

    PubMed Central

    Talbi, C.; Delgado, M. J.; Girard, L.; Ramírez-Trujillo, A.; Caballero-Mellado, J.; Bedmar, E. J.

    2010-01-01

    Phylogenetic analysis of 16S rRNA, nodC, and nifH genes of four bacterial strains isolated from root nodules of Phaseolus vulgaris grown in Morocco soils were identified as Burkholderia phymatum. All four strains formed N2-fixing nodules on P. vulgaris and Mimosa, Acacia, and Prosopis species and reduced acetylene to ethylene when cultured ex planta. PMID:20472732

  6. Complete genome sequence of the lipase producing strain Burkholderia glumae PG1.

    PubMed

    Voget, Sonja; Knapp, Andreas; Poehlein, Anja; Vollstedt, Christel; Streit, Wolfgang; Daniel, Rolf; Jaeger, Karl-Erich

    2015-06-20

    The Gram-negative proteobacterium Burkholderia glumae PG1 produces a lipase of biotechnological interest, which is used for the production of enantiopure pharmaceuticals. In order to better understand the underlying mechanisms and provide a basis for further studies, we present here the complete genome sequence of B. glumae PG1. PMID:25848987

  7. Quorum-Sensing-Regulated Bactobolin Production by Burkholderia thailandensis E264

    PubMed Central

    2010-01-01

    Bacterial acyl-homoserine lactones upregulated an uncharacterized gene cluster (bta) in Burkholderia thailandensis E264 to produce an uncharacterized polar antibiotic. The antibiotic is identified as a mixture of four bactobolins. Annotation of the bta cluster allows us to propose a biosynthetic scheme for bactobolin and reveals unusual enzymatic reactions for further study. PMID:20095633

  8. Genome Sequence of the Historical Clinical Isolate Burkholderia pseudomallei PHLS 6

    PubMed Central

    Davenport, Karen W.; Chain, Patrick S.; Schoeniger, Joe; Ray, Debjit; Sinha, Anupama; Williams, Kelly P.; Peña, José; El-Etr, Sahar

    2016-01-01

    Here, we present the draft genome sequence of Burkholderia pseudomallei PHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. The draft genome consists of 39 contigs and is 7,322,181 bp long. PMID:27365360

  9. Genome Sequence of the Historical Clinical Isolate Burkholderia pseudomallei PHLS 6.

    PubMed

    D'haeseleer, Patrik; Johnson, Shannon L; Davenport, Karen W; Chain, Patrick S; Schoeniger, Joe; Ray, Debjit; Sinha, Anupama; Williams, Kelly P; Peña, José; Branda, Steven S; El-Etr, Sahar

    2016-01-01

    Here, we present the draft genome sequence of Burkholderia pseudomallei PHLS 6, a virulent clinical strain isolated from a melioidosis patient in Bangladesh in 1960. The draft genome consists of 39 contigs and is 7,322,181 bp long. PMID:27365360

  10. Development of antibodies to Burkholderia pseudomallei during childhood in melioidosis-endemic northeast Thailand.

    PubMed

    Wuthiekanun, Vanaporn; Chierakul, Wirongrong; Langa, Sayan; Chaowagul, Wipada; Panpitpat, Chanathip; Saipan, Penchan; Thoujaikong, Thaksinaporn; Day, Nicholas P; Peacock, Sharon J

    2006-06-01

    A cross-sectional serological survey of 2,214 children living in northeast Thailand was conducted to define the antibody response to Burkholderia pseudomallei from birth to 14 years. There was a sharp rise in detectable antibodies from birth to 4 years followed by reactivity in approximately 60-70% of children thereafter.

  11. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei.

    PubMed

    Godoy, Daniel; Randle, Gaynor; Simpson, Andrew J; Aanensen, David M; Pitt, Tyrone L; Kinoshita, Reimi; Spratt, Brian G

    2003-05-01

    A collection of 147 isolates of Burkholderia pseudomallei, B. mallei, and B. thailandensis was characterized by multilocus sequence typing (MLST). The 128 isolates of B. pseudomallei, the causative agent of melioidosis, were obtained from diverse geographic locations, from humans and animals with disease, and from the environment and were resolved into 71 sequence types. The utility of the MLST scheme for epidemiological investigations was established by analyzing isolates from captive marine mammals and birds and from humans in Hong Kong with melioidosis. MLST gave a level of resolution similar to that given by pulsed-field gel electrophoresis and identified the same three clones causing disease in animals, each of which was also associated with disease in humans. The average divergence between the alleles of B. thailandensis and B. pseudomallei was 3.2%, and there was no sharing of alleles between these species. Trees constructed from differences in the allelic profiles of the isolates and from the concatenated sequences of the seven loci showed that the B. pseudomallei isolates formed a cluster of closely related lineages that were fully resolved from the cluster of B. thailandensis isolates, confirming their separate species status. However, isolates of B. mallei, the causative agent of glanders, recovered from three continents over a 30-year period had identical allelic profiles, and the B. mallei isolates clustered within the B. pseudomallei group of isolates. Alleles at six of the seven loci in B. mallei were also present within B. pseudomallei isolates, and B. mallei is a clone of B. pseudomallei that, on population genetics grounds, should not be given separate species status.

  12. Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc

    PubMed Central

    Burtnick, Mary N.; Brett, Paul J.

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc. PMID:24146925

  13. Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp.

    PubMed

    Sheu, Shih-Yi; Chou, Jui-Hsing; Bontemps, Cyril; Elliott, Geoffrey N; Gross, Eduardo; dos Reis Junior, Fabio Bueno; Melkonian, Rémy; Moulin, Lionel; James, Euan K; Sprent, Janet I; Young, J Peter W; Chen, Wen-Ming

    2013-02-01

    Five strains, JPY461(T), JPY359, JPY389, DPU-3 and STM4206 were isolated from nitrogen-fixing nodules on the roots of Mimosa spp. and their taxonomic positions were investigated using a polyphasic approach. All five strains grew at 15-40 °C (optimum, 30-37 °C), at pH 4.0-8.0 (optimum, pH 6.0-7.0) and with 0-1 % (w/v) NaCl [optimum, 0 % (w/v)]. On the basis of 16S rRNA gene sequence analysis, a representative strain (JPY461(T)) showed 97.2 % sequence similarity to the closest related species Burkholderia acidipaludis SA33(T), a similarity of 97.2 % to Burkholderia terrae KMY02(T), 97.1 % to Burkholderia phymatum STM815(T) and 97.1 % to Burkholderia hospita LMG 20598(T). The predominant fatty acids of the five novel strains were summed feature 2 (comprising C(16 : 1) iso I and/or C(14 : 0) 3-OH), summed feature 3 (comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c), C(16 : 0) , C(16 : 0) 3-OH, C(17 : 0) cyclo, C(18 : 1)ω7c and C(19 : 0) cyclo ω8c. The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 63.0-65.0 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid, an unidentified aminolipid and several unidentified phospholipids. The DNA-DNA relatedness of the novel strain with respect to recognized species of the genus Burkholderia was less than 54 %. On the basis of 16S rRNA and recA gene sequence similarities, chemotaxonomic and phenotypic data, the five strains represent a novel species in the genus Burkholderia, for which the name Burkholderia diazotrophica sp. nov. is proposed with the type strain, JPY461(T) ( = LMG 26031(T) = BCRC 80259(T) = KCTC 23308(T)).

  14. Genetic diversity of Burkholderia (Proteobacteria) species from the Caatinga and Atlantic rainforest biomes in Bahia, Brazil.

    PubMed

    Santini, A C; Santos, H R M; Gross, E; Corrêa, R X

    2013-03-11

    The genus Burkholderia (β-Proteobacteria) currently comprises more than 60 species, including parasites, symbionts and free-living organisms. Several new species of Burkholderia have recently been described showing a great diversity of phenotypes. We examined the diversity of Burkholderia spp in environmental samples collected from Caatinga and Atlantic rainforest biomes of Bahia, Brazil. Legume nodules were collected from five locations, and 16S rDNA and recA genes of the isolated microorganisms were analyzed. Thirty-three contigs of 16S rRNA genes and four contigs of the recA gene related to the genus Burkholderia were obtained. The genetic dissimilarity of the strains ranged from 0 to 2.5% based on 16S rDNA analysis, indicating two main branches: one distinct branch of the dendrogram for the B. cepacia complex and another branch that rendered three major groups, partially reflecting host plants and locations. A dendrogram designed with sequences of this research and those designed with sequences of Burkholderia-type strains and the first hit BLAST had similar topologies. A dendrogram similar to that constructed by analysis of 16S rDNA was obtained using sequences of the fragment of the recA gene. The 16S rDNA sequences enabled sufficient identification of relevant similarities and groupings amongst isolates and the sequences that we obtained. Only 6 of the 33 isolates analyzed via 16S rDNA sequencing showed high similarity with the B. cepacia complex. Thus, over 3/4 of the isolates have potential for biotechnological applications.

  15. Insecticide applications to soil contribute to the development of Burkholderia mediating insecticide resistance in stinkbugs.

    PubMed

    Tago, Kanako; Kikuchi, Yoshitomo; Nakaoka, Sinji; Katsuyama, Chie; Hayatsu, Masahito

    2015-07-01

    Some soil Burkholderia strains are capable of degrading the organophosphorus insecticide, fenitrothion, and establish symbiosis with stinkbugs, making the host insects fenitrothion-resistant. However, the ecology of the symbiotic degrading Burkholderia adapting to fenitrothion in the free-living environment is unknown. We hypothesized that fenitrothion applications affect the dynamics of fenitrothion-degrading Burkholderia, thereby controlling the transmission of symbiotic degrading Burkholderia from the soil to stinkbugs. We investigated changes in the density and diversity of culturable Burkholderia (i.e. symbiotic and nonsymbiotic fenitrothion degraders and nondegraders) in fenitrothion-treated soil using microcosms. During the incubation with five applications of pesticide, the density of the degraders increased from less than the detection limit to around 10(6)/g of soil. The number of dominant species among the degraders declined with the increasing density of degraders; eventually, one species predominated. This process can be explained according to the competitive exclusion principle using V(max) and K(m) values for fenitrothion metabolism by the degraders. We performed a phylogenetic analysis of representative strains isolated from the microcosms and evaluated their ability to establish symbiosis with the stinkbug Riptortus pedestris. The strains that established symbiosis with R. pedestris were assigned to a cluster including symbionts commonly isolated from stinkbugs. The strains outside the cluster could not necessarily associate with the host. The degraders in the cluster predominated during the initial phase of degrader dynamics in the soil. Therefore, only a few applications of fenitrothion could allow symbiotic degraders to associate with their hosts and may cause the emergence of symbiont-mediated insecticide resistance.

  16. The In vitro Antibiotic Tolerant Persister Population in Burkholderia pseudomallei is Altered by Environmental Factors

    PubMed Central

    Nierman, William C.; Yu, Yan; Losada, Liliana

    2015-01-01

    Bacterial persistence due to antibiotic tolerance is a critical aspect of antibiotic treatment failure, disease latency, and chronic or reemergent infections. The levels of persisters is especially notable for the opportunistic Gram-negative pathogens from the Burkholderia and Pseudomonas genera. We examined the rate of drug tolerant persisters in Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia cepacia complex organisms, and Pseudomonas aeruginosa at mid-log growth in LB broth culture. We found that a fraction of the antibiotic-sensitive cells from every species were tolerant to a 24 h high-dose antibiotic challenge. All tested Burkholderia strains demonstrated a drug tolerant persister population at a rate that was at least 100–500 times higher than P. aeruginosa. When challenged with at least a 10X minimum inhibitory concentration (MIC) 24 h exposure to three different antibiotics with different modes of action we found that in B. pseudomallei Bp82 each of the tree antibiotics revealed different persister fractions at each of two different growth states. This observation suggests that our assay is detecting heterogeneous persister subpopulations. Persistence in B. pseudomallei Bp82 was highly dependent on growth stage, with a surprisingly high persister fraction of >64% of the late stationary phase cells being antibiotic tolerant to 100XMIC cefotaxime. Adaptation of B. pseudomallei to distilled water storage resulted in a population of drug tolerant cells up to 100% of the non-drug-challenged viable cell count in the same cefotaxime assay. Cultivation of B. pseudomallei with a sub-inhibitory concentration of several antibiotics resulted in altered persister fractions within the population relative to cultures lacking the antibiotic. Our study provides insight into the sensitivity of the persister fraction within the population of B. pseudomallei due to environmental variables and suggests diversity within the persister population revealed by

  17. The In vitro Antibiotic Tolerant Persister Population in Burkholderia pseudomallei is Altered by Environmental Factors.

    PubMed

    Nierman, William C; Yu, Yan; Losada, Liliana

    2015-01-01

    Bacterial persistence due to antibiotic tolerance is a critical aspect of antibiotic treatment failure, disease latency, and chronic or reemergent infections. The levels of persisters is especially notable for the opportunistic Gram-negative pathogens from the Burkholderia and Pseudomonas genera. We examined the rate of drug tolerant persisters in Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia cepacia complex organisms, and Pseudomonas aeruginosa at mid-log growth in LB broth culture. We found that a fraction of the antibiotic-sensitive cells from every species were tolerant to a 24 h high-dose antibiotic challenge. All tested Burkholderia strains demonstrated a drug tolerant persister population at a rate that was at least 100-500 times higher than P. aeruginosa. When challenged with at least a 10X minimum inhibitory concentration (MIC) 24 h exposure to three different antibiotics with different modes of action we found that in B. pseudomallei Bp82 each of the tree antibiotics revealed different persister fractions at each of two different growth states. This observation suggests that our assay is detecting heterogeneous persister subpopulations. Persistence in B. pseudomallei Bp82 was highly dependent on growth stage, with a surprisingly high persister fraction of >64% of the late stationary phase cells being antibiotic tolerant to 100XMIC cefotaxime. Adaptation of B. pseudomallei to distilled water storage resulted in a population of drug tolerant cells up to 100% of the non-drug-challenged viable cell count in the same cefotaxime assay. Cultivation of B. pseudomallei with a sub-inhibitory concentration of several antibiotics resulted in altered persister fractions within the population relative to cultures lacking the antibiotic. Our study provides insight into the sensitivity of the persister fraction within the population of B. pseudomallei due to environmental variables and suggests diversity within the persister population revealed by

  18. Molecular evidence of Burkholderia pseudomallei genotypes based on geographical distribution

    PubMed Central

    Zulkefli, Noorfatin Jihan; Mariappan, Vanitha; Vellasamy, Kumutha Malar; Chong, Chun Wie; Thong, Kwai Lin; Ponnampalavanar, Sasheela; Vadivelu, Jamuna

    2016-01-01

    Background. Central intermediary metabolism (CIM) in bacteria is defined as a set of metabolic biochemical reactions within a cell, which is essential for the cell to survive in response to environmental perturbations. The genes associated with CIM are commonly found in both pathogenic and non-pathogenic strains. As these genes are involved in vital metabolic processes of bacteria, we explored the efficiency of the genes in genotypic characterization of Burkholderia pseudomallei isolates, compared with the established pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) schemes. Methods. Nine previously sequenced B. pseudomallei isolates from Malaysia were characterized by PFGE, MLST and CIM genes. The isolates were later compared to the other 39 B. pseudomallei strains, retrieved from GenBank using both MLST and sequence analysis of CIM genes. UniFrac and hierachical clustering analyses were performed using the results generated by both MLST and sequence analysis of CIM genes. Results. Genetic relatedness of nine Malaysian B. pseudomallei isolates and the other 39 strains was investigated. The nine Malaysian isolates were subtyped into six PFGE profiles, four MLST profiles and five sequence types based on CIM genes alignment. All methods demonstrated the clonality of OB and CB as well as CMS and THE. However, PFGE showed less than 70% similarity between a pair of morphology variants, OS and OB. In contrast, OS was identical to the soil isolate, MARAN. To have a better understanding of the genetic diversity of B. pseudomallei worldwide, we further aligned the sequences of genes used in MLST and genes associated with CIM for the nine Malaysian isolates and 39 B. pseudomallei strains from NCBI database. Overall, based on the CIM genes, the strains were subtyped into 33 profiles where majority of the strains from Asian countries were clustered together. On the other hand, MLST resolved the isolates into 31 profiles which formed three clusters

  19. Burkholderia pseudomallei: Its Detection in Soil and Seroprevalence in Bangladesh

    PubMed Central

    Robayet, Jamshedul Alam Mohammad; Mohiuddin, Md.; Hasan, Md. Rokib

    2016-01-01

    Background Melioidosis, caused by Burkholderia pseudomallei, is an endemic disease in Bangladesh. No systematic study has yet been done to detect the environmental source of the organism and its true extent in Bangladesh. The present study attempted to isolate B. pseudomallei in soil samples and to determine its seroprevalence in several districts in Bangladesh. Methodology and Results Soil samples were collected from rural areas of four districts of Bangladesh from where culture confirmed melioidosis cases were detected earlier. Multiple soil samples, collected from 5–7 sampling points of 3–5 sites of each district, were cultured in Ashdown selective media. Suspected colonies of B. pseudomallei were identified by biochemical and serological test, and by polymerase chain reaction (PCR) using 16s rRNA specific primers. Blood samples were collected from 940 healthy individuals of four districts to determine anti- B. pseudomallei IgG antibody levels by indirect enzyme linked immunosorbent assay (ELISA) using sonicated crude antigen. Out of 179 soil samples, B. pseudomallei was isolated from two samples of Gazipur district which is located 58 km north of capital Dhaka city. Both the isolates were phenotypically identical, arabinose negative and showed specific 550bp band in PCR. Out of 940 blood samples, anti- B. pseudomallei IgG antibody, higher than the cut-off value (>0.8), was detected in 21.5% individuals. Seropositivity rate was 22.6%-30.8% in three districts from where melioidosis cases were detected earlier, compared to 9.8% in a district where no melioidosis case was either detected or reported (p<0.01). Seropositivity increased with the advancement of age from 5.3% to 30.4% among individuals aged 1–10 years and > 50 years respectively. The seropositivity rates were 26.0% and 20.6% in male and female respectively, while it was 20–27% among different occupational groups. No significant association was observed with gender (χ2 = 3.441, p = 0.064) or any

  20. Porin Involvement in Cephalosporin and Carbapenem Resistance of Burkholderia pseudomallei

    PubMed Central

    Aunkham, Anuwat; Schulte, Albert; Winterhalter, Mathias; Suginta, Wipa

    2014-01-01

    Background Burkholderia pseudomallei (Bps) is a Gram-negative bacterium that causes frequently lethal melioidosis, with a particularly high prevalence in the north and northeast of Thailand. Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins. Principal Findings Microbiological assays showed that the clinical Bps strain was resistant to most antimicrobial agents and sensitive only to ceftazidime and meropenem. An E. coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake. Channel recordings of BpsOmp38 reconstituted in a planar black lipid membrane (BLM) suggested that the higher permeability of BpsOmp38Y119A was caused by widening of the pore interior through removal of the bulky side chain. In contrast, the lower permeability of BpsOmp38Y119F was caused by introduction of the hydrophobic side chain (Phe), increasing the ‘greasiness’ of the pore lumen. Significantly, liposome swelling assays showed no permeation through the BpsOmp38 channel by antimicrobial agents to which Bps is resistant (cefoxitin, cefepime, and doripenem). In contrast, high permeability to ceftazidime and meropenem was observed, these being agents to which Bps is sensitive. Conclusion/Significance Our results, from both in vivo and in vitro studies, demonstrate that membrane permeability associated with BpsOmp38 expression correlates well with the antimicrobial susceptibility of the virulent bacterium B. pseudomallei, especially to carbapenems and cephalosporins. In addition, substitution of the residue Tyr119 affects

  1. Evidence of Environmental and Vertical Transmission of Burkholderia Symbionts in the Oriental Chinch Bug, Cavelerius saccharivorus (Heteroptera: Blissidae)

    PubMed Central

    Itoh, Hideomi; Aita, Manabu; Nagayama, Atsushi; Meng, Xian-Ying; Kamagata, Yoichi; Navarro, Ronald; Hori, Tomoyuki; Ohgiya, Satoru

    2014-01-01

    The vertical transmission of symbiotic microorganisms is omnipresent in insects, while the evolutionary process remains totally unclear. The oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae), is a serious sugarcane pest, in which symbiotic bacteria densely populate the lumen of the numerous tubule-like midgut crypts that the chinch bug develops. Cloning and sequence analyses of the 16S rRNA genes revealed that the crypts were dominated by a specific group of bacteria belonging to the genus Burkholderia of the Betaproteobacteria. The Burkholderia sequences were distributed into three distinct clades: the Burkholderia cepacia complex (BCC), the plant-associated beneficial and environmental (PBE) group, and the stinkbug-associated beneficial and environmental group (SBE). Diagnostic PCR revealed that only one of the three groups of Burkholderia was present in ∼89% of the chinch bug field populations tested, while infections with multiple Burkholderia groups within one insect were observed in only ∼10%. Deep sequencing of the 16S rRNA gene confirmed that the Burkholderia bacteria specifically colonized the crypts and were dominated by one of three Burkholderia groups. The lack of phylogenetic congruence between the symbiont and the host population strongly suggested host-symbiont promiscuity, which is probably caused by environmental acquisition of the symbionts by some hosts. Meanwhile, inspections of eggs and hatchlings by diagnostic PCR and egg surface sterilization demonstrated that almost 30% of the hatchlings vertically acquire symbiotic Burkholderia via symbiont-contaminated egg surfaces. The mixed strategy of symbiont transmission found in the oriental chinch bug might be an intermediate stage in evolution from environmental acquisition to strict vertical transmission in insects. PMID:25038101

  2. Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae).

    PubMed

    Itoh, Hideomi; Aita, Manabu; Nagayama, Atsushi; Meng, Xian-Ying; Kamagata, Yoichi; Navarro, Ronald; Hori, Tomoyuki; Ohgiya, Satoru; Kikuchi, Yoshitomo

    2014-10-01

    The vertical transmission of symbiotic microorganisms is omnipresent in insects, while the evolutionary process remains totally unclear. The oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae), is a serious sugarcane pest, in which symbiotic bacteria densely populate the lumen of the numerous tubule-like midgut crypts that the chinch bug develops. Cloning and sequence analyses of the 16S rRNA genes revealed that the crypts were dominated by a specific group of bacteria belonging to the genus Burkholderia of the Betaproteobacteria. The Burkholderia sequences were distributed into three distinct clades: the Burkholderia cepacia complex (BCC), the plant-associated beneficial and environmental (PBE) group, and the stinkbug-associated beneficial and environmental group (SBE). Diagnostic PCR revealed that only one of the three groups of Burkholderia was present in ∼89% of the chinch bug field populations tested, while infections with multiple Burkholderia groups within one insect were observed in only ∼10%. Deep sequencing of the 16S rRNA gene confirmed that the Burkholderia bacteria specifically colonized the crypts and were dominated by one of three Burkholderia groups. The lack of phylogenetic congruence between the symbiont and the host population strongly suggested host-symbiont promiscuity, which is probably caused by environmental acquisition of the symbionts by some hosts. Meanwhile, inspections of eggs and hatchlings by diagnostic PCR and egg surface sterilization demonstrated that almost 30% of the hatchlings vertically acquire symbiotic Burkholderia via symbiont-contaminated egg surfaces. The mixed strategy of symbiont transmission found in the oriental chinch bug might be an intermediate stage in evolution from environmental acquisition to strict vertical transmission in insects.

  3. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil.

    PubMed

    Liu, Xu-Yun; Li, Chun-Xiu; Luo, Xiao-Jing; Lai, Qi-Liang; Xu, Jian-He

    2014-09-01

    A methyl parathion (MP) degrading bacterial strain, designated MP-1(T), was isolated from a waste land where pesticides were formerly manufactured in Jiangsu province, China. Polyphasic taxonomic studies showed that MP-1(T) is a Gram-stain-negative, non-spore-forming, rod-shaped and motile bacterium. The bacterium could grow at salinities of 0-1 % (w/v) and temperatures of 15-40 °C. Strain MP-1(T) could reduce nitrate to nitrite, utilize d-glucose and l-arabinose, but not produce indole, or hydrolyse gelatin. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that MP-1(T) belongs to the genus Burkholderia, showing highest sequence similarity to Burkholderia grimmiae DSM 25160(T) (98.5 %), and similar strains including Burkholderia zhejiangensis OP-1(T) (98.2 %), Burkholderia choica LMG 22940(T) (97.5 %), Burkholderia glathei DSM 50014(T) (97.4 %), Burkholderia terrestris LMG 22937(T) (97.2 %) and Burkholderia telluris LMG 22936(T) (97.0 %). In addition, the gyrB and recA gene segments of strain MP-1(T) exhibited less than 89.0 % and 95.1 % similarities with the most highly-related type strains indicated above. The G+C content of strain MP-1(T) was 62.6 mol%. The major isoprenoid quinone was ubiquinone Q-8. The predominant polar lipids comprised phosphatidyl ethanolamine, phosphatidyl glycerol, aminolipid and phospholipid. The principal fatty acids in strain MP-1(T) were C18 : 1ω7c/C18 : 1ω6c (23.3 %), C16 : 0 (16.8 %), cyclo-C17 : 0 (15.0 %), C16 : 1ω7c/C16 : 1ω6 (8.5 %), cyclo-C19 : 0ω8c (8.1 %), C16 : 1 iso I/C14 : 0 3-OH (5.7 %), C16 : 0 3-OH (5.6 %) and C16 : 02-OH (5.1 %). The DNA-DNA relatedness values between strain MP-1(T) and the three type strains (B. grimmiae DSM 25160(T), B. zhejiangensis OP-1(T) and B. glathei DSM 50014(T)) ranged from 24.6 % to 37.4 %. In accordance with phenotypic and genotypic characteristics, strain MP-1(T) represents a novel

  4. Genomic characterization of JG068, a novel virulent podovirus active against Burkholderia cenocepacia

    PubMed Central

    2013-01-01

    Background As is true for many other antibiotic-resistant Gram-negative pathogens, members of the Burkholderia cepacia complex (BCC) are currently being assessed for their susceptibility to phage therapy as an antimicrobial treatment. The objective of this study was to perform genomic and limited functional characterization of the novel BCC phage JG068 (vB_BceP_JG068). Results JG068 is a podovirus that forms large, clear plaques on Burkholderia cenocepacia K56-2. Host range analysis indicates that this phage can infect environmental, clinical, and epidemic isolates of Burkholderia multivorans, B. cenocepacia, Burkholderia stabilis, and Burkholderia dolosa, likely through interaction with the host lipopolysaccharide as a receptor. The JG068 chromosome is 41,604 base pairs (bp) in length and is flanked by 216 bp short direct terminal repeats. Gene expression originates from both host and phage promoters and is in the forward direction for all 49 open reading frames. The genome sequence shows similarity to Ralstonia phage ϕRSB1, Caulobacter phage Cd1, and uncharacterized genetic loci of blood disease bacterium R229 and Burkholderia pseudomallei 1710b. CoreGenesUniqueGenes analysis indicates that JG068 belongs to the Autographivirinae subfamily and ϕKMV-like phages genus. Modules within the genome encode proteins involved in DNA-binding, morphogenesis, and lysis, but none associated with pathogenicity or lysogeny. Similar to the signal-arrest-release (SAR) endolysin of ϕKMV, inducible expression of the JG068 SAR endolysin causes lysis of Escherichia coli that is dependent on the presence of an N-terminal signal sequence. In an in vivo assay using the Galleria mellonella infection model, treatment of B. cenocepacia K56-2-infected larvae with JG068 results in a significant increase in larval survival. Conclusions As JG068 has a broad host range, does not encode virulence factors, is obligately lytic, and has activity against an epidemic B. cenocepacia strain in vivo

  5. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris.

    PubMed

    Martínez-Aguilar, Lourdes; Salazar-Salazar, Corelly; Méndez, Rafael Díaz; Caballero-Mellado, Jesús; Hirsch, Ann M; Vásquez-Murrieta, María Soledad; Estrada-de los Santos, Paulina

    2013-12-01

    During a survey of Burkholderia species with potential use in agrobiotechnology, a group of 12 strains was isolated from the rhizosphere and rhizoplane of tomato plants growing in Mexico (Nepantla, Mexico State). A phylogenetic analysis of 16S rRNA gene sequences showed that the strains are related to Burkholderia kururiensis and Burkholderia mimosarum (97.4 and 97.1 %, respectively). However, they induced effective nitrogen-fixing nodules on roots of Phaseolus vulgaris. Based on polyphasic taxonomy, the group of strains represents a novel species for which the name Burkholderia caballeronis sp. nov. is proposed. The type species is TNe-841(T) (= LMG 26416(T) = CIP 110324(T)).

  6. Use of a Safe, Reproducible, and Rapid Aerosol Delivery Method to Study Infection by Burkholderia pseudomallei and Burkholderia mallei in Mice

    PubMed Central

    Lafontaine, Eric R.; Zimmerman, Shawn M.; Shaffer, Teresa L.; Michel, Frank; Gao, Xiudan; Hogan, Robert J.

    2013-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most common manifestation is severe pneumonia leading to fatal bacteremia. Glanders and melioidosis are difficult to diagnose and require prolonged antibiotic therapy with low success rates. There are no vaccines available to protect against either Burkholderia species, and there is concern regarding their use as biological warfare agents given that B. mallei has previously been utilized in this manner. Hence, experiments were performed to establish a mouse model of aerosol infection to study the organisms and develop countermeasures. Using a hand-held aerosolizer, BALB/c mice were inoculated intratracheally with strains B. pseudomallei 1026b and B. mallei ATCC23344 and growth of the agents in the lungs, as well as dissemination to the spleen, were examined. Mice infected with 102, 103 and 104 organisms were unable to control growth of B. mallei in the lungs and bacteria rapidly disseminated to the spleen. Though similar results were observed in mice inoculated with 103 and 104 B. pseudomallei cells, animals infected with 102 organisms controlled bacterial replication in the lungs, dissemination to the spleen, and the extent of bacteremia. Analysis of sera from mice surviving acute infection revealed that animals produced antibodies against antigens known to be targets of the immune response in humans. Taken together, these data show that small volume aerosol inoculation of mice results in acute disease, dose-dependent chronic infection, and immune responses that correlate with those

  7. Use of a safe, reproducible, and rapid aerosol delivery method to study infection by Burkholderia pseudomallei and Burkholderia mallei in mice.

    PubMed

    Lafontaine, Eric R; Zimmerman, Shawn M; Shaffer, Teresa L; Michel, Frank; Gao, Xiudan; Hogan, Robert J

    2013-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most common manifestation is severe pneumonia leading to fatal bacteremia. Glanders and melioidosis are difficult to diagnose and require prolonged antibiotic therapy with low success rates. There are no vaccines available to protect against either Burkholderia species, and there is concern regarding their use as biological warfare agents given that B. mallei has previously been utilized in this manner. Hence, experiments were performed to establish a mouse model of aerosol infection to study the organisms and develop countermeasures. Using a hand-held aerosolizer, BALB/c mice were inoculated intratracheally with strains B. pseudomallei 1026b and B. mallei ATCC23344 and growth of the agents in the lungs, as well as dissemination to the spleen, were examined. Mice infected with 10(2), 10(3) and 10(4) organisms were unable to control growth of B. mallei in the lungs and bacteria rapidly disseminated to the spleen. Though similar results were observed in mice inoculated with 10(3) and 10(4) B. pseudomallei cells, animals infected with 10(2) organisms controlled bacterial replication in the lungs, dissemination to the spleen, and the extent of bacteremia. Analysis of sera from mice surviving acute infection revealed that animals produced antibodies against antigens known to be targets of the immune response in humans. Taken together, these data show that small volume aerosol inoculation of mice results in acute disease, dose-dependent chronic infection, and immune responses that correlate

  8. Use of a safe, reproducible, and rapid aerosol delivery method to study infection by Burkholderia pseudomallei and Burkholderia mallei in mice.

    PubMed

    Lafontaine, Eric R; Zimmerman, Shawn M; Shaffer, Teresa L; Michel, Frank; Gao, Xiudan; Hogan, Robert J

    2013-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most common manifestation is severe pneumonia leading to fatal bacteremia. Glanders and melioidosis are difficult to diagnose and require prolonged antibiotic therapy with low success rates. There are no vaccines available to protect against either Burkholderia species, and there is concern regarding their use as biological warfare agents given that B. mallei has previously been utilized in this manner. Hence, experiments were performed to establish a mouse model of aerosol infection to study the organisms and develop countermeasures. Using a hand-held aerosolizer, BALB/c mice were inoculated intratracheally with strains B. pseudomallei 1026b and B. mallei ATCC23344 and growth of the agents in the lungs, as well as dissemination to the spleen, were examined. Mice infected with 10(2), 10(3) and 10(4) organisms were unable to control growth of B. mallei in the lungs and bacteria rapidly disseminated to the spleen. Though similar results were observed in mice inoculated with 10(3) and 10(4) B. pseudomallei cells, animals infected with 10(2) organisms controlled bacterial replication in the lungs, dissemination to the spleen, and the extent of bacteremia. Analysis of sera from mice surviving acute infection revealed that animals produced antibodies against antigens known to be targets of the immune response in humans. Taken together, these data show that small volume aerosol inoculation of mice results in acute disease, dose-dependent chronic infection, and immune responses that correlate

  9. Distinct human antibody response to the biological warfare agent Burkholderia mallei.

    PubMed

    Varga, John J; Vigil, Adam; DeShazer, David; Waag, David M; Felgner, Philip; Goldberg, Joanna B

    2012-10-01

    The genetic similarity between Burkholderia mallei (glanders) and Burkholderia pseudomallei (melioidosis) had led to the general assumption that pathogenesis of each bacterium would be similar. In 2000, the first human case of glanders in North America since 1945 was reported in a microbiology laboratory worker. Leveraging the availability of pre-exposure sera for this individual and employing the same well-characterized protein array platform that has been previously used to study a large cohort of melioidosis patients in southeast Asia, we describe the antibody response in a human with glanders. Analysis of 156 peptides present on the array revealed antibodies against 17 peptides with a > 2-fold increase in this infection. Unexpectedly, when the glanders data were compared with a previous data set from B. pseudomallei infections, there were only two highly increased antibodies shared between these two infections. These findings have implications in the diagnosis and treatment of B. mallei and B. pseudomallei infections.

  10. Workshop on treatment of and postexposure prophylaxis for Burkholderia pseudomallei and B. mallei Infection, 2010.

    PubMed

    Lipsitz, Rebecca; Garges, Susan; Aurigemma, Rosemarie; Baccam, Prasith; Blaney, David D; Cheng, Allen C; Currie, Bart J; Dance, David; Gee, Jay E; Larsen, Joseph; Limmathurotsakul, Direk; Morrow, Meredith G; Norton, Robert; O'Mara, Elizabeth; Peacock, Sharon J; Pesik, Nicki; Rogers, L Paige; Schweizer, Herbert P; Steinmetz, Ivo; Tan, Gladys; Tan, Patrick; Wiersinga, W Joost; Wuthiekanun, Vanaporn; Smith, Theresa L

    2012-12-01

    The US Public Health Emergency Medical Countermeasures Enterprise convened subject matter experts at the 2010 HHS Burkholderia Workshop to develop consensus recommendations for postexposure prophylaxis against and treatment for Burkholderia pseudomallei and B. mallei infections, which cause melioidosis and glanders, respectively. Drugs recommended by consensus of the participants are ceftazidime or meropenem for initial intensive therapy, and trimethoprim/sulfamethoxazole or amoxicillin/clavulanic acid for eradication therapy. For postexposure prophylaxis, recommended drugs are trimethoprim/sulfamethoxazole or co-amoxiclav. To improve the timely diagnosis of melioidosis and glanders, further development and wide distribution of rapid diagnostic assays were also recommended. Standardized animal models and B. pseudomallei strains are needed for further development of therapeutic options. Training for laboratory technicians and physicians would facilitate better diagnosis and treatment options.

  11. Genome sequence of the Lebeckia ambigua-nodulating “Burkholderia sprentiae” strain WSM5005T

    PubMed Central

    Reeve, Wayne; De Meyer, Sofie; Terpolilli, Jason; Melino, Vanessa; Ardley, Julie; Rui, Tian; Tiwari, Ravi; Howieson, John; Yates, Ron; O’Hara, Graham; Lu, Megan; Bruce, David; Detter, Chris; Tapia, Roxanne; Han, Cliff; Wei, Chia-Lin; Huntemann, Marcel; Han, James; Chen, I-Min; Mavromatis, Konstantinos; Markowitz, Victor; Szeto, Ernest; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Goodwin, Lynne; Peters, Lin; Pitluck, Sam; Woyke, Tanja; Kyrpides, Nikos

    2013-01-01

    Burkholderia sprentiae” strain WSM5005T is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated in Australia from an effective N2-fixing root nodule of Lebeckia ambigua collected in Klawer, Western Cape of South Africa, in October 2007. Here we describe the features of “Burkholderia sprentiae” strain WSM5005T, together with the genome sequence and its annotation. The 7,761,063 bp high-quality-draft genome is arranged in 8 scaffolds of 236 contigs, contains 7,147 protein-coding genes and 76 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program. PMID:24976894

  12. σ54-Dependent Response to Nitrogen Limitation and Virulence in Burkholderia cenocepacia Strain H111.

    PubMed

    Lardi, Martina; Aguilar, Claudio; Pedrioli, Alessandro; Omasits, Ulrich; Suppiger, Angela; Cárcamo-Oyarce, Gerardo; Schmid, Nadine; Ahrens, Christian H; Eberl, Leo; Pessi, Gabriella

    2015-06-15

    Members of the genus Burkholderia are versatile bacteria capable of colonizing highly diverse environmental niches. In this study, we investigated the global response of the opportunistic pathogen Burkholderia cenocepacia H111 to nitrogen limitation at the transcript and protein expression levels. In addition to a classical response to nitrogen starvation, including the activation of glutamine synthetase, PII proteins, and the two-component regulatory system NtrBC, B. cenocepacia H111 also upregulated polyhydroxybutyrate (PHB) accumulation and exopolysaccharide (EPS) production in response to nitrogen shortage. A search for consensus sequences in promoter regions of nitrogen-responsive genes identified a σ(54) consensus sequence. The mapping of the σ(54) regulon as well as the characterization of a σ(54) mutant suggests an important role of σ(54) not only in control of nitrogen metabolism but also in the virulence of this organism. PMID:25841012

  13. Quorum Sensing Controls Swarming Motility of Burkholderia glumae through Regulation of Rhamnolipids.

    PubMed

    Nickzad, Arvin; Lépine, François; Déziel, Eric

    2015-01-01

    Burkholderia glumae is a plant pathogenic bacterium that uses an acyl-homoserine lactone-mediated quorum sensing system to regulate protein secretion, oxalate production and major virulence determinants such as toxoflavin and flagella. B. glumae also releases surface-active rhamnolipids. In Pseudomonas aeruginosa and Burkholderia thailandensis, rhamnolipids, along with flagella, are required for the social behavior called swarming motility. In the present study, we demonstrate that quorum sensing positively regulates the production of rhamnolipids in B. glumae and that rhamnolipids are necessary for swarming motility also in this species. We show that a rhlA- mutant, which is unable to produce rhamnolipids, loses its ability to swarm, and that this can be complemented by providing exogenous rhamnolipids. Impaired rhamnolipid production in a quorum sensing-deficient B. glumae mutant is the main factor responsible for its defective swarming motility behaviour. PMID:26047513

  14. Synthesis of the tetrasaccharide outer core fragment of Burkholderia multivorans lipooligosaccharide.

    PubMed

    Ziaco, Marcello; De Castro, Cristina; Silipo, Alba; Corsaro, Maria Michela; Molinaro, Antonio; Iadonisi, Alfonso; Lanzetta, Rosa; Parrilli, Michelangelo; Bedini, Emiliano

    2015-02-11

    The first synthesis of the outer core fragment of Burkholderia multivorans lipooligosaccharide [β-D-Glc-(1→3)-α-D-GalNAc-(1→3)-β-D-GalNAc-(1→3)-L-Rha] as α-allyl tetrasaccharide was accomplished. The glycosylations involving GalNAc units were studied in depth testing them under several conditions. This allowed the building of both the α- and the β-configured glycosidic bonds by employing the same GalNAc glycosyl donor, thus considerably shortening the total number of synthetic steps. The target tetrasaccharide was synthesized with an allyl aglycone to allow its future conjugation with an immunogenic protein en route to the development of a synthetic neoglycoconjugate vaccine against the Burkholderia cepacia pathogens.

  15. Properties of Polyhydroxyalkanoate Granules and Bioemulsifiers from Pseudomonas sp. and Burkholderia sp. Isolates Growing on Glucose.

    PubMed

    Sacco, Laís Postai; Castellane, Tereza Cristina Luque; Lopes, Erica Mendes; de Macedo Lemos, Eliana Gertrudes; Alves, Lúcia Maria Carareto

    2016-03-01

    A Burkholderia and Pseudomonas species designated as AB4 and AS1, respectively, were isolated from soil containing decomposing straw or sugar cane bagasse collected from Brazil. This study sought to evaluate the capacities of culture media, cell-free medium, and crude lysate preparations (containing PHB inclusion bodies) from bacterial cell cultures to stabilize emulsions with several hydrophobic compounds. Four conditions showed good production of bioemulsifiers (E24 ≥ 50 %), headed by substantially cell-free media from bacterial cell cultures in which bacterial isolates from Burkholderia sp. strain AB4 and Pseudomonas sp. strain AS1 were grown. Our results revealed that the both isolates (AB4 and AS1 strains) exhibited high emulsification indices (indicating usefulness in bioremediation) and good stabilities. PMID:26578147

  16. Enhanced bioconversion of ethylene glycol to glycolic acid by a newly isolated Burkholderia sp. EG13.

    PubMed

    Gao, Xiaoxin; Ma, Zhengfei; Yang, Limin; Ma, Jiangquan

    2014-10-01

    Burkholderia sp. EG13 with high ethylene glycol-oxidizing activity was isolated from soil, which could be used for the synthesis of glycolic acid from the oxidation of ethylene glycol. Using the resting cells of Burkholderia sp. EG13 as biocatalysts, the optimum reaction temperature and pH were 30 °C and 6.0, respectively. After 24 h of biotransformation, the yield of glycolic acid from 200 mM ethylene glycol was 98.8 %. Furthermore, an integrated bioprocess for the production of glycolic acid which involved in situ product removal (ISPR) was investigated. Using fed-batch method with ISPR, a total of 793 mM glycolic acid has been accumulated in the reaction mixture after the 4th feed.

  17. σ54-Dependent Response to Nitrogen Limitation and Virulence in Burkholderia cenocepacia Strain H111

    PubMed Central

    Lardi, Martina; Aguilar, Claudio; Pedrioli, Alessandro; Omasits, Ulrich; Suppiger, Angela; Cárcamo-Oyarce, Gerardo; Schmid, Nadine; Ahrens, Christian H.

    2015-01-01

    Members of the genus Burkholderia are versatile bacteria capable of colonizing highly diverse environmental niches. In this study, we investigated the global response of the opportunistic pathogen Burkholderia cenocepacia H111 to nitrogen limitation at the transcript and protein expression levels. In addition to a classical response to nitrogen starvation, including the activation of glutamine synthetase, PII proteins, and the two-component regulatory system NtrBC, B. cenocepacia H111 also upregulated polyhydroxybutyrate (PHB) accumulation and exopolysaccharide (EPS) production in response to nitrogen shortage. A search for consensus sequences in promoter regions of nitrogen-responsive genes identified a σ54 consensus sequence. The mapping of the σ54 regulon as well as the characterization of a σ54 mutant suggests an important role of σ54 not only in control of nitrogen metabolism but also in the virulence of this organism. PMID:25841012

  18. Prevalence and Identification of Burkholderia pseudomallei and Near-Neighbor Species in the Malabar Coastal Region of India.

    PubMed

    Peddayelachagiri, Bhavani V; Paul, Soumya; Nagaraj, Sowmya; Gogoi, Madhurjya; Sripathy, Murali H; Batra, Harsh V

    2016-09-01

    Accurate identification of pathogens with biowarfare importance requires detection tools that specifically differentiate them from near-neighbor species. Burkholderia pseudomallei, the causative agent of a fatal disease melioidosis, is one such biothreat agent whose differentiation from its near-neighbor species is always a challenge. This is because of its phenotypic similarity with other Burkholderia species which have a wide spread geographical distribution with shared environmental niches. Melioidosis is a major public health concern in endemic regions including Southeast Asia and northern Australia. In India, the disease is still considered to be emerging. Prevalence surveys of this saprophytic bacterium in environment are under-reported in the country. A major challenge in this case is the specific identification and differentiation of B. pseudomallei from the growing list of species of Burkholderia genus. The objectives of this study included examining the prevalence of B. pseudomallei and near-neighbor species in coastal region of South India and development of a novel detection tool for specific identification and differentiation of Burkholderia species. Briefly, we analyzed soil and water samples collected from Malabar coastal region of Kerala, South India for prevalence of B. pseudomallei. The presumptive Burkholderia isolates were identified using recA PCR assay. The recA PCR assay identified 22 of the total 40 presumptive isolates as Burkholderia strains (22.72% and 77.27% B. pseudomallei and non-pseudomallei Burkholderia respectively). In order to identify each isolate screened, we performed recA and 16S rDNA sequencing. This two genes sequencing revealed that the presumptive isolates included B. pseudomallei, non-pseudomallei Burkholderia as well as non-Burkholderia strains. Furthermore, a gene termed D-beta hydroxybutyrate dehydrogenase (bdha) was studied both in silico and in vitro for accurate detection of Burkholderia genus. The optimized bdha

  19. Prevalence and Identification of Burkholderia pseudomallei and Near-Neighbor Species in the Malabar Coastal Region of India

    PubMed Central

    Peddayelachagiri, Bhavani V.; Paul, Soumya; Nagaraj, Sowmya; Gogoi, Madhurjya; Sripathy, Murali H.; Batra, Harsh V.

    2016-01-01

    Accurate identification of pathogens with biowarfare importance requires detection tools that specifically differentiate them from near-neighbor species. Burkholderia pseudomallei, the causative agent of a fatal disease melioidosis, is one such biothreat agent whose differentiation from its near-neighbor species is always a challenge. This is because of its phenotypic similarity with other Burkholderia species which have a wide spread geographical distribution with shared environmental niches. Melioidosis is a major public health concern in endemic regions including Southeast Asia and northern Australia. In India, the disease is still considered to be emerging. Prevalence surveys of this saprophytic bacterium in environment are under-reported in the country. A major challenge in this case is the specific identification and differentiation of B. pseudomallei from the growing list of species of Burkholderia genus. The objectives of this study included examining the prevalence of B. pseudomallei and near-neighbor species in coastal region of South India and development of a novel detection tool for specific identification and differentiation of Burkholderia species. Briefly, we analyzed soil and water samples collected from Malabar coastal region of Kerala, South India for prevalence of B. pseudomallei. The presumptive Burkholderia isolates were identified using recA PCR assay. The recA PCR assay identified 22 of the total 40 presumptive isolates as Burkholderia strains (22.72% and 77.27% B. pseudomallei and non-pseudomallei Burkholderia respectively). In order to identify each isolate screened, we performed recA and 16S rDNA sequencing. This two genes sequencing revealed that the presumptive isolates included B. pseudomallei, non-pseudomallei Burkholderia as well as non-Burkholderia strains. Furthermore, a gene termed D-beta hydroxybutyrate dehydrogenase (bdha) was studied both in silico and in vitro for accurate detection of Burkholderia genus. The optimized bdha

  20. Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Rajagopala, Seesandra V.; Kwon, Keehwan; Pieper, Rembert; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2015-01-01

    Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections

  1. Structural investigation of the lipopolysaccharide O-chain isolated from Burkholderia fungorum strain DSM 17061.

    PubMed

    De Felice, Antonia; Di Lorenzo, Flaviana; Scherlach, Kirstin; Ross, Claudia; Silipo, Alba; Hertweck, Christian; Molinaro, Antonio

    2016-10-01

    Gram-negative bacteria exhibit lipopolysaccharides (LPSs) on their outer membrane surface. LPS is considered one of the most potent bacterial virulence factors. Here we report the elucidation of the LPS O-chain structure isolated from Burkholderia fungorum, a bacterium isolated from the white-rot fungus Phanerochaete chrysosporium that can act as a pathogen for plants and domesticated animals. The structure was determined by the employment of detailed chemical and NMR spectroscopy analyses as the following.

  2. Draft Genome Sequence of Burkholderia sp. Strain CCA53, Isolated from Leaf Soil

    PubMed Central

    Kimura, Zen-ichiro; Yusoff, Mohd Zulkhairi Mohd; Nakashima, Nobutaka; Hoshino, Tamotsu

    2016-01-01

    Burkholderia sp. strain CCA53 was isolated from leaf soil collected in Higashi-Hiroshima City in Hiroshima Prefecture, Japan. Here, we present a draft genome sequence of this strain, which consists of a total of 4 contigs containing 6,647,893 bp, with a G+C content of 67.0% and comprising 9,329 predicted coding sequences. PMID:27389268

  3. Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa.

    PubMed

    Steenkamp, Emma T; van Zyl, Elritha; Beukes, Chrizelle W; Avontuur, Juanita R; Chan, Wai Yin; Palmer, Marike; Mthombeni, Lunghile S; Phalane, Francina L; Sereme, T Karabo; Venter, Stephanus N

    2015-12-01

    Despite the diversity of Burkholderia species known to nodulate legumes in introduced and native regions, relatively few taxa have been formally described. For example, the Cape Floristic Region of South Africa is thought to represent one of the major centres of diversity for the rhizobial members of Burkholderia, yet only five species have been described from legumes occurring in this region and numerous are still awaiting taxonomic treatment. Here, we investigated the taxonomic status of 12 South African root-nodulating Burkholderia isolates from native papilionoid legumes (Hypocalyptus coluteoides, H. oxalidifolius, H. sophoroides and Virgilia oroboides). Analysis of four gene regions (16S rRNA, recA, atpD and rpoB) revealed that the isolates represent a genealogically unique and exclusive assemblage within the genus. Its distinctness was supported by all other aspects of the polyphasic approach utilized, including the genome-based criteria DNA-DNA hybridization (≥70.9%) and average nucleotide identities (≥96%). We accordingly propose the name B. kirstenboschensis sp. nov. for this taxon with isolate Kb15(T) (=LMG 28727(T); =SARC 695(T)) as its type strain. Our data showed that intraspecific genome size differences (≥0.81 Mb) and the occurrence of large DNA regions that are apparently unique to single individuals (16-23% of an isolate's genome) can significantly limit the value of data obtained from DNA-DNA hybridization experiments. Substitution of DNA-DNA hybridization with whole genome sequencing as a prerequisite for the description of Burkholderia species will undoubtedly speed up the pace at which their diversity are documented, especially in hyperdiverse regions such as the Cape Floristic Region.

  4. Burkholderia grimmiae sp. nov., isolated from a xerophilous moss (Grimmia montana).

    PubMed

    Tian, Yang; Kong, Bi He; Liu, Su Lin; Li, Chun Li; Yu, Rong; Liu, Lei; Li, Yan Hong

    2013-06-01

    A Gram-staining-negative, rod-shaped, non-spore-forming bacterium, designated strain R27(T), was isolated from the moss Grimmia montana, collected from Beijing Songshan National Nature Reserve, China, and characterized by using a polyphasic taxonomic approach. The predominant fatty acids of strain R27(T) were C18:1ω7c (33.6%), C16:0 (16.3%), summed feature 3 (C16:1ω7c and/or C16:1ω6c; 15.8%) and C17:0 cyclo (8.7%) and its major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, three uncharacterized aminolipids and an unknown phospholipid. Strain R27(T) contained Q-8 as the dominant isoprenoid quinone and the G+C content of its genomic DNA was 64.6 mol%. On the basis of 16S rRNA gene sequence comparison, strain R27(T) showed 99.1% similarity to the closest related type strain, Burkholderia zhejiangensis OP-1(T), and 97.6% similarity to Burkholderia glathei ATCC 29195(T). However, the DNA-DNA relatedness between strain R27(T) and B. zhejiangensis CCTCC AB 2010354(T) and B. glathei ATCC 29195(T) was 10.2 and 14.9%, respectively. Based on 16S rRNA and rpoB gene sequence similarities and phenotypic and chemotaxonomic data, strain R27(T) is considered to represent a novel species of the genus Burkholderia, for which the name Burkholderia grimmiae sp. nov. is proposed. The type strain is R27(T) (=CGMCC 1.11013(T) =DSM 25160(T)).

  5. Insights into the role of extracellular polysaccharides in Burkholderia adaptation to different environments.

    PubMed

    Ferreira, Ana S; Silva, Inês N; Oliveira, Vítor H; Cunha, Raquel; Moreira, Leonilde M

    2011-01-01

    The genus Burkholderia comprises more than 60 species able to adapt to a wide range of environments such as soil and water, and also colonize and infect plants and animals. They have large genomes with multiple replicons and high gene number, allowing these bacteria to thrive in very different niches. Among the properties of bacteria from the genus Burkholderia is the ability to produce several types of exopolysaccharides (EPSs). The most common one, cepacian, is produced by the majority of the strains examined irrespective of whether or not they belong to the Burkholderia cepacia complex (Bcc). Cepacian biosynthesis proceeds by a Wzy-dependent mechanism, and some of the B. cepacia exopolysaccharide (Bce) proteins have been functionally characterized. In vitro studies showed that cepacian protects bacterial cells challenged with external stresses. Regarding virulence, bacterial cells with the ability to produce EPS are more virulent in several animal models of infection than their isogenic non-producing mutants. Although the production of EPS within the lungs of cystic fibrosis (CF) patients has not been demonstrated, the in vitro assessment of the mucoid phenotype in serial Bcc isolates from CF patients colonized for several years showed that mucoid to non-mucoid transitions are relatively frequent. This morphotype variation can be induced under laboratory conditions by exposing cells to stress such as high antibiotic concentration. Clonal isolates where mucoid to non-mucoid transition had occurred showed that during lung infection, genomic rearrangements, and mutations had taken place. Other phenotypic changes include variations in motility, chemotaxis, biofilm formation, bacterial survival rate under nutrient starvation and virulence. In this review, we summarize major findings related to EPS biosynthesis by Burkholderia and the implications in broader regulatory mechanisms important for cell adaptation to the different niches colonized by these bacteria.

  6. Toluene 2-monooxygenase-dependent growth of Burkholderia cepacia G4/PR1 on diethyl ether

    SciTech Connect

    Hur, H.G.; Newman, L.M.; Wackett, L.P.; Sadowsky, M.J.

    1997-04-01

    There is considerable interest in the biodegradation of solvents and fuel additives such as diethyl ether and tert-butyl methyl either. The present study investigated if toluene 2-monooxygenase would allow Burkholderia cepacia G4/PR1 to grow on either compounds via novel metabolic pathways. In addition, the role of enzyme induction in allowing growth on compounds not resembling toluene or phenol was studied. 29 refs., 2 figs., 2 tabs.

  7. Improved cultural detection of Burkholderia cepacia from sputum in patients with cystic fibrosis

    PubMed Central

    Wright, R; Moore, J; Shaw, A; Dunbar, K; Dodd, M; Webb, K; Redmond, A; Crowe, M; Murphy, P; Peacock, S; Elborn, J

    2001-01-01

    Aims—To evaluate the sensitivity and specificity of two selective media for the isolation of Burkholderia cepacia from sputum specimens in patients with cystic fibrosis (CF). Methods—In total, 149 expectorated sputum specimens from 113 patients with CF (32 cepacia colonised patients and 81 non-cepacia colonised patients) attending three CF centres were examined for the presence of B cepacia on two selective media: (1) MAST selective agar, a commercially available selective medium widely used in the UK and (2) BCSA (B cepacia selective agar), a new medium recently described, which is used predominantly in North America. Results—Burkholderia cepacia was isolated from 53 of 149 (35.6%) specimens examined, representing 32 of 113 (28.3%) patients, using both the MAST and BCSA media. Growth was most rapid on BCSA with all (53 of 53) isolates detectable after 48 hours, compared with 50 of the 53 isolates on MAST agar, with the remaining three isolates detectable at five days. Twenty eight contaminants were identified on MAST agar and 13 on BCSA agar; mainly Alcaligenes xylosoxidans and yeast on MAST agar and Flavobacterium indologenes on BCSA medium. BCSA was equivalent to MAST agar in its ability to isolate B cepacia from patients with CF with a history of B cepacia infection. Conclusions—The increased selectivity and reduced time to detection of BCSA makes it an attractive alternative to MAST. However, its present limited commercial availability in the UK may delay its use in routine diagnostic laboratories because of complications with media preparation and quality control. Key Words: Burkholderia cepacia • Burkholderia cepacia selective agar • MAST agar • cystic fibrosis PMID:11577134

  8. Evaluation of six commercial DNA extraction kits for recovery of Burkholderia pseudomallei DNA.

    PubMed

    Marques, Maria Angela de Mello; Zimmermann, Pia; Messelhäußer, Ute; Sing, Andreas

    2012-12-01

    Six commercially available DNA extraction kits, as well as thermal lysis and proteinase K DNA extraction were evaluated regarding bacterial inactivation, DNA yield and purity, and their use in a Burkholderia pseudomallei real-time PCR. While all methods successfully inactivated the bacteria, by measuring DNA purity and the level of detection by real-time PCR, the proteinase K method was the most sensitive.

  9. Structural and immunological characterization of Burkholderia pseudomallei O-polysaccharide-flagellin protein conjugates.

    PubMed Central

    Brett, P J; Woods, D E

    1996-01-01

    The O-polysaccharide moiety of Burkholderia pseudomallei 319a lipopolysaccharide was covalently linked to flagellin protein isolated from the same strain. A glycoconjugate incorporating adipic acid dihydrazide as a spacer molecule elicited high-titer immunoglobulin G responses to both the protein and carbohydrate components of the construct. This immunoglobulin G was capable of protecting diabetic rats from challenge with a heterologous B. pseudomallei strain. PMID:8698517

  10. Draft Genome Sequence of Burkholderia sp. Strain CCA53, Isolated from Leaf Soil.

    PubMed

    Akita, Hironaga; Kimura, Zen-Ichiro; Yusoff, Mohd Zulkhairi Mohd; Nakashima, Nobutaka; Hoshino, Tamotsu

    2016-01-01

    Burkholderia sp. strain CCA53 was isolated from leaf soil collected in Higashi-Hiroshima City in Hiroshima Prefecture, Japan. Here, we present a draft genome sequence of this strain, which consists of a total of 4 contigs containing 6,647,893 bp, with a G+C content of 67.0% and comprising 9,329 predicted coding sequences. PMID:27389268

  11. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments.

    PubMed

    Revathy, T; Jayasri, M A; Suthindhiran, K

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ∼2-5 μm in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%). However, naphthalene and aniline were degraded only at lower concentration (0.1%) and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs. PMID:26605106

  12. Extreme antimicrobial peptide and polymyxin B resistance in the genus Burkholderia.

    PubMed

    Loutet, Slade A; Valvano, Miguel A

    2011-01-01

    Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.

  13. Functional and genomic insights into the pathogenesis of Burkholderia species to rice.

    PubMed

    Naughton, Lynn M; An, Shi-qi; Hwang, Ingyu; Chou, Shan-Ho; He, Yong-Qiang; Tang, Ji-Liang; Ryan, Robert P; Dow, J Maxwell

    2016-03-01

    A number of species of bacteria from the genus Burkholderia have been shown to be causal agents of diseases of rice. These diseases, caused by Burkholderia glumae, B. gladioli and B. plantarii, are becoming increasingly common across the globe. This is particularly so for B. glumae, whose ability to grow at elevated temperatures suggests that it may become a prevalent problem in an era of global warming. Despite the increasing threat to rice, relatively little is known about the virulence mechanisms employed by these pathogens. Work over the last 5 years has provided an increasing insight into these factors and their control by environmental and other cues. In addition, the determination of a number of genome sequences has allowed bioinformatic predictions of further possible mechanisms, which can now be investigated experimentally. Here, we review recent advances in the understanding of virulence of Burkholderia to rice, to include discussion of the roles of toxins, type II secreted enzymes, type III secreted effectors and motility as well as their regulation by quorum sensing, two-component systems and cyclic di-GMP signalling. Finally, we consider a number of approaches for the control of bacterial virulence through the modulation of quorum sensing and toxin degradation.

  14. Extreme antimicrobial Peptide and polymyxin B resistance in the genus burkholderia.

    PubMed

    Loutet, Slade A; Valvano, Miguel A

    2011-01-01

    Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance. PMID:21811491

  15. Short Chain N-acyl Homoserine Lactone Production by Soil Isolate Burkholderia sp. Strain A9

    PubMed Central

    Chen, Jian Woon; Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Chan, Kok-Gan

    2013-01-01

    In the bacteria kingdom, quorum sensing (QS) is a cell-to-cell communication that relies on the production of and response to specific signaling molecules. In proteobacteria, N-acylhomoserine lactones (AHLs) are the well-studied signaling molecules. The present study aimed to characterize the production of AHL of a bacterial strain A9 isolated from a Malaysian tropical soil. Strain A9 was identified as Burkholderia sp. using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rDNA nucleotide sequence analysis. AHL production by A9 was detected with two biosensors, namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Thin layer chromatography results showed N–hexanoylhomoserine lactone (C6-HSL) and N–octanoylhomoserine lactone (C8-HSL) production. Unequivocal identification of C6-HSL and C8-HSL was achieved by high resolution triple quadrupole liquid chromatography-mass spectrometry analysis. We have demonstrated that Burkholderia sp. strain A9 produces AHLs that are known to be produced by other Burkholderia spp. with CepI/CepR homologs. PMID:24084115

  16. Invasion of Burkholderia cepacia complex isolates into lung epithelial cells involves glycolipid receptors.

    PubMed

    Mullen, Tracy; Callaghan, Máire; McClean, Siobhán

    2010-12-01

    Burkholderia cepacia complex (Bcc) is a group of opportunistic cystic fibrosis (CF) pathogens that invade lung epithelial cells. The mechanisms of invasion are poorly understood, in particular, the receptors utilised by this bacterium in the invasion process have not been identified. The aim of this study was to investigate the epithelial receptors involved in the invasion of Bcc isolates. We confirmed that invasion into two lung epithelial cell lines (16HBE14o- and CFBE41o-) which have a non-CF and CF phenotype, respectively, is receptor mediated and showed that pre-treatment of these epithelial cell lines with α- or β-galactosidase reduced invasion of isolates of two species of Bcc, Burkholderia multivorans and Burkholderia cenocepacia. In contrast, removal of mucin had no significant effect. Biotinylated Bcc strains were shown to bind to purified glycolipids separated by thin layer chromatography, albeit different patterns of binding were associated with different strains. Invasion of CF lung epithelial cells (CFBE41o-) by all three Bcc strains examined was significantly reduced by treatment of cells with inhibitors of glycolipid biosynthesis. Although the specific glycolipid involved in each case has not been elucidated, it is apparent that invasion of lung epithelial cells is mediated via binding to glycosphingolipid receptors.

  17. Global Analysis of the Burkholderia thailandensis Quorum Sensing-Controlled Regulon

    PubMed Central

    Majerczyk, Charlotte; Brittnacher, Mitchell; Jacobs, Michael; Armour, Christopher D.; Radey, Mathew; Schneider, Emily; Phattarasokul, Somsak; Bunt, Richard

    2014-01-01

    Burkholderia thailandensis contains three acyl-homoserine lactone quorum sensing circuits and has two additional LuxR homologs. To identify B. thailandensis quorum sensing-controlled genes, we carried out transcriptome sequencing (RNA-seq) analyses of quorum sensing mutants and their parent. The analyses were grounded in the fact that we identified genes coding for factors shown previously to be regulated by quorum sensing among a larger set of quorum-controlled genes. We also found that genes coding for contact-dependent inhibition were induced by quorum sensing and confirmed that specific quorum sensing mutants had a contact-dependent inhibition defect. Additional quorum-controlled genes included those for the production of numerous secondary metabolites, an uncharacterized exopolysaccharide, and a predicted chitin-binding protein. This study provides insights into the roles of the three quorum sensing circuits in the saprophytic lifestyle of B. thailandensis, and it provides a foundation on which to build an understanding of the roles of quorum sensing in the biology of B. thailandensis and the closely related pathogenic Burkholderia pseudomallei and Burkholderia mallei. PMID:24464461

  18. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments

    PubMed Central

    Revathy, T.; Jayasri, M. A.; Suthindhiran, K.

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ∼2–5 μm in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%). However, naphthalene and aniline were degraded only at lower concentration (0.1%) and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs. PMID:26605106

  19. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize.

    PubMed

    Perin, L; Martínez-Aguilar, L; Paredes-Valdez, G; Baldani, J I; Estrada-de Los Santos, P; Reis, V M; Caballero-Mellado, J

    2006-08-01

    In a previous study, nitrogen-fixing isolates were recovered from the rhizosphere of maize and from surface-sterilized leaves of sugar cane cultivated in Rio de Janeiro, Brazil. On the basis of 16S rRNA gene sequence similarities, these isolates were identified as belonging to the genus Burkholderia, and whole-cell-protein profiles demonstrated that they are closely related to each other. In the present study, novel isolates were recovered from the roots of different sugar-cane varieties cultivated in diverse geographical regions of Brazil. Twenty-one nitrogen-fixing isolates were analysed using polyphasic taxonomy criteria, including DNA-DNA relatedness, 16S rRNA gene sequence similarities, fatty acid profiles, whole-cell-protein patterns and multilocus enzyme electrophoresis profiles, as well as morphological, physiological and biochemical characterization. The analysis confirmed that these isolates belong to a novel species within the genus Burkholderia, for which the name Burkholderia silvatlantica sp. nov. is proposed. The type strain, SRMrh-20(T) (=LMG 23149(T)=ATCC BAA-1244(T)), was isolated from the rhizosphere of maize var. Avantis A2345 cultivated in Seropédica, Rio de Janeiro. PMID:16902033

  20. Diverse Burkholderia Species Isolated from Soils in the Southern United States with No Evidence of B. pseudomallei.

    PubMed

    Hall, Carina M; Busch, Joseph D; Shippy, Kenzie; Allender, Christopher J; Kaestli, Mirjam; Mayo, Mark; Sahl, Jason W; Schupp, James M; Colman, Rebecca E; Keim, Paul; Currie, Bart J; Wagner, David M

    2015-01-01

    The global distribution of the soil-dwelling bacterium Burkholderia pseudomallei, causative agent of melioidosis, is poorly understood. We used established culturing methods developed for B. pseudomallei to isolate Burkholderia species from soil collected at 18 sampling sites in three states in the southern United States (Arizona (n = 4), Florida (n = 7), and Louisiana (n = 7)). Using multi-locus sequence typing (MLST) of seven genes, we identified 35 Burkholderia isolates from these soil samples. All species belonged to the B. cepacia complex (Bcc), including B. cenocepacia, B. cepacia, B. contaminans, B. diffusa, B. metallica, B. seminalis, B. vietnamiensis and two unnamed members of the Bcc. The MLST analysis provided a high level of resolution among and within these species. Despite previous clinical cases within the U.S. involving B. pseudomallei and its close phylogenetic relatives, we did not isolate any of these taxa. The Bcc contains a number of opportunistic pathogens that cause infections in cystic fibrosis patients. Interestingly, we found that B. vietnamiensis was present in soil from all three states, suggesting it may be a common component in southern U.S. soils. Most of the Burkholderia isolates collected in this study were from Florida (30/35; 86%), which may be due to the combination of relatively moist, sandy, and acidic soils found there compared to the other two states. We also investigated one MLST gene, recA, for its ability to identify species within Burkholderia. A 365bp fragment of recA recovered nearly the same species-level identification as MLST, thus demonstrating its cost effective utility when conducting environmental surveys for Burkholderia. Although we did not find B. pseudomallei, our findings document that other diverse Burkholderia species are present in soils in the southern United States.

  1. Burkholderia sp. induces functional nodules on the South African invasive legume Dipogon lignosus (Phaseoleae) in New Zealand soils.

    PubMed

    Liu, Wendy Y Y; Ridgway, Hayley J; James, Trevor K; James, Euan K; Chen, Wen-Ming; Sprent, Janet I; Young, J Peter W; Andrews, Mitchell

    2014-10-01

    The South African invasive legume Dipogon lignosus (Phaseoleae) produces nodules with both determinate and indeterminate characteristics in New Zealand (NZ) soils. Ten bacterial isolates produced functional nodules on D. lignosus. The 16S ribosomal RNA (rRNA) gene sequences identified one isolate as Bradyrhizobium sp., one isolate as Rhizobium sp. and eight isolates as Burkholderia sp. The Bradyrhizobium sp. and Rhizobium sp. 16S rRNA sequences were identical to those of strains previously isolated from crop plants and may have originated from inocula used on crops. Both 16S rRNA and DNA recombinase A (recA) gene sequences placed the eight Burkholderia isolates separate from previously described Burkholderia rhizobial species. However, the isolates showed a very close relationship to Burkholderia rhizobial strains isolated from South African plants with respect to their nitrogenase iron protein (nifH), N-acyltransferase nodulation protein A (nodA) and N-acetylglucosaminyl transferase nodulation protein C (nodC) gene sequences. Gene sequences and enterobacterial repetitive intergenic consensus (ERIC) PCR and repetitive element palindromic PCR (rep-PCR) banding patterns indicated that the eight Burkholderia isolates separated into five clones of one strain and three of another. One strain was tested and shown to produce functional nodules on a range of South African plants previously reported to be nodulated by Burkholderia tuberum STM678(T) which was isolated from the Cape Region. Thus, evidence is strong that the Burkholderia strains isolated here originated in South Africa and were somehow transported with the plants from their native habitat to NZ. It is possible that the strains are of a new species capable of nodulating legumes.

  2. Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system.

    PubMed

    Rusch, Antje; Islam, Shaer; Savalia, Pratixa; Amend, Jan P

    2015-01-01

    Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-April(T). Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-April(T) grew at temperatures between 4 °C and 40 °C (optimum 30-37 °C), at pH 3.5 to 8.3 (optimum pH 5-6) and in the presence of up to 2.7% NaCl (optimum 0-1.0%). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-April(T) was strictly respiratory. Heterotrophic growth occurred with O2 or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N2-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-April(T) belongs to the genus Burkholderia and shares the highest 16S rRNA gene sequence similarity with the type strains of Burkholderia fungorum (99.8%), Burkholderia phytofirmans (98.8%), Burkholderia caledonica (98.4%) and Burkholderia sediminicola (98.4%). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA-DNA hybridization suggested the isolate represents a novel species of the genus Burkholderia, for which we propose the name Burkholderia insulsa sp. nov. The type strain is PNG-April(T) ( = DSM 28142(T) = LMG 28183(T)).

  3. Diverse Burkholderia Species Isolated from Soils in the Southern United States with No Evidence of B. pseudomallei

    PubMed Central

    Hall, Carina M.; Busch, Joseph D.; Shippy, Kenzie; Allender, Christopher J.; Kaestli, Mirjam; Mayo, Mark; Sahl, Jason W.; Schupp, James M.; Colman, Rebecca E.; Keim, Paul; Currie, Bart J.; Wagner, David M.

    2015-01-01

    The global distribution of the soil-dwelling bacterium Burkholderia pseudomallei, causative agent of melioidosis, is poorly understood. We used established culturing methods developed for B. pseudomallei to isolate Burkholderia species from soil collected at 18 sampling sites in three states in the southern United States (Arizona (n = 4), Florida (n = 7), and Louisiana (n = 7)). Using multi-locus sequence typing (MLST) of seven genes, we identified 35 Burkholderia isolates from these soil samples. All species belonged to the B. cepacia complex (Bcc), including B. cenocepacia, B. cepacia, B. contaminans, B. diffusa, B. metallica, B. seminalis, B. vietnamiensis and two unnamed members of the Bcc. The MLST analysis provided a high level of resolution among and within these species. Despite previous clinical cases within the U.S. involving B. pseudomallei and its close phylogenetic relatives, we did not isolate any of these taxa. The Bcc contains a number of opportunistic pathogens that cause infections in cystic fibrosis patients. Interestingly, we found that B. vietnamiensis was present in soil from all three states, suggesting it may be a common component in southern U.S. soils. Most of the Burkholderia isolates collected in this study were from Florida (30/35; 86%), which may be due to the combination of relatively moist, sandy, and acidic soils found there compared to the other two states. We also investigated one MLST gene, recA, for its ability to identify species within Burkholderia. A 365bp fragment of recA recovered nearly the same species-level identification as MLST, thus demonstrating its cost effective utility when conducting environmental surveys for Burkholderia. Although we did not find B. pseudomallei, our findings document that other diverse Burkholderia species are present in soils in the southern United States. PMID:26600238

  4. Effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    NASA Astrophysics Data System (ADS)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo; Choi, Kyoung-Hee; Lee, Ju-Woon

    2010-04-01

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased ( P<0.05) as irradiation dose increased, and no differences ( P≥0.05) in cell counts of the bacteria were observed among different levels of NaCl and pH. D10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  5. Indole-3-Acetic Acid Produced by Burkholderia heleia Acts as a Phenylacetic Acid Antagonist to Disrupt Tropolone Biosynthesis in Burkholderia plantarii

    PubMed Central

    Wang, Mengcen; Tachibana, Seiji; Murai, Yuta; Li, Li; Lau, Sharon Yu Ling; Cao, Mengchao; Zhu, Guonian; Hashimoto, Makoto; Hashidoko, Yasuyuki

    2016-01-01

    Burkholderia heleia PAK1-2 is a potent biocontrol agent isolated from rice rhizosphere, as it prevents bacterial rice seedling blight disease caused by Burkholderia plantarii. Here, we isolated a non-antibacterial metabolite from the culture fluid of B. heleia PAK1-2 that was able to suppress B. plantarii virulence and subsequently identified as indole-3-acetic acid (IAA). IAA suppressed the production of tropolone in B. plantarii in a dose-dependent manner without any antibacterial and quorum quenching activity, suggesting that IAA inhibited steps of tropolone biosynthesis. Consistent with this, supplementing cultures of B. plantarii with either L-[ring-2H5]phenylalanine or [ring-2H2~5]phenylacetic acid revealed that phenylacetic acid (PAA), which is the dominant metabolite during the early growth stage, is a direct precursor of tropolone. Exposure of B. plantarii to IAA suppressed production of both PAA and tropolone. These data particularly showed that IAA produced by B. heleia PAK1-2 disrupts tropolone production during bioconversion of PAA to tropolone via the ring-rearrangement on the phenyl group of the precursor to attenuate the virulence of B. plantarii. B. heleia PAK1-2 is thus likely a microbial community coordinating bacterium in rhizosphere ecosystems, which never eliminates phytopathogens but only represses production of phytotoxins or bacteriocidal substances. PMID:26935539

  6. 40 CFR 180.1325 - Heat-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... A396 cells and spent fermentation media exemption from the requirement of a tolerance. 180.1325 Section...-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the requirement of...-killed Burkholderia spp. strain A396 cells and spent fermentation media in or on all food...

  7. A reliable method for the selection and confirmation of transconjugants of plant growth-promoting bacteria especially plant-associated Burkholderia spp.

    PubMed

    Tariq, Mohsin; Lum, Michelle R; Chong, Allan W; Amirapu, Anjana B; Hameed, Sohail; Hirsch, Ann M

    2015-10-01

    Selectable markers, e.g., antibiotic resistance, for conjugation experiments are not always effective for slow-growing plant growth promoting bacteria such as Burkholderia. We used PCAT medium containing Congo Red for selecting Burkholderia transconjugants. This method allows for the reliable selection of transconjugants of these novel plant growth-promoting bacteria.

  8. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection

    PubMed Central

    Chiang, Chih-Yuan; Uzoma, Ijeoma; Lane, Douglas J.; Memišević, Vesna; Alem, Farhang; Yao, Kuan; Kota, Krishna P.; Bavari, Sina; Wallqvist, Anders; Hakami, Ramin M.; Panchal, Rekha G.

    2015-01-01

    Burkholderia is a diverse genus of gram-negative bacteria that causes high mortality rate in humans, equines and cattle. The lack of effective therapeutic treatments poses serious public health threats. Developing insights toward host-Burkholderia spp. interaction is critical for understanding the pathogenesis of infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray technology was previously proven to identify and characterize novel biomarkers and molecular signatures associated with infectious disease and cancer. In the present study, this technology was utilized to interrogate changes in host protein expression and phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections of which eight proteins were selected for further characterization by immunoblotting. Increased phosphorylation of AMPK-α1, Src, and GSK3β suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune response. Modulating the inflammatory response by perturbing their activities may provide therapeutic routes for future treatments. PMID:26284031

  9. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders

    PubMed Central

    Moustafa, Dina A.; Scarff, Jennifer M.; Garcia, Preston P.; Cassidy, Sara K. B.; DiGiandomenico, Antonio; Waag, David M.; Inzana, Thomas J.; Goldberg, Joanna B.

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine. PMID:26148026

  10. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders.

    PubMed

    Moustafa, Dina A; Scarff, Jennifer M; Garcia, Preston P; Cassidy, Sara K B; DiGiandomenico, Antonio; Waag, David M; Inzana, Thomas J; Goldberg, Joanna B

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.

  11. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Burkholderia sp. strain UYPR1.413

    PubMed Central

    2015-01-01

    Burkholderia sp. strain UYPR1.413 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida collected at the Angico plantation, Mandiyu, Uruguay, in December 2006. A survey of symbionts of P. rigida in Uruguay demonstrated that this species is nodulated predominantly by Burkholderia microsymbionts. Moreover, Burkholderia sp. strain UYPR1.413 is a highly efficient nitrogen fixing symbiont with this host. Currently, the only other sequenced isolate to fix with this host is Cupriavidus sp. UYPR2.512. Therefore, Burkholderia sp. strain UYPR1.413 was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the GEBA-RNB project. Here we describe the features of Burkholderia sp. strain UYPR1.413, together with sequence and annotation. The 10,373,764 bp high-quality permanent draft genome is arranged in 336 scaffolds of 342 contigs, contains 9759 protein-coding genes and 77 RNA-only encoding genes. PMID:26203342

  12. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Burkholderia sp. strain UYPR1.413

    DOE PAGESBeta

    De Meyer, Sofie E.; Fabiano, Elena; Tian, Rui; Van Berkum, Peter; Seshadri, Rekha; Reddy, T. B. K.; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; et al

    2015-06-04

    We report that Burkholderia sp. strain UYPR1.413 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida collected at the Angico plantation, Mandiyu, Uruguay, in December 2006. A survey of symbionts of P. rigida in Uruguay demonstrated that this species is nodulated predominantly by Burkholderia microsymbionts. Moreover, Burkholderia sp. strain UYPR1.413 is a highly efficient nitrogen fixing symbiont with this host. Currently, the only other sequenced isolate to fix with this host is Cupriavidus sp. UYPR2.512. Therefore, Burkholderia sp. strain UYPR1.413 was selected for sequencing on the basis of its environmental and agriculturalmore » relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the GEBA-RNB project. Here we describe the features of Burkholderia sp. strain UYPR1.413, together with sequence and annotation. The 10,373,764 bp high-quality permanent draft genome is arranged in 336 scaffolds of 342 contigs, contains 9759 protein-coding genes and 77 RNA-only encoding genes.« less

  13. Nitrous oxide emission potentials of Burkholderia species isolated from the leaves of a boreal peat moss Sphagnum fuscum.

    PubMed

    Nie, Yanxia; Li, Li; Wang, Mengcen; Tahvanainen, Teemu; Hashidoko, Yasuyuki

    2015-01-01

    Using a culture-based nitrous oxide (N2O) emission assay, three active N2O emitters were isolated from Sphagnum fuscum leaves and all identified as members of Burkholderia. These isolates showed N2O emission in the medium supplemented with [Formula: see text] but not with [Formula: see text], and Burkholderia sp. SF-E2 showed the most efficient N2O emission (0.20 μg·vial(-1)·day(-1)) at 1.0 mM KNO3. In Burkholderia sp. SF-E2, the optimum pH for N2O production was 5.0, close to that of the phyllosphere of Sphagnum mosses, while the optimum temperature was uniquely over 30 °C. The stimulating effect of additional 1.5 mM sucrose on N2O emission was ignorable, but Burkholderia sp. SF-E2 upon exposure to 100 mg·L(-1) E-caffeic acid showed uniquely 67-fold higher N2O emission. All of the three N2O emitters were negative in both acetylene inhibition assay and PCR assay for nosZ-detection, suggesting that N2O reductase or the gene itself is missing in the N2O-emitting Burkholderia.

  14. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Burkholderia sp. strain UYPR1.413

    SciTech Connect

    De Meyer, Sofie E.; Fabiano, Elena; Tian, Rui; Van Berkum, Peter; Seshadri, Rekha; Reddy, T. B. K.; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Howieson, John; Kyrpides, Nikos; Reeve, Wayne

    2015-06-04

    We report that Burkholderia sp. strain UYPR1.413 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida collected at the Angico plantation, Mandiyu, Uruguay, in December 2006. A survey of symbionts of P. rigida in Uruguay demonstrated that this species is nodulated predominantly by Burkholderia microsymbionts. Moreover, Burkholderia sp. strain UYPR1.413 is a highly efficient nitrogen fixing symbiont with this host. Currently, the only other sequenced isolate to fix with this host is Cupriavidus sp. UYPR2.512. Therefore, Burkholderia sp. strain UYPR1.413 was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the GEBA-RNB project. Here we describe the features of Burkholderia sp. strain UYPR1.413, together with sequence and annotation. The 10,373,764 bp high-quality permanent draft genome is arranged in 336 scaffolds of 342 contigs, contains 9759 protein-coding genes and 77 RNA-only encoding genes.

  15. Nitrous oxide emission potentials of Burkholderia species isolated from the leaves of a boreal peat moss Sphagnum fuscum.

    PubMed

    Nie, Yanxia; Li, Li; Wang, Mengcen; Tahvanainen, Teemu; Hashidoko, Yasuyuki

    2015-01-01

    Using a culture-based nitrous oxide (N2O) emission assay, three active N2O emitters were isolated from Sphagnum fuscum leaves and all identified as members of Burkholderia. These isolates showed N2O emission in the medium supplemented with [Formula: see text] but not with [Formula: see text], and Burkholderia sp. SF-E2 showed the most efficient N2O emission (0.20 μg·vial(-1)·day(-1)) at 1.0 mM KNO3. In Burkholderia sp. SF-E2, the optimum pH for N2O production was 5.0, close to that of the phyllosphere of Sphagnum mosses, while the optimum temperature was uniquely over 30 °C. The stimulating effect of additional 1.5 mM sucrose on N2O emission was ignorable, but Burkholderia sp. SF-E2 upon exposure to 100 mg·L(-1) E-caffeic acid showed uniquely 67-fold higher N2O emission. All of the three N2O emitters were negative in both acetylene inhibition assay and PCR assay for nosZ-detection, suggesting that N2O reductase or the gene itself is missing in the N2O-emitting Burkholderia. PMID:26167675

  16. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection.

    PubMed

    Chiang, Chih-Yuan; Uzoma, Ijeoma; Lane, Douglas J; Memišević, Vesna; Alem, Farhang; Yao, Kuan; Kota, Krishna P; Bavari, Sina; Wallqvist, Anders; Hakami, Ramin M; Panchal, Rekha G

    2015-01-01

    Burkholderia is a diverse genus of gram-negative bacteria that causes high mortality rate in humans, equines and cattle. The lack of effective therapeutic treatments poses serious public health threats. Developing insights toward host-Burkholderia spp. interaction is critical for understanding the pathogenesis of infection as well as identifying therapeutic targets for drug development. Reverse-phase protein microarray technology was previously proven to identify and characterize novel biomarkers and molecular signatures associated with infectious disease and cancer. In the present study, this technology was utilized to interrogate changes in host protein expression and phosphorylation events in macrophages infected with a collection of geographically diverse strains of Burkholderia spp. The expression or phosphorylation state of 25 proteins was altered during Burkholderia spp. infections of which eight proteins were selected for further characterization by immunoblotting. Increased phosphorylation of AMPK-α1, Src, and GSK3β suggested the importance of their roles in regulating Burkholderia spp. mediated innate immune response. Modulating the inflammatory response by perturbing their activities may provide therapeutic routes for future treatments. PMID:26284031

  17. The Burkholderia cenocepacia K56-2 pleiotropic regulator Pbr, is required for stress resistance and virulence.

    PubMed

    Ramos, Christian G; Sousa, Silvia A; Grilo, André M; Eberl, Leo; Leitão, Jorge H

    2010-05-01

    Burkholderia cenocepacia is one of the most virulent species of the Burkholderia cepacia complex, a group of bacteria that emerged as important pathogens, especially to cystic fibrosis (CF) patients. In this study, we report the identification and characterization of a mutant strain derived form the CF isolate Burkholderia cenocepacia K56-2, carrying a plasposon insertion in a gene, located in a 3516 bp chromosomal region with an atypical G+C content, encoding a 80 amino acid putative regulatory protein named Pbr. Besides its inability to produce phenazines, the B. cenocepacia K56-2 pbr mutant exhibited a pleiotropic phenotype, including impaired survival to oxidative and osmotic stress, aromatic amino acid and prolonged nutrient starvation periods. In addition, the pbr mutant exhibited decreased virulence the nematode Caenorhabditis elegans. Altogether, our results demonstrate the involvement of Pbr on the regulation of phenazine biosynthesis, and an important role for this regulatory protein on several cellular processes related to stress resistance and virulence.

  18. Direct detection of the plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae in infected rice seedlings using matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kajiwara, Hideyuki

    2016-01-01

    The plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae were directly detected in extracts from infected rice seedlings by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method did not require culturing of the pathogens on artificial medium. In the MALDI-TOF MS analysis, peaks originating from bacteria were found in extracts from infected rice seedlings. The spectral peaks showed significantly high scores, in spite of minor differences in spectra. The spectral peaks originating from host plant tissues did not affect this direct MALDI-TOF MS analysis for the rapid identification of plant pathogens.

  19. Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil.

    PubMed

    Sheu, Shih-Yi; Chou, Jui-Hsing; Bontemps, Cyril; Elliott, Geoffrey N; Gross, Eduardo; James, Euan K; Sprent, Janet I; Young, J Peter W; Chen, Wen-Ming

    2012-09-01

    Four strains, designated JPY-345(T), JPY-347, JPY-366 and JPY-581, were isolated from nitrogen-fixing nodules on the roots of two species of Mimosa, Mimosa cordistipula and Mimosa misera, that are native to North East Brazil, and their taxonomic positions were investigated by using a polyphasic approach. All four strains grew at 15-43 °C (optimum 35 °C), at pH 4-7 (optimum pH 5) and with 0-2 % (w/v) NaCl (optimum 0 % NaCl). On the basis of 16S rRNA gene sequence analysis, strain JPY-345(T) showed 97.3 % sequence similarity to the closest related species Burkholderia soli GP25-8(T), 97.3 % sequence similarity to Burkholderia caryophylli ATCC25418(T) and 97.1 % sequence similarity to Burkholderia kururiensis KP23(T). The predominant fatty acids of the strains were C(18 : 1)ω7c (36.1 %), C(16 : 0) (19.8 %) and summed feature 3, comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c (11.5 %). The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 64.2-65.7 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. DNA-DNA hybridizations between the novel strain and recognized species of the genus Burkholderia yielded relatedness values of <51.8 %. On the basis of 16S rRNA and recA gene sequence similarities and chemotaxonomic and phenotypic data, the four strains represent a novel species in the genus Burkholderia, for which the name Burkholderia symbiotica sp. nov. is proposed. The type strain is JPY-345(T) (= LMG 26032(T) = BCRC 80258(T) = KCTC 23309(T)).

  20. Comparison of TaqMan PCR assays for detection of the melioidosis agent Burkholderia pseudomallei in clinical specimens.

    PubMed

    Kaestli, Mirjam; Richardson, Leisha J; Colman, Rebecca E; Tuanyok, Apichai; Price, Erin P; Bowers, Jolene R; Mayo, Mark; Kelley, Erin; Seymour, Meagan L; Sarovich, Derek S; Pearson, Talima; Engelthaler, David M; Wagner, David M; Keim, Paul S; Schupp, James M; Currie, Bart J

    2012-06-01

    Melioidosis is an emerging infectious disease caused by the soil bacterium Burkholderia pseudomallei. In diagnostic and forensic settings, molecular detection assays need not only high sensitivity with low limits of detection but also high specificity. In a direct comparison of published and newly developed TaqMan PCR assays, we found the TTS1-orf2 assay to be superior in detecting B. pseudomallei directly from clinical specimens. The YLF/BTFC multiplex assay (targeting the Yersinia-like fimbrial/Burkholderia thailandensis-like flagellum and chemotaxis region) also showed high diagnostic sensitivity and provides additional information on possible geographic origin.

  1. Isolation and Characterization of Burkholderia rinojensis sp. nov., a Non-Burkholderia cepacia Complex Soil Bacterium with Insecticidal and Miticidal Activities

    PubMed Central

    Fernandez, Lorena E.; Koivunen, Marja; Yang, April; Flor-Weiler, Lina; Marrone, Pamela G.

    2013-01-01

    Isolate A396, a bacterium isolated from a Japanese soil sample demonstrated strong insecticidal and miticidal activities in laboratory bioassays. The isolate was characterized through biochemical methods, fatty acid methyl ester (FAME) analysis, sequencing of 16S rRNA, multilocus sequence typing and analysis, and DNA-DNA hybridization. FAME analysis matched A396 to Burkholderia cenocepacia, but this result was not confirmed by 16S rRNA or DNA-DNA hybridization. 16S rRNA sequencing indicated closest matches with B. glumae and B. plantarii. DNA-DNA hybridization experiments with B. plantarii, B. glumae, B. multivorans, and B. cenocepacia confirmed the low genetic similarity (11.5 to 37.4%) with known members of the genus. PCR-based screening showed that A396 lacks markers associated with members of the B. cepacia complex. Bioassay results indicated two mechanisms of action: through ingestion and contact. The isolate effectively controlled beet armyworms (Spodoptera exigua; BAW) and two-spotted spider mites (Tetranychus urticae; TSSM). In diet overlay bioassays with BAW, 1% to 4% (vol/vol) dilution of the whole-cell broth caused 97% to 100% mortality 4 days postexposure, and leaf disc treatment bioassays attained 75% ± 22% mortality 3 days postexposure. Contact bioassays led to 50% larval mortality, as well as discoloration, stunting, and failure to molt. TSSM mortality reached 93% in treated leaf discs. Activity was maintained in cell-free supernatants and after heat treatment (60°C for 2 h), indicating that a secondary metabolite or excreted thermostable enzyme might be responsible for the activity. Based on these results, we describe the novel species Burkholderia rinojensis, a good candidate for the development of a biocontrol product against insect and mite pests. PMID:24096416

  2. Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepacia complex soil bacterium with insecticidal and miticidal activities.

    PubMed

    Cordova-Kreylos, Ana Lucia; Fernandez, Lorena E; Koivunen, Marja; Yang, April; Flor-Weiler, Lina; Marrone, Pamela G

    2013-12-01

    Isolate A396, a bacterium isolated from a Japanese soil sample demonstrated strong insecticidal and miticidal activities in laboratory bioassays. The isolate was characterized through biochemical methods, fatty acid methyl ester (FAME) analysis, sequencing of 16S rRNA, multilocus sequence typing and analysis, and DNA-DNA hybridization. FAME analysis matched A396 to Burkholderia cenocepacia, but this result was not confirmed by 16S rRNA or DNA-DNA hybridization. 16S rRNA sequencing indicated closest matches with B. glumae and B. plantarii. DNA-DNA hybridization experiments with B. plantarii, B. glumae, B. multivorans, and B. cenocepacia confirmed the low genetic similarity (11.5 to 37.4%) with known members of the genus. PCR-based screening showed that A396 lacks markers associated with members of the B. cepacia complex. Bioassay results indicated two mechanisms of action: through ingestion and contact. The isolate effectively controlled beet armyworms (Spodoptera exigua; BAW) and two-spotted spider mites (Tetranychus urticae; TSSM). In diet overlay bioassays with BAW, 1% to 4% (vol/vol) dilution of the whole-cell broth caused 97% to 100% mortality 4 days postexposure, and leaf disc treatment bioassays attained 75% ± 22% mortality 3 days postexposure. Contact bioassays led to 50% larval mortality, as well as discoloration, stunting, and failure to molt. TSSM mortality reached 93% in treated leaf discs. Activity was maintained in cell-free supernatants and after heat treatment (60°C for 2 h), indicating that a secondary metabolite or excreted thermostable enzyme might be responsible for the activity. Based on these results, we describe the novel species Burkholderia rinojensis, a good candidate for the development of a biocontrol product against insect and mite pests.

  3. Plant host and sugar alcohol induced exopolysaccharide biosynthesis in the Burkholderia cepacia complex.

    PubMed

    Bartholdson, S Josefin; Brown, Alan R; Mewburn, Ben R; Clarke, David J; Fry, Stephen C; Campopiano, Dominic J; Govan, John R W

    2008-08-01

    The species that presently constitute the Burkholderia cepacia complex (Bcc) have multiple roles; they include soil and water saprophytes, bioremediators, and plant, animal and human pathogens. Since the first description of pathogenicity in the Bcc was based on sour skin rot of onion bulbs, this study returned to this plant host to investigate the onion-associated phenotype of the Bcc. Many Bcc isolates, which were previously considered to be non-mucoid, produced copious amounts of exopolysaccharide (EPS) when onion tissue was provided as the sole nutrient. EPS production was not species-specific, was observed in isolates from both clinical and environmental sources, and did not correlate with the ability to cause maceration of onion tissue. Chemical analysis suggested that the onion components responsible for EPS induction were primarily the carbohydrates sucrose, fructose and fructans. Additional sugars were investigated, and all alcohol sugars tested were able to induce EPS production, in particular mannitol and glucitol. To investigate the molecular basis for EPS biosynthesis, we focused on the highly conserved bce gene cluster thought to be involved in cepacian biosynthesis. We demonstrated induction of the bce gene cluster by mannitol, and found a clear correlation between the inability of representatives of the Burkholderia cenocepacia ET12 lineage to produce EPS and the presence of an 11 bp deletion within the bceB gene, which encodes a glycosyltransferase. Insertional inactivation of bceB in Burkholderia ambifaria AMMD results in loss of EPS production on sugar alcohol media. These novel and surprising insights into EPS biosynthesis highlight the metabolic potential of the Bcc and show that a potential virulence factor may not be detected by routine laboratory culture. Our results also highlight a potential hazard in the use of inhaled mannitol as an osmolyte to improve mucociliary clearance in individuals with cystic fibrosis. PMID:18667584

  4. Dioxygenases in Burkholderia ambifaria and Yersinia pestis that hydroxylate the outer Kdo unit of lipopolysaccharide

    PubMed Central

    Chung, Hak Suk; Raetz, Christian R. H.

    2011-01-01

    Several Gram-negative pathogens, including Yersinia pestis, Burkholderia cepacia, and Acinetobacter haemolyticus, synthesize an isosteric analog of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo), known as d-glycero-d-talo-oct-2-ulosonic acid (Ko), in which the axial hydrogen atom at the Kdo 3-position is replaced with OH. Here we report a unique Kdo 3-hydroxylase (KdoO) from Burkholderia ambifaria and Yersinia pestis, encoded by the bamb_0774 (BakdoO) and the y1812 (YpkdoO) genes, respectively. When expressed in heptosyl transferase-deficient Escherichia coli, these genes result in conversion of the outer Kdo unit of Kdo2-lipid A to Ko in an O2-dependent manner. KdoO contains the putative iron-binding motif, HXDXn>40H. Reconstitution of KdoO activity in vitro with Kdo2-lipid A as the substrate required addition of Fe2+, α-ketoglutarate, and ascorbic acid, confirming that KdoO is a Fe2+/α-ketoglutarate/O2-dependent dioxygenase. Conversion of Kdo to Ko in Kdo2-lipid A conferred reduced susceptibility to mild acid hydrolysis. Although two enzymes that catalyze Fe2+/α-ketoglutarate/O2-dependent hydroxylation of deoxyuridine in fungal extracts have been reported previously, kdoO is the first example of a gene encoding a deoxy-sugar hydroxylase. Homologues of KdoO are found exclusively in Gram-negative bacteria, including the human pathogens Burkholderia mallei, Yersinia pestis, Klebsiella pneumoniae, Legionella longbeachae, and Coxiella burnetii, as well as the plant pathogen Ralstonia solanacearum. PMID:21178073

  5. Purine biosynthesis-deficient Burkholderia mutants are incapable of symbiotic accommodation in the stinkbug.

    PubMed

    Kim, Jiyeun Kate; Jang, Ho Am; Won, Yeo Jin; Kikuchi, Yoshitomo; Han, Sang Heum; Kim, Chan-Hee; Nikoh, Naruo; Fukatsu, Takema; Lee, Bok Luel

    2014-03-01

    The Riptortus-Burkholderia symbiotic system represents a promising experimental model to study the molecular mechanisms involved in insect-bacterium symbiosis due to the availability of genetically manipulated Burkholderia symbiont. Using transposon mutagenesis screening, we found a symbiosis-deficient mutant that was able to colonize the host insect but failed to induce normal development of host's symbiotic organ. The disrupted gene was identified as purL involved in purine biosynthesis. In vitro growth impairment of the purL mutant and its growth dependency on adenine and adenosine confirmed the functional disruption of the purine synthesis gene. The purL mutant also showed defects in biofilm formation, and this defect was not rescued by supplementation of purine derivatives. When inoculated to host insects, the purL mutant was initially able to colonize the symbiotic organ but failed to attain a normal infection density. The low level of infection density of the purL mutant attenuated the development of the host's symbiotic organ at early instar stages and reduced the host's fitness throughout the nymphal stages. Another symbiont mutant-deficient in a purine biosynthesis gene, purM, showed phenotypes similar to those of the purL mutant both in vitro and in vivo, confirming that the purL phenotypes are due to disrupted purine biosynthesis. These results demonstrate that the purine biosynthesis genes of the Burkholderia symbiont are critical for the successful accommodation of symbiont within the host, thereby facilitating the development of the host's symbiotic organ and enhancing the host's fitness values.

  6. Inhibition of co-colonizing cystic fibrosis-associated pathogens by Pseudomonas aeruginosa and Burkholderia multivorans.

    PubMed

    Costello, Anne; Reen, F Jerry; O'Gara, Fergal; Callaghan, Máire; McClean, Siobhán

    2014-07-01

    Cystic fibrosis (CF) is a recessive genetic disease characterized by chronic respiratory infections and inflammation causing permanent lung damage. Recurrent infections are caused by Gram-negative antibiotic-resistant bacterial pathogens such as Pseudomonas aeruginosa, Burkholderia cepacia complex (Bcc) and the emerging pathogen genus Pandoraea. In this study, the interactions between co-colonizing CF pathogens were investigated. Both Pandoraea and Bcc elicited potent pro-inflammatory responses that were significantly greater than Ps. aeruginosa. The original aim was to examine whether combinations of pro-inflammatory pathogens would further exacerbate inflammation. In contrast, when these pathogens were colonized in the presence of Ps. aeruginosa the pro-inflammatory response was significantly decreased. Real-time PCR quantification of bacterial DNA from mixed cultures indicated that Ps. aeruginosa significantly inhibited the growth of Burkholderia multivorans, Burkholderia cenocepacia, Pandoraea pulmonicola and Pandoraea apista, which may be a factor in its dominance as a colonizer of CF patients. Ps. aeruginosa cell-free supernatant also suppressed growth of these pathogens, indicating that inhibition was innate rather than a response to the presence of a competitor. Screening of a Ps. aeruginosa mutant library highlighted a role for quorum sensing and pyoverdine biosynthesis genes in the inhibition of B. cenocepacia. Pyoverdine was confirmed to contribute to the inhibition of B. cenocepacia strain J2315. B. multivorans was the only species that could significantly inhibit Ps. aeruginosa growth. B. multivorans also inhibited B. cenocepacia and Pa. apista. In conclusion, both Ps. aeruginosa and B. multivorans are capable of suppressing growth and virulence of co-colonizing CF pathogens.

  7. Genetic Analysis of the CDI Pathway from Burkholderia pseudomallei 1026b

    PubMed Central

    Edman, Natasha; Chaudhuri, Swarnava; Poole, Stephen J.; Manoil, Colin; Hayes, Christopher S.; Low, David A.

    2015-01-01

    Contact-dependent growth inhibition (CDI) is a mode of inter-bacterial competition mediated by the CdiB/CdiA family of two-partner secretion systems. CdiA binds to receptors on susceptible target bacteria, then delivers a toxin domain derived from its C-terminus. Studies with Escherichia coli suggest the existence of multiple CDI growth-inhibition pathways, whereby different systems exploit distinct target-cell proteins to deliver and activate toxins. Here, we explore the CDI pathway in Burkholderia using the CDIIIBp1026b system encoded on chromosome II of Burkholderia pseudomallei 1026b as a model. We took a genetic approach and selected Burkholderia thailandensis E264 mutants that are resistant to growth inhibition by CDIIIBp1026b. We identified mutations in three genes, BTH_I0359, BTH_II0599, and BTH_I0986, each of which confers resistance to CDIIIBp1026b. BTH_I0359 encodes a small peptide of unknown function, whereas BTH_II0599 encodes a predicted inner membrane transport protein of the major facilitator superfamily. The inner membrane localization of BTH_II0599 suggests that it may facilitate translocation of CdiA-CTIIBp1026b toxin from the periplasm into the cytoplasm of target cells. BTH_I0986 encodes a putative transglycosylase involved in lipopolysaccharide (LPS) synthesis. ∆BTH_I0986 mutants have altered LPS structure and do not interact with CDI+ inhibitor cells to the same extent as BTH_I0986+ cells, suggesting that LPS could function as a receptor for CdiAIIBp1026b. Although ∆BTH_I0359, ∆BTH_II0599, and ∆BTH_I0986 mutations confer resistance to CDIIIBp1026b, they provide no protection against the CDIE264 system deployed by B. thailandensis E264. Together, these findings demonstrate that CDI growth-inhibition pathways are distinct and can differ significantly even between closely related species. PMID:25786241

  8. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species.

    PubMed

    Caballero-Mellado, Jesús; Martínez-Aguilar, Lourdes; Paredes-Valdez, Guadalupe; Santos, Paulina Estrada-De los

    2004-07-01

    It was shown recently that the genus Burkholderia is rich in N2-fixing bacteria that are associated with plants. A group of these diazotrophic isolates with identical or very similar 16S rDNA restriction patterns [designated amplified rDNA restriction analysis (ARDRA) genotypes 13, 14 and 15] was selected and a polyphasic taxonomic study was performed, which included new isolates that were recovered from rhizospheres, rhizoplanes or internal tissues of maize, sugarcane and coffee plants. Morphological, physiological and biochemical features, as well as multi-locus enzyme electrophoresis profiles and whole-cell protein patterns, of 20 strains were analysed. In addition, analysis of cellular fatty acid profiles, 16S rDNA sequence analysis and DNA-DNA reassociation experiments were performed with representative strains. The taxonomic data indicated that the strains analysed belong to a novel diazotrophic Burkholderia species, for which the name Burkholderia unamae sp. nov. is proposed. Strain MTl-641T (=ATCC BAA-744T=CIP 107921T), isolated from the rhizosphere of maize, was designated as the type strain. B. unamae was found as an endophyte of plants grown in regions with climates ranging from semi-hot subhumid to hot humid, but not from plants grown in regions with semi-hot or hot dry climates. Moreover, B. unamae was isolated from rhizospheres and plants growing in soils with pH values in the range 4.5-7.1, but not from soils with pH values higher than 7.5. PMID:15280286

  9. Comparative analysis of two phenotypically-similar but genomically-distinct Burkholderia cenocepacia-specific bacteriophages

    PubMed Central

    2012-01-01

    Background Genomic analysis of bacteriophages infecting the Burkholderia cepacia complex (BCC) is an important preliminary step in the development of a phage therapy protocol for these opportunistic pathogens. The objective of this study was to characterize KL1 (vB_BceS_KL1) and AH2 (vB_BceS_AH2), two novel Burkholderia cenocepacia-specific siphoviruses isolated from environmental samples. Results KL1 and AH2 exhibit several unique phenotypic similarities: they infect the same B. cenocepacia strains, they require prolonged incubation at 30°C for the formation of plaques at low titres, and they do not form plaques at similar titres following incubation at 37°C. However, despite these similarities, we have determined using whole-genome pyrosequencing that these phages show minimal relatedness to one another. The KL1 genome is 42,832 base pairs (bp) in length and is most closely related to Pseudomonas phage 73 (PA73). In contrast, the AH2 genome is 58,065 bp in length and is most closely related to Burkholderia phage BcepNazgul. Using both BLASTP and HHpred analysis, we have identified and analyzed the putative virion morphogenesis, lysis, DNA binding, and MazG proteins of these two phages. Notably, MazG homologs identified in cyanophages have been predicted to facilitate infection of stationary phase cells and may contribute to the unique plaque phenotype of KL1 and AH2. Conclusions The nearly indistinguishable phenotypes but distinct genomes of KL1 and AH2 provide further evidence of both vast diversity and convergent evolution in the BCC-specific phage population. PMID:22676492

  10. Eradication of Burkholderia cepacia Using Inhaled Aztreonam Lysine in Two Patients with Bronchiectasis

    PubMed Central

    Iglesias, A.; Artiles, I.; Cabanillas, J. J.; Álvarez-Sala, R.; Prados, C.

    2014-01-01

    There are not many articles about the chronic bronchial infection/colonization in patients with underlying lung disease other than cystic fibrosis (CF), especially with non-CF bronchiectasis (NCFBQ). The prevalence of B. cepacia complex is not well known in NCFBQ. The vast majority of published clinical data on Burkholderia infection in individuals with CF is comprised of uncontrolled, anecdotal, and/or single center experiences, and no consensus has emerged regarding treatment. We present two cases diagnosed with bronchiectasis (BQ) of different etiology, with early pulmonary infection by B. cepacia complex, which was eradicated with inhaled aztreonam lysine. PMID:25295210

  11. Burkholderia cepacia endophthalmitis, in a penicillin allergic patient, following a ranibizumab injection.

    PubMed

    Saffra, Norman; Moriarty, Emily

    2014-01-01

    Burkholderia cepacia, a Gram-negative bacterium commonly found in water and soil, is a rare cause of endophthalmitis. The authors report a case of a penicillin-allergic patient who presented 15 days after an uneventful injection of ranibizumab for neovascular age-related macular degeneration with culture-positive B cepacia endophthalmitis. Initial antibiotic therapy using non-penicillin-based medications was not successful in eradicating the bacteria. Subsequent treatment with a third-generation cephalosporin resulted in complete resolution of the infection. B cepacia should be included among the bacterial species that may cause endophthalmitis after intravitreal injections. PMID:24526197

  12. Investigating early stages of biocorrosion with XPS: AISI 304 stainless steel exposed to Burkholderia species

    NASA Astrophysics Data System (ADS)

    Johansson, Leena-Sisko; Saastamoinen, Tuomas

    1999-04-01

    We have investigated the interactions of an exopolymer-producing bacteria, Burkholderia sp. with polished AISI 304 stainless steel substrates using X-ray photoelectron spectroscopy (XPS). Steel coupons were exposed to the pure bacteria culture in a specially designed flowcell for 6 h during which the experiment was monitored in situ with an optical microscope. XPS results verified the formation of biofilm containing extracellular polymer on all the samples exposed to bacteria. Sputter results indicated that some ions needed for metabolic processes were trapped within the biofilm. Changes in the relative Fe concentration and Fe 2p peak shape indicated that also iron had accumulated into the biofilm.

  13. Identification and cloning of four riboswitches from Burkholderia pseudomallei strain K96243

    NASA Astrophysics Data System (ADS)

    Munyati-Othman, Noor; Fatah, Ahmad Luqman Abdul; Piji, Mohd Al Akmarul Fizree Bin Md; Ramlan, Effirul Ikhwan; Raih, Mohd Firdaus

    2015-09-01

    Structured RNAs referred as riboswitches have been predicted to be present in the genome sequence of Burkholderia pseudomallei strain K96243. Four of the riboswitches were identified and analyzed through BLASTN, Rfam search and multiple sequence alignment. The RNA aptamers belong to the following riboswitch classifications: glycine riboswitch, cobalamin riboswitch, S-adenosyl-(L)-homocysteine (SAH) riboswitch and flavin mononucleotide (FMN) riboswitch. The conserved nucleotides for each aptamer were identified and were marked on the secondary structure generated by RNAfold. These riboswitches were successfully amplified and cloned for further study.

  14. Social interactions in the Burkholderia cepacia complex: biofilms and quorum sensing.

    PubMed

    Coenye, Tom

    2010-07-01

    Burkholderia cepacia complex bacteria are opportunistic pathogens that cause respiratory tract infections in susceptible patients, mainly people with cystic fibrosis. There is convincing evidence that B. cepacia complex bacteria can form biofilms, not only on abiotic surfaces (e.g., glass and plastics), but also on biotic surfaces such as epithelial cells, leading to the suggestion that biofilm formation plays a key role in persistent infection of cystic fibrosis lungs. This article presents an overview of the molecular mechanisms involved in B. cepacia complex biofilm formation, the increased resistance of sessile B. cepacia complex cells and the role of quorum sensing in B. cepacia complex biofilm formation.

  15. Advances and remaining uncertainties in the epidemiology of Burkholderia pseudomallei and melioidosis.

    PubMed

    Currie, Bart J

    2008-03-01

    Major advances have been made in molecular studies of Burkholderia pseudomallei and the immunology of melioidosis. However, there remain large gaps in understanding of the epidemiology of this enigmatic disease. Identified global distribution boundaries of melioidosis continue to expand. Recent data suggest Australian strains of B. pseudomallei may be ancestral to those from Southeast Asia, but the ecology of this environmental bacterium remains elusive. Despite the potential for rapidly progressive septicaemia, the critical virulence factors in B. pseudomallei remain to be clarified. Inhalation following aerosolization of B. pseudomallei may account for the high mortality when melioidosis occurs after severe weather events.

  16. The Promise of Bacteriophage Therapy for Burkholderia cepacia Complex Respiratory Infections

    PubMed Central

    Semler, Diana D.; Lynch, Karlene H.; Dennis, Jonathan J.

    2012-01-01

    In recent times, increased attention has been given to evaluating the efficacy of phage therapy, especially in scenarios where the bacterial infectious agent of interest is highly antibiotic resistant. In this regard, phage therapy is especially applicable to infections caused by the Burkholderia cepacia complex (BCC) since members of the BCC are antibiotic pan-resistant. Current studies in BCC phage therapy are unique from many other avenues of phage therapy research in that the investigation is not only comprised of phage isolation, in vitro phage characterization and assessment of in vivo infection model efficacy, but also adapting aerosol drug delivery techniques to aerosol phage formulation delivery and storage. PMID:22919592

  17. Endocarditis due to Burkholderia cepacia and an intracardiac foreign body in a renal transplant patient.

    PubMed

    Falcão Pedrosa Costa, André; Castelo Branco Cavalcanti, Frederico; Modesto dos Santos, Vitorino

    2014-02-01

    The authors describe the case of a renal transplant patient who developed late infective endocarditis associated with an intracardiac fragment of a catheter inserted 16 years before. Clinical presentation was anemia of undetermined cause and weight loss. Three blood cultures were positive for Burkholderia cepacia. Transesophageal echocardiography revealed a foreign body in the right atrium and right ventricle, confirmed by computed tomography. The patient underwent intravenous antibiotic therapy, followed by cardiac surgery to remove the foreign body. There were no postoperative complications, with improvement of anemia and stabilization of renal function.

  18. Burkholderia cepacia complex: distribution of genomovars among isolates from the maize rhizosphere in Italy.

    PubMed

    Fiore, A; Laevens, S; Bevivino, A; Dalmastri, C; Tabacchioni, S; Vandamme, P; Chiarini, L

    2001-02-01

    Burkholderia cepacia is a 'complex' in which seven genomic species or genomovars have so far been identified. It appears that all seven B. cepacia genomovars are capable of causing infections in vulnerable persons; in particular, the importance of Burkholderia multivorans (genomovar II) and B. cepacia genomovar III among cystic fibrosis isolates, especially epidemic ones, has been emphasized. In order to acquire a better comprehension of the genomovar composition of environmental populations of B. cepacia, 120 strains were isolated from the rhizosphere of maize plants cultivated in fields located in northern, central and southern Italy. The identification of the different genomovars was accomplished by a combination of molecular polymerase chain reaction (PCR)-based techniques, such as restriction fragment length polymorphism (RFLP) analysis of 16S rDNA (ARDRA), genomovar-specific PCR tests and RFLP analyses based on polymorphisms in the recA gene whole-cell protein electrophoresis. ARDRA analysis allowed us to distinguish between all B. cepacia genomovars except B. cepacia genomovar I, B. cepacia genomovar III and Burkholderia ambifaria (genomovar VII). The latter genomovars were differentiated by means of recA PCR tests and RFLP analyses. Among the rhizospheric isolates of B. cepacia, we found only B. cepacia genomovar I, B. cepacia genomovar III, Burkholderia vietnamiensis (genomovar V) and B. ambifaria. B. cepacia genomovars I and III and B. ambifaria were recovered from all three fields, whereas B. vietnamiensis was detected only in the population isolated from the field located in central Italy. Among strains isolated from northern and southern Italy, the most abundant genomovars were B. ambifaria and B. cepacia genomovar III respectively; in contrast, the population isolated in central Italy showed an even distribution of strains among genomovars. These results indicate that it is not possible to differentiate clinical and environmental strains, or

  19. ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants.

    PubMed

    Onofre-Lemus, Janette; Hernández-Lucas, Ismael; Girard, Lourdes; Caballero-Mellado, Jesús

    2009-10-01

    The genus Burkholderia includes pathogens of plants and animals and some human opportunistic pathogens, such as the Burkholderia cepacia complex (Bcc), but most species are nonpathogenic, plant associated, and rhizospheric or endophytic. Since rhizobacteria expressing ACC (1-aminocyclopropane-1-carboxylate) deaminase may enhance plant growth by lowering plant ethylene levels, in this work we investigated the presence of ACC deaminase activity and the acdS gene in 45 strains, most of which are plant associated, representing 20 well-known Burkholderia species. The results demonstrated that ACC deaminase activity is a widespread feature in the genus Burkholderia, since 18 species exhibited ACC deaminase activities in the range from 2 to 15 mumol of alpha-ketobutyrate/h/mg protein, which suggests that these species may be able to modulate ethylene levels and enhance plant growth. In these 18 Burkholderia species the acdS gene sequences were highly conserved (76 to 99% identity). Phylogenetic analysis of acdS gene sequences in Burkholderia showed tight clustering of the Bcc species, which were clearly distinct from diazotrophic plant-associated Burkholderia species. In addition, an acdS knockout mutant of the N(2)-fixing bacterium Burkholderia unamae MTl-641(T) and a transcriptional acdSp-gusA fusion constructed in this strain showed that ACC deaminase could play an important role in promotion of the growth of tomato plants. The widespread ACC deaminase activity in Burkholderia species and the common association of these species with plants suggest that this genus could be a major contributor to plant growth under natural conditions.

  20. Influence of the molybdenum cofactor biosynthesis on anaerobic respiration, biofilm formation and motility in Burkholderia thailandensis.

    PubMed

    Andreae, Clio A; Titball, Richard W; Butler, Clive S

    2014-01-01

    Burkholderia thailandensis is closely related to Burkholderia pseudomallei, a bacterial pathogen and the causative agent of melioidosis. B. pseudomallei can survive and persist within a hypoxic environment for up to one year and has been shown to grow anaerobically in the presence of nitrate. Currently, little is known about the role of anaerobic respiration in pathogenesis of melioidosis. Using B. thailandensis as a model, a library of 1344 transposon mutants was created to identify genes required for anaerobic nitrate respiration. One transposon mutant (CA01) was identified with an insertion in BTH_I1704 (moeA), a gene required for the molybdopterin biosynthetic pathway. This pathway is involved in the synthesis of a molybdopterin cofactor required for a variety of molybdoenzymes, including nitrate reductase. Disruption of molybdopterin biosynthesis prevented growth under anaerobic conditions, when using nitrate as the sole terminal electron acceptor. Defects in anaerobic respiration, nitrate reduction, motility and biofilm formation were observed for CA01. Mutant complementation with pDA-17:BTH_I1704 was able to restore anaerobic growth on nitrate, nitrate reductase activity and biofilm formation, but did not restore motility. This study highlights the potential importance of molybdoenzyme-dependent anaerobic respiration in the survival and virulence of B. thailandensis.

  1. Use of a recombinant burkholderia intracellular motility a protein for immunodiagnosis of glanders.

    PubMed

    Kumar, Subodh; Malik, Praveen; Verma, Shailendra Kumar; Pal, Vijai; Gautam, Vandana; Mukhopadhyay, Chiranjay; Rai, Ganga Prasad

    2011-09-01

    Glanders, caused by the Gram-negative, nonmotile bacterium Burkholderia mallei, is a contagious and highly fatal disease of equines. During the last decade, the number of glanders outbreaks has increased steadily. The disease also has high zoonotic significance and B. mallei is listed biological warfare agent. The complement fixation test (CFT) is a routinely used and internationally recognized test to screen equine sera for the glanders. However, discrepant results have been observed using the CFT. The low sensitivity and specificity of the CFT and enzyme-linked immunosorbent assay (ELISA) have been linked to the use of crude test antigens. We expressed a novel recombinant Burkholderia intracellular motility A (rBimA) protein in Escherichia coli for the diagnosis of equine glanders. Purified rBimA was used in an indirect ELISA format. All of the 21 true-positive serum samples used in the study tested positive, whereas only 17 of the 1,524 potentially negative sera tested positive by indirect ELISA, thus exhibiting 100% sensitivity and 98.88% specificity. Also, rBimA protein did not react with melioidosis patient and normal healthy human serum samples, showing its high specificity. The developed assay can be used as a simple and rapid tool for diagnosis of glanders in equine serum samples. An Indian patent (1328/DEL/2010) has been filed for the reagent.

  2. Burkholderia mallei CLH001 Attenuated Vaccine Strain Is Immunogenic and Protects against Acute Respiratory Glanders.

    PubMed

    Hatcher, Christopher L; Mott, Tiffany M; Muruato, Laura A; Sbrana, Elena; Torres, Alfredo G

    2016-08-01

    Burkholderia mallei is the causative agent of glanders, an incapacitating disease with high mortality rates in respiratory cases. Its endemicity and ineffective treatment options emphasize its public health threat and highlight the need for a vaccine. Live attenuated vaccines are considered the most viable vaccine strategy for Burkholderia, but single-gene-deletion mutants have not provided complete protection. In this study, we constructed the select-agent-excluded B. mallei ΔtonB Δhcp1 (CLH001) vaccine strain and investigated its ability to protect against acute respiratory glanders. Here we show that CLH001 is attenuated, safe, and effective at protecting against lethal B. mallei challenge. Intranasal administration of CLH001 to BALB/c and NOD SCID gamma (NSG) mice resulted in complete survival without detectable colonization or abnormal organ histopathology. Additionally, BALB/c mice intranasally immunized with CLH001 in a prime/boost regimen were fully protected against lethal challenge with the B. mallei lux (CSM001) wild-type strain.

  3. Protective response to subunit vaccination against intranasal Burkholderia mallei and B. pseudomallei challenge

    PubMed Central

    Whitlock, Gregory C.; Deeraksa, Arpaporn; Qazi, Omar; Judy, Barbara M.; Taylor, Katherine; Propst, Katie L.; Duffy, Angie J.; Johnson, Kate; Kitto, G. Barrie; Brown, Katherine A.; Dow, Steven W.; Torres, Alfredo G.; Estes, D. Mark

    2013-01-01

    Burkholderia mallei and B. pseudomallei are Gram-negative pathogenic bacteria, responsible for the diseases glanders and melioidosis, respectively. Furthermore, there is currently no vaccine available against these Burkholderia species. In this study, we aimed to identify protective proteins against these pathogens. Immunization with recombinant B. mallei Hcp1 (type VI secreted/structural protein), BimA (autotransporter protein), BopA (type III secreted protein), and B. pseudomallei LolC (ABC transporter protein) generated significant protection against lethal inhaled B. mallei ATCC23344 and B. pseudomallei 1026b challenge. Immunization with BopA elicited the greatest protective activity, resulting in 100% and 60% survival against B. mallei and B. pseudomallei challenge, respectively. Moreover, sera from recovered mice demonstrated reactivity with the recombinant proteins. Dendritic cells stimulated with each of the different recombinant proteins showed distinct cytokine patterns. In addition, T cells from immunized mice produced IFN-γ following in vitro re-stimulation. These results indicated therefore that it was possible to elicit cross-protective immunity against both B. mallei and B. pseudomallei by vaccinating animals with one or more novel recombinant proteins identified in B. mallei. PMID:24379895

  4. Protective response to subunit vaccination against intranasal Burkholderia mallei and B. pseudomallei challenge.

    PubMed

    Whitlock, Gregory C; Deeraksa, Arpaporn; Qazi, Omar; Judy, Barbara M; Taylor, Katherine; Propst, Katie L; Duffy, Angie J; Johnson, Kate; Kitto, G Barrie; Brown, Katherine A; Dow, Steven W; Torres, Alfredo G; Estes, D Mark

    2010-01-01

    Burkholderia mallei and B. pseudomallei are Gram-negative pathogenic bacteria, responsible for the diseases glanders and melioidosis, respectively. Furthermore, there is currently no vaccine available against these Burkholderia species. In this study, we aimed to identify protective proteins against these pathogens. Immunization with recombinant B. mallei Hcp1 (type VI secreted/structural protein), BimA (autotransporter protein), BopA (type III secreted protein), and B. pseudomallei LolC (ABC transporter protein) generated significant protection against lethal inhaled B. mallei ATCC23344 and B. pseudomallei 1026b challenge. Immunization with BopA elicited the greatest protective activity, resulting in 100% and 60% survival against B. mallei and B. pseudomallei challenge, respectively. Moreover, sera from recovered mice demonstrated reactivity with the recombinant proteins. Dendritic cells stimulated with each of the different recombinant proteins showed distinct cytokine patterns. In addition, T cells from immunized mice produced IFN-γ following in vitro re-stimulation. These results indicated therefore that it was possible to elicit cross-protective immunity against both B. mallei and B. pseudomallei by vaccinating animals with one or more novel recombinant proteins identified in B. mallei.

  5. Comparative Burkholderia pseudomallei natural history virulence studies using an aerosol murine model of infection

    PubMed Central

    Massey, Shane; Yeager, Linsey A.; Blumentritt, Carla A.; Vijayakumar, Sudhamathi; Sbrana, Elena; Peterson, Johnny W.; Brasel, Trevor; LeDuc, James W.; Endsley, Janice J.; Torres, Alfredo G.

    2014-01-01

    Melioidosis is an endemic disease caused by the bacterium Burkholderia pseudomallei. Concerns exist regarding B. pseudomallei use as a potential bio-threat agent causing persistent infections and typically manifesting as severe pneumonia capable of causing fatal bacteremia. Development of suitable therapeutics against melioidosis is complicated due to high degree of genetic and phenotypic variability among B. pseudomallei isolates and lack of data establishing commonly accepted strains for comparative studies. Further, the impact of strain variation on virulence, disease presentation, and mortality is not well understood. Therefore, this study evaluate and compare the virulence and disease progression of B. pseudomallei strains K96243 and HBPUB10303a, following aerosol challenge in a standardized BALB/c mouse model of infection. The natural history analysis of disease progression monitored conditions such as weight, body temperature, appearance, activity, bacteremia, organ and tissue colonization (pathological and histological analysis) and immunological responses. This study provides a detailed, direct comparison of infection with different B. pseudomallei strains and set up the basis for a standardized model useful to test different medical countermeasures against Burkholderia species. Further, this protocol serves as a guideline to standardize other bacterial aerosol models of infection or to define biomarkers of infectious processes caused by other intracellular pathogens. PMID:24603493

  6. Cyanide Toxicity to Burkholderia cenocepacia Is Modulated by Polymicrobial Communities and Environmental Factors

    PubMed Central

    Bernier, Steve P.; Workentine, Matthew L.; Li, Xiang; Magarvey, Nathan A.; O'Toole, George A.; Surette, Michael G.

    2016-01-01

    Microbes within polymicrobial communities can establish positive and negative interactions that have the potential to influence the overall behavior of the community. Pseudomonas aeruginosa and species of the Burkholderia cepacia complex (Bcc) can co-exist in the lower airways, however several studies have shown that P. aeruginosa can effectively kill the Bcc in vitro, for which hydrogen cyanide (HCN) was recently proposed to play a critical role. Here we show that modification of the environment (i.e., culture medium), long-term genetic adaptation of P. aeruginosa to the cystic fibrosis (CF) lung, or the addition of another bacterial species to the community can alter the sensitivity of Burkholderia cenocepacia to P. aeruginosa toxins. We specifically demonstrate that undefined rich media leads to higher susceptibility of B. cenocepacia to P. aeruginosa toxins like cyanide as compared to a synthetic medium (SCFM), that mimics the CF lung nutritional content. Overall, our study shows that the polymicrobial environment can have profound effects on negative interactions mediated by P. aeruginosa against B. cenocepacia. In fact, evolved P. aeruginosa or the presence of other species such as Staphylococcus aureus can directly abolish the direct competition mediated by cyanide and consequently maintaining a higher level of species diversity within the community. PMID:27242743

  7. Stenotrophomonas, Achromobacter, and nonmelioid Burkholderia species: antimicrobial resistance and therapeutic strategies.

    PubMed

    Abbott, Iain J; Peleg, Anton Y

    2015-02-01

    Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and nonmelioid Burkholderia species, namely, Burkholderia cepacia complex, collectively are a group of troublesome nonfermenters. Although not inherently virulent organisms, these environmental Gram negatives can complicate treatment in those who are immunocompromised, critically ill in the intensive care unit and those patients with suppurative lung disease, such as cystic fibrosis. Through a range of intrinsic antimicrobial resistance mechanisms, virulence factors, and the ability to survive in biofilms, these opportunistic pathogens are well suited to persist, both in the environment and the host. Treatment recommendations are hindered by the difficulties in laboratory identification, the lack of reproducibility of antimicrobial susceptibility testing, the lack of clinical breakpoints, and the absence of clinical outcome data. Despite trimethoprim-sulfamethoxazole often being the mainstay of treatment, resistance is widely encountered, and alternative regimens, including combination therapy, are often used. This review will highlight the important aspects and unique challenges that these three nonfermenters pose, and, in the absence of clinical outcome data, our therapeutic recommendations will be based on reported antimicrobial susceptibility and pharmacokinetic/pharmacodynamic profiles.

  8. Understanding the direction of evolution in Burkholderia glumae through comparative genomics.

    PubMed

    Lee, Hyun-Hee; Park, Jungwook; Kim, Jinnyun; Park, Inmyoung; Seo, Young-Su

    2016-02-01

    Members of the genus Burkholderia occupy remarkably diverse niches, with genome sizes ranging from ~3.75 to 11.29 Mbp. The genome of Burkholderia glumae ranges in size from ~5.81 to 7.89 Mbp. Unlike other plant pathogenic bacteria, B. glumae can infect a wide range of monocot and dicot plants. Comparative genome analysis of B. glumae strains can provide insight into genome variation as well as differential features of whole metabolism or pathways between multiple strains of B. glumae infecting the same host. Comparative analysis of complete genomes among B. glumae BGR1, B. glumae LMG 2196, and B. glumae PG1 revealed the largest departmentalization of genes onto separate replicons in B. glumae BGR1 and considerable downsizing of the genome in B. glumae LMG 2196. In addition, the presence of large-scale evolutionary events such as rearrangement and inversion and the development of highly specialized systems were found to be related to virulence-associated features in the three B. glumae strains. This connection may explain why this bacterium broadens its host range and reinforces its interaction with hosts.

  9. Intraspecific variation in Burkholderia caledonica: Europe vs. Africa and soil vs. endophytic isolates.

    PubMed

    Verstraete, Brecht; Peeters, Charlotte; van Wyk, Braam; Smets, Erik; Dessein, Steven; Vandamme, Peter

    2014-05-01

    The best-known interaction between bacteria and plants is the Rhizobium-legume symbiosis, but other bacteria-plant interactions exist, such as between Burkholderia and Rubiaceae (coffee family). A number of bacterial endophytes in Rubiaceae are closely related to the soil bacterium Burkholderia caledonica. This intriguing observation is explored by investigating isolates from different geographic regions (Western Europe vs. sub-Saharan Africa) and from different niches (free-living bacteria in soil vs. endophytic bacteria in host plants). The multilocus sequence analysis shows five clades, of which clade 1 with two basal isolates deviates from the rest and is therefore not considered further. All other isolates belong to the species B. caledonica, but two genetically different groups are identified. Group A holds only European isolates and group B holds isolates from Africa, with the exception of one European isolate. Although the European and African isolates are considered one species, some degree of genetic differentiation is evident. Endophytic isolates of B. caledonica are found in certain members of African Rubiaceae, but only in group B. Within this group, the endophytes cannot be distinguished from the soil isolates, which indicates a possible exchange of bacteria between soil and host plant.

  10. Biogeography of Burkholderia pseudomallei in the Torres Strait Islands of Northern Australia.

    PubMed

    Baker, Anthony; Mayo, Mark; Owens, Leigh; Burgess, Graham; Norton, Robert; McBride, William John Hannan; Currie, Bart J; Warner, Jeffrey

    2013-08-01

    It has been hypothesized that biogeographical boundaries are a feature of Burkholderia pseudomallei ecology, and they impact the epidemiology of melioidosis on a global scale. This study examined the relatedness of B. pseudomallei sourced from islands in the Torres Strait of Northern Australia to determine if the geography of isolated island communities is a determinant of the organisms' dispersal. Environmental sampling on Badu Island in the Near Western Island cluster recovered a single clone. An additional 32 clinical isolates from the region were sourced. Isolates were characterized using multilocus sequence typing and a multiplex PCR targeting the flagellum gene cluster. Gene cluster analysis determined that 69% of the isolates from the region encoded the ancestral Burkholderia thailandensis-like flagellum and chemotaxis gene cluster, a proportion significantly lower than that reported from mainland Australia and consistent with observations of isolates from southern Papua New Guinea. A goodness-of-fit test indicated that there was geographic localization of sequence types throughout the archipelago, with the exception of Thursday Island, the economic and cultural hub of the region. Sequence types common to mainland Australia and Papua New Guinea were identified. These findings demonstrate for the first time an environmental reservoir for B. pseudomallei in the Torres Strait, and multilocus sequence typing suggests that the organism is not randomly distributed throughout this region and that seawater may provide a barrier to dispersal of the organism. Moreover, these findings support an anthropogenic dispersal hypothesis for the spread of B. pseudomallei throughout this region.

  11. Interbacterial signaling via Burkholderia contact-dependent growth inhibition system proteins.

    PubMed

    Garcia, Erin C; Perault, Andrew I; Marlatt, Sara A; Cotter, Peggy A

    2016-07-19

    In prokaryotes and eukaryotes, cell-cell communication and recognition of self are critical to coordinate multicellular functions. Although kin and kind discrimination are increasingly appreciated to shape naturally occurring microbe populations, the underlying mechanisms that govern these interbacterial interactions are insufficiently understood. Here, we identify a mechanism of interbacterial signal transduction that is mediated by contact-dependent growth inhibition (CDI) system proteins. CDI systems have been characterized by their ability to deliver a polymorphic protein toxin into the cytoplasm of a neighboring bacterium, resulting in growth inhibition or death unless the recipient bacterium produces a corresponding immunity protein. Using the model organism Burkholderia thailandensis, we show that delivery of a catalytically active CDI system toxin to immune (self) bacteria results in gene expression and phenotypic changes within the recipient cells. Termed contact-dependent signaling (CDS), this response promotes biofilm formation and other community-associated behaviors. Engineered strains that are isogenic with B. thailandensis, except the DNA region encoding the toxin and immunity proteins, did not display CDS, whereas a strain of Burkholderia dolosa producing a nearly identical toxin-immunity pair induced signaling in B. thailandensis Our data indicate that bcpAIOB loci confer dual benefits; they direct antagonism toward non-self bacteria and promote cooperation between self bacteria, with self being defined by the bcpAIOB allele and not by genealogic relatedness. PMID:27335458

  12. Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation.

    PubMed

    Eberl, Leo; Tümmler, Burkhard

    2004-09-01

    The Gram-negative bacteria Pseudomonas aeruginosa and Burkholderia cepacia are opportunistic human pathogens that are responsible for severe nosocomial infections in immunocompromised patients and are the major pathogens in cystic fibrosis (CF). The two bacteria not only inhabit the same environmental niches but can also form mixed biofilms in the lungs of CF patients. Hence, it appears very likely that the two organisms are capable of interacting with each other. Work of the past few years has shown that both bacteria utilize quorum-sensing systems, which rely on N-acyl-homoserine lactone signal molecules, to control the expression of virulence factors and biofilm development. Most importantly, evidence has been presented that these signal molecules also serve as a universal language for communication between the two organisms. Moreover, analyses of the diversity in P. aeruginosa revealed the presence of genome islands that contain genes that are highly homologous to genes identified in strains of Burkholderia sp. This finding suggests that there is a frequent exchange of genetic material between the two organisms.

  13. Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia sp.

    PubMed

    Lopes, Mateus Schreiner Garcez; Gomez, José Gregório Cabrera; Taciro, Marilda Keico; Mendonça, Thatiane Teixeira; Silva, Luiziana Ferreira

    2014-09-01

    Burkholderia sp. F24, originally isolated from soil, was capable of growth on xylose and removed organic inhibitors present in a hemicellulosic hydrolysate and simultaneously produced poly-3-hydroxybutyrate (P3HB). Using non-detoxified hydrolysate, Burkholderia sp. F24 reached a cell dry weight (CDW) of 6.8 g L(-1), containing 48 % of P3HB and exhibited a volumetric productivity (PP3HB) of 0.10 g L(-1) h(-1). Poly-3-hydroxybutyrate-co-3-hydroxyvalerate copolymers (P3HB-co-3HV) were produced using xylose and levulinic acid (LA) as carbon sources. In shake flask cultures, the 3HV content in the copolymer increased from 9 to 43 mol% by adding LA from 1.0 to 5.0 g L(-1). In high cell density cultivation using concentrated hemicellulosic hydrolysate F24 reached 25.04 g L(-1) of CDW containing 49 % of P3HB and PP3HB of 0.28 g L(-1 )h(-1). Based on these findings, second-generation ethanol and bioplastics from sugarcane bagasse is proposed. PMID:25059637

  14. Outbreak of Subclinical Mastitis in a Flock of Dairy Sheep Associated with Burkholderia cepacia Complex Infection

    PubMed Central

    Berriatua, E.; Ziluaga, I.; Miguel-Virto, C.; Uribarren, P.; Juste, R.; Laevens, S.; Vandamme, P.; Govan, J. R. W.

    2001-01-01

    An outbreak of subclinical mastitis in a flock of 620 milking sheep was investigated. Microbiological and epidemiological analyses identified the causative agent as belonging to the Burkholderia cepacia complex (formerly Pseudomonas cepacia). Every ewe in the milking flock was individually tested for subclinical mastitis on two separate occasions, 6 weeks apart, by the California (rapid) mastitis test (CMT). The proportion of CMT-positive ewes was 69 of 393 (17.6%) on the first sampling and 27 of 490 (5.5%) on the second sampling. Pure B. cepacia cultures identified with the API 20 NE system were grown from 64 of 96 (66.7%) CMT-positive ewes and from 1 of 33 (3.0%) CMT-negative ewes. Statistical analysis confirmed the significant association between a positive CMT result and a positive culture result for B. cepacia complex. Additional polyphasic taxonomic analyses of eight isolates showed that seven belonged to B. cepacia genomovar III; the remaining isolate was identified as Burkholderia vietnamiensis (formerly B. cepacia genomovar V). Bacteriological investigation of samples from milking equipment and other environmental sites failed to identify “B. cepacia” in any of the samples taken. To our knowledge, this is the first report of an outbreak of natural infection in animals caused by B. cepacia complex and the first description of B. cepacia complex infection in sheep. PMID:11230416

  15. Synthesis of a selective inhibitor of a fucose binding bacterial lectin from Burkholderia ambifaria.

    PubMed

    Richichi, Barbara; Imberty, Anne; Gillon, Emilie; Bosco, Rosa; Sutkeviciute, Ieva; Fieschi, Franck; Nativi, Cristina

    2013-06-28

    Burkholderia ambifaria is a bacterium member of the Burkholderia cepacia complex (BCC), a closely related group of Gram-negative bacteria responsible for "cepacia syndrome" in immunocompromised patients. B. ambifaria produces BambL, a fucose-binding lectin that displays fine specificity to human fucosylated epitopes. Here, we report the first example of a synthetic ligand able to selectively bind, in the micromolar range, the pathogen-lectin BambL. The synthetic routes for the preparation of the α conformationally constrained fucoside are described, focusing on a totally diastereoselective inverse electron demand [4 + 2] Diels-Alder reaction. Isothermal titration calorimetry (ITC) demonstrated that this compound binds to the pathogen-associated lectin BambL with an affinity comparable to that of natural fucose-containing oligosaccharides. No binding was observed by LecB, a fucose-binding lectin from Pseudomonas aeruginosa, and the differences in affinity between the two lectins could be rationalized by modeling. Furthermore, SPR analyses showed that this fucomimetic does not bind to the human fucose-binding lectin DC-SIGN, thus supporting the selective binding profile towards B. ambifaria lectin.

  16. Incidental Splenic Granuloma Due to Burkholderia pseudomallei: A Case of Asymptomatic Latent Melioidosis?

    PubMed

    Chow, Tak Kuan; Eu, Lin Chuan; Chin, Kin Fah; Ong, Kien Chai; Pailoor, Jayalakshmi; Vadivelu, Jamunarani; Wong, Kum Thong

    2016-03-01

    We report a rare case of an asymptomatic latent melioidosis lesion in a posttraumatic splenectomy specimen from a diabetic patient. The 2-cm yellowish, lobulated lesion was found in the splenic parenchyma well away from the traumatized areas. Microscopically, it consisted of a central area of necrosis and exudate surrounded by macrophages, epithelioid cells, lymphocytes, and occasional multinucleated giant cells. Burkholderia bacilli were detected by a novel in situ hybridization (ISH) assay, and confirmed by polymerase chain reaction and sequencing to be Burkholderia pseudomallei. As melioidosis was not suspected initially, bacterial culture was not done but electron microscopy showed morphologically viable and dividing bacilli in the lesion. Moreover, the surgical wound became infected with B. pseudomallei several days post-surgery. After treatment with ceftazidime and trimethoprim/sulfamethoxazole, the wound infection cleared. We believe this could be a unique case of asymptomatic latent melioidosis in the spleen. In endemic countries, chronic granulomas should be investigated for B. pseudomallei infection, and if available, ISH may be helpful for diagnosis.

  17. Application of lipase from Burkholderia cepacia in the degradation of agro-industrial effluent.

    PubMed

    Mello Bueno, Pabline Rafaella; de Oliveira, Tatianne Ferreira; Castiglioni, Gabriel Luis; Soares Júnior, Manoel Soares; Ulhoa, Cirano Jose

    2015-01-01

    This study aimed to analyze the physical and chemical characteristics of Amano PS commercial lipase - Burkholderia cepacia and lipase produced by Burkholderia cepacia strain ATCC 25416, in addition to studying the hydrolysis of agro-industrial effluent collected in a fried potato industry. The optimum temperature for increasing lipase activity was 37 °C. The temperature increase caused a decrease in thermostability of lipase, and the commercial lipase was less stable, with values of 10.5, 4.6 and 4.9%, respectively, lower than those obtained by lipase from strain ATCC 25416, at temperatures of 40, 50 and 60 °C. The enzymatic activity was higher in alkaline conditions, achieving better results at pH 8.0. The pH was the variable that most influenced the hydrolysis of triacylglycerides of the agro-industrial effluent, followed by enzyme concentration, and volume of gum arabic used in the reaction medium. Thus, it can be observed that the enzymatic hydrolytic process of the studied effluent presents a premising contribution to reduction of environmental impacts of potato chip processing industries. PMID:25860696

  18. An enantioselective amidase from Burkholderia multivorans for the stereoselective synthesis of esfenvalerate.

    PubMed

    Lee, Sang-Hyun; Park, Oh-Jin; Shin, Hyun-Jae

    2014-07-01

    Using racemic (R,S)-2-(4-chlorophenyl)-3-methylbutyramide, an intermediate for the chiral pyrethroid insecticide Esfenvalerate, as a sole nitrogen source in a minimal medium, several strains with high enatioselectivity (≥98%) were isolated by enrichment techniques. One of the strains, LG 31-3, was identified as Burkholderia multivorans, based on physiological and morphological tests by a standardized Biolog station for carbon source utilization. A novel amidase was purified from B. mutivorans LG 31-3 and characterized. The enzyme exhibited (S)- selective amidase activity on racemic (R,S)-2-(4-chlorophenyl)-3-methylbutyramide. Addition of the racemic amide induced the production of the enantioselective amidase. The molecular mass of the amidase on SDS-PAGE analysis was shown to be 50 kDa. The purified amidase was subjected to proteolytic digestion with a modified trypsin. The N-terminal and internal amino acid sequences of the purified amidase showed a high sequence homology with those deduced from a gene named YP_366732.1 encoding indole acetimide hydrolase from Burkholderia sp. 383. PMID:24722372

  19. Tangled bank of experimentally evolved Burkholderia biofilms reflects selection during chronic infections.

    PubMed

    Traverse, Charles C; Mayo-Smith, Leslie M; Poltak, Steffen R; Cooper, Vaughn S

    2013-01-15

    How diversity evolves and persists in biofilms is essential for understanding much of microbial life, including the uncertain dynamics of chronic infections. We developed a biofilm model enabling long-term selection for daily adherence to and dispersal from a plastic bead in a test tube. Focusing on a pathogen of the cystic fibrosis lung, Burkholderia cenocepacia, we sequenced clones and metagenomes to unravel the mutations and evolutionary forces responsible for adaptation and diversification of a single biofilm community during 1,050 generations of selection. The mutational patterns revealed recurrent evolution of biofilm specialists from generalist types and multiple adaptive alleles at relatively few loci. Fitness assays also demonstrated strong interference competition among contending mutants that preserved genetic diversity. Metagenomes from five other independently evolved biofilm lineages revealed extraordinary mutational parallelism that outlined common routes of adaptation, a subset of which was found, surprisingly, in a planktonic population. These mutations in turn were surprisingly well represented among mutations that evolved in cystic fibrosis isolates of both Burkholderia and Pseudomonas. These convergent pathways included altered metabolism of cyclic diguanosine monophosphate, polysaccharide production, tricarboxylic acid cycle enzymes, global transcription, and iron scavenging. Evolution in chronic infections therefore may be driven by mutations in relatively few pathways also favored during laboratory selection, creating hope that experimental evolution may illuminate the ecology and selective dynamics of chronic infections and improve treatment strategies.

  20. Effect of Fusarium verticillioides on maize-root-associated Burkholderia cenocepacia populations.

    PubMed

    Bevivino, Annamaria; Peggion, Verena; Chiarini, Luigi; Tabacchioni, Silvia; Cantale, Cristina; Dalmastri, Claudia

    2005-12-01

    Burkholderia cepacia complex (Bcc) bacteria are naturally present in the rhizosphere of several crop plants and have been found to antagonize a wide range of important plant pathogens. In this study, we evaluated the effect of the pathogenic fungus Fusarium verticillioides on Bcc populations recovered from the roots of Zea mays plants. Maize plants were cultivated under greenhouse conditions and bacterial colonies were randomly isolated from distinct root portions of Fusarium-treated and control plants. We obtained a total of 120 Bcc isolates which all belonged to the species Burkholderia cenocepacia, a species of the Bcc widely distributed in natural habitats such as the rhizosphere of several crop plants. Results obtained revealed that the presence of the plant pathogen F. verticillioides had an effect at the root colonization level of B. cenocepacia populations, since an increase in indigenous B. cenocepacia bacteria was found in the rhizospheres of maize plants grown in infested soil, compared to the rhizospheres of control plants. The analysis of diversity indices as well as the investigation of genetic polymorphism of B. cenocepacia strains, isolated from Fusarium-treated and control root portions, revealed greater genetic variability in the presence of F. verticillioides, especially in the terminal root system portion. Finally, all B. cenocepacia isolates were also tested for in vitro inhibition of F. verticillioides growth as a functional property. Our results revealed that all B. cenocepacia isolates were able to restrict in vitro fungal growth, suggesting that there was no relationship between genetic polymorphism and biocontrol traits. PMID:16085398

  1. Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia sp.

    PubMed

    Lopes, Mateus Schreiner Garcez; Gomez, José Gregório Cabrera; Taciro, Marilda Keico; Mendonça, Thatiane Teixeira; Silva, Luiziana Ferreira

    2014-09-01

    Burkholderia sp. F24, originally isolated from soil, was capable of growth on xylose and removed organic inhibitors present in a hemicellulosic hydrolysate and simultaneously produced poly-3-hydroxybutyrate (P3HB). Using non-detoxified hydrolysate, Burkholderia sp. F24 reached a cell dry weight (CDW) of 6.8 g L(-1), containing 48 % of P3HB and exhibited a volumetric productivity (PP3HB) of 0.10 g L(-1) h(-1). Poly-3-hydroxybutyrate-co-3-hydroxyvalerate copolymers (P3HB-co-3HV) were produced using xylose and levulinic acid (LA) as carbon sources. In shake flask cultures, the 3HV content in the copolymer increased from 9 to 43 mol% by adding LA from 1.0 to 5.0 g L(-1). In high cell density cultivation using concentrated hemicellulosic hydrolysate F24 reached 25.04 g L(-1) of CDW containing 49 % of P3HB and PP3HB of 0.28 g L(-1 )h(-1). Based on these findings, second-generation ethanol and bioplastics from sugarcane bagasse is proposed.

  2. Use of Whole-Genome Sequencing to Link Burkholderia pseudomallei from Air Sampling to Mediastinal Melioidosis, Australia

    PubMed Central

    Price, Erin P.; Mayo, Mark; Kaestli, Mirjam; Theobald, Vanessa; Harrington, Ian; Harrington, Glenda; Sarovich, Derek S.

    2015-01-01

    The frequency with which melioidosis results from inhalation rather than percutaneous inoculation or ingestion is unknown. We recovered Burkholderia pseudomallei from air samples at the residence of a patient with presumptive inhalational melioidosis and used whole-genome sequencing to link the environmental bacteria to B. pseudomallei recovered from the patient. PMID:26488732

  3. South African Papilionoid Legumes Are Nodulated by Diverse Burkholderia with Unique Nodulation and Nitrogen-Fixation Loci

    PubMed Central

    Beukes, Chrizelle W.; Venter, Stephanus N.; Law, Ian J.; Phalane, Francina L.; Steenkamp, Emma T.

    2013-01-01

    The root-nodule bacteria of legumes endemic to the Cape Floristic Region are largely understudied, even though recent reports suggest the occurrence of nodulating Burkholderia species unique to the region. In this study, we considered the diversity and evolution of nodulating Burkholderia associated with the endemic papilionoid tribes Hypocalypteae and Podalyrieae. We identified distinct groups from verified rhizobial isolates by phylogenetic analyses of the 16S rRNA and recA housekeeping gene regions. In order to gain insight into the evolution of the nodulation and diazotrophy of these rhizobia we analysed the genes encoding NifH and NodA. The majority of these 69 isolates appeared to be unique, potentially representing novel species. Evidence of horizontal gene transfer determining the symbiotic ability of these Cape Floristic Region isolates indicate evolutionary origins distinct from those of nodulating Burkholderia from elsewhere in the world. Overall, our findings suggest that Burkholderia species associated with fynbos legumes are highly diverse and their symbiotic abilities have unique ancestries. It is therefore possible that the evolution of these bacteria is closely linked to the diversification and establishment of legumes characteristic of the Cape Floristic Region. PMID:23874611

  4. Inactivation of Burkholderia cepacia Complex Phage KS9 gp41 Identifies the Phage Repressor and Generates Lytic Virions▿ †

    PubMed Central

    Lynch, Karlene H.; Seed, Kimberley D.; Stothard, Paul; Dennis, Jonathan J.

    2010-01-01

    The Burkholderia cepacia complex (BCC) is made up of at least 17 species of Gram-negative opportunistic bacterial pathogens that cause fatal infections in patients with cystic fibrosis and chronic granulomatous disease. KS9 (vB_BcenS_KS9), one of a number of temperate phages isolated from BCC species, is a prophage of Burkholderia pyrrocinia LMG 21824. Transmission electron micrographs indicate that KS9 belongs to the family Siphoviridae and exhibits the B1 morphotype. The 39,896-bp KS9 genome, comprised of 50 predicted genes, integrates into the 3′ end of the LMG 21824 GTP cyclohydrolase II open reading frame. The KS9 genome is most similar to uncharacterized prophage elements in the genome of B. cenocepacia PC184 (vB_BcenZ_ PC184), as well as Burkholderia thailandensis phage φE125 and Burkholderia pseudomallei phage φ1026b. Using molecular techniques, we have disrupted KS9 gene 41, which exhibits similarity to genes encoding phage repressors, producing a lytic mutant named KS9c. This phage is incapable of stable lysogeny in either LMG 21824 or B. cenocepacia strain K56-2 and rescues a Galleria mellonella infection model from experimental B. cenocepacia K56-2 infections at relatively low multiplicities of infection. These results readily demonstrate that temperate phages can be genetically engineered to lytic form and that these modified phages can be used to treat bacterial infections in vivo. PMID:19939932

  5. Draft Genome Sequence of Burkholderia stabilis LA20W, a Trehalose Producer That Uses Levulinic Acid as a Substrate

    PubMed Central

    Sato, Yuya; Koike, Hideaki; Kondo, Susumu; Hori, Tomoyuki; Kanno, Manabu; Kimura, Nobutada; Morita, Tomotake; Kirimura, Kohtaro

    2016-01-01

    Burkholderia stabilis LA20W produces trehalose using levulinic acid (LA) as a substrate. Here, we report the 7.97-Mb draft genome sequence of B. stabilis LA20W, which will be useful in investigations of the enzymes involved in LA metabolism and the mechanism of LA-induced trehalose production. PMID:27491978

  6. Live imaging of symbiosis: spatiotemporal infection dynamics of a GFP-labelled Burkholderia symbiont in the bean bug Riptortus pedestris.

    PubMed

    Kikuchi, Yoshitomo; Fukatsu, Takema

    2014-03-01

    Many insects possess endosymbiotic bacteria inside their body, wherein intimate interactions occur between the partners. While recent technological advancements have deepened our understanding of metabolic and evolutionary features of the symbiont genomes, molecular mechanisms underpinning the intimate interactions remain difficult to approach because the insect symbionts are generally uncultivable. The bean bug Riptortus pedestris is associated with the betaproteobacterial Burkholderia symbiont in a posterior region of the midgut, which develops numerous crypts harbouring the symbiont extracellularly. Distinct from other insect symbiotic systems, R. pedestris acquires the Burkholderia symbiont not by vertical transmission but from the environment every generation. By making use of the cultivability and the genetic tractability of the symbiont, we constructed a transgenic Burkholderia strain labelled with green fluorescent protein (GFP), which enabled detailed observation of spatiotemporal dynamics and the colonization process of the symbiont in freshly prepared specimens. The symbiont live imaging revealed that, at the second instar, colonization of the symbiotic midgut M4 region started around 6 h after inoculation (hai). By 24 hai, the symbiont cells appeared in the main tract and also in several crypts of the M4. By 48 hai, most of the crypts were colonized by the symbiont cells. By 72 hai, all the crypts were filled up with the symbiont cells and the symbiont localization pattern continued during the subsequent nymphal development. Quantitative PCR of the symbiont confirmed the infection dynamics quantitatively. These results highlight the stinkbug-Burkholderia gut symbiosis as an unprecedented model for comprehensive understanding of molecular mechanisms underpinning insect symbiosis.

  7. Strains of Burkholderia cenocepacia genomovar IIIA possessing the cblA gene that are distinct from ET12.

    PubMed

    Turton, Jane F; O'Brien, Emily; Megson, Brian; Kaufmann, Mary E; Pitt, Tyrone L

    2009-05-01

    Three strains of Burkholderia cenocepacia genomovar IIIA that were polymerase chain reaction positive for cblA, bcrA, and the epidemic strain marker, but were distinct from representatives of ET12 by pulsed-field gel electrophoresis, are described. One of these strains was shown to express cable pili by electron microscopy.

  8. South african papilionoid legumes are nodulated by diverse burkholderia with unique nodulation and nitrogen-fixation Loci.

    PubMed

    Beukes, Chrizelle W; Venter, Stephanus N; Law, Ian J; Phalane, Francina L; Steenkamp, Emma T

    2013-01-01

    The root-nodule bacteria of legumes endemic to the Cape Floristic Region are largely understudied, even though recent reports suggest the occurrence of nodulating Burkholderia species unique to the region. In this study, we considered the diversity and evolution of nodulating Burkholderia associated with the endemic papilionoid tribes Hypocalypteae and Podalyrieae. We identified distinct groups from verified rhizobial isolates by phylogenetic analyses of the 16S rRNA and recA housekeeping gene regions. In order to gain insight into the evolution of the nodulation and diazotrophy of these rhizobia we analysed the genes encoding NifH and NodA. The majority of these 69 isolates appeared to be unique, potentially representing novel species. Evidence of horizontal gene transfer determining the symbiotic ability of these Cape Floristic Region isolates indicate evolutionary origins distinct from those of nodulating Burkholderia from elsewhere in the world. Overall, our findings suggest that Burkholderia species associated with fynbos legumes are highly diverse and their symbiotic abilities have unique ancestries. It is therefore possible that the evolution of these bacteria is closely linked to the diversification and establishment of legumes characteristic of the Cape Floristic Region. PMID:23874611

  9. Association of the melioidosis agent Burkholderia pseudomallei with water parameters in rural water supplies in Northern Australia.

    PubMed

    Draper, A D K; Mayo, M; Harrington, G; Karp, D; Yinfoo, D; Ward, L; Haslem, A; Currie, B J; Kaestli, M

    2010-08-01

    We analyzed water parameters and the occurrence of the melioidosis agent Burkholderia pseudomallei in 47 water bores in Northern Australia. B. pseudomallei was associated with soft, acidic bore water of low salinity but high iron levels. This finding aids in identifying water supplies at risk of contamination with this pathogenic bacterium.

  10. Degradation of Chlorobenzenes at Nanomolar Concentrations by Burkholderia sp. Strain PS14 in Liquid Cultures and in Soil

    PubMed Central

    Rapp, Peter; Timmis, Kenneth N.

    1999-01-01

    The utilization of 1,2,4,5-tetrachloro-, 1,2,4-trichloro-, the three isomeric dichlorobenzenes and fructose as the sole carbon and energy sources at nanomolar concentrations was studied in batch experiments with Burkholderia sp. strain PS14. In liquid culture, all chlorobenzenes were metabolized within 1 h from their initial concentration of 500 nM to below their detection limits of 0.5 nM for 1,2,4,5-tetrachloro- and 1,2,4-trichlorobenzene and 7.5 nM for the three dichlorobenzene isomers, with 63% mineralization of the tetra- and trichloroisomers. Fructose at the same initial concentration was, in contrast, metabolized over a 4-h incubation period down to a residual concentration of approximately 125 nM with 38% mineralization during this time. In soil microcosms, Burkholderia sp. strain PS14 metabolized tetrachlorobenzene present at 64.8 ppb and trichlorobenzene present at 54.4 ppb over a 72-h incubation period to below the detection limits of 0.108 and 0.09 ppb, respectively, with approximately 80% mineralization. A high sorptive capacity of Burkholderia sp. strain PS14 for 1,2,4,5-tetrachlorobenzene was found at very low cell density. The results demonstrate that Burkholderia sp. strain PS14 exhibits a very high affinity for chlorobenzenes at nanomolar concentrations. PMID:10347041

  11. Chronic Burkholderia multivorans bronchial infection in a non-cystic fibrosis individual with mannose binding lectin deficiency

    PubMed Central

    Whitehouse, J; Exley, A; Foweraker, J; Bilton, D

    2005-01-01

    The case history is presented of a woman with multiple respiratory infections and mannose binding lectin (MBL) deficiency but no evidence of bronchiectasis who developed a chronic Burkholderia multivorans infection. Careful microbiological assessment is needed in patients with recurrent respiratory infection and the presence of B multivorans should trigger further immunological investigation including assessment of MBL status. PMID:15681508

  12. Burkholderia cenocepacia Strain CEIB S5-1, a Rhizosphere-Inhabiting Bacterium with Potential in Bioremediation

    PubMed Central

    Martínez-Ocampo, Fernando; Lozano-Aguirre Beltrán, Luis Fernando; Hernández-Mendoza, Armando; Rojas-Espinoza, Luis Enrique; Popoca-Ursino, Elida Carolina; Ortiz-Hernández, María Laura; Sánchez-Salinas, Enrique; Ramos Quintana, Fernando

    2015-01-01

    Burkholderia cenocepacia is considered an opportunistic pathogen from humans and may cause disease in plants. A bioprospection from a plaguicide-contaminated agricultural field in Mexico identified several methyl parathion-degrading bacteria. Here, we report the draft genome sequence of B. cenocepacia strain CEIB S5-1, which gave us clues into ecological biodiversity. PMID:25744996

  13. Proof that Burkholderia Strains Form Effective Symbioses with Legumes: a Study of Novel Mimosa-Nodulating Strains from South America

    PubMed Central

    Chen, Wen-Ming; de Faria, Sergio M.; Straliotto, Rosângela; Pitard, Rosa M.; Simões-Araùjo, Jean L.; Chou, Jui-Hsing; Chou, Yi-Ju; Barrios, Edmundo; Prescott, Alan R.; Elliott, Geoffrey N.; Sprent, Janet I.; Young, J. Peter W.; James, Euan K.

    2005-01-01

    Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other β-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known β-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes. PMID:16269788

  14. Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America.

    PubMed

    Chen, Wen-Ming; de Faria, Sergio M; Straliotto, Rosângela; Pitard, Rosa M; Simões-Araùjo, Jean L; Chou, Jui-Hsing; Chou, Yi-Ju; Barrios, Edmundo; Prescott, Alan R; Elliott, Geoffrey N; Sprent, Janet I; Young, J Peter W; James, Euan K

    2005-11-01

    Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other beta-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known beta-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes.

  15. Draft Genome Sequence of Burkholderia sp. Strain PML1(12), an Ectomycorrhizosphere-Inhabiting Bacterium with Effective Mineral-Weathering Ability.

    PubMed

    Uroz, Stéphane; Oger, Phil

    2015-01-01

    We report the draft genome sequence of Burkholderia sp. PML1(12), a soil bacterium isolated from the Oak-Scleroderma citrinum ectomycorrhizosphere in the experimental forest site of Breuil-Chenue (France). PMID:26205858

  16. Draft Genome Sequence of Burkholderia sp. Strain PML1(12), an Ectomycorrhizosphere-Inhabiting Bacterium with Effective Mineral-Weathering Ability

    PubMed Central

    Oger, Phil

    2015-01-01

    We report the draft genome sequence of Burkholderia sp. PML1(12), a soil bacterium isolated from the Oak-Scleroderma citrinum ectomycorrhizosphere in the experimental forest site of Breuil-Chenue (France). PMID:26205858

  17. IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE USING BURKHOLDERIA CEPACIA G4 PR1: ANALYSIS OF MICROBIAL ECOLOGY PARAMETERS FOR RISK ASSESSMENT (RESEARCH BRIEF)

    EPA Science Inventory

    The introduction of bacteria into aquifers for bioremediation purposes requires monitoring of the persistence and activity of microbial populations for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR1 constitutively expresses a toluene ortho-monooxygenase (tom) ...

  18. Burkholderia novacaledonica sp. nov. and B. ultramafica sp. nov. isolated from roots of Costularia spp. pioneer plants of ultramafic soils in New Caledonia.

    PubMed

    Guentas, Linda; Gensous, Simon; Cavaloc, Yvon; Ducousso, Marc; Amir, Hamid; De Georges de Ledenon, Benjamin; Moulin, Lionel; Jourand, Philippe

    2016-05-01

    The taxonomic status of eleven rhizospheric bacterial strains belonging to the genus Burkholderia and isolated from roots of Costularia (Cyperaceae), tropical herbaceous pioneer plants growing on ultramafic soils in New Caledonia, was investigated using a polyphasic taxonomic approach. The genetic analyses (16S rRNA genes, gyrB, recA, nreB and cnr) confirmed that all strains are Burkholderia and cluster into two separated groups. The DNA hybridization results showed low relatedness values to the closest relatives Burkholderia species. The phenotypic analyses confirmed that the two groups of strains could be differentiated from each other and from other known Burkholderia species. This polyphasic study revealed that these two groups of strains represent each a novel species of Burkholderia, for which the names Burkholderia novacaledonica sp. nov. (type strain STM10272(T)=LMG28615(T)=CIP110887(T)) and B. ultramafica sp. nov. (type strain STM10279(T)=LMG28614(T)=CIP110886(T)) are proposed, respectively. These strains of Burkholderia presented specific ecological traits such as the tolerance to the extreme edaphic constraints of ultramafic soils: they grew at pH between 4 and 8 and tolerate the strong unbalanced Ca/Mg ratio (1/19) and the high concentrations of heavy metals i.e. Co, Cr, Mn and Ni. Noteworthy B. ultramafica tolerated nickel until 10mM and B. novacaledonica up to 5mM. The presence of the nickel (nreB) and cobalt/nickel (cnr) resistance determinants encoding for protein involved in metal tolerance was found in all strains of both groups. Moreover, most of the strains were able to produce plant growth promoting molecules (ACC, IAA, NH3 and siderophores). Such ecological traits suggest that these new species of Burkholderia might be environmentally adaptable plant-associated bacteria and beneficial to plants. PMID:27049869

  19. A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection.

    PubMed

    Bachert, Beth A; Choi, Soo J; Snyder, Anna K; Rio, Rita V M; Durney, Brandon C; Holland, Lisa A; Amemiya, Kei; Welkos, Susan L; Bozue, Joel A; Cote, Christopher K; Berisio, Rita; Lukomski, Slawomir

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer's exact test and Cramer's V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates.

  20. Biodiesel production from Jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite.

    PubMed

    You, Qinghong; Yin, Xiulian; Zhao, Yuping; Zhang, Yan

    2013-11-01

    Lipase from Burkholderia cepacia was immobilized on modified attapulgite by cross-linking reaction for biodiesel production with jatropha oil as feedstock. Effects of various factors on biodiesel production were studied by single-factor experiment. Results indicated that the best conditions for biodiesel preparation were: 10 g jatropha oil, 2.4 g methanol (molar ratio of oil to methanol is 1:6.6) being added at 3h intervals, 7 wt% water, 10 wt% immobilized lipase, temperature 35°C, and time 24h. Under these conditions, the maximum biodiesel yield reached 94%. The immobilized lipase retained 95% of its relative activity during the ten repeated batch reactions. The half-life time of the immobilized lipase is 731 h. Kinetics was studied and the Vmax of the immobilized lipases were 6.823 mmol L(-1). This immobilized lipase catalyzed process has potential industrial use for biodiesel production to replace chemical-catalyzed method.

  1. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia.

    PubMed Central

    Govan, J R; Deretic, V

    1996-01-01

    Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity. PMID:8840786

  2. Clinafloxacin for Treatment of Burkholderia cenocepacia Infection in a Cystic Fibrosis Patient.

    PubMed

    Balwan, Akshu; Nicolau, David P; Wungwattana, Minkey; Zuckerman, Jonathan B; Waters, Valerie

    2016-01-01

    Respiratory infection with Burkholderia cenocepacia is associated with accelerated decline in lung function and increased mortality in cystic fibrosis (CF) patients (A. M. Jones, M. E. Dodd, J. R. W. Govan, V. Barcus, C. J. Doherty, J. Morris, and A. K. Webb, Thorax 59:948-951, 2004, http://dx.doi.org/10.1136/thx.2003.017210). B. cenocepacia often possesses innate resistance to multiple antimicrobial classes, making eradication uncommon in established infection (P. B. Davis, Am J Respir Crit Care Med 173:475-482, 2006, http://dx.doi.org/10.1164/rccm.200505-840OE). We report the use of clinafloxacin in a CF patient with advanced B. cenocepacia infection, present pharmacokinetic (PK) data, and discuss the potential therapeutic role of clinafloxacin in patients with this condition.

  3. Mycotic aneurysm caused by Burkholderia pseudomallei in a previously healthy returning traveller

    PubMed Central

    Bodilsen, Jacob; Vammen, Sten; Fuursted, Kurt; Hjort, Ulla

    2014-01-01

    Burkholderia pseudomallei is a common cause of serious, difficult to treat infections in South-East Asia and Northern Australia, but is a rare imported pathogen in the USA and Europe. We report a case of a patient with a mycotic aneurysm caused by B. pseudomallei in a previously healthy returning traveller. The patient presented with 4 weeks of abdominal pain and intermittent fever after a brief vacation in Thailand. The aneurysm was excised and replaced by an autologous deep vein graft, and the patient was treated for 6 months with antibiotics adjusted according to postoperative renal impairment. Twenty-four months after surgery the patient is well and without relapse. PMID:25246454

  4. Evaluation of a Burkholderia pseudomallei Outer Membrane Vesicle Vaccine in Nonhuman Primates.

    PubMed

    Petersen, Hailey; Nieves, Wildaliz; Russell-Lodrigue, Kasi; Roy, Chad J; Morici, Lisa A

    2014-01-01

    Burkholderia pseudomallei (Bps)is the causative agent of melioidosis and is endemic in regions of northern Australia and Southeast Asia. Bps is inherently resistant to multiple antibiotics and is considered a potential biological warfare agent by the U.S. DHHS. Therefore, effective vaccines are necessary to prevent natural infection and to safeguard against biological attack with this organism. In our previous work we have shown that immunization with naturally derived outer membrane vesicles (OMVs) from Bps provides significant protection against lethal aerosol and systemic infection in BALB/c mice. In this work, we evaluated the safety and immunogenicity of escalating doses of OMV vaccine in rhesus macaques. We show that immunization of rhesus macaques with Bps OMVs generates humoral immuneresponses to protective protein and polysaccharide antigens without any associated toxicity or reactogenicity. These results lay the groundwork for evaluation of protective efficacy of the OMV vaccine in the nonhuman primate model of melioidosis.

  5. Evaluation of a Burkholderia pseudomallei Outer Membrane Vesicle Vaccine in Nonhuman Primates

    PubMed Central

    Petersen, Hailey; Nieves, Wildaliz; Russell-Lodrigue, Kasi; Roy, Chad J.; Morici, Lisa A.

    2014-01-01

    Burkholderia pseudomallei (Bps)is the causative agent of melioidosis and is endemic in regions of northern Australia and Southeast Asia. Bps is inherently resistant to multiple antibiotics and is considered a potential biological warfare agent by the U.S. DHHS. Therefore, effective vaccines are necessary to prevent natural infection and to safeguard against biological attack with this organism. In our previous work we have shown that immunization with naturally derived outer membrane vesicles (OMVs) from Bps provides significant protection against lethal aerosol and systemic infection in BALB/c mice. In this work, we evaluated the safety and immunogenicity of escalating doses of OMV vaccine in rhesus macaques. We show that immunization of rhesus macaques with Bps OMVs generates humoral immuneresponses to protective protein and polysaccharide antigens without any associated toxicity or reactogenicity. These results lay the groundwork for evaluation of protective efficacy of the OMV vaccine in the nonhuman primate model of melioidosis. PMID:25165491

  6. Short report: Failure of Burkholderia pseudomallei to grow in an automated blood culture system.

    PubMed

    Teerawattanasook, Nittaya; Limmathurotsakul, Direk; Day, Nicholas P J; Wuthiekanun, Vanaporn

    2014-12-01

    We compared the organisms isolated from 30,210 pairs of blood culture bottles by using BacT/Alert system and the conventional system. Overall, 2,575 (8.5%) specimens were culture positive for pathogenic organisms. The sensitivity for detection of pathogenic organisms with the BACT/Alert system (85.6%, 2,203 of 2,575) was significantly higher than that with the conventional method (74.1%, 1,908 of 2,575; P < 0.0001). However, Burkholderia pseudomallei was isolated less often with the BacT/ALERT system (73.5%, 328 of 446) than with the conventional system (90.3%, 403 of 446; P < 0.0001). This finding suggests that use of the conventional culture method in conjunction with the BacT/Alert system may improve the isolation rate for B. pseudomallei in melioidosis-endemic areas.

  7. A PCR-BASED DETECTION OF BURKHOLDERIA PSEUDOMALLEI DIVERSITY USING MYOVIRIDAE PROPHAGE TYPING.

    PubMed

    Nakornpakdee, Yaowarin; Sermswan, Rasana W; Tattawasart, Unchalee; Yordpratum, Umaporn; Wongratanacheewin, Surasakdi

    2015-01-01

    PCR-based detection of Myoviridae lysogenic phages in Burkholderia pseudomallei was developed using primers targeting K96243 prophage GI2, phiE12-2 and phi52237/phiX216. Investigation of 50 clinical and 50 environmental (soil) isolates revealed that K96243 prophage GI2 was the most common (48%) among the isolates, followed by phiE12-2 (38%) and phi52237/phiX216 (35%), with K96243 prophage GI2 being significantly more frequent in soil (64%) than clinical (32%) samples. Twenty-four percent of soil isolates contained all three prophage types, while clinical isolates harbored no more than two types. Although B. pseudomallei isolates from soil were found to be more diverse based on prophage typing, all isolates were equally susceptible to a battery of lytic phages (although to different extents), suggesting the possibility of using lytic phages to control environmental B. pseudomallei. PMID:26513903

  8. Burkholderia gut symbionts enhance the innate immunity of host Riptortus pedestris.

    PubMed

    Kim, Jiyeun Kate; Lee, Jun Beom; Huh, Ye Rang; Jang, Ho Am; Kim, Chan-Hee; Yoo, Jin Wook; Lee, Bok Luel

    2015-11-01

    The relation between gut symbiosis and immunity has been reported in various animal model studies. Here, we corroborate the effect of gut symbiont to host immunity using the bean bug model. The bean bug, Riptortus pedestris, is a useful gut symbiosis model due to the monospecific gut symbiont, genus Burkholderia. To examine the effect of gut symbiosis to host immunity, we generated the gut symbiont-harboring (symbiotic) insect line and the gut symbiont-lacking (aposymbiotic) insect line. Upon bacterial challenges, the symbiotic Riptortus exhibited better survival than aposymbiotic Riptortus. When cellular immunity was inhibited, the symbiotic Riptortus still survived better than aposymbioic Riptortus, suggesting stronger humoral immunity. The molecular basis of the strong humoral immunity was further confirmed by the increase of hemolymph antimicrobial activity and antimicrobial peptide expression in the symbiotic insects. Taken together, our data clearly demonstrate that Burkhoderia gut symbiont positively affect the Riptortus systemic immunity.

  9. Phylogenetic and degradation characterization of Burkholderia cepacia WZ1 degrading herbicide quinclorac.

    PubMed

    Lü, Zhenmei; Min, Hang; Wu, Shuwen; Ruan, Aidong

    2003-11-01

    Strain WZI capable of degrading quinclorac was isolated from a pesticide manufactory soil and considered to be Burkholderia cepacia, belonged to bacteria, Proteobacteria, beta-Proteobacteria, based on morphology, physio-biochemical properties, whole cell fatty acid analysis and a partial sequencing of 16S rDNA. Strain WZ1 decomposed 90% of quinclorac at original concentration of 1000 mg L(-1) within 11 days. GC/MS analysis showed that the strain degraded quinclorac to 3,7-dichloro-8-quinoline and the cracked residue 2-chloro, 1,4-benzenedicarboxylic acid, indicating that the metabolic pathway was initiated by process of decarboxylation followed by cleavage of the aromatic ring. Stain WZ1 was also able to degrade some other herbicides and aromatic compounds, including 2,4,5-T, phenol, naphthalene and hydrochinone etc. This paper describes for the first time Phylogenetic and degradation characterization of a pure bacterium which, is able to mineralize quinclorac.

  10. Biodiesel production from Jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite.

    PubMed

    You, Qinghong; Yin, Xiulian; Zhao, Yuping; Zhang, Yan

    2013-11-01

    Lipase from Burkholderia cepacia was immobilized on modified attapulgite by cross-linking reaction for biodiesel production with jatropha oil as feedstock. Effects of various factors on biodiesel production were studied by single-factor experiment. Results indicated that the best conditions for biodiesel preparation were: 10 g jatropha oil, 2.4 g methanol (molar ratio of oil to methanol is 1:6.6) being added at 3h intervals, 7 wt% water, 10 wt% immobilized lipase, temperature 35°C, and time 24h. Under these conditions, the maximum biodiesel yield reached 94%. The immobilized lipase retained 95% of its relative activity during the ten repeated batch reactions. The half-life time of the immobilized lipase is 731 h. Kinetics was studied and the Vmax of the immobilized lipases were 6.823 mmol L(-1). This immobilized lipase catalyzed process has potential industrial use for biodiesel production to replace chemical-catalyzed method. PMID:24055964

  11. Identification of the conserved hypothetical protein BPSL0317 in Burkholderia pseudomallei K96243

    NASA Astrophysics Data System (ADS)

    Yusoff, Nur Syamimi; Damiri, Nadzirah; Firdaus-Raih, Mohd

    2014-09-01

    Burkholderia pseudomallei K96243 is the causative agent of melioidosis, a disease which is endemic in Northern Australia and Southeastern Asia. The genome encodes several essential proteins including those currently annotated as hypothetical proteins. We studied the conservation and the essentiality of expressed hypothetical proteins in normal and different stress conditions. Based on the comparative genomics, we identified a hypothetical protein, BPSL0317, a potential essential gene that is being expressed in all normal and stress conditions. BPSL0317 is also phylogenetically conserved in the Burkholderiales order suggesting that this protein is crucial for survival among the order's members. BPSL0317 therefore has a potential to be a candidate antimicrobial drug target for this group of bacteria.

  12. Understanding pathogenic Burkholderia glumae metabolic and signaling pathways within rice tissues through in vivo transcriptome analyses.

    PubMed

    Kim, Sunyoung; Park, Jungwook; Lee, Jongyun; Shin, Dongjin; Park, Dong-Soo; Lim, Jong-Sung; Choi, Ik-Young; Seo, Young-Su

    2014-08-15

    Burkholderia glumae is a causal agent of rice grain and sheath rot. Similar to other phytopathogens, B. glumae adapts well to the host environment and controls its biology to induce diseases in the host plant; however, its molecular mechanisms are not yet fully understood. To gain a better understating of the actual physiological changes that occur in B. glumae during infection, we analyzed B. glumae transcriptome from infected rice tissues using an RNA-seq technique. To accomplish this, we analyzed differentially expressed genes (DEGs) and identified 2653 transcripts that were significantly altered. We then performed KEGG pathway and module enrichment of the DEGs. Interestingly, most genes involved bacterial chemotaxis-mediated motility, ascorbate and trehalose metabolisms, and sugar transporters including l-arabinose and d-xylose were found to be highly enriched. The in vivo transcriptional profiling of pathogenic B. glumae will facilitate elucidation of unknown plant-pathogenic bacteria interactions, as well as the overall infection processes.

  13. A putative porin gene of Burkholderia sp. NK8 involved in chemotaxis toward β-ketoadipate.

    PubMed

    Yamamoto-Tamura, Kimiko; Kawagishi, Ikuro; Ogawa, Naoto; Fujii, Takeshi

    2015-01-01

    Burkholderia sp. NK8 can utilize 3-chlorobenzoate (3CB) as a sole source of carbon because it has a megaplasmid (pNK8) that carries the gene cluster (tfdT-CDEF) encoding chlorocatechol-degrading enzymes. The expression of tfdT-CDEF is induced by 3CB. In this study, we found that NK8 cells were attracted to 3CB and its degradation products, 3- and 4-chlorocatechol, and β-ketoadipate. Capillary assays revealed that a pNK8-eliminated strain (NK82) was defective in chemotaxis toward β-ketoadipate. The introduction of a plasmid carrying a putative outer membrane porin gene, which we name ompNK8, into strain NK82 restored chemotaxis toward β-ketoadipate. RT-PCR analyses demonstrated that the transcription of the ompNK8 gene was enhanced in the presence of 3CB.

  14. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex

    PubMed Central

    Suppiger, Angela; Schmid, Nadine; Aguilar, Claudio; Pessi, Gabriella; Eberl, Leo

    2013-01-01

    The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed. PMID:23799665

  15. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.

    PubMed

    Kang, Jun Won; Doty, Sharon Lafferty

    2014-07-01

    Trichloroethylene (TCE), a chlorinated organic solvent, is one of the most common and widespread groundwater contaminants worldwide. Among the group of TCE-degrading aerobic bacteria, Burkholderia cepacia G4 is the best-known representative. This strain requires the addition of specific substrates, including toluene, phenol, and benzene, to induce the enzymes to degrade TCE. However, the substrates are toxic and introducing them into the soil can result in secondary contamination. In this study, poplar leaf homogenate containing natural phenolic compounds was tested for the ability to induce the growth of and TCE degradation by B. cepacia G4. The results showed that the G4 strain could grow and degrade TCE well with the addition of phytochemicals. The poplar leaf homogenate also functioned as an inducer of the toluene-ortho-monooxygenase (TOM) gene in B. cepacia G4.

  16. Activity of Cysteamine against the Cystic Fibrosis Pathogen Burkholderia cepacia Complex

    PubMed Central

    Mercer, Derry; Lovie, Emma; Robertson, Jennifer; O'Neil, Deborah

    2016-01-01

    There are no wholly successful chemotherapeutic strategies against Burkholderia cepacia complex (BCC) colonization in cystic fibrosis (CF). We assessed the impact of cysteamine (Lynovex) in combination with standard-of-care CF antibiotics in vitro against BCC CF isolates by the concentration at which 100% of bacteria were killed (MIC100) and checkerboard assays under CLSI standard conditions. Cysteamine facilitated the aminoglycoside-, fluoroquinolone- and folate pathway inhibitor-mediated killing of BCC organisms that were otherwise resistant or intermediately sensitive to these antibiotic classes. Slow-growing BCC strains are often recalcitrant to treatment and form biofilms. In assessing the impact of cysteamine on biofilms, we demonstrated inhibition of BCC biofilm formation at sub-MIC100s of cysteamine. PMID:27503654

  17. Identification of aldolase and ferredoxin reductase within the dbt operon of Burkholderia fungorum DBT1.

    PubMed

    Piccoli, Stefano; Andreolli, Marco; Giorgetti, Alejandro; Zordan, Fabio; Lampis, Silvia; Vallini, Giovanni

    2014-05-01

    Burkholderia fungorum DBT1, first isolated from settling particulate matter of an oil refinery wastewater, is a bacterial strain which has been shown capable of utilizing several polycyclic aromatic hydrocarbons (PAHs) including dibenzothiophene (DBT). In particular, this microbe is able to efficiently degrade DBT through the Kodama pathway. Previous investigations have lead to the identification of six genes, on a total of eight, required for DBT degradation. In the present study, a combined experimental/computational approach was adopted to identify and in silico characterize the two missing genes, namely a ferredoxin reductase and a hydratase-aldolase. Thus, the finding of all enzymatic components of the Kodama pathway in B. fungorum DBT1 makes this bacterial strain amenable for possible exploitation in soil bioremediation protocols.

  18. Molecular Typing and Exopolysaccharide Biosynthesis of Burkholderia cepacia Isolates from a Portuguese Cystic Fibrosis Center

    PubMed Central

    Richau, João A.; Leitão, Jorge H.; Correia, Manuela; Lito, Luís; Salgado, Maria José; Barreto, Celeste; Cescutti, Paola; Sá-Correia, Isabel

    2000-01-01

    This work describes the first epidemiological survey of Burkholderia cepacia involved in pulmonary infections among the Portuguese population with cystic fibrosis (CF) who attended the major CF treatment Center in Lisbon at Sta. Maria Hospital from 1995 to the end of 1997. The characterization of the genomic relatedness of the isolates was based on the analysis of their ribopatterns (with EcoRI) followed by construction of a ribotype-based phylogenetic tree. This study was complemented with macrorestriction fragment analysis by pulsed-field gel electrophoresis. After optimization of the solid growth medium, we found that exopolysaccharide (EPS) production by B. cepacia CF isolates is not as rare a phenomenon as was thought before; indeed, 70% of the isolates examined were EPS producers. PMID:10747161

  19. Quantitative proteomic analysis of Burkholderia pseudomallei Bsa type III secretion system effectors using hypersecreting mutants.

    PubMed

    Vander Broek, Charles W; Chalmers, Kevin J; Stevens, Mark P; Stevens, Joanne M

    2015-04-01

    Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a severe disease of humans and animals. One of the virulence factors critical for early stages of infection is the Burkholderia secretion apparatus (Bsa) Type 3 Secretion System (T3SS), a molecular syringe that injects bacterial proteins, called effectors, into eukaryotic cells where they subvert cellular functions to the benefit of the bacteria. Although the Bsa T3SS itself is known to be important for invasion, intracellular replication, and virulence, only a few genuine effector proteins have been identified and the complete repertoire of proteins secreted by the system has not yet been fully characterized. We constructed a mutant lacking bsaP, a homolog of the T3SS "gatekeeper" family of proteins that exert control over the timing and magnitude of effector protein secretion. Mutants lacking BsaP, or the T3SS translocon protein BipD, were observed to hypersecrete the known Bsa effector protein BopE, providing evidence of their role in post-translational control of the Bsa T3SS and representing key reagents for the identification of its secreted substrates. Isobaric Tags for Relative and Absolute Quantification (iTRAQ), a gel-free quantitative proteomics technique, was used to compare the secreted protein profiles of the Bsa T3SS hypersecreting mutants of B. pseudomallei with the isogenic parent strain and a bsaZ mutant incapable of effector protein secretion. Our study provides one of the most comprehensive core secretomes of B. pseudomallei described to date and identified 26 putative Bsa-dependent secreted proteins that may be considered candidate effectors. Two of these proteins, BprD and BapA, were validated as novel effector proteins secreted by the Bsa T3SS of B. pseudomallei.

  20. Interrogation of the Burkholderia pseudomallei genome to address differential virulence among isolates

    DOE PAGESBeta

    Challacombe, Jean F.; Stubben, Chris J.; Klimko, Christopher P.; Welkos, Susan L.; Kern, Steven J.; Bozue, Joel A.; Worsham, Patricia L.; Cote, Christopher K.; Wolfe, Daniel N.; Badger, Jonathan H.

    2014-12-23

    Infection by the Gram-negative pathogen Burkholderia pseudomallei results in the disease melioidosis, acquired from the environment in parts of southeast Asia and northern Australia. Clinical symptoms of melioidosis range from acute (fever, pneumonia, septicemia, and localized infection) to chronic (abscesses in various organs and tissues, most commonly occurring in the lungs, liver, spleen, kidney, prostate and skeletal muscle), and persistent infections in humans are difficult to cure. Understanding the basic biology and genomics of B. pseudomallei is imperative for the development of new vaccines and therapeutic interventions. This formidable task is becoming more tractable due to the increasing number ofmore » B. pseudomallei genomes that are being sequenced and compared. Here, we compared three B. pseudomallei genomes, from strains MSHR668, K96243 and 1106a, to identify features that might explain why MSHR668 is more virulent than K96243 and 1106a in a mouse model of B. pseudomallei infection. Our analyses focused on metabolic, virulence and regulatory genes that were present in MSHR668 but absent from both K96243 and 1106a. We also noted features present in K96243 and 1106a but absent from MSHR668, and identified genomic differences that may contribute to variations in virulence noted among the three B. pseudomallei isolates. While this work contributes to our understanding of B. pseudomallei genomics, more detailed experiments are necessary to characterize the relevance of specific genomic features to B. pseudomallei metabolism and virulence. Functional analyses of metabolic networks, virulence and regulation shows promise for examining the effects of B. pseudomallei on host cell metabolism and will lay a foundation for future prediction of the virulence of emerging strains. Continued emphasis in this area will be critical for protection against melioidosis, as a better understanding of what constitutes a fully virulent Burkholderia isolate may provide for

  1. Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis.

    PubMed

    Nunvar, Jaroslav; Kalferstova, Lucie; Bloodworth, Ruhi A M; Kolar, Michal; Degrossi, Jose; Lubovich, Silvina; Cardona, Silvia T; Drevinek, Pavel

    2016-01-01

    Several bacterial species from the Burkholderia cepacia complex (Bcc) are feared opportunistic pathogens that lead to debilitating lung infections with a high risk of developing fatal septicemia in cystic fibrosis (CF) patients. However, the pathogenic potential of other Bcc species is yet unknown. To elucidate clinical relevance of Burkholderia contaminans, a species frequently isolated from CF respiratory samples in Ibero-American countries, we aimed to identify its key virulence factors possibly linked with an unfavorable clinical outcome. We performed a genome-wide comparative analysis of two isolates of B. contaminans ST872 from sputum and blood culture of a female CF patient in Argentina. RNA-seq data showed significant changes in expression for quorum sensing-regulated virulence factors and motility and chemotaxis. Furthermore, we detected expression changes in a recently described low-oxygen-activated (lxa) locus which encodes stress-related proteins, and for two clusters responsible for the biosynthesis of antifungal and hemolytic compounds pyrrolnitrin and occidiofungin. Based on phenotypic assays that confirmed changes in motility and in proteolytic, hemolytic and antifungal activities, we were able to distinguish two phenotypes of B. contaminans that coexisted in the host and entered her bloodstream. Whole genome sequencing revealed that the sputum and bloodstream isolates (each representing a distinct phenotype) differed by over 1,400 mutations as a result of a mismatch repair-deficient hypermutable state of the sputum isolate. The inferred lack of purifying selection against nonsynonymous mutations and the high rate of pseudogenization in the derived isolate indicated limited evolutionary pressure during evolution in the nutrient-rich, stable CF sputum environment. The present study is the first to examine the genomic and transcriptomic differences between longitudinal isolates of B. contaminans. Detected activity of a number of putative virulence

  2. Determining the Biochemical Properties of the Oxalate Biosynthetic Component (Obc)1 from Burkholderia mallei

    PubMed Central

    Lambert, Peter M.

    2016-01-01

    Oxalic acid is produced by a variety of organisms ranging from simple microbes to complex animals. This acid has been proposed to fulfill various physiological and pathological functions which vary between organisms. In bacteria from the Burkholderia genus, oxalate secretion has been shown to be quorum sensing dependent and to support pathogenicity and cell viability. In light of the critical roles of oxalate in Burkholderia as well as other organisms, it is surprising that our understanding of how this simple dicarboxylate is biosynthesized remains incomplete. Here we report the expression, purification, and partial characterization of the first intact bacterial oxalate biosynthetic enzyme, Obc1, from B. mallei. An N-terminal His-tagged Bmobc1 was cloned into pDUET, expressed in E. coli BLR (DE3), and the recombinant enzyme purified by affinity chromatography. Oxalate biosynthetic enzyme assays coupled with HPLC analysis revealed that BmObc1 catalyzed the biosynthesis of oxalate, acetoacetate, and free CoA from oxaloacetate and a short chain acyl-CoA following Michaelis-Menten kinetics. Optimal enzyme activity was measured at pH 8.0 and a temperature around 44°C. Kinetic analysis conducted under conditions of saturating acetyl-CoA and varying oxaloacetate concentrations resulted in a calculated Km value for oxaloacetate of 94.3± 9.2 μM (mean ± SE). Under conditions of saturating oxaloacetate concentration and varying acyl-CoA (acetyl- or propionyl-CoA) concentrations kinetic analysis generated a calculated Km value of 26.8 ± 2.3 μM (mean ± SE) for acetyl-CoA and 104.4 ± 12.7 μM for propionyl-CoA. The significantly lower Km for acetyl-CoA suggests that it is strongly favored as a substrate over propionyl-CoA. PMID:27643499

  3. The multiple roles of hypothetical gene BPSS1356 in Burkholderia pseudomallei.

    PubMed

    Yam, Hokchai; Rahim, Ainihayati Abdul; Mohamad, Suriani; Mahadi, Nor Muhammad; Manaf, Uyub Abdul; Shu-Chien, Alexander Chong; Najimudin, Nazalan

    2014-01-01

    Burkholderia pseudomallei is an opportunistic pathogen and the causative agent of melioidosis. It is able to adapt to harsh environments and can live intracellularly in its infected hosts. In this study, identification of transcriptional factors that associate with the β' subunit (RpoC) of RNA polymerase was performed. The N-terminal region of this subunit is known to trigger promoter melting when associated with a sigma factor. A pull-down assay using histidine-tagged B. pseudomallei RpoC N-terminal region as bait showed that a hypothetical protein BPSS1356 was one of the proteins bound. This hypothetical protein is conserved in all B. pseudomallei strains and present only in the Burkholderia genus. A BPSS1356 deletion mutant was generated to investigate its biological function. The mutant strain exhibited reduced biofilm formation and a lower cell density during the stationary phase of growth in LB medium. Electron microscopic analysis revealed that the ΔBPSS1356 mutant cells had a shrunken cytoplasm indicative of cell plasmolysis and a rougher surface when compared to the wild type. An RNA microarray result showed that a total of 63 genes were transcriptionally affected by the BPSS1356 deletion with fold change values of higher than 4. The expression of a group of genes encoding membrane located transporters was concurrently down-regulated in ΔBPSS1356 mutant. Amongst the affected genes, the putative ion transportation genes were the most severely suppressed. Deprivation of BPSS1356 also down-regulated the transcriptions of genes for the arginine deiminase system, glycerol metabolism, type III secretion system cluster 2, cytochrome bd oxidase and arsenic resistance. It is therefore obvious that BPSS1356 plays a multiple regulatory roles on many genes. PMID:24927285

  4. Burkholderia cenocepacia Differential Gene Expression during Host–Pathogen Interactions and Adaptation to the Host Environment

    PubMed Central

    O’Grady, Eoin P.; Sokol, Pamela A.

    2011-01-01

    Members of the Burkholderia cepacia complex (Bcc) are important in medical, biotechnological, and agricultural disciplines. These bacteria naturally occur in soil and water environments and have adapted to survive in association with plants and animals including humans. All Bcc species are opportunistic pathogens including Burkholderia cenocepacia that causes infections in cystic fibrosis and chronic granulomatous disease patients. The adaptation of B. cenocepacia to the host environment was assessed in a rat chronic respiratory infection model and compared to that of high cell-density in vitro grown cultures using transcriptomics. The distribution of genes differentially expressed on chromosomes 1, 2, and 3 was relatively proportional to the size of each genomic element, whereas the proportion of plasmid-encoded genes differentially expressed was much higher relative to its size and most genes were induced in vivo. The majority of genes encoding known virulence factors, components of types II and III secretion systems and chromosome 2-encoded type IV secretion system were similarly expressed between in vitro and in vivo environments. Lower expression in vivo was detected for genes encoding N-acyl-homoserine lactone synthase CepI, orphan LuxR homolog CepR2, zinc metalloproteases ZmpA and ZmpB, LysR-type transcriptional regulator ShvR, nematocidal protein AidA, and genes associated with flagellar motility, Flp type pilus formation, and type VI secretion. Plasmid-encoded type IV secretion genes were markedly induced in vivo. Additional genes induced in vivo included genes predicted to be involved in osmotic stress adaptation or intracellular survival, metal ion, and nutrient transport, as well as those encoding outer membrane proteins. Genes identified in this study are potentially important for virulence during host–pathogen interactions and may be associated with survival and adaptation to the host environment during chronic lung infections. PMID:22919581

  5. Using multispectral imaging flow cytometry to assess an in vitro intracellular Burkholderia thailandensis infection model.

    PubMed

    Jenner, Dominic; Ducker, Catherine; Clark, Graeme; Prior, Jo; Rowland, Caroline A

    2016-04-01

    The use of in vitro models to understand the interaction of bacteria with host cells is well established. In vitro bacterial infection models are often used to quantify intracellular bacterial load by lysing cell populations and subsequently enumerating the bacteria. Modern established techniques employ the use of fluorescence technologies such as flow cytometry, fluorescent microscopy, and/or confocal microscopy. However, these techniques often lack either the quantification of large data sets (microscopy) or use of gross fluorescence signal which lacks the visual confirmation that can provide additional confidence in data sets. Multispectral imaging flow cytometry (MIFC) is a novel emerging field of technology. This technology captures a bright field and fluorescence image of cells in a flow using a charged coupled device camera. It allows the analysis of tens of thousands of single cell images, making it an extremely powerful technology. Here MIFC was used as an alternative method of analyzing intracellular bacterial infection using Burkholderia thailandensis E555 as a model organism. It has been demonstrated that the data produced using traditional enumeration is comparable to data analyzed using MIFC. It has also been shown that by using MIFC it is possible to generate other data on the dynamics of the infection model rather than viable counts alone. It has been demonstrated that it is possible to inhibit the uptake of bacteria into mammalian cells and identify differences between treated and untreated cell populations. The authors believe this to be the first use of MIFC to analyze a Burkholderia bacterial species during intracellular infection. © 2016 Crown copyright. Published by Wiley Periodicals Inc. on behalf of ISAC. PMID:26841315

  6. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis

    PubMed Central

    Blower, Ryan J.; Barksdale, Stephanie M.; van Hoek, Monique L.

    2015-01-01

    Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly “highly resistant” to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis. PMID:26196513

  7. Construction of a large-scale Burkholderia cenocepacia J2315 transposon mutant library

    NASA Astrophysics Data System (ADS)

    Wong, Yee-Chin; Pain, Arnab; Nathan, Sheila

    2014-09-01

    Burkholderia cenocepacia, a pathogenic member of the Burkholderia cepacia complex (Bcc), has emerged as a significant threat towards cystic fibrosis patients, where infection often leads to the fatal clinical manifestation known as cepacia syndrome. Many studies have investigated the pathogenicity of B. cenocepacia as well as its ability to become highly resistant towards many of the antibiotics currently in use. In addition, studies have also been undertaken to understand the pathogen's capacity to adapt and survive in a broad range of environments. Transposon based mutagenesis has been widely used in creating insertional knock-out mutants and coupled with recent advances in sequencing technology, robust tools to study gene function in a genome-wide manner have been developed based on the assembly of saturated transposon mutant libraries. In this study, we describe the construction of a large-scale library of B. cenocepacia transposon mutants. To create transposon mutants of B. cenocepacia strain J2315, electrocompetent bacteria were electrotransformed with the EZ-Tn5 transposome. Tetracyline resistant colonies were harvested off selective agar and pooled. Mutants were generated in multiple batches with each batch consisting of ˜20,000 to 40,000 mutants. Transposon insertion was validated by PCR amplification of the transposon region. In conclusion, a saturated B. cenocepacia J2315 transposon mutant library with an estimated total number of 500,000 mutants was successfully constructed. This mutant library can now be further exploited as a genetic tool to assess the function of every gene in the genome, facilitating the discovery of genes important for bacterial survival and adaptation, as well as virulence.

  8. Determining the Biochemical Properties of the Oxalate Biosynthetic Component (Obc)1 from Burkholderia mallei.

    PubMed

    Lambert, Peter M; Nakata, Paul A

    2016-01-01

    Oxalic acid is produced by a variety of organisms ranging from simple microbes to complex animals. This acid has been proposed to fulfill various physiological and pathological functions which vary between organisms. In bacteria from the Burkholderia genus, oxalate secretion has been shown to be quorum sensing dependent and to support pathogenicity and cell viability. In light of the critical roles of oxalate in Burkholderia as well as other organisms, it is surprising that our understanding of how this simple dicarboxylate is biosynthesized remains incomplete. Here we report the expression, purification, and partial characterization of the first intact bacterial oxalate biosynthetic enzyme, Obc1, from B. mallei. An N-terminal His-tagged Bmobc1 was cloned into pDUET, expressed in E. coli BLR (DE3), and the recombinant enzyme purified by affinity chromatography. Oxalate biosynthetic enzyme assays coupled with HPLC analysis revealed that BmObc1 catalyzed the biosynthesis of oxalate, acetoacetate, and free CoA from oxaloacetate and a short chain acyl-CoA following Michaelis-Menten kinetics. Optimal enzyme activity was measured at pH 8.0 and a temperature around 44°C. Kinetic analysis conducted under conditions of saturating acetyl-CoA and varying oxaloacetate concentrations resulted in a calculated Km value for oxaloacetate of 94.3± 9.2 μM (mean ± SE). Under conditions of saturating oxaloacetate concentration and varying acyl-CoA (acetyl- or propionyl-CoA) concentrations kinetic analysis generated a calculated Km value of 26.8 ± 2.3 μM (mean ± SE) for acetyl-CoA and 104.4 ± 12.7 μM for propionyl-CoA. The significantly lower Km for acetyl-CoA suggests that it is strongly favored as a substrate over propionyl-CoA. PMID:27643499

  9. Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis.

    PubMed

    Nunvar, Jaroslav; Kalferstova, Lucie; Bloodworth, Ruhi A M; Kolar, Michal; Degrossi, Jose; Lubovich, Silvina; Cardona, Silvia T; Drevinek, Pavel

    2016-01-01

    Several bacterial species from the Burkholderia cepacia complex (Bcc) are feared opportunistic pathogens that lead to debilitating lung infections with a high risk of developing fatal septicemia in cystic fibrosis (CF) patients. However, the pathogenic potential of other Bcc species is yet unknown. To elucidate clinical relevance of Burkholderia contaminans, a species frequently isolated from CF respiratory samples in Ibero-American countries, we aimed to identify its key virulence factors possibly linked with an unfavorable clinical outcome. We performed a genome-wide comparative analysis of two isolates of B. contaminans ST872 from sputum and blood culture of a female CF patient in Argentina. RNA-seq data showed significant changes in expression for quorum sensing-regulated virulence factors and motility and chemotaxis. Furthermore, we detected expression changes in a recently described low-oxygen-activated (lxa) locus which encodes stress-related proteins, and for two clusters responsible for the biosynthesis of antifungal and hemolytic compounds pyrrolnitrin and occidiofungin. Based on phenotypic assays that confirmed changes in motility and in proteolytic, hemolytic and antifungal activities, we were able to distinguish two phenotypes of B. contaminans that coexisted in the host and entered her bloodstream. Whole genome sequencing revealed that the sputum and bloodstream isolates (each representing a distinct phenotype) differed by over 1,400 mutations as a result of a mismatch repair-deficient hypermutable state of the sputum isolate. The inferred lack of purifying selection against nonsynonymous mutations and the high rate of pseudogenization in the derived isolate indicated limited evolutionary pressure during evolution in the nutrient-rich, stable CF sputum environment. The present study is the first to examine the genomic and transcriptomic differences between longitudinal isolates of B. contaminans. Detected activity of a number of putative virulence

  10. Characterization of the Burkholderia thailandensis SOS Response by Using Whole-Transcriptome Shotgun Sequencing

    PubMed Central

    Ulrich, Ricky L.; DeShazer, David; Kenny, Tara A.; Ulrich, Melanie P.; Moravusova, Anna; Opperman, Timothy; Bavari, Sina; Bowlin, Terry L.; Moir, Donald T.

    2013-01-01

    The bacterial SOS response is a well-characterized regulatory network encoded by most prokaryotic bacterial species and is involved in DNA repair. In addition to nucleic acid repair, the SOS response is involved in pathogenicity, stress-induced mutagenesis, and the emergence and dissemination of antibiotic resistance. Using high-throughput sequencing technology (SOLiD RNA-Seq), we analyzed the Burkholderia thailandensis global SOS response to the fluoroquinolone antibiotic, ciprofloxacin (CIP), and the DNA-damaging chemical, mitomycin C (MMC). We demonstrate that a B. thailandensis recA mutant (RU0643) is ∼4-fold more sensitive to CIP in contrast to the parental strain B. thailandensis DW503. Our RNA-Seq results show that CIP and MMC treatment (P < 0.01) resulted in the differential expression of 344 genes in B. thailandensis and 210 genes in RU0643. Several genes associated with the SOS response were induced and include lexA, uvrA, dnaE, dinB, recX, and recA. At the genome-wide level, we found an overall decrease in gene expression, especially for genes involved in amino acid and carbohydrate transport and metabolism, following both CIP and MMC exposure. Interestingly, we observed the upregulation of several genes involved in bacterial motility and enhanced transcription of a B. thailandensis genomic island encoding a Siphoviridae bacteriophage designated ϕE264. Using B. thailandensis plaque assays and PCR with B. mallei ATCC 23344 as the host, we demonstrate that CIP and MMC exposure in B. thailandensis DW503 induces the transcription and translation of viable bacteriophage in a RecA-dependent manner. This is the first report of the SOS response in Burkholderia spp. to DNA-damaging agents. We have identified both common and unique adaptive responses of B. thailandensis to chemical stress and DNA damage. PMID:23872555

  11. Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis

    PubMed Central

    Nunvar, Jaroslav; Kalferstova, Lucie; Bloodworth, Ruhi A. M.; Kolar, Michal; Degrossi, Jose; Lubovich, Silvina; Cardona, Silvia T.; Drevinek, Pavel

    2016-01-01

    Several bacterial species from the Burkholderia cepacia complex (Bcc) are feared opportunistic pathogens that lead to debilitating lung infections with a high risk of developing fatal septicemia in cystic fibrosis (CF) patients. However, the pathogenic potential of other Bcc species is yet unknown. To elucidate clinical relevance of Burkholderia contaminans, a species frequently isolated from CF respiratory samples in Ibero-American countries, we aimed to identify its key virulence factors possibly linked with an unfavorable clinical outcome. We performed a genome-wide comparative analysis of two isolates of B. contaminans ST872 from sputum and blood culture of a female CF patient in Argentina. RNA-seq data showed significant changes in expression for quorum sensing-regulated virulence factors and motility and chemotaxis. Furthermore, we detected expression changes in a recently described low-oxygen-activated (lxa) locus which encodes stress-related proteins, and for two clusters responsible for the biosynthesis of antifungal and hemolytic compounds pyrrolnitrin and occidiofungin. Based on phenotypic assays that confirmed changes in motility and in proteolytic, hemolytic and antifungal activities, we were able to distinguish two phenotypes of B. contaminans that coexisted in the host and entered her bloodstream. Whole genome sequencing revealed that the sputum and bloodstream isolates (each representing a distinct phenotype) differed by over 1,400 mutations as a result of a mismatch repair-deficient hypermutable state of the sputum isolate. The inferred lack of purifying selection against nonsynonymous mutations and the high rate of pseudogenization in the derived isolate indicated limited evolutionary pressure during evolution in the nutrient-rich, stable CF sputum environment. The present study is the first to examine the genomic and transcriptomic differences between longitudinal isolates of B. contaminans. Detected activity of a number of putative virulence

  12. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis.

    PubMed

    Blower, Ryan J; Barksdale, Stephanie M; van Hoek, Monique L

    2015-01-01

    Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly "highly resistant" to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis. PMID:26196513

  13. Systematic Review and Consensus Guidelines for Environmental Sampling of Burkholderia pseudomallei

    PubMed Central

    Limmathurotsakul, Direk; Dance, David A. B.; Wuthiekanun, Vanaporn; Kaestli, Mirjam; Mayo, Mark; Warner, Jeffrey; Wagner, David M.; Tuanyok, Apichai; Wertheim, Heiman; Yoke Cheng, Tan; Mukhopadhyay, Chiranjay; Puthucheary, Savithiri; Day, Nicholas P. J.; Steinmetz, Ivo; Currie, Bart J.; Peacock, Sharon J.

    2013-01-01

    Background Burkholderia pseudomallei, a Tier 1 Select Agent and the cause of melioidosis, is a Gram-negative bacillus present in the environment in many tropical countries. Defining the global pattern of B. pseudomallei distribution underpins efforts to prevent infection, and is dependent upon robust environmental sampling methodology. Our objective was to review the literature on the detection of environmental B. pseudomallei, update the risk map for melioidosis, and propose international consensus guidelines for soil sampling. Methods/Principal Findings An international working party (Detection of Environmental Burkholderia pseudomallei Working Party (DEBWorP)) was formed during the VIth World Melioidosis Congress in 2010. PubMed (January 1912 to December 2011) was searched using the following MeSH terms: pseudomallei or melioidosis. Bibliographies were hand-searched for secondary references. The reported geographical distribution of B. pseudomallei in the environment was mapped and categorized as definite, probable, or possible. The methodology used for detecting environmental B. pseudomallei was extracted and collated. We found that global coverage was patchy, with a lack of studies in many areas where melioidosis is suspected to occur. The sampling strategies and bacterial identification methods used were highly variable, and not all were robust. We developed consensus guidelines with the goals of reducing the probability of false-negative results, and the provision of affordable and ‘low-tech’ methodology that is applicable in both developed and developing countries. Conclusions/Significance The proposed consensus guidelines provide the basis for the development of an accurate and comprehensive global map of environmental B. pseudomallei. PMID:23556010

  14. Chemotaxis of Burkholderia sp. Strain SJ98 towards chloronitroaromatic compounds that it can metabolise

    PubMed Central

    2012-01-01

    Background Burkholderia sp. strain SJ98 is known for its chemotaxis towards nitroaromatic compounds (NACs) that are either utilized as sole sources of carbon and energy or co-metabolized in the presence of alternative carbon sources. Here we test for the chemotaxis of this strain towards six chloro-nitroaromatic compounds (CNACs), namely 2-chloro-4-nitrophenol (2C4NP), 2-chloro-3-nitrophenol (2C3NP), 4-chloro-2-nitrophenol (4C2NP), 2-chloro-4-nitrobenzoate (2C4NB), 4-chloro-2-nitrobenzoate (4C2NB) and 5-chloro-2-nitrobenzoate (5C2NB), and examine its relationship to the degradation of such compounds. Results Strain SJ98 could mineralize 2C4NP, 4C2NB and 5C2NB, and co-metabolically transform 2C3NP and 2C4NB in the presence of an alternative carbon source, but was unable to transform 4C2NP under these conditions. Positive chemotaxis was only observed towards the five metabolically transformed CNACs. Moreover, the chemotaxis was induced by growth in the presence of the metabolisable CNAC. It was also competitively inhibited by the presence of nitroaromatic compounds (NACs) that it could metabolise but not by succinate or aspartate. Conclusions Burkholderia sp. strain SJ98 exhibits metabolic transformation of, and inducible chemotaxis towards CNACs. Its chemotactic responses towards these compounds are related to its previously demonstrated chemotaxis towards NACs that it can metabolise, but it is independently inducible from its chemotaxis towards succinate or aspartate. PMID:22292983

  15. Characterization of the Burkholderia thailandensis SOS response by using whole-transcriptome shotgun sequencing.

    PubMed

    Ulrich, Ricky L; Deshazer, David; Kenny, Tara A; Ulrich, Melanie P; Moravusova, Anna; Opperman, Timothy; Bavari, Sina; Bowlin, Terry L; Moir, Donald T; Panchal, Rekha G

    2013-10-01

    The bacterial SOS response is a well-characterized regulatory network encoded by most prokaryotic bacterial species and is involved in DNA repair. In addition to nucleic acid repair, the SOS response is involved in pathogenicity, stress-induced mutagenesis, and the emergence and dissemination of antibiotic resistance. Using high-throughput sequencing technology (SOLiD RNA-Seq), we analyzed the Burkholderia thailandensis global SOS response to the fluoroquinolone antibiotic, ciprofloxacin (CIP), and the DNA-damaging chemical, mitomycin C (MMC). We demonstrate that a B. thailandensis recA mutant (RU0643) is ∼4-fold more sensitive to CIP in contrast to the parental strain B. thailandensis DW503. Our RNA-Seq results show that CIP and MMC treatment (P < 0.01) resulted in the differential expression of 344 genes in B. thailandensis and 210 genes in RU0643. Several genes associated with the SOS response were induced and include lexA, uvrA, dnaE, dinB, recX, and recA. At the genome-wide level, we found an overall decrease in gene expression, especially for genes involved in amino acid and carbohydrate transport and metabolism, following both CIP and MMC exposure. Interestingly, we observed the upregulation of several genes involved in bacterial motility and enhanced transcription of a B. thailandensis genomic island encoding a Siphoviridae bacteriophage designated E264. Using B. thailandensis plaque assays and PCR with B. mallei ATCC 23344 as the host, we demonstrate that CIP and MMC exposure in B. thailandensis DW503 induces the transcription and translation of viable bacteriophage in a RecA-dependent manner. This is the first report of the SOS response in Burkholderia spp. to DNA-damaging agents. We have identified both common and unique adaptive responses of B. thailandensis to chemical stress and DNA damage.

  16. Burkholderia pseudomallei known siderophores and hemin uptake are dispensable for lethal murine melioidosis.

    PubMed

    Kvitko, Brian H; Goodyear, Andrew; Propst, Katie L; Dow, Steven W; Schweizer, Herbert P

    2012-01-01

    Burkholderia pseudomallei is a mostly saprophytic bacterium, but can infect humans where it causes the difficult-to-manage disease melioidosis. Even with proper diagnosis and prompt therapeutic interventions mortality rates still range from >20% in Northern Australia to over 40% in Thailand. Surprisingly little is yet known about how B. pseudomallei infects, invades and survives within its hosts, and virtually nothing is known about the contribution of critical nutrients such as iron to the bacterium's pathogenesis. It was previously assumed that B. pseudomallei used iron-acquisition systems commonly found in other bacteria, for example siderophores. However, our previous discovery of a clinical isolate carrying a large chromosomal deletion missing the entire malleobactin gene cluster encoding the bacterium's major high-affinity siderophore while still being fully virulent in a murine melioidosis model suggested that other iron-acquisition systems might make contributions to virulence. Here, we deleted the major siderophore malleobactin (mba) and pyochelin (pch) gene clusters in strain 1710b and revealed a residual siderophore activity which was unrelated to other known Burkholderia siderophores such as cepabactin and cepaciachelin, and not due to increased secretion of chelators such as citrate. Deletion of the two hemin uptake loci, hmu and hem, showed that Hmu is required for utilization of hemin and hemoglobin and that Hem cannot complement a Hmu deficiency. Prolonged incubation of a hmu hem mutant in hemoglobin-containing minimal medium yielded variants able to utilize hemoglobin and hemin suggesting alternate pathways for utilization of these two host iron sources. Lactoferrin utilization was dependent on malleobactin, but not pyochelin synthesis and/or uptake. A mba pch hmu hem quadruple mutant could use ferritin as an iron source and upon intranasal infection was lethal in an acute murine melioidosis model. These data suggest that B. pseudomallei may employ

  17. High-quality permanent draft genome sequence of the Lebeckia ambigua-nodulating Burkholderia sp. strain WSM4176

    DOE PAGESBeta

    De Meyer, Sofie E.; Tian, Rui; Seshadri, Rekha; Reddy, TBK; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Kyrpides, Nikos; Yates, Ron; et al

    2015-10-16

    We report that Burkholderia sp. strain WSM4176 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective N2-fixing root nodule of Lebeckia ambigua collected in Nieuwoudtville, Western Cape of South Africa, in October 2007. This plant persists in infertile, acidic and deep sandy soils, and is therefore an ideal candidate for a perennial based agriculture system in Western Australia. Here we describe the features of Burkholderia sp. strain WSM4176, which represents a potential inoculant quality strain for L. ambigua, together with sequence and annotation. The 9,065,247 bp high-quality-draft genome is arranged in 13 scaffolds of 65 contigs,more » contains 8369 protein-coding genes and 128 RNA-only encoding genes, and is part of the GEBA-RNB project proposal (Project ID 882).« less

  18. High-quality permanent draft genome sequence of the Lebeckia ambigua-nodulating Burkholderia sp. strain WSM4176

    SciTech Connect

    De Meyer, Sofie E.; Tian, Rui; Seshadri, Rekha; Reddy, TBK; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Kyrpides, Nikos; Yates, Ron; Howieson, John; Reeve, Wayne

    2015-10-16

    We report that Burkholderia sp. strain WSM4176 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective N2-fixing root nodule of Lebeckia ambigua collected in Nieuwoudtville, Western Cape of South Africa, in October 2007. This plant persists in infertile, acidic and deep sandy soils, and is therefore an ideal candidate for a perennial based agriculture system in Western Australia. Here we describe the features of Burkholderia sp. strain WSM4176, which represents a potential inoculant quality strain for L. ambigua, together with sequence and annotation. The 9,065,247 bp high-quality-draft genome is arranged in 13 scaffolds of 65 contigs, contains 8369 protein-coding genes and 128 RNA-only encoding genes, and is part of the GEBA-RNB project proposal (Project ID 882).

  19. In vitro antibiotic susceptibilities of Burkholderia mallei (causative agent of glanders) determined by broth microdilution and E-test.

    PubMed

    Heine, H S; England, M J; Waag, D M; Byrne, W R

    2001-07-01

    In vitro susceptibilities to 28 antibiotics were determined for 11 strains of Burkholderia mallei by the broth microdilution method. The B. mallei strains demonstrated susceptibility to aminoglycosides, macrolides, quinolones, doxycycline, piperacillin, ceftazidime, and imipenem. For comparison and evaluation, 17 antibiotic susceptibilities were also determined by the E-test. E-test values were always lower than the broth dilution values. Establishing and comparing antibiotic susceptibilities of specific B. mallei strains will provide reference information for assessing new antibiotic agents.

  20. Burkholderia xernovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility

    SciTech Connect

    Chain, Patrick S. G.; Denef, Vincent; Konstantinidis, Konstantinos T; Vergez, Lisa; Agullo, Loreine; Reyes, Valeria Latorre; Hauser, Loren John; Cordova, Macarena; Gomez, Luis; Gonzalez, Myriam; Land, Miriam L; Lao, Victoria; Larimer, Frank W; LiPuma, John J; Mahenthiralingam, Eshwar; Malfatti, Stephanie; Marx, Christopher J; Parnell, J Jacob; Ramette, Alban; Richardson, P M; Seeger, Michael; Smith, Daryl; Spilker, Theodore; Sul, Woo Jun; Tsoi, Tamara V; Zhulin, Igor B; Tiedje, James M.

    2006-01-01

    Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven 'central aromatic' and twenty 'peripheral aromatic' pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes.

  1. Portable exhausters POR-004 SKID B, POR-005 SKID C, POR-006 SKID D storage plan

    SciTech Connect

    Nelson, O.D.

    1997-09-04

    This document provides a storage plan for portable exhausters POR-004 SKID B, POR-005 SKID C, AND POR-006 SKID D. The exhausters will be stored until they are needed by the TWRS (Tank Waste Remediation Systems) Saltwell Pumping Program. The storage plan provides criteria for portable exhauster storage, periodic inspections during storage, and retrieval from storage.

  2. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens

    PubMed Central

    Tenorio-Salgado, Silvia; Tinoco, Raunel; Vazquez-Duhalt, Rafael; Caballero-Mellado, Jesus; Perez-Rueda, Ernesto

    2013-01-01

    It has been documented that bacteria from the Burkholderia genera produce different kinds of compounds that inhibit plant pathogens, however in Burkholderia tropica, an endophytic diazotrophic and phosphate-solubilizing bacterium isolated from a wide diversity of plants, the capacity to produce antifungal compounds has not been evaluated. In order to expand our knowledge about Burkholderia tropica as a potential biological control agent, we analyzed 15 different strains of this bacterium to evaluate their capacities to inhibit the growth of four phytopathogenic fungi, Colletotrichum gloeosporioides, Fusarium culmorum, Fusarium oxysporum and Sclerotium rolffsi. Diverse analytical techniques, including plant root protection and dish plate growth assays and gas chromatography-mass spectroscopy showed that the fungal growth inhibition was intimately associated with the volatile compounds produced by B. tropica and, in particular, two bacterial strains (MTo293 and TTe203) exhibited the highest radial mycelial growth inhibition. Morphological changes associated with these compounds, such as disruption of fungal hyphae, were identified by using photomicrographic analysis. By using gas chromatography-mass spectroscopy technique, 18 volatile compounds involved in the growth inhibition mechanism were identified, including α-pinene and limonene. In addition, we found a high proportion of bacterial strains that produced siderophores during growth with different carbon sources, such as alanine and glutamic acid; however, their roles in the antagonism mechanism remain unclear. PMID:23680857

  3. The melioidosis agent Burkholderia pseudomallei and related opportunistic pathogens detected in faecal matter of wildlife and livestock in northern Australia.

    PubMed

    Höger, A C R; Mayo, M; Price, E P; Theobald, V; Harrington, G; Machunter, B; Choy, J Low; Currie, B J; Kaestli, M

    2016-07-01

    The Darwin region in northern Australia has experienced rapid population growth in recent years, and with it, an increased incidence of melioidosis. Previous studies in Darwin have associated the environmental presence of Burkholderia pseudomallei, the causative agent of melioidosis, with anthropogenic land usage and proximity to animals. In our study, we estimated the occurrence of B. pseudomallei and Burkholderia spp. relatives in faecal matter of wildlife, livestock and domestic animals in the Darwin region. A total of 357 faecal samples were collected and bacteria isolated through culture and direct DNA extraction after enrichment in selective media. Identification of B. pseudomallei, B. ubonensis, and other Burkholderia spp. was carried out using TTS1, Bu550, and recA BUR3-BUR4 quantitative PCR assays, respectively. B. pseudomallei was detected in seven faecal samples from wallabies and a chicken. B. cepacia complex spp. and Pandoraea spp. were cultured from wallaby faecal samples, and B. cenocepacia and B. cepacia were also isolated from livestock animals. Various bacteria isolated in this study represent opportunistic human pathogens, raising the possibility that faecal shedding contributes to the expanding geographical distribution of not just B. pseudomallei but other Burkholderiaceae that can cause human disease. PMID:26935879

  4. The melioidosis agent Burkholderia pseudomallei and related opportunistic pathogens detected in faecal matter of wildlife and livestock in northern Australia.

    PubMed

    Höger, A C R; Mayo, M; Price, E P; Theobald, V; Harrington, G; Machunter, B; Choy, J Low; Currie, B J; Kaestli, M

    2016-07-01

    The Darwin region in northern Australia has experienced rapid population growth in recent years, and with it, an increased incidence of melioidosis. Previous studies in Darwin have associated the environmental presence of Burkholderia pseudomallei, the causative agent of melioidosis, with anthropogenic land usage and proximity to animals. In our study, we estimated the occurrence of B. pseudomallei and Burkholderia spp. relatives in faecal matter of wildlife, livestock and domestic animals in the Darwin region. A total of 357 faecal samples were collected and bacteria isolated through culture and direct DNA extraction after enrichment in selective media. Identification of B. pseudomallei, B. ubonensis, and other Burkholderia spp. was carried out using TTS1, Bu550, and recA BUR3-BUR4 quantitative PCR assays, respectively. B. pseudomallei was detected in seven faecal samples from wallabies and a chicken. B. cepacia complex spp. and Pandoraea spp. were cultured from wallaby faecal samples, and B. cenocepacia and B. cepacia were also isolated from livestock animals. Various bacteria isolated in this study represent opportunistic human pathogens, raising the possibility that faecal shedding contributes to the expanding geographical distribution of not just B. pseudomallei but other Burkholderiaceae that can cause human disease.

  5. Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis.

    PubMed

    Esmaeel, Qassim; Pupin, Maude; Kieu, Nam Phuong; Chataigné, Gabrielle; Béchet, Max; Deravel, Jovana; Krier, François; Höfte, Monica; Jacques, Philippe; Leclère, Valérie

    2016-06-01

    Burkholderia is an important genus encompassing a variety of species, including pathogenic strains as well as strains that promote plant growth. We have carried out a global strategy, which combined two complementary approaches. The first one is genome guided with deep analysis of genome sequences and the second one is assay guided with experiments to support the predictions obtained in silico. This efficient screening for new secondary metabolites, performed on 48 gapless genomes of Burkholderia species, revealed a total of 161 clusters containing nonribosomal peptide synthetases (NRPSs), with the potential to synthesize at least 11 novel products. Most of them are siderophores or lipopeptides, two classes of products with potential application in biocontrol. The strategy led to the identification, for the first time, of the cluster for cepaciachelin biosynthesis in the genome of Burkholderia ambifaria AMMD and a cluster corresponding to a new malleobactin-like siderophore, called phymabactin, was identified in Burkholderia phymatum STM815 genome. In both cases, the siderophore was produced when the strain was grown in iron-limited conditions. Elsewhere, the cluster for the antifungal burkholdin was detected in the genome of B. ambifaria AMMD and also Burkholderia sp. KJ006. Burkholderia pseudomallei strains harbor the genetic potential to produce a novel lipopeptide called burkhomycin, containing a peptidyl moiety of 12 monomers. A mixture of lipopeptides produced by Burkholderia rhizoxinica lowered the surface tension of the supernatant from 70 to 27 mN·m(-1) . The production of nonribosomal secondary metabolites seems related to the three phylogenetic groups obtained from 16S rRNA sequences. Moreover, the genome-mining approach gave new insights into the nonribosomal synthesis exemplified by the identification of dual C/E domains in lipopeptide NRPSs, up to now essentially found in Pseudomonas strains.

  6. Burkholderia dipogonis sp. nov., isolated from root nodules of Dipogon lignosus in New Zealand and Western Australia.

    PubMed

    Sheu, Shih-Yi; Chen, Ming-Hui; Liu, Wendy Y Y; Andrews, Mitchell; James, Euan K; Ardley, Julie K; De Meyer, Sofie E; James, Trevor K; Howieson, John G; Coutinho, Bruna G; Chen, Wen-Ming

    2015-12-01

    Seven strains, ICMP 19430T, ICMP 19429, ICMP 19431, WSM4637, WSM4638, WSM4639 and WSM4640, were isolated from nitrogen-fixing nodules on roots of the invasive South African legume Dipogon lignosus (subfamily Papilionoideae, tribe Phaseoleae) in New Zealand and Western Australia, and their taxonomic positions were investigated by using a polyphasic approach. All seven strains grew at 10-37 °C (optimum, 25-30 °C), at pH 4.0-9.0 (optimum, pH 6.0-7.0) and with 0-2 % (w/v) NaCl (optimum growth in the absence of NaCl). On the basis of 16S rRNA gene sequence analysis, the strains showed 99.0-99.5 % sequence similarity to the closest type strain, Burkholderia phytofirmans PsJNT, and 98.4-99.7 % sequence similarity to Burkholderia caledonica LMG 19076T. The predominant fatty acids were C18 : 1ω7c (21.0 % of the total fatty acids in strain ICMP 19430T), C16 : 0 (19.1 %), C17 : 0 cyclo (18.9 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 10.7 %) and C19 : 0 cyclov ω8c (7.5 %). The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. The major isoprenoid quinone was Q-8 and the DNA G+C content of strain ICMP 19430T was 63.2 mol%. The DNA–DNA relatedness of the novel strains with respect to the closest neighbouring members of the genus Burkholderia was 55 % or less. On the basis of 16S rRNA and recA gene sequence similarities and chemotaxonomic and phenotypic data,these strains represent a novel symbiotic species in the genus Burkholderia, for which the name Burkholderia dipogonis sp. nov. is proposed, with the type strain ICMP 19430T (=LMG28415T=HAMBI 3637T).

  7. Outbreak of bacteremia due to Burkholderia contaminans linked to intravenous fentanyl from an institutional compounding pharmacy.

    PubMed

    Moehring, Rebekah W; Lewis, Sarah S; Isaacs, Pamela J; Schell, Wiley A; Thomann, Wayne R; Althaus, Mary M; Hazen, Kevin C; Dicks, Kristen V; Lipuma, John J; Chen, Luke F; Sexton, Daniel J

    2014-04-01

    IMPORTANCE Many health care facilities compound medications on site to fulfill local demands when customized formulations are needed, national supply is critically low, or costs for manufactured pharmaceuticals are excessive. Small, institutional compounding facilities may perform the same high-risk procedures as large distributors of compounded medications. OBJECTIVES To investigate an outbreak related to contamination of compounded sterile preparations and to determine processes to prevent future outbreaks. DESIGN, SETTING, AND PARTICIPANTS We performed an outbreak investigation of inpatients at Duke University Hospital from August 31 through September 6, 2012. The investigation included a case-control study, compounding facility inspection and environmental sampling, observation of a mock compounding demonstration, and microbiologic and molecular testing of sequestered medication. EXPOSURES Intravenous fentanyl prepared by an institutional compounding pharmacy. MAIN OUTCOMES AND MEASURES Microbiologic and molecular evidence of contamination of a compounded sterile preparation and failure of routine sterility testing. RESULTS Blood cultures of 7 patients during a 7-day period at Duke University Hospital yielded pan-susceptible Burkholderia cepacia complex bacteria. The risk factor common to all patients was receipt of continuous fentanyl infusion prepared by our institutional compounding pharmacy (odds ratio, 11.22; 95% CI, 2.09-∞; P = .01). The outbreak was terminated after sequestration of compounded fentanyl. An intensive evaluation of the compounding facility, its practice, and its procedures was completed. Investigators evaluated the clean room, collected targeted microbiologic samples within the compounding pharmacy environment, and observed a mock demonstration of compounding practice. The B cepacia complex was found in the anteroom sink drain and pH probe calibration fluid from the compounding clean room. Multiple microbiologic analyses of

  8. Interrogation of the Burkholderia pseudomallei genome to address differential virulence among isolates

    SciTech Connect

    Challacombe, Jean F.; Stubben, Chris J.; Klimko, Christopher P.; Welkos, Susan L.; Kern, Steven J.; Bozue, Joel A.; Worsham, Patricia L.; Cote, Christopher K.; Wolfe, Daniel N.; Badger, Jonathan H.

    2014-12-23

    Infection by the Gram-negative pathogen Burkholderia pseudomallei results in the disease melioidosis, acquired from the environment in parts of southeast Asia and northern Australia. Clinical symptoms of melioidosis range from acute (fever, pneumonia, septicemia, and localized infection) to chronic (abscesses in various organs and tissues, most commonly occurring in the lungs, liver, spleen, kidney, prostate and skeletal muscle), and persistent infections in humans are difficult to cure. Understanding the basic biology and genomics of B. pseudomallei is imperative for the development of new vaccines and therapeutic interventions. This formidable task is becoming more tractable due to the increasing number of B. pseudomallei genomes that are being sequenced and compared. Here, we compared three B. pseudomallei genomes, from strains MSHR668, K96243 and 1106a, to identify features that might explain why MSHR668 is more virulent than K96243 and 1106a in a mouse model of B. pseudomallei infection. Our analyses focused on metabolic, virulence and regulatory genes that were present in MSHR668 but absent from both K96243 and 1106a. We also noted features present in K96243 and 1106a but absent from MSHR668, and identified genomic differences that may contribute to variations in virulence noted among the three B. pseudomallei isolates. While this work contributes to our understanding of B. pseudomallei genomics, more detailed experiments are necessary to characterize the relevance of specific genomic features to B. pseudomallei metabolism and virulence. Functional analyses of metabolic networks, virulence and regulation shows promise for examining the effects of B. pseudomallei on host cell metabolism and will lay a foundation for future prediction of the virulence of emerging strains. Continued emphasis in this area will be critical for protection against melioidosis, as a better understanding of what

  9. Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex

    PubMed Central

    2010-01-01

    Background The Burkholderia cepacia complex (BCC) is comprised of at least seventeen Gram-negative species that cause infections in cystic fibrosis patients. Because BCC bacteria are broadly antibiotic resistant, phage therapy is currently being investigated as a possible alternative treatment for these infections. The purpose of our study was to sequence and characterize three novel BCC-specific phages: KS5 (vB_BceM-KS5 or vB_BmuZ-ATCC 17616), KS14 (vB_BceM-KS14) and KL3 (vB_BamM-KL3 or vB_BceZ-CEP511). Results KS5, KS14 and KL3 are myoviruses with the A1 morphotype. The genomes of these phages are between 32317 and 40555 base pairs in length and are predicted to encode between 44 and 52 proteins. These phages have over 50% of their proteins in common with enterobacteria phage P2 and so can be classified as members of the Peduovirinae subfamily and the "P2-like viruses" genus. The BCC phage proteins similar to those encoded by P2 are predominantly structural components involved in virion morphogenesis. As prophages, KS5 and KL3 integrate into an AMP nucleosidase gene and a threonine tRNA gene, respectively. Unlike other P2-like viruses, the KS14 prophage is maintained as a plasmid. The P2 E+E' translational frameshift site is conserved among these three phages and so they are predicted to use frameshifting for expression of two of their tail proteins. The lysBC genes of KS14 and KL3 are similar to those of P2, but in KS5 the organization of these genes suggests that they may have been acquired via horizontal transfer from a phage similar to λ. KS5 contains two sequence elements that are unique among these three phages: an ISBmu2-like insertion sequence and a reverse transcriptase gene. KL3 encodes an EcoRII-C endonuclease/methylase pair and Vsr endonuclease that are predicted to function during the lytic cycle to cleave non-self DNA, protect the phage genome and repair methylation-induced mutations. Conclusions KS5, KS14 and KL3 are the first BCC-specific phages

  10. Correlation of rpsU Gene Sequence Clusters and Biochemical Properties, Gc–Ms Spectra and Resistance Profiles of Clinical Burkholderia Spp. Isolates

    PubMed Central

    Ostermann, Maria Franziska; Neubauer, Heinrich; Frickmann, Hagen; Hagen, Ralf Matthias

    2016-01-01

    This study assessed the variation of phenotypic features of clinical isolates of Burkholderia spp. from common rpsU gene sequence clusters. A total of 41 clinical Burkholderia spp. isolates from German mucoviscidosis patients was subjected to rpsU gene sequencing. Biochemical assessment included the API systems 20 NE and 50 CHE as well as the Micronaut NF system. Fatty acid patterns were assessed using gas chromatography–mass spectrometry (GC–MS). Broth microdilution was used to identify minimum inhibitory concentrations. Five rpsU gene sequence clusters comprised more than one clinical isolate. Altogether, assignments to three species and seven clusters comprising more than one Burkholderia species were performed. Inhomogeneity of biochemical reactions within the clusters ranged from 0/28 to 45/50 reactions. The standard deviation for fatty acid distributions ranged from 0% to 11.5%. Minimum inhibitory concentrations within the clusters showed a wide variation but only minor differences between the clusters. Broad variations within identified rpsU gene sequence clusters regarding biochemical reactions, fatty acid patterns, and resistance patterns of clinical Burkholderia spp. isolates make the application of rpsU gene sequence analysis as a stand-alone procedure for discriminations within the Burkholderia cepacia complex unreliable. PMID:27141312

  11. Correlation of rpsU Gene Sequence Clusters and Biochemical Properties, Gc-Ms Spectra and Resistance Profiles of Clinical Burkholderia Spp. Isolates.

    PubMed

    Ostermann, Maria Franziska; Neubauer, Heinrich; Frickmann, Hagen; Hagen, Ralf Matthias

    2016-03-01

    This study assessed the variation of phenotypic features of clinical isolates of Burkholderia spp. from common rpsU gene sequence clusters. A total of 41 clinical Burkholderia spp. isolates from German mucoviscidosis patients was subjected to rpsU gene sequencing. Biochemical assessment included the API systems 20 NE and 50 CHE as well as the Micronaut NF system. Fatty acid patterns were assessed using gas chromatography-mass spectrometry (GC-MS). Broth microdilution was used to identify minimum inhibitory concentrations. Five rpsU gene sequence clusters comprised more than one clinical isolate. Altogether, assignments to three species and seven clusters comprising more than one Burkholderia species were performed. Inhomogeneity of biochemical reactions within the clusters ranged from 0/28 to 45/50 reactions. The standard deviation for fatty acid distributions ranged from 0% to 11.5%. Minimum inhibitory concentrations within the clusters showed a wide variation but only minor differences between the clusters. Broad variations within identified rpsU gene sequence clusters regarding biochemical reactions, fatty acid patterns, and resistance patterns of clinical Burkholderia spp. isolates make the application of rpsU gene sequence analysis as a stand-alone procedure for discriminations within the Burkholderia cepacia complex unreliable. PMID:27141312

  12. Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell Matrix-assisted Laser Desorption/Ionisation mass spectrometric typing

    PubMed Central

    2012-01-01

    Background Burkholderia (B.) pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS) has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms. Results A collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343) was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain. Conclusions Handling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS analysis being faster than

  13. Screening of Burkholderia sp. WGB31 producing anisic acid from anethole and optimization of fermentation conditions.

    PubMed

    Shen, Peihong; Song, Zhangyang; Zhang, Zhenyong; Zeng, Huahe; Tang, Xianlai; Jiang, Chengjian; Li, Junfang; Wu, Bo

    2014-11-01

    Anisic acid, the precursor of a variety of food flavors and industrial raw materials, can be bioconversed from anethole which extracted from star anise fruits. WGB31 strain with anisic acid molar production rate of 10.25% was isolated and identified as Burkholderia sp. Three significant influential factors, namely, glucose concentration, initial pH value, and medium volume were selected and their effects were evaluated by Box-Behnken Design (BBD). Regression analysis was performed to determine response surface methodology and the significance was tested to obtain the process model of optimal conditions for producing anisic acid. The fermentation conditions at the stable point of the model were obtained: glucose 6 g L(-1) , pH 6.2, culture medium volume 61 mL in a triangular flask with 250 ml volume. Verification test indicated that the production rate of anisic acid was 30.7%, which was three times of that before optimizing. The results provide a basis and reference for producing anisic acid by microbial transformation. PMID:25100156

  14. Landscape Changes Influence the Occurrence of the Melioidosis Bacterium Burkholderia pseudomallei in Soil in Northern Australia

    PubMed Central

    Kaestli, Mirjam; Mayo, Mark; Harrington, Glenda; Ward, Linda; Watt, Felicity; Hill, Jason V.; Cheng, Allen C.; Currie, Bart J.

    2009-01-01

    Background The soil-dwelling saprophyte bacterium Burkholderia pseudomallei is the cause of melioidosis, a severe disease of humans and animals in southeast Asia and northern Australia. Despite the detection of B. pseudomallei in various soil and water samples from endemic areas, the environmental habitat of B. pseudomallei remains unclear. Methodology/Principal Findings We performed a large survey in the Darwin area in tropical Australia and screened 809 soil samples for the presence of these bacteria. B. pseudomallei were detected by using a recently developed and validated protocol involving soil DNA extraction and real-time PCR targeting the B. pseudomallei–specific Type III Secretion System TTS1 gene cluster. Statistical analyses such as multivariable cluster logistic regression and principal component analysis were performed to assess the association of B. pseudomallei with environmental factors. The combination of factors describing the habitat of B. pseudomallei differed between undisturbed sites and environmentally manipulated areas. At undisturbed sites, the occurrence of B. pseudomallei was found to be significantly associated with areas rich in grasses, whereas at environmentally disturbed sites, B. pseudomallei was associated with the presence of livestock animals, lower soil pH and different combinations of soil texture and colour. Conclusions/Significance This study contributes to the elucidation of environmental factors influencing the occurrence of B. pseudomallei and raises concerns that B. pseudomallei may spread due to changes in land use. PMID:19156200

  15. Production of (R)-3-hydroxybutyric acid by Burkholderia cepacia from wood extract hydrolysates.

    PubMed

    Wang, Yuanzhen; Liu, Shijie

    2014-01-01

    (R)-hydroxyalkanoic acids (R-HAs) are valuable building blocks for the synthesis of fine chemicals and biopolymers because of the chiral center and the two active functional groups. Hydroxyalkanoic acids fermentation can revolutionize the polyhydroxyalkanoic acids (PHA) production by increasing efficiency and enhancing product utility. Modifying the fermentation conditions that promotes the in vivo depolymerization and secretion to fermentation broth in wild type bacteria is a novel and promising approach to produce R-HAs. Wood extract hydrolysate (WEH) was found to be a suitable substrate for R-3-hydroxybutyric acid (R-3-HB) production by Burkholderia cepacia. Using Paulownia elongate WEH as a feedstock, the R-3-HB concentration in fermentation broth reached as high as 14.2 g/L after 3 days of batch fermentation and the highest concentration of 16.8 g/L was obtained at day 9. Further investigation indicated that the composition of culture medium contributed to the enhanced R-3-HB production. PMID:24949263

  16. Tyrosine Phosphorylation and Dephosphorylation in Burkholderia cenocepacia Affect Biofilm Formation, Growth under Nutritional Deprivation, and Pathogenicity

    PubMed Central

    Andrade, Angel; Tavares-Carreón, Faviola; Khodai-Kalaki, Maryam

    2015-01-01

    Burkholderia cenocepacia, a member of the B. cepacia complex (Bcc), is an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. Tyrosine phosphorylation has emerged as an important posttranslational modification modulating the physiology and pathogenicity of Bcc bacteria. Here, we investigated the predicted bacterial tyrosine kinases BCAM1331 and BceF and the low-molecular-weight protein tyrosine phosphatases BCAM0208, BceD, and BCAL2200 of B. cenocepacia K56-2. We show that BCAM1331, BceF, BCAM0208, and BceD contribute to biofilm formation, while BCAL2200 is required for growth under nutrient-limited conditions. Multiple deletions of either tyrosine kinase or low-molecular-weight protein tyrosine phosphatase genes resulted in the attenuation of B. cenocepacia intramacrophage survival and reduced pathogenicity in the Galleria mellonella larval infection model. Experimental evidence indicates that BCAM1331 displays reduced tyrosine autophosphorylation activity compared to that of BceF. With the artificial substrate p-nitrophenyl phosphate, the phosphatase activities of the three low-molecular-weight protein tyrosine phosphatases demonstrated similar kinetic parameters. However, only BCAM0208 and BceD could dephosphorylate BceF. Further, BCAL2200 became tyrosine phosphorylated in vivo and catalyzed its autodephosphorylation. Together, our data suggest that despite having similar biochemical activities, low-molecular-weight protein tyrosine phosphatases and tyrosine kinases have both overlapping and specific roles in the physiology of B. cenocepacia. PMID:26590274

  17. Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice.

    PubMed

    Ulrich, Ricky L; Amemiya, Kei; Waag, David M; Roy, Chad J; DeShazer, David

    2005-03-14

    Burkholderia mallei is an obligate mammalian pathogen that causes the zoonotic disease glanders. Two live attenuated B. mallei strains, a capsule mutant and a branched-chain amino acid auxotroph, were evaluated for use as vaccines against aerosol-initiated glanders in mice. Animals were aerogenically vaccinated and serum samples were obtained before aerosol challenge with a high-dose (>300 times the LD50) of B. mallei ATCC 23344. Mice vaccinated with the capsule mutant developed a Th2-like Ig subclass antibody response and none survived beyond 5 days. In comparison, the auxotrophic mutant elicited a Th1-like Ig subclass antibody response and 25% of the animals survived for 1 month postchallenge. After a low-dose (5 times the LD50) aerosol challenge, the survival rates of auxotroph-vaccinated and unvaccinated animals were 50 and 0%, respectively. Thus, live attenuated strains that promote a Th1-like Ig response may serve as promising vaccine candidates against aerosol infection with B. mallei.

  18. Evaluation of recombinant proteins of Burkholderia mallei for serodiagnosis of glanders.

    PubMed

    Pal, Vijai; Kumar, Subodh; Malik, Praveen; Rai, Ganga Prasad

    2012-08-01

    Glanders is a contagious disease caused by the Gram-negative bacillus Burkholderia mallei. The number of equine glanders outbreaks has increased steadily during the last decade. The disease must be reported to the Office International des Epizooties, Paris, France. Glanders serodiagnosis is hampered by the considerable number of false positives and negatives of the internationally prescribed tests. The major problem leading to the low sensitivity and specificity of the complement fixation test (CFT) and enzyme-linked immunosorbent assay (ELISA) has been linked to the test antigens currently used, i.e., crude preparations of whole cells. False-positive results obtained from other diagnostic tests utilizing crude antigens lead to financial losses to animal owners, and false-negative results can turn a risk into a possible threat. In this study, we report on the identification of diagnostic targets using bioinformatics tools for serodiagnosis of glanders. The identified gene sequences were cloned and expressed as recombinant proteins. The purified recombinant proteins of B. mallei were used in an indirect ELISA format for serodiagnosis of glanders. Two recombinant proteins, 0375H and 0375TH, exhibited 100% sensitivity and specificity for glanders diagnosis. The proteins also did not cross-react with sera from patients with the closely related disease melioidosis. The results of this investigation highlight the potential of recombinant 0375H and 0375TH proteins in specific and sensitive diagnosis of glanders.

  19. [GENOTYPING OF THE BURKHOLDERIA MALLEI STRAINS BASED ON DIFFERENT REGION ANALYSIS].

    PubMed

    Bondareva, O S; Savchenko, S S; Tkachenko, G A; Ledeneva, M L; Lemasova, L V; Antonov, V A

    2016-01-01

    Development of the genotyping methods of glanders agent is urgent due to its high pathogenicity, lack of effective preventive measures and threat of the use of Burkholderia mallei as a biological weapon. In this work we proposed a scheme for the typing of the B. mallei strains based on different region analysis (DFR). The choice of variable loci differentially presented in various strains of glanders agents was performed by analyzing annotated whole-genome sequences of the B. mallei strains. Primers and fluorescence probes were designed for 9 selected loci. The amplification conditions for different regions were optimized in two variants: with electrophoretic detection and hybridization-fluorescence detection in the strip format. The possibility of applying the DFR analysis to genetic characterization of strains was assessed in 14 B. mallei strains. The genetic profiles of the studied B. mallei strains revealed that the developed DFR-typing scheme was characterized by high discrimination power (Hunter-Gaston index value was 0.92), reproducibility, rapidity, easy interpretation, and applicability for epidemiological surveillance of glanders.

  20. Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility

    PubMed Central

    Benanti, Erin L.; Nguyen, Catherine M.; Welch, Matthew D.

    2015-01-01

    Summary Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, while their close relative B. thailandensis is nonpathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection. PMID:25860613

  1. Burkholderia cepacia complex infection in Italian patients with cystic fibrosis: prevalence, epidemiology, and genomovar status.

    PubMed

    Agodi, A; Mahenthiralingam, E; Barchitta, M; Gianninò, V; Sciacca, A; Stefani, S

    2001-08-01

    The prevalence, epidemiology, and genomovar status of Burkholderia cepacia complex strains recovered from Italian cystic fibrosis (CF) patients were investigated using genetic typing and species identification methods. Four CF treatment centers were examined: two in Sicily, one in central Italy, and one in northern Italy. B. cepacia complex bacteria were isolated from 59 out of 683 CF patients attending these centers (8.6%). For the two geographically related treatment centers in Sicily, there was a high incidence of infection caused by a single epidemic clone possessing the cblA gene and belonging to B. cepacia genomovar III, recA group III-A, closely related to the major North America-United Kingdom clone, ET12; instability of the cblA sequence was also demonstrated for clonal isolates. In summary, of all the strains of B. cepacia encountered in the Italian CF population, the genomovar III, recA group III-A strains were the most prevalent and transmissible. However, patient-to-patient spread was also observed with several other genomovars, including strains of novel taxonomic status within the B. cepacia complex. A combination of genetic identification and molecular typing analysis is recommended to fully define specific risks posed by the genomovar status of strains within the B. cepacia complex. PMID:11474009

  2. Bioactive and Structural Metabolites of Pseudomonas and Burkholderia Species Causal Agents of Cultivated Mushrooms Diseases1

    PubMed Central

    Andolfi, Anna; Cimmino, Alessio; Cantore, Pietro Lo; Iacobellis, Nicola Sante; Evidente, Antonio

    2008-01-01

    Pseudomonas tolaasii, P. reactans and Burkholderia gladioli pv. agaricicola, are responsible of diseases on some species of cultivated mushrooms. The main bioactive metabolites produced by both Pseudomonas strains are the lipodepsipeptides (LDPs) tolaasin I and II and the so called White Line Inducing Principle (WLIP), respectively, LDPs which have been extensively studied for their role in the disease process and for their biological properties. In particular, their antimicrobial activity and the alteration of biological and model membranes (red blood cell and liposomes) was established. In the case of tolaasin I interaction with membranes was also related to the tridimensional structure in solution as determined by NMR combined with molecular dynamic calculation techniques. Recently, five news minor tolaasins, tolaasins A–E, were isolated from the culture filtrates of P. tolaasii and their chemical structure was determined by extensive use of NMR and MS spectroscopy. Furthermore, their antimicrobial activity was evaluated on target micro-organisms (fungi—including the cultivated mushrooms Agaricus bisporus, Lentinus edodes, and Pleurotus spp.—chromista, yeast and bacteria). The Gram positive bacteria resulted the most sensible and a significant structure-activity relationships was apparent. The isolation and structure determination of bioactive metabolites produced by B. gladioli pv. agaricicola are still in progress but preliminary results indicate their peptide nature. Furthermore, the exopolysaccharide (EPS) from the culture filtrates of B. gladioli pv. agaricicola, as well as the O-chain and lipid A, from the lipopolysaccharide (LPS) of the three bacteria, were isolated and the structures determined. PMID:19787100

  3. Experimental adaptation of Burkholderia cenocepacia to onion medium reduces host range.

    PubMed

    Ellis, Crystal N; Cooper, Vaughn S

    2010-04-01

    It is unclear whether adaptation to a new host typically broadens or compromises host range, yet the answer bears on the fate of emergent pathogens and symbionts. We investigated this dynamic using a soil isolate of Burkholderia cenocepacia, a species that normally inhabits the rhizosphere, is related to the onion pathogen B. cepacia, and can infect the lungs of cystic fibrosis patients. We hypothesized that adaptation of B. cenocepacia to a novel host would compromise fitness and virulence in alternative hosts. We modeled adaptation to a specific host by experimentally evolving 12 populations of B. cenocepacia in liquid medium composed of macerated onion tissue for 1,000 generations. The mean fitness of all populations increased by 78% relative to the ancestor, but significant variation among lines was observed. Populations also varied in several phenotypes related to host association, including motility, biofilm formation, and quorum-sensing function. Together, these results suggest that each population adapted by fixing different sets of adaptive mutations. However, this adaptation was consistently accompanied by a loss of pathogenicity to the nematode Caenorhabditis elegans; by 500 generations most populations became unable to kill nematodes. In conclusion, we observed a narrowing of host range as a consequence of prolonged adaptation to an environment simulating a specific host, and we suggest that emergent pathogens may face similar consequences if they become host-restricted. PMID:20154121

  4. Burkholderia cenocepacia J2315 escapes to the cytosol and actively subverts autophagy in human macrophages.

    PubMed

    Al-Khodor, Souhaila; Marshall-Batty, Kimberly; Nair, Vinod; Ding, Li; Greenberg, David E; Fraser, Iain D C

    2014-03-01

    Selective autophagy functions to specifically degrade cellular cargo tagged by ubiquitination, including bacteria. Strains of the Burkholderia cepacia complex (Bcc) are opportunistic pathogens that cause life-threatening infections in patients with cystic fibrosis (CF) and chronic granulomatous disease (CGD). While there is evidence that defective macrophage autophagy in a mouse model of CF can influence B. cenocepacia susceptibility, there have been no comprehensive studies on how this bacterium is sensed and targeted by the host autophagy response in human macrophages. Here, we describe the intracellular life cycle of B. cenocepacia J2315 and its interaction with the autophagy pathway in human cells. Electron and confocal microscopy analyses demonstrate that the invading bacteria interact transiently with the endocytic pathway before escaping to the cytosol. This escape triggers theselective autophagy pathway, and the recruitment of ubiquitin, the ubiquitin-binding adaptors p62 and NDP52 and the autophagosome membrane-associated protein LC3B, to the bacterial vicinity. However, despite recruitment of these key autophagy pathway effectors, B. cenocepacia blocks autophagosome completion and replicates in the host cytosol. We find that a pre-infection increase in cellular autophagy flux can significantly inhibit B. cenocepacia replication and that lower autophagy flux in macrophages from immunocompromised CGD patients could contribute to increased B. cenocepacia susceptibility, identifying autophagy manipulation as a potential therapeutic approach to reduce bacterial burden in B. cenocepacia infections. PMID:24119232

  5. Land use and soil type determine the presence of the pathogen Burkholderia pseudomallei in tropical rivers.

    PubMed

    Ribolzi, Olivier; Rochelle-Newall, Emma; Dittrich, Sabine; Auda, Yves; Newton, Paul N; Rattanavong, Sayaphet; Knappik, Michael; Soulileuth, Bounsamai; Sengtaheuanghoung, Oloth; Dance, David A B; Pierret, Alain

    2016-04-01

    Burkholderia pseudomallei is the bacterium that causes melioidosis in humans. While B. pseudomallei is known to be endemic in South East Asia (SEA), the occurrence of the disease in other parts of the tropics points towards a potentially large global distribution. We investigated the environmental factors that influence the presence (and absence) of B. pseudomallei in a tropical watershed in SEA. Our main objective was to determine whether there is a link between the presence of the organism in the hydrographic network and the upstream soil and land-use type. The presence of B. pseudomallei was determined using a specific quantitative real-time PCR assay following enrichment culture. Land use, soil, geomorphology, and environmental data were then analyzed using partial least squares discriminant analysis (PLSDA) to compare the B. pseudomallei positive and negative sites. Soil type in the surrounding catchment and turbidity had a strong positive influence on the presence (acrisols and luvisols) or absence (ferralsols) of B. pseudomallei. Given the strong apparent links between soil characteristics, water turbidity, and the presence/absence of B. pseudomallei, actions to raise public awareness about factors increasing the risk of exposure should be undertaken in order to reduce the incidence of melioidosis in regions of endemicity.

  6. Strategies for PCR based detection of Burkholderia pseudomallei DNA in paraffin wax embedded tissues.

    PubMed

    Hagen, R M; Gauthier, Y P; Sprague, L D; Vidal, D R; Zysk, G; Finke, E-J; Neubauer, H

    2002-12-01

    Recently, several cases of melioidosis imported to Europe have been reported. The diagnosis of the acute or chronic infection remains challenging. This report describes an optimised protocol for fast and reliable DNA preparation for use in two different polymerase chain reaction (PCR) assays, namely: (1) a seminested PCR assay targeting a genus specific sequence of the ribosomal protein subunit 21 (rpsU) gene and (2) a nested PCR assay targeting the gene encoding the filament forming flagellin (fliC). Various strains of Burkholderia spp, strains of closely related genera, and spleen tissue samples of experimentally infected mice were investigated. The combination of PCR and sequencing of the amplicons resulted in high sensitivity and specificity. These procedures may allow rapid, sensitive, and reliable detection of B pseudomallei DNA in routinely formalin fixed and paraffin wax embedded samples, thus providing a safe diagnostic tool and avoiding the cultivation of a risk group 3 agent. In addition, this method could be useful for retrospective histopathological investigations.

  7. Rapid Detection of Burkholderia pseudomallei in Blood Cultures Using a Monoclonal Antibody-Based Immunofluorescent Assay

    PubMed Central

    Chantratita, Narisara; Tandhavanant, Sarunporn; Wongsuvan, Gumphol; Wuthiekanun, Vanaporn; Teerawattanasook, Nittaya; Day, Nicholas P. J.; Limmathurotsakul, Direk; Peacock, Sharon J.

    2013-01-01

    Melioidosis is a severe bacterial infection caused by Burkholderia pseudomallei. Rapid antimicrobial therapy is necessary to improve patient outcome, which is aided by direct detection of B. pseudomallei in clinical samples. A drawback for all antigen assays is that the number of B. pseudomallei in blood usually falls below the achievable level of detection. We performed a prospective cohort study of 461 patients with 541 blood cultures to evaluate the utility of a pre-incubation step prior to detection of B. pseudomallei using a monoclonal antibody-based immunofluorescent assay (Mab-IFA). The Mab-IFA was positive in 74 of 76 patients with melioidosis (sensitivity = 97.4%), and negative in 385 patients who did not have blood cultures containing B. pseudomallei (specificity = 100%). The Mab-IFA could be a valuable supplementary tool for rapid detection. We recommend the use of the Mab-IFA to test blood cultures that flag positive in regions where melioidosis is endemic. PMID:24019434

  8. A new species of Burkholderia isolated from sugarcane roots promotes plant growth.

    PubMed

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G A; Yeoh, Yun Kit; Webb, Richard I; Lakshmanan, Prakash; Chan, Cheong Xin; Lim, Phaik-Eem; Ragan, Mark A; Schmidt, Susanne; Hugenholtz, Philip

    2014-03-01

    Sugarcane is a globally important food, biofuel and biomaterials crop. High nitrogen (N) fertilizer rates aimed at increasing yield often result in environmental damage because of excess and inefficient application. Inoculation with diazotrophic bacteria is an attractive option for reducing N fertilizer needs. However, the efficacy of bacterial inoculants is variable, and their effective formulation remains a knowledge frontier. Here, we take a new approach to investigating diazotrophic bacteria associated with roots using culture-independent microbial community profiling of a commercial sugarcane variety (Q208(A) ) in a field setting. We first identified bacteria that were markedly enriched in the rhizosphere to guide isolation and then tested putative diazotrophs for the ability to colonize axenic sugarcane plantlets (Q208(A) ) and promote growth in suboptimal N supply. One isolate readily colonized roots, fixed N2 and stimulated growth of plantlets, and was classified as a new species, Burkholderia australis sp. nov. Draft genome sequencing of the isolate confirmed the presence of nitrogen fixation. We propose that culture-independent identification and isolation of bacteria that are enriched in rhizosphere and roots, followed by systematic testing and confirming their growth-promoting capacity, is a necessary step towards designing effective microbial inoculants. PMID:24350979

  9. Multilocus sequence analysis reveals high genetic diversity in clinical isolates of Burkholderia cepacia complex from India

    PubMed Central

    Gautam, Vikas; Patil, Prashant P.; Kumar, Sunil; Midha, Samriti; Kaur, Mandeep; Kaur, Satinder; Singh, Meenu; Mali, Swapna; Shastri, Jayanthi; Arora, Anita; Ray, Pallab; Patil, Prabhu B.

    2016-01-01

    Burkholderia cepacia complex (Bcc) is a complex group of bacteria causing opportunistic infections in immunocompromised and cystic fibrosis (CF) patients. Herein, we report multilocus sequence typing and analysis of the 57 clinical isolates of Bcc collected over the period of seven years (2005–2012) from several hospitals across India. A total of 21 sequence types (ST) including two STs from cystic fibrosis patient’s isolates and twelve novel STs were identified in the population reflecting the extent of genetic diversity. Multilocus sequence analysis revealed two lineages in population, a major lineage belonging to B. cenocepacia and a minor lineage belonging to B. cepacia. Split-decomposition analysis suggests absence of interspecies recombination and intraspecies recombination contributed in generating genotypic diversity amongst isolates. Further linkage disequilibrium analysis indicates that recombination takes place at a low frequency, which is not sufficient to break down the clonal relationship. This knowledge of the genetic structure of Bcc population from a rapidly developing country will be invaluable in the epidemiology, surveillance and understanding global diversity of this group of a pathogen. PMID:27767197

  10. Drosophila melanogaster as a Model Host for the Burkholderia cepacia Complex

    PubMed Central

    Tremblay, Julien; Déziel, Eric

    2010-01-01

    Background Colonization with bacterial species from the Burkholderia cepacia complex (Bcc) is associated with fast health decline among individuals with cystic fibrosis. In order to investigate the virulence of the Bcc, several alternative infection models have been developed. To this end, the fruit fly is increasingly used as surrogate host, and its validity to enhance our understanding of host-pathogen relationships has been demonstrated with a variety of microorganisms. Moreover, its relevance as a suitable alternative to mammalian hosts has been confirmed with vertebrate organisms. Methodology/Principal Findings The aim of this study was to establish Drosophila melanogaster as a surrogate host for species from the Bcc. While the feeding method proved unsuccessful at killing the flies, the pricking technique did generate mortality within the populations. Results obtained with the fruit fly model are comparable with results obtained using mammalian infection models. Furthermore, validity of the Drosophila infection model was confirmed with B. cenocepacia K56-2 mutants known to be less virulent in murine hosts or in other alternative models. Competitive index (CI) analyses were also performed using the fruit fly as host. Results of CI experiments agree with those obtained with mammalian models. Conclusions/Significance We conclude that Drosophila is a useful alternative infection model for Bcc and that fly pricking assays and competition indices are two complementary methods for virulence testing. Moreover, CI results indicate that this method is more sensitive than mortality tests. PMID:20635002

  11. Identification of functions linking quorum sensing with biofilm formation in Burkholderia cenocepacia H111

    PubMed Central

    Inhülsen, Silja; Aguilar, Claudio; Schmid, Nadine; Suppiger, Angela; Riedel, Kathrin; Eberl, Leo

    2012-01-01

    Burkholderia cenocepacia has emerged as an important pathogen for patients suffering from cystic fibrosis (CF). Previous work has shown that this organism employs the CepIR quorum-sensing (QS) system to control the expression of virulence factors as well as the formation of biofilms. To date, however, very little is known about the QS-regulated virulence factors and virtually nothing about the factors that link QS and biofilm formation. Here, we have employed a combined transcriptomic and proteomic approach to precisely define the QS regulon in our model strain B. cenocepacia H111, a CF isolate. Among the identified CepR-activated loci, three were analyzed in better detail for their roles in biofilm development: (i) a gene cluster coding for the BclACB lectins, (ii) the large surface protein BapA, and (iii) a type I pilus. The analysis of defined mutants revealed that BapA plays a major role in biofilm formation on abiotic surfaces while inactivation of the type I pilus showed little effect both in a static microtitre dish-based biofilm assay and in flow-through cells. Inactivation of the bclACB lectin genes resulted in biofilms containing hollow microcolonies, suggesting that the lectins are important for biofilm structural development. PMID:22950027

  12. Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia

    PubMed Central

    Scoffone, Viola C.; Ryabova, Olga; Makarov, Vadim; Iadarola, Paolo; Fumagalli, Marco; Fondi, Marco; Fani, Renato; De Rossi, Edda; Riccardi, Giovanna; Buroni, Silvia

    2015-01-01

    Burkholderia cenocepacia is a major concern for people suffering from cystic fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of these infections particularly difficult. Here a new compound, belonging to the 2,1,3-benzothiadiazol-5-yl family (10126109), with a bactericidal effect and a minimal inhibitory concentration (MIC) of 8 μg/ml against B. cenocepacia, is described. The compound is not cytotoxic and effective against B. cenocepacia clinical isolates and members of all the known B. cepacia complex species. Spontaneous mutants resistant to 10126109 were isolated and mutations in the MerR transcriptional regulator BCAM1948 were identified. In this way, a mechanism of resistance to this new molecule was described, which relies on the overexpression of the RND-9 efflux pump. Indeed, rnd-9 overexpression was confirmed by quantitative reverse transcription PCR, and RND-9 was identified in the membrane fractions of the mutant strains. Moreover, the increase in the MIC values of different drugs in the mutant strains, together with complementation experiments, suggested the involvement of RND-9 in the efflux of 10126109, thus indicating again the central role of efflux transporters in B. cenocepacia drug resistance. PMID:26300878

  13. Diversities in virulence, antifungal activity, pigmentation and DNA fingerprint among strains of Burkholderia glumae.

    PubMed

    Karki, Hari S; Shrestha, Bishnu K; Han, Jae Woo; Groth, Donald E; Barphagha, Inderjit K; Rush, Milton C; Melanson, Rebecca A; Kim, Beom Seok; Ham, Jong Hyun

    2012-01-01

    Burkholderia glumae is the primary causal agent of bacterial panicle blight of rice. In this study, 11 naturally avirulent and nine virulent strains of B. glumae native to the southern United States were characterized in terms of virulence in rice and onion, toxofalvin production, antifungal activity, pigmentation and genomic structure. Virulence of B. glumae strains on rice panicles was highly correlated to virulence on onion bulb scales, suggesting that onion bulb can be a convenient alternative host system to efficiently determine the virulence of B. glumae strains. Production of toxoflavin, the phytotoxin that functions as a major virulence factor, was closely associated with the virulence phenotypes of B. glumae strains in rice. Some strains of B. glumae showed various levels of antifungal activity against Rhizoctonia solani, the causal agent of sheath blight, and pigmentation phenotypes on casamino acid-peptone-glucose (CPG) agar plates regardless of their virulence traits. Purple and yellow-green pigments were partially purified from a pigmenting strain of B. glumae, 411gr-6, and the purple pigment fraction showed a strong antifungal activity against Collectotrichum orbiculare. Genetic variations were detected among the B. glumae strains from DNA fingerprinting analyses by repetitive element sequence-based PCR (rep-PCR) for BOX-A1R-based repetitive extragenic palindromic (BOX) or enterobacterial repetitive intergenic consensus (ERIC) sequences of bacteria; and close genetic relatedness among virulent but pigment-deficient strains were revealed by clustering analyses of DNA fingerprints from BOX-and ERIC-PCR.

  14. Identification of functions linking quorum sensing with biofilm formation in Burkholderia cenocepacia H111.

    PubMed

    Inhülsen, Silja; Aguilar, Claudio; Schmid, Nadine; Suppiger, Angela; Riedel, Kathrin; Eberl, Leo

    2012-06-01

    Burkholderia cenocepacia has emerged as an important pathogen for patients suffering from cystic fibrosis (CF). Previous work has shown that this organism employs the CepIR quorum-sensing (QS) system to control the expression of virulence factors as well as the formation of biofilms. To date, however, very little is known about the QS-regulated virulence factors and virtually nothing about the factors that link QS and biofilm formation. Here, we have employed a combined transcriptomic and proteomic approach to precisely define the QS regulon in our model strain B. cenocepacia H111, a CF isolate. Among the identified CepR-activated loci, three were analyzed in better detail for their roles in biofilm development: (i) a gene cluster coding for the BclACB lectins, (ii) the large surface protein BapA, and (iii) a type I pilus. The analysis of defined mutants revealed that BapA plays a major role in biofilm formation on abiotic surfaces while inactivation of the type I pilus showed little effect both in a static microtitre dish-based biofilm assay and in flow-through cells. Inactivation of the bclACB lectin genes resulted in biofilms containing hollow microcolonies, suggesting that the lectins are important for biofilm structural development. PMID:22950027

  15. Exploring the Anti-Burkholderia cepacia Complex Activity of Essential Oils: A Preliminary Analysis

    PubMed Central

    Lo Nostro, Antonella; Calonico, Carmela; Perrin, Elena; Chiellini, Carolina; Fondi, Marco; Mengoni, Alessio; Vannacci, Alfredo; Bilia, Anna Rita; Gori, Luigi

    2014-01-01

    In this work we have checked the ability of the essential oils extracted from six different medicinal plants (Eugenia caryophyllata, Origanum vulgare, Rosmarinus officinalis, Lavandula officinalis, Melaleuca alternifolia, and Thymus vulgaris) to inhibit the growth of 18 bacterial type strains belonging to the 18 known species of the Burkholderia cepacia complex (Bcc). These bacteria are opportunistic human pathogens that can cause severe infection in immunocompromised patients, especially those affected by cystic fibrosis (CF), and are often resistant to multiple antibiotics. The analysis of the aromatograms produced by the six oils revealed that, in spite of their different chemical composition, all of them were able to contrast the growth of Bcc members. However, three of them (i.e., Eugenia caryophyllata, Origanum vulgare, and Thymus vulgaris) were particularly active versus the Bcc strains, including those exhibiting a high degree or resistance to ciprofloxacin, one of the most used antibiotics to treat Bcc infections. These three oils are also active toward both environmental and clinical strains (isolated from CF patients), suggesting that they might be used in the future to fight B. cepacia complex infections. PMID:24701243

  16. Mesaconase Activity of Class I Fumarase Contributes to Mesaconate Utilization by Burkholderia xenovorans.

    PubMed

    Kronen, Miriam; Sasikaran, Jahminy; Berg, Ivan A

    2015-08-15

    Pseudomonas aeruginosa, Yersinia pestis, and many other bacteria are able to utilize the C5-dicarboxylic acid itaconate (methylenesuccinate). Itaconate degradation starts with its activation to itaconyl coenzyme A (itaconyl-CoA), which is further hydrated to (S)-citramalyl-CoA, and citramalyl-CoA is finally cleaved into acetyl-CoA and pyruvate. The xenobiotic-degrading betaproteobacterium Burkholderia xenovorans possesses a P. aeruginosa-like itaconate degradation gene cluster and is able to grow on itaconate and its isomer mesaconate (methylfumarate). Although itaconate degradation proceeds in B. xenovorans in the same way as in P. aeruginosa, the pathway of mesaconate utilization is not known. Here, we show that mesaconate is metabolized through its hydration to (S)-citramalate. The latter compound is then metabolized to acetyl-CoA and pyruvate with the participation of two enzymes of the itaconate degradation pathway, a promiscuous itaconate-CoA transferase able to activate (S)-citramalate in addition to itaconate and (S)-citramalyl-CoA lyase. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by a class I fumarase. As this enzyme (Bxe_A3136) has similar efficiencies (kcat/Km) for both fumarate and mesaconate hydration, we conclude that B. xenovorans class I fumarase is in fact a promiscuous fumarase/mesaconase. This promiscuity is physiologically relevant, as it allows the growth of this bacterium on mesaconate as a sole carbon and energy source.

  17. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS

    PubMed Central

    Wong, Yee-Chin; Abd El Ghany, Moataz; Naeem, Raeece; Lee, Kok-Wei; Tan, Yung-Chie; Pain, Arnab; Nathan, Sheila

    2016-01-01

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence. PMID:27597847

  18. Screening of Burkholderia sp. WGB31 producing anisic acid from anethole and optimization of fermentation conditions.

    PubMed

    Shen, Peihong; Song, Zhangyang; Zhang, Zhenyong; Zeng, Huahe; Tang, Xianlai; Jiang, Chengjian; Li, Junfang; Wu, Bo

    2014-11-01

    Anisic acid, the precursor of a variety of food flavors and industrial raw materials, can be bioconversed from anethole which extracted from star anise fruits. WGB31 strain with anisic acid molar production rate of 10.25% was isolated and identified as Burkholderia sp. Three significant influential factors, namely, glucose concentration, initial pH value, and medium volume were selected and their effects were evaluated by Box-Behnken Design (BBD). Regression analysis was performed to determine response surface methodology and the significance was tested to obtain the process model of optimal conditions for producing anisic acid. The fermentation conditions at the stable point of the model were obtained: glucose 6 g L(-1) , pH 6.2, culture medium volume 61 mL in a triangular flask with 250 ml volume. Verification test indicated that the production rate of anisic acid was 30.7%, which was three times of that before optimizing. The results provide a basis and reference for producing anisic acid by microbial transformation.

  19. A novel rhamno-mannan exopolysaccharide isolated from biofilms of Burkholderia multivorans C1576.

    PubMed

    Dolfi, Stefania; Sveronis, Aris; Silipo, Alba; Rizzo, Roberto; Cescutti, Paola

    2015-06-26

    Burkholderia multivorans C1576 is a Gram negative opportunistic pathogen causing serious lung infection in cystic fibrosis patients. Considering that bacteria naturally form biofilms, and exopolysaccharides are recognized as important factors for biofilm architecture set-up, B. multivorans was grown both in biofilm and in non-biofilm mode on two different media in order to compare the exopolysaccharides biosynthesized in these different experimental conditions. The exopolysaccharides produced were purified and their structure was determined resorting mainly to NMR spectroscopy, ESI mass spectrometry and gas chromatography coupled to mass spectrometry. The experimental data showed that both in biofilm and non-biofilm mode B. multivorans C1576 produced a novel exopolysaccharide having the following structure: [Formula: see text]. About 50% of the 2-linked rhamnose residues are substituted on C-3 with a methyl ether group. The high percentage of deoxysugar Rha units, coupled with OMe substitutions, suggest a possible role for polymer domains with marked hydrophobic characteristics able to create exopolysaccharide junction zones favouring the stability of the biofilm matrix.

  20. Antioxidant enzymes activities of Burkholderia spp. strains-oxidative responses to Ni toxicity.

    PubMed

    Dourado, M N; Franco, M R; Peters, L P; Martins, P F; Souza, L A; Piotto, F A; Azevedo, R A

    2015-12-01

    Increased agriculture production associated with intense application of herbicides, pesticides, and fungicides leads to soil contamination worldwide. Nickel (Ni), due to its high mobility in soils and groundwater, constitutes one of the greatest problems in terms of environmental pollution. Metals, including Ni, in high concentrations are toxic to cells by imposing a condition of oxidative stress due to the induction of reactive oxygen species (ROS), which damage lipids, proteins, and DNA. This study aimed to characterize the Ni antioxidant response of two tolerant Burkholderia strains (one isolated from noncontaminated soil, SNMS32, and the other from contaminated soil, SCMS54), by measuring superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Ni accumulation and bacterial growth in the presence of the metal were also analyzed. The results showed that both strains exhibited different trends of Ni accumulation and distinct antioxidant enzymes responses. The strain from contaminated soil (SCMS54) exhibited a higher Ni biosorption and exhibited an increase in SOD and GST activities after 5 and 12 h of Ni exposure. The analysis of SOD, CAT, and GR by nondenaturing PAGE revealed the appearance of an extra isoenzyme in strain SCMS54 for each enzyme. The results suggest that the strain SCMS54 isolated from contaminated soil present more plasticity with potential to be used in soil and water bioremediation.

  1. Importance of topology for glycocluster binding to Pseudomonas aeruginosa and Burkholderia ambifaria bacterial lectins.

    PubMed

    Ligeour, Caroline; Dupin, Lucie; Angeli, Anthony; Vergoten, Gérard; Vidal, Sébastien; Meyer, Albert; Souteyrand, Eliane; Vasseur, Jean-Jacques; Chevolot, Yann; Morvan, François

    2015-12-14

    Pseudomonas aeruginosa (PA) and Burkholderia ambifaria (BA) are two opportunistic Gram negative bacteria and major infectious agents involved in lung infection of cystic fibrosis patients. Both bacteria can develop resistance to conventional antibiotherapies. An alternative strategy consists of targeting virulence factors in particular lectins with high affinity ligands such as multivalent glycoclusters. LecA (PA-IL) and LecB (PA-IIL) are two tetravalent lectins from PA that recognise galactose and fucose respectively. BambL lectin from BA is trimeric with 2 binding sites per monomer and is also specific for fucose. These three lectins are potential therapeutic targets in an anti-adhesive anti-bacterial approach. Herein, we report the synthesis of 18 oligonucleotide pentofuranose-centered or mannitol-centered glycoclusters leading to tri-, penta- or decavalent clusters with different topologies. The linker arm length between the core and the carbohydrate epitope was also varied leading to 9 galactoclusters targeting LecA and 9 fucoclusters targeting both LecB and BambL. Their dissociation constants (Kd) were determined using a DNA-based carbohydrate microarray technology. The trivalent xylo-centered galactocluster and the ribo-centered fucocluster exhibited the best affinity for LecA and LecB respectively while the mannitol-centered decafucocluster displayed the best affinity to BambL. These data demonstrated that the topology and nature of linkers were the predominant factors for achieving high affinity rather than valency.

  2. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90.

    PubMed

    Yang, Zhihui; Zhang, Zhi; Chai, Liyuan; Wang, Yong; Liu, Yi; Xiao, Ruiyang

    2016-01-15

    Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant.

  3. Increase in isolation of Burkholderia contaminans from Spanish patients with cystic fibrosis.

    PubMed

    Medina-Pascual, M J; Valdezate, S; Carrasco, G; Villalón, P; Garrido, N; Saéz-Nieto, J A

    2015-02-01

    Species of the Burkholderia cepacia complex are associated with opportunistic infection in patients with cystic fibrosis. For years now, B. multivorans and B. cenocepacia have been the most frequently isolated species within the complex in such patients. However, between 2008 and 2012, the overall incidence of these species in Spain (17.7% and 12.5% respectively) was overtaken by that of B. contaminans (36.5%). The population structure of B. contaminans isolates from Spanish patients with cystic fibrosis was analysed using multilocus sequence typing and pulsed-field gel electrophoresis (PFGE). Three major known sequence types (ST102, ST404 and ST482) and a new one (ST771) were identified among 59 isolates. In addition, PFGE detected 17 pulsotypes. Susceptibility to antibiotics was examined using the Etest. Cotrimoxazole and ceftazidime were the most active antibiotics against B. contaminans, inhibiting growth in 88% and 86% of the isolates, respectively. In addition, this species showed less resistance to most of the antibiotics tested than did either B. multivorans or B. cenocepacia isolates recovered from similar Spanish patients.

  4. chr genes from adaptive replicons are responsible for chromate resistance by Burkholderia xenovorans LB400.

    PubMed

    Reyes-Gallegos, Rosa I; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2016-03-01

    The chromate ion transporter (CHR) superfamily includes proteins that confer chromate resistance by extruding toxic chromate ions from cytoplasm. Burkholderia xenovorans strain LB400 encodes six CHR homologues in its multireplicon genome and has been reported as highly chromate-resistant. The objective of this work was to analyze the involvement of chr redundant genes in chromate resistance by LB400. It was found that B. xenovorans plant rhizosphere strains lacking the megaplasmid are chromate-sensitive, suggesting that the chr gene present in this replicon is responsible for the chromate-resistance phenotype of the LB400 strain. Transformation of a chromate-sensitive B. xenovorans strain with each of the six cloned LB400 chr genes showed that genes from 'adaptive replicons' (chrA1b and chr1NCb from chromosome 2 and chrA2 from the megaplasmid) conferred higher chromate resistance levels than chr genes from 'central' chromosome 1 (chrA1a, chrA6, and chr1NCa). An LB400 insertion mutant affected in the chrA2 gene displayed a chromate-sensitive phenotype, which was fully reverted by transferring the chrA2 wild-type gene, and partially reverted by chrA1b or chr1NCb genes. These data indicate that chr genes from adaptive replicons, mainly chrA2 from the megaplasmid, are responsible for the B. xenovorans LB400 chromate-resistance phenotype.

  5. Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility.

    PubMed

    Benanti, Erin L; Nguyen, Catherine M; Welch, Matthew D

    2015-04-01

    Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, whereas their close relative B. thailandensis is non-pathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion, and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate, and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection.

  6. Screening for potential anti-infective agents towards Burkholderia pseudomallei infection

    NASA Astrophysics Data System (ADS)

    Eng, Su Anne; Nathan, Sheila

    2014-09-01

    The established treatment for melioidosis is antibiotic therapy. However, a constant threat to this form of treatment is resistance development of the causative agent, Burkholderia pseudomallei, towards antibiotics. One option to circumvent this threat of antibiotic resistance is to search for new alternative anti-infectives which target the host innate immune system and/or bacterial virulence. In this study, 29 synthetic compounds were evaluated for their potential to increase the lifespan of an infected host. The nematode Caenorhabditis elegans was adopted as the infection model as its innate immune pathways are homologous to humans. Screens were performed in a liquid-based survival assay containing infected worms exposed to individual compounds and survival of untreated and compound-treated worms were compared. A primary screen identified nine synthetic compounds that extended the lifespan of B. pseudomallei-infected worms. Subsequently, a disc diffusion test was performed on these selected compounds to delineate compounds into those that enhanced the survival of worms via antimicrobial activity i.e. reducing the number of infecting bacteria, or into those that did not target pathogen viability. Out of the nine hits selected, two demonstrated antimicrobial effects on B. pseudomallei. Therefore, the findings from this study suggest that the other seven identified compounds are potential anti-infectives which could protect a host against B. pseudomallei infection without developing the risk of drug resistance.

  7. In silico analysis of Burkholderia pseudomallei genome sequence for potential drug targets.

    PubMed

    Chong, Chan-Eng; Lim, Boon-San; Nathan, Sheila; Mohamed, Rahmah

    2006-01-01

    Recent advances in DNA sequencing technology have enabled elucidation of whole genome information from a plethora of organisms. In parallel with this technology, various bioinformatics tools have driven the comparative analysis of the genome sequences between species and within isolates. While drawing meaningful conclusions from a large amount of raw material, computer-aided identification of suitable targets for further experimental analysis and characterization, has also led to the prediction of non-human homologous essential genes in bacteria as promising candidates for novel drug discovery. Here, we present a comparative genomic analysis to identify essential genes in Burkholderia pseudomallei. Our in silico prediction has identified 312 essential genes which could also be potential drug candidates. These genes encode essential proteins to support the survival of B. pseudomallei including outer-inner membrane and surface structures, regulators, proteins involved in pathogenenicity, adaptation, chaperones as well as degradation of small and macromolecules, energy metabolism, information transfer, central/intermediate/miscellaneous metabolism pathways and some conserved hypothetical proteins of unknown function. Therefore, our in silico approach has enabled rapid screening and identification of potential drug targets for further characterization in the laboratory.

  8. Environmental Attributes Influencing the Distribution of Burkholderia pseudomallei in Northern Australia

    PubMed Central

    Baker, Anthony L.; Ezzahir, Jessica; Gardiner, Christopher; Shipton, Warren; Warner, Jeffrey M.

    2015-01-01

    Factors responsible for the spatial and temporal clustering of Burkholderia pseudomallei in the environment remain to be elucidated. Whilst laboratory based experiments have been performed to analyse survival of the organism in various soil types, such approaches are strongly influenced by alterations to the soil micro ecology during soil sanitisation and translocation. During the monsoonal season in Townsville, Australia, B. pseudomallei is discharged from Castle Hill (an area with a very high soil prevalence of the organism) by groundwater seeps and is washed through a nearby area where intensive sampling in the dry season has been unable to detect the organism. We undertook environmental sampling and soil and plant characterisation in both areas to ascertain physiochemical and macro-floral differences between the two sites that may affect the prevalence of B. pseudomallei. In contrast to previous studies, the presence of B. pseudomallei was correlated with a low gravimetric water content and low nutrient availability (nitrogen and sulphur) and higher exchangeable potassium in soils favouring recovery. Relatively low levels of copper, iron and zinc favoured survival. The prevalence of the organism was found to be highest under the grasses Aristida sp. and Heteropogon contortus and to a lesser extent under Melinis repens. The findings of this study indicate that a greater variety of factors influence the endemicity of melioidosis than has previously been reported, and suggest that biogeographical boundaries to the organisms’ distribution involve complex interactions. PMID:26398904

  9. Transmission and prevalence of Burkholderia cepacia in Welsh cystic fibrosis patients.

    PubMed

    Millar-Jones, L; Ryley, H C; Paull, A; Goodchild, M C

    1998-02-01

    From 1987 to 1994, 16 of 162 cystic fibrosis (CF) patients attending CF clinics at three different hospitals in South Wales, U.K. were found to have respiratory secretions colonized with Burkholderia cepacia (B. cepacia). Bacteriological typing by polymerase chain reaction (PCR) ribotyping demonstrated seven strains of B. cepacia among these 16 CF patients. This typing confirmed that cross-infection was the mechanism of colonization in six of the nine patients who were colonized at the paediatric CF clinic at the University Hospital of Wales in Cardiff, and in three of the six patients who were colonized at the adult CF clinic at Llandough Hospital in Cardiff (cross-infection rate nine of 16 patients or 56%). A search was made for a nosocomial source, with screening of wards and clinics. Swabs from fomites produced four positive cultures for B. cepacia. Two isolates had the same PCR ribotype as that of the previous CF room occupant. To establish prevalence of B. cepacia among CF children living throughout Wales, respiratory secretions were cultured from 151 of 186 CF children (age < 16 years). This failed to demonstrate B. cepacia colonization other than in the CF patients already identified.

  10. Burkholderia Diffusible Signal Factor Signals to Francisella novicida To Disperse Biofilm and Increase Siderophore Production

    PubMed Central

    Dean, Scott N.; Chung, Myung-Chul

    2015-01-01

    In many bacteria, the ability to modulate biofilm production relies on specific signaling molecules that are either self-produced or made by neighboring microbes within the ecological niche. We analyzed the potential interspecies signaling effect of the Burkholderia diffusible signal factor (BDSF) on Francisella novicida, a model organism for Francisella tularensis, and demonstrated that BDSF both inhibits the formation and causes the dispersion of Francisella biofilm. Specificity was demonstrated for the cis versus the trans form of BDSF. Using transcriptome sequencing, quantitative reverse transcription-PCR, and activity assays, we found that BDSF altered the expression of many F. novicida genes, including genes involved in biofilm formation, such as chitinases. Using a chitinase inhibitor, the antibiofilm activity of BDSF was also shown to be chitinase dependent. In addition, BDSF caused an increase in RelA expression and increased levels of (p)ppGpp, leading to decreased biofilm production. These results support our observation that exposure of F. novicida to BDSF causes biofilm dispersal. Furthermore, BDSF upregulated the genes involved in iron acquisition (figABCD), increasing siderophore production. Thus, this study provides evidence for a potential role and mechanism of diffusible signal factor (DSF) signaling in the genus Francisella and suggests the possibility of interspecies signaling between Francisella and other bacteria. Overall, this study suggests that in response to the interspecies DSF signal, F. novicida can alter its gene expression and regulate its biofilm formation. PMID:26231649

  11. Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia.

    PubMed

    Scoffone, Viola C; Ryabova, Olga; Makarov, Vadim; Iadarola, Paolo; Fumagalli, Marco; Fondi, Marco; Fani, Renato; De Rossi, Edda; Riccardi, Giovanna; Buroni, Silvia

    2015-01-01

    Burkholderia cenocepacia is a major concern for people suffering from cystic fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of these infections particularly difficult. Here a new compound, belonging to the 2,1,3-benzothiadiazol-5-yl family (10126109), with a bactericidal effect and a minimal inhibitory concentration (MIC) of 8 μg/ml against B. cenocepacia, is described. The compound is not cytotoxic and effective against B. cenocepacia clinical isolates and members of all the known B. cepacia complex species. Spontaneous mutants resistant to 10126109 were isolated and mutations in the MerR transcriptional regulator BCAM1948 were identified. In this way, a mechanism of resistance to this new molecule was described, which relies on the overexpression of the RND-9 efflux pump. Indeed, rnd-9 overexpression was confirmed by quantitative reverse transcription PCR, and RND-9 was identified in the membrane fractions of the mutant strains. Moreover, the increase in the MIC values of different drugs in the mutant strains, together with complementation experiments, suggested the involvement of RND-9 in the efflux of 10126109, thus indicating again the central role of efflux transporters in B. cenocepacia drug resistance.

  12. Experimental adaptation of Burkholderia cenocepacia to onion medium reduces host range.

    PubMed

    Ellis, Crystal N; Cooper, Vaughn S

    2010-04-01

    It is unclear whether adaptation to a new host typically broadens or compromises host range, yet the answer bears on the fate of emergent pathogens and symbionts. We investigated this dynamic using a soil isolate of Burkholderia cenocepacia, a species that normally inhabits the rhizosphere, is related to the onion pathogen B. cepacia, and can infect the lungs of cystic fibrosis patients. We hypothesized that adaptation of B. cenocepacia to a novel host would compromise fitness and virulence in alternative hosts. We modeled adaptation to a specific host by experimentally evolving 12 populations of B. cenocepacia in liquid medium composed of macerated onion tissue for 1,000 generations. The mean fitness of all populations increased by 78% relative to the ancestor, but significant variation among lines was observed. Populations also varied in several phenotypes related to host association, including motility, biofilm formation, and quorum-sensing function. Together, these results suggest that each population adapted by fixing different sets of adaptive mutations. However, this adaptation was consistently accompanied by a loss of pathogenicity to the nematode Caenorhabditis elegans; by 500 generations most populations became unable to kill nematodes. In conclusion, we observed a narrowing of host range as a consequence of prolonged adaptation to an environment simulating a specific host, and we suggest that emergent pathogens may face similar consequences if they become host-restricted.

  13. Enhanced Polychlorinated Biphenyl Removal in a Switchgrass Rhizosphere by Bioaugmentation with Burkholderia xenovorans LB400

    PubMed Central

    Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L.; Mattes, Timothy E.

    2014-01-01

    Phytoremediation makes use of plants and associated microorganisms to clean up soils and sediments contaminated with inorganic and organic pollutants. In this study, switchgrass (Panicum virgatum) was used to test for its efficiency in improving the removal of three specific polychlorinated biphenyl (PCB) congeners (PCB 52, 77 and 153) in soil microcosms. The congeners were chosen for their ubiquity, toxicity, and recalcitrance. After 24 weeks of incubation, loss of 39.9 ± 0.41% of total PCB molar mass was observed in switchgrass treated soil, significantly higher than in unplanted soil (29.5 ± 3.4%) (p<0.05). The improved PCB removal in switchgrass treated soils could be explained by phytoextraction processes and enhanced microbial activity in the rhizosphere. Bioaugmentation with Burkholderia xenovorans LB400 was performed to further enhance aerobic PCB degradation. The presence of LB400 was associated with improved degradation of PCB 52, but not PCB 77 or PCB 153. Increased abundances of bphA (a functional gene that codes for a subunit of PCB-degrading biphenyl dioxygenase in bacteria) and its transcript were observed after bioaugmentation. The highest total PCB removal was observed in switchgrass treated soil with LB400 bioaugmentation (47.3 ± 1.22 %), and the presence of switchgrass facilitated LB400 survival in the soil. Overall, our results suggest the combined use of phytoremediation and bioaugmentation could be an efficient and sustainable strategy to eliminate recalcitrant PCB congeners and remediate PCB-contaminated soil. PMID:25246731

  14. Investigation into the susceptibility of Burkholderia cepacia complex isolates to photodynamic antimicrobial chemotherapy (PACT)

    NASA Astrophysics Data System (ADS)

    Cassidy, C. M.; Watters, A. L.; Donnelly, R. F.; Tunney, M. M.

    2009-06-01

    The main cause of morbidity and mortality in cystic fibrosis (CF) sufferers is progressive pulmonary damage caused by recurrent and often unremitting respiratory tract infection. Causative organisms include Pseudomonas aeruginosa and Haemophilus influenzae, but in recent years the Burkholderia cepacia complex has come to the fore. This group of highly drug-resistant Gram-negative bacteria are associated with a rapid decline in lung function and the often fatal cepacia syndrome, with treatment limited to patient segregation and marginally effective antibacterial regimens. Thus, development of an effective treatment is of the upmost importance. PACT, a non-target specific therapy, has proven successful in killing both Gram-positive and Gram-negative bacteria. In this study, planktonic cultures of six strains of the B. cepacia complex were irradiated (635 nm, 200 J cm-2,10 minutes irradiation) following 30 seconds incubation with methylene blue (MB) or meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP). Rates of kill of > 99 % were achieved with MB- and TMP-PACT. A MB concentration of 50 μg ml-1 and TMP concentration of 500 μg ml-1 were associated with highest percentage kills for each photosensitizer. PACT is an attractive option for treatment of B.cepacia complex infection. Further study, involving biofilm culture susceptibility, delivery of light to the target and in vivo testing will be necessary before it PACT becomes a viable treatment option for CF patients who are colonised or infected with B. cepacia complex.

  15. Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo

    PubMed Central

    Scoffone, Viola C.; Chiarelli, Laurent R.; Makarov, Vadim; Brackman, Gilles; Israyilova, Aygun; Azzalin, Alberto; Forneris, Federico; Riabova, Olga; Savina, Svetlana; Coenye, Tom; Riccardi, Giovanna; Buroni, Silvia

    2016-01-01

    Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia. PMID:27580679

  16. What drives the occurrence of the melioidosis bacterium Burkholderia pseudomallei in domestic gardens?

    PubMed

    Kaestli, Mirjam; Harrington, Glenda; Mayo, Mark; Chatfield, Mark D; Harrington, Ian; Hill, Audrey; Munksgaard, Niels; Gibb, Karen; Currie, Bart J

    2015-03-01

    Melioidosis is an often fatal infectious disease affecting humans and animals in tropical regions and is caused by the saprophytic environmental bacterium Burkholderia pseudomallei. Domestic gardens are not only a common source of exposure to soil and thus to B. pseudomallei, but they also have been found to contain more B. pseudomallei than other environments. In this study we addressed whether anthropogenic manipulations common to gardens such as irrigation or fertilizers change the occurrence of B. pseudomallei. We conducted a soil microcosm experiment with a range of fertilizers and soil types as well as a longitudinal interventional study over three years on an experimental fertilized field site in an area naturally positive for B. pseudomallei. Irrigation was the only consistent treatment to increase B. pseudomallei occurrence over time. The effects of fertilizers upon these bacteria depended on soil texture, physicochemical soil properties and biotic factors. Nitrates and urea increased B. pseudomallei load in sand while phosphates had a positive effect in clay. The high buffering and cation exchange capacities of organic material found in a commercial potting mix led to a marked increase in soil salinity with no survival of B. pseudomallei after four weeks in the potting mix sampled. Imported grasses were also associated with B. pseudomallei occurrence in a multivariate model. With increasing population density in endemic areas these findings inform the identification of areas in the anthropogenic environment with increased risk of exposure to B. pseudomallei.

  17. Antioxidant enzymes activities of Burkholderia spp. strains-oxidative responses to Ni toxicity.

    PubMed

    Dourado, M N; Franco, M R; Peters, L P; Martins, P F; Souza, L A; Piotto, F A; Azevedo, R A

    2015-12-01

    Increased agriculture production associated with intense application of herbicides, pesticides, and fungicides leads to soil contamination worldwide. Nickel (Ni), due to its high mobility in soils and groundwater, constitutes one of the greatest problems in terms of environmental pollution. Metals, including Ni, in high concentrations are toxic to cells by imposing a condition of oxidative stress due to the induction of reactive oxygen species (ROS), which damage lipids, proteins, and DNA. This study aimed to characterize the Ni antioxidant response of two tolerant Burkholderia strains (one isolated from noncontaminated soil, SNMS32, and the other from contaminated soil, SCMS54), by measuring superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Ni accumulation and bacterial growth in the presence of the metal were also analyzed. The results showed that both strains exhibited different trends of Ni accumulation and distinct antioxidant enzymes responses. The strain from contaminated soil (SCMS54) exhibited a higher Ni biosorption and exhibited an increase in SOD and GST activities after 5 and 12 h of Ni exposure. The analysis of SOD, CAT, and GR by nondenaturing PAGE revealed the appearance of an extra isoenzyme in strain SCMS54 for each enzyme. The results suggest that the strain SCMS54 isolated from contaminated soil present more plasticity with potential to be used in soil and water bioremediation. PMID:26289332

  18. A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia

    PubMed Central

    Selin, Carrie; Stietz, Maria S.; Blanchard, Jan E.; Hall, Dennis G.; Brown, Eric D.; Cardona, Silvia T.

    2015-01-01

    Infections with the bacteria Burkholderia cepacia complex (Bcc) are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery. PMID:26053039

  19. Lung transplant for a patient with cystic fibrosis and active Burkholderia Cenocepacia pneumonia.

    PubMed

    Salizzoni, Stefano; Pilewski, Joseph; Toyoda, Yoshiya

    2014-10-01

    Lung transplant for cystic fibrosis has been considered contraindicated in patients who have Burkholderia Cenocepacia infection. A 24-year-old white woman who had cystic fibrosis presented with respiratory failure caused by B. Cenocepacia pneumonia. She was treated with broad-spectrum antibiotics and a double-lung transplant. The chest cavity and both bronchi were irrigated with 0.5% povidone-iodine solution. For immunosuppression, she received induction therapy with alemtuzumab (15 mg) and methylprednisolone and maintenance therapy with tacrolimus, mycophenolate mofetil, and prednisone (5 mg daily). Postoperative antibiotics included intravenous meropenem for 3 weeks; vancomycin for 10 days; and inhaled ceftazidime, oral trimethoprim-sulfamethoxazole, and doxycycline for several months. Follow-up at 25 months after transplant showed that chest radiographs were clear and lung function was normal. At 6 years after transplant, she was working full time and had no recurrence of infection from B. Cenocepacia. This case suggests that patients who have cystic fibrosis and active B. Cenocepacia pneumonia may be successfully treated with a lung transplant. PMID:25299375

  20. Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate.

    PubMed

    Pan, Wenyang; Perrotta, Joseph A; Stipanovic, Arthur J; Nomura, Christopher T; Nakas, James P

    2012-03-01

    Sugar maple hemicellulosic hydrolysate containing 71.9 g/l of xylose was used as an inexpensive feedstock to produce polyhydroxyalkanoates (PHAs) by Burkholderia cepacia ATCC 17759. Several inhibitory compounds present in wood hydrolysate were analyzed for effects on cell growth and PHA production with strong inhibition observed at concentrations of 1 g/l furfural, 2 g/l vanillin, 7 g/l levulinic acid, and 1 M acetic acid. Gradual catabolism of lower concentrations of these inhibitors was observed in this study. To increase the fermentability of wood hydrolysate, several detoxification methods were tested. Overliming combined with low-temperature sterilization resulted in the highest removal of total inhibitory phenolics (65%). A fed-batch fermentation exhibited maximum PHA production after 96 h (8.72 g PHA/L broth and 51.4% of dry cell weight). Compositional analysis by NMR and physical-chemical characterization showed that PHA produced from wood hydrolysate was composed of polyhydroxybutyrate (PHB) with a molecular mass (M (N)) of 450.8 kDa, a melting temperature (T (m)) of 174.4°C, a glass transition temperature (T (g)) of 7.31°C, and a decomposition temperature (T (decomp)) of 268.6°C.

  1. The Twin Arginine Translocation System Is Essential for Aerobic Growth and Full Virulence of Burkholderia thailandensis

    PubMed Central

    Wagley, Sariqa; Hemsley, Claudia; Thomas, Rachael; Moule, Madeleine G.; Vanaporn, Muthita; Andreae, Clio; Robinson, Matthew; Goldman, Stan; Wren, Brendan W.; Butler, Clive S.

    2014-01-01

    The twin arginine translocation (Tat) system in bacteria is responsible for transporting folded proteins across the cytoplasmic membrane, and in some bacteria, Tat-exported substrates have been linked to virulence. We report here that the Tat machinery is present in Burkholderia pseudomallei, B. mallei, and B. thailandensis, and we show that the system is essential for aerobic but not anaerobic growth. Switching off of the Tat system in B. thailandensis grown anaerobically resulted in filamentous bacteria, and bacteria showed increased sensitivity to some β-lactam antibiotics. In Galleria mellonella and zebrafish infection models, the Tat conditional mutant was attenuated. The aerobic growth-restricted phenotype indicates that Tat substrates may play a functional role in oxygen-dependent energy conservation. In other bacteria, aerobic growth restriction in Tat mutants has been attributed to the inability to translocate PetA, the Rieske iron-sulfur protein which forms part of the quinol-cytochrome c oxidoreductase complex. Here, we show that PetA is not responsible for aerobic growth restriction in B. thailandensis. However, we have identified an operon encoding 2 proteins of unknown function (BTH_I2176 and BTH_I2175) that play a role in aerobic growth restriction, and we present evidence that BTH_I2176 is Tat translocated. PMID:24214943

  2. Degradation of 4-nitrocatechol by Burkholderia cepacia: a plasmid-encoded novel pathway.

    PubMed

    Chauhan, A; Samanta, S K; Jain, R K

    2000-05-01

    Pseudomonas cepacia RKJ200 (now described as Burkholderia cepacia) has been shown to utilize p-nitrophenol (PNP) as sole carbon and energy source. The present work demonstrates that RKJ200 utilizes 4-nitrocatechol (NC) as the sole source of carbon, nitrogen and energy, and is degraded with concomitant release of nitrite ions. Several lines of evidence, including thin layer chromatography, gas chromatography, 1H-nuclear magnetic resonance, gas chromatography-mass spectrometry, spectral analyses and quantification of intermediates by high performance liquid chromatography, have shown that NC is degraded via 1,2, 4-benzenetriol (BT) and hydroquinone (HQ) formation. Studies carried out on a PNP- derivative and a PNP+ transconjugant also demonstrate that the genes for the NC degradative pathway reside on the plasmid present in RKJ200; the same plasmid had earlier been shown to encode genes for PNP degradation, which is also degraded via HQ formation. It is likely, therefore, that the same sets of genes encode the further metabolism of HQ in NC and PNP degradation.

  3. What drives the occurrence of the melioidosis bacterium Burkholderia pseudomallei in domestic gardens?

    PubMed

    Kaestli, Mirjam; Harrington, Glenda; Mayo, Mark; Chatfield, Mark D; Harrington, Ian; Hill, Audrey; Munksgaard, Niels; Gibb, Karen; Currie, Bart J

    2015-03-01

    Melioidosis is an often fatal infectious disease affecting humans and animals in tropical regions and is caused by the saprophytic environmental bacterium Burkholderia pseudomallei. Domestic gardens are not only a common source of exposure to soil and thus to B. pseudomallei, but they also have been found to contain more B. pseudomallei than other environments. In this study we addressed whether anthropogenic manipulations common to gardens such as irrigation or fertilizers change the occurrence of B. pseudomallei. We conducted a soil microcosm experiment with a range of fertilizers and soil types as well as a longitudinal interventional study over three years on an experimental fertilized field site in an area naturally positive for B. pseudomallei. Irrigation was the only consistent treatment to increase B. pseudomallei occurrence over time. The effects of fertilizers upon these bacteria depended on soil texture, physicochemical soil properties and biotic factors. Nitrates and urea increased B. pseudomallei load in sand while phosphates had a positive effect in clay. The high buffering and cation exchange capacities of organic material found in a commercial potting mix led to a marked increase in soil salinity with no survival of B. pseudomallei after four weeks in the potting mix sampled. Imported grasses were also associated with B. pseudomallei occurrence in a multivariate model. With increasing population density in endemic areas these findings inform the identification of areas in the anthropogenic environment with increased risk of exposure to B. pseudomallei. PMID:25803046

  4. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS

    PubMed Central

    Wong, Yee-Chin; Abd El Ghany, Moataz; Naeem, Raeece; Lee, Kok-Wei; Tan, Yung-Chie; Pain, Arnab; Nathan, Sheila

    2016-01-01

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.

  5. [GENOTYPING OF THE BURKHOLDERIA MALLEI STRAINS BASED ON DIFFERENT REGION ANALYSIS].

    PubMed

    Bondareva, O S; Savchenko, S S; Tkachenko, G A; Ledeneva, M L; Lemasova, L V; Antonov, V A

    2016-01-01

    Development of the genotyping methods of glanders agent is urgent due to its high pathogenicity, lack of effective preventive measures and threat of the use of Burkholderia mallei as a biological weapon. In this work we proposed a scheme for the typing of the B. mallei strains based on different region analysis (DFR). The choice of variable loci differentially presented in various strains of glanders agents was performed by analyzing annotated whole-genome sequences of the B. mallei strains. Primers and fluorescence probes were designed for 9 selected loci. The amplification conditions for different regions were optimized in two variants: with electrophoretic detection and hybridization-fluorescence detection in the strip format. The possibility of applying the DFR analysis to genetic characterization of strains was assessed in 14 B. mallei strains. The genetic profiles of the studied B. mallei strains revealed that the developed DFR-typing scheme was characterized by high discrimination power (Hunter-Gaston index value was 0.92), reproducibility, rapidity, easy interpretation, and applicability for epidemiological surveillance of glanders. PMID:27183720

  6. Burkholderia pseudomallei rpoS mediates iNOS suppression in human hepatocyte (HC04) cells.

    PubMed

    Sanongkiet, Sucharat; Ponnikorn, Saranyoo; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2016-08-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen and the causative agent of melioidosis, a widespread disease in Southeast Asia. Reactive nitrogen, in an intermediate form of nitric oxide (NO), is one of the first lines of defense used by host cells to eliminate intracellular pathogens, through the stimulation of inducible nitric oxide synthase (iNOS). Studies in phagocytotic cells have shown that the iNOS response is muted in B. pseudomallei infection, and implicated the rpoS sigma factor as a key regulatory factor mediating suppression. The liver is a main visceral organ affected by B. pseudomallei, and there is little knowledge about the interaction of liver cells and B. pseudomallei This study investigated the induction of iNOS, as well as autophagic flux and light-chain 3 (LC3) localization in human liver (HC04) cells in response to infection with B. pseudomallei and its rpoS deficient mutant. Results showed that the rpoS mutant was unable to suppress iNOS induction and that the mutant showed less induction of autophagy and lower co-localization with LC3, and this was coupled with a lower intracellular growth rate. Combining these results suggest that B. pseudomallei rpoS is an important factor in establishing infection in liver cells. PMID:27324398

  7. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS.

    PubMed

    Wong, Yee-Chin; Abd El Ghany, Moataz; Naeem, Raeece; Lee, Kok-Wei; Tan, Yung-Chie; Pain, Arnab; Nathan, Sheila

    2016-01-01

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence. PMID:27597847

  8. Land use and soil type determine the presence of the pathogen Burkholderia pseudomallei in tropical rivers.

    PubMed

    Ribolzi, Olivier; Rochelle-Newall, Emma; Dittrich, Sabine; Auda, Yves; Newton, Paul N; Rattanavong, Sayaphet; Knappik, Michael; Soulileuth, Bounsamai; Sengtaheuanghoung, Oloth; Dance, David A B; Pierret, Alain

    2016-04-01

    Burkholderia pseudomallei is the bacterium that causes melioidosis in humans. While B. pseudomallei is known to be endemic in South East Asia (SEA), the occurrence of the disease in other parts of the tropics points towards a potentially large global distribution. We investigated the environmental factors that influence the presence (and absence) of B. pseudomallei in a tropical watershed in SEA. Our main objective was to determine whether there is a link between the presence of the organism in the hydrographic network and the upstream soil and land-use type. The presence of B. pseudomallei was determined using a specific quantitative real-time PCR assay following enrichment culture. Land use, soil, geomorphology, and environmental data were then analyzed using partial least squares discriminant analysis (PLSDA) to compare the B. pseudomallei positive and negative sites. Soil type in the surrounding catchment and turbidity had a strong positive influence on the presence (acrisols and luvisols) or absence (ferralsols) of B. pseudomallei. Given the strong apparent links between soil characteristics, water turbidity, and the presence/absence of B. pseudomallei, actions to raise public awareness about factors increasing the risk of exposure should be undertaken in order to reduce the incidence of melioidosis in regions of endemicity. PMID:26758304

  9. A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia.

    PubMed

    Selin, Carrie; Stietz, Maria S; Blanchard, Jan E; Gehrke, Sebastian S; Bernard, Sylvain; Hall, Dennis G; Brown, Eric D; Cardona, Silvia T

    2015-01-01

    Infections with the bacteria Burkholderia cepacia complex (Bcc) are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery. PMID:26053039

  10. Burkholderia Diffusible Signal Factor Signals to Francisella novicida To Disperse Biofilm and Increase Siderophore Production.

    PubMed

    Dean, Scott N; Chung, Myung-Chul; van Hoek, Monique L

    2015-10-01

    In many bacteria, the ability to modulate biofilm production relies on specific signaling molecules that are either self-produced or made by neighboring microbes within the ecological niche. We analyzed the potential interspecies signaling effect of the Burkholderia diffusible signal factor (BDSF) on Francisella novicida, a model organism for Francisella tularensis, and demonstrated that BDSF both inhibits the formation and causes the dispersion of Francisella biofilm. Specificity was demonstrated for the cis versus the trans form of BDSF. Using transcriptome sequencing, quantitative reverse transcription-PCR, and activity assays, we found that BDSF altered the expression of many F. novicida genes, including genes involved in biofilm formation, such as chitinases. Using a chitinase inhibitor, the antibiofilm activity of BDSF was also shown to be chitinase dependent. In addition, BDSF caused an increase in RelA expression and increased levels of (p)ppGpp, leading to decreased biofilm production. These results support our observation that exposure of F. novicida to BDSF causes biofilm dispersal. Furthermore, BDSF upregulated the genes involved in iron acquisition (figABCD), increasing siderophore production. Thus, this study provides evidence for a potential role and mechanism of diffusible signal factor (DSF) signaling in the genus Francisella and suggests the possibility of interspecies signaling between Francisella and other bacteria. Overall, this study suggests that in response to the interspecies DSF signal, F. novicida can alter its gene expression and regulate its biofilm formation. PMID:26231649

  11. Burkholderia cenocepacia Lipopolysaccharide Modification and Flagellin Glycosylation Affect Virulence but Not Innate Immune Recognition in Plants

    PubMed Central

    Khodai-Kalaki, Maryam; Andrade, Angel; Fathy Mohamed, Yasmine

    2015-01-01

    ABSTRACT Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that “virulence” depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipopolysaccharide (LPS) with 4-amino-4-deoxy-l-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabidopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection. PMID:26045541

  12. lux-Marking and application of carbofuran degrader Burkholderia cepacia PCL3.

    PubMed

    Plangklang, Pensri; Reungsang, Alissara

    2011-10-01

    A luxAB-mutant of the carbofuran degrading bacterium Burkholderia cepacia PCL3 was successfully constructed with the capability to emit a luminescence signal of 1.6×10(-3)RLUcfu(-1). The mutant has a growth pattern and carbofuran degradation ability similar to PCL3 wild-type. The luminescent emission by PCL3:luxAB1 directly correlated with the metabolic activity of the cells. The optimal pH, temperature and n-decanal concentration for luminescence emission are 7.0, 35°C and 0.01%, respectively. PCL3:luxAB1 was used to assess the toxicity of carbofuran and carbofuran phenol in basal salt medium (BSM) in which the different sensitivity of the cells is dependent on the biomass concentration. With the luciferase system, the degradative fraction of the augmented PCL3:luxAB1 and the difference between the active augmented PCL3:luxAB1 and indigenous microorganisms at the contaminated site could be indicated.

  13. Physicochemical Properties Influencing Presence of Burkholderia pseudomallei in Soil from Small Ruminant Farms in Peninsular Malaysia.

    PubMed

    Musa, Hassan Ismail; Hassan, Latiffah; Shamsuddin, Zulkifli Hj; Panchadcharam, Chandrawathani; Zakaria, Zunita; Abdul Aziz, Saleha

    2016-01-01

    Soil is considered to be a major reservoir of Burkholderia pseudomallei in the environment. This paper investigates soil physicochemical properties that may influence presence of B. pseudomallei in soil samples from small ruminant farms in Peninsular Malaysia. Soil samples were collected from the farms and cultured for B. pseudomallei. The texture, organic matter and water contents, pH, elemental contents, cation exchange capacities, carbon, sulfur and nitrogen contents were determined. Analysis of soil samples that were positive and negative for B. pseudomallei using multivariable logistic regression found that the odds of bacterial isolation from soil was significantly higher for samples with higher contents of iron (OR = 1.01, 95%CI = 1.00-1.02, p = 0.03), water (OR = 1.28, 95%CI = 1.05-1.55, p = 0.01) and clay (OR = 1.54, 95%CI = 1.15-2.06, p = 0.004) compared to the odds of isolation in samples with lower contents of the above variables. These three factors may have favored the survival of B. pseudomallei because iron regulates expression of respiratory enzymes, while water is essential for soil ecology and agent's biological processes and clay retains water and nutrients. PMID:27635652

  14. Antimicrobial susceptibility and genetic characterisation of Burkholderia pseudomallei isolated from Malaysian patients.

    PubMed

    Khosravi, Yalda; Vellasamy, Kumutha Malar; Mariappan, Vanitha; Ng, Shet-Lee; Vadivelu, Jamuna

    2014-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics. Ceftazidime (CAZ), the synthetic β-lactam, is normally used as the first-line antibiotic therapy for treatment of melioidosis. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, leading to mortality if therapy is not switched to a different antibiotic(s) in a timely manner. In this study, susceptibilities of 81 B. pseudomallei isolates to nine different antimicrobial agents were determined using the disk diffusion method, broth microdilution test and Etest. Highest percentage of susceptibility was demonstrated to CAZ, amoxicillin/clavulanic acid, meropenem, imipenem, and trimethoprim/sulfamethoxazole. Although these drugs demonstrated the highest percentage of susceptibility in B. pseudomallei, the overall results underline the importance of the emergence of resistance in this organism. PCR results showed that, of the 81 B. pseudomallei, six multidrug resistant (MDR) isolates carried bpeB, amrB, and BPSS1119 and penA genes. Genotyping of the isolates using random amplified polymorphic DNA analysis showed six different PCR fingerprinting patterns generated from the six MDR isolates clusters (A) and eight PCR fingerprinting patterns generated for the remaining 75 non-MDR isolates clusters (B).

  15. Characterization of New Virulence Factors Involved in the Intracellular Growth and Survival of Burkholderia pseudomallei.

    PubMed

    Moule, Madeleine G; Spink, Natasha; Willcocks, Sam; Lim, Jiali; Guerra-Assunção, José Afonso; Cia, Felipe; Champion, Olivia L; Senior, Nicola J; Atkins, Helen S; Clark, Taane; Bancroft, Gregory J; Cuccui, Jon; Wren, Brendan W

    2016-03-01

    Burkholderia pseudomallei, the causative agent of melioidosis, has complex and poorly understood extracellular and intracellular lifestyles. We used transposon-directed insertion site sequencing (TraDIS) to retrospectively analyze a transposon library that had previously been screened through a BALB/c mouse model to identify genes important for growth and survival in vivo. This allowed us to identify the insertion sites and phenotypes of negatively selected mutants that were previously overlooked due to technical constraints. All 23 unique genes identified in the original screen were confirmed by TraDIS, and an additional 105 mutants with various degrees of attenuation in vivo were identified. Five of the newly identified genes were chosen for further characterization, and clean, unmarked bpsl2248, tex, rpiR, bpsl1728, and bpss1528 deletion mutants were constructed from the wild-type strain K96243. Each of these mutants was tested in vitro and in vivo to confirm their attenuated phenotypes and investigate the nature of the attenuation. Our results confirm that we have identified new genes important to in vivo virulence with roles in different stages of B. pseudomallei pathogenesis, including extracellular and intracellular survival. Of particular interest, deletion of the transcription accessory protein Tex was shown to be highly attenuating, and the tex mutant was capable of providing protective immunity against challenge with wild-type B. pseudomallei, suggesting that the genes identified in our TraDIS screen have the potential to be investigated as live vaccine candidates. PMID:26712202

  16. A new species of Burkholderia isolated from sugarcane roots promotes plant growth

    PubMed Central

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G A; Yeoh, Yun Kit; Webb, Richard I; Lakshmanan, Prakash; Chan, Cheong Xin; Lim, Phaik-Eem; Ragan, Mark A; Schmidt, Susanne; Hugenholtz, Philip

    2014-01-01

    Sugarcane is a globally important food, biofuel and biomaterials crop. High nitrogen (N) fertilizer rates aimed at increasing yield often result in environmental damage because of excess and inefficient application. Inoculation with diazotrophic bacteria is an attractive option for reducing N fertilizer needs. However, the efficacy of bacterial inoculants is variable, and their effective formulation remains a knowledge frontier. Here, we take a new approach to investigating diazotrophic bacteria associated with roots using culture-independent microbial community profiling of a commercial sugarcane variety (Q208A) in a field setting. We first identified bacteria that were markedly enriched in the rhizosphere to guide isolation and then tested putative diazotrophs for the ability to colonize axenic sugarcane plantlets (Q208A) and promote growth in suboptimal N supply. One isolate readily colonized roots, fixed N2 and stimulated growth of plantlets, and was classified as a new species, Burkholderia australis sp. nov. Draft genome sequencing of the isolate confirmed the presence of nitrogen fixation. We propose that culture-independent identification and isolation of bacteria that are enriched in rhizosphere and roots, followed by systematic testing and confirming their growth-promoting capacity, is a necessary step towards designing effective microbial inoculants. PMID:24350979

  17. Mesaconase Activity of Class I Fumarase Contributes to Mesaconate Utilization by Burkholderia xenovorans

    PubMed Central

    Kronen, Miriam; Sasikaran, Jahminy

    2015-01-01

    Pseudomonas aeruginosa, Yersinia pestis, and many other bacteria are able to utilize the C5-dicarboxylic acid itaconate (methylenesuccinate). Itaconate degradation starts with its activation to itaconyl coenzyme A (itaconyl-CoA), which is further hydrated to (S)-citramalyl-CoA, and citramalyl-CoA is finally cleaved into acetyl-CoA and pyruvate. The xenobiotic-degrading betaproteobacterium Burkholderia xenovorans possesses a P. aeruginosa-like itaconate degradation gene cluster and is able to grow on itaconate and its isomer mesaconate (methylfumarate). Although itaconate degradation proceeds in B. xenovorans in the same way as in P. aeruginosa, the pathway of mesaconate utilization is not known. Here, we show that mesaconate is metabolized through its hydration to (S)-citramalate. The latter compound is then metabolized to acetyl-CoA and pyruvate with the participation of two enzymes of the itaconate degradation pathway, a promiscuous itaconate-CoA transferase able to activate (S)-citramalate in addition to itaconate and (S)-citramalyl-CoA lyase. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by a class I fumarase. As this enzyme (Bxe_A3136) has similar efficiencies (kcat/Km) for both fumarate and mesaconate hydration, we conclude that B. xenovorans class I fumarase is in fact a promiscuous fumarase/mesaconase. This promiscuity is physiologically relevant, as it allows the growth of this bacterium on mesaconate as a sole carbon and energy source. PMID:26070669

  18. Burkholderia pseudomallei rpoS mediates iNOS suppression in human hepatocyte (HC04) cells

    PubMed Central

    Sanongkiet, Sucharat; Ponnikorn, Saranyoo; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2016-01-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen and the causative agent of melioidosis, a widespread disease in Southeast Asia. Reactive nitrogen, in an intermediate form of nitric oxide (NO), is one of the first lines of defense used by host cells to eliminate intracellular pathogens, through the stimulation of inducible nitric oxide synthase (iNOS). Studies in phagocytotic cells have shown that the iNOS response is muted in B. pseudomallei infection, and implicated the rpoS sigma factor as a key regulatory factor mediating suppression. The liver is a main visceral organ affected by B. pseudomallei, and there is little knowledge about the interaction of liver cells and B. pseudomallei. This study investigated the induction of iNOS, as well as autophagic flux and light-chain 3 (LC3) localization in human liver (HC04) cells in response to infection with B. pseudomallei and its rpoS deficient mutant. Results showed that the rpoS mutant was unable to suppress iNOS induction and that the mutant showed less induction of autophagy and lower co-localization with LC3, and this was coupled with a lower intracellular growth rate. Combining these results suggest that B. pseudomallei rpoS is an important factor in establishing infection in liver cells. PMID:27324398

  19. Characterization of the Burkholderia pseudomallei K96243 Capsular Polysaccharide I Coding Region

    PubMed Central

    Cuccui, Jon; Milne, Timothy S.; Harmer, Nicholas; George, Alison J.; Harding, Sarah V.; Dean, Rachel E.; Scott, Andrew E.; Sarkar-Tyson, Mitali; Wren, Brendan W.; Prior, Joann L.

    2012-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic to regions of Southeast Asia and Northern Australia. Both humans and a range of other animal species are susceptible to melioidosis, and the production of a group 3 polysaccharide capsule in B. pseudomallei is essential for virulence. B. pseudomallei capsular polysaccharide (CPS) I comprises unbranched manno-heptopyranose residues and is encoded by a 34.5-kb locus on chromosome 1. Despite the importance of this locus, the role of all of the genes within this region is unclear. We inactivated 18 of these genes and analyzed their phenotype using Western blotting and immunofluorescence staining. Furthermore, by combining this approach with bioinformatic analysis, we were able to develop a model for CPS I biosynthesis and export. We report that inactivating gmhA, wcbJ, and wcbN in B. pseudomallei K96243 retains the immunogenic integrity of the polysaccharide despite causing attenuation in the BALB/c murine infection model. Mice immunized with the B. pseudomallei K96243 mutants lacking a functional copy of either gmhA or wcbJ were afforded significant levels of protection against a wild-type B. pseudomallei K96243 challenge. PMID:22252864

  20. Degradation of toluene by ortho cleavage enzymes in Burkholderia fungorum FLU100

    PubMed Central

    Dobslaw, Daniel; Engesser, Karl-Heinrich

    2015-01-01

    Burkholderia fungorum FLU100 simultaneously oxidized any mixture of toluene, benzene and mono-halogen benzenes to (3-substituted) catechols with a selectivity of nearly 100%. Further metabolism occurred via enzymes of ortho cleavage pathways with complete mineralization. During the transformation of 3-methylcatechol, 4-carboxymethyl-2-methylbut-2-en-4-olide (2-methyl-2-enelactone, 2-ML) accumulated transiently, being further mineralized only after a lag phase of 2 h in case of cells pre-grown on benzene or mono-halogen benzenes. No lag phase, however, occurred after growth on toluene. Cultures inhibited by chloramphenicol after growth on benzene or mono-halogen benzenes were unable to metabolize 2-ML supplied externally, even after prolonged incubation. A control culture grown with toluene did not show any lag phase and used 2-ML as a substrate. This means that 2-ML is an intermediate of toluene degradation and converted by specific enzymes. The conversion of 4-methylcatechol as a very minor by-product of toluene degradation in strain FLU100 resulted in the accumulation of 4-carboxymethyl-4-methylbut-2-en-4-olide (4-methyl-2-enelactone, 4-ML) as a dead-end product, excluding its nature as a possible intermediate. Thus, 3-methylcyclohexa-3,5-diene-1,2-diol, 3-methylcatechol, 2-methyl muconate and 2-ML were identified as central intermediates of productive ortho cleavage pathways for toluene metabolism in B. fungorum FLU100. PMID:25130674

  1. Disinfection of Burkholderia cepacia complex from non-touch taps in a neonatal nursery.

    PubMed

    Kotsanas, Despina; Brett, Judith; Kidd, Tim J; Stuart, Rhonda L; Korman, Tony M

    2008-01-01

    Burkholderia cepacia complex (Bcc) comprises nine closely related species or genomovars. It is an important causative agent of opportunistic infections and waterborne nosocomial infections. B. cepacia (formerly genomovar I) was identified from the blood culture of a baby in our neonatal unit (NU) in March 2005. B. cepacia was isolated four times from clinical specimens since the introduction of non-touch taps in the NU from 2000 to 2005 and only once from 1994 to 2000. Environmental samples were collected from the NU, including tap water from non-touch taps. Clinical and environmental isolates of Bcc were characterized using molecular identification and strain typing. A literature review was undertaken to delineate a method for eradication of Bcc. Several variations for hot water eradication of the organism from the taps were attempted. Genotyping and molecular analysis revealed that tap water isolates were B. cenocepacia which was a different species from the B. cepacia isolated from blood cultures of the neonate. However, B. cenocepacia has been known to cause nosocomial outbreaks and it was eventually eradicated from the NU by using repeated thermal shock (hot water at 65 degrees C for 10 min), changing taps and decolonizing sinks with hypochlorite. Molecular typing is useful in assisting the investigation of Bcc nosocomial infections. PMID:18576933

  2. Pivotal role of anthranilate dioxygenase genes in the adaptation of Burkholderia multivorans ATCC 17616 in soil.

    PubMed

    Nishiyama, Eri; Ohtsubo, Yoshiyuki; Yamamoto, Yasuhiro; Nagata, Yuji; Tsuda, Masataka

    2012-05-01

    In our recent screen for soil-induced genes, the expression of andA operon (andAcAdAbAa) for anthranilate catabolism in Burkholderia multivorans ATCC 17616 was found to increase dramatically in a soil sample (Nishiyama et al., Environ Microbiol 12: 2539, 2010). The operon was preceded by andR encoding a putative transcriptional regulator for the andA operon. In this study, the andA promoter was induced by tryptophan and anthranilate in an andR-dependent manner. The andA promoter in a deletion mutant lacking tryptophan dioxygenase (one of enzymes for the catabolism of tryptophan to anthranilate) did not respond to tryptophan, indicating that not tryptophan but anthranilate is the effector of AndR. Although both anthranilate and tryptophan were under the detection levels in the soil sample, andA promoter showed higher activity in the soil sample than in a laboratory medium. Such induction required andR and was moderately dependent on the ferric uptake regulator (Fur). The proliferation ability of andAc mutant in the sterile soil was low compared with the co-incubated wild-type cells. These findings suggested that in the soil environment, anthranilate dioxygenase genes are induced by AndR and Fur, and play a pivotal role in the proliferation in the soil environment. PMID:22360670

  3. Production of (R)-3-hydroxybutyric acid by Burkholderia cepacia from wood extract hydrolysates

    PubMed Central

    2014-01-01

    (R)-hydroxyalkanoic acids (R-HAs) are valuable building blocks for the synthesis of fine chemicals and biopolymers because of the chiral center and the two active functional groups. Hydroxyalkanoic acids fermentation can revolutionize the polyhydroxyalkanoic acids (PHA) production by increasing efficiency and enhancing product utility. Modifying the fermentation conditions that promotes the in vivo depolymerization and secretion to fermentation broth in wild type bacteria is a novel and promising approach to produce R-HAs. Wood extract hydrolysate (WEH) was found to be a suitable substrate for R-3-hydroxybutyric acid (R-3-HB) production by Burkholderia cepacia. Using Paulownia elongate WEH as a feedstock, the R-3-HB concentration in fermentation broth reached as high as 14.2 g/L after 3 days of batch fermentation and the highest concentration of 16.8 g/L was obtained at day 9. Further investigation indicated that the composition of culture medium contributed to the enhanced R-3-HB production. PMID:24949263

  4. Gene and Protein Expression in Response to Different Growth Temperatures and Oxygen Availability in Burkholderia thailandensis

    PubMed Central

    Peano, Clelia; Chiaramonte, Fabrizio; Motta, Sara; Pietrelli, Alessandro; Jaillon, Sebastien; Rossi, Elio; Consolandi, Clarissa; Champion, Olivia L.; Michell, Stephen L.; Freddi, Luca; Falciola, Luigi; Basilico, Fabrizio; Garlanda, Cecilia; Mauri, Pierluigi; De Bellis, Gianluca; Landini, Paolo

    2014-01-01

    Burkholderia thailandensis, although normally avirulent for mammals, can infect macrophages in vitro and has occasionally been reported to cause pneumonia in humans. It is therefore used as a model organism for the human pathogen B. pseudomallei, to which it is closely related phylogenetically. We characterized the B. thailandensis clinical isolate CDC2721121 (BtCDC272) at the genome level and studied its response to environmental cues associated with human host colonization, namely, temperature and oxygen limitation. Effects of the different growth conditions on BtCDC272 were studied through whole genome transcription studies and analysis of proteins associated with the bacterial cell surface. We found that growth at 37°C, compared to 28°C, negatively affected cell motility and flagella production through a mechanism involving regulation of the flagellin-encoding fliC gene at the mRNA stability level. Growth in oxygen-limiting conditions, in contrast, stimulated various processes linked to virulence, such as lipopolysaccharide production and expression of genes encoding protein secretion systems. Consistent with these observations, BtCDC272 grown in oxygen limitation was more resistant to phagocytosis and strongly induced the production of inflammatory cytokines from murine macrophages. Our results suggest that, while temperature sensing is important for regulation of B. thailandensis cell motility, oxygen limitation has a deeper impact on its physiology and constitutes a crucial environmental signal for the production of virulence factors. PMID:24671187

  5. Characterization of New Virulence Factors Involved in the Intracellular Growth and Survival of Burkholderia pseudomallei

    PubMed Central

    Moule, Madeleine G.; Spink, Natasha; Willcocks, Sam; Lim, Jiali; Guerra-Assunção, José Afonso; Cia, Felipe; Champion, Olivia L.; Senior, Nicola J.; Atkins, Helen S.; Clark, Taane; Bancroft, Gregory J.; Cuccui, Jon

    2015-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, has complex and poorly understood extracellular and intracellular lifestyles. We used transposon-directed insertion site sequencing (TraDIS) to retrospectively analyze a transposon library that had previously been screened through a BALB/c mouse model to identify genes important for growth and survival in vivo. This allowed us to identify the insertion sites and phenotypes of negatively selected mutants that were previously overlooked due to technical constraints. All 23 unique genes identified in the original screen were confirmed by TraDIS, and an additional 105 mutants with various degrees of attenuation in vivo were identified. Five of the newly identified genes were chosen for further characterization, and clean, unmarked bpsl2248, tex, rpiR, bpsl1728, and bpss1528 deletion mutants were constructed from the wild-type strain K96243. Each of these mutants was tested in vitro and in vivo to confirm their attenuated phenotypes and investigate the nature of the attenuation. Our results confirm that we have identified new genes important to in vivo virulence with roles in different stages of B. pseudomallei pathogenesis, including extracellular and intracellular survival. Of particular interest, deletion of the transcription accessory protein Tex was shown to be highly attenuating, and the tex mutant was capable of providing protective immunity against challenge with wild-type B. pseudomallei, suggesting that the genes identified in our TraDIS screen have the potential to be investigated as live vaccine candidates. PMID:26712202

  6. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    SciTech Connect

    Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.; Edwards, Thomas E.; Leonard, Jess T.; Abendroth, Jan; Burris, Courtney A.; Bhandari, Janhavi; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.

    2011-09-28

    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.

  7. Differential Toll-Like Receptor-Signalling of Burkholderia pseudomallei Lipopolysaccharide in Murine and Human Models

    PubMed Central

    Weehuizen, Tassili A. F.; Prior, Joann L.; van der Vaart, Thomas W.; Ngugi, Sarah A.; Nepogodiev, Sergey A.; Field, Robert A.; Kager, Liesbeth M.; van ‘t Veer, Cornelis; de Vos, Alex F.; Wiersinga, W. Joost

    2015-01-01

    The Gram-negative bacterium Burkholderia pseudomallei causes melioidosis and is a CDC category B bioterrorism agent. Toll-like receptor (TLR)-2 impairs host defense during pulmonary B.pseudomallei infection while TLR4 only has limited impact. We investigated the role of TLRs in B.pseudomallei-lipopolysaccharide (LPS) induced inflammation. Purified B.pseudomallei-LPS activated only TLR2-transfected-HEK-cells during short stimulation but both HEK-TLR2 and HEK-TLR4-cells after 24 h. In human blood, an additive effect of TLR2 on TLR4-mediated signalling induced by B.pseudomallei-LPS was observed. In contrast, murine peritoneal macrophages recognized B.pseudomallei-LPS solely through TLR4. Intranasal inoculation of B.pseudomallei-LPS showed that both TLR4-knockout(-/-) and TLR2x4-/-, but not TLR2-/- mice, displayed diminished cytokine responses and neutrophil influx compared to wild-type controls. These data suggest that B.pseudomallei-LPS signalling occurs solely through murine TLR4, while in human models TLR2 plays an additional role, highlighting important differences between specificity of human and murine models that may have important consequences for B.pseudomallei-LPS sensing by TLRs and subsequent susceptibility to melioidosis. PMID:26689559

  8. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells

    PubMed Central

    Vellasamy, Kumutha Malar; Mariappan, Vanitha; Shankar, Esaki M.; Vadivelu, Jamuna

    2016-01-01

    Background Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood. Methods We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS). Results We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages. Conclusion Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections. PMID:27367858

  9. A family history of deoxyribonuclease II: surprises from Trichinella spiralis and Burkholderia pseudomallei.

    PubMed

    MacLea, Kyle S; Krieser, Ronald J; Eastman, Alan

    2003-02-13

    Deoxyribonuclease IIalpha (DNase IIalpha) is an acidic endonuclease found in lysosomes and nuclei, and it is also secreted. Though its Caenorhabditis elegans homolog, NUC-1, is required for digesting DNA of apoptotic cell corpses and dietary DNA, it is not required for viability. However, DNase IIalpha is required in mice for correct development and viability, because undigested cell corpses lead to lesions throughout the body. Recently, we showed that, in contrast to previous reports, active DNase IIalpha consists of one contiguous polypeptide. To better analyze DNase II protein structure and determine residues important for activity, extensive database searches were conducted to find distantly related family members. We report 29 new partial or complete homologs from 21 species. Four homologs with differences at the purported active site histidine residue were detected in the parasitic nematodes Trichinella spiralis and Trichinella pseudospiralis. When these mutations were reconstructed in human DNase IIalpha, the expressed proteins were inactive. DNase II homologs were also identified in non-metazoan species. In particular, the slime-mold Dictyostelium, the protozoan Trichomonas vaginalis, and the bacterium Burkholderia pseudomallei all contain sequences with significant similarity and identity to previously cloned DNase II family members. We report an analysis of their sequences and implications for DNase II protein structure and evolution. PMID:12594037

  10. Purification, biochemical characterization, and genetic cloning of the phytase produced by Burkholderia sp. strain a13.

    PubMed

    Graminho, Eduardo Rezende; Takaya, Naoki; Nakamura, Akira; Hoshino, Takayuki

    2015-01-01

    A phytase-producing bacterium, Burkholderia sp. a13 (JCM 30421), was isolated from Lake Kasumigaura by enrichment cultivation using minimum medium containing phytic acid as the sole phosphorus source. The phytase production by strain a13 was induced by the presence of phytic acid and repressed by the addition of glucose. The purified enzyme had a molecular weight of 44 kDa and a phytase activity of 174 μmol min(-1) mg(-1). The enzyme showed broad substrate specificity, but the highest activity was observed with phytic acid. The enzyme activity was strongly inhibited by Cu(2+), Zn(2+), Hg(2+), and iodoacetic acid, indicating the requirement of a thiol group for the activity. Genetic cloning reveals that the mature portion of this enzyme consists of 428 amino acids with a calculated molecular weight of 46 kDa. The amino acid sequence showed the highest similarity to the phytase produced by Hafnia alvei with 48% identity; it also contained histidine acid phosphatase (HAP) motifs (RHGXRXP and HD), indicating the classification of this enzyme in the HAP phytase family. We have successfully expressed the cloned gene in Escherichia coli from its putative initiation codon, showing that the gene actually encodes the phytase. PMID:25833676

  11. Immunogenic recombinant Burkholderia pseudomallei MprA serine protease elicits protective immunity in mice

    PubMed Central

    Chin, Chui-Yoke; Tan, Swee-Chen; Nathan, Sheila

    2012-01-01

    Burkholderia pseudomallei is resistant to a diverse group of antimicrobials including third generation cephalosporins whilst quinolones and aminoglycosides have no reliable effect. As therapeutic options are limited, development of more effective forms of immunotherapy is vital to avoid a fatal outcome. In an earlier study, we reported on the B. pseudomallei serine MprA protease, which is relatively stable over a wide pH and temperature range and digests physiological proteins. The present study was carried out to evaluate the immunogenicity and protective efficacy of the MprA as a potential vaccine candidate. In BALB/c mice immunized with recombinant MprA protease (smBpF4), a significantly high IgG titer was detectable. Isotyping studies revealed that the smBpF4-specific antibodies produced were predominantly IgG1, proposing that immunization with smBpF4 triggered a Th2 immune response. Mice were immunized with smBpF4 and subsequently challenged with B. pseudomallei via the intraperitoneal route. Whilst control mice succumbed to the infection by day 9, smBpF4-immunized mice were protected against the lethal challenge and survived beyond 25 days post-infection. In conclusion, MprA is immunogenic in melioidosis patients whilst also eliciting a strong immune response upon bacterial challenge in mice and presents itself as a potential vaccine candidate for the treatment of melioidosis. PMID:22919676

  12. What Drives the Occurrence of the Melioidosis Bacterium Burkholderia pseudomallei in Domestic Gardens?

    PubMed Central

    Kaestli, Mirjam; Harrington, Glenda; Mayo, Mark; Chatfield, Mark D.; Harrington, Ian; Hill, Audrey; Munksgaard, Niels; Gibb, Karen; Currie, Bart J.

    2015-01-01

    Melioidosis is an often fatal infectious disease affecting humans and animals in tropical regions and is caused by the saprophytic environmental bacterium Burkholderia pseudomallei. Domestic gardens are not only a common source of exposure to soil and thus to B. pseudomallei, but they also have been found to contain more B. pseudomallei than other environments. In this study we addressed whether anthropogenic manipulations common to gardens such as irrigation or fertilizers change the occurrence of B. pseudomallei. We conducted a soil microcosm experiment with a range of fertilizers and soil types as well as a longitudinal interventional study over three years on an experimental fertilized field site in an area naturally positive for B. pseudomallei. Irrigation was the only consistent treatment to increase B. pseudomallei occurrence over time. The effects of fertilizers upon these bacteria depended on soil texture, physicochemical soil properties and biotic factors. Nitrates and urea increased B. pseudomallei load in sand while phosphates had a positive effect in clay. The high buffering and cation exchange capacities of organic material found in a commercial potting mix led to a marked increase in soil salinity with no survival of B. pseudomallei after four weeks in the potting mix sampled. Imported grasses were also associated with B. pseudomallei occurrence in a multivariate model. With increasing population density in endemic areas these findings inform the identification of areas in the anthropogenic environment with increased risk of exposure to B. pseudomallei. PMID:25803046

  13. Physicochemical Properties Influencing Presence of Burkholderia pseudomallei in Soil from Small Ruminant Farms in Peninsular Malaysia

    PubMed Central

    Panchadcharam, Chandrawathani; Zakaria, Zunita; Abdul Aziz, Saleha

    2016-01-01

    Soil is considered to be a major reservoir of Burkholderia pseudomallei in the environment. This paper investigates soil physicochemical properties that may influence presence of B. pseudomallei in soil samples from small ruminant farms in Peninsular Malaysia. Soil samples were collected from the farms and cultured for B. pseudomallei. The texture, organic matter and water contents, pH, elemental contents, cation exchange capacities, carbon, sulfur and nitrogen contents were determined. Analysis of soil samples that were positive and negative for B. pseudomallei using multivariable logistic regression found that the odds of bacterial isolation from soil was significantly higher for samples with higher contents of iron (OR = 1.01, 95%CI = 1.00–1.02, p = 0.03), water (OR = 1.28, 95%CI = 1.05–1.55, p = 0.01) and clay (OR = 1.54, 95%CI = 1.15–2.06, p = 0.004) compared to the odds of isolation in samples with lower contents of the above variables. These three factors may have favored the survival of B. pseudomallei because iron regulates expression of respiratory enzymes, while water is essential for soil ecology and agent’s biological processes and clay retains water and nutrients. PMID:27635652

  14. Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo.

    PubMed

    Scoffone, Viola C; Chiarelli, Laurent R; Makarov, Vadim; Brackman, Gilles; Israyilova, Aygun; Azzalin, Alberto; Forneris, Federico; Riabova, Olga; Savina, Svetlana; Coenye, Tom; Riccardi, Giovanna; Buroni, Silvia

    2016-01-01

    Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia. PMID:27580679

  15. Production of chiral β-amino acids using ω-transaminase from Burkholderia graminis.

    PubMed

    Mathew, Sam; Bea, Hanseop; Nadarajan, Saravanan Prabhu; Chung, Taeowan; Yun, Hyungdon

    2015-02-20

    Optically pure β-amino acids are of high pharmacological significance since they are used as key ingredients in many physiologically active compounds. Despite a number of enzymatic routes to these compounds, an efficient synthesis of β-amino acids continues to pose a major challenge for researchers. ω-Transaminase has emerged as an important class of enzymes for generating amine compounds. However, only a few ω-transaminases have been reported so far which show activity towards aromatic β-amino acids. In this study, (S)-ω-transaminase from Burkholderia graminis C4D1M has been functionally characterized and used for the production of chiral aromatic β-amino acids via kinetic resolution. The enzyme showed a specific activity of 3.1 U/mg towards rac-β-phenylalanine at 37°C. The Km and Kcat values of this enzyme towards rac-β-phenylalanine with pyruvate as the amino acceptor were 2.88 mM and 91.57 min(-1) respectively. Using this enzyme, racemic β-amino acids were kinetically resolved to produce (R)-β-amino acids with an excellent enantiomeric excess (> 99%) and ∼ 50% conversion. Additionally, kinetic resolution of aromatic β-amino acids was performed using benzaldehyde as a cheap amino acceptor.

  16. Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles.

    PubMed

    Nandi, Tannistha; Holden, Matthew T G; Holden, Mathew T G; Didelot, Xavier; Mehershahi, Kurosh; Boddey, Justin A; Beacham, Ifor; Peak, Ian; Harting, John; Baybayan, Primo; Guo, Yan; Wang, Susana; How, Lee Chee; Sim, Bernice; Essex-Lopresti, Angela; Sarkar-Tyson, Mitali; Nelson, Michelle; Smither, Sophie; Ong, Catherine; Aw, Lay Tin; Hoon, Chua Hui; Michell, Stephen; Studholme, David J; Titball, Richard; Chen, Swaine L; Parkhill, Julian; Tan, Patrick

    2015-01-01

    Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity. PMID:25236617

  17. Novel Organization of the Genes for Phthalate Degradation from Burkholderia cepacia DBO1

    PubMed Central

    Chang, Hung-Kuang; Zylstra, Gerben J.

    1998-01-01

    Burkholderia cepacia DBO1 is able to utilize phthalate as the sole source of carbon and energy for growth. Two overlapping cosmid clones containing the genes for phthalate degradation were isolated from this strain. Subcloning and activity analysis localized the genes for phthalate degradation to two separate regions on the cosmid clones. Analysis of the nucleotide sequence of these two regions showed that the genes for phthalate degradation are arranged in at least three transcriptional units. The gene for phthalate dioxygenase reductase (ophA1) is present by itself, while the genes for an inactive transporter (ophD) and 4,5-dihydroxyphthalate decarboxylase (ophC) are linked and the genes for phthalate dioxygenase oxygenase (ophA2) and cis-phthalate dihydrodiol dehydrogenase (ophB) are linked. ophA1 and ophDC are adjacent to each other but are transcribed in opposite directions, while ophA2B is located 4 kb away. The genes for the oxygenase and reductase components of phthalate dioxygenase are located approximately 7 kb away from each other. The gene for the putative phthalate permease contains a frameshift mutation in contrast to genes for other permeases. Strains deleted for ophD are able to transport phthalate into the cell at rates equivalent to that of the wild-type organism, showing that this gene is not required for growth on phthalate. PMID:9851995

  18. Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages.

    PubMed

    Di Cello, F; Bevivino, A; Chiarini, L; Fani, R; Paffetti, D; Tabacchioni, S; Dalmastri, C

    1997-11-01

    A Burkholderia cepacia population naturally occurring in the rhizosphere of Zea mays was investigated in order to assess the degree of root association and microbial biodiversity at five stages of plant growth. The bacterial strains isolated on semiselective PCAT medium were mostly assigned to the species B. cepacia by an analysis of the restriction patterns produced by amplified DNA coding for 16S rRNA (16S rDNA) (ARDRA) with the enzyme AluI. Partial 16S rDNA nucleotide sequences of some randomly chosen isolates confirmed the ARDRA results. Throughout the study, B. cepacia was strictly associated with maize roots, ranging from 0.6 to 3.6% of the total cultivable microflora. Biodiversity among 83 B. cepacia isolates was analyzed by the random amplified polymorphic DNA (RAPD) technique with two 10-mer primers. An analysis of RAPD patterns by the analysis of molecular variance method revealed a high level of intraspecific genetic diversity in this B. cepacia population. Moreover, the genetic diversity was related to divergences among maize root samplings, with microbial genetic variability markedly higher in the first stages of plant growth; in other words, the biodiversity of this rhizosphere bacterial population decreased over time. PMID:9361434

  19. Importance of topology for glycocluster binding to Pseudomonas aeruginosa and Burkholderia ambifaria bacterial lectins.

    PubMed

    Ligeour, Caroline; Dupin, Lucie; Angeli, Anthony; Vergoten, Gérard; Vidal, Sébastien; Meyer, Albert; Souteyrand, Eliane; Vasseur, Jean-Jacques; Chevolot, Yann; Morvan, François

    2015-12-14

    Pseudomonas aeruginosa (PA) and Burkholderia ambifaria (BA) are two opportunistic Gram negative bacteria and major infectious agents involved in lung infection of cystic fibrosis patients. Both bacteria can develop resistance to conventional antibiotherapies. An alternative strategy consists of targeting virulence factors in particular lectins with high affinity ligands such as multivalent glycoclusters. LecA (PA-IL) and LecB (PA-IIL) are two tetravalent lectins from PA that recognise galactose and fucose respectively. BambL lectin from BA is trimeric with 2 binding sites per monomer and is also specific for fucose. These three lectins are potential therapeutic targets in an anti-adhesive anti-bacterial approach. Herein, we report the synthesis of 18 oligonucleotide pentofuranose-centered or mannitol-centered glycoclusters leading to tri-, penta- or decavalent clusters with different topologies. The linker arm length between the core and the carbohydrate epitope was also varied leading to 9 galactoclusters targeting LecA and 9 fucoclusters targeting both LecB and BambL. Their dissociation constants (Kd) were determined using a DNA-based carbohydrate microarray technology. The trivalent xylo-centered galactocluster and the ribo-centered fucocluster exhibited the best affinity for LecA and LecB respectively while the mannitol-centered decafucocluster displayed the best affinity to BambL. These data demonstrated that the topology and nature of linkers were the predominant factors for achieving high affinity rather than valency. PMID:26412676

  20. A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection

    PubMed Central

    Bachert, Beth A.; Choi, Soo J.; Snyder, Anna K.; Rio, Rita V. M.; Durney, Brandon C.; Holland, Lisa A.; Amemiya, Kei; Welkos, Susan L.; Bozue, Joel A.; Cote, Christopher K.; Berisio, Rita; Lukomski, Slawomir

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer’s exact test and Cramer’s V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates. PMID:26356298

  1. Bacterial cell wall synthesis gene uppP is required for Burkholderia colonization of the Stinkbug Gut.

    PubMed

    Kim, Jiyeun Kate; Lee, Ho Jin; Kikuchi, Yoshitomo; Kitagawa, Wataru; Nikoh, Naruo; Fukatsu, Takema; Lee, Bok Luel

    2013-08-01

    To establish a host-bacterium symbiotic association, a number of factors involved in symbiosis must operate in a coordinated manner. In insects, bacterial factors for symbiosis have been poorly characterized at the molecular and biochemical levels, since many symbionts have not yet been cultured or are as yet genetically intractable. Recently, the symbiotic association between a stinkbug, Riptortus pedestris, and its beneficial gut bacterium, Burkholderia sp., has emerged as a promising experimental model system, providing opportunities to study insect symbiosis using genetically manipulated symbiotic bacteria. Here, in search of bacterial symbiotic factors, we targeted cell wall components of the Burkholderia symbiont by disruption of uppP gene, which encodes undecaprenyl pyrophosphate phosphatase involved in biosynthesis of various bacterial cell wall components. Under culture conditions, the ΔuppP mutant showed higher susceptibility to lysozyme than the wild-type strain, indicating impaired integrity of peptidoglycan of the mutant. When administered to the host insect, the ΔuppP mutant failed to establish normal symbiotic association: the bacterial cells reached to the symbiotic midgut but neither proliferated nor persisted there. Transformation of the ΔuppP mutant with uppP-encoding plasmid complemented these phenotypic defects: lysozyme susceptibility in vitro was restored, and normal infection and proliferation in the midgut symbiotic organ were observed in vivo. The ΔuppP mutant also exhibited susceptibility to hypotonic, hypertonic, and centrifugal stresses. These results suggest that peptidoglycan cell wall integrity is a stress resistance factor relevant to the successful colonization of the stinkbug midgut by Burkholderia symbiont.

  2. Bacterial Cell Wall Synthesis Gene uppP Is Required for Burkholderia Colonization of the Stinkbug Gut

    PubMed Central

    Kim, Jiyeun Kate; Lee, Ho Jin; Kikuchi, Yoshitomo; Kitagawa, Wataru; Nikoh, Naruo

    2013-01-01

    To establish a host-bacterium symbiotic association, a number of factors involved in symbiosis must operate in a coordinated manner. In insects, bacterial factors for symbiosis have been poorly characterized at the molecular and biochemical levels, since many symbionts have not yet been cultured or are as yet genetically intractable. Recently, the symbiotic association between a stinkbug, Riptortus pedestris, and its beneficial gut bacterium, Burkholderia sp., has emerged as a promising experimental model system, providing opportunities to study insect symbiosis using genetically manipulated symbiotic bacteria. Here, in search of bacterial symbiotic factors, we targeted cell wall components of the Burkholderia symbiont by disruption of uppP gene, which encodes undecaprenyl pyrophosphate phosphatase involved in biosynthesis of various bacterial cell wall components. Under culture conditions, the ΔuppP mutant showed higher susceptibility to lysozyme than the wild-type strain, indicating impaired integrity of peptidoglycan of the mutant. When administered to the host insect, the ΔuppP mutant failed to establish normal symbiotic association: the bacterial cells reached to the symbiotic midgut but neither proliferated nor persisted there. Transformation of the ΔuppP mutant with uppP-encoding plasmid complemented these phenotypic defects: lysozyme susceptibility in vitro was restored, and normal infection and proliferation in the midgut symbiotic organ were observed in vivo. The ΔuppP mutant also exhibited susceptibility to hypotonic, hypertonic, and centrifugal stresses. These results suggest that peptidoglycan cell wall integrity is a stress resistance factor relevant to the successful colonization of the stinkbug midgut by Burkholderia symbiont. PMID:23747704

  3. Localization of Burkholderia cepacia Complex Bacteria in Cystic Fibrosis Lungs and Interactions with Pseudomonas aeruginosa in Hypoxic Mucus

    PubMed Central

    Abdullah, Lubna H.; Perlmutt, Olivia S.; Albert, Daniel; Davis, C. William; Arnold, Roland R.; Yankaskas, James R.; Gilligan, Peter; Neubauer, Heiner; Randell, Scott H.; Boucher, Richard C.

    2014-01-01

    The localization of Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) lungs, alone or during coinfection with Pseudomonas aeruginosa, is poorly understood. We performed immunohistochemistry for Bcc and P. aeruginosa bacteria on 21 coinfected or singly infected CF lungs obtained at transplantation or autopsy. Parallel in vitro experiments examined the growth of two Bcc species, Burkholderia cenocepacia and Burkholderia multivorans, in environments similar to those occupied by P. aeruginosa in the CF lung. Bcc bacteria were predominantly identified in the CF lung as single cells or small clusters within phagocytes and mucus but not as “biofilm-like structures.” In contrast, P. aeruginosa was identified in biofilm-like masses, but densities appeared to be reduced during coinfection with Bcc bacteria. Based on chemical analyses of CF and non-CF respiratory secretions, a test medium was defined to study Bcc growth and interactions with P. aeruginosa in an environment mimicking the CF lung. When test medium was supplemented with alternative electron acceptors under anaerobic conditions, B. cenocepacia and B. multivorans used fermentation rather than anaerobic respiration to gain energy, consistent with the identification of fermentation products by high-performance liquid chromatography (HPLC). Both Bcc species also expressed mucinases that produced carbon sources from mucins for growth. In the presence of P. aeruginosa in vitro, both Bcc species grew anaerobically but not aerobically. We propose that Bcc bacteria (i) invade a P. aeruginosa-infected CF lung when the airway lumen is anaerobic, (ii) inhibit P. aeruginosa biofilm-like growth, and (iii) expand the host bacterial niche from mucus to also include macrophages. PMID:25156735

  4. Draft genome sequence of the soil bacterium Burkholderia terrae strain BS001, which interacts with fungal surface structures.

    PubMed

    Nazir, Rashid; Hansen, Martin A; Sørensen, Søren; van Elsas, Jan Dirk

    2012-08-01

    Burkholderia terrae BS001 is a soil bacterium which was originally isolated from the mycosphere of the ectomycorrhizal fungus Laccaria proxima. It exhibits a range of fungus-interacting traits which reveal its propensity to actively interact at fungal interfaces. Here, we present the approximately 11.5-Mb (G+C content, 61.52%) draft genome sequence of B. terrae BS001 with the aim of providing insight into the genomic basis of its ecological success in fungus-affected soil settings. PMID:22843604

  5. Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370.

    PubMed

    Zaitseva, Julia; Granik, Vladimir; Belik, Alexandr; Koksharova, Olga; Khmel, Inessa

    2009-06-01

    Antibacterial drugs in the nitrofuran series, such as nitrofurazone, furazidin, nitrofurantoin and nifuroxazide, as well as the nitric oxide generators sodium nitroprusside and isosorbide mononitrate in concentrations that do not suppress bacterial growth, were shown to increase the capacity of pathogenic bacteria Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370 to form biofilms. At 25-100microg/ml, nitrofurans 2-2.5-fold enhanced biofilm formation of P. aeruginosa PAO1, and NO donors 3-6-fold. For B. cenocepacia 370, the enhancement was 2-5-fold (nitrofurans) and 4.5-fold (sodium nitroprusside), respectively. PMID:19460431

  6. Exceptionally High Representation of Burkholderia cepacia among B. cepacia Complex Isolates Recovered from the Major Portuguese Cystic Fibrosis Center▿

    PubMed Central

    Cunha, Mónica V.; Pinto-de-Oliveira, Ana; Meirinhos-Soares, Luís; Salgado, Maria José; Melo-Cristino, José; Correia, Susana; Barreto, Celeste; Sá-Correia, Isabel

    2007-01-01

    Burkholderia cepacia, a species found infrequently in cystic fibrosis (CF), was isolated from 85% of patients infected with bacteria of the B. cepacia complex that visited the major Portuguese CF center, in Lisbon, during 2003 to 2005. A detailed molecular analysis revealed that this was mainly due to two B. cepacia clones. These clones were indistinguishable from two strains isolated from intrinsically contaminated nonsterile saline solutions for nasal application, detected during routine market surveillance by the Portuguese Medicines and Health Products Authority. PMID:17360834

  7. Cellular Reporter Screens for Inhibitors of Burkholderia pseudomallei Targets in Pseudomonas aeruginosa

    PubMed Central

    Moir, D. T.; Di, M.; Moore, R. A.; Schweizer, H. P.; Woods, D. E.

    2009-01-01

    Summary To facilitate the discovery of new therapeutics for Burkholderia pseudomallei infections, we have developed cellular reporter screens for inhibitors of B. pseudomallei targets in the surrogate host Pseudomonas aeruginosa. P. aeruginosa strains carrying deletions of essential genes were engineered to be dependent on the IPTG-regulated expression of their B. pseudomallei orthologs on a broad-host-range plasmid. P. aeruginosa genes which are upregulated in response to depletion of each target gene product were fused to the Photorhabdus luminescens luxCDABE operon via pGSV3-lux-SpR to generate reporter strains with increased bioluminescence upon target inhibition. A total of 11 of 19 B. pseudomallei genes complemented deletions of their orthologs in P. aeruginosa. The dependence of growth on IPTG levels varied from complete dependence (ftsQ, gyrA, glmU, secA), to slower growth in the absence of IPTG (coaD, efp, mesJ), to apparently normal growth in the absence of IPTG (ligA, lpxA, folA, ipk). Reporter screening strains have been constructed for three gene targets (gyrA, glmU, secA), and one (gyrA) has been applied to 68,000 compounds resulting in a primary hit rate of 0.5% and a confirmed hit rate of 0.06% including several fluoroquinolones. These results provide proof of principle for surrogate cellular reporter screens as a useful approach to identify inhibitors of essential gene products. PMID:19121678

  8. Distribution of Burkholderia pseudomallei in Northern Australia, a Land of Diversity

    PubMed Central

    McRobb, Evan; Kaestli, Mirjam; Price, Erin P.; Sarovich, Derek S.; Mayo, Mark; Warner, Jeffrey; Spratt, Brian G.

    2014-01-01

    Burkholderia pseudomallei is a Gram-negative soil bacillus that is the etiological agent of melioidosis and a biothreat agent. Little is known about the biogeography of this bacterium in Australia, despite its hyperendemicity in the northern region of this continent. The population structure of 953 Australian B. pseudomallei strains representing 779 and 174 isolates of clinical and environmental origins, respectively, was analyzed using multilocus sequence typing (MLST). Bayesian population structure and network SplitsTree analyses were performed on concatenated MLST loci, and sequence type (ST) diversity and evenness were examined using Simpson's and Pielou's indices and a multivariate dissimilarity matrix. Bayesian analysis found two B. pseudomallei populations in Australia that were geographically distinct; isolates from the Northern Territory were grouped mainly into the first population, whereas the majority of isolates from Queensland were grouped in a second population. Differences in ST evenness were observed between sampling areas, confirming that B. pseudomallei is widespread and established across northern Australia, with a large number of fragmented habitats. ST analysis showed that B. pseudomallei populations diversified as the sampling area increased. This observation was in contrast to smaller sampling areas where a few STs predominated, suggesting that B. pseudomallei populations are ecologically established and not frequently dispersed. Interestingly, there was no identifiable ST bias between clinical and environmental isolates, suggesting the potential for all culturable B. pseudomallei isolates to cause disease. Our findings have important implications for understanding the ecology of B. pseudomallei in Australia and for potential source attribution of this bacterium in the event of unexpected cases of melioidosis. PMID:24657869

  9. Characterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and In Vitro Macrophage Assays

    PubMed Central

    Welkos, Susan L.; Klimko, Christopher P.; Kern, Steven J.; Bearss, Jeremy J.; Bozue, Joel A.; Bernhards, Robert C.; Trevino, Sylvia R.; Waag, David M.; Amemiya, Kei; Worsham, Patricia L.; Cote, Christopher K.

    2015-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP) infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational). Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b) were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains and in the

  10. Colony Morphology Variation of Burkholderia pseudomallei Is Associated with Antigenic Variation and O-Polysaccharide Modification

    PubMed Central

    Wikraiphat, Chanthiwa; Saiprom, Natnaree; Tandhavanant, Sarunporn; Heiss, Christian; Azadi, Parastoo; Wongsuvan, Gumphol; Tuanyok, Apichai; Holden, Matthew T. G.; Burtnick, Mary N.; Brett, Paul J.; Peacock, Sharon J.

    2015-01-01

    Burkholderia pseudomallei is a CDC tier 1 select agent that causes melioidosis, a severe disease in humans and animals. Persistent infections are common, and there is currently no vaccine available. Lipopolysaccharide (LPS) is a potential vaccine candidate. B. pseudomallei expresses three serologically distinct LPS types. The predominant O-polysaccharide (OPS) is an unbranched heteropolymer with repeating d-glucose and 6-deoxy-l-talose residues in which the 6-deoxy-l-talose residues are variably replaced with O-acetyl and O-methyl modifications. We observed that primary clinical B. pseudomallei isolates with mucoid and nonmucoid colony morphologies from the same sample expressed different antigenic types distinguishable using an LPS-specific monoclonal antibody (MAb). MAb-reactive (nonmucoid) and nonreactive (mucoid) strains from the same patient exhibited identical LPS banding patterns by silver staining and indistinguishable genotypes. We hypothesized that LPS antigenic variation reflected modification of the OPS moieties. Mutagenesis of three genes involved in LPS synthesis was performed in B. pseudomallei K96243. Loss of MAb reactivity was observed in both wbiA (encoding a 2-O-acetyltransferase) and wbiD (putative methyl transferase) mutants. The structural characteristics of the OPS moieties from isogenic nonmucoid strain 4095a and mucoid strain 4095c were further investigated. Utilizing nuclear magnetic resonance (NMR) spectroscopy, we found that B. pseudomallei 4095a and 4095c OPS antigens exhibited substitution patterns that differed from the prototypic OPS structure. Specifically, 4095a lacked 4-O-acetylation, while 4095c lacked both 4-O-acetylation and 2-O-methylation. Our studies indicate that B. pseudomallei OPS undergoes antigenic variation and suggest that the 9D5 MAb recognizes a conformational epitope that is influenced by both O-acetyl and O-methyl substitution patterns. PMID:25776750

  11. Development of Rapid Enzyme-Linked Immunosorbent Assays for Detection of Antibodies to Burkholderia pseudomallei

    PubMed Central

    Suttisunhakul, Vichaya; Wuthiekanun, Vanaporn; Brett, Paul J.; Khusmith, Srisin; Day, Nicholas P. J.; Burtnick, Mary N.; Limmathurotsakul, Direk

    2016-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is an environmental bacillus found in northeast Thailand. The mortality rate of melioidosis is ∼40%. An indirect hemagglutination assay (IHA) is used as a reference serodiagnostic test; however, it has low specificity in areas where the background seropositivity of healthy people is high. To improve assay specificity and reduce the time for diagnosis, four rapid enzyme-linked immunosorbent assays (ELISAs) were developed using two purified polysaccharide antigens (O-polysaccharide [OPS] and 6-deoxyheptan capsular polysaccharide [CPS]) and two crude antigens (whole-cell [WC] antigen and culture filtrate [CF] antigen) of B. pseudomallei. The ELISAs were evaluated using serum samples from 141 culture-confirmed melioidosis patients from Thailand along with 188 healthy donors from Thailand and 90 healthy donors from the United States as controls. The areas under receiver operator characteristic curves (AUROCC) using Thai controls were high for the OPS-ELISA (0.91), CF-ELISA (0.91), and WC-ELISA (0.90), while those of CPS-ELISA (0.84) and IHA (0.72) were lower. AUROCC values using U.S. controls were comparable to those of the Thai controls for all ELISAs except IHA (0.93). Using a cutoff optical density (OD) of 0.87, the OPS-ELISA had a sensitivity of 71.6% and a specificity of 95.7% for Thai controls; for U.S. controls, specificity was 96.7%. An additional 120 serum samples from tuberculosis, scrub typhus, or leptospirosis patients were evaluated in all ELISAs and resulted in comparable or higher specificities than using Thai healthy donors. Our findings suggest that antigen-specific ELISAs, particularly the OPS-ELISA, may be useful for serodiagnosis of melioidosis in areas where it is endemic and nonendemic. PMID:26912754

  12. Burkholderia pseudomallei Colony Morphotypes Show a Synchronized Metabolic Pattern after Acute Infection

    PubMed Central

    Steinmetz, Ivo; Lalk, Michael

    2016-01-01

    Background Burkholderia pseudomallei is a water and soil bacterium and the causative agent of melioidosis. A characteristic feature of this bacterium is the formation of different colony morphologies which can be isolated from environmental samples as well as from clinical samples, but can also be induced in vitro. Previous studies indicate that morphotypes can differ in a number of characteristics such as resistance to oxidative stress, cellular adhesion and intracellular replication. Yet the metabolic features of B. pseudomallei and its different morphotypes have not been examined in detail so far. Therefore, this study aimed to characterize the exometabolome of B. pseudomallei morphotypes and the impact of acute infection on their metabolic characteristics. Methods and Principal Findings We applied nuclear magnetic resonance spectroscopy (1H-NMR) in a metabolic footprint approach to compare nutrition uptake and metabolite secretion of starvation induced morphotypes of the B. pseudomallei strains K96243 and E8. We observed gluconate production and uptake in all morphotype cultures. Our study also revealed that among all morphotypes amino acids could be classified with regard to their fast and slow consumption. In addition to these shared metabolic features, the morphotypes varied highly in amino acid uptake profiles, secretion of branched chain amino acid metabolites and carbon utilization. After intracellular passage in vitro or murine acute infection in vivo, we observed a switch of the various morphotypes towards a single morphotype and a synchronization of nutrient uptake and metabolite secretion. Conclusion To our knowledge, this study provides first insights into the basic metabolism of B. pseudomallei and its colony morphotypes. Furthermore, our data suggest, that acute infection leads to the synchronization of B. pseudomallei colony morphology and metabolism through yet unknown host signals and bacterial mechanisms. PMID:26943908

  13. Identification of Hopanoid Biosynthesis Genes Involved in Polymyxin Resistance in Burkholderia multivorans

    PubMed Central

    Steen-Kinnaird, Barbara R.; Lee, Tracy D.; Speert, David P.

    2012-01-01

    A major challenge to clinical therapy of Burkholderia cepacia complex (Bcc) pulmonary infections is their innate resistance to a broad range of antimicrobials, including polycationic agents such as aminoglycosides, polymyxins, and cationic peptides. To identify genetic loci associated with this phenotype, a transposon mutant library was constructed in B. multivorans ATCC 17616 and screened for increased susceptibility to polymyxin B. Compared to the parent strain, mutant 26D7 exhibited 8- and 16-fold increases in susceptibility to polymyxin B and colistin, respectively. Genetic analysis of mutant 26D7 indicated that the transposon inserted into open reading frame (ORF) Bmul_2133, part of a putative hopanoid biosynthesis gene cluster. A strain with a mutation in another ORF in this cluster, Bmul_2134, was constructed and named RMI19. Mutant RMI19 also had increased polymyxin susceptibility. Hopanoids are analogues of eukaryotic sterols involved in membrane stability and barrier function. Strains with mutations in Bmul_2133 and Bmul_2134 showed increased permeability to 1-N-phenylnaphthylamine in the presence of increasing concentrations of polymyxin, suggesting that the putative hopanoid biosynthesis genes are involved in stabilizing outer membrane permeability, contributing to polymyxin resistance. Results from a dansyl-polymyxin binding assay demonstrated that polymyxin B does not bind well to the parent or mutant strains, suggesting that Bmul_2133 and Bmul_2134 contribute to polymyxin B resistance by a mechanism that is independent of lipopolysaccharide (LPS) binding. Through this work, we propose a role for hopanoid biosynthesis as part of the multiple antimicrobial resistance phenotype in Bcc bacteria. PMID:22006009

  14. Cloning, expression, and characterization of a peptidoglycan hydrolase from the Burkholderia pseudomallei phage ST79.

    PubMed

    Khakhum, Nittaya; Yordpratum, Umaporn; Boonmee, Atcha; Tattawasart, Unchalee; Rodrigues, Jorge L M; Sermswan, Rasana W

    2016-12-01

    The lytic phage ST79 of Burkholderia pseudomallei can lyse a broad range of its host including antibiotic resistant isolates from within using a set of proteins, holin, lysB, lysC and endolysin, a peptidoglycan (PG) hydrolase enzyme. The phage ST79 endolysin gene identified as peptidase M15A was cloned, expressed and purified to evaluate its potential to lyse pathogenic bacteria. The molecular size of the purified enzyme is approximately 18 kDa and the in silico study cited here indicated the presence of a zinc-binding domain predicted to be a member of the subfamily A of a metallopeptidase. Its activity, however, was reduced by the presence of Zn(2+). When Escherichia coli PG was used as a substrate and subjected to digestion for 5 min with 3 μg/ml of enzyme, the peptidase M15A showed 2 times higher in lysis efficiency when compared to the commercial lysozyme. The enzyme works in a broad alkaligenic pH range of 7.5-9.0 and temperatures from 25 to 42 °C. The enzyme was able to lyse 18 Gram-negative bacteria in which the outer membrane was permeabilized by chloroform treatment. Interestingly, it also lysed Enterococcus sp., but not other Gram-positive bacteria. In general, endolysin cannot lyse Gram-negative bacteria from outside, however, the cationic amphipathic C-terminal in some endolysins showed permeability to Gram-negative outer membranes. Genetically engineered ST79 peptidase M15A that showed a broad spectrum against Gram-negative bacterial PG or, in combination with an antibiotic the same way as combined drug methodology, could facilitate an effective treatment of severe or antibiotic resistant cases. PMID:27637947

  15. Burkholderia pseudomallei Biofilm Promotes Adhesion, Internalization and Stimulates Proinflammatory Cytokines in Human Epithelial A549 Cells.

    PubMed

    Kunyanee, Chanikarn; Kamjumphol, Watcharaporn; Taweechaisupapong, Suwimol; Kanthawong, Sakawrat; Wongwajana, Suwin; Wongratanacheewin, Surasak; Hahnvajanawong, Chariya; Chareonsudjai, Sorujsiri

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis. Inhalational exposure leading to pulmonary melioidosis is the most common clinical manifestation with significant mortality. However, the role of B. pseudomallei biofilm phenotype during bacterial-host interaction remains unclear. We hypothesize that biofilm phenotype may play a role in such interactions. In this study, B. pseudomallei H777 (biofilm wild type), B. pseudomallei M10 (biofilm mutant) and B. pseudomallei C17 (biofilm-complemented) strains were used to assess the contribution of biofilm to adhesion to human lung epithelial cells (A549), intracellular interactions, apoptosis/necrosis and impact on proinflammatory responses. Confocal laser scanning microscopy demonstrated that B. pseudomallei H777 and C17 produced biofilm, whereas M10 did not. To determine the role of biofilm in host interaction, we assessed the ability of each of the three strains to interact with the A549 cells at MOI 10. Strain H777 exhibited higher levels of attachment and invasion compared to strain M10 (p < 0.05). In addition, the biofilm-complemented strain, C17 exhibited restored bacterial invasion ability. Flow cytometry combined with a double-staining assay using annexin V and propidium iodide revealed significantly higher numbers of early apoptotic and late apoptotic A549 cells when these were infected with strain H777 (1.52%) and C17 (1.43%) compared to strain M10 (0.85%) (p < 0.05). Strains H777 and C17 were able to stimulate significant secretion of IL-6 and IL-8 compared with the biofilm mutant (p < 0.05). Together, these findings demonstrated the role of biofilm-associated phenotypes of B. pseudomallei in cellular pathogenesis of human lung epithelial cells with respect to initial attachment and invasion, apoptosis and proinflammatory responses. PMID:27529172

  16. Biosynthesis and Structure of the Burkholderia cenocepacia K56-2 Lipopolysaccharide Core Oligosaccharide

    PubMed Central

    Ortega, Ximena; Silipo, Alba; Saldías, M. Soledad; Bates, Christa C.; Molinaro, Antonio; Valvano, Miguel A.

    2009-01-01

    Burkholderia cenocepacia is an opportunistic pathogen that displays a remarkably high resistance to antimicrobial peptides. We hypothesize that high resistance to antimicrobial peptides in these bacteria is because of the barrier properties of the outer membrane. Here we report the identification of genes for the biosynthesis of the core oligosaccharide (OS) moiety of the B. cenocepacia lipopolysaccharide. We constructed a panel of isogenic mutants with truncated core OS that facilitated functional gene assignments and the elucidation of the core OS structure in the prototypic strain K56-2. The core OS structure consists of three heptoses in the inner core region, 3-deoxy-d-manno-octulosonic acid, d-glycero-d-talo-octulosonic acid, and 4-amino-4-deoxy-l-arabinose linked to d-glycero-d-talo-octulosonic acid. Also, glucose is linked to heptose I, whereas heptose II carries a second glucose and a terminal heptose, which is the site of attachment of the O antigen. We established that the level of core truncation in the mutants was proportional to their increased in vitro sensitivity to polymyxin B (PmB). Binding assays using fluorescent 5-dimethylaminonaphthalene-1-sulfonyl-labeled PmB demonstrated a correlation between sensitivity and increased binding of PmB to intact cells. Also, the mutant producing a heptoseless core OS did not survive in macrophages as compared with the parental K56-2 strain. Together, our results demonstrate that a complete core OS is required for full PmB resistance in B. cenocepacia and that resistance is due, at least in part, to the ability of B. cenocepacia to prevent binding of the peptide to the bacterial cell envelope. PMID:19525227

  17. Within-Host Evolution of Burkholderia pseudomallei over a Twelve-Year Chronic Carriage Infection

    PubMed Central

    Price, Erin P.; Sarovich, Derek S.; Mayo, Mark; Tuanyok, Apichai; Drees, Kevin P.; Kaestli, Mirjam; Beckstrom-Sternberg, Stephen M.; Babic-Sternberg, James S.; Kidd, Timothy J.; Bell, Scott C.; Keim, Paul; Pearson, Talima; Currie, Bart J.

    2013-01-01

    ABSTRACT Burkholderia pseudomallei causes the potentially fatal disease melioidosis. It is generally accepted that B. pseudomallei is a noncommensal bacterium and that any culture-positive clinical specimen denotes disease requiring treatment. Over a 23-year study of melioidosis cases in Darwin, Australia, just one patient from 707 survivors has developed persistent asymptomatic B. pseudomallei carriage. To better understand the mechanisms behind this unique scenario, we performed whole-genome analysis of two strains isolated 139 months apart. During this period, B. pseudomallei underwent several adaptive changes. Of 23 point mutations, 78% were nonsynonymous and 43% were predicted to be deleterious to gene function, demonstrating a strong propensity for positive selection. Notably, a nonsense mutation inactivated the universal stress response sigma factor RpoS, with pleiotropic implications. The genome underwent substantial reduction, with four deletions in chromosome 2 resulting in the loss of 221 genes. The deleted loci included genes involved in secondary metabolism, environmental survival, and pathogenesis. Of 14 indels, 11 occurred in coding regions and 9 resulted in frameshift mutations that dramatically affected predicted gene products. Disproportionately, four indels affected lipopolysaccharide biosynthesis and modification. Finally, we identified a frameshift mutation in both P314 isolates within wcbR, an important component of the capsular polysaccharide I locus, suggesting virulence attenuation early in infection. Our study illustrates a unique clinical case that contrasts a high-consequence infectious agent with a long-term commensal infection and provides further insights into bacterial evolution within the human host. PMID:23860767

  18. Membrane-Bound PenA β-Lactamase of Burkholderia pseudomallei

    PubMed Central

    Randall, Linnell B.; Dobos, Karen; Papp-Wallace, Krisztina M.; Bonomo, Robert A.

    2015-01-01

    Burkholderia pseudomallei is the etiologic agent of melioidosis, a difficult-to-treat disease with diverse clinical manifestations. β-Lactam antibiotics such as ceftazidime are crucial to the success of melioidosis therapy. Ceftazidime-resistant clinical isolates have been described, and the most common mechanism is point mutations affecting expression or critical amino acid residues of the chromosomally encoded class A PenA β-lactamase. We previously showed that PenA was exported via the twin arginine translocase system and associated with the spheroplast fraction. We now show that PenA is a membrane-bound lipoprotein. The protein and accompanying β-lactamase activity are found in the membrane fraction and can be extracted with Triton X-114. Treatment with globomycin of B. pseudomallei cells expressing PenA results in accumulation of the prolipoprotein. Mass spectrometric analysis of extracted membrane proteins reveals a protein peak whose mass is consistent with a triacylated PenA protein. Mutation of a crucial lipobox cysteine at position 23 to a serine residue results in loss of β-lactamase activity and absence of detectable PenAC23S protein. A concomitant isoleucine-to-alanine change at position 20 in the signal peptide processing site in the PenAC23S mutant results in a nonlipidated protein (PenAI20A C23S) that is processed by signal peptidase I and exhibits β-lactamase activity. The resistance profile of a B. pseudomallei strain expressing this protein is indistinguishable from the profile of the isogenic strain expressing wild-type PenA. The data show that PenA membrane association is not required for resistance and must serve another purpose. PMID:26711764

  19. An objective approach for Burkholderia pseudomallei strain selection as challenge material for medical countermeasures efficacy testing.

    PubMed

    Van Zandt, Kristopher E; Tuanyok, Apichai; Keim, Paul S; Warren, Richard L; Gelhaus, H Carl

    2012-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a rare disease of biodefense concern with high mortality and extreme difficulty in treatment. No human vaccines are available that protect against B. pseudomallei infection, and with the current limitations of antibiotic treatment, the development of new preventative and therapeutic interventions is crucial. Although clinical trials could be used to test the efficacy of new medical countermeasures (MCMs), the high mortality rates associated with melioidosis raises significant ethical issues concerning treating individuals with new compounds with unknown efficacies. The US Food and Drug Administration (FDA) has formulated a set of guidelines for the licensure of new MCMs to treat diseases in which it would be unethical to test the efficacy of these drugs in humans. The FDA "Animal Rule" 21 CFR 314 calls for consistent, well-characterized B. pseudomallei strains to be used as challenge material in animal models. In order to facilitate the efficacy testing of new MCMs for melioidosis using animal models, we intend to develop a well-characterized panel of strains for use. This panel will comprise of strains that were isolated from human cases, have a low passage history, are virulent in animal models, and are well-characterized phenotypically and genotypically. We have reviewed published and unpublished data on various B. pseudomallei strains to establish an objective method for selecting the strains to be included in the panel of B. pseudomallei strains with attention to five categories: animal infection models, genetic characterization, clinical and passage history, and availability of the strain to the research community. We identified 109 strains with data in at least one of the five categories, scored each strain based on the gathered data and identified six strains as candidate for a B. pseudomallei strain panel. PMID:23057010

  20. Antimicrobial activity of Tachyplesin 1 against Burkholderia pseudomallei: an in vitro and in silico approach

    PubMed Central

    Lee, Lyn-Fay; Mariappan, Vanitha; Vellasamy, Kumutha Malar

    2016-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many conventional antibiotics. Therefore, alternative antimicrobial agents such as antimicrobial peptides (AMPs) are extensively studied to combat this issue. Our study aims to identify and understand the mode of action of the potential AMP(s) that are effective against B. pseudomallei in both planktonic and biofilm state as well as to predict the possible binding targets on using in vitro and in silico approaches. In the in vitro study, 11 AMPs were tested against 100 B. pseudomallei isolates for planktonic cell susceptibility, where LL-37, and PG1, demonstrated 100.0% susceptibility and TP1 demonstrated 83% susceptibility. Since the B. pseudomallei activity was reported on LL-37 and PG1, TP1 was selected for further investigation. TP1 inhibited B. pseudomallei cells at 61.69 μM, and membrane blebbing was observed using scanning electron microscopy. Moreover, TP1 inhibited B. pseudomallei cell growth, reaching bactericidal endpoint within 2 h post exposure as compared to ceftazidime (CAZ) (8 h). Furthermore, TP1 was shown to suppress the growth of B. pseudomallei cells in biofilm state at concentrations above 221 μM. However, TP1 was cytotoxic to the mammalian cell lines tested. In the in silico study, molecular docking revealed that TP1 demonstrated a strong interaction to the common peptide or inhibitor binding targets for lipopolysaccharide of Escherichia coli, as well as autolysin, pneumolysin, and pneumococcal surface protein A (PspA) of Streptococcus pneumoniae. Homology modelled B. pseudomallei PspA protein (YDP) also showed a favourable binding with a strong electrostatic contribution and nine hydrogen bonds. In conclusion, TP1 demonstrated a good potential as an anti-B. pseudomallei agent. PMID:27812400

  1. Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms.

    PubMed

    Messiaen, Anne-Sophie; Forier, Katrien; Nelis, Hans; Braeckmans, Kevin; Coenye, Tom

    2013-01-01

    Due to the intrinsic resistance of Burkholderia cepacia complex (Bcc) to many antibiotics and the production of a broad range of virulence factors, lung infections by these bacteria, primarily occurring in cystic fibrosis (CF) patients, are very difficult to treat. In addition, the ability of Bcc organisms to form biofilms contributes to their persistence in the CF lung. As Bcc infections are associated with poor clinical outcome, there is an urgent need for new effective therapies to treat these infections. In the present study, we investigated whether liposomal tobramycin displayed an increased anti-biofilm effect against Bcc bacteria compared to free tobramycin. Single particle tracking (SPT) was used to study the transport of positively and negatively charged nanospheres in Bcc biofilms as a model for the transport of liposomes. Negatively charged nanospheres became immobilized in close proximity of biofilm cell clusters, while positively charged nanospheres interacted with fiber-like structures, probably eDNA. Based on these data, encapsulation of tobramycin in negatively charged liposomes appeared promising for targeted drug delivery. However, the anti-biofilm effect of tobramycin encapsulated into neutral or anionic liposomes did not increase compared to that of free tobramycin. Probably, the fusion of the anionic liposomes with the negatively charged bacterial surface of Bcc bacteria was limited by electrostatic repulsive forces. The lack of a substantial anti-biofilm effect of tobramycin encapsulated in neutral liposomes could be further investigated by increasing the liposomal tobramycin concentration. However, this was hampered by the low encapsulation efficiency of tobramycin in these liposomes.

  2. Epidemiology of arabinose assimilation in burkholderia pseudomallei isolated from patients and soil in Thailand.

    PubMed

    Trakulsomboon, S; Vuddhakul, V; Tharavichitkul, P; Na-Gnam, N; Suputtamongkol, Y; Thamlikitkul, V

    1999-12-01

    Burkholderia pseudomallei is an environmental saprophyte that has been isolated widely from soil in Southeast Asia and the relationship between environmental contamination and clinical melioidosis has been established. It has been shown that the arabinose assimilation property of B. pseudonrallei is probably one of the determinants indicating virulence of this organism. Therefore, the distribution of arabinose assimilation biotypes of B. pseudomallei collected from four geographic regions of Thailand was studied in order to determine an association between arabinose assimilation of B. pseudomallei and the uneven distribution of melioidosis found among these four areas. A total of 830 isolates of B. pseudomallei (412 patient isolates and 418 soil isolates) collected from the patients and soil in four regions of Thailand in 1997 were tested for an ability to grow on a minimal agar medium supplemented with L-arabinose. All patient isolates except one could not utilise arabinose (Ara-). For 418 soil isolates, 232 (55.5%) isolates were identified as Ara type. They comprised 180 (62.5%), 36 (46.8%), 6 (35.3%) and 10 (27.8%) isolates derived from northeastern, southern, northern and central regions respectively. The ratios of Ara- to Ara, were 1.7, 0.9. 0.5 and 0.4 among isolates collected from northeastern, southern, northern and central regions respectively. The prevalence of Ara- in soil isolates in northeast is significantly higher than those in other regions. This observation suggests that in addition to the presence of B. pseudomallei in soil which is one of the factors contributing to a burden of melioidosis in northeastern Thailand, the distribution of more virulent biotype (Ara-) soil isolates is a factor contributing to a high prevalence of melioidosis in northeastern Thailand as well.

  3. Inactivation of Toluene 2-Monooxygenase in Burkholderia cepacia G4 by Alkynes

    PubMed Central

    Yeager, Chris M.; Bottomley, Peter J.; Arp, Daniel J.; Hyman, Michael R.

    1999-01-01

    High concentrations of acetylene (10 to 50% [vol/vol] gas phase) were required to inhibit the growth of Burkholderia cepacia G4 on toluene, while 1% (vol/vol) (gas phase) propyne or 1-butyne completely inhibited growth. Low concentrations of longer-chain alkynes (C5 to C10) were also effective inhibitors of toluene-dependent growth, and 2- and 3-alkynes were more potent inhibitors than their 1-alkyne counterparts. Exposure of toluene-grown B. cepacia G4 to alkynes resulted in the irreversible loss of toluene- and o-cresol-dependent O2 uptake activities, while acetate- and 3-methylcatechol-dependent O2 uptake activities were unaffected. Toluene-dependent O2 uptake decreased upon the addition of 1-butyne in a concentration- and time-dependent manner. The loss of activity followed first-order kinetics, with apparent rate constants ranging from 0.25 min−1 to 2.45 min−1. Increasing concentrations of toluene afforded protection from the inhibitory effects of 1-butyne. Furthermore, oxygen, supplied as H2O2, was required for inhibition by 1-butyne. These results suggest that alkynes are specific, mechanism-based inactivators of toluene 2-monooxygenase in B. cepacia G4, although the simplest alkyne, acetylene, was relatively ineffective compared to longer alkynes. Alkene analogs of acetylene and propyne—ethylene and propylene—were not inactivators of toluene 2-monooxygenase activity in B. cepacia G4 but were oxidized to their respective epoxides, with apparent Ks and Vmax values of 39.7 μM and 112.3 nmol min−1 mg of protein−1 for ethylene and 32.3 μM and 89.2 nmol min−1 mg of protein−1 for propylene. PMID:9925593

  4. Drug susceptibility and biofilm formation of Burkholderia pseudomallei in nutrient-limited condition.

    PubMed

    Anutrakunchai, C; Sermswan, R W; Wongratanacheewin, S; Puknun, A; Taweechaisupapong, S

    2015-06-01

    Burkholderia pseudomallei is the causative agent of melioidosis, which can form biofilms and microcolonies in vivo and in vitro. One of the hallmark characteristics of the biofilm-forming bacteria is that they can be up to 1,000 times more resistant to antibiotics than their free-living counterpart. Bacteria also become highly tolerant to antibiotics when nutrients are limited. One of the most important causes of starvation induced tolerance in vivo is biofilm growth. However, the effect of nutritional stress on biofilm formation and drug tolerance of B. pseudomallei has never been reported. Therefore, this study aims to determine the effect of nutrient-limited and enriched conditions on drug susceptibility of B. pseudomallei in both planktonic and biofilm forms in vitro using broth microdilution method and Calgary biofilm device, respectively. The biofilm formation of B. pseudomallei in nutrient-limited and enriched conditions was also evaluated by a modified microtiter-plate test. Six isolates of ceftazidime (CAZ)-susceptible and four isolates of CAZ-resistant B. pseudomallei were used. The results showed that the minimum bactericidal concentrations of CAZ against B. pseudomallei in nutrient-limited condition were higher than those in enriched condition. The drug susceptibilities of B. pseudomallei biofilm in both enriched and nutrient-limited conditions were more tolerant than those of planktonic cells. Moreover, the quantification of biofilm formation by B. pseudomallei in nutrient-limited condition was significantly higher than that in enriched condition. These data indicate that nutrient-limited condition could induce biofilm formation and drug tolerance of B. pseudomallei.

  5. Garlic revisited: antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex.

    PubMed

    Wallock-Richards, Daynea; Doherty, Catherine J; Doherty, Lynsey; Clarke, David J; Place, Marc; Govan, John R W; Campopiano, Dominic J

    2014-01-01

    The antimicrobial activities of garlic and other plant alliums are primarily based on allicin, a thiosulphinate present in crushed garlic bulbs. We set out to determine if pure allicin and aqueous garlic extracts (AGE) exhibit antimicrobial properties against the Burkholderia cepacia complex (Bcc), the major bacterial phytopathogen for alliums and an intrinsically multiresistant and life-threatening human pathogen. We prepared an AGE from commercial garlic bulbs and used HPLC to quantify the amount of allicin therein using an aqueous allicin standard (AAS). Initially we determined the minimum inhibitory concentrations (MICs) of the AGE against 38 Bcc isolates; these MICs ranged from 0.5 to 3% (v/v). The antimicrobial activity of pure allicin (AAS) was confirmed by MIC and minimum bactericidal concentration (MBC) assays against a smaller panel of five Bcc isolates; these included three representative strains of the most clinically important species, B. cenocepacia. Time kill assays, in the presence of ten times MIC, showed that the bactericidal activity of AGE and AAS against B. cenocepacia C6433 correlated with the concentration of allicin. We also used protein mass spectrometry analysis to begin to investigate the possible molecular mechanisms of allicin with a recombinant form of a thiol-dependent peroxiredoxin (BCP, Prx) from B. cenocepacia. This revealed that AAS and AGE modifies an essential BCP catalytic cysteine residue and suggests a role for allicin as a general electrophilic reagent that targets protein thiols. To our knowledge, we report the first evidence that allicin and allicin-containing garlic extracts possess inhibitory and bactericidal activities against the Bcc. Present therapeutic options against these life-threatening pathogens are limited; thus, allicin-containing compounds merit investigation as adjuncts to existing antibiotics. PMID:25438250

  6. Involvement of hexokinase1 in plant growth promotion as mediated by Burkholderia phytofirmans.

    PubMed

    Park, Jae Min; Lazarovits, George

    2014-06-01

    Potato plantlets inoculated with strain PsJN of the bacterium Burkholderia phytofirmans exhibit consistent and significant increases in plant growth under in vitro conditions, when compared with uninoculated plants. The greatest influence on the degree and type of growth enhancement that develops has been shown to be mediated by the sugar concentration in the agar media. Bacterial growth promotion has been suggested in other studies to be regulated by the sugar sensor enzyme hexokinase1, the role of which is activation of glucose phosphorylation. In this present study, we examined the co-relationship between root and stem development in potato plants treated with PsJN and the activity of hexokinase1. Plants grown in the presence of 1.5% and 3% sucrose showed increased levels of hexokinase1 activity only in the roots of inoculated plants, suggesting that the increased enzyme levels may be associated with root growth. Analysis for mRNA using reverse transcriptase did not reveal any significant differences in transcription levels of the gene between inoculated and uninoculated plants. When PsJN-inoculated plants were grown in 1.5% and 3% concentrations of glucose and fructose, stem height and mass, leaf number, root mass, and overall biomass increased. No growth promotion occurred when PsJN-inoculated plants were grown in 3% maltose. Subsequently, a hexokinase1 activity assay showed that PsJN-induced growth of potato plants was found to only occur when plants were grown in the presence of sugars that are recognized by the plant hexokinase1. The results suggest that PsJN may enhance sugar uptake in plants by direct or indirect stimulation of hexokinase1 activity in roots and this results in enhanced overall plant growth.

  7. Genotyping of Burkholderia mallei from an Outbreak of Glanders in Bahrain Suggests Multiple Introduction Events

    PubMed Central

    Hornstra, Heidie; Projahn, Michaela; Terzioglu, Rahime; Wernery, Renate; Georgi, Enrico; Riehm, Julia M.; Wagner, David M.; Keim, Paul S.; Joseph, Marina; Johnson, Bobby; Kinne, Joerg; Jose, Shanti; Hepp, Crystal M.; Witte, Angela; Wernery, Ulrich

    2014-01-01

    Background Glanders, caused by the gram-negative bacterium Burkholderia mallei, is a highly infectious zoonotic disease of solipeds causing severe disease in animals and men. Although eradicated from many Western countries, it recently emerged in Asia, the Middle-East, Africa, and South America. Due to its rareness, little is known about outbreak dynamics of the disease and its epidemiology. Methodology/Principal Findings We investigated a recent outbreak of glanders in Bahrain by applying high resolution genotyping (multiple locus variable number of tandem repeats, MLVA) and comparative whole genome sequencing to B. mallei isolated from infected horses and a camel. These results were compared to samples obtained from an outbreak in the United Arab Emirates in 2004, and further placed into a broader phylogeographic context based on previously published B. mallei data. The samples from the outbreak in Bahrain separated into two distinct clusters, suggesting a complex epidemiological background and evidence for the involvement of multiple B. mallei strains. Additionally, the samples from Bahrain were more closely related to B. mallei isolated from horses in the United Arab Emirates in 2004 than other B. mallei which is suggestive of repeated importation to the region from similar geographic sources. Conclusion/Significance High-resolution genotyping and comparative whole genome analysis revealed the same phylogenetic patterns among our samples. The close relationship of the Dubai/UAE B. mallei populations to each other may be indicative of a similar geographic origin that has yet to be identified for the infecting strains. The recent emergence of glanders in combination with worldwide horse trading might pose a new risk for human infections. PMID:25255232

  8. A model of immunity to Burkholderia pseudomallei: unique responses following immunization and acute lethal infection.

    PubMed

    Ulett, Glen C; Labrooy, Justin T; Currie, Bart J; Barnes, Jodie L; Ketheesan, Natkunam

    2005-01-01

    Burkholderia pseudomallei, the etiological agent of melioidosis, causes significant mortality in endemic regions, but little is known regarding the immune mechanisms required for successful protective immunity. To establish a model of immunization that could be used to study this we screened a library of B. pseudomallei strains for immunogenicity in mice. BALB/c mice were immunized with test strains, and 2 weeks later were given a lethal challenge (LC) of virulent B. pseudomallei. Among 49 strains tested, a single strain, CL04, exhibited strong immunoprotective capacity. Interestingly, CL04 had been cultured from a patient with chronic colonization of B. pseudomallei, which is a rare phenomenon. Mice immunized with 0.1 x LD50 (5 x 10(3) CFU) of CL04 had significantly better survival and lower bacterial loads after LC compared to naïve controls. Dose-response analysis demonstrated more robust immunity after higher immunizing doses, and bacterial inactivation by gamma irradiation diminished the protective effect, indicating a requirement for viable organism for immunity. CL04-induced immunity was demonstrated both in B. pseudomallei-susceptible BALB/c and -resistant C57BL/6 mice. We investigated the gene profile of CL04-induced immunity by analyzing responses to immunization using cDNA microarray. Unique responses involving granulocyte macrophage colony stimulating factor (GM-CSF), the proapoptotic regulator Bad and cyclin-dependent kinase (CDK5) were detected in immunized mice, but these responses were absent in naïve-LC mice. Further, responses differed between mouse strains, indicating dependence on host genetic background. This model will be useful in identifying elements of the immune response required for successful adaptive immunity against B. pseudomallei.

  9. Burkholderia pseudomallei Biofilm Promotes Adhesion, Internalization and Stimulates Proinflammatory Cytokines in Human Epithelial A549 Cells

    PubMed Central

    Kunyanee, Chanikarn; Kamjumphol, Watcharaporn; Taweechaisupapong, Suwimol; Kanthawong, Sakawrat; Wongwajana, Suwin; Wongratanacheewin, Surasak; Hahnvajanawong, Chariya

    2016-01-01

    Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis. Inhalational exposure leading to pulmonary melioidosis is the most common clinical manifestation with significant mortality. However, the role of B. pseudomallei biofilm phenotype during bacterial-host interaction remains unclear. We hypothesize that biofilm phenotype may play a role in such interactions. In this study, B. pseudomallei H777 (biofilm wild type), B. pseudomallei M10 (biofilm mutant) and B. pseudomallei C17 (biofilm-complemented) strains were used to assess the contribution of biofilm to adhesion to human lung epithelial cells (A549), intracellular interactions, apoptosis/necrosis and impact on proinflammatory responses. Confocal laser scanning microscopy demonstrated that B. pseudomallei H777 and C17 produced biofilm, whereas M10 did not. To determine the role of biofilm in host interaction, we assessed the ability of each of the three strains to interact with the A549 cells at MOI 10. Strain H777 exhibited higher levels of attachment and invasion compared to strain M10 (p < 0.05). In addition, the biofilm-complemented strain, C17 exhibited restored bacterial invasion ability. Flow cytometry combined with a double-staining assay using annexin V and propidium iodide revealed significantly higher numbers of early apoptotic and late apoptotic A549 cells when these were infected with strain H777 (1.52%) and C17 (1.43%) compared to strain M10 (0.85%) (p < 0.05). Strains H777 and C17 were able to stimulate significant secretion of IL-6 and IL-8 compared with the biofilm mutant (p < 0.05). Together, these findings demonstrated the role of biofilm-associated phenotypes of B. pseudomallei in cellular pathogenesis of human lung epithelial cells with respect to initial attachment and invasion, apoptosis and proinflammatory responses. PMID:27529172

  10. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates.

    PubMed

    Spring-Pearson, Senanu M; Stone, Joshua K; Doyle, Adina; Allender, Christopher J; Okinaka, Richard T; Mayo, Mark; Broomall, Stacey M; Hill, Jessica M; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; McNew, Lauren A; Rosenzweig, C Nicole; Gibbons, Henry S; Currie, Bart J; Wagner, David M; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is 'open', with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.

  11. Burkholderia cepacia complex in Serbia