Sample records for causal component mixtures

  1. Identification of chemical components of combustion emissions that affect pro-atherosclerotic vascular responses in mice

    PubMed Central

    Seilkop, Steven K.; Campen, Matthew J.; Lund, Amie K.; McDonald, Jacob D.; Mauderly, Joe L.

    2012-01-01

    Combustion emissions cause pro-atherosclerotic responses in apolipoprotein E-deficient (ApoE/−) mice, but the causal components of these complex mixtures are unresolved. In studies previously reported, ApoE−/− mice were exposed by inhalation 6 h/day for 50 consecutive days to multiple dilutions of diesel or gasoline exhaust, wood smoke, or simulated “downwind” coal emissions. In this study, the analysis of the combined four-study database using the Multiple Additive Regression Trees (MART) data mining approach to determine putative causal exposure components regardless of combustion source is reported. Over 700 physical–chemical components were grouped into 45 predictor variables. Response variables measured in aorta included endothelin-1, vascular endothelin growth factor, three matrix metalloproteinases (3, 7, 9), metalloproteinase inhibitor 2, heme-oxygenase-1, and thiobarbituric acid reactive substances. Two or three predictors typically explained most of the variation in response among the experimental groups. Overall, sulfur dioxide, ammonia, nitrogen oxides, and carbon monoxide were most highly predictive of responses, although their rankings differed among the responses. Consistent with the earlier finding that filtration of particles had little effect on responses, particulate components ranked third to seventh in predictive importance for the eight response variables. MART proved useful for identifying putative causal components, although the small number of pollution mixtures (4) can provide only suggestive evidence of causality. The potential independent causal contributions of these gases to the vascular responses, as well as possible interactions among them and other components of complex pollutant mixtures, warrant further evaluation. PMID:22486345

  2. Identification of chemical components of combustion emissions that affect pro-atherosclerotic vascular responses in mice.

    PubMed

    Seilkop, Steven K; Campen, Matthew J; Lund, Amie K; McDonald, Jacob D; Mauderly, Joe L

    2012-04-01

    Combustion emissions cause pro-atherosclerotic responses in apolipoprotein E-deficient (ApoE/⁻) mice, but the causal components of these complex mixtures are unresolved. In studies previously reported, ApoE⁻/⁻ mice were exposed by inhalation 6 h/day for 50 consecutive days to multiple dilutions of diesel or gasoline exhaust, wood smoke, or simulated "downwind" coal emissions. In this study, the analysis of the combined four-study database using the Multiple Additive Regression Trees (MART) data mining approach to determine putative causal exposure components regardless of combustion source is reported. Over 700 physical-chemical components were grouped into 45 predictor variables. Response variables measured in aorta included endothelin-1, vascular endothelin growth factor, three matrix metalloproteinases (3, 7, 9), metalloproteinase inhibitor 2, heme-oxygenase-1, and thiobarbituric acid reactive substances. Two or three predictors typically explained most of the variation in response among the experimental groups. Overall, sulfur dioxide, ammonia, nitrogen oxides, and carbon monoxide were most highly predictive of responses, although their rankings differed among the responses. Consistent with the earlier finding that filtration of particles had little effect on responses, particulate components ranked third to seventh in predictive importance for the eight response variables. MART proved useful for identifying putative causal components, although the small number of pollution mixtures (4) can provide only suggestive evidence of causality. The potential independent causal contributions of these gases to the vascular responses, as well as possible interactions among them and other components of complex pollutant mixtures, warrant further evaluation.

  3. Unveiling causal activity of complex networks

    NASA Astrophysics Data System (ADS)

    Williams-García, Rashid V.; Beggs, John M.; Ortiz, Gerardo

    2017-07-01

    We introduce a novel tool for analyzing complex network dynamics, allowing for cascades of causally-related events, which we call causal webs (c-webs), to be separated from other non-causally-related events. This tool shows that traditionally-conceived avalanches may contain mixtures of spatially-distinct but temporally-overlapping cascades of events, and dynamical disorder or noise. In contrast, c-webs separate these components, unveiling previously hidden features of the network and dynamics. We apply our method to mouse cortical data with resulting statistics which demonstrate for the first time that neuronal avalanches are not merely composed of causally-related events. The original version of this article was uploaded to the arXiv on March 17th, 2016 [1].

  4. Epidemiologic evidence for asthma and exposure to air toxics: linkages between occupational, indoor, and community air pollution research.

    PubMed Central

    Delfino, Ralph J

    2002-01-01

    Outdoor ambient air pollutant exposures in communities are relevant to the acute exacerbation and possibly the onset of asthma. However, the complexity of pollutant mixtures and etiologic heterogeneity of asthma has made it difficult to identify causal components in those mixtures. Occupational exposures associated with asthma may yield clues to causal components in ambient air pollution because such exposures are often identifiable as single-chemical agents (e.g., metal compounds). However, translating occupational to community exposure-response relationships is limited. Of the air toxics found to cause occupational asthma, only formaldehyde has been frequently investigated in epidemiologic studies of allergic respiratory responses to indoor air, where general consistency can be shown despite lower ambient exposures. The specific volatile organic compounds (VOCs) identified in association with occupational asthma are generally not the same as those in studies showing respiratory effects of VOC mixtures on nonoccupational adult and pediatric asthma. In addition, experimental evidence indicates that airborne polycyclic aromatic hydrocarbon (PAH) exposures linked to diesel exhaust particles (DEPs) have proinflammatory effects on airways, but there is insufficient supporting evidence from the occupational literature of effects of DEPs on asthma or lung function. In contrast, nonoccupational epidemiologic studies have frequently shown associations between allergic responses or asthma with exposures to ambient air pollutant mixtures with PAH components, including black smoke, high home or school traffic density (particularly truck traffic), and environmental tobacco smoke. Other particle-phase and gaseous co-pollutants are likely causal in these associations as well. Epidemiologic research on the relationship of both asthma onset and exacerbation to air pollution is needed to disentangle effects of air toxics from monitored criteria air pollutants such as particle mass. Community studies should focus on air toxics expected to have adverse respiratory effects based on biological mechanisms, particularly irritant and immunological pathways to asthma onset and exacerbation. PMID:12194890

  5. NOVEL MARKERS OF AIR POLLUTION-INDUCED VASCULAR TOXICITY

    EPA Science Inventory

    The results of this project should be a handful of biological markers that can be subsequently used to: 1) identify susceptible individuals, 2) identify causal components of the complex air pollution mixture, and 3) better understand the biological mechanisms involved in air p...

  6. The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: III. Components of diesel and gasoline engine exhausts, hardwood smoke and simulated downwind coal emissions driving non-cancer biological responses in rodents.

    PubMed

    Mauderly, Joe L; Seilkop, Steven K

    2014-09-01

    An approach to identify causal components of complex air pollution mixtures was explored. Rats and mice were exposed by inhalation 6 h daily for 1 week or 6 months to dilutions of simulated downwind coal emissions, diesel and gasoline exhausts and wood smoke. Organ weights, hematology, serum chemistry, bronchoalveolar lavage, central vascular and respiratory allergic responses were measured. Multiple additive regression tree (MART) analysis of the combined database ranked 45 exposure (predictor) variables for importance to models best fitting 47 significant responses. Single-predictor concentration-response data were examined for evidence of single response functions across all exposure groups. Replication of the responses by the combined influences of the two most important predictors was tested. Statistical power was limited by inclusion of only four mixtures, albeit in multiple concentrations each and with particles removed for some groups. Results gave suggestive or strong evidence of causation of 19 of the 47 responses. The top two predictors of the 19 responses included only 12 organic and 6 inorganic species or classes. An increase in red blood cell count of rats by ammonia and pro-atherosclerotic vascular responses of mice by inorganic gases yielded the strongest evidence for causation and the best opportunity for confirmation. The former was a novel finding; the latter was consistent with other results. The results demonstrated the plausibility of identifying putative causal components of highly complex mixtures, given a database in which the ratios of the components are varied sufficiently and exposures and response measurements are conducted using a consistent protocol.

  7. Improving the de-agglomeration and dissolution of a poorly water soluble drug by decreasing the agglomerate strength of the cohesive powder.

    PubMed

    Allahham, Ayman; Stewart, Peter J; Das, Shyamal C

    2013-11-30

    Influence of ternary, poorly water-soluble components on the agglomerate strength of cohesive indomethacin mixtures during dissolution was studied to explore the relationship between agglomerate strength and extent of de-agglomeration and dissolution of indomethacin (Ind). Dissolution profiles of Ind from 20% Ind-lactose binary mixtures, and ternary mixtures containing additional dibasic calcium phosphate (1% or 10%; DCP), calcium sulphate (10%) and talc (10%) were determined. Agglomerate strength distributions were estimated by Monte Carlo simulation of particle size, work of cohesion and packing fraction distributions. The agglomerate strength of Ind decreased from 1.19 MPa for the binary Ind mixture to 0.84 MPa for 1DCP:20Ind mixture and to 0.42 MPa for 1DCP:2Ind mixture. Both extent of de-agglomeration, demonstrated by the concentration of the dispersed indomethacin distribution, and extent of dispersion, demonstrated by the particle size of the dispersed indomethacin, were in descending order of 1DCP:2Ind>1DCP:20Ind>binary Ind. The addition of calcium sulphate dihydrate and talc also reduced the agglomerate strength and improved de-agglomeration and dispersion of indomethacin. While not definitively causal, the improved de-agglomeration and dispersion of a poorly water soluble drug by poorly water soluble components was related to the agglomerate strength of the cohesive matrix during dissolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Quantum-coherent mixtures of causal relations

    NASA Astrophysics Data System (ADS)

    Maclean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-05-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  9. Quantum-coherent mixtures of causal relations

    PubMed Central

    MacLean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-01-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity. PMID:28485394

  10. Quantum-coherent mixtures of causal relations.

    PubMed

    MacLean, Jean-Philippe W; Ried, Katja; Spekkens, Robert W; Resch, Kevin J

    2017-05-09

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  11. The causal pie model: an epidemiological method applied to evolutionary biology and ecology

    PubMed Central

    Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette

    2014-01-01

    A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a “causal pie” of “component causes”. Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made. PMID:24963386

  12. The causal pie model: an epidemiological method applied to evolutionary biology and ecology.

    PubMed

    Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette

    2014-05-01

    A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a "causal pie" of "component causes". Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made.

  13. Effects of metals within ambient air particulate matter (PM) on human health.

    PubMed

    Chen, Lung Chi; Lippmann, Morton

    2009-01-01

    We review literature providing insights on health-related effects caused by inhalation of ambient air particulate matter (PM) containing metals, emphasizing effects associated with in vivo exposures at or near contemporary atmospheric concentrations. Inhalation of much higher concentrations, and high-level exposures via intratracheal (IT) instillation that inform mechanistic processes, are also reviewed. The most informative studies of effects at realistic exposure levels, in terms of identifying influential individual PM components or source-related mixtures, have been based on (1) human and laboratory animal exposures to concentrated ambient particles (CAPs), and (2) human population studies for which both health-related effects were observed and PM composition data were available for multipollutant regression analyses or source apportionment. Such studies have implicated residual oil fly ash (ROFA) as the most toxic source-related mixture, and Ni and V, which are characteristic tracers of ROFA, as particularly influential components in terms of acute cardiac function changes and excess short-term mortality. There is evidence that other metals within ambient air PM, such as Pb and Zn, also affect human health. Most evidence now available is based on the use of ambient air PM components concentration data, rather than actual exposures, to determine significant associations and/or effects coefficients. Therefore, considerable uncertainties about causality are associated with exposure misclassification and measurement errors. As more PM speciation data and more refined modeling techniques become available, and as more CAPs studies involving PM component analyses are performed, the roles of specific metals and other components within PM will become clearer.

  14. Image segmentation using hidden Markov Gauss mixture models.

    PubMed

    Pyun, Kyungsuk; Lim, Johan; Won, Chee Sun; Gray, Robert M

    2007-07-01

    Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.

  15. The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: IV. Vascular effects of repeated inhalation exposure to a mixture of five inorganic gases.

    PubMed

    Mauderly, J L; Kracko, D; Brower, J; Doyle-Eisele, M; McDonald, J D; Lund, A K; Seilkop, S K

    2014-09-01

    An experiment was conducted to test the hypothesis that a mixture of five inorganic gases could reproduce certain central vascular effects of repeated inhalation exposure of apolipoprotein E-deficient mice to diesel or gasoline engine exhaust. The hypothesis resulted from preceding multiple additive regression tree (MART) analysis of a composition-concentration-response database of mice exposed by inhalation to the exhausts and other complex mixtures. The five gases were the predictors most important to MART models best fitting the vascular responses. Mice on high-fat diet were exposed 6 h/d, 7 d/week for 50 d to clean air or a mixture containing 30.6 ppm CO, 20.5 ppm NO, 1.4 ppm NO₂, 0.5 ppm SO₂, and 2.0 ppm NH₃ in air. The gas concentrations were below the maxima in the preceding studies but in the range of those in exhaust exposure levels that caused significant effects. Five indicators of stress and pro-atherosclerotic responses were measured in aortic tissue. The exposure increased all five response indicators, with the magnitude of effect and statistical significance varying among the indicators and depending on inclusion or exclusion of an apparent outlying control. With the outlier excluded, three responses approximated predicted values and two fell below predictions. The results generally supported evidence that the five gases drove the effects of exhaust, and thus supported the potential of the MART approach for identifying putative causal components of complex mixtures.

  16. Granger causality for state-space models

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Seth, Anil K.

    2015-04-01

    Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations—commonplace in application domains as diverse as climate science, econometrics, and the neurosciences—induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.

  17. Influence factors of multicomponent mixtures containing reactive chemicals and their joint effects.

    PubMed

    Tian, Dayong; Lin, Zhifen; Yu, Jianqiao; Yin, Daqiang

    2012-08-01

    Organic chemicals usually coexist as a mixture in the environment, and the mixture toxicity of organic chemicals has received increased attention. However, research regarding the joint effects of reactive chemicals is lacking. In this study, we examined two kinds of reactive chemicals, cyanogenic toxicants and aldehydes and determined their joint effects on Photobacterium phosphoreum. Three factors were found to influence the joint effects of multicomponent mixtures containing reactive chemicals, including the number of components, the dominating components and the toxic ratios. With an increased number of components, the synergistic or antagonistic effects (interactions) will weaken to the additive effects (non-interactions) if the added component cannot yield a much stronger joint effect with an existing component. Contrarily, the joint effect of the mixture may become stronger instead of weaker if the added components can yield a much stronger joint effect than the existing joint effect of the multicomponent mixture. The components that yield the strongest interactions in their binary mixture can be considered the dominating components. These components contribute more to the interactions of multicomponent mixtures than other components. Moreover, the toxic ratios also influence the joint effects of the mixtures. This study provides an insight into what are the main factors and how they influence the joint effects of multicomponent mixtures containing reactive chemicals, and thus, the findings are beneficial to the study of mixture toxicology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Turbulent Burning Velocities of Two-Component Fuel Mixtures of Methane, Propane and Hydrogen

    NASA Astrophysics Data System (ADS)

    Kido, Hiroyuki; Nakahara, Masaya; Hashimoto, Jun; Barat, Dilmurat

    In order to clarify the turbulent burning velocity of multi-component fuel mixtures, both lean and rich two-component fuel mixtures, in which methane, propane and hydrogen were used as fuels, were prepared while maintaining the laminar burning velocity approximately constant. A distinct difference in the measured turbulent burning velocity at the same turbulence intensity is observed for two-component fuel mixtures having different addition rates of fuel, even the laminar burning velocities are approximately the same. The burning velocities of lean mixtures change almost constantly as the rate of addition changes, whereas the burning velocities of the rich mixtures show no such tendency. This trend can be explained qualitatively based on the mean local burning velocity, which is estimated by taking into account the preferential diffusion effect for each fuel component. In addition, a model of turbulent burning velocity proposed for single-component fuel mixtures may be applied to two-component fuel mixtures by considering the estimated mean local burning velocity of each fuel.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A system for removing components of a gaseous mixture is provided comprising: a reactor fluid containing vessel having conduits extending therefrom, aqueous fluid within the reactor, the fluid containing a ligand and a metal, and at least one reactive surface within the vessel coupled to a power source. A method for removing a component from a gaseous mixture is provided comprising exposing the gaseous mixture to a fluid containing a ligand and a reactive metal, the exposing chemically binding the component of the gaseous mixture to the ligand. A method of capturing a component of a gaseous mixture is providedmore » comprising: exposing the gaseous mixture to a fluid containing a ligand and a reactive metal, the exposing chemically binding the component of the gaseous mixture to the ligand, altering the oxidation state of the metal, the altering unbinding the component from the ligand, and capturing the component.« less

  20. Analytic Complexity and Challenges in Identifying Mixtures of Exposures Associated with Phenotypes in the Exposome Era.

    PubMed

    Patel, Chirag J

    2017-01-01

    Mixtures, or combinations and interactions between multiple environmental exposures, are hypothesized to be causally linked with disease and health-related phenotypes. Established and emerging molecular measurement technologies to assay the exposome , the comprehensive battery of exposures encountered from birth to death, promise a new way of identifying mixtures in disease in the epidemiological setting. In this opinion, we describe the analytic complexity and challenges in identifying mixtures associated with phenotype and disease. Existing and emerging machine-learning methods and data analytic approaches (e.g., "environment-wide association studies" [EWASs]), as well as large cohorts may enhance possibilities to identify mixtures of correlated exposures associated with phenotypes; however, the analytic complexity of identifying mixtures is immense. If the exposome concept is realized, new analytical methods and large sample sizes will be required to ascertain how mixtures are associated with disease. The author recommends documenting prevalent correlated exposures and replicated main effects prior to identifying mixtures.

  1. Development of reversible jump Markov Chain Monte Carlo algorithm in the Bayesian mixture modeling for microarray data in Indonesia

    NASA Astrophysics Data System (ADS)

    Astuti, Ani Budi; Iriawan, Nur; Irhamah, Kuswanto, Heri

    2017-12-01

    In the Bayesian mixture modeling requires stages the identification number of the most appropriate mixture components thus obtained mixture models fit the data through data driven concept. Reversible Jump Markov Chain Monte Carlo (RJMCMC) is a combination of the reversible jump (RJ) concept and the Markov Chain Monte Carlo (MCMC) concept used by some researchers to solve the problem of identifying the number of mixture components which are not known with certainty number. In its application, RJMCMC using the concept of the birth/death and the split-merge with six types of movement, that are w updating, θ updating, z updating, hyperparameter β updating, split-merge for components and birth/death from blank components. The development of the RJMCMC algorithm needs to be done according to the observed case. The purpose of this study is to know the performance of RJMCMC algorithm development in identifying the number of mixture components which are not known with certainty number in the Bayesian mixture modeling for microarray data in Indonesia. The results of this study represent that the concept RJMCMC algorithm development able to properly identify the number of mixture components in the Bayesian normal mixture model wherein the component mixture in the case of microarray data in Indonesia is not known for certain number.

  2. Processing of odor mixtures in the zebrafish olfactory bulb.

    PubMed

    Tabor, Rico; Yaksi, Emre; Weislogel, Jan-Marek; Friedrich, Rainer W

    2004-07-21

    Components of odor mixtures often are not perceived individually, suggesting that neural representations of mixtures are not simple combinations of the representations of the components. We studied odor responses to binary mixtures of amino acids and food extracts at different processing stages in the olfactory bulb (OB) of zebrafish. Odor-evoked input to the OB was measured by imaging Ca2+ signals in afferents to olfactory glomeruli. Activity patterns evoked by mixtures were predictable within narrow limits from the component patterns, indicating that mixture interactions in the peripheral olfactory system are weak. OB output neurons, the mitral cells (MCs), were recorded extra- and intracellularly and responded to odors with stimulus-dependent temporal firing rate modulations. Responses to mixtures of amino acids often were dominated by one of the component responses. Responses to mixtures of food extracts, in contrast, were more distinct from both component responses. These results show that mixture interactions can result from processing in the OB. Moreover, our data indicate that mixture interactions in the OB become more pronounced with increasing overlap of input activity patterns evoked by the components. Emerging from these results are rules of mixture interactions that may explain behavioral data and provide a basis for understanding the processing of natural odor stimuli in the OB.

  3. The nonlinear model for emergence of stable conditions in gas mixture in force field

    NASA Astrophysics Data System (ADS)

    Kalutskov, Oleg; Uvarova, Liudmila

    2016-06-01

    The case of M-component liquid evaporation from the straight cylindrical capillary into N - component gas mixture in presence of external forces was reviewed. It is assumed that the gas mixture is not ideal. The stable states in gas phase can be formed during the evaporation process for the certain model parameter valuesbecause of the mass transfer initial equationsnonlinearity. The critical concentrations of the resulting gas mixture components (the critical component concentrations at which the stable states occur in mixture) were determined mathematically for the case of single-component fluid evaporation into two-component atmosphere. It was concluded that this equilibrium concentration ratio of the mixture components can be achieved by external force influence on the mass transfer processes. It is one of the ways to create sustainable gas clusters that can be used effectively in modern nanotechnology.

  4. Effect of the addition of mixture of plant components on the mechanical properties of wheat bread

    NASA Astrophysics Data System (ADS)

    Wójcik, Monika; Dziki, Dariusz; Biernacka, Beata; Różyło, Renata; Miś, Antoni; Hassoon, Waleed H.

    2017-10-01

    Instrumental methods of measuring the mechanical properties of bread can be used to determine changes in the properties of it during storage, as well as to determine the effect of various additives on the bread texture. The aim of this study was to investigate the effect of the mixture of plant components on the physical properties of wheat bread. In particular, the mechanical properties of the crumb and crust were studied. A sensory evaluation of the end product was also performed. The mixture of plant components included: carob fiber, milled grain red quinoa and black oat (1:2:2) - added at 0, 5, 10, 15, 20, 25 % - into wheat flour. The results showed that the increase of the addition of the proposed additive significantly increased the water absorption of flour mixtures. Moreover, the use of the mixture of plant components above 5% resulted in the increase of bread volume and decrease of crumb density. Furthermore, the addition of the mixture of plant components significantly affected the mechanical properties of bread crumb. The hardness of crumb also decreased as a result of the mixture of plant components addition. The highest cohesiveness was obtained for bread with 10% of additive and the lowest for bread with 25% of mixture of plant components. Most importantly, the enrichment of wheat flour with the mixture of plant components significantly reduced the crust failure force and crust failure work. The results of sensory evaluation showed that the addition of the mixture of plant components of up to 10% had little effect on bread quality.

  5. Recognition of the Component Odors in Mixtures

    PubMed Central

    Fletcher, Dane B; Hettinger, Thomas P

    2017-01-01

    Abstract Natural olfactory stimuli are volatile-chemical mixtures in which relative perceptual saliencies determine which odor-components are identified. Odor identification also depends on rapid selective adaptation, as shown for 4 odor stimuli in an earlier experimental simulation of natural conditions. Adapt-test pairs of mixtures of water-soluble, distinct odor stimuli with chemical features in common were studied. Identification decreased for adapted components but increased for unadapted mixture-suppressed components, showing compound identities were retained, not degraded to individual molecular features. Four additional odor stimuli, 1 with 2 perceptible odor notes, and an added “water-adapted” control tested whether this finding would generalize to other 4-compound sets. Selective adaptation of mixtures of the compounds (odors): 3 mM benzaldehyde (cherry), 5 mM maltol (caramel), 1 mM guaiacol (smoke), and 4 mM methyl anthranilate (grape-smoke) again reciprocally unmasked odors of mixture-suppressed components in 2-, 3-, and 4-component mixtures with 2 exceptions. The cherry note of “benzaldehyde” (itself) and the shared note of “methyl anthranilate and guaiacol” (together) were more readily identified. The pervasive mixture-component dominance and dynamic perceptual salience may be mediated through peripheral adaptation and central mutual inhibition of neural responses. Originating in individual olfactory receptor variants, it limits odor identification and provides analytic properties for momentary recognition of a few remaining mixture-components. PMID:28641388

  6. Hierarchical Analytical Approaches for Unraveling the Composition of Proprietary Mixtures

    EPA Pesticide Factsheets

    The composition of commercial mixtures including pesticide inert ingredients, aircraft deicers, and aqueous film-forming foam (AFFF) formulations, and by analogy, fracking fluids, are proprietary. Quantitative analytical methodologies can only be developed for mixture components once their identities are known. Because proprietary mixtures may contain volatile and non-volatile components, a hierarchy of analytical methods is often required for the full identification of all proprietary mixture components.

  7. The Role of Preschoolers' Social Understanding in Evaluating the Informativeness of Causal Interventions

    ERIC Educational Resources Information Center

    Kushnir, Tamar; Wellman, Henry M.; Gelman, Susan A.

    2008-01-01

    Preschoolers use information from interventions, namely intentional actions, to make causal inferences. We asked whether children consider some interventions to be more informative than others based on two components of an actor's knowledge state: whether an actor "possesses" causal knowledge, and whether an actor is allowed to "use" their…

  8. Inhalation Exposure and Lung Dose Analysis of Multi-mode Complex Ambient Aerosols

    EPA Science Inventory

    Rationale: Ambient aerosols are complex mixture of particles with different size, shape and chemical composition. Although they are known to cause health hazard, it is not fully understood about causal mechanisms and specific attributes of particles causing the effects. Internal ...

  9. Liquid class predictor for liquid handling of complex mixtures

    DOEpatents

    Seglke, Brent W [San Ramon, CA; Lekin, Timothy P [Livermore, CA

    2008-12-09

    A method of establishing liquid classes of complex mixtures for liquid handling equipment. The mixtures are composed of components and the equipment has equipment parameters. The first step comprises preparing a response curve for the components. The next step comprises using the response curve to prepare a response indicator for the mixtures. The next step comprises deriving a model that relates the components and the mixtures to establish the liquid classes.

  10. Process for the separation of components from gas mixtures

    DOEpatents

    Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.

    1973-10-01

    A process for the removal, from gaseous mixtures of a desired component selected from oxygen, iodine, methyl iodide, and lower oxides of carbon, nitrogen, and sulfur is described. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatmospheric pressure to preferentially absorb the desired component in the fluorocarbon. Unabsorbed constituents of the gaseous mixture are withdrawn from the absorption zone. Liquid fluorocarbon enriched in the desired component is withdrawn separately from the zone, following which the desired component is recovered from the fluorocarbon absorbent. (Official Gazette)

  11. Supercritical separation process for complex organic mixtures

    DOEpatents

    Chum, Helena L.; Filardo, Giuseppe

    1990-01-01

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70.degree. C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.

  12. Analyzing brain networks with PCA and conditional Granger causality.

    PubMed

    Zhou, Zhenyu; Chen, Yonghong; Ding, Mingzhou; Wright, Paul; Lu, Zuhong; Liu, Yijun

    2009-07-01

    Identifying directional influences in anatomical and functional circuits presents one of the greatest challenges for understanding neural computations in the brain. Granger causality mapping (GCM) derived from vector autoregressive models of data has been employed for this purpose, revealing complex temporal and spatial dynamics underlying cognitive processes. However, the traditional GCM methods are computationally expensive, as signals from thousands of voxels within selected regions of interest (ROIs) are individually processed, and being based on pairwise Granger causality, they lack the ability to distinguish direct from indirect connectivity among brain regions. In this work a new algorithm called PCA based conditional GCM is proposed to overcome these problems. The algorithm implements the following two procedures: (i) dimensionality reduction in ROIs of interest with principle component analysis (PCA), and (ii) estimation of the direct causal influences in local brain networks, using conditional Granger causality. Our results show that the proposed method achieves greater accuracy in detecting network connectivity than the commonly used pairwise Granger causality method. Furthermore, the use of PCA components in conjunction with conditional GCM greatly reduces the computational cost relative to the use of individual voxel time series. Copyright 2009 Wiley-Liss, Inc

  13. An odorant congruent with a colour cue is selectively perceived in an odour mixture.

    PubMed

    Arao, Mari; Suzuki, Maya; Katayama, Jun'ich; Akihiro, Yagi

    2012-01-01

    Odour identification can be influenced by colour cues. This study examined the mechanism underlying this colour context effect. We hypothesised that a specific odour component congruent with a colour would be selectively perceived in preference to another odour component in a binary odour mixture. We used a ratio estimation method under two colour conditions, a binary odour mixture (experiment 1) and single chemicals presented individually (experiment 2). Each colour was congruent with one of the odour components. Participants judged the perceived mixture ratio in each odour container on which a colour patch was pasted. An influence of colour was not observed when the odour stimulus did not contain the odour component congruent with the colour (experiment 2); however, the odour component congruent with the colour was perceived as more dominant when the odour stimulus did contain the colour-congruent odorant (experiment 1). This pattern indicates that a colour-congruent odour component is selectively perceived in an odour mixture. This finding suggests that colours can enhance the perceptual representation of the colour-associated component in an odour mixture.

  14. The AOP framework and causality: Meeting chemical risk assessment challenges in the 21st century

    EPA Science Inventory

    Chemical safety assessments are expanding from a focus on a few chemicals (or chemical mixtures) to the broader “universe” of thousands, if not hundreds of thousands of substances that potentially could impact humans or the environment. This is exemplified in ...

  15. Quasi-Experimental Analysis: A Mixture of Methods and Judgment.

    ERIC Educational Resources Information Center

    Cordray, David S.

    1986-01-01

    The role of human judgment in the development and synthesis of evidence has not been adequately developed or acknowledged within quasi-experimental analysis. Corrective solutions need to confront the fact that causal analysis within complex environments will require a more active assessment that entails reasoning and statistical modeling.…

  16. Electro-olfactogram and multiunit olfactory receptor responses to binary and trinary mixtures of amino acids in the channel catfish, Ictalurus punctatus

    PubMed Central

    1989-01-01

    In vivo electrophysiological recordings from populations of olfactory receptor neurons in the channel catfish, Ictalurus punctatus, clearly showed that responses to binary and trinary mixtures of amino acids were predictable with knowledge obtained from previous cross-adaptation studies of the relative independence of the respective binding sites of the component stimuli. All component stimuli, from which equal aliquots were drawn to form the mixtures, were adjusted in concentration to provide for approximately equal response magnitudes. The magnitude of the response to a mixture whose component amino acids showed significant cross-reactivity was equivalent to the response to any single component used to form that mixture. A mixture whose component amino acids showed minimal cross-adaptation produced a significantly larger relative response than a mixture whose components exhibited considerable cross-reactivity. This larger response approached the sum of the responses to the individual component amino acids tested at the resulting concentrations in the mixture, even though olfactory receptor dose-response functions for amino acids in this species are characterized by extreme sensory compression (i.e., successive concentration increments produce progressively smaller physiological responses). Thus, the present study indicates that the response to sensory stimulation of olfactory receptor sites is more enhanced by the activation of different receptor site types than by stimulus interaction at a single site type. PMID:2703818

  17. Supercritical separation process for complex organic mixtures

    DOEpatents

    Chum, H.L.; Filardo, G.

    1990-10-23

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70 C and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution. 1 fig.

  18. Recognition by Rats of Binary Taste Solutions and Their Components.

    PubMed

    Katagawa, Yoshihisa; Yasuo, Toshiaki; Suwabe, Takeshi; Yamamura, Tomoki; Gen, Keika; Sako, Noritaka

    2016-09-13

    This behavioral study investigated how rats conditioned to binary mixtures of preferred and aversive taste stimuli, respectively, responded to the individual components in a conditioned taste aversion (CTA) paradigm. The preference of stimuli was determined based on the initial results of 2 bottle preference test. The preferred stimuli included 5mM sodium saccharin (Sacc), 0.03M NaCl (Na), 0.1M Na, 5mM Sacc + 0.03M Na, and 5mM Sacc + 0.2mM quinine hydrochloride (Q), whereas the aversive stimuli tested were 1.0M Na, 0.2mM Q, 0.3mM Q, 5mM Sacc + 1.0M Na, and 5mM Sacc + 0.3mM Q. In CTA tests where LiCl was the unconditioned stimulus, the number of licks to the preferred binary mixtures and to all tested preferred components were significantly less than in control rats. No significant difference resulted between the number of licks to the aversive binary mixtures or to all tested aversive components. However, when rats pre-exposed to the aversive components contained of the aversive binary mixtures were conditioned to these mixtures, the number of licks to all the tested stimuli was significantly less than in controls. Rats conditioned to components of the aversive binary mixtures generalized to the binary mixtures containing those components. These results suggest that rats recognize and remember preferred and aversive taste mixtures as well as the preferred and aversive components of the binary mixtures, and that pre-exposure before CTA is an available method to study the recognition of aversive taste stimuli. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Rabbit Neonates and Human Adults Perceive a Blending 6-Component Odor Mixture in a Comparable Manner

    PubMed Central

    Sinding, Charlotte; Thomas-Danguin, Thierry; Chambault, Adeline; Béno, Noelle; Dosne, Thibaut; Chabanet, Claire; Schaal, Benoist; Coureaud, Gérard

    2013-01-01

    Young and adult mammals are constantly exposed to chemically complex stimuli. The olfactory system allows for a dual processing of relevant information from the environment either as single odorants in mixtures (elemental perception) or as mixtures of odorants as a whole (configural perception). However, it seems that human adults have certain limits in elemental perception of odor mixtures, as suggested by their inability to identify each odorant in mixtures of more than 4 components. Here, we explored some of these limits by evaluating the perception of three 6-odorant mixtures in human adults and newborn rabbits. Using free-sorting tasks in humans, we investigated the configural or elemental perception of these mixtures, or of 5-component sub-mixtures, or of the 6-odorant mixtures with modified odorants' proportion. In rabbit pups, the perception of the same mixtures was evaluated by measuring the orocephalic sucking response to the mixtures or their components after conditioning to one of these stimuli. The results revealed that one mixture, previously shown to carry the specific odor of red cordial in humans, was indeed configurally processed in humans and in rabbits while the two other 6-component mixtures were not. Moreover, in both species, such configural perception was specific not only to the 6 odorants included in the mixture but also to their respective proportion. Interestingly, rabbit neonates also responded to each odorant after conditioning to the red cordial mixture, which demonstrates their ability to perceive elements in addition to configuration in this complex mixture. Taken together, the results provide new insights related to the processing of relatively complex odor mixtures in mammals and the inter-species conservation of certain perceptual mechanisms; the results also revealed some differences in the expression of these capacities between species putatively linked to developmental and ecological constraints. PMID:23341948

  20. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data

    PubMed Central

    Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2015-01-01

    Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919

  1. Detection of mastitis in dairy cattle by use of mixture models for repeated somatic cell scores: a Bayesian approach via Gibbs sampling.

    PubMed

    Odegård, J; Jensen, J; Madsen, P; Gianola, D; Klemetsdal, G; Heringstad, B

    2003-11-01

    The distribution of somatic cell scores could be regarded as a mixture of at least two components depending on a cow's udder health status. A heteroscedastic two-component Bayesian normal mixture model with random effects was developed and implemented via Gibbs sampling. The model was evaluated using datasets consisting of simulated somatic cell score records. Somatic cell score was simulated as a mixture representing two alternative udder health statuses ("healthy" or "diseased"). Animals were assigned randomly to the two components according to the probability of group membership (Pm). Random effects (additive genetic and permanent environment), when included, had identical distributions across mixture components. Posterior probabilities of putative mastitis were estimated for all observations, and model adequacy was evaluated using measures of sensitivity, specificity, and posterior probability of misclassification. Fitting different residual variances in the two mixture components caused some bias in estimation of parameters. When the components were difficult to disentangle, so were their residual variances, causing bias in estimation of Pm and of location parameters of the two underlying distributions. When all variance components were identical across mixture components, the mixture model analyses returned parameter estimates essentially without bias and with a high degree of precision. Including random effects in the model increased the probability of correct classification substantially. No sizable differences in probability of correct classification were found between models in which a single cow effect (ignoring relationships) was fitted and models where this effect was split into genetic and permanent environmental components, utilizing relationship information. When genetic and permanent environmental effects were fitted, the between-replicate variance of estimates of posterior means was smaller because the model accounted for random genetic drift.

  2. Stepping backward to improve assessment of PCB congener toxicities.

    PubMed Central

    Hansen, L G

    1998-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitous global contaminants that have been intensively investigated for three decades. They are broad-acting toxicants occurring in complex mixtures and accurate risk assessment has proven to be elusive. Focusing on a limited set of end points and emphasizing a fixed set of congeners have led to more streamlined data sets that are meant to expedite hazard characterization and risk assessment for the most potent congeners--aryl hydrocarbon receptor (AhR) agonists. Unfortunately, this has made it impossible to confirm or deny significant contributions from the more prevalent components of the mixtures. PCBs may be only coincidentally present, rather than causal, in some diseases. Still, attempts to determine associations with incomplete residue data may lead to erroneous conclusions and make accurate risk assessment even more elusive. Responses not mediated through the AhR are presented and emphasize large data gaps. Dissimilar analytical reports emphasize that selection of analytes is not consistent. Collectively, these data confirm that AhR-focused objectives unintentionally created the impression that nonplanar PCBs have little if any potential for hazards to humans and wildlife. Near steady-state exposure of healthy adults are probably of minor consequence except for emerging correlations with non-Hodgkin's lymphoma; however, pulses of exposure to more labile mixtures may contribute to developmental effects without leaving a residue record. More broadly based criteria are suggested and harmonization of data collection and presentation are desirable. A more comprehensive list of PCB congeners is proposed that would provide more adequate data upon which to base associations with adverse outcomes. PMID:9539012

  3. Kirkwood–Buff integrals for ideal solutions

    PubMed Central

    Ploetz, Elizabeth A.; Bentenitis, Nikolaos; Smith, Paul E.

    2010-01-01

    The Kirkwood–Buff (KB) theory of solutions is a rigorous theory of solution mixtures which relates the molecular distributions between the solution components to the thermodynamic properties of the mixture. Ideal solutions represent a useful reference for understanding the properties of real solutions. Here, we derive expressions for the KB integrals, the central components of KB theory, in ideal solutions of any number of components corresponding to the three main concentration scales. The results are illustrated by use of molecular dynamics simulations for two binary solutions mixtures, benzene with toluene, and methanethiol with dimethylsulfide, which closely approach ideal behavior, and a binary mixture of benzene and methanol which is nonideal. Simulations of a quaternary mixture containing benzene, toluene, methanethiol, and dimethylsulfide suggest this system displays ideal behavior and that ideal behavior is not limited to mixtures containing a small number of components. PMID:20441282

  4. The principal phenolic and alcoholic components of wine protect human lymphocytes against hydrogen peroxide- and ionizing radiation-induced DNA damage in vitro.

    PubMed

    Greenrod, William; Fenech, Michael

    2003-03-01

    We have tested the hypothesis that the alcoholic and phenolic components of wine are protective against the DNA-damaging and cytotoxic effects of hydrogen peroxide and gamma-radiation in vitro. The components of wine tested were ethanol, glycerol, a mixture of the phenolic compounds catechin and caffeic acid and tartaric acid, all at concentrations that were 2.5 or 10.0% of the concentration in a typical Australian white wine (Riesling). These components were tested individually or combined as a mixture and compared to a white wine stripped of polyphenols, as well as a Hanks balanced salt solution control, which was the diluent for the wine components. The effect of the components was tested in lymphocytes, using the cytokinesis-block micronucleus assay, after 30 min incubation in plasma or whole blood for the hydrogen peroxide or gamma-radiation challenge, respectively. The results obtained showed that ethanol, glycerol, the catechin-caffeic acid mixture, the mixture of all components and the stripped white wine significantly reduced the DNA-damaging effects of hydrogen peroxide and gamma-radiation (P = 0.043-0.001, ANOVA). The strongest protective effect against DNA damage by gamma-irradiation was observed for the catechin-caffeic acid mixture and the mixture of all components (30 and 32% reduction, respectively). These two treatments as well as ethanol produced the strongest protective effects against DNA damage by hydrogen peroxide (24, 25 and 18%, respectively). The protection provided by the mixture did not account for the expected additive protective effects of the individual components. Ethanol was the only component that significantly increased baseline DNA damage rate, however, this effect was negated in the mixture. In conclusion, our results suggest that the main phenolic and alcoholic components of wine can reduce the DNA-damaging effects of two important oxidants, i.e. hydrogen peroxide and ionizing radiation, in this physiologically relevant in vitro system.

  5. Shrinkage simplex-centroid designs for a quadratic mixture model

    NASA Astrophysics Data System (ADS)

    Hasan, Taha; Ali, Sajid; Ahmed, Munir

    2018-03-01

    A simplex-centroid design for q mixture components comprises of all possible subsets of the q components, present in equal proportions. The design does not contain full mixture blends except the overall centroid. In real-life situations, all mixture blends comprise of at least a minimum proportion of each component. Here, we introduce simplex-centroid designs which contain complete blends but with some loss in D-efficiency and stability in G-efficiency. We call such designs as shrinkage simplex-centroid designs. Furthermore, we use the proposed designs to generate component-amount designs by their projection.

  6. Chemical-gene interaction networks and causal reasoning for biological effects prediction and prioritization of contaminants for environmental monitoring and surveillance

    EPA Science Inventory

    Evaluating the potential human health and ecological risks associated with exposures to complex chemical mixtures in the environment is one of the main challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrat...

  7. Chemical-gene interaction networks and causal reasoning for biological effects prediction and prioritization of contaminants for environmental monitoring and surveillance (poster)

    EPA Science Inventory

    Product Description:Evaluation of the potential effects of complex mixtures of chemicals in the environment is challenged by the lack of extensive toxicity data for many chemicals. However, there are growing sources of online information that curate and compile literature reports...

  8. Comparison of weighting techniques for acoustic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Jeong, Gangwon; Hwang, Jongha; Min, Dong-Joo

    2017-12-01

    To reconstruct long-wavelength structures in full waveform inversion (FWI), the wavefield-damping and weighting techniques have been used to synthesize and emphasize low-frequency data components in frequency-domain FWI. However, these methods have some weak points. The application of wavefield-damping method on filtered data fails to synthesize reliable low-frequency data; the optimization formula obtained introducing the weighting technique is not theoretically complete, because it is not directly derived from the objective function. In this study, we address these weak points and present how to overcome them. We demonstrate that the source estimation in FWI using damped wavefields fails when the data used in the FWI process does not satisfy the causality condition. This phenomenon occurs when a non-causal filter is applied to data. We overcome this limitation by designing a causal filter. Also we modify the conventional weighting technique so that its optimization formula is directly derived from the objective function, retaining its original characteristic of emphasizing the low-frequency data components. Numerical results show that the newly designed causal filter enables to recover long-wavelength structures using low-frequency data components synthesized by damping wavefields in frequency-domain FWI, and the proposed weighting technique enhances the inversion results.

  9. Evaluate the contribution of the mixture components on the longevity and performance of FC-5.

    DOT National Transportation Integrated Search

    2014-05-01

    The focus of the project was to evaluate how to improve the longevity of FDOTs FC-5 mixtures. In particular, what FC-5 mixture : components have the greatest impact on improving the cracking and durability of the FC-5 mixture. The data mining of F...

  10. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  11. Gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1980-01-01

    Improved binary and tertiary gas mixtures for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below aout 0.5 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  12. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  13. Improved gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  14. The scent of mixtures: rules of odour processing in ants

    PubMed Central

    Perez, Margot; Giurfa, Martin; d'Ettorre, Patrizia

    2015-01-01

    Natural odours are complex blends of numerous components. Understanding how animals perceive odour mixtures is central to multiple disciplines. Here we focused on carpenter ants, which rely on odours in various behavioural contexts. We studied overshadowing, a phenomenon that occurs when animals having learnt a binary mixture respond less to one component than to the other, and less than when this component was learnt alone. Ants were trained individually with alcohols and aldehydes varying in carbon-chain length, either as single odours or binary mixtures. They were then tested with the mixture and the components. Overshadowing resulted from the interaction between chain length and functional group: alcohols overshadowed aldehydes, and longer chain lengths overshadowed shorter ones; yet, combinations of these factors could cancel each other and suppress overshadowing. Our results show how ants treat binary olfactory mixtures and set the basis for predictive analyses of odour perception in insects. PMID:25726692

  15. Paradoxical Behavior of Granger Causality

    NASA Astrophysics Data System (ADS)

    Witt, Annette; Battaglia, Demian; Gail, Alexander

    2013-03-01

    Granger causality is a standard tool for the description of directed interaction of network components and is popular in many scientific fields including econometrics, neuroscience and climate science. For time series that can be modeled as bivariate auto-regressive processes we analytically derive an expression for spectrally decomposed Granger Causality (SDGC) and show that this quantity depends only on two out of four groups of model parameters. Then we present examples of such processes whose SDGC expose paradoxical behavior in the sense that causality is high for frequency ranges with low spectral power. For avoiding misinterpretations of Granger causality analysis we propose to complement it by partial spectral analysis. Our findings are illustrated by an example from brain electrophysiology. Finally, we draw implications for the conventional definition of Granger causality. Bernstein Center for Computational Neuroscience Goettingen

  16. Microrandomized trials: An experimental design for developing just-in-time adaptive interventions.

    PubMed

    Klasnja, Predrag; Hekler, Eric B; Shiffman, Saul; Boruvka, Audrey; Almirall, Daniel; Tewari, Ambuj; Murphy, Susan A

    2015-12-01

    This article presents an experimental design, the microrandomized trial, developed to support optimization of just-in-time adaptive interventions (JITAIs). JITAIs are mHealth technologies that aim to deliver the right intervention components at the right times and locations to optimally support individuals' health behaviors. Microrandomized trials offer a way to optimize such interventions by enabling modeling of causal effects and time-varying effect moderation for individual intervention components within a JITAI. The article describes the microrandomized trial design, enumerates research questions that this experimental design can help answer, and provides an overview of the data analyses that can be used to assess the causal effects of studied intervention components and investigate time-varying moderation of those effects. Microrandomized trials enable causal modeling of proximal effects of the randomized intervention components and assessment of time-varying moderation of those effects. Microrandomized trials can help researchers understand whether their interventions are having intended effects, when and for whom they are effective, and what factors moderate the interventions' effects, enabling creation of more effective JITAIs. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  17. Micro-Randomized Trials: An Experimental Design for Developing Just-in-Time Adaptive Interventions

    PubMed Central

    Klasnja, Predrag; Hekler, Eric B.; Shiffman, Saul; Boruvka, Audrey; Almirall, Daniel; Tewari, Ambuj; Murphy, Susan A.

    2015-01-01

    Objective This paper presents an experimental design, the micro-randomized trial, developed to support optimization of just-in-time adaptive interventions (JITAIs). JITAIs are mHealth technologies that aim to deliver the right intervention components at the right times and locations to optimally support individuals’ health behaviors. Micro-randomized trials offer a way to optimize such interventions by enabling modeling of causal effects and time-varying effect moderation for individual intervention components within a JITAI. Methods The paper describes the micro-randomized trial design, enumerates research questions that this experimental design can help answer, and provides an overview of the data analyses that can be used to assess the causal effects of studied intervention components and investigate time-varying moderation of those effects. Results Micro-randomized trials enable causal modeling of proximal effects of the randomized intervention components and assessment of time-varying moderation of those effects. Conclusions Micro-randomized trials can help researchers understand whether their interventions are having intended effects, when and for whom they are effective, and what factors moderate the interventions’ effects, enabling creation of more effective JITAIs. PMID:26651463

  18. Nanomechanical characterization of heterogeneous and hierarchical biomaterials and tissues using nanoindentation: the role of finite mixture models.

    PubMed

    Zadpoor, Amir A

    2015-03-01

    Mechanical characterization of biological tissues and biomaterials at the nano-scale is often performed using nanoindentation experiments. The different constituents of the characterized materials will then appear in the histogram that shows the probability of measuring a certain range of mechanical properties. An objective technique is needed to separate the probability distributions that are mixed together in such a histogram. In this paper, finite mixture models (FMMs) are proposed as a tool capable of performing such types of analysis. Finite Gaussian mixture models assume that the measured probability distribution is a weighted combination of a finite number of Gaussian distributions with separate mean and standard deviation values. Dedicated optimization algorithms are available for fitting such a weighted mixture model to experimental data. Moreover, certain objective criteria are available to determine the optimum number of Gaussian distributions. In this paper, FMMs are used for interpreting the probability distribution functions representing the distributions of the elastic moduli of osteoarthritic human cartilage and co-polymeric microspheres. As for cartilage experiments, FMMs indicate that at least three mixture components are needed for describing the measured histogram. While the mechanical properties of the softer mixture components, often assumed to be associated with Glycosaminoglycans, were found to be more or less constant regardless of whether two or three mixture components were used, those of the second mixture component (i.e. collagen network) considerably changed depending on the number of mixture components. Regarding the co-polymeric microspheres, the optimum number of mixture components estimated by the FMM theory, i.e. 3, nicely matches the number of co-polymeric components used in the structure of the polymer. The computer programs used for the presented analyses are made freely available online for other researchers to use. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. COMPONENT-BASED AND WHOLE-MIXTURE ASSESSMENTS IN ADDRESSING THE UNIDENTIFIED FRACTION OF COMPLEX MIXTURES: DRINKING WATER AS AN EXAMPLE

    EPA Science Inventory


    Component-Based and Whole-Mixtures Assessments in Addressing the Unidentified Fraction of Complex Mixtures: Drinking Water as an Example

    J. E. Simmons; L. K. Teuschler; C. Gennings; T. F. Speth; S. D. Richardson; R. J. Miltner; M. G. Narotsky; K. D. Schenck; G. Rice

  20. A further component analysis for illicit drugs mixtures with THz-TDS

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Shen, Jingling; He, Ting; Pan, Rui

    2009-07-01

    A new method for quantitative analysis of mixtures of illicit drugs with THz time domain spectroscopy was proposed and verified experimentally. In traditional method we need fingerprints of all the pure chemical components. In practical as only the objective components in a mixture and their absorption features are known, it is necessary and important to present a more practical technique for the detection and identification. Our new method of quantitatively inspect of the mixtures of illicit drugs is developed by using derivative spectrum. In this method, the ratio of objective components in a mixture can be obtained on the assumption that all objective components in the mixture and their absorption features are known but the unknown components are not needed. Then methamphetamine and flour, a illicit drug and a common adulterant, were selected for our experiment. The experimental result verified the effectiveness of the method, which suggested that it could be an effective method for quantitative identification of illicit drugs. This THz spectroscopy technique is great significant in the real-world applications of illicit drugs quantitative analysis. It could be an effective method in the field of security and pharmaceuticals inspection.

  1. Simulation of mixture microstructures via particle packing models and their direct comparison with real mixtures

    NASA Astrophysics Data System (ADS)

    Gulliver, Eric A.

    The objective of this thesis to identify and develop techniques providing direct comparison between simulated and real packed particle mixture microstructures containing submicron-sized particles. This entailed devising techniques for simulating powder mixtures, producing real mixtures with known powder characteristics, sectioning real mixtures, interrogating mixture cross-sections, evaluating and quantifying the mixture interrogation process and for comparing interrogation results between mixtures. A drop and roll-type particle-packing model was used to generate simulations of random mixtures. The simulated mixtures were then evaluated to establish that they were not segregated and free from gross defects. A powder processing protocol was established to provide real mixtures for direct comparison and for use in evaluating the simulation. The powder processing protocol was designed to minimize differences between measured particle size distributions and the particle size distributions in the mixture. A sectioning technique was developed that was capable of producing distortion free cross-sections of fine scale particulate mixtures. Tessellation analysis was used to interrogate mixture cross sections and statistical quality control charts were used to evaluate different types of tessellation analysis and to establish the importance of differences between simulated and real mixtures. The particle-packing program generated crescent shaped pores below large particles but realistic looking mixture microstructures otherwise. Focused ion beam milling was the only technique capable of sectioning particle compacts in a manner suitable for stereological analysis. Johnson-Mehl and Voronoi tessellation of the same cross-sections produced tessellation tiles with different the-area populations. Control charts analysis showed Johnson-Mehl tessellation measurements are superior to Voronoi tessellation measurements for detecting variations in mixture microstructure, such as altered particle-size distributions or mixture composition. Control charts based on tessellation measurements were used for direct, quantitative comparisons between real and simulated mixtures. Four sets of simulated and real mixtures were examined. Data from real mixture was matched with simulated data when the samples were well mixed and the particle size distributions and volume fractions of the components were identical. Analysis of mixture components that occupied less than approximately 10 vol% of the mixture was not practical unless the particle size of the component was extremely small and excellent quality high-resolution compositional micrographs of the real sample are available. These methods of analysis should allow future researchers to systematically evaluate and predict the impact and importance of variables such as component volume fraction and component particle size distribution as they pertain to the uniformity of powder mixture microstructures.

  2. Strategic approaches to unraveling genetic causes of cardiovascular diseases

    USDA-ARS?s Scientific Manuscript database

    DNA sequence variants are major components of the "causal field" for virtually all medical phenotypes, whether single gene familial disorders or complex traits without a clear familial aggregation. The causal variants in single gene disorders are necessary and sufficient to impart large effects. In ...

  3. The importance of causal connections in the comprehension of spontaneous spoken discourse.

    PubMed

    Cevasco, Jazmin; van den Broek, Paul

    2008-11-01

    In this study, we investigated the psychological processes in spontaneous discourse comprehension through a network theory of discourse representation. Existing models of narrative comprehension describe the importance of causality processing for forming a representation of a text, but usually in the context of deliberately composed texts rather than in spontaneous, unplanned discourse. Our aim was to determine whether spontaneous discourse components with many causal connections are represented more strongly than components with few connections--similar to the findings in text comprehension literature--and whether any such effects depend on the medium in which the spontaneous discourse is presented (oral vs. written). Participants either listened to or read a transcription of a section of a radio transmission. They then recalled the spontaneous discourse material and answered comprehension questions. Results indicate that the processing of causal connections plays an important role in the comprehension of spontaneous spoken discourse, and do not indicate that their effects on recall are weaker in the comprehension of oral discourse than in the comprehension of written discourse.

  4. Mesoporous carbons and polymers

    DOEpatents

    Bell, William; Dietz, Steven

    2004-05-18

    A polymer is prepared by polymerizing a polymerizable component from a mixture containing the polymerizable component and a surfactant, the surfactant and the polymerizable component being present in the mixture in a molar ratio of at least 0.2:1, having an average pore size greater than 4 nm and a density greater than 0.1 g/cc. The polymerizable component can comprise a resorcinol/formaldehyde system and the mixture can comprise an aqueous solution or the polymerizable component can comprise a divinylbenzene/styrene system and the mixture can comprise an organic solution. Alternatively, the polymerizable component can comprise vinylidene chloride or a vinylidene chloride/divinylbenzene system. The polymer may be monolithic, have a BET surface area of at least about 50 m.sup.2 /g., include a quantity of at least one metal powder, or have an electrical conductivity greater than 10 Scm.sup.-1.

  5. Modelling diameter distributions of two-cohort forest stands with various proportions of dominant species: a two-component mixture model approach.

    Treesearch

    Rafal Podlaski; Francis Roesch

    2014-01-01

    In recent years finite-mixture models have been employed to approximate and model empirical diameter at breast height (DBH) distributions. We used two-component mixtures of either the Weibull distribution or the gamma distribution for describing the DBH distributions of mixed-species, two-cohort forest stands, to analyse the relationships between the DBH components,...

  6. Aristotelian Causality and the Teaching of Literary Theory.

    ERIC Educational Resources Information Center

    Finnegan, John D.

    1982-01-01

    Describes how the Aristotelian model of causality can be used to help college students systematically analyze the components, point of view, organization, and purpose of a literary theory. The literary theories of Plato, Aristotle, Longinus, Sidney, Pope, Wordsworth, Coleridge, and Shelley are analyzed, using this model. (AM)

  7. Effective ionization coefficients, limiting electric fields, and electron energy distributions in CF{sub 3}I + CF{sub 4} + Ar ternary gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tezcan, S. S.; Dincer, M. S.; Bektas, S.

    2016-07-15

    This paper reports on the effective ionization coefficients, limiting electric fields, electron energy distribution functions, and mean energies in ternary mixtures of (Trifluoroiodomethane) CF{sub 3}I + CF{sub 4} + Ar in the E/N range of 100–700 Td employing a two-term solution of the Boltzmann equation. In the ternary mixture, CF{sub 3}I component is increased while the CF{sub 4} component is reduced accordingly and the 40% Ar component is kept constant. It is seen that the electronegativity of the mixture increases with increased CF{sub 3}I content and effective ionization coefficients decrease while the limiting electric field values increase. Synergism in themore » mixture is also evaluated in percentage using the limiting electric field values obtained. Furthermore, it is possible to control the mean electron energy in the ternary mixture by changing the content of CF{sub 3}I component.« less

  8. Miscibility comparison for three refrigerant mixtures and four component refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, H.M.; Pate, M.B.

    1999-07-01

    Miscibility data were taken and compared for seven different refrigerants when mixed with the same polyol ester (POE) lubricant. Four of the seven refrigerants were single-component refrigerants while three of the refrigerants were mixtures composed of various combinations of the pure refrigerants. The purpose of this research was to investigate the difference in miscibility characteristics between refrigerant mixtures and their respective component refrigerants. The POE lubricant was a penta erythritol mixed-acid type POE which has a viscosity ISO32. The four pure refrigerants were R-32, R-125, R-134a, and R-143a and the three refrigerant mixtures were R-404A, R407C, and R-410A. The miscibilitymore » tests were performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath. The test cells were constructed to allow for complete visibility of the refrigerant/lubricant mixtures under all test conditions. The tests were performed over a concentration range of 0 to 100% and a temperature range of {minus}40 to 194 F. The miscibility test results for refrigerant mixtures are compared to component refrigerants. In all cases, the refrigerant mixtures appear to have better miscibility than their most immiscible pure component.« less

  9. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging-ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fanood, Mohammad M. Rafiee; Ram, N. Bhargava; Lehmann, C. Stefan; Powis, Ivan; Janssen, Maurice H. M.

    2015-06-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron-ion coincidence imaging spectrometer. As proof of concept, vapours containing ~1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2-4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument.

  10. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging–ion mass spectrometry

    PubMed Central

    Fanood, Mohammad M Rafiee; Ram, N. Bhargava; Lehmann, C. Stefan; Powis, Ivan; Janssen, Maurice H. M.

    2015-01-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron–ion coincidence imaging spectrometer. As proof of concept, vapours containing ∼1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2–4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument. PMID:26104140

  11. Establishing causal coherence across sentences: an ERP study

    PubMed Central

    Kuperberg, Gina R.; Paczynski, Martin; Ditman, Tali

    2011-01-01

    This study examined neural activity associated with establishing causal relationships across sentences during online comprehension. ERPs were measured while participants read and judged the relatedness of three-sentence scenarios in which the final sentence was highly causally related, intermediately related and causally unrelated to its context. Lexico-semantic co-occurrence was matched across the three conditions using a Latent Semantic Analysis. Critical words in causally unrelated scenarios evoked a larger N400 than words in both highly causally related and intermediately related scenarios, regardless of whether they appeared before or at the sentence-final position. At midline sites, the N400 to intermediately related sentence-final words was attenuated to the same degree as to highly causally related words, but otherwise the N400 to intermediately related words fell in between that evoked by highly causally related and intermediately related words. No modulation of the Late Positivity/P600 component was observed across conditions. These results indicate that both simple and complex causal inferences can influence the earliest stages of semantically processing an incoming word. Further, they suggest that causal coherence, at the situation level, can influence incremental word-by-word discourse comprehension, even when semantic relationships between individual words are matched. PMID:20175676

  12. Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic chemicals.

    PubMed

    Parvez, Shahid; Venkataraman, Chandra; Mukherji, Suparna

    2009-06-01

    The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose-response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2(n) factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (< or =10%, class-I) and moderately (10< d < or =30 %, class-II), highly (30< d < or =50%, class-III) and very highly (>50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.

  13. Reassessing the causal structure of enduring involvement

    Treesearch

    Jinhee Jun; Gerard T. Kyle; James D. Absher; William E. Hammitt

    2009-01-01

    Guided by tenets of identity theory, we hypothesized a causal structure of enduring involvement suggesting that self-relevant components precede the other dimensions. We used Kyle et al.'s (2004a) Modified Involvement Scale, in which leisure involvement is conceptualized as a multidimensional construct consisting of identity affirmation, identity expression,...

  14. Health benefits of probiotics: are mixtures more effective than single strains?

    PubMed

    Chapman, C M C; Gibson, G R; Rowland, I

    2011-02-01

    Most studies on probiotics utilise single strains, sometimes incorporated into yoghurts. There are fewer studies on efficacy of mixtures of probiotic strains. This review examines the evidence that (a) probiotic mixtures are beneficial for a range of health-related outcomes and (b) mixtures are more or less effective than their component strains administered separately. Mixtures of probiotics had beneficial effects on the end points including irritable bowel syndrome and gut function, diarrhoea, atopic disease, immune function and respiratory tract infections, gut microbiota modulation, inflammatory bowel disease and treatment of Helicobacter pylori infection. However, only 16 studies compared the effect of a mixture with that of its component strains separately, although in 12 cases (75%), the mixture was more effective. Probiotic mixtures appear to be effective against a wide range of end points. Based on a limited number of studies, multi-strain probiotics appear to show greater efficacy than single strains, including strains that are components of the mixtures themselves. However, whether this is due to synergistic interactions between strains or a consequence of the higher probiotic dose used in some studies is at present unclear.

  15. Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, R.C.

    1999-04-01

    Sediment quality guidelines (SQGs) for polycyclic aromatic hydrocarbons (PAHs) have been derived from a variety of laboratory, field, and theoretical foundations. They include the screening level concentration, effects ranges-low and -median, equilibrium partitioning concentrations, apparent effects threshold, {Sigma}PAH model, and threshold and probable effects levels. The resolution of controversial differences among the PAH SQGs lies in an understanding of the effects of mixtures. Polycyclic aromatic hydrocarbons virtually always occur in field-collected sediment as a complex mixture of covarying compounds. When expressed as a mixture concentration, that is, total PAH (TPAH), the guidelines form three clusters that were intended in theirmore » original derivations to represent threshold (TEC = 290 {micro}g/g organic carbon [OC]), median (MEC = 1,800 {micro}g/g OC), and extreme (EEC = 10,000 {micro}g/g OC) effects concentrations. The TEC/MEC/EEC consensus guidelines provide a unifying synthesis of other SQGs, reflect causal rather than correlative effects, account for mixtures, and predict sediment toxicity and benthic community perturbations at sites of PAH contamination. The TEC offers the most useful SQG because PAH mixtures are unlikely to cause adverse effects on benthic ecosystems below the TEC.« less

  16. Additive mixture effects of estrogenic chemicals in human cell-based assays can be influenced by inclusion of chemicals with differing effect profiles.

    PubMed

    Evans, Richard Mark; Scholze, Martin; Kortenkamp, Andreas

    2012-01-01

    A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX) and cell proliferation (ESCREEN) endpoints. Two mixture designs were used: 1) a 'balanced' design with components present in proportion to a common effect concentration (e.g. an EC(10)) and 2) a 'non-balanced' design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity) to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate) the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential modulators. Successful prediction of the effects of diverse chemical combinations might be more likely if chemical profiling included consideration of effect modulation.

  17. Additive Mixture Effects of Estrogenic Chemicals in Human Cell-Based Assays Can Be Influenced by Inclusion of Chemicals with Differing Effect Profiles

    PubMed Central

    Evans, Richard Mark; Scholze, Martin; Kortenkamp, Andreas

    2012-01-01

    A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX) and cell proliferation (ESCREEN) endpoints. Two mixture designs were used: 1) a ‘balanced’ design with components present in proportion to a common effect concentration (e.g. an EC10) and 2) a ‘non-balanced’ design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity) to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate) the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential modulators. Successful prediction of the effects of diverse chemical combinations might be more likely if chemical profiling included consideration of effect modulation. PMID:22912892

  18. EEG-Based Quantification of Cortical Current Density and Dynamic Causal Connectivity Generalized across Subjects Performing BCI-Monitored Cognitive Tasks

    PubMed Central

    Courellis, Hristos; Mullen, Tim; Poizner, Howard; Cauwenberghs, Gert; Iversen, John R.

    2017-01-01

    Quantification of dynamic causal interactions among brain regions constitutes an important component of conducting research and developing applications in experimental and translational neuroscience. Furthermore, cortical networks with dynamic causal connectivity in brain-computer interface (BCI) applications offer a more comprehensive view of brain states implicated in behavior than do individual brain regions. However, models of cortical network dynamics are difficult to generalize across subjects because current electroencephalography (EEG) signal analysis techniques are limited in their ability to reliably localize sources across subjects. We propose an algorithmic and computational framework for identifying cortical networks across subjects in which dynamic causal connectivity is modeled among user-selected cortical regions of interest (ROIs). We demonstrate the strength of the proposed framework using a “reach/saccade to spatial target” cognitive task performed by 10 right-handed individuals. Modeling of causal cortical interactions was accomplished through measurement of cortical activity using (EEG), application of independent component clustering to identify cortical ROIs as network nodes, estimation of cortical current density using cortically constrained low resolution electromagnetic brain tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative cortical activity signals from each ROI, and quantification of the dynamic causal interaction among the identified ROIs using the Short-time direct Directed Transfer function (SdDTF). The resulting cortical network and the computed causal dynamics among its nodes exhibited physiologically plausible behavior, consistent with past results reported in the literature. This physiological plausibility of the results strengthens the framework's applicability in reliably capturing complex brain functionality, which is required by applications, such as diagnostics and BCI. PMID:28566997

  19. Integrated Disinfection By-Products Research: Assessing Reproductive and Developmental Risks Posed by Complex Disinfection By-Product Mixtures

    EPA Science Inventory

    This article presents a toxicologically-based risk assessment strategy for identifying the individual components or fractions of a complex mixture that are associated with its toxicity. The strategy relies on conventional component-based mixtures risk approaches such as dose addi...

  20. Strategies to intervene on causal systems are adaptively selected.

    PubMed

    Coenen, Anna; Rehder, Bob; Gureckis, Todd M

    2015-06-01

    How do people choose interventions to learn about causal systems? Here, we considered two possibilities. First, we test an information sampling model, information gain, which values interventions that can discriminate between a learner's hypotheses (i.e. possible causal structures). We compare this discriminatory model to a positive testing strategy that instead aims to confirm individual hypotheses. Experiment 1 shows that individual behavior is described best by a mixture of these two alternatives. In Experiment 2 we find that people are able to adaptively alter their behavior and adopt the discriminatory model more often after experiencing that the confirmatory strategy leads to a subjective performance decrement. In Experiment 3, time pressure leads to the opposite effect of inducing a change towards the simpler positive testing strategy. These findings suggest that there is no single strategy that describes how intervention decisions are made. Instead, people select strategies in an adaptive fashion that trades off their expected performance and cognitive effort. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Mixture modelling for cluster analysis.

    PubMed

    McLachlan, G J; Chang, S U

    2004-10-01

    Cluster analysis via a finite mixture model approach is considered. With this approach to clustering, the data can be partitioned into a specified number of clusters g by first fitting a mixture model with g components. An outright clustering of the data is then obtained by assigning an observation to the component to which it has the highest estimated posterior probability of belonging; that is, the ith cluster consists of those observations assigned to the ith component (i = 1,..., g). The focus is on the use of mixtures of normal components for the cluster analysis of data that can be regarded as being continuous. But attention is also given to the case of mixed data, where the observations consist of both continuous and discrete variables.

  2. Modeling and analysis of personal exposures to VOC mixtures using copulas

    PubMed Central

    Su, Feng-Chiao; Mukherjee, Bhramar; Batterman, Stuart

    2014-01-01

    Environmental exposures typically involve mixtures of pollutants, which must be understood to evaluate cumulative risks, that is, the likelihood of adverse health effects arising from two or more chemicals. This study uses several powerful techniques to characterize dependency structures of mixture components in personal exposure measurements of volatile organic compounds (VOCs) with aims of advancing the understanding of environmental mixtures, improving the ability to model mixture components in a statistically valid manner, and demonstrating broadly applicable techniques. We first describe characteristics of mixtures and introduce several terms, including the mixture fraction which represents a mixture component's share of the total concentration of the mixture. Next, using VOC exposure data collected in the Relationship of Indoor Outdoor and Personal Air (RIOPA) study, mixtures are identified using positive matrix factorization (PMF) and by toxicological mode of action. Dependency structures of mixture components are examined using mixture fractions and modeled using copulas, which address dependencies of multiple variables across the entire distribution. Five candidate copulas (Gaussian, t, Gumbel, Clayton, and Frank) are evaluated, and the performance of fitted models was evaluated using simulation and mixture fractions. Cumulative cancer risks are calculated for mixtures, and results from copulas and multivariate lognormal models are compared to risks calculated using the observed data. Results obtained using the RIOPA dataset showed four VOC mixtures, representing gasoline vapor, vehicle exhaust, chlorinated solvents and disinfection by-products, and cleaning products and odorants. Often, a single compound dominated the mixture, however, mixture fractions were generally heterogeneous in that the VOC composition of the mixture changed with concentration. Three mixtures were identified by mode of action, representing VOCs associated with hematopoietic, liver and renal tumors. Estimated lifetime cumulative cancer risks exceeded 10−3 for about 10% of RIOPA participants. Factors affecting the likelihood of high concentration mixtures included city, participant ethnicity, and house air exchange rates. The dependency structures of the VOC mixtures fitted Gumbel (two mixtures) and t (four mixtures) copulas, types that emphasize tail dependencies. Significantly, the copulas reproduced both risk predictions and exposure fractions with a high degree of accuracy, and performed better than multivariate lognormal distributions. Copulas may be the method of choice for VOC mixtures, particularly for the highest exposures or extreme events, cases that poorly fit lognormal distributions and that represent the greatest risks. PMID:24333991

  3. Causal inference, probability theory, and graphical insights.

    PubMed

    Baker, Stuart G

    2013-11-10

    Causal inference from observational studies is a fundamental topic in biostatistics. The causal graph literature typically views probability theory as insufficient to express causal concepts in observational studies. In contrast, the view here is that probability theory is a desirable and sufficient basis for many topics in causal inference for the following two reasons. First, probability theory is generally more flexible than causal graphs: Besides explaining such causal graph topics as M-bias (adjusting for a collider) and bias amplification and attenuation (when adjusting for instrumental variable), probability theory is also the foundation of the paired availability design for historical controls, which does not fit into a causal graph framework. Second, probability theory is the basis for insightful graphical displays including the BK-Plot for understanding Simpson's paradox with a binary confounder, the BK2-Plot for understanding bias amplification and attenuation in the presence of an unobserved binary confounder, and the PAD-Plot for understanding the principal stratification component of the paired availability design. Published 2013. This article is a US Government work and is in the public domain in the USA.

  4. Electrophysiological difference between the representations of causal judgment and associative judgment in semantic memory.

    PubMed

    Chen, Qingfei; Liang, Xiuling; Lei, Yi; Li, Hong

    2015-05-01

    Causally related concepts like "virus" and "epidemic" and general associatively related concepts like "ring" and "emerald" are represented and accessed separately. The Evoked Response Potential (ERP) procedure was used to examine the representations of causal judgment and associative judgment in semantic memory. Participants were required to remember a task cue (causal or associative) presented at the beginning of each trial, and assess whether the relationship between subsequently presented words matched the initial task cue. The ERP data showed that an N400 effect (250-450 ms) was more negative for unrelated words than for all related words. Furthermore, the N400 effect elicited by causal relations was more positive than for associative relations in causal cue condition, whereas no significant difference was found in the associative cue condition. The centrally distributed late ERP component (650-750 ms) elicited by the causal cue condition was more positive than for the associative cue condition. These results suggested that the processing of causal judgment and associative judgment in semantic memory recruited different degrees of attentional and executive resources. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Facile hyphenation of gas chromatography and a microcantilever array sensor for enhanced selectivity.

    PubMed

    Chapman, Peter J; Vogt, Frank; Dutta, Pampa; Datskos, Panos G; Devault, Gerald L; Sepaniak, Michael J

    2007-01-01

    The very simple coupling of a standard, packed-column gas chromatograph with a microcantilever array (MCA) is demonstrated for enhanced selectivity and potential analyte identification in the analysis of volatile organic compounds (VOCs). The cantilevers in MCAs are differentially coated on one side with responsive phases (RPs) and produce bending responses of the cantilevers due to analyte-induced surface stresses. Generally, individual components are difficult to elucidate when introduced to MCA systems as mixtures, although pattern recognition techniques are helpful in identifying single components, binary mixtures, or composite responses of distinct mixtures (e.g., fragrances). In the present work, simple test VOC mixtures composed of acetone, ethanol, and trichloroethylene (TCE) in pentane and methanol and acetonitrile in pentane are first separated using a standard gas chromatograph and then introduced into a MCA flow cell. Significant amounts of response diversity to the analytes in the mixtures are demonstrated across the RP-coated cantilevers of the array. Principal component analysis is used to demonstrate that only three components of a four-component VOC mixture could be identified without mixture separation. Calibration studies are performed, demonstrating a good linear response over 2 orders of magnitude for each component in the primary study mixture. Studies of operational parameters including column temperature, column flow rate, and array cell temperature are conducted. Reproducibility studies of VOC peak areas and peak heights are also carried out showing RSDs of less than 4 and 3%, respectively, for intra-assay studies. Of practical significance is the facile manner by which the hyphenation of a mature separation technique and the burgeoning sensing approach is accomplished, and the potential to use pattern recognition techniques with MCAs as a new type of detector for chromatography with analyte-identifying capabilities.

  6. A study of finite mixture model: Bayesian approach on financial time series data

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-07-01

    Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.

  7. Some comments on thermodynamic consistency for equilibrium mixture equations of state

    DOE PAGES

    Grove, John W.

    2018-03-28

    We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.

  8. Pretense, Counterfactuals, and Bayesian Causal Models: Why What Is Not Real Really Matters

    ERIC Educational Resources Information Center

    Weisberg, Deena S.; Gopnik, Alison

    2013-01-01

    Young children spend a large portion of their time pretending about non-real situations. Why? We answer this question by using the framework of Bayesian causal models to argue that pretending and counterfactual reasoning engage the same component cognitive abilities: disengaging with current reality, making inferences about an alternative…

  9. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  10. Investigation of relationships between fMRI brain networks in the spectral domain using ICA and Granger causality reveals distinct differences between schizophrenia patients and healthy controls

    PubMed Central

    Demirci, Oguz; Stevens, Michael C.; Andreasen, Nancy C.; Michael, Andrew; Liu, Jingyu; White, Tonya; Pearlson, Godfrey D.; Clark, Vincent P.; Calhoun, Vince D.

    2009-01-01

    Functional network connectivity (FNC) is an approach that examines the relationships between brain networks (as opposed to functional connectivity (FC) that focuses upon the relationships between single voxels). FNC may help explain the complex relationships between distributed cerebral sites in the brain and possibly provide new understanding of neurological and psychiatric disorders such as schizophrenia. In this paper, we use independent component analysis (ICA) to extract the time courses of spatially independent components and then use these in Granger causality test (GCT) to investigate causal relationships between brain activation networks. We present results using both simulations and fMRI data of 155 subjects obtained during two different tasks. Unlike previous research, causal relationships are presented over different portions of the frequency spectrum in order to differentiate high and low frequency effects and not merged in a scalar. The results obtained using Sternberg item recognition paradigm (SIRP) and auditory oddball (AOD) tasks showed FNC differentiations between schizophrenia and control groups, and explained how the two groups differed during these tasks. During the SIRP task, secondary visual and cerebellum activation networks served as hubs and included most complex relationships between the activated regions. Secondary visual and temporal lobe activations replaced these components during the AOD task. PMID:19245841

  11. [Quantitative analysis of nucleotide mixtures with terahertz time domain spectroscopy].

    PubMed

    Zhang, Zeng-yan; Xiao, Ti-qiao; Zhao, Hong-wei; Yu, Xiao-han; Xi, Zai-jun; Xu, Hong-jie

    2008-09-01

    Adenosine, thymidine, guanosine, cytidine and uridine form the building blocks of ribose nucleic acid (RNA) and deoxyribose nucleic acid (DNA). Nucleosides and their derivants are all have biological activities. Some of them can be used as medicine directly or as materials to synthesize other medicines. It is meaningful to detect the component and content in nucleosides mixtures. In the present paper, components and contents of the mixtures of adenosine, thymidine, guanosine, cytidine and uridine were analyzed. THz absorption spectra of pure nucleosides were set as standard spectra. The mixture's absorption spectra were analyzed by linear regression with non-negative constraint to identify the components and their relative content in the mixtures. The experimental and analyzing results show that it is simple and effective to get the components and their relative percentage in the mixtures by terahertz time domain spectroscopy with a relative error less than 10%. Component which is absent could be excluded exactly by this method, and the error sources were also analyzed. All the experiments and analysis confirms that this method is of no damage or contamination to the sample. This means that it will be a simple, effective and new method in biochemical materials analysis, which extends the application field of THz-TDS.

  12. Using Delaunay triangulation and Voronoi tessellation to predict the toxicities of binary mixtures containing hormetic compound

    NASA Astrophysics Data System (ADS)

    Qu, Rui; Liu, Shu-Shen; Zheng, Qiao-Feng; Li, Tong

    2017-03-01

    Concentration addition (CA) was proposed as a reasonable default approach for the ecological risk assessment of chemical mixtures. However, CA cannot predict the toxicity of mixture at some effect zones if not all components have definite effective concentrations at the given effect, such as some compounds induce hormesis. In this paper, we developed a new method for the toxicity prediction of various types of binary mixtures, an interpolation method based on the Delaunay triangulation (DT) and Voronoi tessellation (VT) as well as the training set of direct equipartition ray design (EquRay) mixtures, simply IDVequ. At first, the EquRay was employed to design the basic concentration compositions of five binary mixture rays. The toxic effects of single components and mixture rays at different times and various concentrations were determined by the time-dependent microplate toxicity analysis. Secondly, the concentration-toxicity data of the pure components and various mixture rays were acted as a training set. The DT triangles and VT polygons were constructed by various vertices of concentrations in the training set. The toxicities of unknown mixtures were predicted by the linear interpolation and natural neighbor interpolation of vertices. The IDVequ successfully predicted the toxicities of various types of binary mixtures.

  13. Using Delaunay triangulation and Voronoi tessellation to predict the toxicities of binary mixtures containing hormetic compound

    PubMed Central

    Qu, Rui; Liu, Shu-Shen; Zheng, Qiao-Feng; Li, Tong

    2017-01-01

    Concentration addition (CA) was proposed as a reasonable default approach for the ecological risk assessment of chemical mixtures. However, CA cannot predict the toxicity of mixture at some effect zones if not all components have definite effective concentrations at the given effect, such as some compounds induce hormesis. In this paper, we developed a new method for the toxicity prediction of various types of binary mixtures, an interpolation method based on the Delaunay triangulation (DT) and Voronoi tessellation (VT) as well as the training set of direct equipartition ray design (EquRay) mixtures, simply IDVequ. At first, the EquRay was employed to design the basic concentration compositions of five binary mixture rays. The toxic effects of single components and mixture rays at different times and various concentrations were determined by the time-dependent microplate toxicity analysis. Secondly, the concentration-toxicity data of the pure components and various mixture rays were acted as a training set. The DT triangles and VT polygons were constructed by various vertices of concentrations in the training set. The toxicities of unknown mixtures were predicted by the linear interpolation and natural neighbor interpolation of vertices. The IDVequ successfully predicted the toxicities of various types of binary mixtures. PMID:28287626

  14. Single- and mixture toxicity of three organic UV-filters, ethylhexyl methoxycinnamate, octocrylene, and avobenzone on Daphnia magna.

    PubMed

    Park, Chang-Beom; Jang, Jiyi; Kim, Sanghun; Kim, Young Jun

    2017-03-01

    In freshwater environments, aquatic organisms are generally exposed to mixtures of various chemical substances. In this study, we tested the toxicity of three organic UV-filters (ethylhexyl methoxycinnamate, octocrylene, and avobenzone) to Daphnia magna in order to evaluate the combined toxicity of these substances when in they occur in a mixture. The values of effective concentrations (ECx) for each UV-filter were calculated by concentration-response curves; concentration-combinations of three different UV-filters in a mixture were determined by the fraction of components based on EC 25 values predicted by concentration addition (CA) model. The interaction between the UV-filters were also assessed by model deviation ratio (MDR) using observed and predicted toxicity values obtained from mixture-exposure tests and CA model. The results from this study indicated that observed ECx mix (e.g., EC 10mix , EC 25mix , or EC 50mix ) values obtained from mixture-exposure tests were higher than predicted ECx mix (e.g., EC 10mix , EC 25mix , or EC 50mix ) values calculated by CA model. MDR values were also less than a factor of 1.0 in a mixtures of three different UV-filters. Based on these results, we suggest for the first time a reduction of toxic effects in the mixtures of three UV-filters, caused by antagonistic action of the components. Our findings from this study will provide important information for hazard or risk assessment of organic UV-filters, when they existed together in the aquatic environment. To better understand the mixture toxicity and the interaction of components in a mixture, further studies for various combinations of mixture components are also required. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Uniform phases in fluids of hard isosceles triangles: One-component fluid and binary mixtures

    NASA Astrophysics Data System (ADS)

    Martínez-Ratón, Yuri; Díaz-De Armas, Ariel; Velasco, Enrique

    2018-05-01

    We formulate the scaled particle theory for a general mixture of hard isosceles triangles and calculate different phase diagrams for the one-component fluid and for certain binary mixtures. The fluid of hard triangles exhibits a complex phase behavior: (i) the presence of a triatic phase with sixfold symmetry, (ii) the isotropic-uniaxial nematic transition is of first order for certain ranges of aspect ratios, and (iii) the one-component system exhibits nematic-nematic transitions ending in critical points. We found the triatic phase to be stable not only for equilateral triangles but also for triangles of similar aspect ratios. We focus the study of binary mixtures on the case of symmetric mixtures: equal particle areas with aspect ratios (κi) symmetric with respect to the equilateral one, κ1κ2=3 . For these mixtures we found, aside from first-order isotropic-nematic and nematic-nematic transitions (the latter ending in a critical point): (i) a region of triatic phase stability even for mixtures made of particles that do not form this phase at the one-component limit, and (ii) the presence of a Landau point at which two triatic-nematic first-order transitions and a nematic-nematic demixing transition coalesce. This phase behavior is analogous to that of a symmetric three-dimensional mixture of rods and plates.

  16. An experimental study of adsorption interference in binary mixtures flowing through activated carbon

    NASA Technical Reports Server (NTRS)

    Madey, R.; Photinos, P. J.

    1983-01-01

    The isothermal transmission through activated carbon adsorber beds at 25 C of acetaldehyde-propane and acetylene-ethane mixtures in a helium carrier gas was measured. The inlet concentration of each component was in the range between 10 ppm and 500 ppm. The constant inlet volumetric flow rate was controlled at 200 cc (STP)/min in the acetaldehyde-propane experiments and at 50 cc (STP)/min in the acetaldehyde-ethane experiments. Comparison of experimental results with the corresponding single-component experiments under similar conditions reveals interference phenomena between the components of the mixtures as evidenced by changes in both the adsorption capacity and the dispersion number. Propane was found to displace acetaldehyde from the adsorbed state. The outlet concentration profiles of propane in the binary mixtures tend to become more diffuse than the corresponding concentration profiles of the one-component experiments. Similar features were observed with mixtures of acetylene and ethane; however, the displacement of acetylene by ethane is less pronounced.

  17. Can the inherence heuristic explain vitalistic reasoning?

    PubMed

    Bastian, Brock

    2014-10-01

    Inherence is an important component of psychological essentialism. By drawing on vitalism as a way in which to explain this link, however, the authors appear to conflate causal explanations based on fixed features with those based on general causal forces. The disjuncture between these two types of explanatory principles highlights potential new avenues for the inherence heuristic.

  18. Causal Analysis to Enhance Creative Problem-Solving: Performance and Effects on Mental Models

    ERIC Educational Resources Information Center

    Hester, Kimberly S.; Robledo, Issac C.; Barrett, Jamie D.; Peterson, David R.; Hougen, Dean P.; Day, Eric A.; Mumford, Michael D.

    2012-01-01

    In recent years, it has become apparent that knowledge is a critical component of creative thought. One form of knowledge that might be particularly important to creative thought relies on the mental models people employ to understand novel, ill-defined problems. In this study, undergraduates were given training in the use of causal relationships…

  19. Formulating and Answering High-Impact Causal Questions in Physiologic Childbirth Science: Concepts and Assumptions.

    PubMed

    Snowden, Jonathan M; Tilden, Ellen L; Odden, Michelle C

    2018-06-08

    In this article, we conclude our 3-part series by focusing on several concepts that have proven useful for formulating causal questions and inferring causal effects. The process of causal inference is of key importance for physiologic childbirth science, so each concept is grounded in content related to women at low risk for perinatal complications. A prerequisite to causal inference is determining that the question of interest is causal rather than descriptive or predictive. Another critical step in defining a high-impact causal question is assessing the state of existing research for evidence of causality. We introduce 2 causal frameworks that are useful for this undertaking, Hill's causal considerations and the sufficient-component cause model. We then provide 3 steps to aid perinatal researchers in inferring causal effects in a given study. First, the researcher should formulate a rigorous and clear causal question. We introduce an example of epidural analgesia and labor progression to demonstrate this process, including the central role of temporality. Next, the researcher should assess the suitability of the given data set to answer this causal question. In randomized controlled trials, data are collected with the express purpose of answering the causal question. Investigators using observational data should also ensure that their chosen causal question is answerable with the available data. Finally, investigators should design an analysis plan that targets the causal question of interest. Some data structures (eg, time-dependent confounding by labor progress when estimating the effect of epidural analgesia on postpartum hemorrhage) require specific analytical tools to control for bias and estimate causal effects. The assumptions of consistency, exchangeability, and positivity may be especially useful in carrying out these steps. Drawing on appropriate causal concepts and considering relevant assumptions strengthens our confidence that research has reduced the likelihood of alternative explanations (eg bias, chance) and estimated a causal effect. © 2018 by the American College of Nurse-Midwives.

  20. Quantitative Chemical Imaging and Unsupervised Analysis Using Hyperspectral Coherent Anti-Stokes Raman Scattering Microscopy

    PubMed Central

    2013-01-01

    In this work, we report a method to acquire and analyze hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy images of organic materials and biological samples resulting in an unbiased quantitative chemical analysis. The method employs singular value decomposition on the square root of the CARS intensity, providing an automatic determination of the components above noise, which are retained. Complex CARS susceptibility spectra, which are linear in the chemical composition, are retrieved from the CARS intensity spectra using the causality of the susceptibility by two methods, and their performance is evaluated by comparison with Raman spectra. We use non-negative matrix factorization applied to the imaginary part and the nonresonant real part of the susceptibility with an additional concentration constraint to obtain absolute susceptibility spectra of independently varying chemical components and their absolute concentration. We demonstrate the ability of the method to provide quantitative chemical analysis on known lipid mixtures. We then show the relevance of the method by imaging lipid-rich stem-cell-derived mouse adipocytes as well as differentiated embryonic stem cells with a low density of lipids. We retrieve and visualize the most significant chemical components with spectra given by water, lipid, and proteins segmenting the image into the cell surrounding, lipid droplets, cytosol, and the nucleus, and we reveal the chemical structure of the cells, with details visualized by the projection of the chemical contrast into a few relevant channels. PMID:24099603

  1. Using virtual 3-D plant architecture to assess fungal pathogen splash dispersal in heterogeneous canopies: a case study with cultivar mixtures and a non-specialized disease causal agent

    PubMed Central

    Gigot, C.; de Vallavieille-Pope, C.; Huber, L.; Saint-Jean, S.

    2014-01-01

    Background and Aims Recent developments in plant disease management have led to a growing interest in alternative strategies, such as increasing host diversity and decreasing the use of pesticides. Use of cultivar mixtures is one option, allowing the spread of plant epidemics to be slowed down. As dispersal of fungal foliar pathogens over short distances by rain-splash droplets is a major contibutor to the spread of disease, this study focused on modelling the physical mechanisms involved in dispersal of a non-specialized pathogen within heterogeneous canopies of cultivar mixtures, with the aim of optimizing host diversification at the intra-field level. Methods Virtual 3-D wheat-like plants (Triticum aestivum) were used to consider interactions between plant architecture and disease progression in heterogeneous canopies. A combined mechanistic and stochastic model, taking into account splash droplet dispersal and host quantitative resistance within a 3-D heterogeneous canopy, was developed. It consists of four sub-models that describe the spatial patterns of two cultivars within a complex canopy, the pathway of rain-splash droplets within this canopy, the proportion of leaf surface area impacted by dispersal via the droplets and the progression of disease severity after each dispersal event. Key Results Different spatial organization, proportions and resistance levels of the cultivars of two-component mixtures were investigated. For the eight spatial patterns tested, the protective effect against disease was found to vary by almost 2-fold, with the greatest effect being obtained with the smallest genotype unit area, i.e. the ground area occupied by an independent unit of the host population that is genetically homogeneous. Increasing both the difference between resistance levels and the proportion of the most resistant cultivar often resulted in a greater protective effect; however, this was not observed for situations in which the most resistant of the two cultivars in the mixture had a relatively low level of resistance. Conclusions The results show agreement with previous data obtained using experimental approaches. They demonstrate that in order to maximize the potential mixture efficiency against a splash-dispersed pathogen, optimal susceptible/resistant cultivar proportions (ranging from 1/9 to 5/5) have to be established based on host resistance levels. The results also show that taking into account dispersal processes in explicit 3-D plant canopies can be a key tool for investigating disease progression in heterogeneous canopies such as cultivar mixtures. PMID:24989786

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grove, John W.

    We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.

  3. Dependence of the pour point of diesel fuels on the properties of the initial components

    NASA Technical Reports Server (NTRS)

    Ostashov, V. M.; Bobrovskiy, S. A.

    1979-01-01

    An analytical expression is obtained for the dependence of the pour point of diesel fuels on the pour point and weight relationship of the initial components. For determining the pour point of a multicomponent fuel mixture, it is assumed that the mixture of two components has the pour point of a separate equivalent component, then calculating the pour point of this equivalent component mixed with a third component, etc.

  4. Nuclear fuel alloys or mixtures and method of making thereof

    DOEpatents

    Mariani, Robert Dominick; Porter, Douglas Lloyd

    2016-04-05

    Nuclear fuel alloys or mixtures and methods of making nuclear fuel mixtures are provided. Pseudo-binary actinide-M fuel mixtures form alloys and exhibit: body-centered cubic solid phases at low temperatures; high solidus temperatures; and/or minimal or no reaction or inter-diffusion with steel and other cladding materials. Methods described herein through metallurgical and thermodynamics advancements guide the selection of amounts of fuel mixture components by use of phase diagrams. Weight percentages for components of a metallic additive to an actinide fuel are selected in a solid phase region of an isothermal phase diagram taken at a temperature below an upper temperature limit for the resulting fuel mixture in reactor use. Fuel mixtures include uranium-molybdenum-tungsten, uranium-molybdenum-tantalum, molybdenum-titanium-zirconium, and uranium-molybdenum-titanium systems.

  5. The predatory mite Phytoseiulus persimilis does not perceive odor mixtures as strictly elemental objects.

    PubMed

    van Wijk, Michiel; de Bruijn, Paulien J A; Sabelis, Maurice W

    2010-11-01

    Phytoseiulus persimilis is a predatory mite that in absence of vision relies on the detection of herbivore-induced plant odors to locate its prey, the two-spotted spider-mite Tetranychus urticae. This herbivorous prey is feeding on leaves of a wide variety of plant species in different families. The predatory mites respond to numerous structurally different compounds. However, typical spider-mite induced plant compounds do not attract more predatory mites than plant compounds not associated with prey. Because the mites are sensitive to many compounds, components of odor mixtures may affect each other's perception. Although the response to pure compounds has been well documented, little is known how interactions among compounds affect the response to odor mixtures. We assessed the relation between the mites' responses elicited by simple mixtures of two compounds and by the single components of these mixtures. The preference for the mixture was compared to predictions under three conceptual models, each based on one of the following assumptions: (1) the responses elicited by each of the individual components can be added to each other; (2) they can be averaged; or (3) one response overshadows the other. The observed response differed significantly from the response predicted under the additive response, average response, and overshadowing response model in 52, 36, and 32% of the experimental tests, respectively. Moreover, the behavioral responses elicited by individual compounds and their binary mixtures were determined as a function of the odor concentration. The relative contribution of each component to the behavioral response elicited by the mixture varied with the odor concentration, even though the ratio of both compounds in the mixture was kept constant. Our experiments revealed that compounds that elicited no response had an effect on the response elicited by binary mixtures that they were part of. The results are not consistent with the hypothesis that P. persimilis perceives odor mixtures as a collection of strictly elemental objects. They suggest that odor mixtures rather are perceived as one synthetic whole.

  6. Combining Mixture Components for Clustering*

    PubMed Central

    Baudry, Jean-Patrick; Raftery, Adrian E.; Celeux, Gilles; Lo, Kenneth; Gottardo, Raphaël

    2010-01-01

    Model-based clustering consists of fitting a mixture model to data and identifying each cluster with one of its components. Multivariate normal distributions are typically used. The number of clusters is usually determined from the data, often using BIC. In practice, however, individual clusters can be poorly fitted by Gaussian distributions, and in that case model-based clustering tends to represent one non-Gaussian cluster by a mixture of two or more Gaussian distributions. If the number of mixture components is interpreted as the number of clusters, this can lead to overestimation of the number of clusters. This is because BIC selects the number of mixture components needed to provide a good approximation to the density, rather than the number of clusters as such. We propose first selecting the total number of Gaussian mixture components, K, using BIC and then combining them hierarchically according to an entropy criterion. This yields a unique soft clustering for each number of clusters less than or equal to K. These clusterings can be compared on substantive grounds, and we also describe an automatic way of selecting the number of clusters via a piecewise linear regression fit to the rescaled entropy plot. We illustrate the method with simulated data and a flow cytometry dataset. Supplemental Materials are available on the journal Web site and described at the end of the paper. PMID:20953302

  7. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-04-08

    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  8. Complex Odor from Plants under Attack: Herbivore's Enemies React to the Whole, Not Its Parts

    PubMed Central

    van Wijk, Michiel; de Bruijn, Paulien J. A.; Sabelis, Maurice W.

    2011-01-01

    Background Insect herbivory induces plant odors that attract herbivores' natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivore-induced attractants in odor mixtures or to odor mixture as a whole. Methodology/Principal Findings We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA), is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the non-induced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture. Conclusions/Significance We conclude that the predatory mites perceive odors as a synthetic whole and that the hypothesis that predatory mites recognize attractive HIPV in odor mixtures is unsupported. PMID:21765908

  9. Organic fluid permeation through fluoropolymer membranes

    DOEpatents

    Nemser, Stuart M.; Kosaraju, Praveen; Bowser, John

    2015-07-14

    Separation of the components of liquid mixtures is achieved by contacting a liquid mixture with a nonporous membrane having a fluoropolymer selectively permeable layer and imposing a pressure gradient across the membrane from feed side to permeate side. Unusually high transmembrane flux is obtained when the membrane is subjected to one or more process conditions prior to separation. These include (a) leaving some residual amount of membrane casting solvent in the membrane, and (b) contacting the membrane with a component of the mixture to be separated for a duration effective to saturate the membrane with the component.

  10. Regional patterns of pesticide concentrations in surface waters of New York in 1997

    USGS Publications Warehouse

    Phillips, P.J.; Eckhardt, D.A.; Freehafer, D.A.; Wall, G.R.; Ingleston, H.H.

    2002-01-01

    The predominant mixtures of pesticides found in New York surface waters consist of five principal components. First, herbicides commonly used on corn (atrazine, metolachlor, alachlor, cyanazine) and a herbicide degradate (deethylatrazine) were positively correlated to a corn-herbicide component, and watersheds with the highest corn-herbicide component scores were those in which large amounts of row crops are grown. Second, two insecticides (diazinon and carbaryl) and one herbicide (prometon) widely used in urban and residential settings were positively correlated to an urban/residential component. Watersheds with the highest urban/residential component scores were those with large amounts of urban and residential land use. A third component was related to two herbicides (EPTC and cyanazine) used on dry beans and corn, the fourth to an herbicide (simazine) and an insecticide (carbaryl) commonly used in orchards and vineyards, and the fifth to an herbicide (DCPA). Results of this study indicate that this approach can be used to: (1) identify common mixtures of pesticides in surface waters, (2) relate these mixtures to land use and pesticide applications, and (3) indicate regions where these mixtures of pesticides are commonly found.

  11. Sensitivity of the immature rat uterotrophic assay to mixtures of estrogens.

    PubMed Central

    Tinwell, Helen; Ashby, John

    2004-01-01

    We have evaluated whether mixtures of estrogens, present in the mix at doses that are individually inactive in the immature rat uterotrophic assay, can give a uterotrophic response. Seven chemicals were evaluated: nonylphenol, bisphenol A (BPA), methoxychlor, genistein (GEN), estradiol, diethylstilbestrol, and ethinyl estradiol. Dose responses in the uterotrophic assay were constructed for each chemical. The first series of experiments involved evaluating binary mixtures of BPA and GEN at dose levels that gave moderate uterotrophic responses when tested individually. The mixtures generally showed an intermediate or reduced uterotrophic effect compared with when the components of the mixture were tested alone at the dose used in the mixture. The next series of experiments used a multicomponent (complex) mixture of all seven chemicals evaluated at doses that gave either weakly positive or inactive uterotrophic responses when tested individually in the assay. Doses that were nominally equi-uterotrophic ranged over approximately six orders of magnitude for the seven chemicals. Doses of agents that gave a weak uterotrophic response when tested individually gave a marginally enhanced positive response in the assay when tested combined as a mixture. Doses of agents that gave a negative uterotrophic response when tested individually gave a positive response when tested as a mixture. These data indicate that a variety of different estrogen receptor (ER) agonists, present individually at subeffective doses, can act simultaneously to evoke an ER-regulated response. However, translating these findings into the process of environmental hazard assessment will be difficult. The simple addition of the observed, or predicted, activities for the components of a mixture is confirmed here to be inappropriate and to overestimate the actual effect induced by the mixture. Equally, isobole analysis is only suitable for two- or three-component mixtures, and concentration addition requires access to dose-response data and EC50 values (concentration giving 50% of the maximum response) for the individual components of the mixture--requirements that will rarely be fulfilled for complex environmental samples. Given these uncertainties, we conclude that it may be most expedient to select and bioassay whole environmental mixtures of potential concern. PMID:15064164

  12. The design of an environmentally relevant mixture of persistent organic pollutants for use in in vivo and in vitro studies.

    PubMed

    Berntsen, Hanne Friis; Berg, Vidar; Thomsen, Cathrine; Ropstad, Erik; Zimmer, Karin Elisabeth

    2017-01-01

    Amongst the substances listed as persistent organic pollutants (POP) under the Stockholm Convention on Persistent Organic Pollutants (SCPOP) are chlorinated, brominated, and fluorinated compounds. Most experimental studies investigating effects of POP employ single compounds. Studies focusing on effects of POP mixtures are limited, and often conducted using extracts from collected specimens. Confounding effects of unmeasured substances in such extracts may bias the estimates of presumed causal relationships being examined. The aim of this investigation was to design a model of an environmentally relevant mixture of POP for use in experimental studies, containing 29 different chlorinated, brominated, and perfluorinated compounds. POP listed under the SCPOP and reported to occur at the highest levels in Scandinavian food, blood, or breast milk prior to 2012 were selected, and two different mixtures representing varying exposure scenarios constructed. The in vivo mixture contained POP concentrations based upon human estimated daily intakes (EDIs), whereas the in vitro mixture was based upon levels in human blood. In addition to total in vitro mixture, 6 submixtures containing the same concentration of chlorinated + brominated, chlorinated + perfluorinated, brominated + perfluorinated, or chlorinated, brominated or perfluorinated compounds only were constructed. Using submixtures enables investigating the effect of adding or removing one or more chemical groups. Concentrations of compounds included in feed and in vitro mixtures were verified by chemical analysis. It is suggested that this method may be utilized to construct realistic mixtures of environmental contaminants for toxicity studies based upon the relative levels of POP to which individuals are exposed.

  13. An approach for evaluating the respiratory irritation of mixtures: application to metalworking fluids.

    PubMed

    Schaper, M M; Detwiler-Okabayashi, K A

    1995-01-01

    Recently, the sensory and pulmonary irritating properties of ten metalworking fluids (MWF) were assessed using a mouse bioassay. Relative potency of the MWFs was estimated, but it was not possible to identify the component(s) responsible for the the respiratory irritation induced by each MWF. One of the ten fluids, MWF "ET", produced sensory and pulmonary irritation in mice, and it was of moderate potency in comparison to the other nine MWFs. MWF "E" had three major components: tall oil fatty acids (TOFA), sodium sulfonate (SA), and paraffinic oil (PO). In the present study, the sensory and pulmonary irritating properties of these individual components of MWF "E" were evaluated. Mixtures of the three components were also prepared and similarly evaluated. This analysis revealed that the sensory irritation from MWF "E" was largely due to TOFA, whereas SA produced the pulmonary irritation observed with MWF "E". Both TOFA and SA were more potent irritants than was MWF "E", and the potency of TOFA and/or SA was diminished through combination with PO. There was no evidence of synergism of the components when combined to form MWF "E". This approach for identifying the biologically "active" component(s) in a mixture should be useful for other MWFs. Furthermore, the approach should be easily adapted for other applications involving concerns with mixtures.

  14. Nonassociative Plasticity Alters Competitive Interactions Among Mixture Components In Early Olfactory Processing

    PubMed Central

    Locatelli, Fernando F; Fernandez, Patricia C; Villareal, Francis; Muezzinoglu, Kerem; Huerta, Ramon; Galizia, C. Giovanni; Smith, Brian H.

    2012-01-01

    Experience related plasticity is an essential component of networks involved in early olfactory processing. However, the mechanisms and functions of plasticity in these neural networks are not well understood. We studied nonassociative plasticity by evaluating responses to two pure odors (A and X) and their binary mixture using calcium imaging of odor elicited activity in output neurons of the honey bee antennal lobe. Unreinforced exposure to A or X produced no change in the neural response elicited by the pure odors. However, exposure to one odor (e.g. A) caused the response to the mixture to become more similar to the other component (X). We also show in behavioral analyses that unreinforced exposure to A caused the mixture to become perceptually more similar to X. These results suggest that nonassociative plasticity modifies neural networks in such a way that it affects local competitive interactions among mixture components. We used a computational model to evaluate the most likely targets for modification. Hebbian modification of synapses from inhibitory local interneurons to projection neurons most reliably produces the observed shift in response to the mixture. These results are consistent with a model in which the antennal lobe acts to filter olfactory information according to its relevance for performing a particular task. PMID:23167675

  15. Herbicide mixtures at high doses slow the evolution of resistance in experimentally evolving populations of Chlamydomonas reinhardtii.

    PubMed

    Lagator, Mato; Vogwill, Tom; Mead, Andrew; Colegrave, Nick; Neve, Paul

    2013-05-01

    The widespread evolution of resistance to herbicides is a pressing issue in global agriculture. Evolutionary principles and practices are key to the management of this threat to global food security. The application of mixtures of herbicides has been advocated as an anti-resistance strategy, without substantial empirical support for its validation. We evolved experimentally populations of the unicellular green chlorophyte, Chlamydomonas reinhardtii, to minimum inhibitory concentrations (MICs) of single-herbicide modes of action and to pair-wise and three-way mixtures between different herbicides at various total combined doses. Herbicide mixtures were most effective when each component was applied at or close to its MIC. When doses were high, increasing the number of mixture components was also effective in reducing the evolution of resistance. Employing mixtures at low combined doses did not retard resistance evolution, even accelerating the evolution of resistance to some components. At low doses, increasing the number of herbicides in the mixture tended to select for more generalist resistance (cross-resistance). Our results reinforce findings from the antibiotic resistance literature and confirm that herbicide mixtures can be very effective for resistance management, but that mixtures should only be employed where the economic and environmental context permits the applications of high combined doses. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. Detection of cocrystal formation based on binary phase diagrams using thermal analysis.

    PubMed

    Yamashita, Hiroyuki; Hirakura, Yutaka; Yuda, Masamichi; Teramura, Toshio; Terada, Katsuhide

    2013-01-01

    Although a number of studies have reported that cocrystals can form by heating a physical mixture of two components, details surrounding heat-induced cocrystal formation remain unclear. Here, we attempted to clarify the thermal behavior of a physical mixture and cocrystal formation in reference to a binary phase diagram. Physical mixtures prepared using an agate mortar were heated at rates of 2, 5, 10, and 30 °C/min using differential scanning calorimetry (DSC). Some mixtures were further analyzed using X-ray DSC and polarization microscopy. When a physical mixture consisting of two components which was capable of cocrystal formation was heated using DSC, an exothermic peak associated with cocrystal formation was detected immediately after an endothermic peak. In some combinations, several endothermic peaks were detected and associated with metastable eutectic melting, eutectic melting, and cocrystal melting. In contrast, when a physical mixture of two components which is incapable of cocrystal formation was heated using DSC, only a single endothermic peak associated with eutectic melting was detected. These experimental observations demonstrated how the thermal events were attributed to phase transitions occurring in a binary mixture and clarified the relationship between exothermic peaks and cocrystal formation.

  17. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures.

    PubMed

    Bobb, Jennifer F; Valeri, Linda; Claus Henn, Birgit; Christiani, David C; Wright, Robert O; Mazumdar, Maitreyi; Godleski, John J; Coull, Brent A

    2015-07-01

    Because humans are invariably exposed to complex chemical mixtures, estimating the health effects of multi-pollutant exposures is of critical concern in environmental epidemiology, and to regulatory agencies such as the U.S. Environmental Protection Agency. However, most health effects studies focus on single agents or consider simple two-way interaction models, in part because we lack the statistical methodology to more realistically capture the complexity of mixed exposures. We introduce Bayesian kernel machine regression (BKMR) as a new approach to study mixtures, in which the health outcome is regressed on a flexible function of the mixture (e.g. air pollution or toxic waste) components that is specified using a kernel function. In high-dimensional settings, a novel hierarchical variable selection approach is incorporated to identify important mixture components and account for the correlated structure of the mixture. Simulation studies demonstrate the success of BKMR in estimating the exposure-response function and in identifying the individual components of the mixture responsible for health effects. We demonstrate the features of the method through epidemiology and toxicology applications. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. An algorithm for separation of mixed sparse and Gaussian sources

    PubMed Central

    Akkalkotkar, Ameya

    2017-01-01

    Independent component analysis (ICA) is a ubiquitous method for decomposing complex signal mixtures into a small set of statistically independent source signals. However, in cases in which the signal mixture consists of both nongaussian and Gaussian sources, the Gaussian sources will not be recoverable by ICA and will pollute estimates of the nongaussian sources. Therefore, it is desirable to have methods for mixed ICA/PCA which can separate mixtures of Gaussian and nongaussian sources. For mixtures of purely Gaussian sources, principal component analysis (PCA) can provide a basis for the Gaussian subspace. We introduce a new method for mixed ICA/PCA which we call Mixed ICA/PCA via Reproducibility Stability (MIPReSt). Our method uses a repeated estimations technique to rank sources by reproducibility, combined with decomposition of multiple subsamplings of the original data matrix. These multiple decompositions allow us to assess component stability as the size of the data matrix changes, which can be used to determinine the dimension of the nongaussian subspace in a mixture. We demonstrate the utility of MIPReSt for signal mixtures consisting of simulated sources and real-word (speech) sources, as well as mixture of unknown composition. PMID:28414814

  19. An algorithm for separation of mixed sparse and Gaussian sources.

    PubMed

    Akkalkotkar, Ameya; Brown, Kevin Scott

    2017-01-01

    Independent component analysis (ICA) is a ubiquitous method for decomposing complex signal mixtures into a small set of statistically independent source signals. However, in cases in which the signal mixture consists of both nongaussian and Gaussian sources, the Gaussian sources will not be recoverable by ICA and will pollute estimates of the nongaussian sources. Therefore, it is desirable to have methods for mixed ICA/PCA which can separate mixtures of Gaussian and nongaussian sources. For mixtures of purely Gaussian sources, principal component analysis (PCA) can provide a basis for the Gaussian subspace. We introduce a new method for mixed ICA/PCA which we call Mixed ICA/PCA via Reproducibility Stability (MIPReSt). Our method uses a repeated estimations technique to rank sources by reproducibility, combined with decomposition of multiple subsamplings of the original data matrix. These multiple decompositions allow us to assess component stability as the size of the data matrix changes, which can be used to determinine the dimension of the nongaussian subspace in a mixture. We demonstrate the utility of MIPReSt for signal mixtures consisting of simulated sources and real-word (speech) sources, as well as mixture of unknown composition.

  20. Natural selection. VII. History and interpretation of kin selection theory.

    PubMed

    Frank, S A

    2013-06-01

    Kin selection theory is a kind of causal analysis. The initial form of kin selection ascribed cause to costs, benefits and genetic relatedness. The theory then slowly developed a deeper and more sophisticated approach to partitioning the causes of social evolution. Controversy followed because causal analysis inevitably attracts opposing views. It is always possible to separate total effects into different component causes. Alternative causal schemes emphasize different aspects of a problem, reflecting the distinct goals, interests and biases of different perspectives. For example, group selection is a particular causal scheme with certain advantages and significant limitations. Ultimately, to use kin selection theory to analyse natural patterns and to understand the history of debates over different approaches, one must follow the underlying history of causal analysis. This article describes the history of kin selection theory, with emphasis on how the causal perspective improved through the study of key patterns of natural history, such as dispersal and sex ratio, and through a unified approach to demographic and social processes. Independent historical developments in the multivariate analysis of quantitative traits merged with the causal analysis of social evolution by kin selection. © 2013 The Author. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  1. Analogy in causal inference: rethinking Austin Bradford Hill's neglected consideration.

    PubMed

    Weed, Douglas L

    2018-05-01

    The purpose of this article was to rethink and resurrect Austin Bradford Hill's "criterion" of analogy as an important consideration in causal inference. In epidemiology today, analogy is either completely ignored (e.g., in many textbooks), or equated with biologic plausibility or coherence, or aligned with the scientist's imagination. None of these examples, however, captures Hill's description of analogy. His words suggest that there may be something gained by contrasting two bodies of evidence, one from an established causal relationship, the other not. Coupled with developments in the methods of systematic assessments of evidence-including but not limited to meta-analysis-analogy can be restructured as a key component in causal inference. This new approach will require that a collection-a library-of known cases of causal inference (i.e., bodies of evidence involving established causal relationships) be developed. This library would likely include causal assessments by organizations such as the International Agency for Research on Cancer, the National Toxicology Program, and the United States Environmental Protection Agency. In addition, a process for describing key features of a causal relationship would need to be developed along with what will be considered paradigm cases of causation. Finally, it will be important to develop ways to objectively compare a "new" body of evidence with the relevant paradigm case of causation. Analogy, along with all other existing methods and causal considerations, may improve our ability to identify causal relationships. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Causality analysis in business performance measurement system using system dynamics methodology

    NASA Astrophysics Data System (ADS)

    Yusof, Zainuridah; Yusoff, Wan Fadzilah Wan; Maarof, Faridah

    2014-07-01

    One of the main components of the Balanced Scorecard (BSC) that differentiates it from any other performance measurement system (PMS) is the Strategy Map with its unidirectional causality feature. Despite its apparent popularity, criticisms on the causality have been rigorously discussed by earlier researchers. In seeking empirical evidence of causality, propositions based on the service profit chain theory were developed and tested using the econometrics analysis, Granger causality test on the 45 data points. However, the insufficiency of well-established causality models was found as only 40% of the causal linkages were supported by the data. Expert knowledge was suggested to be used in the situations of insufficiency of historical data. The Delphi method was selected and conducted in obtaining the consensus of the causality existence among the 15 selected expert persons by utilizing 3 rounds of questionnaires. Study revealed that only 20% of the propositions were not supported. The existences of bidirectional causality which demonstrate significant dynamic environmental complexity through interaction among measures were obtained from both methods. With that, a computer modeling and simulation using System Dynamics (SD) methodology was develop as an experimental platform to identify how policies impacting the business performance in such environments. The reproduction, sensitivity and extreme condition tests were conducted onto developed SD model to ensure their capability in mimic the reality, robustness and validity for causality analysis platform. This study applied a theoretical service management model within the BSC domain to a practical situation using SD methodology where very limited work has been done.

  3. The Umov effect in application to an optically thin two-component cloud of cosmic dust

    NASA Astrophysics Data System (ADS)

    Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy

    2018-04-01

    The Umov effect is an inverse correlation between linear polarization of the sunlight scattered by an object and its geometric albedo. The Umov effect has been observed in particulate surfaces, such as planetary regoliths, and recently it also was found in single-scattering small dust particles. Using numerical modeling, we study the Umov effect in a two-component mixture of small irregularly shaped particles. Such a complex chemical composition is suggested in cometary comae and other types of optically thin clouds of cosmic dust. We find that the two-component mixtures of small particles also reveal the Umov effect regardless of the chemical composition of their end-member components. The interrelation between log(Pmax) and log(A) in a two-component mixture of small irregularly shaped particles appears either in a straight linear form or in a slightly curved form. This curvature tends to decrease while the index n in a power-law size distribution r-n grows; at n > 2.5, the log(Pmax)-log(A) diagrams are almost straight linear in appearance. The curvature also noticeably decreases with the packing density of constituent material in irregularly shaped particles forming the mixture. That such a relation exists suggest the Umov effect may also be observed in more complex mixtures.

  4. The Umov effect in application to an optically thin two-component cloud of cosmic dust

    NASA Astrophysics Data System (ADS)

    Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy

    2018-07-01

    The Umov effect is an inverse correlation between linear polarization of the sunlight scattered by an object and its geometric albedo. The Umov effect has been observed in particulate surfaces, such as planetary regoliths, and recently it also was found in single-scattering small dust particles. Using numerical modelling, we study the Umov effect in a two-component mixture of small irregularly shaped particles. Such a complex chemical composition is suggested in cometary comae and other types of optically thin clouds of cosmic dust. We find that the two-component mixtures of small particles also reveal the Umov effect regardless of the chemical composition of their end-member components. The interrelation between log(Pmax) and log(A) in a two-component mixture of small irregularly shaped particles appears either in a straight linear form or in a slightly curved form. This curvature tends to decrease while the index n in a power-law size distribution r-n grows; at n > 2.5, the log(Pmax)-log(A) diagrams are almost straight linear in appearance. The curvature also noticeably decreases with the packing density of constituent material in irregularly shaped particles forming the mixture. That such a relation exists suggests the Umov effect may also be observed in more complex mixtures.

  5. Analysis of Minor Component Segregation in Ternary Powder Mixtures

    NASA Astrophysics Data System (ADS)

    Asachi, Maryam; Hassanpour, Ali; Ghadiri, Mojtaba; Bayly, Andrew

    2017-06-01

    In many powder handling operations, inhomogeneity in powder mixtures caused by segregation could have significant adverse impact on the quality as well as economics of the production. Segregation of a minor component of a highly active substance could have serious deleterious effects, an example is the segregation of enzyme granules in detergent powders. In this study, the effects of particle properties and bulk cohesion on the segregation tendency of minor component are analysed. The minor component is made sticky while not adversely affecting the flowability of samples. The segregation extent is evaluated using image processing of the photographic records taken from the front face of the heap after the pouring process. The optimum average sieve cut size of components for which segregation could be reduced is reported. It is also shown that the extent of segregation is significantly reduced by applying a thin layer of liquid to the surfaces of minor component, promoting an ordered mixture.

  6. Evaluation of drug-carrier interactions in quaternary powder mixtures containing perindopril tert-butylamine and indapamide.

    PubMed

    Voelkel, Adam; Milczewska, Kasylda; Teżyk, Michał; Milanowski, Bartłomiej; Lulek, Janina

    2016-04-30

    Interactions occurring between components in the quaternary powder mixtures consisting of perindopril tert-butylamine, indapamide (active pharmaceutical ingredients), carrier substance and hydrophobic colloidal silica were examined. Two grades of lactose monohydrate: Spherolac(®) 100 and Granulac(®) 200 and two types of microcrystalline cellulose: M101D+ and Vivapur(®) 102 were used as carriers. We determined the size distribution (laser diffraction method), morphology (scanning electron microscopy) and a specific surface area of the powder particles (by nitrogen adsorption-desorption). For the determination of the surface energy of powder mixtures the method of inverse gas chromatography was applied. Investigated mixtures were characterized by surface parameters (dispersive component of surface energy, specific interactions parameters, specific surface area), work of adhesion and cohesion as well as Flory-Huggins parameter χ23('). Results obtained for all quaternary powder mixtures indicate existence of interactions between components. The strongest interactions occur for both blends with different types of microcrystalline cellulose (PM-1 and PM-4) while much weaker ones for powder mixtures with various types of lactose (PM-2 and PM-3). Published by Elsevier B.V.

  7. CARDIOVASCULAR TOXICITY OF PM: SOLUBLE COMPONENTS OR SOLID PARTICLES?

    EPA Science Inventory

    Since strong suggestion of cardiac-related deaths has arisen from epidemiological studies of ambient PM, a major effort is required to identify PM components and mechanisms responsible for observed cardiac impairments. Unfortunately, it has been difficult to elucidate causality w...

  8. Use of Mixture Designs to Investigate Contribution of Minor Sex Pheromone Components to Trap Catch of the Carpenterworm Moth, Chilecomadia valdiviana.

    PubMed

    Lapointe, Stephen L; Barros-Parada, Wilson; Fuentes-Contreras, Eduardo; Herrera, Heidy; Kinsho, Takeshi; Miyake, Yuki; Niedz, Randall P; Bergmann, Jan

    2017-12-01

    Field experiments were carried out to study responses of male moths of the carpenterworm, Chilecomadia valdiviana (Lepidoptera: Cossidae), a pest of tree and fruit crops in Chile, to five compounds previously identified from the pheromone glands of females. Previously, attraction of males to the major component, (7Z,10Z)-7,10-hexadecadienal, was clearly demonstrated while the role of the minor components was uncertain due to the use of an experimental design that left large portions of the design space unexplored. We used mixture designs to study the potential contributions to trap catch of the four minor pheromone components produced by C. valdiviana. After systematically exploring the design space described by the five pheromone components, we concluded that the major pheromone component alone is responsible for attraction of male moths in this species. The need for appropriate experimental designs to address the problem of assessing responses to mixtures of semiochemicals in chemical ecology is described. We present an analysis of mixture designs and response surface modeling and an explanation of why this approach is superior to commonly used, but statistically inappropriate, designs.

  9. Molecular Orientation in Two Component Vapor-Deposited Glasses: Effect of Substrate Temperature and Molecular Shape

    NASA Astrophysics Data System (ADS)

    Powell, Charles; Jiang, Jing; Walters, Diane; Ediger, Mark

    Vapor-deposited glasses are widely investigated for use in organic electronics including the emitting layers of OLED devices. These materials, while macroscopically homogenous, have anisotropic packing and molecular orientation. By controlling this orientation, outcoupling efficiency can be increased by aligning the transition dipole moment of the light-emitting molecules parallel to the substrate. Light-emitting molecules are typically dispersed in a host matrix, as such, it is imperative to understand molecular orientation in two-component systems. In this study we examine two-component vapor-deposited films and the orientations of the constituent molecules using spectroscopic ellipsometry, UV-vis and IR spectroscopy. The role of temperature, composition and molecular shape as it effects molecular orientation is examined for mixtures of DSA-Ph in Alq3 and in TPD. Deposition temperature relative to the glass transition temperature of the two-component mixture is the primary controlling factor for molecular orientation. In mixtures of DSA-Ph in Alq3, the linear DSA-Ph has a horizontal orientation at low temperatures and slight vertical orientation maximized at 0.96Tg,mixture, analogous to one-component films.

  10. Differential gene expression patterns in developing sexually dimorphic rat brain regions exposed to antiandrogenic, estrogenic, or complex endocrine disruptor mixtures: glutamatergic synapses as target.

    PubMed

    Lichtensteiger, Walter; Bassetti-Gaille, Catherine; Faass, Oliver; Axelstad, Marta; Boberg, Julie; Christiansen, Sofie; Rehrauer, Hubert; Georgijevic, Jelena Kühn; Hass, Ulla; Kortenkamp, Andreas; Schlumpf, Margret

    2015-04-01

    The study addressed the question whether gene expression patterns induced by different mixtures of endocrine disrupting chemicals (EDCs) administered in a higher dose range, corresponding to 450×, 200×, and 100× high-end human exposure levels, could be characterized in developing brain with respect to endocrine activity of mixture components, and which developmental processes were preferentially targeted. Three EDC mixtures, A-Mix (anti-androgenic mixture) with 8 antiandrogenic chemicals (di-n-butylphthalate, diethylhexylphthalate, vinclozolin, prochloraz, procymidone, linuron, epoxiconazole, and DDE), E-Mix (estrogenic mixture) with 4 estrogenic chemicals (bisphenol A, 4-methylbenzylidene camphor, 2-ethylhexyl 4-methoxycinnamate, and butylparaben), a complex mixture, AEP-Mix, containing the components of A-Mix and E-Mix plus paracetamol, and paracetamol alone, were administered by oral gavage to rat dams from gestation day 7 until weaning. General developmental endpoints were not affected by EDC mixtures or paracetamol. Gene expression was analyzed on postnatal day 6, during sexual brain differentiation, by exon microarray in medial preoptic area in the high-dose group, and by real-time RT-PCR in medial preoptic area and ventromedial hypothalamus in all dose groups. Expression patterns were mixture, sex, and region specific. Effects of the analgesic drug paracetamol, which exhibits antiandrogenic activity in peripheral systems, differed from those of A-Mix. All mixtures had a strong, mixture-specific impact on genes encoding for components of excitatory glutamatergic synapses and genes controlling migration and pathfinding of glutamatergic and GABAergic neurons, as well as genes linked with increased risk of autism spectrum disorders. Because development of glutamatergic synapses is regulated by sex steroids also in hippocampus, this may represent a general target of ECD mixtures.

  11. Chinese herbs containing aristolochic acid associated with renal failure and urothelial carcinoma: a review from epidemiologic observations to causal inference.

    PubMed

    Yang, Hsiao-Yu; Chen, Pau-Chung; Wang, Jung-Der

    2014-01-01

    Herbal remedies containing aristolochic acid (AA) have been designated to be a strong carcinogen. This review summarizes major epidemiologic evidence to argue for the causal association between AA exposure and urothelial carcinoma as well as nephropathy. The exposure scenarios include the following: Belgian women taking slimming pills containing single material Guang Fang Ji, consumptions of mixtures of Chinese herbal products in the general population and patients with chronic renal failure in Taiwan, occupational exposure in Chinese herbalists, and food contamination in farming villages in valleys of the Danube River. Such an association is corroborated by detecting specific DNA adducts in the tumor tissue removed from affected patients. Preventive actions of banning such use and education to the healthcare professionals and public are necessary for the safety of herbal remedies.

  12. Chinese Herbs Containing Aristolochic Acid Associated with Renal Failure and Urothelial Carcinoma: A Review from Epidemiologic Observations to Causal Inference

    PubMed Central

    Yang, Hsiao-Yu; Chen, Pau-Chung; Wang, Jung-Der

    2014-01-01

    Herbal remedies containing aristolochic acid (AA) have been designated to be a strong carcinogen. This review summarizes major epidemiologic evidence to argue for the causal association between AA exposure and urothelial carcinoma as well as nephropathy. The exposure scenarios include the following: Belgian women taking slimming pills containing single material Guang Fang Ji, consumptions of mixtures of Chinese herbal products in the general population and patients with chronic renal failure in Taiwan, occupational exposure in Chinese herbalists, and food contamination in farming villages in valleys of the Danube River. Such an association is corroborated by detecting specific DNA adducts in the tumor tissue removed from affected patients. Preventive actions of banning such use and education to the healthcare professionals and public are necessary for the safety of herbal remedies. PMID:25431765

  13. Sound velocity in five-component air mixtures of various densities

    NASA Astrophysics Data System (ADS)

    Bogdanova, N. V.; Rydalevskaya, M. A.

    2018-05-01

    The local equilibrium flows of five-component air mixtures are considered. Gas dynamic equations are derived from the kinetic equations for aggregate values of collision invariants. It is shown that the traditional formula for sound velocity is true in air mixtures considered with the chemical reactions and the internal degrees of freedom. This formula connects the square of sound velocity with pressure and density. However, the adiabatic coefficient is not constant under existing conditions. The analytical expression for this coefficient is obtained. The examples of its calculation in air mixtures of various densities are presented.

  14. Spectroscopic and Chemometric Analysis of Binary and Ternary Edible Oil Mixtures: Qualitative and Quantitative Study.

    PubMed

    Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica

    2016-04-19

    The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.

  15. Underdetermined blind separation of three-way fluorescence spectra of PAHs in water

    NASA Astrophysics Data System (ADS)

    Yang, Ruifang; Zhao, Nanjing; Xiao, Xue; Zhu, Wei; Chen, Yunan; Yin, Gaofang; Liu, Jianguo; Liu, Wenqing

    2018-06-01

    In this work, underdetermined blind decomposition method is developed to recognize individual components from the three-way fluorescent spectra of their mixtures by using sparse component analysis (SCA). The mixing matrix is estimated from the mixtures using fuzzy data clustering algorithm together with the scatters corresponding to local energy maximum value in the time-frequency domain, and the spectra of object components are recovered by pseudo inverse technique. As an example, using this method three and four pure components spectra can be blindly extracted from two samples of their mixture, with similarities between resolved and reference spectra all above 0.80. This work opens a new and effective path to realize monitoring PAHs in water by three-way fluorescence spectroscopy technique.

  16. Means and method of detection in chemical separation procedures

    DOEpatents

    Yeung, Edward S.; Koutny, Lance B.; Hogan, Barry L.; Cheung, Chan K.; Ma, Yinfa

    1993-03-09

    A means and method for indirect detection of constituent components of a mixture separated in a chemical separation process. Fluorescing ions are distributed across the area in which separation of the mixture will occur to provide a generally uniform background fluorescence intensity. For example, the mixture is comprised of one or more charged analytes which displace fluorescing ions where its constituent components separate to. Fluorescing ions of the same charge as the charged analyte components cause a displacement. The displacement results in the location of the separated components having a reduced fluorescence intensity to the remainder of the background. Detection of the lower fluorescence intensity areas can be visually, by photographic means and methods, or by automated laser scanning.

  17. Means and method of detection in chemical separation procedures

    DOEpatents

    Yeung, E.S.; Koutny, L.B.; Hogan, B.L.; Cheung, C.K.; Yinfa Ma.

    1993-03-09

    A means and method are described for indirect detection of constituent components of a mixture separated in a chemical separation process. Fluorescing ions are distributed across the area in which separation of the mixture will occur to provide a generally uniform background fluorescence intensity. For example, the mixture is comprised of one or more charged analytes which displace fluorescing ions where its constituent components separate to. Fluorescing ions of the same charge as the charged analyte components cause a displacement. The displacement results in the location of the separated components having a reduced fluorescence intensity to the remainder of the background. Detection of the lower fluorescence intensity areas can be visually, by photographic means and methods, or by automated laser scanning.

  18. The Predatory Mite Phytoseiulus persimilis Does Not Perceive Odor Mixtures As Strictly Elemental Objects

    PubMed Central

    de Bruijn, Paulien J. A.; Sabelis, Maurice W.

    2010-01-01

    Phytoseiulus persimilis is a predatory mite that in absence of vision relies on the detection of herbivore-induced plant odors to locate its prey, the two-spotted spider-mite Tetranychus urticae. This herbivorous prey is feeding on leaves of a wide variety of plant species in different families. The predatory mites respond to numerous structurally different compounds. However, typical spider-mite induced plant compounds do not attract more predatory mites than plant compounds not associated with prey. Because the mites are sensitive to many compounds, components of odor mixtures may affect each other’s perception. Although the response to pure compounds has been well documented, little is known how interactions among compounds affect the response to odor mixtures. We assessed the relation between the mites’ responses elicited by simple mixtures of two compounds and by the single components of these mixtures. The preference for the mixture was compared to predictions under three conceptual models, each based on one of the following assumptions: (1) the responses elicited by each of the individual components can be added to each other; (2) they can be averaged; or (3) one response overshadows the other. The observed response differed significantly from the response predicted under the additive response, average response, and overshadowing response model in 52, 36, and 32% of the experimental tests, respectively. Moreover, the behavioral responses elicited by individual compounds and their binary mixtures were determined as a function of the odor concentration. The relative contribution of each component to the behavioral response elicited by the mixture varied with the odor concentration, even though the ratio of both compounds in the mixture was kept constant. Our experiments revealed that compounds that elicited no response had an effect on the response elicited by binary mixtures that they were part of. The results are not consistent with the hypothesis that P. persimilis perceives odor mixtures as a collection of strictly elemental objects. They suggest that odor mixtures rather are perceived as one synthetic whole. Electronic supplementary material The online version of this article (doi:10.1007/s10886-010-9858-3) contains supplementary material, which is available to authorized users. PMID:20872172

  19. Adsorption of sophorolipid biosurfactants on their own and mixed with sodium dodecyl benzene sulfonate, at the air/water interface.

    PubMed

    Chen, Minglei; Dong, Chuchuan; Penfold, Jeff; Thomas, Robert K; Smyth, Thomas J P; Perfumo, Amedea; Marchant, Roger; Banat, Ibrahim M; Stevenson, Paul; Parry, Alyn; Tucker, Ian; Campbell, Richard A

    2011-07-19

    The adsorption of the lactonic (LS) and acidic (AS) forms of sophorolipid and their mixtures with the anionic surfactant sodium dodecyl benzene sulfonate (LAS) has been measured at the air/water interface by neutron reflectivity, NR. The AS and LS sophorolipids adsorb with Langmuir-like adsorption isotherms. The more hydrophobic LS is more surface active than the AS, with a lower critical micellar concentration, CMC, and stronger surface adsorption, with an area/molecule ∼70 Å(2) compared with 85 Å(2) for the AS. The acidic sophorolipid shows a maximum in its adsorption at the CMC which appears to be associated with a mixture of different isomeric forms. The binary LS/AS and LS/LAS mixtures show a strong surface partitioning in favor of the more surface active and hydrophobic LS component but are nevertheless consistent with ideal mixing at the interface. In contrast, the surface composition of the AS/LAS mixture is much closer to the solution composition, but the surface mixing is nonideal and can be accounted for by regular solution theory, RST. In the AS/LS/LAS ternary mixtures, the surface adsorption is dominated by the sophorolipid, and especially the LS component, in a way that is not consistent with the observations for the binary mixtures. The extreme partitioning in favor of the sophorolipid for the LAS/LS/AS (1:2) mixtures is attributed to a reduction in the packing constraints at the surface due to the AS component. Measurements of the surface structure reveal a compact monolayer for LS and a narrow solvent region for LS, LS/AS, and LS/LAS mixtures, consistent with the more hydrophobic nature of the LS component. The results highlight the importance of the relative packing constraints on the adsorption of multicomponent mixtures, and the impact of the lactonic form of the sophorolipid on the adsorption of the sophorolipid/LAS mixtures.

  20. Designing a mixture experiment when the components are subject to a nonlinear multiple-component constraint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Greg F.; Cooley, Scott K.; Vienna, John D.

    This article presents a case study of developing an experimental design for a constrained mixture experiment when the experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this article. The case study involves a 15-component nuclear waste glass example in which SO3 is one of the components. SO3 has a solubility limit inmore » glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO3 solubility limit had previously been modeled by a partial quadratic mixture (PQM) model expressed in the relative proportions of the 14 other components. The PQM model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This article discusses the waste glass example and how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study.« less

  1. Investigation of antioxidant properties of metal ascorbates and their mixtures by voltammetry

    NASA Astrophysics Data System (ADS)

    Vtorushina, A. N.; Nikonova, E. D.

    2015-04-01

    The paper describes modern ways for selection of anti-radical substances. Molding of such components with a carbon-based material decreases the rate of its oxidative destruction. Addition of such a component to a carbon-based material decreases the rate of its oxidative destruction. The purpose of this study is to determine the antioxidant activity of ascorbates metals (Ca, Mg, Li, Co, Fe), used in the practice of medicine, as well as mixtures based on them together with well-known antioxidants. In this article we examine the effect of metals on the process of ascorbate oxygen electroreduction. From these ascorbates lithium and magnesium ascorbate showed the greatest activity toward cathode oxygen reduction process. Also mixtures with well-known examined antioxidants ascorbate (glucose, dihydroquercetin) were investigated at different concentrations of components. It is shown that the multicomponent mixtures exhibit lower activity than the individual drugs. Recommended the creation of drugs on the basis of ascorbate Mg and Li with not more than 3 number of components.

  2. Combined centrifugal force/gravity gas/liquid separator system

    NASA Astrophysics Data System (ADS)

    Lema, Luis E.

    1993-04-01

    A gas/liquid separator system has an outer enclosing tank filled with a demisting packing material. The tank has a gas outlet port and a liquid outlet port located at its top and bottom, respectively. At least one cylindrical, centrifugal force gas/liquid separator is vertically aligned and centrally located within the tank and is surrounded by the packing material. The cylindrical separator receives a gas/liquid mixture, separates the mixture into respective substantially gas and substantially liquid components, and allows the substantially gas components to exit its gas escape port. It also allows the substantially liquid components to exit its liquid escape port. The packing material in the tank further separates the substantially gas and liquid components as they rise and fall, respectively, through the packing material. An inflow line introduces the mixture into the cylindrical separator. The inflow line is upwardly inclined in a direction of flow of the mixture at a point where the inflow line communicates with the cylindrical separator.

  3. [FROM STATISTICAL ASSOCIATIONS TO SCIENTIFIC CAUSALITY].

    PubMed

    Golan, Daniel; Linn, Shay

    2015-06-01

    The pathogenesis of most chronic diseases is complex and probably involves the interaction of multiple genetic and environmental risk factors. One way to learn about disease triggers is from statistically significant associations in epidemiological studies. However, associations do not necessarily prove causation. Associations can commonly result from bias, confounding and reverse causation. Several paradigms for causality inference have been developed. Henle-Koch postulates are mainly applied for infectious diseases. Austin Bradford Hill's criteria may serve as a practical tool to weigh the evidence regarding the probability that a single new risk factor for a given disease is indeed causal. These criteria are irrelevant for estimating the causal relationship between exposure to a risk factor and disease whenever biological causality has been previously established. Thus, it is highly probable that past exposure of an individual to definite carcinogens is related to his cancer, even without proving an association between this exposure and cancer in his group. For multifactorial diseases, Rothman's model of interacting sets of component causes can be applied.

  4. Development of qualitative and quantitative analysis methods in pharmaceutical application with new selective signal excitation methods for 13 C solid-state nuclear magnetic resonance using 1 H T1rho relaxation time.

    PubMed

    Nasu, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro

    2013-01-01

    Most pharmaceutical drug substances and excipients in formulations exist in a crystalline or amorphous form, and an understanding of their state during manufacture and storage is critically important, particularly in formulated products. Carbon 13 solid-state nuclear magnetic resonance (NMR) spectroscopy is useful for studying the chemical and physical state of pharmaceutical solids in a formulated product. We developed two new selective signal excitation methods in (13) C solid-state NMR to extract the spectrum of a target component from such a mixture. These methods were based on equalization of the proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton spin-lattice relaxation time in the rotating frame ((1) H T1rho) of individual components in the mixture. Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility. We then demonstrated these methods in a commercially available drug and in a mixture of two saccharides, in which the (13) C signals of the target components were selectively excited, and showed them to be applicable to the quantitative analysis of individual components in solid mixtures, such as formulated products, polymorphic mixtures, or mixtures of crystalline and amorphous phases. Copyright © 2012 Wiley Periodicals, Inc.

  5. Thermal gravitational separation of ternary mixture n-dodecane/isobutylbenzene/tetralin components in a porous medium

    NASA Astrophysics Data System (ADS)

    Larabi, Mohamed Aziz; Mutschler, Dimitri; Mojtabi, Abdelkader

    2016-06-01

    Our present work focuses on the coupling between thermal diffusion and convection in order to improve the thermal gravitational separation of mixture components. The separation phenomenon was studied in a porous medium contained in vertical columns. We performed analytical and numerical simulations to corroborate the experimental measurements of the thermal diffusion coefficients of ternary mixture n-dodecane, isobutylbenzene, and tetralin obtained in microgravity in the international space station. Our approach corroborates the existing data published in the literature. The authors show that it is possible to quantify and to optimize the species separation for ternary mixtures. The authors checked, for ternary mixtures, the validity of the "forgotten effect hypothesis" established for binary mixtures by Furry, Jones, and Onsager. Two complete and different analytical resolution methods were used in order to describe the separation in terms of Lewis numbers, the separation ratios, the cross-diffusion coefficients, and the Rayleigh number. The analytical model is based on the parallel flow approximation. In order to validate this model, a numerical simulation was performed using the finite element method. From our new approach to vertical separation columns, new relations for mass fraction gradients and the optimal Rayleigh number for each component of the ternary mixture were obtained.

  6. Using virtual 3-D plant architecture to assess fungal pathogen splash dispersal in heterogeneous canopies: a case study with cultivar mixtures and a non-specialized disease causal agent.

    PubMed

    Gigot, C; de Vallavieille-Pope, C; Huber, L; Saint-Jean, S

    2014-09-01

    Recent developments in plant disease management have led to a growing interest in alternative strategies, such as increasing host diversity and decreasing the use of pesticides. Use of cultivar mixtures is one option, allowing the spread of plant epidemics to be slowed down. As dispersal of fungal foliar pathogens over short distances by rain-splash droplets is a major contibutor to the spread of disease, this study focused on modelling the physical mechanisms involved in dispersal of a non-specialized pathogen within heterogeneous canopies of cultivar mixtures, with the aim of optimizing host diversification at the intra-field level. Virtual 3-D wheat-like plants (Triticum aestivum) were used to consider interactions between plant architecture and disease progression in heterogeneous canopies. A combined mechanistic and stochastic model, taking into account splash droplet dispersal and host quantitative resistance within a 3-D heterogeneous canopy, was developed. It consists of four sub-models that describe the spatial patterns of two cultivars within a complex canopy, the pathway of rain-splash droplets within this canopy, the proportion of leaf surface area impacted by dispersal via the droplets and the progression of disease severity after each dispersal event. Different spatial organization, proportions and resistance levels of the cultivars of two-component mixtures were investigated. For the eight spatial patterns tested, the protective effect against disease was found to vary by almost 2-fold, with the greatest effect being obtained with the smallest genotype unit area, i.e. the ground area occupied by an independent unit of the host population that is genetically homogeneous. Increasing both the difference between resistance levels and the proportion of the most resistant cultivar often resulted in a greater protective effect; however, this was not observed for situations in which the most resistant of the two cultivars in the mixture had a relatively low level of resistance. The results show agreement with previous data obtained using experimental approaches. They demonstrate that in order to maximize the potential mixture efficiency against a splash-dispersed pathogen, optimal susceptible/resistant cultivar proportions (ranging from 1/9 to 5/5) have to be established based on host resistance levels. The results also show that taking into account dispersal processes in explicit 3-D plant canopies can be a key tool for investigating disease progression in heterogeneous canopies such as cultivar mixtures. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Underdetermined blind separation of three-way fluorescence spectra of PAHs in water.

    PubMed

    Yang, Ruifang; Zhao, Nanjing; Xiao, Xue; Zhu, Wei; Chen, Yunan; Yin, Gaofang; Liu, Jianguo; Liu, Wenqing

    2018-06-15

    In this work, underdetermined blind decomposition method is developed to recognize individual components from the three-way fluorescent spectra of their mixtures by using sparse component analysis (SCA). The mixing matrix is estimated from the mixtures using fuzzy data clustering algorithm together with the scatters corresponding to local energy maximum value in the time-frequency domain, and the spectra of object components are recovered by pseudo inverse technique. As an example, using this method three and four pure components spectra can be blindly extracted from two samples of their mixture, with similarities between resolved and reference spectra all above 0.80. This work opens a new and effective path to realize monitoring PAHs in water by three-way fluorescence spectroscopy technique. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Beyond a series of security nets: Applying STAMP & STPA to port security

    DOE PAGES

    Williams, Adam D.

    2015-11-17

    Port security is an increasing concern considering the significant role of ports in global commerce and today’s increasingly complex threat environment. Current approaches to port security mirror traditional models of accident causality -- ‘a series of security nets’ based on component reliability and probabilistic assumptions. Traditional port security frameworks result in isolated and inconsistent improvement strategies. Recent work in engineered safety combines the ideas of hierarchy, emergence, control and communication into a new paradigm for understanding port security as an emergent complex system property. The ‘System-Theoretic Accident Model and Process (STAMP)’ is a new model of causality based on systemsmore » and control theory. The associated analysis process -- System Theoretic Process Analysis (STPA) -- identifies specific technical or procedural security requirements designed to work in coordination with (and be traceable to) overall port objectives. This process yields port security design specifications that can mitigate (if not eliminate) port security vulnerabilities related to an emphasis on component reliability, lack of coordination between port security stakeholders or economic pressures endemic in the maritime industry. As a result, this article aims to demonstrate how STAMP’s broader view of causality and complexity can better address the dynamic and interactive behaviors of social, organizational and technical components of port security.« less

  9. Beyond a series of security nets: Applying STAMP & STPA to port security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Adam D.

    Port security is an increasing concern considering the significant role of ports in global commerce and today’s increasingly complex threat environment. Current approaches to port security mirror traditional models of accident causality -- ‘a series of security nets’ based on component reliability and probabilistic assumptions. Traditional port security frameworks result in isolated and inconsistent improvement strategies. Recent work in engineered safety combines the ideas of hierarchy, emergence, control and communication into a new paradigm for understanding port security as an emergent complex system property. The ‘System-Theoretic Accident Model and Process (STAMP)’ is a new model of causality based on systemsmore » and control theory. The associated analysis process -- System Theoretic Process Analysis (STPA) -- identifies specific technical or procedural security requirements designed to work in coordination with (and be traceable to) overall port objectives. This process yields port security design specifications that can mitigate (if not eliminate) port security vulnerabilities related to an emphasis on component reliability, lack of coordination between port security stakeholders or economic pressures endemic in the maritime industry. As a result, this article aims to demonstrate how STAMP’s broader view of causality and complexity can better address the dynamic and interactive behaviors of social, organizational and technical components of port security.« less

  10. Maximum Likelihood and Minimum Distance Applied to Univariate Mixture Distributions.

    ERIC Educational Resources Information Center

    Wang, Yuh-Yin Wu; Schafer, William D.

    This Monte-Carlo study compared modified Newton (NW), expectation-maximization algorithm (EM), and minimum Cramer-von Mises distance (MD), used to estimate parameters of univariate mixtures of two components. Data sets were fixed at size 160 and manipulated by mean separation, variance ratio, component proportion, and non-normality. Results…

  11. Lichenysin-geminal amino acid-based surfactants: Synergistic action of an unconventional antimicrobial mixture.

    PubMed

    Coronel-León, Jonathan; Pinazo, Aurora; Pérez, Lourdes; Espuny, Mª José; Marqués, Ana Mª; Manresa, Angeles

    2017-01-01

    Recently it has been demonstrated that catanionic mixtures of oppositely charged surfactants have improved physicochemical-biological properties compared to the individual components. Isotherms of mixtures of an anionic biosurfactant (lichenysin) and a cationic aminoacid surfactant (C 3 (LA) 2 ) indicate a strong interaction suggesting the formation of a new "pseudo-surfactant". The antimicrobial properties of the mixture lichenysin and C 3 (LA) 2 M80:20, indicate a synergistic effect of the components. The mechanism of action on the bacterial envelope was assessed by flow cytometry and Transmission Electron Microscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Multidimensional profiling of components in complex mixtures of natural products for metabolic analysis, proof of concept: application to Quillaja saponins.

    PubMed

    Bankefors, Johan; Nord, Lars I; Kenne, Lennart

    2010-02-01

    A method for separation and detection of major and minor components in complex mixtures has been developed, utilising two-dimensional high-performance liquid chromatography (2D-HPLC) combined with electrospray ionisation ion-trap multiple-stage mass spectrometry (ESI-ITMS(n)). Chromatographic conditions were matched with mass spectrometric detection to maximise the number of components that could be separated. The described procedure has proven useful to discern several hundreds of saponin components when applied to Quillaja saponaria Molina bark extracts. The discrimination of each saponin component relies on the fact that three coordinates (x, y, z) for each component can be derived from the retention time of the two chromatographic steps (x, y) and the m/z-values from the multiple-stage mass spectrometry (z(n), n=1, 2, ...). Thus an improved graphical representation was obtained by combining retention times from the two-stage separation with +MS(1) (z(1)) and the additional structural information from the second mass stage +MS(2) (z(2), z(3)) corresponding to the main fragment ions. By this approach three-dimensional plots can be made that reveal both the chromatographic and structural properties of a specific mixture which can be useful in fingerprinting of complex mixtures. 2009 Elsevier B.V. All rights reserved.

  13. Similarity measure and domain adaptation in multiple mixture model clustering: An application to image processing.

    PubMed

    Leong, Siow Hoo; Ong, Seng Huat

    2017-01-01

    This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index.

  14. Similarity measure and domain adaptation in multiple mixture model clustering: An application to image processing

    PubMed Central

    Leong, Siow Hoo

    2017-01-01

    This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index. PMID:28686634

  15. Patients' health beliefs and coping prior to autologous peripheral stem cell transplantation.

    PubMed

    Frick, E; Fegg, M J; Tyroller, M; Fischer, N; Bumeder, I

    2007-03-01

    The aim of this study was to determine the associations between health locus of control (LoC), causal attributions and coping in tumour patients prior to autologous peripheral blood stem cell transplantation. Patients completed the Questionnaire of Health Related Control Expectancies, the Questionnaire of Personal Illness Causes (QPIC), and the Freiburg Questionnaire of Coping with Illness. A total of 126 patients (45% women; 54% suffering from a multiple myeloma, 29% from non-Hodgkin lymphomas, and 17% from other malignancies) participated in the study. Cluster analysis yielded four LoC clusters: 'fatalistic external', 'powerful others', 'yeah-sayer' and 'double external'. Self-blaming QPIC items were positively correlated with depressive coping, and 'fate or destiny' attributions with religious coping (P<0.001). The highest scores were found for 'active coping' in the LoC clusters 'powerful others' and 'yeah-sayer'. External LoC and an active coping style prevail before undergoing autologous peripheral blood stem cell transplantation, whereas the depressive coping is less frequent, associated with self-blaming causal attributions. Health beliefs include causal and control attributions, which can improve or impair the patient's adjustment. A mixture between internal and external attributions seems to be most adaptive.

  16. Structure and effective interactions in three-component hard sphere liquids.

    PubMed

    König, A; Ashcroft, N W

    2001-04-01

    Complete and simple analytical expressions for the partial structure factors of the ternary hard sphere mixture are obtained within the Percus-Yevick approximation and presented as functions of relative packing fractions and relative hard sphere diameters. These solutions follow from the Laplace transform method as applied to multicomponent systems by Lebowitz [Phys. Rev. 133, A895 (1964)]. As an important application, we examine effective interactions in hard sphere liquid mixtures using the microscopic information contained in their partial structure factors. Thus the ensuring pair potential for an effective one-component system is obtained from the correlation functions by using an approximate inversion, and examples of effective potentials for three-component hard sphere mixtures are given. These mixtures may be of particular interest for the study of the packing aspects of melts that form glasses or quasicrystals, since noncrystalline solids often emerge from melts with at least three atomic constituents.

  17. Inability of the entropy vector method to certify nonclassicality in linelike causal structures

    NASA Astrophysics Data System (ADS)

    Weilenmann, Mirjam; Colbeck, Roger

    2016-10-01

    Bell's theorem shows that our intuitive understanding of causation must be overturned in light of quantum correlations. Nevertheless, quantum mechanics does not permit signaling and hence a notion of cause remains. Understanding this notion is not only important at a fundamental level, but also for technological applications such as key distribution and randomness expansion. It has recently been shown that a useful way to decide which classical causal structures could give rise to a given set of correlations is to use entropy vectors. These are vectors whose components are the entropies of all subsets of the observed variables in the causal structure. The entropy vector method employs causal relationships among the variables to restrict the set of possible entropy vectors. Here, we consider whether the same approach can lead to useful certificates of nonclassicality within a given causal structure. Surprisingly, we find that for a family of causal structures that includes the usual bipartite Bell structure they do not. For all members of this family, no function of the entropies of the observed variables gives such a certificate, in spite of the existence of nonclassical correlations. It is therefore necessary to look beyond entropy vectors to understand cause from a quantum perspective.

  18. Component spectra extraction from terahertz measurements of unknown mixtures.

    PubMed

    Li, Xian; Hou, D B; Huang, P J; Cai, J H; Zhang, G X

    2015-10-20

    The aim of this work is to extract component spectra from unknown mixtures in the terahertz region. To that end, a method, hard modeling factor analysis (HMFA), was applied to resolve terahertz spectral matrices collected from the unknown mixtures. This method does not require any expertise of the user and allows the consideration of nonlinear effects such as peak variations or peak shifts. It describes the spectra using a peak-based nonlinear mathematic model and builds the component spectra automatically by recombination of the resolved peaks through correlation analysis. Meanwhile, modifications on the method were made to take the features of terahertz spectra into account and to deal with the artificial baseline problem that troubles the extraction process of some terahertz spectra. In order to validate the proposed method, simulated wideband terahertz spectra of binary and ternary systems and experimental terahertz absorption spectra of amino acids mixtures were tested. In each test, not only the number of pure components could be correctly predicted but also the identified pure spectra had a good similarity with the true spectra. Moreover, the proposed method associated the molecular motions with the component extraction, making the identification process more physically meaningful and interpretable compared to other methods. The results indicate that the HMFA method with the modifications can be a practical tool for identifying component terahertz spectra in completely unknown mixtures. This work reports the solution to this kind of problem in the terahertz region for the first time, to the best of the authors' knowledge, and represents a significant advance toward exploring physical or chemical mechanisms of unknown complex systems by terahertz spectroscopy.

  19. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Exemption of chemical mixtures; application. 1310... REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.13 Exemption of chemical mixtures; application. (a... application of all or any part of the Act a chemical mixture consisting of two or more chemical components, at...

  20. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Exemption of chemical mixtures; application. 1310... REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.13 Exemption of chemical mixtures; application. (a... application of all or any part of the Act a chemical mixture consisting of two or more chemical components, at...

  1. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Exemption of chemical mixtures; application. 1310... REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.13 Exemption of chemical mixtures; application. (a... application of all or any part of the Act a chemical mixture consisting of two or more chemical components, at...

  2. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Exemption of chemical mixtures; application. 1310... REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.13 Exemption of chemical mixtures; application. (a... application of all or any part of the Act a chemical mixture consisting of two or more chemical components, at...

  3. 21 CFR 1310.13 - Exemption of chemical mixtures; application.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Exemption of chemical mixtures; application. 1310... REPORTS OF LISTED CHEMICALS AND CERTAIN MACHINES § 1310.13 Exemption of chemical mixtures; application. (a... application of all or any part of the Act a chemical mixture consisting of two or more chemical components, at...

  4. A FLEXIBLE APPROACH FOR EVALUATING FIXED RATIO MIXTURES OF FULL AND PARTIAL AGONISTS FOR MIXTURES OF MANY CHEMICALS.

    EPA Science Inventory

    Detecting interaction in chemical mixtures can be complicated by differences in the shapes of the dose-response curves of the individual components (e.g. mixtures of full and partial agonists with differing response maxima). We present an analysis scheme where flexible single che...

  5. Maximum workplace concentration values and carcinogenicity classification for mixtures.

    PubMed Central

    Bartsch, R; Forderkunz, S; Reuter, U; Sterzl-Eckert, H; Greim, H

    1998-01-01

    In Germany, the Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area (MAK Commission) generally sets maximum workplace concentration values (i.e., a proposed occupational exposure level [OEL]) for single substances, not for mixtures. For mixtures containing substances with a genotoxic and carcinogenic potential, the commission considered it scientifically inappropriate to establish a safe threshold. This approach is currently under discussion. Carcinogenic mixtures are categorized according to either the carcinogenicity of the mixture or the classification of the carcinogenic substances included. In regulating exposure to mixtures, an approach similar to that used by the American Conference of Governmental Hygienists is proposed: For components with the same target organ and mode of action or interfering metabolism, synergistic effects must be expected and the respective OELs must be lowered. However, if there is proof that the components act independently, the OELs of the individual compounds are not considered to be modified. In the view of the commission, calculating OELs for solvent mixtures according to their liquid phase composition is not justified, and the setting of scientifically based OELs for complex mixtures is not possible. PMID:9860883

  6. Isolation of n-decyl-alpha(1-->6) isomaltoside from a technical APG mixture and its identification by the parallel use of LC-MS and NMR spectroscopy

    PubMed

    Billian; Hock; Doetzer; Stan; Dreher

    2000-10-15

    The identification of n-decyl alpha(1-->6)isomaltoside as a main component of technical alkyl polyglucoside (APG) mixtures by the parallel use of liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy is described. Following enrichment on a styrene-divinylbenzene-based solid-phase extraction material, unknown components were separated by reversed-phase liquid chromatography (LC). Chemical characterization was achieved by both mass spectrometry and NMR spectroscopy. It is demonstrated that the combination of LC-MS with various NMR techniques is very suitable for stereochemical assignment of unknown components in technical APG mixtures.

  7. The effect of particle morphology on the physical stability of pharmaceutical powder mixtures

    NASA Astrophysics Data System (ADS)

    Swaminathan, Vidya

    Pharmaceutical powder mixtures are composed of particles that physically interact, precluding the formation of random mixtures. Mixtures based on particle interactions are termed ordered mixtures. The objective of this study was to determine the effect of the morphological characteristics of the components, surface texture and shape, along with size, on the formation of stable mixtures. Morphological parameters were obtained from image analysis measurements. Surface roughness was quantified using the ratio of the perimeter of the particle to that of an ideal shape (circle or square) having the same area; shape was described using the aspect ratio. The stability of mixtures of micronized aspirin with carriers of different surface roughness was determined by measuring the extent of drug adhering to the carrier after subjecting the mixtures to vibration. A lesser extent of segregation of drug from highly textured carriers relative to smoother textured carriers was observed. This was postulated to be due to a larger concentration of surface asperities on the coarser carriers which constitute potentially strong adhesion sites. The electrostatic charge on the powders was measured; differences in the response of the mixtures to the addition of magnesium stearate were attributed to electrostatic charge effects. The effect of varying the aspect ratio of the carrier and drug on segregation in polydisperse mixtures was determined from the coefficient of variation of the drug in the mixture as a function of mixing time. Reducing the size of the carrier resulted in poor homogeneity due to weak carrier-drug interactions. The variation in drug content resulting from a change in the shape of the carriers was smaller than that caused by size differences. The segregation rate constant in mixtures having dissimilarly shaped components was larger than in mixtures having components of similar shape. The effects of magnesium stearate concentration and lubrication time on the content uniformity of polydisperse mixtures were evaluated from a full factorial experiment. The segregation response of ordered and random mixtures to the addition of magnesium stearate was compared. The moisture sorption behavior of commercial magnesium stearate and the resulting morphological changes were evaluated.

  8. Mixture effects in samples of multiple contaminants - An inter-laboratory study with manifold bioassays.

    PubMed

    Altenburger, Rolf; Scholze, Martin; Busch, Wibke; Escher, Beate I; Jakobs, Gianina; Krauss, Martin; Krüger, Janet; Neale, Peta A; Ait-Aissa, Selim; Almeida, Ana Catarina; Seiler, Thomas-Benjamin; Brion, François; Hilscherová, Klára; Hollert, Henner; Novák, Jiří; Schlichting, Rita; Serra, Hélène; Shao, Ying; Tindall, Andrew; Tolefsen, Knut-Erik; Umbuzeiro, Gisela; Williams, Tim D; Kortenkamp, Andreas

    2018-05-01

    Chemicals in the environment occur in mixtures rather than as individual entities. Environmental quality monitoring thus faces the challenge to comprehensively assess a multitude of contaminants and potential adverse effects. Effect-based methods have been suggested as complements to chemical analytical characterisation of complex pollution patterns. The regularly observed discrepancy between chemical and biological assessments of adverse effects due to contaminants in the field may be either due to unidentified contaminants or result from interactions of compounds in mixtures. Here, we present an interlaboratory study where individual compounds and their mixtures were investigated by extensive concentration-effect analysis using 19 different bioassays. The assay panel consisted of 5 whole organism assays measuring apical effects and 14 cell- and organism-based bioassays with more specific effect observations. Twelve organic water pollutants of diverse structure and unique known modes of action were studied individually and as mixtures mirroring exposure scenarios in freshwaters. We compared the observed mixture effects against component-based mixture effect predictions derived from additivity expectations (assumption of non-interaction). Most of the assays detected the mixture response of the active components as predicted even against a background of other inactive contaminants. When none of the mixture components showed any activity by themselves then the mixture also was without effects. The mixture effects observed using apical endpoints fell in the middle of a prediction window defined by the additivity predictions for concentration addition and independent action, reflecting well the diversity of the anticipated modes of action. In one case, an unexpectedly reduced solubility of one of the mixture components led to mixture responses that fell short of the predictions of both additivity mixture models. The majority of the specific cell- and organism-based endpoints produced mixture responses in agreement with the additivity expectation of concentration addition. Exceptionally, expected (additive) mixture response did not occur due to masking effects such as general toxicity from other compounds. Generally, deviations from an additivity expectation could be explained due to experimental factors, specific limitations of the effect endpoint or masking side effects such as cytotoxicity in in vitro assays. The majority of bioassays were able to quantitatively detect the predicted non-interactive, additive combined effect of the specifically bioactive compounds against a background of complex mixture of other chemicals in the sample. This supports the use of a combination of chemical and bioanalytical monitoring tools for the identification of chemicals that drive a specific mixture effect. Furthermore, we demonstrated that a panel of bioassays can provide a diverse profile of effect responses to a complex contaminated sample. This could be extended towards representing mixture adverse outcome pathways. Our findings support the ongoing development of bioanalytical tools for (i) compiling comprehensive effect-based batteries for water quality assessment, (ii) designing tailored surveillance methods to safeguard specific water uses, and (iii) devising strategies for effect-based diagnosis of complex contamination. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Evidence of Cholesterol Accumulated in High Curvature Regions: Implication ot the Curvature Elastic Energy for Lipid Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang,W.; Yang, L.; Huang, H.

    2007-01-01

    Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy formore » lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature.« less

  10. Original predictive approach to the compressibility of pharmaceutical powder mixtures based on the Kawakita equation.

    PubMed

    Mazel, Vincent; Busignies, Virginie; Duca, Stéphane; Leclerc, Bernard; Tchoreloff, Pierre

    2011-05-30

    In the pharmaceutical industry, tablets are obtained by the compaction of two or more components which have different physical properties and compaction behaviours. Therefore, it could be interesting to predict the physical properties of the mixture using the single-component results. In this paper, we have focused on the prediction of the compressibility of binary mixtures using the Kawakita model. Microcrystalline cellulose (MCC) and L-alanine were compacted alone and mixed at different weight fractions. The volume reduction, as a function of the compaction pressure, was acquired during the compaction process ("in-die") and after elastic recovery ("out-of-die"). For the pure components, the Kawakita model is well suited to the description of the volume reduction. For binary mixtures, an original approach for the prediction of the volume reduction without using the effective Kawakita parameters was proposed and tested. The good agreement between experimental and predicted data proved that this model was efficient to predict the volume reduction of MCC and L-alanine mixtures during compaction experiments. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. A modified procedure for mixture-model clustering of regional geochemical data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Smith, David B.; Horton, John D.

    2014-01-01

    A modified procedure is proposed for mixture-model clustering of regional-scale geochemical data. The key modification is the robust principal component transformation of the isometric log-ratio transforms of the element concentrations. This principal component transformation and the associated dimension reduction are applied before the data are clustered. The principal advantage of this modification is that it significantly improves the stability of the clustering. The principal disadvantage is that it requires subjective selection of the number of clusters and the number of principal components. To evaluate the efficacy of this modified procedure, it is applied to soil geochemical data that comprise 959 samples from the state of Colorado (USA) for which the concentrations of 44 elements are measured. The distributions of element concentrations that are derived from the mixture model and from the field samples are similar, indicating that the mixture model is a suitable representation of the transformed geochemical data. Each cluster and the associated distributions of the element concentrations are related to specific geologic and anthropogenic features. In this way, mixture model clustering facilitates interpretation of the regional geochemical data.

  12. Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects?

    PubMed

    Kirkbride, James B; Susser, Ezra; Kundakovic, Marija; Kresovich, Jacob K; Davey Smith, George; Relton, Caroline L

    2012-06-01

    We posit that maternal prenatal nutrition can influence offspring schizophrenia risk via epigenetic effects. In this article, we consider evidence that prenatal nutrition is linked to epigenetic outcomes in offspring and schizophrenia in offspring, and that schizophrenia is associated with epigenetic changes. We focus upon one-carbon metabolism as a mediator of the pathway between perturbed prenatal nutrition and the subsequent risk of schizophrenia. Although post-mortem human studies demonstrate DNA methylation changes in brains of people with schizophrenia, such studies cannot establish causality. We suggest a testable hypothesis that utilizes a novel two-step Mendelian randomization approach, to test the component parts of the proposed causal pathway leading from prenatal nutritional exposure to schizophrenia. Applied here to a specific example, such an approach is applicable for wider use to strengthen causal inference of the mediating role of epigenetic factors linking exposures to health outcomes in population-based studies.

  13. Ranking Causal Anomalies via Temporal and Dynamical Analysis on Vanishing Correlations.

    PubMed

    Cheng, Wei; Zhang, Kai; Chen, Haifeng; Jiang, Guofei; Chen, Zhengzhang; Wang, Wei

    2016-08-01

    Modern world has witnessed a dramatic increase in our ability to collect, transmit and distribute real-time monitoring and surveillance data from large-scale information systems and cyber-physical systems. Detecting system anomalies thus attracts significant amount of interest in many fields such as security, fault management, and industrial optimization. Recently, invariant network has shown to be a powerful way in characterizing complex system behaviours. In the invariant network, a node represents a system component and an edge indicates a stable, significant interaction between two components. Structures and evolutions of the invariance network, in particular the vanishing correlations, can shed important light on locating causal anomalies and performing diagnosis. However, existing approaches to detect causal anomalies with the invariant network often use the percentage of vanishing correlations to rank possible casual components, which have several limitations: 1) fault propagation in the network is ignored; 2) the root casual anomalies may not always be the nodes with a high-percentage of vanishing correlations; 3) temporal patterns of vanishing correlations are not exploited for robust detection. To address these limitations, in this paper we propose a network diffusion based framework to identify significant causal anomalies and rank them. Our approach can effectively model fault propagation over the entire invariant network, and can perform joint inference on both the structural, and the time-evolving broken invariance patterns. As a result, it can locate high-confidence anomalies that are truly responsible for the vanishing correlations, and can compensate for unstructured measurement noise in the system. Extensive experiments on synthetic datasets, bank information system datasets, and coal plant cyber-physical system datasets demonstrate the effectiveness of our approach.

  14. Examining causal components and a mediating process underlying self-generated health arguments for exercise and smoking cessation.

    PubMed

    Baldwin, Austin S; Rothman, Alexander J; Vander Weg, Mark W; Christensen, Alan J

    2013-12-01

    Self-persuasion-generating one's own arguments for engaging in a specific behavior-can be an effective strategy to promote health behavior change, yet the causal processes that explain why it is effective are not well-specified. We sought to elucidate specific causal components and a mediating process of self-persuasion in two health behavior domains: physical activity and smoking. In two experiments, participants were randomized to write or read arguments about regular exercise (Study 1: N = 76; college students) or smoking cessation (Study 2: N = 107; daily smokers). In Study 2, we also manipulated the argument content (matched vs. mismatched participants' own concerns about smoking) to isolate its effect from the effect of argument source (self vs. other). Study outcomes included participants' reports of argument ratings, attitudes, behavioral intentions (Studies 1 & 2), and cessation attempts at 1 month (Study 2). In Study 1, self-generated arguments about exercise were evaluated more positively than other arguments (p = .01, d = .63), and this biased processing mediated the self-generated argument effect on attitudes toward exercise (β = .08, 95% CI = .01, .18). In Study 2, the findings suggested that biased processing occurs because self-generated argument content matches people's own health concerns and not because of the argument source (self vs. other). In addition, self-generated arguments indirectly led to greater behavior change intentions (Studies 1 & 2) and a greater likelihood of a smoking cessation attempt (Study 2). The findings elucidate a causal component and a mediating process that explain why self-persuasion and related behavior change interventions, such as motivational interviewing, are effective. Findings also suggest that self-generated arguments may be an efficient way to deliver message interventions aimed at changing health behaviors.

  15. QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide.

    PubMed

    Qin, Li-Tang; Chen, Yu-Han; Zhang, Xin; Mo, Ling-Yun; Zeng, Hong-Hu; Liang, Yan-Peng

    2018-05-01

    Antibiotics and pesticides may exist as a mixture in real environment. The combined effect of mixture can either be additive or non-additive (synergism and antagonism). However, no effective predictive approach exists on predicting the synergistic and antagonistic toxicities of mixtures. In this study, we developed a quantitative structure-activity relationship (QSAR) model for the toxicities (half effect concentration, EC 50 ) of 45 binary and multi-component mixtures composed of two antibiotics and four pesticides. The acute toxicities of single compound and mixtures toward Aliivibrio fischeri were tested. A genetic algorithm was used to obtain the optimized model with three theoretical descriptors. Various internal and external validation techniques indicated that the coefficient of determination of 0.9366 and root mean square error of 0.1345 for the QSAR model predicted that 45 mixture toxicities presented additive, synergistic, and antagonistic effects. Compared with the traditional concentration additive and independent action models, the QSAR model exhibited an advantage in predicting mixture toxicity. Thus, the presented approach may be able to fill the gaps in predicting non-additive toxicities of binary and multi-component mixtures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Initial analyses of the relationship between 'Thresholds' of toxicity for individual chemicals and 'Interaction Thresholds' for chemical mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Raymond S.H.; Dennison, James E.

    2007-09-01

    The inter-relationship of 'Thresholds' between chemical mixtures and their respective component single chemicals was studied using three sets of data and two types of analyses. Two in vitro data sets involve cytotoxicity in human keratinocytes from treatment of metals and a metal mixture [Bae, D.S., Gennings, C., Carter, Jr., W.H., Yang, R.S.H., Campain, J.A., 2001. Toxicological interactions among arsenic, cadmium, chromium, and lead in human keratinocytes. Toxicol. Sci. 63, 132-142; Gennings, C., Carter, Jr., W.H., Campain, J.A., Bae, D.S., Yang, R.S.H., 2002. Statistical analysis of interactive cytotoxicity in human epidermal keratinocytes following exposure to a mixture of four metals. J.more » Agric. Biol. Environ. Stat. 7, 58-73], and induction of estrogen receptor alpha (ER-{alpha}) reporter gene in MCF-7 human breast cancer cells by estrogenic xenobiotics [Gennings, C., Carter, Jr., W.H., Carney, E.W., Charles, G.D., Gollapudi, B.B., Carchman, R.A., 2004. A novel flexible approach for evaluating fixed ratio mixtures of full and partial agonists. Toxicol. Sci. 80, 134-150]. The third data set came from PBPK modeling of gasoline and its components in the human. For in vitro cellular responses, we employed Benchmark Dose Software (BMDS) to obtain BMD{sub 01}, BMD{sub 05}, and BMD{sub 10}. We then plotted these BMDs against exposure concentrations for the chemical mixture and its components to assess the ranges and slopes of these BMD-concentration lines. In doing so, we consider certain BMDs to be 'Interaction Thresholds' or 'Thresholds' for mixtures and their component single chemicals and the slope of the line must be a reflection of the potency of the biological effects. For in vivo PBPK modeling, we used 0.1x TLVs, TLVs, and 10x TLVs for gasoline and six component markers as input dosing for PBPK modeling. In this case, the venous blood levels under the hypothetical exposure conditions become our designated 'Interaction Thresholds' or 'Thresholds' for gasoline and its component single chemicals. Our analyses revealed that the mixture 'Interaction Thresholds' appear to stay within the bounds of the 'Thresholds' of its respective component single chemicals. Although such a trend appears to be emerging, nevertheless, it should be emphasized that our analyses are based on limited data sets and further analyses on data sets, preferably the more comprehensive experimental data sets, are needed before a definitive conclusion can be drawn.« less

  17. A mixture model with a reference-based automatic selection of components for disease classification from protein and/or gene expression levels

    PubMed Central

    2011-01-01

    Background Bioinformatics data analysis is often using linear mixture model representing samples as additive mixture of components. Properly constrained blind matrix factorization methods extract those components using mixture samples only. However, automatic selection of extracted components to be retained for classification analysis remains an open issue. Results The method proposed here is applied to well-studied protein and genomic datasets of ovarian, prostate and colon cancers to extract components for disease prediction. It achieves average sensitivities of: 96.2 (sd = 2.7%), 97.6% (sd = 2.8%) and 90.8% (sd = 5.5%) and average specificities of: 93.6% (sd = 4.1%), 99% (sd = 2.2%) and 79.4% (sd = 9.8%) in 100 independent two-fold cross-validations. Conclusions We propose an additive mixture model of a sample for feature extraction using, in principle, sparseness constrained factorization on a sample-by-sample basis. As opposed to that, existing methods factorize complete dataset simultaneously. The sample model is composed of a reference sample representing control and/or case (disease) groups and a test sample. Each sample is decomposed into two or more components that are selected automatically (without using label information) as control specific, case specific and not differentially expressed (neutral). The number of components is determined by cross-validation. Automatic assignment of features (m/z ratios or genes) to particular component is based on thresholds estimated from each sample directly. Due to the locality of decomposition, the strength of the expression of each feature across the samples can vary. Yet, they will still be allocated to the related disease and/or control specific component. Since label information is not used in the selection process, case and control specific components can be used for classification. That is not the case with standard factorization methods. Moreover, the component selected by proposed method as disease specific can be interpreted as a sub-mode and retained for further analysis to identify potential biomarkers. As opposed to standard matrix factorization methods this can be achieved on a sample (experiment)-by-sample basis. Postulating one or more components with indifferent features enables their removal from disease and control specific components on a sample-by-sample basis. This yields selected components with reduced complexity and generally, it increases prediction accuracy. PMID:22208882

  18. Demixing in symmetric supersolid mixtures

    NASA Astrophysics Data System (ADS)

    Jain, Piyush; Moroni, Saverio; Boninsegni, Massimo; Pollet, Lode

    2013-09-01

    The droplet crystal phase of a symmetric binary mixture of soft-core bosons is studied by computer simulation. At high temperature each droplet comprises on average equal numbers of particles of either component, but the two components demix below the supersolid transition temperature, i.e., droplets mostly consist of particles of one component. Clustering of droplets of the same component is also observed. Demixing is driven by quantum tunneling of particles across droplets over the system and does not take place in an insulating crystal. This effect provides an unambiguous experimental signature of supersolidity.

  19. Quantitative analysis of the mixtures of illicit drugs using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Dejun; Zhao, Shusen; Shen, Jingling

    2008-03-01

    A method was proposed to quantitatively inspect the mixtures of illicit drugs with terahertz time-domain spectroscopy technique. The mass percentages of all components in a mixture can be obtained by linear regression analysis, on the assumption that all components in the mixture and their absorption features be known. For illicit drugs were scarce and expensive, firstly we used common chemicals, Benzophenone, Anthraquinone, Pyridoxine hydrochloride and L-Ascorbic acid in the experiment. Then illicit drugs and a common adulterant, methamphetamine and flour, were selected for our experiment. Experimental results were in significant agreement with actual content, which suggested that it could be an effective method for quantitative identification of illicit drugs.

  20. Ground tire rubber (GTR) as a component material in concrete mixtures for paving concrete, phase 2 : [summary].

    DOT National Transportation Integrated Search

    2015-02-01

    Using ground tire rubber (GTR) in : concrete mixtures is a possible solution : to mitigating flexibility and thermal : expansion issues with high-strength : concrete pavements. Florida State : University researchers designed concrete : mixtures using...

  1. A critical assessment of the association between postnatal toxoplasmosis and epilepsy in immune-competent patients.

    PubMed

    Uzorka, J W; Arend, S M

    2017-07-01

    While postnatal toxoplasmosis in immune-competent patients is generally considered a self-limiting and mild illness, it has been associated with a variety of more severe clinical manifestations. The causal relation with some manifestations, e.g. myocarditis, has been microbiologically proven, but this is not unequivocally so for other reported associations, such as with epilepsy. We aimed to systematically assess causality between postnatal toxoplasmosis and epilepsy in immune-competent patients. A literature search was performed. The Bradford Hill criteria for causality were used to score selected articles for each component of causality. Using an arbitrary but defined scoring system, the maximal score was 15 points (13 for case reports). Of 704 articles, five case reports or series and five case-control studies were selected. The strongest evidence for a causal relation was provided by two case reports and one case-control study, with a maximal causality score of, respectively, 9/13, 10/13 and 10/15. The remaining studies had a median causality score of 7 (range 5-9). No selection bias was identified, but 6/10 studies contained potential confounders (it was unsure whether the infection was pre- or postnatal acquired, or immunodeficiency was not specifically excluded). Based on the evaluation of the available literature, although scanty and of limited quality, a causal relationship between postnatal toxoplasmosis and epilepsy seems possible. More definite proof requires further research, e.g. by performing Toxoplasma serology in all de novo epilepsy cases.

  2. A Comprehensive Two-Dimensional Retention Time Alignment Algorithm To Enhance Chemometric Analysis of Comprehensive Two-Dimensional Separation Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Karisa M.; Wood, Lianna F.; Wright, Bob W.

    2005-12-01

    A comprehensive two-dimensional (2D) retention time alignment algorithm was developed using a novel indexing scheme. The algorithm is termed comprehensive because it functions to correct the entire chromatogram in both dimensions and it preserves the separation information in both dimensions. Although the algorithm is demonstrated by correcting comprehensive two-dimensional gas chromatography (GC x GC) data, the algorithm is designed to correct shifting in all forms of 2D separations, such as LC x LC, LC x CE, CE x CE, and LC x GC. This 2D alignment algorithm was applied to three different data sets composed of replicate GC x GCmore » separations of (1) three 22-component control mixtures, (2) three gasoline samples, and (3) three diesel samples. The three data sets were collected using slightly different temperature or pressure programs to engender significant retention time shifting in the raw data and then demonstrate subsequent corrections of that shifting upon comprehensive 2D alignment of the data sets. Thirty 12-min GC x GC separations from three 22-component control mixtures were used to evaluate the 2D alignment performance (10 runs/mixture). The average standard deviation of the first column retention time improved 5-fold from 0.020 min (before alignment) to 0.004 min (after alignment). Concurrently, the average standard deviation of second column retention time improved 4-fold from 3.5 ms (before alignment) to 0.8 ms (after alignment). Alignment of the 30 control mixture chromatograms took 20 min. The quantitative integrity of the GC x GC data following 2D alignment was also investigated. The mean integrated signal was determined for all components in the three 22-component mixtures for all 30 replicates. The average percent difference in the integrated signal for each component before and after alignment was 2.6%. Singular value decomposition (SVD) was applied to the 22-component control mixture data before and after alignment to show the restoration of trilinearity to the data, since trilinearity benefits chemometric analysis. By applying comprehensive 2D retention time alignment to all three data sets (control mixtures, gasoline samples, and diesel samples), classification by principal component analysis (PCA) substantially improved, resulting in 100% accurate scores clustering.« less

  3. Consider the alternative: The effects of causal knowledge on representing and using alternative hypotheses in judgments under uncertainty.

    PubMed

    Hayes, Brett K; Hawkins, Guy E; Newell, Ben R

    2016-05-01

    Four experiments examined the locus of impact of causal knowledge on consideration of alternative hypotheses in judgments under uncertainty. Two possible loci were examined; overcoming neglect of the alternative when developing a representation of a judgment problem and improving utilization of statistics associated with the alternative hypothesis. In Experiment 1, participants could search for information about the various components of Bayes's rule in a diagnostic problem. A majority failed to spontaneously search for information about an alternative hypothesis, but this bias was reduced when a specific alternative hypothesis was mentioned before search. No change in search patterns was found when a generic alternative cause was mentioned. Experiments 2a and 2b broadly replicated these patterns when participants rated or made binary judgments about the relevance of each of the Bayesian components. In contrast, Experiment 3 showed that when participants were given the likelihood of the data given a focal hypothesis p(D|H) and an alternative hypothesis p(D|¬H), they gave estimates of p(H|D) that were consistent with Bayesian principles. Additional causal knowledge had relatively little impact on such judgments. These results show that causal knowledge primarily affects neglect of the alternative hypothesis at the initial stage of problem representation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Effects of risk factors for and components of metabolic syndrome on the quality of life of patients with systemic lupus erythematosus: a structural equation modeling approach.

    PubMed

    Lee, Jeong-Won; Kang, Ji-Hyoun; Lee, Kyung-Eun; Park, Dong-Jin; Kang, Seong Wook; Kwok, Seung-Ki; Kim, Seong-Kyu; Choe, Jung-Yoon; Kim, Hyoun-Ah; Sung, Yoon-Kyoung; Shin, Kichul; Lee, Sang-Il; Lee, Chang Hoon; Choi, Sung Jae; Lee, Shin-Seok

    2018-01-01

    This study assessed the relationships among the risk factors for and components of metabolic syndrome (MetS) and health-related quality of life (HRQOL) in a hypothesized causal model using structural equation modeling (SEM) in patients with systemic lupus erythematosus (SLE). Of the 505 SLE patients enrolled in the Korean Lupus Network (KORNET registry), 244 had sufficient data to assess the components of MetS at enrollment. Education level, monthly income, corticosteroid dose, Systemic Lupus Erythematosus Disease Activity Index, Physicians' Global Assessment, Beck Depression Inventory, MetS components, and the Short Form-36 at the time of cohort entry were determined. SEM was used to test the causal relationship based on the Analysis of Moment Structure. The average age of the 244 patients was 40.7 ± 11.8 years. The SEM results supported the good fit of the model (χ 2  = 71.629, p = 0.078, RMSEA 0.034, CFI 0.972). The final model showed a direct negative effect of higher socioeconomic status and a positive indirect effect of higher disease activity on MetS, the latter through corticosteroid dose. MetS did not directly impact HRQOL but had an indirect negative impact on it, through depression. In our causal model, MetS risk factors were related to MetS components. The latter had a negative indirect impact on HRQOL, through depression. Clinicians should consider socioeconomic status and medication and seek to modify disease activity, MetS, and depression to improve the HRQOL of SLE patients.

  5. Herbal hepatotoxicity: a tabular compilation of reported cases.

    PubMed

    Teschke, Rolf; Wolff, Albrecht; Frenzel, Christian; Schulze, Johannes; Eickhoff, Axel

    2012-11-01

    Herbal hepatotoxicity is a field that has rapidly grown over the last few years along with increased use of herbal products worldwide. To summarize the various facets of this disease, we undertook a literature search for herbs, herbal drugs and herbal supplements with reported cases of herbal hepatotoxicity. A selective literature search was performed to identify published case reports, spontaneous case reports, case series and review articles regarding herbal hepatotoxicity. A total of 185 publications were identified and the results compiled. They show 60 different herbs, herbal drugs and herbal supplements with reported potential hepatotoxicity, additional information including synonyms of individual herbs, botanical names and cross references are provided. If known, details are presented for specific ingredients and chemicals in herbal products, and for references with authors that can be matched to each herbal product and to its effect on the liver. Based on stringent causality assessment methods and/or positive re-exposure tests, causality was highly probable or probable for Ayurvedic herbs, Chaparral, Chinese herbal mixture, Germander, Greater Celandine, green tea, few Herbalife products, Jin Bu Huan, Kava, Ma Huang, Mistletoe, Senna, Syo Saiko To and Venencapsan(®). In many other publications, however, causality was not properly evaluated by a liver-specific and for hepatotoxicity-validated causality assessment method such as the scale of CIOMS (Council for International Organizations of Medical Sciences). This compilation presents details of herbal hepatotoxicity, assisting thereby clinical assessment of involved physicians in the future. © 2012 John Wiley & Sons A/S.

  6. Characterization of Mixtures. Part 2: QSPR Models for Prediction of Excess Molar Volume and Liquid Density Using Neural Networks.

    PubMed

    Ajmani, Subhash; Rogers, Stephen C; Barley, Mark H; Burgess, Andrew N; Livingstone, David J

    2010-09-17

    In our earlier work, we have demonstrated that it is possible to characterize binary mixtures using single component descriptors by applying various mixing rules. We also showed that these methods were successful in building predictive QSPR models to study various mixture properties of interest. Here in, we developed a QSPR model of an excess thermodynamic property of binary mixtures i.e. excess molar volume (V(E) ). In the present study, we use a set of mixture descriptors which we earlier designed to specifically account for intermolecular interactions between the components of a mixture and applied successfully to the prediction of infinite-dilution activity coefficients using neural networks (part 1 of this series). We obtain a significant QSPR model for the prediction of excess molar volume (V(E) ) using consensus neural networks and five mixture descriptors. We find that hydrogen bond and thermodynamic descriptors are the most important in determining excess molar volume (V(E) ), which is in line with the theory of intermolecular forces governing excess mixture properties. The results also suggest that the mixture descriptors utilized herein may be sufficient to model a wide variety of properties of binary and possibly even more complex mixtures. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Extracting Spurious Latent Classes in Growth Mixture Modeling with Nonnormal Errors

    ERIC Educational Resources Information Center

    Guerra-Peña, Kiero; Steinley, Douglas

    2016-01-01

    Growth mixture modeling is generally used for two purposes: (1) to identify mixtures of normal subgroups and (2) to approximate oddly shaped distributions by a mixture of normal components. Often in applied research this methodology is applied to both of these situations indistinctly: using the same fit statistics and likelihood ratio tests. This…

  8. Determining the Requisite Components of Visual Threat Detection to Improve Operational Performance

    DTIC Science & Technology

    2014-04-01

    cognitive processes, and may be enhanced by focusing training development on the principle components such as causal reasoning. The second report will...discuss the development and evaluation of a research-based training exemplar. Visual threat detection pervades many military contexts, but is also... developing computer-controlled exercises to study the primary components of visual threat detection. Similarly, civilian law enforcement officers were

  9. Using partially labeled data for normal mixture identification with application to class definition

    NASA Technical Reports Server (NTRS)

    Shahshahani, Behzad M.; Landgrebe, David A.

    1992-01-01

    The problem of estimating the parameters of a normal mixture density when, in addition to the unlabeled samples, sets of partially labeled samples are available is addressed. The density of the multidimensional feature space is modeled with a normal mixture. It is assumed that the set of components of the mixture can be partitioned into several classes and that training samples are available from each class. Since for any training sample the class of origin is known but the exact component of origin within the corresponding class is unknown, the training samples as considered to be partially labeled. The EM iterative equations are derived for estimating the parameters of the normal mixture in the presence of partially labeled samples. These equations can be used to combine the supervised and nonsupervised learning processes.

  10. The causal structure of utility conditionals.

    PubMed

    Bonnefon, Jean-François; Sloman, Steven A

    2013-01-01

    The psychology of reasoning is increasingly considering agents' values and preferences, achieving greater integration with judgment and decision making, social cognition, and moral reasoning. Some of this research investigates utility conditionals, ''if p then q'' statements where the realization of p or q or both is valued by some agents. Various approaches to utility conditionals share the assumption that reasoners make inferences from utility conditionals based on the comparison between the utility of p and the expected utility of q. This article introduces a new parameter in this analysis, the underlying causal structure of the conditional. Four experiments showed that causal structure moderated utility-informed conditional reasoning. These inferences were strongly invited when the underlying structure of the conditional was causal, and significantly less so when the underlying structure of the conditional was diagnostic. This asymmetry was only observed for conditionals in which the utility of q was clear, and disappeared when the utility of q was unclear. Thus, an adequate account of utility-informed inferences conditional reasoning requires three components: utility, probability, and causal structure. Copyright © 2012 Cognitive Science Society, Inc.

  11. Equalizing secondary path effects using the periodicity of fMRI acoustic noise.

    PubMed

    Kannan, Govind; Milani, Ali A; Panahi, Issa; Briggs, Richard

    2008-01-01

    Non-minimum phase secondary path has a direct effect on achieving a desired noise attenuation level in active noise control (ANC) systems. The adaptive noise canceling filter is often a causal FIR filter which may not be able to sufficiently equalize the effect of a non-minimum phase secondary path, since in theory only a non-causal filter can equalize it. However a non-causal stable filter can be found to equalize the non-minimum phase effect of secondary path. Realization of non-causal stable filters requires knowledge of future values of input signal. In this paper we develop methods for equalizing the non-minimum phase property of the secondary path and improving the performance of an ANC system by exploiting the periodicity of fMRI acoustic noise. It has been shown that the scanner noise component is highly periodic and hence predictable which enables easy realization of non-causal filtering. Improvement in performance due to the proposed methods (with and without the equalizer) is shown for periodic fMRI acoustic noise.

  12. Binary gaseous mixture and single component adsorption of methane and argon on exfoliated graphite

    NASA Astrophysics Data System (ADS)

    Russell, Brice Adam

    Exfoliated graphite was used as a substrate for adsorption of argon and methane. Adsorption experiments were conducted for both equal parts mixtures of argon and methane and for each gas species independently. The purpose of this was to compare mixture adsorption to single component adsorption and to investigate theoretical predictions concerning the kinetics of adsorption made by Burde and Calbi.6 In particular, time to reach pressure equilibrium of a single dose at a constant temperature for the equal parts mixture was compared to time of adsorption for each species by itself. It was shown that mixture adsorption is a much more complex and time consuming process than single component adsorption and requires a much longer amount of time to reach equilibrium. Information about the composition evolution of the mixture during the times when pressure was going toward equilibrium was obtained using a quadrupole mass spectrometer. Evidence for initial higher rate of adsorption for the weaker binding energy species (argon) was found as well as overall composition change which clearly indicated a higher coverage of methane on the graphite sample by the time equilibration was reached. Effective specific surface area of graphite for both argon and methane was also determined using the Point-B method.2

  13. Bayesian spatiotemporal crash frequency models with mixture components for space-time interactions.

    PubMed

    Cheng, Wen; Gill, Gurdiljot Singh; Zhang, Yongping; Cao, Zhong

    2018-03-01

    The traffic safety research has developed spatiotemporal models to explore the variations in the spatial pattern of crash risk over time. Many studies observed notable benefits associated with the inclusion of spatial and temporal correlation and their interactions. However, the safety literature lacks sufficient research for the comparison of different temporal treatments and their interaction with spatial component. This study developed four spatiotemporal models with varying complexity due to the different temporal treatments such as (I) linear time trend; (II) quadratic time trend; (III) Autoregressive-1 (AR-1); and (IV) time adjacency. Moreover, the study introduced a flexible two-component mixture for the space-time interaction which allows greater flexibility compared to the traditional linear space-time interaction. The mixture component allows the accommodation of global space-time interaction as well as the departures from the overall spatial and temporal risk patterns. This study performed a comprehensive assessment of mixture models based on the diverse criteria pertaining to goodness-of-fit, cross-validation and evaluation based on in-sample data for predictive accuracy of crash estimates. The assessment of model performance in terms of goodness-of-fit clearly established the superiority of the time-adjacency specification which was evidently more complex due to the addition of information borrowed from neighboring years, but this addition of parameters allowed significant advantage at posterior deviance which subsequently benefited overall fit to crash data. The Base models were also developed to study the comparison between the proposed mixture and traditional space-time components for each temporal model. The mixture models consistently outperformed the corresponding Base models due to the advantages of much lower deviance. For cross-validation comparison of predictive accuracy, linear time trend model was adjudged the best as it recorded the highest value of log pseudo marginal likelihood (LPML). Four other evaluation criteria were considered for typical validation using the same data for model development. Under each criterion, observed crash counts were compared with three types of data containing Bayesian estimated, normal predicted, and model replicated ones. The linear model again performed the best in most scenarios except one case of using model replicated data and two cases involving prediction without including random effects. These phenomena indicated the mediocre performance of linear trend when random effects were excluded for evaluation. This might be due to the flexible mixture space-time interaction which can efficiently absorb the residual variability escaping from the predictable part of the model. The comparison of Base and mixture models in terms of prediction accuracy further bolstered the superiority of the mixture models as the mixture ones generated more precise estimated crash counts across all four models, suggesting that the advantages associated with mixture component at model fit were transferable to prediction accuracy. Finally, the residual analysis demonstrated the consistently superior performance of random effect models which validates the importance of incorporating the correlation structures to account for unobserved heterogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. How causal analysis can reveal autonomy in models of biological systems

    NASA Astrophysics Data System (ADS)

    Marshall, William; Kim, Hyunju; Walker, Sara I.; Tononi, Giulio; Albantakis, Larissa

    2017-11-01

    Standard techniques for studying biological systems largely focus on their dynamical or, more recently, their informational properties, usually taking either a reductionist or holistic perspective. Yet, studying only individual system elements or the dynamics of the system as a whole disregards the organizational structure of the system-whether there are subsets of elements with joint causes or effects, and whether the system is strongly integrated or composed of several loosely interacting components. Integrated information theory offers a theoretical framework to (1) investigate the compositional cause-effect structure of a system and to (2) identify causal borders of highly integrated elements comprising local maxima of intrinsic cause-effect power. Here we apply this comprehensive causal analysis to a Boolean network model of the fission yeast (Schizosaccharomyces pombe) cell cycle. We demonstrate that this biological model features a non-trivial causal architecture, whose discovery may provide insights about the real cell cycle that could not be gained from holistic or reductionist approaches. We also show how some specific properties of this underlying causal architecture relate to the biological notion of autonomy. Ultimately, we suggest that analysing the causal organization of a system, including key features like intrinsic control and stable causal borders, should prove relevant for distinguishing life from non-life, and thus could also illuminate the origin of life problem. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  15. PREDICTING EVAPORATION RATES AND TIMES FOR SPILLS OF CHEMICAL MIXTURES

    EPA Science Inventory


    Spreadsheet and short-cut methods have been developed for predicting evaporation rates and evaporation times for spills (and constrained baths) of chemical mixtures. Steady-state and time-varying predictions of evaporation rates can be made for six-component mixtures, includ...

  16. Porous body infiltrating method

    DOEpatents

    Corman, Gregory Scot

    2002-01-01

    A mixture is formed that comprises at least some to about 10 wt % boron nitride and silicon. A body comprising a component that is wetted by or reacts with silicon is contacted with the mixture and the contacted body is infiltrated with silicon from the mixture.

  17. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, Scott R.; Christophorou, Loucas G.

    1990-01-01

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.

  18. EXTENSION OF SELF-MODELING CURVE RESOLUTION TO MIXTURES OF MORE THAN THREE COMPONENTS: PART 2: FINDING THE COMPLETE SOLUTION. (R826238)

    EPA Science Inventory

    The previous paper [R.C. Henry, B.M. Kim, Extension of self-modeling curve resolution to mixtures of more than three components: Part 1. Finding the basic feasible region, Chemometrics and Intelligent Laboratory Systems 8 (1990) 205¯216] explained an extension ...

  19. Influence of shape and size of the particles on jigging separation of plastics mixture.

    PubMed

    Pita, Fernando; Castilho, Ana

    2016-02-01

    Plastics are popular for numerous applications due to their high versatility and favourable properties such as endurance, lightness and cheapness. Therefore the generation of plastic waste is constantly increasing, becoming one of the larger categories in municipal solid waste. Almost all plastic materials are recyclable, but for the recycling to be possible it is necessary to separate the different types of plastics. The aim of this research was to evaluate the performance of the jig separation of bi-component plastic mixtures. For this study six granulated plastics had been used: Polystyrene (PS), Polymethyl methacrylate (PMMA), Polyethylene Terephthalate (PET-S, PET-D) and Polyvinyl Chloride (PVC-M, PVC-D). Plastics mixtures were subjected to jigging in a laboratorial Denver mineral jig. The results showed that the quality of the jigging separation varies with the mixture, the density differences and with the size and shape of the particles. In the case of particles with more regular shapes the quality of separation of bi-component plastic mixtures improved with the increase of the particle size. For lamellar particles the influence of particle size was minimal. In general, the beneficiation of plastics with similar densities was not effective, since the separation efficiency was lower than 25%. However, in bi-component plastic mixtures that join a low density plastic (PS) with a high density one (PMMA, PET-S, PET-D, PVC-M and PVC-D), the quality of the jigging separation was greatly improved. The PS grade in the sunk was less than 1% for all the plastic mixtures. Jigging proved to be an effective method for the separation of bi-component plastic mixtures. Jigging separation will be enhanced if the less dense plastic, that overflows, has a lamellar shape and if the denser plastic, that sinks, has a regular one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Relationship between Composition and Toxicity of Motor Vehicle Emission Samples

    PubMed Central

    McDonald, Jacob D.; Eide, Ingvar; Seagrave, JeanClare; Zielinska, Barbara; Whitney, Kevin; Lawson, Douglas R.; Mauderly, Joe L.

    2004-01-01

    In this study we investigated the statistical relationship between particle and semivolatile organic chemical constituents in gasoline and diesel vehicle exhaust samples, and toxicity as measured by inflammation and tissue damage in rat lungs and mutagenicity in bacteria. Exhaust samples were collected from “normal” and “high-emitting” gasoline and diesel light-duty vehicles. We employed a combination of principal component analysis (PCA) and partial least-squares regression (PLS; also known as projection to latent structures) to evaluate the relationships between chemical composition of vehicle exhaust and toxicity. The PLS analysis revealed the chemical constituents covarying most strongly with toxicity and produced models predicting the relative toxicity of the samples with good accuracy. The specific nitro-polycyclic aromatic hydrocarbons important for mutagenicity were the same chemicals that have been implicated by decades of bioassay-directed fractionation. These chemicals were not related to lung toxicity, which was associated with organic carbon and select organic compounds that are present in lubricating oil. The results demonstrate the utility of the PCA/PLS approach for evaluating composition–response relationships in complex mixture exposures and also provide a starting point for confirming causality and determining the mechanisms of the lung effects. PMID:15531438

  1. The potential of three different PCR-related approaches for the authentication of mixtures of herbal substances and finished herbal medicinal products.

    PubMed

    Doganay-Knapp, Kirsten; Orland, Annika; König, Gabriele M; Knöss, Werner

    2018-04-01

    Herbal substances and preparations thereof play an important role in healthcare systems worldwide. Due to the variety of these products regarding origin, composition and processing procedures, appropriate methodologies for quality assessment need to be considered. A majority of herbal substances is administered as multicomponent mixtures, especially in the field of Traditional Chinese Medicine and ayurvedic medicine, but also in finished medicinal products. Quality assessment of complex mixtures of herbal substances with conventional methods is challenging. Thus, emphasis of the present work was directed on the development of complementary methods to elucidate the composition of mixtures of herbal substances and finished herbal medicinal products. An indispensable prerequisite for the safe and effective use of herbal medicines is the unequivocal authentication of the medicinal plants used therein. In this context, we investigated the potential of three different PCR-related methods in the characterization and authentication of herbal substances. A multiplex PCR assay and a quantitative PCR (qPCR) assay were established to analyze defined mixtures of the herbal substances Quercus cortex, Juglandis folium, Aristolochiae herba, Matricariae flos and Salviae miltiorrhizae radix et rhizoma and a finished herbal medicinal product. Furthermore, a standard cloning approach using universal primers targeting the ITS region was established in order to allow the investigation of herbal mixtures with unknown content. The cloning approach had some limitations regarding the detection/recovery of the components in defined mixtures of herbal substances, but the complementary use of two sets of universal primer pairs increased the detection of components out of the mixture. While the multiplex PCR did not retrace all components in the defined mixtures of herbal substances, the established qPCR resulted in simultaneous and specific detection of the five target sequences in all defined mixtures. These data indicate that for authentication purposes, complementary PCR-related methods are highly recommendable for the analysis of herbal mixtures in parallel. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. In vitro evaluation of single- and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens.

    PubMed

    Chapman, C M C; Gibson, G R; Rowland, I

    2012-08-01

    Many studies comparing the effects of single- and multi-strain probiotics on pathogen inhibition compare treatments with different concentrations. They also do not examine the possibility of inhibition between probiotic strains with a mixture. We tested the ability of 14 single-species probiotics to inhibit each other using a cross-streak assay, and agar spot test. We then tested the ability of 15 single-species probiotics and 5 probiotic mixtures to inhibit Clostridium difficile, Escherichia coli and S. typhimurium, using the agar spot test. Testing was done with mixtures created in two ways: one group contained component species incubated together, the other group of mixtures was made using component species which had been incubated separately, equalised to equal optical density, and then mixed in equal volumes. Inhibition was observed for all combinations of probiotics, suggesting that when used as such there may be inhibition between probiotics, potentially reducing efficacy of the mixture. Significant inter-species variation was seen against each pathogen. When single species were tested against mixtures, the multi-species preparations displayed significantly (p < 0.05 or less) greater inhibition of pathogens in 12 out of 24 cases. Despite evidence that probiotic species will inhibit each other when incubated together in vitro, in many cases a probiotic mixture was more effective at inhibiting pathogens than its component species when tested at approximately equal concentrations of biomass. This suggests that using a probiotic mixture might be more effective at reducing gastrointestinal infections, and that creating a mixture using species with different effects against different pathogens may have a broader spectrum of action that a single provided by a single strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Characterization and comparison of lidocaine-tetracaine and lidocaine-camphor eutectic mixtures based on their crystallization and hydrogen-bonding abilities.

    PubMed

    Gala, Urvi; Chuong, Monica C; Varanasi, Ravi; Chauhan, Harsh

    2015-06-01

    Eutectic mixtures formed between active pharmaceutical ingredients and/or excipients provide vast scope for pharmaceutical applications. This study aimed at the exploration of the crystallization abilities of two eutectic mixtures (EM) i.e., lidocaine-tetracaine and lidocaine-camphor (1:1 w/w). Thermogravimetric analysis (TGA) for degradation behavior whereas modulated temperature differential scanning calorimetry (MTDSC) set in first heating, cooling, and second heating cycles, was used to qualitatively analyze the complex exothermic and endothermic thermal transitions. Raman microspectroscopy characterized vibrational information specific to chemical bonds. Prepared EMs were left at room temperature for 24 h to visually examine their crystallization potentials. The degradation of lidocaine, tetracaine, camphor, lidocaine-tetracaine EM, and lidocaine-camphor EM began at 196.56, 163.82, 76.86, 146.01, and 42.72°C, respectively, which indicated that eutectic mixtures are less thermostable compared to their individual components. The MTDSC showed crystallization peaks for lidocaine, tetracaine, and camphor at 31.86, 29.36, and 174.02°C, respectively (n = 3). When studying the eutectic mixture, no crystallization peak was observed in the lidocaine-tetracaine EM, but a lidocaine-camphor EM crystallization peak was present at 18.81°C. Crystallization occurred in lidocaine-camphor EM after being kept at room temperature for 24 h, but not in lidocaine-tetracaine EM. Certain peak shifts were observed in Raman spectra which indicated possible interactions of eutectic mixture components, when a eutectic mixture was formed. We found that if the components forming a eutectic mixture have crystallization peaks close to each other and have sufficient hydrogen-bonding capability, then their eutectic mixture is least likely to crystallize out (as seen in lidocaine-tetracaine EM) or vice versa (lidocaine-camphor EM).

  4. Glomerular Activity Patterns Evoked by Natural Odor Objects in the Rat Olfactory Bulb Are Related to Patterns Evoked by Major Odorant Components

    PubMed Central

    Johnson, Brett A.; Ong, Joan; Leon, Michael

    2014-01-01

    To determine how responses evoked by natural odorant mixtures compare to responses evoked by individual odorant chemicals, we mapped 2-deoxyglucose uptake during exposures to vapors arising from a variety of odor objects that may be important to rodents in the wild. We studied 21 distinct natural odor stimuli ranging from possible food sources such as fruits, vegetables, and meats to environmental odor objects such as grass, herbs, and tree leaves. The natural odor objects evoked robust and surprisingly focal patterns of 2-deoxyglucose uptake involving clusters of neighboring glomeruli, thereby resembling patterns evoked by pure chemicals. Overall, the patterns were significantly related to patterns evoked by monomolecular odorant components that had been studied previously. Object patterns also were significantly related to the molecular features present in the mixture components. Despite these overall relationships, there were individual examples of object patterns that were simpler than might have been predicted given the multiplicity of components present in the vapors. In these cases, the object patterns lacked certain responses evoked by their major odorant mixture components. These data suggest the possibility of mixture response interactions and provide a foundation for understanding the neural coding of natural odor stimuli. PMID:20187145

  5. Gene expression profiles in rainbow trout, Onchorynchus mykiss, exposed to a simple chemical mixture.

    PubMed

    Hook, Sharon E; Skillman, Ann D; Gopalan, Banu; Small, Jack A; Schultz, Irvin R

    2008-03-01

    Among proposed uses for microarrays in environmental toxiciology is the identification of key contributors to toxicity within a mixture. However, it remains uncertain whether the transcriptomic profiles resulting from exposure to a mixture have patterns of altered gene expression that contain identifiable contributions from each toxicant component. We exposed isogenic rainbow trout Onchorynchus mykiss, to sublethal levels of ethynylestradiol, 2,2,4,4-tetrabromodiphenyl ether, and chromium VI or to a mixture of all three toxicants Fluorescently labeled complementary DNA (cDNA) were generated and hybridized against a commercially available Salmonid array spotted with 16,000 cDNAs. Data were analyzed using analysis of variance (p<0.05) with a Benjamani-Hochberg multiple test correction (Genespring [Agilent] software package) to identify up and downregulated genes. Gene clustering patterns that can be used as "expression signatures" were determined using hierarchical cluster analysis. The gene ontology terms associated with significantly altered genes were also used to identify functional groups that were associated with toxicant exposure. Cross-ontological analytics approach was used to assign functional annotations to genes with "unknown" function. Our analysis indicates that transcriptomic profiles resulting from the mixture exposure resemble those of the individual contaminant exposures, but are not a simple additive list. However, patterns of altered genes representative of each component of the mixture are clearly discernible, and the functional classes of genes altered represent the individual components of the mixture. These findings indicate that the use of microarrays to identify transcriptomic profiles may aid in the identification of key stressors within a chemical mixture, ultimately improving environmental assessment.

  6. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  7. Public beliefs about and attitudes towards bipolar disorder: testing theory based models of stigma.

    PubMed

    Ellison, Nell; Mason, Oliver; Scior, Katrina

    2015-04-01

    Given the vast literature into public beliefs and attitudes towards schizophrenia and depression, there is paucity of research on attitudes towards bipolar disorder despite its similar prevalence to schizophrenia. This study explored public beliefs and attitudes towards bipolar disorder and examined the relationship between these different components of stigma. Using an online questionnaire distributed via email, social networking sites and public institutions, 753 members of the UK population were presented with a vignette depicting someone who met DSM-IV criteria for bipolar disorder. Causal beliefs, beliefs about prognosis, emotional reactions, stereotypes, and social distance were assessed in response to the vignette. Preacher and Hayes procedure for estimating direct and indirect effects of multiple mediators was used to examine the relationship between these components of stigma. Bipolar disorder was primarily associated with positive beliefs and attitudes and elicited a relatively low desire for social distance. Fear partially mediated the relationship between stereotypes and social distance. Biomedical causal beliefs reduced desire for social distance by increasing compassion, whereas fate causal beliefs increased it through eliciting fear. Psychosocial causal beliefs had mixed effects. The measurement of stigma using vignettes and self-report questionnaires has implications for ecological validity and participants may have been reluctant to reveal the true extent of their negative attitudes. Dissemination of these findings to people with bipolar disorder has implications for the reduction of internalised stigma in this population. Anti-stigma campaigns should attend to causal beliefs, stereotypes and emotional reactions as these all play a vital role in discriminatory behaviour towards people with bipolar disorder. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Application of a constant hole volume Sanchez-Lacombe equation of state to mixtures relevant to polymeric foaming.

    PubMed

    von Konigslow, Kier; Park, Chul B; Thompson, Russell B

    2018-06-06

    A variant of the Sanchez-Lacombe equation of state is applied to several polymers, blowing agents, and saturated mixtures of interest to the polymer foaming industry. These are low-density polyethylene-carbon dioxide and polylactide-carbon dioxide saturated mixtures as well as polystyrene-carbon dioxide-dimethyl ether and polystyrene-carbon dioxide-nitrogen ternary saturated mixtures. Good agreement is achieved between theoretically predicted and experimentally determined solubilities, both for binary and ternary mixtures. Acceptable agreement with swelling ratios is found with no free parameters. Up-to-date pure component Sanchez-Lacombe characteristic parameters are provided for carbon dioxide, dimethyl ether, low-density polyethylene, nitrogen, polylactide, linear and branched polypropylene, and polystyrene. Pure fluid low-density polyethylene and nitrogen parameters exhibit more moderate success while still providing acceptable quantitative estimations. Mixture estimations are found to have more moderate success where pure components are not as well represented. The Sanchez-Lacombe equation of state is found to correctly predict the anomalous reversal of solubility temperature dependence for low critical point fluids through the observation of this behaviour in polystyrene nitrogen mixtures.

  9. Estimation of value at risk and conditional value at risk using normal mixture distributions model

    NASA Astrophysics Data System (ADS)

    Kamaruzzaman, Zetty Ain; Isa, Zaidi

    2013-04-01

    Normal mixture distributions model has been successfully applied in financial time series analysis. In this paper, we estimate the return distribution, value at risk (VaR) and conditional value at risk (CVaR) for monthly and weekly rates of returns for FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI) from July 1990 until July 2010 using the two component univariate normal mixture distributions model. First, we present the application of normal mixture distributions model in empirical finance where we fit our real data. Second, we present the application of normal mixture distributions model in risk analysis where we apply the normal mixture distributions model to evaluate the value at risk (VaR) and conditional value at risk (CVaR) with model validation for both risk measures. The empirical results provide evidence that using the two components normal mixture distributions model can fit the data well and can perform better in estimating value at risk (VaR) and conditional value at risk (CVaR) where it can capture the stylized facts of non-normality and leptokurtosis in returns distribution.

  10. Surface tensions of solutions containing dicarboxylic acid mixtures

    NASA Astrophysics Data System (ADS)

    Lee, Jae Young; Hildemann, Lynn M.

    2014-06-01

    Organic solutes tend to lower the surface tension of cloud condensation nuclei, allowing them to more readily activate. The surface tension of various dicarboxylic acid aerosol mixtures was measured at 20 °C using the Wilhelmy plate method. At lower concentrations, the surface tension of a solution with equi-molar mixtures of dicarboxylic acids closely followed that of a solution with the most surface-active organic component alone. Measurements of surface tension for these mixtures were lower than predictions using Henning's model and the modified Szyszkowski equation, by ˜1-2%. The calculated maximum surface excess (Γmax) and inverse Langmuir adsorption coefficient (β) from the modified Szyszkowski equation were both larger than measured values for 6 of the 7 mixtures tested. Accounting for the reduction in surface tension in the Köhler equation reduced the critical saturation ratio for these multi-component mixtures - changes were negligible for dry diameters of 0.1 and 0.5 μm, but a reduction from 1.0068 to 1.0063 was seen for the 4-dicarboxylic acid mixture with a dry diameter of 0.05 μm.

  11. Evaluate the contribution of the mixture components on the longevity and performance of FC-5 : [summary].

    DOT National Transportation Integrated Search

    2014-05-01

    At its most basic, an asphalt mixture is asphalt : binder and crushed stone aggregate. This : seemingly simple mixture is very complex; method : of preparation and application, additives, and : aggregate type all influence the quality and : durabilit...

  12. Chemiluminescence and reactivity of the composites based on blends of polypropylene and polyamide

    NASA Astrophysics Data System (ADS)

    Vorontsov, N. V.; Popov, A. A.; Margolin, A. L.

    2017-12-01

    The effect of the composition of blends based on isotactic polypropylene (PP) and aliphatic polyamide 6/66-4 (PA) on the rate of photo-oxidation of their mixtures in air at room temperature has been studied. The decay of photoinduced chemiluminescence was studied to determine the kinetics of peroxyl radical termination in composites and the rate constants of this process depending on the composition of the mixtures. In the presence of PA, the rate of photo-oxidation of mixtures is much higher than the rates of photo-oxidation of separately taken components, PP and PA. Thus, the kinetics of photo-oxidation of mixtures differs from the simple sum of photo-oxidation kinetics of PP and PA, which should be expected in the absence of chemical and physical interaction of the components of the mixture. A decrease in the rate constants due to PA additives indicates a decrease in the mobility of molecules in the composites and explains the observed increase in photo-oxidation of mixtures.

  13. Approximation of the breast height diameter distribution of two-cohort stands by mixture models I Parameter estimation

    Treesearch

    Rafal Podlaski; Francis A. Roesch

    2013-01-01

    Study assessed the usefulness of various methods for choosing the initial values for the numerical procedures for estimating the parameters of mixture distributions and analysed variety of mixture models to approximate empirical diameter at breast height (dbh) distributions. Two-component mixtures of either the Weibull distribution or the gamma distribution were...

  14. Introducing causality violation for improved DPOAE component unmixing

    NASA Astrophysics Data System (ADS)

    Moleti, Arturo; Sisto, Renata; Shera, Christopher A.

    2018-05-01

    The DPOAE response consists of the linear superposition of two components, a nonlinear distortion component generated in the overlap region, and a reflection component generated by roughness in the DP resonant region. Due to approximate scaling symmetry, the DPOAE distortion component has approximately constant phase. As the reflection component may be considered as a SFOAE generated by the forward DP traveling wave, it has rapidly rotating phase, relative to that of its source, which is also equal to the phase of the DPOAE distortion component. This different phase behavior permits effective separation of the DPOAE components (unmixing), using time-domain or time-frequency domain filtering. Departures from scaling symmetry imply fluctuations around zero delay of the distortion component, which may seriously jeopardize the accuracy of these filtering techniques. The differential phase-gradient delay of the reflection component obeys causality requirements, i.e., the delay is positive only, and the fine-structure oscillations of amplitude and phase are correlated to each other, as happens for TEOAEs and SFOAEs relative to their stimulus phase. Performing the inverse Fourier (or wavelet) transform of a modified DPOAE complex spectrum, in which a constant phase function is substituted for the measured one, the time (or time-frequency) distribution shows a peak at (exactly) zero delay and long-latency specular symmetric components, with a modified (positive and negative) delay, which is that relative to that of the distortion component in the original response. Component separation, applied to this symmetrized distribution, becomes insensitive to systematic errors associated with violation of the scaling symmetry in specific frequency ranges.

  15. On smoothness of black saturns

    NASA Astrophysics Data System (ADS)

    Chruściel, Piotr T.; Eckstein, Michał; Szybka, Sebastian J.

    2010-11-01

    We prove smoothness of the domain of outer communications (d.o.c.) of the Black Saturn solutions of Elvang and Figueras. We show that the metric on the d.o.c. extends smoothly across two disjoint event horizons with topology mathbb{R} × {S^3} and mathbb{R} × {S^1} × {S^2} . We establish stable causality of the d.o.c. when the Komar angular momentum of the spherical component of the horizon vanishes, and present numerical evidence for stable causality in general.

  16. Mathematics of thermal diffusion in an exponential temperature field

    NASA Astrophysics Data System (ADS)

    Zhang, Yaqi; Bai, Wenyu; Diebold, Gerald J.

    2018-04-01

    The Ludwig-Soret effect, also known as thermal diffusion, refers to the separation of gas, liquid, or solid mixtures in a temperature gradient. The motion of the components of the mixture is governed by a nonlinear, partial differential equation for the density fractions. Here solutions to the nonlinear differential equation for a binary mixture are discussed for an externally imposed, exponential temperature field. The equation of motion for the separation without the effects of mass diffusion is reduced to a Hamiltonian pair from which spatial distributions of the components of the mixture are found. Analytical calculations with boundary effects included show shock formation. The results of numerical calculations of the equation of motion that include both thermal and mass diffusion are given.

  17. Isolation of tert-alkylphenols from the products of alkylation of phenols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesterova, T.N.; Verevkin, S.P.; Rempel', R.D.

    1987-08-10

    The authors studied the conditions of isolation of tert-amyl-, hexyl-, heptyl-, octyl-, decyl-, and dodecylphenols, and tert-alkylcresols, alkylpyrocatechols, and alkylhydroquinones from alkylation products. The compounds were isolated in all cases from reaction mixtures obtained in presence of cation-exchange resins of the KU-2 type. A preliminary stage, flash evaporation of the reaction mass at 4-13 Pa for 5-15 min, is needed to prevent decomposition of tert-alkylphenols during their isolation from acid reaction mixtures by fractionation. Flash distillation of high-boiling tert-alkylphenols should be conducted in presence of a component lowering the boiling point of the mixture, added in 1:(0.5-1.0) weight ratio ofmore » original mixture to the component.« less

  18. Subfertility factors rather than assisted conception factors affect cognitive and behavioural development of 4-year-old singletons.

    PubMed

    Schendelaar, Pamela; La Bastide-Van Gemert, Sacha; Heineman, Maas Jan; Middelburg, Karin J; Seggers, Jorien; Van den Heuvel, Edwin R; Hadders-Algra, Mijna

    2016-12-01

    Research on cognitive and behavioural development of children born after assisted conception is inconsistent. This prospective study aimed to explore underlying causal relationships between ovarian stimulation, in-vitro procedures, subfertility components and child cognition and behaviour. Participants were singletons born to subfertile couples after ovarian stimulation IVF (n = 63), modified natural cycle IVF (n = 53), natural conception (n = 79) and singletons born to fertile couples (reference group) (n = 98). At 4 years, cognition (Kaufmann-ABC-II; total IQ) and behaviour (Child Behavior Checklist; total problem T-score) were assessed. Causal inference search algorithms and structural equation modelling was applied to unravel causal mechanisms. Most children had typical cognitive and behavioural scores. No underlying causal effect was found between ovarian stimulation and the in-vitro procedure and outcome. Direct negative causal effects were found between severity of subfertility (time to pregnancy) and cognition and presence of subfertility and behaviour. Maternal age and maternal education acted as confounders. The study concludes that no causal effects were found between ovarian stimulation or in-vitro procedures and cognition and behaviour in childrenaged 4 years born to subfertile couples. Subfertility, especially severe subfertility, however, was associated with worse cognition and behaviour. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Information flow and causality as rigorous notions ab initio

    NASA Astrophysics Data System (ADS)

    Liang, X. San

    2016-11-01

    Information flow or information transfer the widely applicable general physics notion can be rigorously derived from first principles, rather than axiomatically proposed as an ansatz. Its logical association with causality is firmly rooted in the dynamical system that lies beneath. The principle of nil causality that reads, an event is not causal to another if the evolution of the latter is independent of the former, which transfer entropy analysis and Granger causality test fail to verify in many situations, turns out to be a proven theorem here. Established in this study are the information flows among the components of time-discrete mappings and time-continuous dynamical systems, both deterministic and stochastic. They have been obtained explicitly in closed form, and put to applications with the benchmark systems such as the Kaplan-Yorke map, Rössler system, baker transformation, Hénon map, and stochastic potential flow. Besides unraveling the causal relations as expected from the respective systems, some of the applications show that the information flow structure underlying a complex trajectory pattern could be tractable. For linear systems, the resulting remarkably concise formula asserts analytically that causation implies correlation, while correlation does not imply causation, providing a mathematical basis for the long-standing philosophical debate over causation versus correlation.

  20. Determination of community structure through deconvolution of PLFA-FAME signature of mixed population.

    PubMed

    Dey, Dipesh K; Guha, Saumyen

    2007-02-15

    Phospholipid fatty acids (PLFAs) as biomarkers are well established in the literature. A general method based on least square approximation (LSA) was developed for the estimation of community structure from the PLFA signature of a mixed population where biomarker PLFA signatures of the component species were known. Fatty acid methyl ester (FAME) standards were used as species analogs and mixture of the standards as representative of the mixed population. The PLFA/FAME signatures were analyzed by gas chromatographic separation, followed by detection in flame ionization detector (GC-FID). The PLFAs in the signature were quantified as relative weight percent of the total PLFA. The PLFA signatures were analyzed by the models to predict community structure of the mixture. The LSA model results were compared with the existing "functional group" approach. Both successfully predicted community structure of mixed population containing completely unrelated species with uncommon PLFAs. For slightest intersection in PLFA signatures of component species, the LSA model produced better results. This was mainly due to inability of the "functional group" approach to distinguish the relative amounts of the common PLFA coming from more than one species. The performance of the LSA model was influenced by errors in the chromatographic analyses. Suppression (or enhancement) of a component's PLFA signature in chromatographic analysis of the mixture, led to underestimation (or overestimation) of the component's proportion in the mixture by the model. In mixtures of closely related species with common PLFAs, the errors in the common components were adjusted across the species by the model.

  1. Application of ambient ionization high resolution mass spectrometry to determination of the botanical provenance of the constituents of psychoactive drug mixtures.

    PubMed

    Lesiak, Ashton D; Musah, Rabi A

    2016-09-01

    A continuing challenge in analytical chemistry is species-level determination of the constituents of mixtures that are made of a combination of plant species. There is an added urgency to identify components in botanical mixtures that have mind altering properties, due to the increasing global abuse of combinations of such plants. Here we demonstrate the proof of principle that ambient ionization mass spectrometry, namely direct analysis in real time-high resolution mass spectrometry (DART-HRMS), and statistical analysis tools can be used to rapidly determine the individual components within a psychoactive brew (Ayahuasca) made from a mixture of botanicals. Five plant species used in Ayahuasca preparations were subjected to DART-HRMS analysis. The chemical fingerprint of each was reproducible but unique, thus enabling discrimination between them. The presence of important biomarkers, including N,N-dimethyltryptamine, harmaline and harmine, was confirmed using in-source collision-induced dissociation (CID). Six Ayahuasca brews made from combinations of various plant species were shown to possess a high level of similarity, despite having been made from different constituents. Nevertheless, the application of principal component analysis (PCA) was useful in distinguishing between each of the brews based on the botanical species used in the preparations. From a training set based on 900 individual analyses, three principal components covered 86.38% of the variance, and the leave-one-out cross validation was 98.88%. This is the first report of ambient ionization MS being successfully used for determination of the individual components of plant mixtures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. A Four-step Approach for Evaluation of Dose Additivity

    EPA Science Inventory

    A four step approach was developed for evaluating toxicity data on a chemical mixture for consistency with dose addition. Following the concepts in the U.S. EPA mixture guidance (EPA 2000), toxicologic interaction for a defined mixture (all components known) is departure from a c...

  3. Effects of binary taste stimuli on the neural activity of the hamster chorda tympani

    PubMed Central

    1980-01-01

    Binary mixtures of taste stimuli were applied to the tongue of the hamster and the reaction of the whole corda tympani was recorded. Some of the chemicals that were paired in mixtures (HCl, NH4Cl, NaCl, CaCl2, sucrose, and D-phenylalanine) have similar tastes to human and/or hamster, and/or common stimulatory effects on individual fibers of the hamster chorda tympani; other pairs of these chemicals have dissimilar tastes and/or distinct neural stimulatory effects. The molarity of each chemical with approximately the same effect on the activity of the nerve as 0.01 M NaCl was selected, and an established relation between stimulus concentration and response allowed estimation of the effect of a "mixture" of two concentrations of one chemical. Each mixture elicited a response that was smaller than the sum of the responses to its components. However, responses to some mixtures approached this sum, and responses to other mixtures closely approached the response to a "mixture" of two concentrations of one chemical. Responses of the former variety were generated by mixtures of an electrolyte and a nonelectrolyte and the latter by mixtures of two electrolytes or two nonelectrolytes. But, beyond the distinction between electrolytes and nonelectrolytes, the whole-nerve response to a mixture could not be predicted from the known neural or psychophysical effects of its components. PMID:7411114

  4. Self-Diffusion and Heteroassociation in an Acetone-Chloroform Mixture at 298 K

    NASA Astrophysics Data System (ADS)

    Golubev, V. A.; Gurina, D. L.; Kumeev, R. S.

    2018-01-01

    The self-diffusion coefficients of acetone and chloroform in a binary acetone-chloroform mixture at 298 K are determined via pulsed field gradient NMR spectroscopy. It is estimated that the hydrodynamic radii of the mixture's components, calculated using the Stokes-Einstein equation, grow as the concentrations of the components fall. It is shown that such behavior of hydrodynamic radii is due to acetone-chloroform heteroassociation. The hydrodynamic radii of monomers and heteroassociates in a 1: 1 ratio are determined along with the constant of heteroassociation, using the proposed model of an associated solution.

  5. Parameters modelling of amaranth grain processing technology

    NASA Astrophysics Data System (ADS)

    Derkanosova, N. M.; Shelamova, S. A.; Ponomareva, I. N.; Shurshikova, G. V.; Vasilenko, O. A.

    2018-03-01

    The article presents a technique that allows calculating the structure of a multicomponent bakery mixture for the production of enriched products, taking into account the instability of nutrient content, and ensuring the fulfilment of technological requirements and, at the same time considering consumer preferences. The results of modelling and analysis of optimal solutions are given by the example of calculating the structure of a three-component mixture of wheat and rye flour with an enriching component, that is, whole-hulled amaranth flour applied to the technology of bread from a mixture of rye and wheat flour on a liquid leaven.

  6. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  7. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  8. A Four-Step and Four-Criteria Approach for Evaluating Evidence of Dose Addition in Chemical Mixture Toxicity

    EPA Science Inventory

    Dose addition is the most frequently-used component-based approach for predicting dose response for a mixture of toxicologically-similar chemicals and for statistical evaluation of whether the mixture response is consistent with dose additivity and therefore predictable from the ...

  9. Component-Based and Whole-Mixture Techniques for Addressing the Toxicity Of Drinking-Water Disinfection By-Product Mixtures

    EPA Science Inventory

    To conduct the health-effect studies described in subsequent articles, concentrated aqueous mixtures of disinfection byproducts were required for the two separate treatment trains described in the preceding article. To accomplish this, the finished drinking waters from each trea...

  10. 46 CFR 162.050-3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-water mixture to provide a resulting mixture that has an oil concentration of 15 ppm or less. Bilge... content meters, or bilge alarms. Oil content meter or meter means a component of the oil discharge... and oily mixtures combined with these residues. PPM means parts per million by volume of oil in water...

  11. An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data.

    PubMed

    Ng, S K; McLachlan, G J

    2003-04-15

    We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright 2003 John Wiley & Sons, Ltd.

  12. Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution

    PubMed Central

    Lo, Kenneth

    2011-01-01

    Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components. PMID:22125375

  13. Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution.

    PubMed

    Lo, Kenneth; Gottardo, Raphael

    2012-01-01

    Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components.

  14. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes I. Fuel utilization

    NASA Astrophysics Data System (ADS)

    Kuhn, J.; Kesler, O.

    2015-03-01

    In the first of a two part publication, the effect of fuel utilization (Uf) on carbon deposition rates in solid oxide fuel cell nickel-based anodes was studied. Representative 5-component CH4 reformate compositions (CH4, H2, CO, H2O, & CO2) were selected graphically by plotting the solutions to a system of mass-balance constraint equations. The centroid of the solution space was chosen to represent a typical anode gas mixture for each nominal Uf value. Selected 5-component and 3-component gas mixtures were then delivered to anode-supported cells for 10 h, followed by determination of the resulting deposited carbon mass. The empirical carbon deposition thresholds were affected by atomic carbon (C), hydrogen (H), and oxygen (O) fractions of the delivered gas mixtures and temperature. It was also found that CH4-rich gas mixtures caused irreversible damage, whereas atomically equivalent CO-rich compositions did not. The coking threshold predicted by thermodynamic equilibrium calculations employing graphite for the solid carbon phase agreed well with empirical thresholds at 700 °C (Uf ≈ 32%); however, at 600 °C, poor agreement was observed with the empirical threshold of ∼36%. Finally, cell operating temperatures correlated well with the difference in enthalpy between the supplied anode gas mixtures and their resulting thermodynamic equilibrium gas mixtures.

  15. Symmetry breaking in binary mixtures in closed nanoslits.

    PubMed

    Berim, Gersh O; Ruckenstein, Eli

    2008-04-07

    The symmetry breaking (SB) of the fluid density distribution (FDD) in closed nanoslits between two identical parallel solid walls described by Berim and Ruckenstein [J. Chem. Phys. 128, 024704 (2008)] for a single component fluid is examined for binary mixtures on the basis of a nonlocal canonical ensemble density functional theory. As in Monte Carlo simulations, the periodicity of the FDD in one of the lateral (parallel to the wall surfaces) directions, denoted as the x direction, was assumed. In the other lateral direction, y direction, the FDD was considered to be uniform. The molecules of the two components have different diameters and their Lennard-Jones interaction potentials have different energy parameters. It was found that depending on the average fluid density in the slit and mixture composition, SB can occur for both or none of the components but never for only one of them. In the direction perpendicular to the walls (h direction), the FDDs of both components can be asymmetrical about the middle plane between walls. In the x direction, the SB occurs as bumps and bridges enriched in one of the components, whereas the composition of the mixture between them is enriched in the other component. The dependence of the SB states on the length Lx of the FDD period at fixed average densities of the two components was examined for Lx in the range from 10 to 120 molecular diameters of the smaller size component. It was shown that for large Lx, the stable state of the system corresponds to a bridge. Because the free energy of that state decreases monotonically with increasing Lx, one can conclude that the real period is very large (infinite) and that a single bridge exists in the slit.

  16. Symmetry breaking in binary mixtures in closed nanoslits

    NASA Astrophysics Data System (ADS)

    Berim, Gersh O.; Ruckenstein, Eli

    2008-04-01

    The symmetry breaking (SB) of the fluid density distribution (FDD) in closed nanoslits between two identical parallel solid walls described by Berim and Ruckenstein [J. Chem. Phys. 128, 024704 (2008)] for a single component fluid is examined for binary mixtures on the basis of a nonlocal canonical ensemble density functional theory. As in Monte Carlo simulations, the periodicity of the FDD in one of the lateral (parallel to the wall surfaces) directions, denoted as the x direction, was assumed. In the other lateral direction, y direction, the FDD was considered to be uniform. The molecules of the two components have different diameters and their Lennard-Jones interaction potentials have different energy parameters. It was found that depending on the average fluid density in the slit and mixture composition, SB can occur for both or none of the components but never for only one of them. In the direction perpendicular to the walls (h direction), the FDDs of both components can be asymmetrical about the middle plane between walls. In the x direction, the SB occurs as bumps and bridges enriched in one of the components, whereas the composition of the mixture between them is enriched in the other component. The dependence of the SB states on the length Lx of the FDD period at fixed average densities of the two components was examined for Lx in the range from 10 to 120 molecular diameters of the smaller size component. It was shown that for large Lx, the stable state of the system corresponds to a bridge. Because the free energy of that state decreases monotonically with increasing Lx, one can conclude that the real period is very large (infinite) and that a single bridge exists in the slit.

  17. The consequences of exposure to mixtures of chemicals: Something from 'nothing' and 'a lot from a little' when fish are exposed to steroid hormones.

    PubMed

    Thrupp, Tara J; Runnalls, Tamsin J; Scholze, Martin; Kugathas, Subramaniam; Kortenkamp, Andreas; Sumpter, John P

    2018-04-01

    Ill-defined, multi-component mixtures of steroidal pharmaceuticals are present in the aquatic environment. Fish are extremely sensitive to some of these steroids. It is important to know how fish respond to these mixtures, and from that knowledge develop methodology that enables accurate prediction of those responses. To provide some of the data required to reach this objective, pairs of fish were first exposed to five different synthetic steroidal pharmaceuticals (one estrogen, EE2; one androgen, trenbolone; one glucocorticoid, beclomethasone dipropionate; and two progestogens, desogestrel and levonorgestrel) and concentration-response data on egg production obtained. Based on those concentration-response relationships, a five component mixture was designed and tested twice. Very similar effects were observed in the two experiments. The mixture inhibited egg production in an additive manner predicted better by the model of Independent Action than that of Concentration Addition. Our data provide a reference case for independent action in an in vivo model. A significant combined effect was observed when each steroidal pharmaceutical in the mixture was present at a concentration which on its own would produce no statistically significant effect (something from 'nothing'). Further, when each component was present in the mixture at a concentration expected to inhibit egg production by between 18% (Beclomethasone diproprionate) and 40% (trenbolone), this mixture almost completely inhibited egg production: a phenomenon we term 'a lot from a little'. The results from this proof-of-principle study suggest that multiple steroids present in the aquatic environment can be analysed for their potential combined environmental risk. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Causal tapestries for psychology and physics.

    PubMed

    Sulis, William H

    2012-04-01

    Archetypal dynamics is a formal approach to the modeling of information flow in complex systems used to study emergence. It is grounded in the Fundamental Triad of realisation (system), interpretation (archetype) and representation (formal model). Tapestries play a fundamental role in the framework of archetypal dynamics as a formal representational system. They represent information flow by means of multi layered, recursive, interlinked graphical structures that express both geometry (form or sign) and logic (semantics). This paper presents a detailed mathematical description of a specific tapestry model, the causal tapestry, selected for use in describing behaving systems such as appear in psychology and physics from the standpoint of Process Theory. Causal tapestries express an explicit Lorentz invariant transient now generated by means of a reality game. Observables are represented by tapestry informons while subjective or hidden components (for example intellectual and emotional processes) are incorporated into the reality game that determines the tapestry dynamics. As a specific example, we formulate a random graphical dynamical system using causal tapestries.

  19. Chemical mixtures in untreated water from public-supply wells in the U.S. — Occurrence, composition, and potential toxicity

    USGS Publications Warehouse

    Toccalino, Patricia L.; Norman, Julia E.; Scott, Jonathon C.

    2012-01-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources.

  20. Introducing Students to Gas Chromatography-Mass Spectrometry Analysis and Determination of Kerosene Components in a Complex Mixture

    ERIC Educational Resources Information Center

    Pacot, Giselle Mae M.; Lee, Lyn May; Chin, Sung-Tong; Marriott, Philip J.

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) are useful in many separation and characterization procedures. GC-MS is now a common tool in industry and research, and increasingly, GC-MS/MS is applied to the measurement of trace components in complex mixtures. This report describes an upper-level undergraduate experiment…

  1. Raman Scattering Study of Supercritical Bi-Component Mixtures Injected into a Subcritical Environment

    DTIC Science & Technology

    2007-09-01

    Technology (NIST) [7]. SUPERTRAPP is an interactive computer database designed to predict the thermodynamic and transport properties of fluid mixtures...of liquid sprays. However, the potential core computation is done for all the Raman scattering injection conditions to compare the condensed phase...spaced from the Rayleigh component suggesting that they contain the same information about the vibrational quantum energy. The intensity

  2. Pharmacokinetic Modeling of JP-8 Jet Fuel Components: II. A Conceptual Framework

    DTIC Science & Technology

    2003-12-01

    example, a single type of (simple) binary interaction between 300 components would require the specification of some 105 interaction coefficients . One...individual substances, via binary mechanisms, is enough to predict the interactions present in the mixture. Secondly, complex mixtures can often be...approximated as pseudo- binary systems, consisting of the compound of interest plus a single interacting complex vehicle with well-defined, composite

  3. Extraction of spatiotemporal response information from sorption-based cross-reactive sensor arrays for the identification and quantification of analyte mixtures

    NASA Astrophysics Data System (ADS)

    Woodka, Marc D.; Brunschwig, Bruce S.; Lewis, Nathan S.

    2008-03-01

    Linear sensor arrays made from small molecule/carbon black composite chemiresistors placed in a low headspace volume chamber, with vapor delivered at low flow rates, allowed for the extraction of chemical information that significantly increased the ability of the sensor arrays to identify vapor mixture components and to quantify their concentrations. Each sensor sorbed vapors from the gas stream to various degrees. Similar to gas chromatography, species having high vapor pressures were separated from species having low vapor pressures. Instead of producing typical sensor responses representative of thermodynamic equilibrium between each sensor and an unchanging vapor phase, sensor responses varied depending on the position of the sensor in the chamber and the time from the beginning of the analyte exposure. This spatiotemporal (ST) array response provided information that was a function of time as well as of the position of the sensor in the chamber. The responses to pure analytes and to multi-component analyte mixtures comprised of hexane, decane, ethyl acetate, chlorobenzene, ethanol, and/or butanol, were recorded along each of the sensor arrays. Use of a non-negative least squares (NNLS) method for analysis of the ST data enabled the correct identification and quantification of the composition of 2-, 3-, 4- and 5-component mixtures from arrays using only 4 chemically different sorbent films and sensor training on pure vapors only. In contrast, when traditional time- and position-independent sensor response information was used, significant errors in mixture identification were observed. The ability to correctly identify and quantify constituent components of vapor mixtures through the use of such ST information significantly expands the capabilities of such broadly cross-reactive arrays of sensors.

  4. Kinetic behavior of Fe(o,o-EDDHA)-humic substance mixtures in several soil components and in calcareous soils.

    PubMed

    Cerdán, Mar; Alcañiz, Sara; Juárez, Margarita; Jordá, Juana D; Bermúdez, Dolores

    2007-10-31

    Ferric ethylenediamine- N, N'-bis-(o-hydroxyphenylacetic)acid chelate (Fe(o, o-EDDHA)) is one of the most effective Fe fertilizers in calcareous soils. However, humic substances are occasionally combined with iron chelates in drip irrigation systems in order to lower costs. The reactivity of iron chelate-humic substance mixtures in several soil components and in calcareous soils was investigated through interaction tests, and their behavior was compared to the application of iron chelates and humic substances separately. Two commercial humic substances and two Fe(o, o-EDDHA) chelates (one synthesized in the laboratory and one commercial) were used to prepare iron chelate-humic substance mixtures at 50% (w/w). Various soil components (calcium carbonate, gibbsite, amorphous iron oxide, hematite, tenorite, zincite, amorphous Mn oxide, and peat) and three calcareous soils were shaken for 15 days with the mixtures and with iron chelate and humic substance solutions. The kinetic behavior of Fe(o, o-EDDHA) and Fe non-(o,o-EDDHA) (Fe bonded to (o,p-EDDHA) and other polycondensated ligands) and of the different nutrients solubilized after the interaction assay was determined. The results showed that the mixtures did not significantly reduce the retention of Fe(o, o-EDDHA) and Fe non-(o,o-EDDHA) in the soil components and the calcareous soils compared to the iron chelate solutions, but they did produce changes in the retention rate. Moreover, the competition between humic substances and synthetic chelating agents for complexing metal cations limited the effectiveness of the mixtures to mobilize nutrients from the substrates. The presence of Fe(o, p-EDDHA) and other byproducts in the commercial iron chelate had an important effect on the evolution of Fe(o, o-EDDHA) and the nutrient solubilization process.

  5. Causal mapping of emotion networks in the human brain: Framework and initial findings.

    PubMed

    Dubois, Julien; Oya, Hiroyuki; Tyszka, J Michael; Howard, Matthew; Eberhardt, Frederick; Adolphs, Ralph

    2017-11-13

    Emotions involve many cortical and subcortical regions, prominently including the amygdala. It remains unknown how these multiple network components interact, and it remains unknown how they cause the behavioral, autonomic, and experiential effects of emotions. Here we describe a framework for combining a novel technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, inferring causal structure from fMRI data (causal discovery). We outline a research program for investigating human emotion with these new tools, and provide initial findings from two large resting-state datasets as well as case studies in neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use causal discovery methods on fMRI data to infer causal graphical models of how brain regions interact, and then to further constrain these models with direct stimulation of specific brain regions and concurrent fMRI. We conclude by discussing limitations and future extensions. The approach could yield anatomical hypotheses about brain connectivity, motivate rational strategies for treating mood disorders with deep brain stimulation, and could be extended to animal studies that use combined optogenetic fMRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Predicting phase behavior of mixtures of reservoir fluids with carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, R.B.; Lingane, P.J.

    1983-10-01

    The use of an equation of state to predict phase behavior during carbon dioxide flooding is well established. There is consensus that the characterization of the C fraction, the grouping of this fraction into ''pseudo components'', and the selection of interaction parameters are the most important variables. However, the literature is vague as to how to best select the pseudo components, especially when aiming for a few-component representation as for a field scale compositional simulation. Single-contact phase behavior is presented for mixtures of Ford Geraldine (Delaware), Maljamar (Grayburg), West Sussex (Shannon), and Reservoir D reservoir fluids, and of a syntheticmore » oil C/C/C, with carbon dioxide. One can reproduce the phase behavior of these mixtures using 3-5 pseudo components and common interaction parameters. The critical properties of the pseudo components are calculated from detailed oil characterizations. Because the parameters are not further adjusted, this approach reduces the empiricism in fitting phase data and may result in a more accurate representation of the system as the composition of the oil changes during the approach to miscibility.« less

  7. Development of a Rubber-Based Product Using a Mixture Experiment: A Challenging Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaya, Yahya; Piepel, Gregory F.; Caniyilmaz, Erdal

    2013-07-01

    Many products used in daily life are made by blending two or more components. The properties of such products typically depend on the relative proportions of the components. Experimental design, modeling, and data analysis methods for mixture experiments provide for efficiently determining the component proportions that will yield a product with desired properties. This article presents a case study of the work performed to develop a new rubber formulation for an o-ring (a circular gasket) with requirements specified on 10 product properties. Each step of the study is discussed, including: 1) identifying the objective of the study and requirements formore » properties of the o-ring, 2) selecting the components to vary and specifying the component constraints, 3) constructing a mixture experiment design, 4) measuring the responses and assessing the data, 5) developing property-composition models, 6) selecting the new product formulation, and 7) confirming the selected formulation in manufacturing. The case study includes some challenging and new aspects, which are discussed in the article.« less

  8. Increased Productivity of a Cover Crop Mixture Is Not Associated with Enhanced Agroecosystem Services

    PubMed Central

    Smith, Richard G.; Atwood, Lesley W.; Warren, Nicholas D.

    2014-01-01

    Cover crops provide a variety of important agroecological services within cropping systems. Typically these crops are grown as monocultures or simple graminoid-legume bicultures; however, ecological theory and empirical evidence suggest that agroecosystem services could be enhanced by growing cover crops in species-rich mixtures. We examined cover crop productivity, weed suppression, stability, and carryover effects to a subsequent cash crop in an experiment involving a five-species annual cover crop mixture and the component species grown as monocultures in SE New Hampshire, USA in 2011 and 2012. The mean land equivalent ratio (LER) for the mixture exceeded 1.0 in both years, indicating that the mixture over-yielded relative to the monocultures. Despite the apparent over-yielding in the mixture, we observed no enhancement in weed suppression, biomass stability, or productivity of a subsequent oat (Avena sativa L.) cash crop when compared to the best monoculture component crop. These data are some of the first to include application of the LER to an analysis of a cover crop mixture and contribute to the growing literature on the agroecological effects of cover crop diversity in cropping systems. PMID:24847902

  9. Nonparametric Fine Tuning of Mixtures: Application to Non-Life Insurance Claims Distribution Estimation

    NASA Astrophysics Data System (ADS)

    Sardet, Laure; Patilea, Valentin

    When pricing a specific insurance premium, actuary needs to evaluate the claims cost distribution for the warranty. Traditional actuarial methods use parametric specifications to model claims distribution, like lognormal, Weibull and Pareto laws. Mixtures of such distributions allow to improve the flexibility of the parametric approach and seem to be quite well-adapted to capture the skewness, the long tails as well as the unobserved heterogeneity among the claims. In this paper, instead of looking for a finely tuned mixture with many components, we choose a parsimonious mixture modeling, typically a two or three-component mixture. Next, we use the mixture cumulative distribution function (CDF) to transform data into the unit interval where we apply a beta-kernel smoothing procedure. A bandwidth rule adapted to our methodology is proposed. Finally, the beta-kernel density estimate is back-transformed to recover an estimate of the original claims density. The beta-kernel smoothing provides an automatic fine-tuning of the parsimonious mixture and thus avoids inference in more complex mixture models with many parameters. We investigate the empirical performance of the new method in the estimation of the quantiles with simulated nonnegative data and the quantiles of the individual claims distribution in a non-life insurance application.

  10. Weaker Ligands Can Dominate an Odor Blend due to Syntopic Interactions

    PubMed Central

    2013-01-01

    Most odors in natural environments are mixtures of several compounds. Perceptually, these can blend into a new “perfume,” or some components may dominate as elements of the mixture. In order to understand such mixture interactions, it is necessary to study the events at the olfactory periphery, down to the level of single-odorant receptor cells. Does a strong ligand present at a low concentration outweigh the effect of weak ligands present at high concentrations? We used the fruit fly receptor dOr22a and a banana-like odor mixture as a model system. We show that an intermediate ligand at an intermediate concentration alone elicits the neuron’s blend response, despite the presence of both weaker ligands at higher concentration, and of better ligands at lower concentration in the mixture. Because all of these components, when given alone, elicited significant responses, this reveals specific mixture processing already at the periphery. By measuring complete dose–response curves we show that these mixture effects can be fully explained by a model of syntopic interaction at a single-receptor binding site. Our data have important implications for how odor mixtures are processed in general, and what preprocessing occurs before the information reaches the brain. PMID:23315042

  11. Separation of organic azeotropic mixtures by pervaporation. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, R.W.

    1991-12-01

    Distillation is a commonly used separation technique in the petroleum refining and chemical processing industries. However, there are a number of potential separations involving azetropic and close-boiling organic mixtures that cannot be separated efficiently by distillation. Pervaporation is a membrane-based process that uses selective permeation through membranes to separate liquid mixtures. Because the separation process is not affected by the relative volatility of the mixture components being separated, pervaporation can be used to separate azetropes and close-boiling mixtures. Our results showed that pervaporation membranes can be used to separate azeotropic mixtures efficiently, a result that is not achievable with simplemore » distillation. The membranes were 5--10 times more permeable to one of the components of the mixture, concentrating it in the permeate stream. For example, the membrane was 10 times more permeable to ethanol than methyl ethyl ketone, producing 60% ethanol permeate from an azeotropic mixture of ethanol and methyl ethyl ketone containing 18% ethanol. For the ethyl acetate/water mixture, the membranes showed a very high selectivity to water (> 300) and the permeate was 50--100 times enriched in water relative to the feed. The membranes had permeate fluxes on the order of 0.1--1 kg/m{sup 2}{center_dot}h in the operating range of 55--70{degrees}C. Higher fluxes were obtained by increasing the operating temperature.« less

  12. Separation of organic azeotropic mixtures by pervaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, R.W.

    1991-12-01

    Distillation is a commonly used separation technique in the petroleum refining and chemical processing industries. However, there are a number of potential separations involving azetropic and close-boiling organic mixtures that cannot be separated efficiently by distillation. Pervaporation is a membrane-based process that uses selective permeation through membranes to separate liquid mixtures. Because the separation process is not affected by the relative volatility of the mixture components being separated, pervaporation can be used to separate azetropes and close-boiling mixtures. Our results showed that pervaporation membranes can be used to separate azeotropic mixtures efficiently, a result that is not achievable with simplemore » distillation. The membranes were 5--10 times more permeable to one of the components of the mixture, concentrating it in the permeate stream. For example, the membrane was 10 times more permeable to ethanol than methyl ethyl ketone, producing 60% ethanol permeate from an azeotropic mixture of ethanol and methyl ethyl ketone containing 18% ethanol. For the ethyl acetate/water mixture, the membranes showed a very high selectivity to water (> 300) and the permeate was 50--100 times enriched in water relative to the feed. The membranes had permeate fluxes on the order of 0.1--1 kg/m{sup 2}{center dot}h in the operating range of 55--70{degrees}C. Higher fluxes were obtained by increasing the operating temperature.« less

  13. Effect of stirring on the safety of flammable liquid mixtures.

    PubMed

    Liaw, Horng-Jang; Gerbaud, Vincent; Chen, Chan-Cheng; Shu, Chi-Min

    2010-05-15

    Flash point is the most important variable employed to characterize fire and explosion hazard of liquids. The models developed for predicting the flash point of partially miscible mixtures in the literature to date are all based on the assumption of liquid-liquid equilibrium. In real-world environments, however, the liquid-liquid equilibrium assumption does not always hold, such as the collection or accumulation of waste solvents without stirring, where complete stirring for a period of time is usually used to ensure the liquid phases being in equilibrium. This study investigated the effect of stirring on the flash-point behavior of binary partially miscible mixtures. Two series of partially miscible binary mixtures were employed to elucidate the effect of stirring. The first series was aqueous-organic mixtures, including water+1-butanol, water+2-butanol, water+isobutanol, water+1-pentanol, and water+octane; the second series was the mixtures of two flammable solvents, which included methanol+decane, methanol+2,2,4-trimethylpentane, and methanol+octane. Results reveal that for binary aqueous-organic solutions the flash-point values of unstirred mixtures were located between those of the completely stirred mixtures and those of the flammable component. Therefore, risk assessment could be done based on the flammable component flash-point value. However, for the assurance of safety, it is suggested to completely stir those mixtures before handling to reduce the risk. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Process monitored spectrophotometric titration coupled with chemometrics for simultaneous determination of mixtures of weak acids.

    PubMed

    Liao, Lifu; Yang, Jing; Yuan, Jintao

    2007-05-15

    A new spectrophotometric titration method coupled with chemometrics for the simultaneous determination of mixtures of weak acids has been developed. In this method, the titrant is a mixture of sodium hydroxide and an acid-base indicator, and the indicator is used to monitor the titration process. In a process of titration, both the added volume of titrant and the solution acidity at each titration point can be obtained simultaneously from an absorption spectrum by least square algorithm, and then the concentration of each component in the mixture can be obtained from the titration curves by principal component regression. The method only needs the information of absorbance spectra to obtain the analytical results, and is free of volumetric measurements. The analyses are independent of titration end point and do not need the accurate values of dissociation constants of the indicator and the acids. The method has been applied to the simultaneous determination of the mixtures of benzoic acid and salicylic acid, and the mixtures of phenol, o-chlorophenol and p-chlorophenol with satisfactory results.

  15. [Study of Determination of Oil Mixture Components Content Based on Quasi-Monte Carlo Method].

    PubMed

    Wang, Yu-tian; Xu, Jing; Liu, Xiao-fei; Chen, Meng-han; Wang, Shi-tao

    2015-05-01

    Gasoline, kerosene, diesel is processed by crude oil with different distillation range. The boiling range of gasoline is 35 ~205 °C. The boiling range of kerosene is 140~250 °C. And the boiling range of diesel is 180~370 °C. At the same time, the carbon chain length of differentmineral oil is different. The carbon chain-length of gasoline is within the scope of C7 to C11. The carbon chain length of kerosene is within the scope of C12 to C15. And the carbon chain length of diesel is within the scope of C15 to C18. The recognition and quantitative measurement of three kinds of mineral oil is based on different fluorescence spectrum formed in their different carbon number distribution characteristics. Mineral oil pollution occurs frequently, so monitoring mineral oil content in the ocean is very important. A new method of components content determination of spectra overlapping mineral oil mixture is proposed, with calculation of characteristic peak power integrationof three-dimensional fluorescence spectrum by using Quasi-Monte Carlo Method, combined with optimal algorithm solving optimum number of characteristic peak and range of integral region, solving nonlinear equations by using BFGS(a rank to two update method named after its inventor surname first letter, Boyden, Fletcher, Goldfarb and Shanno) method. Peak power accumulation of determined points in selected area is sensitive to small changes of fluorescence spectral line, so the measurement of small changes of component content is sensitive. At the same time, compared with the single point measurement, measurement sensitivity is improved by the decrease influence of random error due to the selection of points. Three-dimensional fluorescence spectra and fluorescence contour spectra of single mineral oil and the mixture are measured by taking kerosene, diesel and gasoline as research objects, with a single mineral oil regarded whole, not considered each mineral oil components. Six characteristic peaks are selected for characteristic peak power integration to determine components content of mineral oil mixture of gasoline, kerosene and diesel by optimal algorithm. Compared with single point measurement of peak method and mean method, measurement sensitivity is improved about 50 times. The implementation of high precision measurement of mixture components content of gasoline, kerosene and diesel provides a practical algorithm for components content direct determination of spectra overlapping mixture without chemical separation.

  16. Time-causal decomposition of geomagnetic time series into secular variation, solar quiet, and disturbance signals

    USGS Publications Warehouse

    Rigler, E. Joshua

    2017-04-26

    A theoretical basis and prototype numerical algorithm are provided that decompose regular time series of geomagnetic observations into three components: secular variation; solar quiet, and disturbance. Respectively, these three components correspond roughly to slow changes in the Earth’s internal magnetic field, periodic daily variations caused by quasi-stationary (with respect to the sun) electrical current systems in the Earth’s magnetosphere, and episodic perturbations to the geomagnetic baseline that are typically driven by fluctuations in a solar wind that interacts electromagnetically with the Earth’s magnetosphere. In contrast to similar algorithms applied to geomagnetic data in the past, this one addresses the issue of real time data acquisition directly by applying a time-causal, exponential smoother with “seasonal corrections” to the data as soon as they become available.

  17. Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations

    PubMed Central

    de la Iglesia-Vaya, Maria; Escartí, Maria José; Molina-Mateo, Jose; Martí-Bonmatí, Luis; Gadea, Marien; Castellanos, Francisco Xavier; Aguilar García-Iturrospe, Eduardo J.; Robles, Montserrat; Biswal, Bharat B.; Sanjuan, Julio

    2014-01-01

    Auditory hallucinations (AH) are the most frequent positive symptoms in patients with schizophrenia. Hallucinations have been related to emotional processing disturbances, altered functional connectivity and effective connectivity deficits. Previously, we observed that, compared to healthy controls, the limbic network responses of patients with auditory hallucinations differed when the subjects were listening to emotionally charged words. We aimed to compare the synchrony patterns and effective connectivity of task-related networks between schizophrenia patients with and without AH and healthy controls. Schizophrenia patients with AH (n = 27) and without AH (n = 14) were compared with healthy participants (n = 31). We examined functional connectivity by analyzing correlations and cross-correlations among previously detected independent component analysis time courses. Granger causality was used to infer the information flow direction in the brain regions. The results demonstrate that the patterns of cortico-cortical functional synchrony differentiated the patients with AH from the patients without AH and from the healthy participants. Additionally, Granger-causal relationships between the networks clearly differentiated the groups. In the patients with AH, the principal causal source was an occipital–cerebellar component, versus a temporal component in the patients without AH and the healthy controls. These data indicate that an anomalous process of neural connectivity exists when patients with AH process emotional auditory stimuli. Additionally, a central role is suggested for the cerebellum in processing emotional stimuli in patients with persistent AH. PMID:25379429

  18. Evaluating data-driven causal inference techniques in noisy physical and ecological systems

    NASA Astrophysics Data System (ADS)

    Tennant, C.; Larsen, L.

    2016-12-01

    Causal inference from observational time series challenges traditional approaches for understanding processes and offers exciting opportunities to gain new understanding of complex systems where nonlinearity, delayed forcing, and emergent behavior are common. We present a formal evaluation of the performance of convergent cross-mapping (CCM) and transfer entropy (TE) for data-driven causal inference under real-world conditions. CCM is based on nonlinear state-space reconstruction, and causality is determined by the convergence of prediction skill with an increasing number of observations of the system. TE is the uncertainty reduction based on transition probabilities of a pair of time-lagged variables. With TE, causal inference is based on asymmetry in information flow between the variables. Observational data and numerical simulations from a number of classical physical and ecological systems: atmospheric convection (the Lorenz system), species competition (patch-tournaments), and long-term climate change (Vostok ice core) were used to evaluate the ability of CCM and TE to infer causal-relationships as data series become increasingly corrupted by observational (instrument-driven) or process (model-or -stochastic-driven) noise. While both techniques show promise for causal inference, TE appears to be applicable to a wider range of systems, especially when the data series are of sufficient length to reliably estimate transition probabilities of system components. Both techniques also show a clear effect of observational noise on causal inference. For example, CCM exhibits a negative logarithmic decline in prediction skill as the noise level of the system increases. Changes in TE strongly depend on noise type and which variable the noise was added to. The ability of CCM and TE to detect driving influences suggest that their application to physical and ecological systems could be transformative for understanding driving mechanisms as Earth systems undergo change.

  19. Frequency distribution of causal connectivity in rat sensorimotor network: resting-state fMRI analyses.

    PubMed

    Shim, Woo H; Baek, Kwangyeol; Kim, Jeong Kon; Chae, Yongwook; Suh, Ji-Yeon; Rosen, Bruce R; Jeong, Jaeseung; Kim, Young R

    2013-01-01

    Resting-state functional MRI (fMRI) has emerged as an important method for assessing neural networks, enabling extensive connectivity analyses between multiple brain regions. Among the analysis techniques proposed, partial directed coherence (PDC) provides a promising tool to unveil causal connectivity networks in the frequency domain. Using the MRI time series obtained from the rat sensorimotor system, we applied PDC analysis to determine the frequency-dependent causality networks. In particular, we compared in vivo and postmortem conditions to establish the statistical significance of directional PDC values. Our results demonstrate that two distinctive frequency populations drive the causality networks in rat; significant, high-frequency causal connections clustered in the range of 0.2-0.4 Hz, and the frequently documented low-frequency connections <0.15 Hz. Frequency-dependence and directionality of the causal connection are characteristic between sensorimotor regions, implying the functional role of frequency bands to transport specific resting-state signals. In particular, whereas both intra- and interhemispheric causal connections between heterologous sensorimotor regions are robust over all frequency levels, the bilaterally homologous regions are interhemispherically linked mostly via low-frequency components. We also discovered a significant, frequency-independent, unidirectional connection from motor cortex to thalamus, indicating dominant cortical inputs to the thalamus in the absence of external stimuli. Additionally, to address factors underlying the measurement error, we performed signal simulations and revealed that the interactive MRI system noise alone is a likely source of the inaccurate PDC values. This work demonstrates technical basis for the PDC analysis of resting-state fMRI time series and the presence of frequency-dependent causality networks in the sensorimotor system.

  20. Use Of Superacids To Digest Chrysotile And Amosite Asbestos In Simple Mixtures Or Matrices Found In Building Materials Compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, Toshifumi; Petrakis, Leon; Webster, Ronald P.

    A composition for converting asbestos-containing material to environmentally benign components is provided. The composition comprises a flouro acid decomposing agent which can be applied to either amosite-containing thermal insulation or chrysotile-containing fire-proof material or to any asbestos-containing material which includes of chrysotile and amosite asbestos. The fluoro acid decomposing agent includes FP(O)(OH).sub.2, hexafluorophosphoric acid, a mixture of hydrofluoric and phosphoric acid and a mixture of hexafluorophosphoric acid and phosphoric acid. A method for converting asbestos-containing material to environmentally benign components is also provided

  1. Use of super acids to digest chrysotile and amosite asbestos in simple mixtures or matrices found in building materials compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, T.; Petrakis, L.; Webster, R.P.

    A composition for converting asbestos-containing material to environmentally benign components is provided. The composition comprises a fluoro acid decomposing agent which can be applied to either amosite-containing thermal insulation or chrysotile-containing fire-proof material or to any asbestos-containing material which includes of chrysotile and amosite asbestos. The fluoro acid decomposing agent includes FP{sub 0}(OH){sub 2}, hexafluorophosphoric acid, a mixture of hydrofluoric and phosphoric acid and a mixture of hexafluorophosphoric acid and phosphoric acid. A method for converting asbestos-containing material to environmentally benign components is also provided.

  2. Optimization of a Three-Component Green Corrosion Inhibitor Mixture for Using in Cooling Water by Experimental Design

    NASA Astrophysics Data System (ADS)

    Asghari, E.; Ashassi-Sorkhabi, H.; Ahangari, M.; Bagheri, R.

    2016-04-01

    Factors such as inhibitor concentration, solution hydrodynamics, and temperature influence the performance of corrosion inhibitor mixtures. The simultaneous studying of the impact of different factors is a time- and cost-consuming process. The use of experimental design methods can be useful in minimizing the number of experiments and finding local optimized conditions for factors under the investigation. In the present work, the inhibition performance of a three-component inhibitor mixture against corrosion of St37 steel rotating disk electrode, RDE, was studied. The mixture was composed of citric acid, lanthanum(III) nitrate, and tetrabutylammonium perchlorate. In order to decrease the number of experiments, the L16 Taguchi orthogonal array was used. The "control factors" were the concentration of each component and the rotation rate of RDE and the "response factor" was the inhibition efficiency. The scanning electron microscopy and energy dispersive x-ray spectroscopy techniques verified the formation of islands of adsorbed citrate complexes with lanthanum ions and insoluble lanthanum(III) hydroxide. From the Taguchi analysis results the mixture of 0.50 mM lanthanum(III) nitrate, 0.50 mM citric acid, and 2.0 mM tetrabutylammonium perchlorate under the electrode rotation rate of 1000 rpm was found as optimum conditions.

  3. Separation mechanism of nortriptyline and amytriptyline in RPLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A

    2005-08-01

    The single and the competitive equilibrium isotherms of nortriptyline and amytriptyline were acquired by frontal analysis (FA) on the C{sub 18}-bonded discovery column, using a 28/72 (v/v) mixture of acetonitrile and water buffered with phosphate (20 mM, pH 2.70). The adsorption energy distributions (AED) of each compound were calculated from the raw adsorption data. Both the fitting of the adsorption data using multi-linear regression analysis and the AEDs are consistent with a trimodal isotherm model. The single-component isotherm data fit well to the tri-Langmuir isotherm model. The extension to a competitive two-component tri-Langmuir isotherm model based on the best parametersmore » of the single-component isotherms does not account well for the breakthrough curves nor for the overloaded band profiles measured for mixtures of nortriptyline and amytriptyline. However, it was possible to derive adjusted parameters of a competitive tri-Langmuir model based on the fitting of the adsorption data obtained for these mixtures. A very good agreement was then found between the calculated and the experimental overloaded band profiles of all the mixtures injected.« less

  4. A Comprehensive Mixture of Tobacco Smoke Components Retards Orthodontic Tooth Movement via the Inhibition of Osteoclastogenesis in a Rat Model

    PubMed Central

    Nagaie, Maya; Nishiura, Aki; Honda, Yoshitomo; Fujiwara, Shin-Ichi; Matsumoto, Naoyuki

    2014-01-01

    Tobacco smoke is a complex mixture of numerous components. Nevertheless, most experiments have examined the effects of individual chemicals in tobacco smoke. The comprehensive effects of components on tooth movement and bone resorption remain unexplored. Here, we have shown that a comprehensive mixture of tobacco smoke components (TSCs) attenuated bone resorption through osteoclastogenesis inhibition, thereby retarding experimental tooth movement in a rat model. An elastic power chain (PC) inserted between the first and second maxillary molars robustly yielded experimental tooth movement within 10 days. TSC administration effectively retarded tooth movement since day 4. Histological evaluation disclosed that tooth movement induced bone resorption at two sites: in the bone marrow and the peripheral bone near the root. TSC administration significantly reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclastic cells in the bone marrow cavity of the PC-treated dentition. An in vitro study indicated that the inhibitory effects of TSCs on osteoclastogenesis seemed directed more toward preosteoclasts than osteoblasts. These results indicate that the comprehensive mixture of TSCs might be a useful tool for detailed verification of the adverse effects of tobacco smoke, possibly contributing to the development of reliable treatments in various fields associated with bone resorption. PMID:25322153

  5. Application of stored waveform ion modulation 2D-FTICR MS/MS to the analysis of complex mixtures.

    PubMed

    Ross, Charles W; Simonsick, William J; Aaserud, David J

    2002-09-15

    Component identification of complex mixtures, whether they are from polymeric formulations or combinatorial synthesis, by conventional MS/MS techniques generally requires component separation by chromatography or mass spectrometry. An automated means of acquiring simultaneous MS/MS data from a complex mixture without prior separation is obtained from stored waveform ion modulation (SWIM) two-dimensional FTICR MS/MS. The technique applies a series of SWIFT excitation waveforms whose frequency domain magnitude spectrum is a sinusoid increasing in frequency from one waveform to the next. The controlled dissociation of the precursor ions produces an associated modulation of the product ion abundances. Fourier transformation of these abundances reveals the encoded modulation frequency from which connectivities of precursor and product ions are observed. The final result is total assignment of product ions for each precursor ion in a mixture from one automated experiment. We demonstrated the applicability of SWIM 2D-FTICR MS/MS to two diverse samples of industrial importance. We characterized structured polyester oligomers and products derived from combinatorial synthesis. Fragmentation pathways identified in standard serial ion isolation MS/MS experiments were observed for trimethylolpropane/methyl hexahydrophthalic anhydride. A 20-component sample derived from combinatorial synthesis was fragmented, and the template ion along with another key fragment ion was identified for each of the 20 components.

  6. Gravel-Sand-Clay Mixture Model for Predictions of Permeability and Velocity of Unconsolidated Sediments

    NASA Astrophysics Data System (ADS)

    Konishi, C.

    2014-12-01

    Gravel-sand-clay mixture model is proposed particularly for unconsolidated sediments to predict permeability and velocity from volume fractions of the three components (i.e. gravel, sand, and clay). A well-known sand-clay mixture model or bimodal mixture model treats clay contents as volume fraction of the small particle and the rest of the volume is considered as that of the large particle. This simple approach has been commonly accepted and has validated by many studies before. However, a collection of laboratory measurements of permeability and grain size distribution for unconsolidated samples show an impact of presence of another large particle; i.e. only a few percent of gravel particles increases the permeability of the sample significantly. This observation cannot be explained by the bimodal mixture model and it suggests the necessity of considering the gravel-sand-clay mixture model. In the proposed model, I consider the three volume fractions of each component instead of using only the clay contents. Sand becomes either larger or smaller particles in the three component mixture model, whereas it is always the large particle in the bimodal mixture model. The total porosity of the two cases, one is the case that the sand is smaller particle and the other is the case that the sand is larger particle, can be modeled independently from sand volume fraction by the same fashion in the bimodal model. However, the two cases can co-exist in one sample; thus, the total porosity of the mixed sample is calculated by weighted average of the two cases by the volume fractions of gravel and clay. The effective porosity is distinguished from the total porosity assuming that the porosity associated with clay is zero effective porosity. In addition, effective grain size can be computed from the volume fractions and representative grain sizes for each component. Using the effective porosity and the effective grain size, the permeability is predicted by Kozeny-Carman equation. Furthermore, elastic properties are obtainable by general Hashin-Shtrikman-Walpole bounds. The predicted results by this new mixture model are qualitatively consistent with laboratory measurements and well log obtained for unconsolidated sediments. Acknowledgement: A part of this study was accomplished with a subsidy of River Environment Fund of Japan.

  7. High pressure and temperature optical flow cell for near-infra-red spectroscopic analysis of gas mixtures.

    PubMed

    Norton, C G; Suedmeyer, J; Oderkerk, B; Fieback, T M

    2014-05-01

    A new optical flow cell with a new optical arrangement adapted for high pressures and temperatures using glass fibres to connect light source, cell, and spectrometer has been developed, as part of a larger project comprising new methods for in situ analysis of bio and hydrogen gas mixtures in high pressure and temperature applications. The analysis is based on measurements of optical, thermo-physical, and electromagnetic properties in gas mixtures with newly developed high pressure property sensors, which are mounted in a new apparatus which can generate gas mixtures with up to six components with an uncertainty of composition of as little as 0.1 mol. %. Measurements of several pure components of natural gases and biogases to a pressure of 20 MPa were performed on two isotherms, and with binary mixtures of the same pure gases at pressures to 17.5 MPa. Thereby a new method of analyzing the obtained spectra based on the partial density of methane was investigated.

  8. Optimization of glibenclamide tablet composition through the combined use of differential scanning calorimetry and D-optimal mixture experimental design.

    PubMed

    Mura, P; Furlanetto, S; Cirri, M; Maestrelli, F; Marras, A M; Pinzauti, S

    2005-02-07

    A systematic analysis of the influence of different proportions of excipients on the stability of a solid dosage form was carried out. In particular, a d-optimal mixture experimental design was applied for the evaluation of glibenclamide compatibility in tablet formulations, consisting of four classic excipients (natrosol as binding agent, stearic acid as lubricant, sorbitol as diluent and cross-linked polyvinylpyrrolidone as disintegrant). The goal was to find the mixture component proportions which correspond to the optimal drug melting parameters, i.e. its maximum stability, using differential scanning calorimetry (DSC) to quickly obtain information about possible interactions among the formulation components. The absolute value of the difference between the melting peak temperature of pure drug endotherm and that in each analysed mixture and the absolute value of the difference between the enthalpy of the pure glibenclamide melting peak and that of its melting peak in the different analyzed mixtures, were chosen as indexes of the drug-excipient interaction degree.

  9. Statistical mechanics of binary mixture adsorption in metal-organic frameworks in the osmotic ensemble.

    PubMed

    Dunne, Lawrence J; Manos, George

    2018-03-13

    Although crucial for designing separation processes little is known experimentally about multi-component adsorption isotherms in comparison with pure single components. Very few binary mixture adsorption isotherms are to be found in the literature and information about isotherms over a wide range of gas-phase composition and mechanical pressures and temperature is lacking. Here, we present a quasi-one-dimensional statistical mechanical model of binary mixture adsorption in metal-organic frameworks (MOFs) treated exactly by a transfer matrix method in the osmotic ensemble. The experimental parameter space may be very complex and investigations into multi-component mixture adsorption may be guided by theoretical insights. The approach successfully models breathing structural transitions induced by adsorption giving a good account of the shape of adsorption isotherms of CO 2 and CH 4 adsorption in MIL-53(Al). Binary mixture isotherms and co-adsorption-phase diagrams are also calculated and found to give a good description of the experimental trends in these properties and because of the wide model parameter range which reproduces this behaviour suggests that this is generic to MOFs. Finally, a study is made of the influence of mechanical pressure on the shape of CO 2 and CH 4 adsorption isotherms in MIL-53(Al). Quite modest mechanical pressures can induce significant changes to isotherm shapes in MOFs with implications for binary mixture separation processes.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  10. Statistical mechanics of binary mixture adsorption in metal-organic frameworks in the osmotic ensemble

    NASA Astrophysics Data System (ADS)

    Dunne, Lawrence J.; Manos, George

    2018-03-01

    Although crucial for designing separation processes little is known experimentally about multi-component adsorption isotherms in comparison with pure single components. Very few binary mixture adsorption isotherms are to be found in the literature and information about isotherms over a wide range of gas-phase composition and mechanical pressures and temperature is lacking. Here, we present a quasi-one-dimensional statistical mechanical model of binary mixture adsorption in metal-organic frameworks (MOFs) treated exactly by a transfer matrix method in the osmotic ensemble. The experimental parameter space may be very complex and investigations into multi-component mixture adsorption may be guided by theoretical insights. The approach successfully models breathing structural transitions induced by adsorption giving a good account of the shape of adsorption isotherms of CO2 and CH4 adsorption in MIL-53(Al). Binary mixture isotherms and co-adsorption-phase diagrams are also calculated and found to give a good description of the experimental trends in these properties and because of the wide model parameter range which reproduces this behaviour suggests that this is generic to MOFs. Finally, a study is made of the influence of mechanical pressure on the shape of CO2 and CH4 adsorption isotherms in MIL-53(Al). Quite modest mechanical pressures can induce significant changes to isotherm shapes in MOFs with implications for binary mixture separation processes. This article is part of the theme issue `Modern theoretical chemistry'.

  11. Predicting the tensile strength of compacted multi-component mixtures of pharmaceutical powders.

    PubMed

    Wu, Chuan-Yu; Best, Serena M; Bentham, A Craig; Hancock, Bruno C; Bonfield, William

    2006-08-01

    Pharmaceutical tablets are generally produced by compacting a mixture of several ingredients, including active drugs and excipients. It is of practical importance if the properties of such tablets can be predicted on the basis of the ones for constituent components. The purpose of this work is to develop a theoretical model which can predict the tensile strength of compacted multi-component pharmaceutical mixtures. The model was derived on the basis of the Ryshkewitch-Duckworth equation that was originally proposed for porous materials. The required input parameters for the model are the relative density or solid fraction (ratio of the volume of solid materials to the total volume of the tablets) of the multi-component tablets and parameters associated with the constituent single-component powders, which are readily accessible. The tensile strength of tablets made of various powder blends at different relative density was also measured using diametrical compression. It has been shown that the tensile strength of the multi-component powder compacts is primarily a function of the solid fraction. Excellent agreement between prediction and experimental data for tablets of binary, ternary and four-component blends of some widely used pharmaceutical excipients was obtained. It has been demonstrated that the proposed model can well predict the tensile strength of multi-component pharmaceutical tablets. Thus, the model will be a useful design tool for formulation engineers in the pharmaceutical industry.

  12. Estimating the number of pure chemical components in a mixture by X-ray absorption spectroscopy.

    PubMed

    Manceau, Alain; Marcus, Matthew; Lenoir, Thomas

    2014-09-01

    Principal component analysis (PCA) is a multivariate data analysis approach commonly used in X-ray absorption spectroscopy to estimate the number of pure compounds in multicomponent mixtures. This approach seeks to describe a large number of multicomponent spectra as weighted sums of a smaller number of component spectra. These component spectra are in turn considered to be linear combinations of the spectra from the actual species present in the system from which the experimental spectra were taken. The dimension of the experimental dataset is given by the number of meaningful abstract components, as estimated by the cascade or variance of the eigenvalues (EVs), the factor indicator function (IND), or the F-test on reduced EVs. It is shown on synthetic and real spectral mixtures that the performance of the IND and F-test critically depends on the amount of noise in the data, and may result in considerable underestimation or overestimation of the number of components even for a signal-to-noise (s/n) ratio of the order of 80 (σ = 20) in a XANES dataset. For a given s/n ratio, the accuracy of the component recovery from a random mixture depends on the size of the dataset and number of components, which is not known in advance, and deteriorates for larger datasets because the analysis picks up more noise components. The scree plot of the EVs for the components yields one or two values close to the significant number of components, but the result can be ambiguous and its uncertainty is unknown. A new estimator, NSS-stat, which includes the experimental error to XANES data analysis, is introduced and tested. It is shown that NSS-stat produces superior results compared with the three traditional forms of PCA-based component-number estimation. A graphical user-friendly interface for the calculation of EVs, IND, F-test and NSS-stat from a XANES dataset has been developed under LabVIEW for Windows and is supplied in the supporting information. Its possible application to EXAFS data is discussed, and several XANES and EXAFS datasets are also included for download.

  13. Near azeotropic mixture substitute for dichlorodifluoromethane

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1998-01-01

    A refrigerant and a process of formulating thereof that consists of a mixture of a first mole fraction of CH.sub.2 FCF.sub.3 and a second mole fraction of a component selected from the group consisting of a mixture of CHClFCF.sub.3 and CH.sub.3 CClF.sub.2 ; a mixture of CHF.sub.2 CH.sub.3 and CH.sub.3 CClF.sub.2 ; and a mixture of CHClFCF.sub.3, CH.sub.3 CClF.sub.2 and CHF.sub.2 CH.sub.3.

  14. Using causal loop diagrams for the initialization of stakeholder engagement in soil salinity management in agricultural watersheds in developing countries: a case study in the Rechna Doab watershed, Pakistan.

    PubMed

    Inam, Azhar; Adamowski, Jan; Halbe, Johannes; Prasher, Shiv

    2015-04-01

    Over the course of the last twenty years, participatory modeling has increasingly been advocated as an integral component of integrated, adaptive, and collaborative water resources management. However, issues of high cost, time, and expertise are significant hurdles to the widespread adoption of participatory modeling in many developing countries. In this study, a step-wise method to initialize the involvement of key stakeholders in the development of qualitative system dynamics models (i.e. causal loop diagrams) is presented. The proposed approach is designed to overcome the challenges of low expertise, time and financial resources that have hampered previous participatory modeling efforts in developing countries. The methodological framework was applied in a case study of soil salinity management in the Rechna Doab region of Pakistan, with a focus on the application of qualitative modeling through stakeholder-built causal loop diagrams to address soil salinity problems in the basin. Individual causal loop diagrams were developed by key stakeholder groups, following which an overall group causal loop diagram of the entire system was built based on the individual causal loop diagrams to form a holistic qualitative model of the whole system. The case study demonstrates the usefulness of the proposed approach, based on using causal loop diagrams in initiating stakeholder involvement in the participatory model building process. In addition, the results point to social-economic aspects of soil salinity that have not been considered by other modeling studies to date. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. [Causal analysis approaches in epidemiology].

    PubMed

    Dumas, O; Siroux, V; Le Moual, N; Varraso, R

    2014-02-01

    Epidemiological research is mostly based on observational studies. Whether such studies can provide evidence of causation remains discussed. Several causal analysis methods have been developed in epidemiology. This paper aims at presenting an overview of these methods: graphical models, path analysis and its extensions, and models based on the counterfactual approach, with a special emphasis on marginal structural models. Graphical approaches have been developed to allow synthetic representations of supposed causal relationships in a given problem. They serve as qualitative support in the study of causal relationships. The sufficient-component cause model has been developed to deal with the issue of multicausality raised by the emergence of chronic multifactorial diseases. Directed acyclic graphs are mostly used as a visual tool to identify possible confounding sources in a study. Structural equations models, the main extension of path analysis, combine a system of equations and a path diagram, representing a set of possible causal relationships. They allow quantifying direct and indirect effects in a general model in which several relationships can be tested simultaneously. Dynamic path analysis further takes into account the role of time. The counterfactual approach defines causality by comparing the observed event and the counterfactual event (the event that would have been observed if, contrary to the fact, the subject had received a different exposure than the one he actually received). This theoretical approach has shown limits of traditional methods to address some causality questions. In particular, in longitudinal studies, when there is time-varying confounding, classical methods (regressions) may be biased. Marginal structural models have been developed to address this issue. In conclusion, "causal models", though they were developed partly independently, are based on equivalent logical foundations. A crucial step in the application of these models is the formulation of causal hypotheses, which will be a basis for all methodological choices. Beyond this step, statistical analysis tools recently developed offer new possibilities to delineate complex relationships, in particular in life course epidemiology. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Detecting causal drivers and empirical prediction of the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Di Capua, G.; Vellore, R.; Raghavan, K.; Coumou, D.

    2017-12-01

    The Indian summer monsoon (ISM) is crucial for the economy, society and natural ecosystems on the Indian peninsula. Predict the total seasonal rainfall at several months lead time would help to plan effective water management strategies, improve flood or drought protection programs and prevent humanitarian crisis. However, the complexity and strong internal variability of the ISM circulation system make skillful seasonal forecasting challenging. Moreover, to adequately identify the low-frequency, and far-away processes which influence ISM behavior novel tools are needed. We applied a Response-Guided Causal Precursor Detection (RGCPD) scheme, which is a novel empirical prediction method which unites a response-guided community detection scheme with a causal discovery algorithm (CEN). These tool allow us to assess causal pathways between different components of the ISM circulation system and with far-away regions in the tropics, mid-latitudes or Arctic. The scheme has successfully been used to identify causal precursors of the Stratospheric polar vortex enabling skillful predictions at (sub) seasonal timescales (Kretschmer et al. 2016, J.Clim., Kretschmer et al. 2017, GRL). We analyze observed ISM monthly rainfall over the monsoon trough region. Applying causal discovery techniques, we identify several causal precursor communities in the fields of 2m-temperature, sea level pressure and snow depth over Eurasia. Specifically, our results suggest that surface temperature conditions in both tropical and Arctic regions contribute to ISM variability. A linear regression prediction model based on the identified set of communities has good hindcasting skills with 4-5 months lead times. Further we separate El Nino, La Nina and ENSO-neutral years from each other and find that the causal precursors are different dependent on ENSO state. The ENSO-state dependent causal precursors give even higher skill, especially for La Nina years when the ISM is relatively strong. These findings are promising results that might ultimately contribute to both improved understanding of the ISM circulation system and help improving seasonal ISM forecasts.

  17. Acyl chain conformational ordering of individual components in liquid-crystalline bilayers of mixtures of phosphatidylcholines and phosphatidic acids. A comparative FTIR and 2H NMR study

    NASA Astrophysics Data System (ADS)

    Ziegler, Wolfgang; Blume, Alfred

    1995-09-01

    The conformational ordering of the acyl chains of all possible binary 1:1 mixtures containing the phospholipids DMPC, DMPA, DPPC, and DPPA was investigated using FTIR and 2H NMR spectroscopy. One of the components was always labelled with perdeuterated chains to be able to observe the individual behaviour of the two components. From the temperature dependence of the frequencies of the symmetric and antisymmetric CH 2- and CD 2-stretching vibrations the transition temperatures were determined. The integral intensities of the conformation sensitive CH 2-wagging bands at ca. 1368 cm -1(gtg' and gtg sequences), 1356 cm -1 (double gauche), and 1342 cm -1 (end gauche) can be converted to numbers of gauche conformers per acyl chain using calibration factors published by Senak et al. J. Phys. Chem. 95 (1991) 2565. The 2H NMR quadrupolar splittings of the CD 2-segments of the perdeuterated lipid components are affected not only by trans-gauche isomerizations but also by long axis rotations and restricted wobbling motions of the acyl chains. The values of the average gauche probability overlinep3 from FTIR spectroscopy and the average order parameters overlineSCD, the order parameter of the terminal methyl groups SCDCD 3 and the average order parameter for the plateau region overlineSCDPlat of components in the mixtures are compared to those of the pure lipids evaluated in a previous publication Tuchtenhagen et al. Eur. Biophys. J. 23 (1994) 323. The conformational behaviour of lipids in mixtures is mainly influenced by head groups interactions, PAs always being more ordered than the corresponding PCs. Depending on absolute chain length and on chain length differences between the two components different conformational behaviour is observed for the two components in the mixtures, indicating non-ideal mixing and formation of micro-domains in the liquid-crystalline phase. Increases in order at the chain ends with a concomitant decrease in probabilities for end gauche conformations give hints to chain interdigitation in the liquid-crystalline phase.

  18. Cumulative Effects of In Utero Administration of Mixtures of Reproductive Toxicants that Disrupt Common Target Tissues via Diverse Mechanisms of Toxicity

    PubMed Central

    Rider, Cynthia V.; Furr, Johnathan R.; Wilson, Vickie S.; Gray, L. Earl

    2010-01-01

    Although risk assessments are typically conducted on a chemical-by-chemical basis, the 1996 Food Quality Protection Act required the US Environmental Protection Agency to consider cumulative risk of chemicals that act via a common mechanism of toxicity. To this end, we are conducting studies with mixtures of chemicals to elucidate mechanisms of joint action at the systemic level with the end goal of providing a framework for assessing the cumulative effects of reproductive toxicants. Previous mixture studies conducted with antiandrogenic chemicals are reviewed briefly and two new studies are described in detail. In all binary mixture studies, rats were dosed during pregnancy with chemicals, singly or in pairs at dosage levels equivalent to approximately one half of the ED50 for hypospadias or epididymal agenesis. The binary mixtures included: androgen receptor (AR) antagonists (vinclozolin plus procymidone), phthalate esters (DBP plus BBP and DEHP plus DBP), a phthalate ester plus an AR antagonist (DBP plus procymidone), a mixed mechanism androgen signaling disruptor (linuron) plus BBP, and two chemicals which disrupt epididymal differentiation through entirely different toxicity pathways: DBP (AR pathway) plus 2,3,7,8 TCDD (AhR pathway). We also conducted multi-component mixture studies combining several “antiandrogens” together. In the first study, seven chemicals (four pesticides and three phthalates) that elicit antiandrogenic effects at two different sites in the androgen signaling pathway (i.e. AR antagonist or inhibition of androgen synthesis) were combined. In the second study, three additional phthalates were added to make a ten chemical mixture. In both the binary mixture studies and the multi-component mixture studies, chemicals that targeted male reproductive tract development displayed cumulative effects that exceeded predictions based upon a response addition model and most often were in accordance with predictions based upon dose addition models. In summary, our results indicate that compounds that act by disparate mechanisms of toxicity to disrupt the dynamic interactions among the interconnected signaling pathways in differentiating tissues produce cumulative dose-additive effects, regardless of the mechanism or mode of action of the individual mixture component. PMID:20487044

  19. A mixture toxicity approach to predict the toxicity of Ag decorated ZnO nanomaterials.

    PubMed

    Azevedo, S L; Holz, T; Rodrigues, J; Monteiro, T; Costa, F M; Soares, A M V M; Loureiro, S

    2017-02-01

    Nanotechnology is a rising field and nanomaterials can now be found in a vast variety of products with different chemical compositions, sizes and shapes. New nanostructures combining different nanomaterials are being developed due to their enhancing characteristics when compared to nanomaterials alone. In the present study, the toxicity of a nanostructure composed by a ZnO nanomaterial with Ag nanomaterials on its surface (designated as ZnO/Ag nanostructure) was assessed using the model-organism Daphnia magna and its toxicity predicted based on the toxicity of the single components (Zn and Ag). For that ZnO and Ag nanomaterials as single components, along with its mixture prepared in the laboratory, were compared in terms of toxicity to ZnO/Ag nanostructures. Toxicity was assessed by immobilization and reproduction tests. A mixture toxicity approach was carried out using as starting point the conceptual model of Concentration Addition. The laboratory mixture of both nanomaterials showed that toxicity was dependent on the doses of ZnO and Ag used (immobilization) or presented a synergistic pattern (reproduction). The ZnO/Ag nanostructure toxicity prediction, based on the percentage of individual components, showed an increase in toxicity when compared to the expected (immobilization) and dependent on the concentration used (reproduction). This study demonstrates that the toxicity of the prepared mixture of ZnO and Ag and of the ZnO/Ag nanostructure cannot be predicted based on the toxicity of their components, highlighting the importance of taking into account the interaction between nanomaterials when assessing hazard and risk. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. EMG-Torque Dynamics Change With Contraction Bandwidth.

    PubMed

    Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E

    2018-04-01

    An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.

  1. Gas storage and separation by electric field swing adsorption

    DOEpatents

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  2. Quantitative analysis of multi-component gas mixture based on AOTF-NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hao, Huimin; Zhang, Yong; Liu, Junhua

    2007-12-01

    Near Infrared (NIR) spectroscopy analysis technology has attracted many eyes and has wide application in many domains in recent years because of its remarkable advantages. But the NIR spectrometer can only be used for liquid and solid analysis by now. In this paper, a new quantitative analysis method of gas mixture by using new generation NIR spectrometer is explored. To collect the NIR spectra of gas mixtures, a vacuumable gas cell was designed and assembled to Luminar 5030-731 Acousto-Optic Tunable Filter (AOTF)-NIR spectrometer. Standard gas samples of methane (CH 4), ethane (C IIH 6) and propane (C 3H 8) are diluted with super pure nitrogen via precision volumetric gas flow controllers to obtain gas mixture samples of different concentrations dynamically. The gas mixtures were injected into the gas cell and the spectra of wavelength between 1100nm-2300nm were collected. The feature components extracted from gas mixture spectra by using Partial Least Squares (PLS) were used as the inputs of the Support Vector Regress Machine (SVR) to establish the quantitative analysis model. The effectiveness of the model is tested by the samples of predicting set. The prediction Root Mean Square Error (RMSE) of CH 4, C IIH 6 and C 3H 8 is respectively 1.27%, 0.89%, and 1.20% when the concentrations of component gas are over 0.5%. It shows that the AOTF-NIR spectrometer with gas cell can be used for gas mixture analysis. PLS combining with SVR has a good performance in NIR spectroscopy analysis. This paper provides the bases for extending the application of NIR spectroscopy analysis to gas detection.

  3. Proof that green tea tannin suppresses the increase in the blood methylguanidine level associated with renal failure.

    PubMed

    Yokozawa, T; Dong, E; Oura, H

    1997-02-01

    The effects of a green tea tannin mixture and its individual tannin components on methylguanidine were examined in rats with renal failure. The green tea tannin mixture caused a dose-dependent decrease in methylguanidine, a substance which accumulates in the blood with the progression of renal failure. Among individual tannin components, the effect was most conspicuous with (-)-epigallocatechin 3-O-gallate and (-)-epicatechin 3-O-gallate, while other components not linked to gallic acid showed only weak effects. Thus, the effect on methylguanidine was found to vary among different types of tannin.

  4. Multiple-Nozzle Spray Head Applies Foam Insulation

    NASA Technical Reports Server (NTRS)

    Walls, Joe T.

    1993-01-01

    Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.

  5. Automatic Control of the Concrete Mixture Homogeneity in Cycling Mixers

    NASA Astrophysics Data System (ADS)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The article describes the factors affecting the concrete mixture quality related to the moisture content of aggregates, since the effectiveness of the concrete mixture production is largely determined by the availability of quality management tools at all stages of the technological process. It is established that the unaccounted moisture of aggregates adversely affects the concrete mixture homogeneity and, accordingly, the strength of building structures. A new control method and the automatic control system of the concrete mixture homogeneity in the technological process of mixing components have been proposed, since the tasks of providing a concrete mixture are performed by the automatic control system of processing kneading-and-mixing machinery with operational automatic control of homogeneity. Theoretical underpinnings of the control of the mixture homogeneity are presented, which are related to a change in the frequency of vibrodynamic vibrations of the mixer body. The structure of the technical means of the automatic control system for regulating the supply of water is determined depending on the change in the concrete mixture homogeneity during the continuous mixing of components. The following technical means for establishing automatic control have been chosen: vibro-acoustic sensors, remote terminal units, electropneumatic control actuators, etc. To identify the quality indicator of automatic control, the system offers a structure flowchart with transfer functions that determine the ACS operation in transient dynamic mode.

  6. The Kirkwood-Buff theory of solutions and the local composition of liquid mixtures.

    PubMed

    Shulgin, Ivan L; Ruckenstein, Eli

    2006-06-29

    The present paper is devoted to the local composition of liquid mixtures calculated in the framework of the Kirkwood-Buff theory of solutions. A new method is suggested to calculate the excess (or deficit) number of various molecules around a selected (central) molecule in binary and multicomponent liquid mixtures in terms of measurable macroscopic thermodynamic quantities, such as the derivatives of the chemical potentials with respect to concentrations, the isothermal compressibility, and the partial molar volumes. This method accounts for an inaccessible volume due to the presence of a central molecule and is applied to binary and ternary mixtures. For the ideal binary mixture it is shown that because of the difference in the volumes of the pure components there is an excess (or deficit) number of different molecules around a central molecule. The excess (or deficit) becomes zero when the components of the ideal binary mixture have the same volume. The new method is also applied to methanol + water and 2-propanol + water mixtures. In the case of the 2-propanol + water mixture, the new method, in contrast to the other ones, indicates that clusters dominated by 2-propanol disappear at high alcohol mole fractions, in agreement with experimental observations. Finally, it is shown that the application of the new procedure to the ternary mixture water/protein/cosolvent at infinite dilution of the protein led to almost the same results as the methods involving a reference state.

  7. High Degree of Interlaboratory Reproducibility of Human Immunodeficiency Virus Type 1 Protease and Reverse Transcriptase Sequencing of Plasma Samples from Heavily Treated Patients

    PubMed Central

    Shafer, Robert W.; Hertogs, Kurt; Zolopa, Andrew R.; Warford, Ann; Bloor, Stuart; Betts, Bradley J.; Merigan, Thomas C.; Harrigan, Richard; Larder, Brendon A.

    2001-01-01

    We assessed the reproducibility of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) and protease sequencing using cryopreserved plasma aliquots obtained from 46 heavily treated HIV-1-infected individuals in two laboratories using dideoxynucleotide sequencing. The rates of complete sequence concordance between the two laboratories were 99.1% for the protease sequence and 99.0% for the RT sequence. Approximately 90% of the discordances were partial, defined as one laboratory detecting a mixture and the second laboratory detecting only one of the mixture's components. Only 0.1% of the nucleotides were completely discordant between the two laboratories, and these were significantly more likely to occur in plasma samples with lower plasma HIV-1 RNA levels. Nucleotide mixtures were detected at approximately 1% of the nucleotide positions, and in every case in which one laboratory detected a mixture, the second laboratory either detected the same mixture or detected one of the mixture's components. The high rate of concordance in detecting mixtures and the fact that most discordances between the two laboratories were partial suggest that most discordances were caused by variation in sampling of the HIV-1 quasispecies by PCR rather than by technical errors in the sequencing process itself. PMID:11283081

  8. Two-component mixture model: Application to palm oil and exchange rate

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-12-01

    Palm oil is a seed crop which is widely adopt for food and non-food products such as cookie, vegetable oil, cosmetics, household products and others. Palm oil is majority growth in Malaysia and Indonesia. However, the demand for palm oil is getting growth and rapidly running out over the years. This phenomenal cause illegal logging of trees and destroy the natural habitat. Hence, the present paper investigates the relationship between exchange rate and palm oil price in Malaysia by using Maximum Likelihood Estimation via Newton-Raphson algorithm to fit a two components mixture model. Besides, this paper proposes a mixture of normal distribution to accommodate with asymmetry characteristics and platykurtic time series data.

  9. Molecular simulation investigation into the performance of Cu-BTC metal-organic frameworks for carbon dioxide-methane separations.

    PubMed

    Gutiérrez-Sevillano, Juan José; Caro-Pérez, Alejandro; Dubbeldam, David; Calero, Sofía

    2011-12-07

    We report a molecular simulation study for Cu-BTC metal-organic frameworks as carbon dioxide-methane separation devices. For this study we have computed adsorption and diffusion of methane and carbon dioxide in the structure, both as pure components and mixtures over the full range of bulk gas compositions. From the single component isotherms, mixture adsorption is predicted using the ideal adsorbed solution theory. These predictions are in very good agreement with our computed mixture isotherms and with previously reported data. Adsorption and diffusion selectivities and preferential sitings are also discussed with the aim to provide new molecular level information for all studied systems.

  10. Goal setting and action planning in the rehabilitation setting: development of a theoretically informed practice framework.

    PubMed

    Scobbie, Lesley; Dixon, Diane; Wyke, Sally

    2011-05-01

    Setting and achieving goals is fundamental to rehabilitation practice but has been criticized for being a-theoretical and the key components of replicable goal-setting interventions are not well established. To describe the development of a theory-based goal setting practice framework for use in rehabilitation settings and to detail its component parts. Causal modelling was used to map theories of behaviour change onto the process of setting and achieving rehabilitation goals, and to suggest the mechanisms through which patient outcomes are likely to be affected. A multidisciplinary task group developed the causal model into a practice framework for use in rehabilitation settings through iterative discussion and implementation with six patients. Four components of a goal-setting and action-planning practice framework were identified: (i) goal negotiation, (ii) goal identification, (iii) planning, and (iv) appraisal and feedback. The variables hypothesized to effect change in patient outcomes were self-efficacy and action plan attainment. A theory-based goal setting practice framework for use in rehabilitation settings is described. The framework requires further development and systematic evaluation in a range of rehabilitation settings.

  11. Culture, attribution and automaticity: a social cognitive neuroscience view

    PubMed Central

    Morris, Michael W.

    2010-01-01

    A fundamental challenge facing social perceivers is identifying the cause underlying other people’s behavior. Evidence indicates that East Asian perceivers are more likely than Western perceivers to reference the social context when attributing a cause to a target person’s actions. One outstanding question is whether this reflects a culture’s influence on automatic or on controlled components of causal attribution. After reviewing behavioral evidence that culture can shape automatic mental processes as well as controlled reasoning, we discuss the evidence in favor of cultural differences in automatic and controlled components of causal attribution more specifically. We contend that insights emerging from social cognitive neuroscience research can inform this debate. After introducing an attribution framework popular among social neuroscientists, we consider findings relevant to the automaticity of attribution, before speculating how one could use a social neuroscience approach to clarify whether culture affects automatic, controlled or both types of attribution processes. PMID:20460302

  12. Determinants of Propranolol's Selective Effect on Loss Aversion.

    PubMed

    Sokol-Hessner, Peter; Lackovic, Sandra F; Tobe, Russell H; Camerer, Colin F; Leventhal, Bennett L; Phelps, Elizabeth A

    2015-07-01

    Research on emotion and decision making has suggested that arousal mediates risky decisions, but several distinct and often confounded processes drive such choices. We used econometric modeling to separate and quantify the unique contributions of loss aversion, risk attitudes, and choice consistency to risky decision making. We administered the beta-blocker propranolol in a double-blind, placebo-controlled within-subjects study, targeting the neurohormonal basis of physiological arousal. Matching our intervention's pharmacological specificity with a quantitative model delineating decision-making components allowed us to identify the causal relationships between arousal and decision making that do and do not exist. Propranolol selectively reduced loss aversion in a baseline- and dose-dependent manner (i.e., as a function of initial loss aversion and body mass index), and did not affect risk attitudes or choice consistency. These findings provide evidence for a specific, modulatory, and causal relationship between precise components of emotion and risky decision making. © The Author(s) 2015.

  13. Daily Grind: A Comparison of Causality Orientations, Emotions, and Fantasy Sport Participation.

    PubMed

    Dwyer, Brendan; Weiner, James

    2018-03-01

    In 2015, daily fantasy football entered the fantasy sports market as an offshoot of the traditional, season-long form of the game. With quicker payouts and less commitment, the new activity has drawn comparisons to other forms of illegal gambling, and the determination of whether it is a primarily a game of skill or chance has become the center of the comparison. For the most part, legal commentators and society, in general, views traditional, season-long fantasy football as an innocuous, social activity governed equally by both skill and chance. Little evidence exists, however, about participant perception of skill and chance components in daily fantasy football. The current study surveyed 535 daily and traditional-only fantasy football participants in order to understand differences and similarities in the causality orientations of participation (skill or chance). In addition, enjoyment and anxiety were tested for mediating effects on causality orientations and consumption behavior. The results suggest the differences between the activities are not extreme. However, differences were found in which causality orientations influenced enjoyment and which emotion mediated the relationship between perceived skill and consumption.

  14. Prediction of the properties anhydrite construction mixtures based on neural network approach

    NASA Astrophysics Data System (ADS)

    Fedorchuk, Y. M.; Zamyatin, N. V.; Smirnov, G. V.; Rusina, O. N.; Sadenova, M. A.

    2017-08-01

    The article considered the question of applying the backstop modeling mechanism from the components of anhydride mixtures in the process of managing the technological processes of receiving construction products which based on fluoranhydrite.

  15. Feasibility of correlating separation of ternary mixtures of neutral analytes via thin layer chromatography with supercritical fluid chromatography in support of green flash separations.

    PubMed

    Ashraf-Khorassani, M; Yan, Q; Akin, A; Riley, F; Aurigemma, C; Taylor, L T

    2015-10-30

    Method development for normal phase flash liquid chromatography traditionally employs preliminary screening using thin layer chromatography (TLC) with conventional solvents on bare silica. Extension to green flash chromatography via correlation of TLC migration results, with conventional polar/nonpolar liquid mixtures, and packed column supercritical fluid chromatography (SFC) retention times, via gradient elution on bare silica with a suite of carbon dioxide mobile phase modifiers, is reported. Feasibility of TLC/SFC correlation is individually described for eight ternary mixtures for a total of 24 neutral analytes. The experimental criteria for TLC/SFC correlation was assumed to be as follows: SFC/UV/MS retention (tR) increases among each of the three resolved mixture components; while, TLC migration (Rf) decreases among the same resolved mixture components. Successful correlation of TLC to SFC was observed for most of the polar organic solvents tested, with the best results observed via SFC on bare silica with methanol as the CO2 modifier and TLC on bare silica with a methanol/dichloromethane mixture. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Refractive Index Mixing Rules and Excess Infrared Spectra of Binary Mixtures.

    PubMed

    Baranović, Goran

    2017-05-01

    Three refractive index mixing rules, Arago-Biot, Lorentz-Lorenz, and Newton, are generalized to complex refractive index and used to define infrared (IR) spectra of the corresponding ideal liquid mixtures. Using the measured optical constants n and k for acetonitrile-water mixtures (Bertie and Lan, 1997) the excess absorbances, A E  =  A obs  -  A ideal , are calculated. Relying upon the well-established properties of the acetonitrile-water mixtures, the interpretation of the excess absorbances is established that is essentially based on the understanding of a liquid as a set of oscillators. The set depends on the composition of the mixture and comprises oscillators as present in the pure components and oscillators perturbed by hydrogen bonding between unlike molecules. The main features of an excess spectrum can be established assuming chemical equilibria among various oscillators. The most informative parts of the spectrum of a yet unstudied binary system can well be observed and even qualitatively explained from the excess absorbance provided: first, a detailed vibrational study of the components has been done; and, second, it is well understood what actually is subtracted from A obs . As examples, the binary mixtures of ethynylbenzene and tetrachloroethylene and 2-ethynylpyridine and tetrachloroethylene are considered.

  17. Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model

    NASA Technical Reports Server (NTRS)

    Sunshine, Jessica M.; Pieters, Carle M.

    1993-01-01

    The modified Gaussian model (MGM) is used to explore spectra of samples containing multiple pyroxene components as a function of modal abundance. The MGM allows spectra to be analyzed directly, without the use of actual or assumed end-member spectra and therefore holds great promise for remote applications. A series of mass fraction mixtures created from several different particle size fractions are analyzed with the MGM to quantify the properties of pyroxene mixtures as a function of both modal abundance and grain size. Band centers, band widths, and relative band strengths of absorptions from individual pyroxenes in mixture spectra are found to be largely independent of particle size. Spectral properties of both zoned and exsolved pyroxene components are resolved in exsolved samples using the MGM, and modal abundances are accurately estimated to within 5-10 percent without predetermined knowledge of the end-member spectra.

  18. Foam patterns

    DOEpatents

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  19. From the exposome to mechanistic understanding of chemical ...

    EPA Pesticide Factsheets

    BACKGROUND: Current definitions of the exposome expand beyond the initial idea to consider the totality of exposure and aim to relate to biological effects. While the exposome has been established for human health, its principles can be extended to include broader ecological issues. The assessment of exposure is tightly interlinked with hazard assessment. OBJECTIVES: We explore if mechanistic understanding of the causal links between exposure and adverse effects on human health and the environment can be improved by integrating the exposome approach with the adverse outcome pathway (AOP) concept - a framework to structure and organize the sequence of toxicological events from an initial molecular interaction of a chemical to an adverse outcome.METHODS: This review was informed by a Workshop organized by the Integrated Project EXPOSOME at the UFZ Helmholtz Centre for Environmental Research in Leipzig, Germany. DISCUSSION: The exposome encompasses all chemicals, including exogenous chemicals and endogenous compounds that are produced in response to external factors. By complementing the exposome research with the AOP concept, we can achieve a better mechanistic understanding, weigh the importance of various components of the exposome, and determine primary risk drivers. The ability to interpret multiple exposures and mixture effects at the mechanistic level requires a more holistic approach facilitated by the exposome concept.CONCLUSION: Incorporating the AOP conc

  20. Non-fragrance allergens in specific cosmetic products.

    PubMed

    Travassos, Ana Rita; Claes, Lieve; Boey, Lies; Drieghe, Jacques; Goossens, An

    2011-11-01

    Reports about the nature of the ingredients responsible for allergic contact dermatitis caused by specific cosmetic products are scarce. Between January 2000 and December 2010, the specific cosmetic products having caused allergic contact dermatitis, as well as the individual allergenic cosmetic ingredients present in them, were recorded by use of a standardized form. Among 11 different categories of cosmetic product, skin care products, followed by hair care and body-cleansing products, were most often involved. The presence of the allergenic ingredient(s) in a specific cosmetic product was confirmed according to the ingredient label in 959 of 1448 records. Six hundred and twenty-one of 959 concerned non-fragrance components, preservatives being responsible for 58% of them. Reactions to formaldehyde and formaldehyde-releasers were most often correlated with body-cleansing products, particularly 2-bromo-2-nitropropane-1,3-diol and skin care products. They were followed by the methylchloroisothiazolinone/methylisothiazolinone mixture, most frequently found as allergens in hair care and intimate hygiene products, and facial cleansers (in the last category together with diazolidinyl urea). Octocrylene was by far the most frequent (photo)allergen in sun care products. This study provides information on the presence and frequency of allergens in specific causal cosmetic products. © 2011 John Wiley & Sons A/S.

  1. Modeling the chemistry of complex petroleum mixtures.

    PubMed Central

    Quann, R J

    1998-01-01

    Determining the complete molecular composition of petroleum and its refined products is not feasible with current analytical techniques because of the astronomical number of molecular components. Modeling the composition and behavior of such complex mixtures in refinery processes has accordingly evolved along a simplifying concept called lumping. Lumping reduces the complexity of the problem to a manageable form by grouping the entire set of molecular components into a handful of lumps. This traditional approach does not have a molecular basis and therefore excludes important aspects of process chemistry and molecular property fundamentals from the model's formulation. A new approach called structure-oriented lumping has been developed to model the composition and chemistry of complex mixtures at a molecular level. The central concept is to represent an individual molecular or a set of closely related isomers as a mathematical construct of certain specific and repeating structural groups. A complex mixture such as petroleum can then be represented as thousands of distinct molecular components, each having a mathematical identity. This enables the automated construction of large complex reaction networks with tens of thousands of specific reactions for simulating the chemistry of complex mixtures. Further, the method provides a convenient framework for incorporating molecular physical property correlations, existing group contribution methods, molecular thermodynamic properties, and the structure--activity relationships of chemical kinetics in the development of models. PMID:9860903

  2. Four Derivative Spectrophotometric Methods for the Simultaneous Determination of Carmoisine and Ponceau 4R in Drinks and Comparison with High Performance Liquid Chromatography

    PubMed Central

    Turak, Fatma; Dinç, Mithat; Dülger, Öznur; Özgür, Mahmure Ustun

    2014-01-01

    Four simple, rapid, and accurate spectrophotometric methods were developed for the simultaneous determination of two food colorants, Carmoisine (E122) and Ponceau 4R (E124), in their binary mixtures and soft drinks. The first method is based on recording the first derivative curves and determining each component using the zero-crossing technique. The second method uses the first derivative of ratio spectra. The ratio spectra are obtained by dividing the absorption spectra of the binary mixture by that of one of the components. The third method, derivative differential procedure, is based on the measurement of difference absorptivities derivatized in first order of solution of drink samples in 0,1 N NaOH relative to that of an equimolar solution in 0,1 N HCl at wavelengths of 366 and 451 nm for Carmoisine and Ponceau 4R, respectively. The last method, based on the compensation method is presented for derivative spectrophotometric determination of E122 and E124 mixtures with overlapping spectra. By using ratios of the derivative maxima, the exact compensation of either component in the mixture can be achieved, followed by its determination. These proposed methods have been successfully applied to the binary mixtures and soft drinks and the results were statistically compared with the reference HPLC method (NMKL 130). PMID:24672549

  3. Causality in cancer research: a journey through models in molecular epidemiology and their philosophical interpretation.

    PubMed

    Vineis, Paolo; Illari, Phyllis; Russo, Federica

    2017-01-01

    In the last decades, Systems Biology (including cancer research) has been driven by technology, statistical modelling and bioinformatics. In this paper we try to bring biological and philosophical thinking back. We thus aim at making different traditions of thought compatible: (a) causality in epidemiology and in philosophical theorizing-notably, the "sufficient-component-cause framework" and the "mark transmission" approach; (b) new acquisitions about disease pathogenesis, e.g. the "branched model" in cancer, and the role of biomarkers in this process; (c) the burgeoning of omics research, with a large number of "signals" and of associations that need to be interpreted. In the paper we summarize first the current views on carcinogenesis, and then explore the relevance of current philosophical interpretations of "cancer causes". We try to offer a unifying framework to incorporate biomarkers and omic data into causal models, referring to a position called "evidential pluralism". According to this view, causal reasoning is based on both "evidence of difference-making" (e.g. associations) and on "evidence of underlying biological mechanisms". We conceptualize the way scientists detect and trace signals in terms of information transmission , which is a generalization of the mark transmission theory developed by philosopher Wesley Salmon. Our approach is capable of helping us conceptualize how heterogeneous factors such as micro and macro-biological and psycho-social-are causally linked. This is important not only to understand cancer etiology, but also to design public health policies that target the right causal factors at the macro-level.

  4. Drop-in substitute for dichlorodifluoromethane refrigerant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goble, G.H.

    1993-06-01

    A method for producing refrigeration in a refrigeration system designed for a dichlorodifluoromethane refrigerant is described, comprising drop-in substituting for said dichlorodifluoromethane a ternary mixture of about 2 to 20 weight percent isobutane, about 21 to 51 weight percent 1-chloro-1,1-difluoroethane, and about 41 to 71 weight percent chlorodifluoromethane, with the weight percentages of said components being weight percentages of the overall mixture; condensing said ternary mixture; and thereafter evaporating said ternary mixture in the vicinity of a body to be cooled.

  5. Identification of host fruit volatiles from flowering dogwood (Cornus florida) attractive to dogwood-origin Rhagoletis pomonella flies.

    PubMed

    Nojima, Satoshi; Linn, Charles; Roelofs, Wendell

    2003-10-01

    Solid-phase microextraction and gas chromatography coupled with electroantennographic detection were used to identify volatiles from fruit of flowering dogwood, Cornus florida, as key attractants for Rhagoletis pomonella flies originating from dogwood fruit. A six-component blend containing ethyl acetate (54.9%), 3-methylbutan-1-ol (27.5%), isoamyl acetate (0.9%), dimethyl trisulfide (1.9%), 1-octen-3-ol (9.1%), and beta-caryophyllene (5.8%) was identified from flowering dogwood fruit that gave consistent EAD activity. In a flight tunnel assay there was no significant difference in the response of individual dogwood flies exhibiting upwind anemotactic flight to volatile extracts from dogwood fruit and the six-component synthetic mixture. Dogwood flies also displayed significantly greater levels of upwind flight to sources with the dogwood volatile blend than with previously identified volatile blends from domestic apple or hawthorn fruit. Selected subtraction assays showed that the three-component mixture of 3-methylbutan-1-ol, 1-octen-3-ol, and beta-caryophyllene elicited levels of upwind flight to the source equivalent to the six-component mixture. Our study adds to previous ones showing that populations of Rhagoletis pomonella flies infesting apple, hawthorn, and flowering dogwood fruit are attracted to unique mixtures of fruit volatiles, supporting the hypothesis that host fruit odors could be key traits in sympatric host shifts and establishing host fidelity within members of the Rhagoletis pomonella species complex.

  6. Mixtures of Two Bile Alcohol Sulfates Function as a Proximity Pheromone in Sea Lamprey.

    PubMed

    Brant, Cory O; Huertas, Mar; Li, Ke; Li, Weiming

    2016-01-01

    Unique mixtures of pheromone components are commonly identified in insects, and have been shown to increase attractiveness towards conspecifics when reconstructed at the natural ratio released by the signaler. In previous field studies of pheromones that attract female sea lamprey (Petromyzon marinus, L.), putative components of the male-released mating pheromone included the newly described bile alcohol 3,12-diketo-4,6-petromyzonene-24-sulfate (DkPES) and the well characterized 3-keto petromyzonol sulfate (3kPZS). Here, we show chemical evidence that unequivocally confirms the elucidated structure of DkPES, electrophysiological evidence that each component is independently detected by the olfactory epithelium, and behavioral evidence that mature female sea lamprey prefer artificial nests activated with a mixture that reconstructs the male-released component ratio of 30:1 (3kPZS:DkPES, molar:molar). In addition, we characterize search behavior (sinuosity of swim paths) of females approaching ratio treatment sources. These results suggest unique pheromone ratios may underlie reproductive isolating mechanisms in vertebrates, as well as provide utility in pheromone-integrated control of invasive sea lamprey in the Great Lakes.

  7. [New method of mixed gas infrared spectrum analysis based on SVM].

    PubMed

    Bai, Peng; Xie, Wen-Jun; Liu, Jun-Hua

    2007-07-01

    A new method of infrared spectrum analysis based on support vector machine (SVM) for mixture gas was proposed. The kernel function in SVM was used to map the seriously overlapping absorption spectrum into high-dimensional space, and after transformation, the high-dimensional data could be processed in the original space, so the regression calibration model was established, then the regression calibration model with was applied to analyze the concentration of component gas. Meanwhile it was proved that the regression calibration model with SVM also could be used for component recognition of mixture gas. The method was applied to the analysis of different data samples. Some factors such as scan interval, range of the wavelength, kernel function and penalty coefficient C that affect the model were discussed. Experimental results show that the component concentration maximal Mean AE is 0.132%, and the component recognition accuracy is higher than 94%. The problems of overlapping absorption spectrum, using the same method for qualitative and quantitative analysis, and limit number of training sample, were solved. The method could be used in other mixture gas infrared spectrum analyses, promising theoretic and application values.

  8. A new pressure ulcer conceptual framework.

    PubMed

    Coleman, Susanne; Nixon, Jane; Keen, Justin; Wilson, Lyn; McGinnis, Elizabeth; Dealey, Carol; Stubbs, Nikki; Farrin, Amanda; Dowding, Dawn; Schols, Jos M G A; Cuddigan, Janet; Berlowitz, Dan; Jude, Edward; Vowden, Peter; Schoonhoven, Lisette; Bader, Dan L; Gefen, Amit; Oomens, Cees W J; Nelson, E Andrea

    2014-10-01

    This paper discusses the critical determinants of pressure ulcer development and proposes a new pressure ulcer conceptual framework. Recent work to develop and validate a new evidence-based pressure ulcer risk assessment framework was undertaken. This formed part of a Pressure UlceR Programme Of reSEarch (RP-PG-0407-10056), funded by the National Institute for Health Research. The foundation for the risk assessment component incorporated a systematic review and a consensus study that highlighted the need to propose a new conceptual framework. Discussion Paper. The new conceptual framework links evidence from biomechanical, physiological and epidemiological evidence, through use of data from a systematic review (search conducted March 2010), a consensus study (conducted December 2010-2011) and an international expert group meeting (conducted December 2011). A new pressure ulcer conceptual framework incorporating key physiological and biomechanical components and their impact on internal strains, stresses and damage thresholds is proposed. Direct and key indirect causal factors suggested in a theoretical causal pathway are mapped to the physiological and biomechanical components of the framework. The new proposed conceptual framework provides the basis for understanding the critical determinants of pressure ulcer development and has the potential to influence risk assessment guidance and practice. It could also be used to underpin future research to explore the role of individual risk factors conceptually and operationally. By integrating existing knowledge from epidemiological, physiological and biomechanical evidence, a theoretical causal pathway and new conceptual framework are proposed with potential implications for practice and research. © 2014 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  9. A new pressure ulcer conceptual framework

    PubMed Central

    Coleman, Susanne; Nixon, Jane; Keen, Justin; Wilson, Lyn; McGinnis, Elizabeth; Dealey, Carol; Stubbs, Nikki; Farrin, Amanda; Dowding, Dawn; Schols, Jos MGA; Cuddigan, Janet; Berlowitz, Dan; Jude, Edward; Vowden, Peter; Schoonhoven, Lisette; Bader, Dan L; Gefen, Amit; Oomens, Cees WJ; Nelson, E Andrea

    2014-01-01

    Aim This paper discusses the critical determinants of pressure ulcer development and proposes a new pressure ulcer conceptual framework. Background Recent work to develop and validate a new evidence-based pressure ulcer risk assessment framework was undertaken. This formed part of a Pressure UlceR Programme Of reSEarch (RP-PG-0407-10056), funded by the National Institute for Health Research. The foundation for the risk assessment component incorporated a systematic review and a consensus study that highlighted the need to propose a new conceptual framework. Design Discussion Paper. Data Sources The new conceptual framework links evidence from biomechanical, physiological and epidemiological evidence, through use of data from a systematic review (search conducted March 2010), a consensus study (conducted December 2010–2011) and an international expert group meeting (conducted December 2011). Implications for Nursing A new pressure ulcer conceptual framework incorporating key physiological and biomechanical components and their impact on internal strains, stresses and damage thresholds is proposed. Direct and key indirect causal factors suggested in a theoretical causal pathway are mapped to the physiological and biomechanical components of the framework. The new proposed conceptual framework provides the basis for understanding the critical determinants of pressure ulcer development and has the potential to influence risk assessment guidance and practice. It could also be used to underpin future research to explore the role of individual risk factors conceptually and operationally. Conclusion By integrating existing knowledge from epidemiological, physiological and biomechanical evidence, a theoretical causal pathway and new conceptual framework are proposed with potential implications for practice and research. PMID:24684197

  10. On hydrodynamic phase field models for binary fluid mixtures

    NASA Astrophysics Data System (ADS)

    Yang, Xiaogang; Gong, Yuezheng; Li, Jun; Zhao, Jia; Wang, Qi

    2018-05-01

    Two classes of thermodynamically consistent hydrodynamic phase field models have been developed for binary fluid mixtures of incompressible viscous fluids of possibly different densities and viscosities. One is quasi-incompressible, while the other is incompressible. For the same binary fluid mixture of two incompressible viscous fluid components, which one is more appropriate? To answer this question, we conduct a comparative study in this paper. First, we visit their derivation, conservation and energy dissipation properties and show that the quasi-incompressible model conserves both mass and linear momentum, while the incompressible one does not. We then show that the quasi-incompressible model is sensitive to the density deviation of the fluid components, while the incompressible model is not in a linear stability analysis. Second, we conduct a numerical investigation on coarsening or coalescent dynamics of protuberances using the two models. We find that they can predict quite different transient dynamics depending on the initial conditions and the density difference although they predict essentially the same quasi-steady results in some cases. This study thus cast a doubt on the applicability of the incompressible model to describe dynamics of binary mixtures of two incompressible viscous fluids especially when the two fluid components have a large density deviation.

  11. Performance comparison of three types of high-speed counter-current chromatographs for the separation of components of hydrophilic and hydrophobic color additives.

    PubMed

    Weisz, Adrian; Ito, Yoichiro

    2011-09-09

    The performance of three types of high-speed counter-current chromatography (HSCCC) instruments was assessed for their use in separating components in hydrophilic and hydrophobic dye mixtures. The HSCCC instruments compared were: (i) a J-type coil planet centrifuge (CPC) system with a conventional multilayer-coil column, (ii) a J-type CPC system with a spiral-tube assembly-coil column, and (iii) a cross-axis CPC system with a multilayer-coil column. The hydrophilic dye mixture consisted of a sample of FD&C Blue No. 2 that contained mainly two isomeric components, 5,5'- and 5,7'-disulfonated indigo, in the ratio of ∼7:1. The hydrophobic dye mixture consisted of a sample of D&C Red No. 17 (mainly Sudan III) and Sudan II in the ratio of ∼4:1. The two-phase solvent systems used for these separations were 1-butanol/1.3M HCl and hexane/acetonitrile. Each of the three instruments was used in two experiments for the hydrophilic dye mixture and two for the hydrophobic dye mixture, for a total of 12 experiments. In one set of experiments, the lower phase was used as the mobile phase, and in the second set of experiments, the upper phase was used as the mobile phase. The results suggest that: (a) use of a J-type instrument with either a multilayer-coil column or a spiral-tube assembly column, applying the lower phase as the mobile phase, is preferable for separating the hydrophilic components of FD&C Blue No. 2; and (b) use of a J-type instrument with multilayer-coil column, while applying either the upper phase or the lower phase as the mobile phase, is preferable for separating the hydrophobic dye mixture of D&C Red No. 17 and Sudan II. Published by Elsevier B.V.

  12. Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of spotted wing Drosophila, Drosophila suzukii.

    PubMed

    Cha, Dong H; Adams, Todd; Rogg, Helmuth; Landolt, Peter J

    2012-11-01

    Previous studies suggest that olfactory cues from damaged and fermented fruits play important roles in resource recognition of polyphagous spotted wing Drosophila flies (SWD), Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). They are attracted to fermented sweet materials, such as decomposing fruits but also wines and vinegars, and to ubiquitous fermentation volatiles, such as acetic acid and ethanol. Gas chromatography coupled with electroantennographic detection (GC-EAD), gas chromatography-mass spectrometry (GC-MS), two-choice laboratory bioassays, and field trapping experiments were used to identify volatile compounds from wine and vinegar that are involved in SWD attraction. In addition to acetic acid and ethanol, consistent EAD responses were obtained for 13 volatile wine compounds and seven volatile vinegar compounds, with all of the vinegar EAD-active compounds also present in wine. In a field trapping experiment, the 9-component vinegar blend and 15-component wine blend were similarly attractive when compared to an acetic acid plus ethanol mixture, but were not as attractive as the wine plus vinegar mixture. In two-choice laboratory bioassays, 7 EAD-active compounds (ethyl acetate, ethyl butyrate, ethyl lactate, 1-hexanol, isoamyl acetate, 2-methylbutyl acetate, and ethyl sorbate), when added singly to the mixture at the same concentrations tested in the field, decreased the attraction of SWD to the mixture of acetic acid and ethanol. The blends composed of the remaining EAD-active chemicals, an 8-component wine blend [acetic acid + ethanol + acetoin + grape butyrate + methionol + isoamyl lactate + 2-phenylethanol + diethyl succinate] and a 5-component vinegar blend [acetic acid + ethanol + acetoin + grape butyrate + 2-phenylethanol] were more attractive than the acetic acid plus ethanol mixture, and as attractive as the wine plus vinegar mixture in both laboratory assays and the field trapping experiment. These results indicate that these volatiles in wine and vinegar are crucial for SWD attraction to fermented materials on which they feed as adults.

  13. RELATIVE TOXICITY OF AIR POLLUTION MIXTURES

    EPA Science Inventory

    The proposed study will differentiate the health effects of components of multi-pollutant exposure mixtures. We expect to add to our understanding of the exposure- response relationship, the interaction between particulate matter and photochemical gases, and the extent to whic...

  14. Method of detecting leakage of reactor core components of liquid metal cooled fast reactors

    DOEpatents

    Holt, Fred E.; Cash, Robert J.; Schenter, Robert E.

    1977-01-01

    A method of detecting the failure of a sealed non-fueled core component of a liquid-metal cooled fast reactor having an inert cover gas. A gas mixture is incorporated in the component which includes Xenon-124; under neutron irradiation, Xenon-124 is converted to radioactive Xenon-125. The cover gas is scanned by a radiation detector. The occurrence of 188 Kev gamma radiation and/or other identifying gamma radiation-energy level indicates the presence of Xenon-125 and therefore leakage of a component. Similarly, Xe-126, which transmutes to Xe-127 and Kr-84, which produces Kr-85.sup.m can be used for detection of leakage. Different components are charged with mixtures including different ratios of isotopes other than Xenon-124. On detection of the identifying radiation, the cover gas is subjected to mass spectroscopic analysis to locate the leaking component.

  15. Methods of producing compounds from plant material

    DOEpatents

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.

    2006-01-03

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  16. Methods of producing compounds from plant materials

    DOEpatents

    Werpy, Todd A [West Richland, WA; Schmidt, Andrew J [Richland, WA; Frye, Jr., John G.; Zacher, Alan H. , Franz; James A. , Alnajjar; Mikhail S. , Neuenschwander; Gary G. , Alderson; Eric V. , Orth; Rick J. , Abbas; Charles A. , Beery; Kyle E. , Rammelsberg; Anne M. , Kim; Catherine, J [Decatur, IL

    2010-01-26

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  17. IMPROVING THE TMDL PROCESS USING WATERSHED RISK ASSESSMENT PRINCIPLES

    EPA Science Inventory

    Watershed ecological risk assessment (WERA) evaluates potential causal relationships between multiple sources and stressors and impacts on valued ecosystem components. This has many similarities tothe placed-based analuses that are undertaken to develop total maximum daily loads...

  18. A solid-state NMR method to determine domain sizes in multi-component polymer formulations

    NASA Astrophysics Data System (ADS)

    Schlagnitweit, Judith; Tang, Mingxue; Baias, Maria; Richardson, Sara; Schantz, Staffan; Emsley, Lyndon

    2015-12-01

    Polymer domain sizes are related to many of the physical properties of polymers. Here we present a solid-state NMR experiment that is capable of measuring domain sizes in multi-component mixtures. The method combines selective excitation of carbon magnetization to isolate a specific component with proton spin diffusion to report on domain size. We demonstrate the method in the context of controlled release formulations, which represents one of today's challenges in pharmaceutical science. We show that we can measure domain sizes of interest in the different components of industrial pharmaceutical formulations at natural isotopic abundance containing various (modified) cellulose derivatives, such as microcrystalline cellulose matrixes that are film-coated with a mixture of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC).

  19. Modified method to improve the design of Petlyuk distillation columns.

    PubMed

    Zapiain-Salinas, Javier G; Barajas-Fernández, Juan; González-García, Raúl

    2014-01-01

    A response surface analysis was performed to study the effect of the composition and feeding thermal conditions of ternary mixtures on the number of theoretical stages and the energy consumption of Petlyuk columns. A modification of the pre-design algorithm was necessary for this purpose. The modified algorithm provided feasible results in 100% of the studied cases, compared with only 8.89% for the current algorithm. The proposed algorithm allowed us to attain the desired separations, despite the type of mixture and the operating conditions in the feed stream, something that was not possible with the traditional pre-design method. The results showed that the type of mixture had great influence on the number of stages and on energy consumption. A higher number of stages and a lower consumption of energy were attained with mixtures rich in the light component, while higher energy consumption occurred when the mixture was rich in the heavy component. The proposed strategy expands the search of an optimal design of Petlyuk columns within a feasible region, which allow us to find a feasible design that meets output specifications and low thermal loads.

  20. The impact of covariance misspecification in multivariate Gaussian mixtures on estimation and inference: an application to longitudinal modeling.

    PubMed

    Heggeseth, Brianna C; Jewell, Nicholas P

    2013-07-20

    Multivariate Gaussian mixtures are a class of models that provide a flexible parametric approach for the representation of heterogeneous multivariate outcomes. When the outcome is a vector of repeated measurements taken on the same subject, there is often inherent dependence between observations. However, a common covariance assumption is conditional independence-that is, given the mixture component label, the outcomes for subjects are independent. In this paper, we study, through asymptotic bias calculations and simulation, the impact of covariance misspecification in multivariate Gaussian mixtures. Although maximum likelihood estimators of regression and mixing probability parameters are not consistent under misspecification, they have little asymptotic bias when mixture components are well separated or if the assumed correlation is close to the truth even when the covariance is misspecified. We also present a robust standard error estimator and show that it outperforms conventional estimators in simulations and can indicate that the model is misspecified. Body mass index data from a national longitudinal study are used to demonstrate the effects of misspecification on potential inferences made in practice. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Pharmaceutical Point of View on Parenteral Nutrition

    PubMed Central

    Stawny, M.; Olijarczyk, R.; Jaroszkiewicz, E.; Jelińska, A.

    2013-01-01

    Parenteral nutrition—a form of administering nutrients, electrolytes, trace elements, vitamins, and water—is a widely used mode of therapy applied in many diseases, in patients of different ages both at home and in hospital. The success of nutritional therapy depends chiefly on proper determination of the patient's energetic and electrolytic needs as well as preparation and administration of a safe nutritional mixture. As a parenterally administered drug, it is expected to be microbiologically and physicochemically stable, with all of the components compatible with each other. It is very difficult to obtain a stable nutritional mixture due to the fact that it is a complex, two-phase drug. Also, the risk of incompatibility between mixture components and packaging should be taken into consideration and possibly eliminated. Since parenteral nutrition is a part of therapy, simultaneous use of drugs may cause pharmacokinetic and pharmacodynamic interactions as well as those with the pharmaceutical phase. The aim of this paper is to discuss such aspects of parenteral nutrition as mixture stability, methodology, and methods for determining the stability of nutritional mixtures and drugs added to them. PMID:24453847

  2. Mixedness determination of rare earth-doped ceramics

    NASA Astrophysics Data System (ADS)

    Czerepinski, Jennifer H.

    The lack of chemical uniformity in a powder mixture, such as clustering of a minor component, can lead to deterioration of materials properties. A method to determine powder mixture quality is to correlate the chemical homogeneity of a multi-component mixture with its particle size distribution and mixing method. This is applicable to rare earth-doped ceramics, which require at least 1-2 nm dopant ion spacing to optimize optical properties. Mixedness simulations were conducted for random heterogeneous mixtures of Nd-doped LaF3 mixtures using the Concentric Shell Model of Mixedness (CSMM). Results indicate that when the host to dopant particle size ratio is 100, multi-scale concentration variance is optimized. In order to verify results from the model, experimental methods that probe a mixture at the micro, meso, and macro scales are needed. To directly compare CSMM results experimentally, an image processing method was developed to calculate variance profiles from electron images. An in-lens (IL) secondary electron image is subtracted from the corresponding Everhart-Thornley (ET) secondary electron image in a Field-Emission Scanning Electron Microscope (FESEM) to produce two phases and pores that can be quantified with 50 nm spatial resolution. A macro was developed to quickly analyze multi-scale compositional variance from these images. Results for a 50:50 mixture of NdF3 and LaF3 agree with the computational model. The method has proven to be applicable only for mixtures with major components and specific particle morphologies, but the macro is useful for any type of imaging that produces excellent phase contrast, such as confocal microscopy. Fluorescence spectroscopy was used as an indirect method to confirm computational results for Nd-doped LaF3 mixtures. Fluorescence lifetime can be used as a quantitative method to indirectly measure chemical homogeneity when the limits of electron microscopy have been reached. Fluorescence lifetime represents the compositional fluctuations of a dopant on the nanoscale while accounting for billions of particles in a fast, non-destructive manner. The significance of this study will show how small-scale fluctuations in homogeneity limit the optimization of optical properties, which can be improved by the proper selection of particle size and mixing method.

  3. From Trioleoyl glycerol to extra virgin olive oil through multicomponent triacylglycerol mixtures: Crystallization and polymorphic transformation examined with differential scanning calorimetry and X-ray diffration techniques.

    PubMed

    Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S

    2017-09-01

    The polymorphic crystallization and transformation behavior of extra virgin olive oil (EVOO) was examined by using differential scanning calorimetry (DSC) and X-ray diffraction with both laboratory-scale (XRD) and synchrotron radiation source (SR-XRD). The complex behavior observed was studied by previously analyzing mixtures composed by its main 2 to 6 triacylglycerol (TAG) components. Thus, component TAGs were successively added to simulate EVOO composition, until reaching a 6 TAGs mixture, composed by trioleoyl glycerol (OOO), 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1,2-dioleoyl-3-linoleoyl glycerol (OOL), 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), 1,2-dipalmitoyl-3-oleoyl glycerol (PPO) and 1-stearoyl-2,3-dioleoyl glycerol (SOO). Molten samples were cooled from 25°C to -80°C at a controlled rate of 2°C/min and subsequently heated at the same rate. The polymorphic behavior observed in multicomponent TAG mixtures was interpreted by considering three main groups of TAGs with different molecular structures: triunsaturated OOO and OOL, saturated-unsaturated-unsaturated POO, POL and SOO, and saturated-saturated-unsaturated PPO. As confirmed by our previous work, TAGs belonging to the same structural group displayed a highly similar polymorphic behavior. EVOO exhibited two different β'-2L polymorphic forms (β' 2 -2L and β' 1 -2L), which transformed into β'-3L when heated. Equivalent polymorphic pathways were detected when the same experimental conditions were applied to the 6 TAG components mixture. Hence, minor components may not exert a strong influence in this case. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. FTIR gas chromatographic analysis of perfumes

    NASA Astrophysics Data System (ADS)

    Diederich, H.; Stout, Phillip J.; Hill, Stephen L.; Krishnan, K.

    1992-03-01

    Perfumes, natural or synthetic, are complex mixtures consisting of numerous components. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques have been extensively utilized for the analysis of perfumes and essential oils. A limited number of perfume samples have also been analyzed by FT-IR gas chromatographic (GC-FTIR) techniques. Most of the latter studies have been performed using the conventional light pipe (LP) based GC-FTIR systems. In recent years, cold-trapping (in a matrix or neat) GC-FTIR systems have become available. The cold-trapping systems are capable of sub-nanogram sensitivities. In this paper, comparison data between the LP and the neat cold-trapping GC- FTIR systems is presented. The neat cold-trapping interface is known as Tracer. The results of GC-FTIR analysis of some commercial perfumes is also presented. For comparison of LP and Tracer GC-FTIR systems, a reference (synthetic) mixture containing 16 major and numerous minor constituents was used. The components of the mixture are the compounds commonly encountered in commercial perfumes. The GC-FTIR spectra of the reference mixture was obtained under identical chromatographic conditions from an LP and a Tracer system. A comparison of the two sets of data thus generated do indeed show the enhanced sensitivity level of the Tracer system. The comparison also shows that some of the major components detected by the Tracer system were absent from the LP data. Closer examination reveals that these compounds undergo thermal decomposition on contact with the hot gold surface that is part of the LP system. GC-FTIR data were obtained for three commercial perfume samples. The major components of these samples could easily be identified by spectra search against a digitized spectral library created using the Tracer data from the reference mixture.

  5. Paradigm shift in consciousness research: the child's self-awareness and abnormalities in autism, ADHD and schizophrenia.

    PubMed

    Lou, Hans C

    2012-02-01

    Self-awareness is a pivotal component of any conscious experience and conscious self-regulation of behaviour. A paralimbic network is active, specific and causal in self-awareness. Its regions interact by gamma synchrony. Gamma synchrony develops throughout infancy, childhood and adolescence into adulthood and is regulated by dopamine and other neurotransmitters via GABA interneurons. Major derailments of this network and self-awareness occur in developmental disorders of conscious self-regulation like autism, attention deficit hyperactivity disorder (ADHD) and schizophrenia. Recent research on conscious experience is no longer limited to the study of neural 'correlations' but is increasingly lending itself to the study of causality. This paradigm shift opens new perspectives for understanding the neural mechanisms of the developing self and the causal effects of their disturbance in developmental disorders. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  6. Illness causal beliefs in Turkish immigrants

    PubMed Central

    Minas, Harry; Klimidis, Steven; Tuncer, Can

    2007-01-01

    Background People hold a wide variety of beliefs concerning the causes of illness. Such beliefs vary across cultures and, among immigrants, may be influenced by many factors, including level of acculturation, gender, level of education, and experience of illness and treatment. This study examines illness causal beliefs in Turkish-immigrants in Australia. Methods Causal beliefs about somatic and mental illness were examined in a sample of 444 members of the Turkish population of Melbourne. The socio-demographic characteristics of the sample were broadly similar to those of the Melbourne Turkish community. Five issues were examined: the structure of causal beliefs; the relative frequency of natural, supernatural and metaphysical beliefs; ascription of somatic, mental, or both somatic and mental conditions to the various causes; the correlations of belief types with socio-demographic, modernizing and acculturation variables; and the relationship between causal beliefs and current illness. Results Principal components analysis revealed two broad factors, accounting for 58 percent of the variation in scores on illness belief scales, distinctly interpretable as natural and supernatural beliefs. Second, beliefs in natural causes were more frequent than beliefs in supernatural causes. Third, some causal beliefs were commonly linked to both somatic and mental conditions while others were regarded as more specific to either somatic or mental disorders. Last, there was a range of correlations between endorsement of belief types and factors defining heterogeneity within the community, including with demographic factors, indicators of modernizing and acculturative processes, and the current presence of illness. Conclusion Results supported the classification of causal beliefs proposed by Murdock, Wilson & Frederick, with a division into natural and supernatural causes. While belief in natural causes is more common, belief in supernatural causes persists despite modernizing and acculturative influences. Different types of causal beliefs are held in relation to somatic or mental illness, and a variety of apparently logically incompatible beliefs may be concurrently held. Illness causal beliefs are dynamic and are related to demographic, modernizing, and acculturative factors, and to the current presence of illness. Any assumption of uniformity of illness causal beliefs within a community, even one that is relatively culturally homogeneous, is likely to be misleading. A better understanding of the diversity, and determinants, of illness causal beliefs can be of value in improving our understanding of illness experience, the clinical process, and in developing more effective health services and population health strategies. PMID:17645806

  7. Illness causal beliefs in Turkish immigrants.

    PubMed

    Minas, Harry; Klimidis, Steven; Tuncer, Can

    2007-07-24

    People hold a wide variety of beliefs concerning the causes of illness. Such beliefs vary across cultures and, among immigrants, may be influenced by many factors, including level of acculturation, gender, level of education, and experience of illness and treatment. This study examines illness causal beliefs in Turkish-immigrants in Australia. Causal beliefs about somatic and mental illness were examined in a sample of 444 members of the Turkish population of Melbourne. The socio-demographic characteristics of the sample were broadly similar to those of the Melbourne Turkish community. Five issues were examined: the structure of causal beliefs; the relative frequency of natural, supernatural and metaphysical beliefs; ascription of somatic, mental, or both somatic and mental conditions to the various causes; the correlations of belief types with socio-demographic, modernizing and acculturation variables; and the relationship between causal beliefs and current illness. Principal components analysis revealed two broad factors, accounting for 58 percent of the variation in scores on illness belief scales, distinctly interpretable as natural and supernatural beliefs. Second, beliefs in natural causes were more frequent than beliefs in supernatural causes. Third, some causal beliefs were commonly linked to both somatic and mental conditions while others were regarded as more specific to either somatic or mental disorders. Last, there was a range of correlations between endorsement of belief types and factors defining heterogeneity within the community, including with demographic factors, indicators of modernizing and acculturative processes, and the current presence of illness. Results supported the classification of causal beliefs proposed by Murdock, Wilson & Frederick, with a division into natural and supernatural causes. While belief in natural causes is more common, belief in supernatural causes persists despite modernizing and acculturative influences. Different types of causal beliefs are held in relation to somatic or mental illness, and a variety of apparently logically incompatible beliefs may be concurrently held. Illness causal beliefs are dynamic and are related to demographic, modernizing, and acculturative factors, and to the current presence of illness. Any assumption of uniformity of illness causal beliefs within a community, even one that is relatively culturally homogeneous, is likely to be misleading. A better understanding of the diversity, and determinants, of illness causal beliefs can be of value in improving our understanding of illness experience, the clinical process, and in developing more effective health services and population health strategies.

  8. Hazard evaluation of inorganics, singly and in mixtures, to Flannelmouth Sucker Catostomus latipinnis in the San Juan River, New Mexico

    USGS Publications Warehouse

    Hamilton, S.J.; Buhl, K.J.

    1997-01-01

    Larval flannelmouth sucker (Catostomus latipinnis) were exposed to arsenate, boron, copper, molybdenum, selenate, selenite, uranium, vanadium, and zinc singly, and to five mixtures of five to nine inorganics. The exposures were conducted in reconstituted water representative of the San Juan River near Shiprock, New Mexico. The mixtures simulated environmental ratios reported for sites along the San Juan River (San Juan River backwater, Fruitland marsh, Hogback East Drain, Mancos River, and McElmo Creek). The rank order of the individual inorganics, from most to least toxic, was: copper > zinc > vanadium > selenite > selenate > arsenate > uranium > boron > molybdenum. All five mixtures exhibited additive toxicity to flannelmouth sucker. In a limited number of tests, 44-day-old and 13-day-old larvae exhibited no difference in sensitivity to three mixtures. Copper was the major toxic component in four mixtures (San Juan backwater, Hogback East Drain, Mancos River, and McElmo Creek), whereas zinc was the major toxic component in the Fruitland marsh mixture, which did not contain copper. The Hogback East Drain was the most toxic mixture tested. Comparison of 96-h LC50values with reported environmental water concentrations from the San Juan River revealed low hazard ratios for arsenic, boron, molybdenum, selenate, selenite, uranium, and vanadium, moderate hazard ratios for zinc and the Fruitland marsh mixture, and high hazard ratios for copper at three sites and four environmental mixtures representing a San Juan backwater, Hogback East Drain, Mancos River, and McElmo Creek. The high hazard ratios suggest that inorganic contaminants could adversely affect larval flannelmouth sucker in the San Juan River at four sites receiving elevated inorganics.

  9. Comparative Chemistry and Toxicity of Diesel and Biomass Combustion Emissions

    EPA Science Inventory

    Air pollution includes a complex mixture of carbonaceous gases and particles emitted from multiple anthropogenic, biogenic, and biomass burning sources, and also includes secondary organic components that form during atmospheric aging of these emissions. Exposure to these mixture...

  10. EXPERIMENTS AT THE INTERFACE OF CARBON PARTICLE CHEMISTRY AND TOXCIOLOGY

    EPA Science Inventory

    Air pollution includes a complex mixture of carbonaceous gases and particles emitted from multiple anthropogenic, biogenic, and biomass burning sources, and also includes secondary organic components that form during atmospheric aging of these emissions. Exposure to these mixture...

  11. A view at the interface between particle chemistry and toxicology

    EPA Science Inventory

    Air pollution includes a complex mixture of carbonaceous gases and particles emitted from multiple anthropogenic, biogenic, and biomass burning sources, and also includes secondary organic components that form during atmospheric aging of these emissions. Exposure to these mixture...

  12. Pairing of one-dimensional Bose-Fermi mixtures with unequal masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzi, Matteo; Max Planck Institut fuer QuantenOptik, Hans Kopfermann Strasse 1, D-85748 Garching; Imambekov, Adilet

    We have considered one-dimensional Bose-Fermi mixture with equal densities and unequal masses using numerical density matrix renormalization group. For the mass ratio of K-Rb mixture and attraction between bosons and fermions, we determined the phase diagram. For weak boson-boson interactions, there is a direct transition between two-component Luttinger liquid and collapsed phases as the boson-fermion attraction is increased. For strong enough boson-boson interactions, we find an intermediate 'paired' phase, which is a single-component Luttinger liquid of composite particles. We investigated correlation functions of such a 'paired' phase, studied the stability of 'paired' phase to density imbalance, and discussed various experimentalmore » techniques which can be used to detect it.« less

  13. Analysis of antimycin A by reversed-phase liquid chromatography/nuclear magnetic-resonance spectrometry

    USGS Publications Warehouse

    Ha, Steven T.K.; Wilkins, Charles L.; Abidi, Sharon L.

    1989-01-01

    A mixture of closely related streptomyces fermentation products, antimycin A, Is separated, and the components are identified by using reversed-phase high-performance liquid chromatography with directly linked 400-MHz proton nuclear magnetic resonance detection. Analyses of mixtures of three amino acids, alanine, glycine, and valine, are used to determine optimal measurement conditions. Sensitivity increases of as much as a factor of 3 are achieved, at the expense of some loss in chromatographic resolution, by use of an 80-μL NMR cell, Instead of a smaller 14-μL cell. Analysis of the antimycin A mixture, using the optimal analytical high performance liquid chromatography/nuclear magnetic resonance conditions, reveals it to consist of at least 10 closely related components.

  14. Density fluctuations in aqueous solution of ionic liquid with lower critical solution temperature: Mixture of tetrabutylphosphonium trifluoroacetate and water

    NASA Astrophysics Data System (ADS)

    Nitta, Ayako; Morita, Takeshi; Saita, Shohei; Kohno, Yuki; Ohno, Hiroyuki; Nishikawa, Keiko

    2015-05-01

    Aqueous solutions of tetrabutylphosphonium trifluoroacetate ([P4444]CF3COO) exhibit a LCST-type phase transition with the critical point near 0.025 in mole fraction of [P4444]CF3COO at T = 302 K. The phase behavior of [P4444]CF3COO-water mixtures was investigated by evaluating their density fluctuations, which provide quantitative descriptions of the mixing states of the solutions. The concentration dependence of the density fluctuations was investigated at 293 and 301 K for the mixtures without distinguishing the components and for the individual components ([P4444]CF3COO and water). A drastic change in the mixing state was observed for the solution when the critical point was approached.

  15. TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies

    PubMed Central

    van der Sluis, Sophie; Posthuma, Danielle; Dolan, Conor V.

    2013-01-01

    To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate genotype–phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between components. Extensive simulations, probing a wide variety of genotype–phenotype models, show that TATES's false positive rate is correct, and that TATES's statistical power to detect causal variants explaining 0.5% of the variance can be 2.5–9 times higher than the power of univariate tests based on composite scores and 1.5–2 times higher than the power of the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view of the genetic architecture of complex traits. As the actual causal genotype–phenotype model is usually unknown and probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a limiting factor. PMID:23359524

  16. Numerical investigation of spray ignition of a multi-component fuel surrogate

    NASA Astrophysics Data System (ADS)

    Backer, Lara; Narayanaswamy, Krithika; Pepiot, Perrine

    2014-11-01

    Simulating turbulent spray ignition, an important process in engine combustion, is challenging, since it combines the complexity of multi-scale, multiphase turbulent flow modeling with the need for an accurate description of chemical kinetics. In this work, we use direct numerical simulation to investigate the role of the evaporation model on the ignition characteristics of a multi-component fuel surrogate, injected as droplets in a turbulent environment. The fuel is represented as a mixture of several components, each one being representative of a different chemical class. A reduced kinetic scheme for the mixture is extracted from a well-validated detailed chemical mechanism, and integrated into the multiphase turbulent reactive flow solver NGA. Comparisons are made between a single-component evaporation model, in which the evaporating gas has the same composition as the liquid droplet, and a multi-component model, where component segregation does occur. In particular, the corresponding production of radical species, which are characteristic of the ignition of individual fuel components, is thoroughly analyzed.

  17. High variable mixture ratio oxygen/hydrogen engine

    NASA Technical Reports Server (NTRS)

    Erickson, C. M.; Tu, W. H.; Weiss, A. H.

    1988-01-01

    The ability of an O2/H2 engine to operate over a range of high-propellant mixture ratios was previously shown to be advantageous in single stage to orbit (SSTO) vehicles. The results are presented for the analysis of high-performance engine power cycles operating over propellant mixture ratio ranges of 12 to 6 and 9 to 6. A requirement to throttle up to 60 percent of nominal thrust was superimposed as a typical throttle range to limit vehicle acceleration as propellant is expended. The object of the analysis was to determine areas of concern relative to component and engine operability or potential hazards resulting from the operating requirements and ranges of conditions that derive from the overall engine requirements. The SSTO mission necessitates a high-performance, lightweight engine. Therefore, staged combustion power cycles employing either dual fuel-rich preburners or dual mixed (fuel-rich and oxygen-rich) preburners were examined. Engine mass flow and power balances were made and major component operating ranges were defined. Component size and arrangement were determined through engine layouts for one of the configurations evaluated. Each component is being examined to determine if there are areas of concern with respect to component efficiency, operability, reliability, or hazard. The effects of reducing the maximum chamber pressure were investigated for one of the cycles.

  18. Optical Properties of Fluorescent Mixtures: Comparing Quantum Dots to Organic Dyes

    ERIC Educational Resources Information Center

    Hutchins, Benjamin M.; Morgan, Thomas T.; Ucak-Astarlioglu, Mine G.; Wlilliams, Mary Elizabeth

    2007-01-01

    The study describes and compares the size-dependent optical properties of organic dyes with those of semiconductor nanocrystals or quantum dots (QDs). The analysis shows that mixtures of QDs contain emission colors that are sum of the individual QD components.

  19. Effects of Photochemically-Aged Atmospheres on Allergic Responses in Mice

    EPA Science Inventory

    Although air pollution is a complex mixture consisting of multiple gaseous and particulate components, current regulations and research approaches often focus on single pollutants. To better assess the impact of air pollution mixtures on respiratory health, we investigated the ef...

  20. THE GENOTOXICITY OF PRIORITY POLYCYCLIC AROMATIC HYDROCARBONS IN COMPLEX MIXTURES

    EPA Science Inventory

    Risk assessment of complex environmental samples suffers from difficulty in identifying toxic components, inadequacy of available toxicity data, and a paucity of knowledge about the behavior of geno(toxic) substances in complex mixtures. Lack of information about the behavior of ...

  1. Process and apparatus for separation of components of a gas stream

    DOEpatents

    Bryan, Charles R.; Torczynski, John R.; Brady, Patrick V.; Gallis, Michail; Brooks, Carlton F.

    2014-06-17

    A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.

  2. Effect of Substrate Wetting on the Morphology and Dynamics of Phase Separating Multi-Component Mixture

    NASA Astrophysics Data System (ADS)

    Goyal, Abheeti; Toschi, Federico; van der Schoot, Paul

    2017-11-01

    We study the morphological evolution and dynamics of phase separation of multi-component mixture in thin film constrained by a substrate. Specifically, we have explored the surface-directed spinodal decomposition of multicomponent mixture numerically by Free Energy Lattice Boltzmann (LB) simulations. The distinguishing feature of this model over the Shan-Chen (SC) model is that we have explicit and independent control over the free energy functional and EoS of the system. This vastly expands the ambit of physical systems that can be realistically simulated by LB simulations. We investigate the effect of composition, film thickness and substrate wetting on the phase morphology and the mechanism of growth in the vicinity of the substrate. The phase morphology and averaged size in the vicinity of the substrate fluctuate greatly due to the wetting of the substrate in both the parallel and perpendicular directions. Additionally, we also describe how the model presented here can be extended to include an arbitrary number of fluid components.

  3. [Theoretical modeling and experimental research on direct compaction characteristics of multi-component pharmaceutical powders based on the Kawakita equation].

    PubMed

    Si, Guo-Ning; Chen, Lan; Li, Bao-Guo

    2014-04-01

    Base on the Kawakita powder compression equation, a general theoretical model for predicting the compression characteristics of multi-components pharmaceutical powders with different mass ratios was developed. The uniaxial flat-face compression tests of powder lactose, starch and microcrystalline cellulose were carried out, separately. Therefore, the Kawakita equation parameters of the powder materials were obtained. The uniaxial flat-face compression tests of the powder mixtures of lactose, starch, microcrystalline cellulose and sodium stearyl fumarate with five mass ratios were conducted, through which, the correlation between mixture density and loading pressure and the Kawakita equation curves were obtained. Finally, the theoretical prediction values were compared with experimental results. The analysis showed that the errors in predicting mixture densities were less than 5.0% and the errors of Kawakita vertical coordinate were within 4.6%, which indicated that the theoretical model could be used to predict the direct compaction characteristics of multi-component pharmaceutical powders.

  4. Process and apparatus for separation of components of a gas stream

    DOEpatents

    Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F

    2013-09-17

    A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.

  5. Process and apparatus for separation of components of a gas stream

    DOEpatents

    Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F

    2013-11-19

    A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.

  6. General Blending Models for Data From Mixture Experiments

    PubMed Central

    Brown, L.; Donev, A. N.; Bissett, A. C.

    2015-01-01

    We propose a new class of models providing a powerful unification and extension of existing statistical methodology for analysis of data obtained in mixture experiments. These models, which integrate models proposed by Scheffé and Becker, extend considerably the range of mixture component effects that may be described. They become complex when the studied phenomenon requires it, but remain simple whenever possible. This article has supplementary material online. PMID:26681812

  7. Diffusion method of seperating gaseous mixtures

    DOEpatents

    Pontius, Rex B.

    1976-01-01

    A method of effecting a relatively large change in the relative concentrations of the components of a gaseous mixture by diffusion which comprises separating the mixture into heavier and lighter portions according to major fraction mass recycle procedure, further separating the heavier portions into still heavier subportions according to a major fraction mass recycle procedure, and further separating the lighter portions into still lighter subportions according to a major fraction equilibrium recycle procedure.

  8. Approximation of the breast height diameter distribution of two-cohort stands by mixture models III Kernel density estimators vs mixture models

    Treesearch

    Rafal Podlaski; Francis A. Roesch

    2014-01-01

    Two-component mixtures of either the Weibull distribution or the gamma distribution and the kernel density estimator were used for describing the diameter at breast height (dbh) empirical distributions of two-cohort stands. The data consisted of study plots from the Å wietokrzyski National Park (central Poland) and areas close to and including the North Carolina section...

  9. DOSY Analysis of Micromolar Analytes: Resolving Dilute Mixtures by SABRE Hyperpolarization.

    PubMed

    Reile, Indrek; Aspers, Ruud L E G; Tyburn, Jean-Max; Kempf, James G; Feiters, Martin C; Rutjes, Floris P J T; Tessari, Marco

    2017-07-24

    DOSY is an NMR spectroscopy technique that resolves resonances according to the analytes' diffusion coefficients. It has found use in correlating NMR signals and estimating the number of components in mixtures. Applications of DOSY in dilute mixtures are, however, held back by excessively long measurement times. We demonstrate herein, how the enhanced NMR sensitivity provided by SABRE hyperpolarization allows DOSY analysis of low-micromolar mixtures, thus reducing the concentration requirements by at least 100-fold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Influence of the Structure of a Solid-Fuel Mixture on the Thermal Efficiency of the Combustion Chamber of an Engine System

    NASA Astrophysics Data System (ADS)

    Futko, S. I.; Koznacheev, I. A.; Ermolaeva, E. M.

    2014-11-01

    On the basis of thermodynamic calculations, the features of the combustion of a solid-fuel mixture based on the glycidyl azide polymer were investigated, the thermal cycle of the combustion chamber of a model engine system was analyzed, and the efficiency of this chamber was determined for a wide range of pressures in it and different ratios between the components of the combustible mixture. It was established that, when the pressure in the combustion chamber of an engine system increases, two maxima arise successively on the dependence of the thermal efficiency of the chamber on the weight fractions of the components of the combustible mixture and that the first maximum shifts to the side of smaller concentrations of the glycidyl azide polymer with increase in the pressure in the chamber; the position of the second maximum is independent of this pressure, coincides with the minimum on the dependence of the rate of combustion of the mixture, and corresponds to the point of its structural phase transition at which the mole fractions of the carbon and oxygen atoms in the mixture are equal. The results obtained were interpreted on the basis of the Le-Chatelier principle.

  11. Phase equillibria and solidification behaviour in the vanillin- p-anisidine system

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Das, S. S.; Gupta, Preeti; Dwivedi, M. K.

    2008-12-01

    Phase diagram of the vanillin- p-anisidine system has been studied by the thaw melt method. Congruent melting-type phase diagram exhibiting two eutectic points was obtained. Vanillin and p-anisidine react in 1:1 M ratio and form N-(4-methoxy phenyl)-4-hydroxy-3-methoxy phenyl methanimine (NHM) and water. Heats of fusion of pure components and the eutectic mixtures ( E1 and E2) were obtained from DSC studies. Jackson's roughness parameters ( α) were calculated. Excess Gibbs free energy ( GE), excess entropy ( SE) and excess enthalpy ( HE) of mixing of pre-, post- and eutectic mixtures were also calculated by using activity coefficient data. Linear velocities of solidification of components and eutectic mixtures were determined at different undercoolings. The values of excess thermodynamic functions and linear velocity data have indicated the non-ideal nature of the eutectic mixtures. Interaction energies in the gaseous state, calculated from computer simulation, have also indicated that the eutectics are non-ideal mixtures. Microstructural studies of vanillin, p-anisidine and NHM show the formation of broken lamellar type structures. However, for the eutectic E1, an irregular type and for the eutectic E2, a lamellar type structures were obtained. The effect of impurity on the microstructures of eutectic mixtures was also studied.

  12. Optimization of natural lipstick formulation based on pitaya (Hylocereus polyrhizus) seed oil using D-optimal mixture experimental design.

    PubMed

    Kamairudin, Norsuhaili; Gani, Siti Salwa Abd; Masoumi, Hamid Reza Fard; Hashim, Puziah

    2014-10-16

    The D-optimal mixture experimental design was employed to optimize the melting point of natural lipstick based on pitaya (Hylocereus polyrhizus) seed oil. The influence of the main lipstick components-pitaya seed oil (10%-25% w/w), virgin coconut oil (25%-45% w/w), beeswax (5%-25% w/w), candelilla wax (1%-5% w/w) and carnauba wax (1%-5% w/w)-were investigated with respect to the melting point properties of the lipstick formulation. The D-optimal mixture experimental design was applied to optimize the properties of lipstick by focusing on the melting point with respect to the above influencing components. The D-optimal mixture design analysis showed that the variation in the response (melting point) could be depicted as a quadratic function of the main components of the lipstick. The best combination of each significant factor determined by the D-optimal mixture design was established to be pitaya seed oil (25% w/w), virgin coconut oil (37% w/w), beeswax (17% w/w), candelilla wax (2% w/w) and carnauba wax (2% w/w). With respect to these factors, the 46.0 °C melting point property was observed experimentally, similar to the theoretical prediction of 46.5 °C. Carnauba wax is the most influential factor on this response (melting point) with its function being with respect to heat endurance. The quadratic polynomial model sufficiently fit the experimental data.

  13. Colloidal properties of single component naphthenic acids and complex naphthenic acid mixtures.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Peru, Kerry M; Headley, John V

    2013-04-01

    Tensiometry was used to provide estimates of the critical micelle concentration (cmc) values for three sources of naphthenic acids (NAs) and three examples of single component NAs (S1-S3) in aqueous solution at pH 10.5 and 295 K. Two commercially available mixtures of NAs and an industrially derived mixture of NAs obtained from Alberta oil sands process water (OSPW) were investigated. The three examples of single component NAs (C(n)H(2n+z)O2) were chosen with variable z-series to represent chemical structures with 0-2 rings, as follows: 2-hexyldecanoic acid (z=0; S1), trans-4-pentylcyclohexanecarboxylic acid (z=-2; S2) and dicyclohexylacetic acid (z=-4; S3). The estimated cmc values for S1 (35.6 μM), S2 (0.545 mM), and S3 (4.71 mM) vary over a wide range according to their relative lipophile characteristics of each carboxylate anion. The cmc values for the three complex mixtures of NAs were evaluated. Two disctinct cmc values were observed (second listed in brackets) as follows: Commercial sample 1; 50.9 μM (109 μM), Commercial sample 2; 22.3 μM (52.2 μM), and Alberta derived OSPW; 154 μM (417 μM). These results provide strong support favouring two general classes of NAs in the mixtures investigated with distinct cmc values. We propose that the two groups may be linked to a recalcitrant fraction with a relatively large range of cmc values (52.2-417 μM) and a readily biodegradable fraction with a relatively low range of cmc values (22.3-154 μM) depending on the source of NAs in a given mixture. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. A numerical study of blood flow using mixture theory

    PubMed Central

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.

    2014-01-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016

  15. A numerical study of blood flow using mixture theory.

    PubMed

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F

    2014-03-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM ® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed.

  16. Efficient and robust relaxation procedures for multi-component mixtures including phase transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Ee, E-mail: eehan@math.uni-bremen.de; Hantke, Maren, E-mail: maren.hantke@ovgu.de; Müller, Siegfried, E-mail: mueller@igpm.rwth-aachen.de

    We consider a thermodynamic consistent multi-component model in multi-dimensions that is a generalization of the classical two-phase flow model of Baer and Nunziato. The exchange of mass, momentum and energy between the phases is described by additional source terms. Typically these terms are handled by relaxation procedures. Available relaxation procedures suffer from efficiency and robustness resulting in very costly computations that in general only allow for one-dimensional computations. Therefore we focus on the development of new efficient and robust numerical methods for relaxation processes. We derive exact procedures to determine mechanical and thermal equilibrium states. Further we introduce a novelmore » iterative method to treat the mass transfer for a three component mixture. All new procedures can be extended to an arbitrary number of inert ideal gases. We prove existence, uniqueness and physical admissibility of the resulting states and convergence of our new procedures. Efficiency and robustness of the procedures are verified by means of numerical computations in one and two space dimensions. - Highlights: • We develop novel relaxation procedures for a generalized, thermodynamically consistent Baer–Nunziato type model. • Exact procedures for mechanical and thermal relaxation procedures avoid artificial parameters. • Existence, uniqueness and physical admissibility of the equilibrium states are proven for special mixtures. • A novel iterative method for mass transfer is introduced for a three component mixture providing a unique and admissible equilibrium state.« less

  17. The influence of reactive side products on the electrooxidation of methanol--a combined in situ infrared spectroscopy and online mass spectrometry study.

    PubMed

    Reichert, R; Schnaidt, J; Jusys, Z; Behm, R J

    2014-07-21

    Aiming at a better understanding of the impact of reaction intermediates and reactive side products on electrocatalytic reactions under conditions characteristic for technical applications, i.e., at high reactant conversions, we have investigated the electrooxidation of methanol on a Pt film electrode in mixtures containing defined concentrations of the reaction intermediates formaldehyde or formic acid. Employing simultaneous in situ infrared spectroscopy and online mass spectrometry in parallel to voltammetric measurements, we examined the effects of the latter molecules on the adlayer build-up and composition and on the formation of volatile reaction products CO2 and methylformate, as well as on the overall reaction rate. To assess the individual contributions of each component, we used isotope labeling techniques, where one of the two C1 components in the mixtures of methanol with either formaldehyde or formic acid was (13)C-labeled. The data reveal pronounced effects of the additional components formaldehyde and formic acid on the reaction, although their concentration was much lower (10%) than that of the main reactant methanol. Most important, the overall Faradaic current responses and the amounts of CO2 formed upon oxidation of the mixtures are always lower than the sums of the contributions from the individual components, indicative of a non-additive behavior of both Faradaic current and CO2 formation in the mixtures. Mechanistic reasons and consequences for reactions in a technical reactor, with high reactant conversion, are discussed.

  18. Innovative aspects of protein stability in ionic liquid mixtures.

    PubMed

    Kumar, Awanish; Venkatesu, Pannuru

    2018-06-01

    Mixtures of ionic liquids (ILs) have attracted our attention because of their extraordinary performances in extraction technologies and in absorbing large amount of CO 2 gas. It has been observed that when two or more ILs are mixed in different proportions, a new solvent is obtained which is much better than that of each component of ILs from which the mixture is obtained. Within a mixture of ILs, several unidentified interactions occur among several ions which give rise to unique solvent properties to the mixture. Herein, in this review, we have highlighted the utilization of the advantageous properties of the IL mixtures in protein stability studies. This approach is exceptional and opens new directions to the use of ILs in biotechnology.

  19. Near azeotropic mixture substitute

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1996-01-01

    The present invention comprises a refrigerant mixture consisting of a first mole fraction of 1,1,1,2-tetrafluoroethane (R134a) and a second mole fraction of a component selected from the group consisting of a mixture of CHClFCF.sub.3 (R124) and CH.sub.3 CClF.sub.2 (R142b); a mixture of CHF.sub.2 CH.sub.3 (R152a) and CHClFCF.sub.3 (R124); a mixture of CHF.sub.2 CH.sub.3 (R152a) and CH.sub.3 CClF.sub.2 (R142b); and a mixture of CHClFCF.sub.3 (R124), CH.sub.3 CClF.sub.2 (R142b) and CHF.sub.2 CH.sub.3 (R152a).

  20. GENPLAT: an Automated Platform for Biomass Enzyme Discovery and Cocktail Optimization

    PubMed Central

    Walton, Jonathan; Banerjee, Goutami; Car, Suzana

    2011-01-01

    The high cost of enzymes for biomass deconstruction is a major impediment to the economic conversion of lignocellulosic feedstocks to liquid transportation fuels such as ethanol. We have developed an integrated high throughput platform, called GENPLAT, for the discovery and development of novel enzymes and enzyme cocktails for the release of sugars from diverse pretreatment/biomass combinations. GENPLAT comprises four elements: individual pure enzymes, statistical design of experiments, robotic pipeting of biomass slurries and enzymes, and automated colorimeteric determination of released Glc and Xyl. Individual enzymes are produced by expression in Pichia pastoris or Trichoderma reesei, or by chromatographic purification from commercial cocktails or from extracts of novel microorganisms. Simplex lattice (fractional factorial) mixture models are designed using commercial Design of Experiment statistical software. Enzyme mixtures of high complexity are constructed using robotic pipeting into a 96-well format. The measurement of released Glc and Xyl is automated using enzyme-linked colorimetric assays. Optimized enzyme mixtures containing as many as 16 components have been tested on a variety of feedstock and pretreatment combinations. GENPLAT is adaptable to mixtures of pure enzymes, mixtures of commercial products (e.g., Accellerase 1000 and Novozyme 188), extracts of novel microbes, or combinations thereof. To make and test mixtures of ˜10 pure enzymes requires less than 100 μg of each protein and fewer than 100 total reactions, when operated at a final total loading of 15 mg protein/g glucan. We use enzymes from several sources. Enzymes can be purified from natural sources such as fungal cultures (e.g., Aspergillus niger, Cochliobolus carbonum, and Galerina marginata), or they can be made by expression of the encoding genes (obtained from the increasing number of microbial genome sequences) in hosts such as E. coli, Pichia pastoris, or a filamentous fungus such as T. reesei. Proteins can also be purified from commercial enzyme cocktails (e.g., Multifect Xylanase, Novozyme 188). An increasing number of pure enzymes, including glycosyl hydrolases, cell wall-active esterases, proteases, and lyases, are available from commercial sources, e.g., Megazyme, Inc. (www.megazyme.com), NZYTech (www.nzytech.com), and PROZOMIX (www.prozomix.com). Design-Expert software (Stat-Ease, Inc.) is used to create simplex-lattice designs and to analyze responses (in this case, Glc and Xyl release). Mixtures contain 4-20 components, which can vary in proportion between 0 and 100%. Assay points typically include the extreme vertices with a sufficient number of intervening points to generate a valid model. In the terminology of experimental design, most of our studies are "mixture" experiments, meaning that the sum of all components adds to a total fixed protein loading (expressed as mg/g glucan). The number of mixtures in the simplex-lattice depends on both the number of components in the mixture and the degree of polynomial (quadratic or cubic). For example, a 6-component experiment will entail 63 separate reactions with an augmented special cubic model, which can detect three-way interactions, whereas only 23 individual reactions are necessary with an augmented quadratic model. For mixtures containing more than eight components, a quadratic experimental design is more practical, and in our experience such models are usually statistically valid. All enzyme loadings are expressed as a percentage of the final total loading (which for our experiments is typically 15 mg protein/g glucan). For "core" enzymes, the lower percentage limit is set to 5%. This limit was derived from our experience in which yields of Glc and/or Xyl were very low if any core enzyme was present at 0%. Poor models result from too many samples showing very low Glc or Xyl yields. Setting a lower limit in turn determines an upper limit. That is, for a six-component experiment, if the lower limit for each single component is set to 5%, then the upper limit of each single component will be 75%. The lower limits of all other enzymes considered as "accessory" are set to 0%. "Core" and "accessory" are somewhat arbitrary designations and will differ depending on the substrate, but in our studies the core enzymes for release of Glc from corn stover comprise the following enzymes from T. reesei: CBH1 (also known as Cel7A), CBH2 (Cel6A), EG1(Cel7B), BG (β-glucosidase), EX3 (endo-β1,4-xylanase, GH10), and BX (β-xylosidase). PMID:22042431

  1. GENPLAT: an automated platform for biomass enzyme discovery and cocktail optimization.

    PubMed

    Walton, Jonathan; Banerjee, Goutami; Car, Suzana

    2011-10-24

    The high cost of enzymes for biomass deconstruction is a major impediment to the economic conversion of lignocellulosic feedstocks to liquid transportation fuels such as ethanol. We have developed an integrated high throughput platform, called GENPLAT, for the discovery and development of novel enzymes and enzyme cocktails for the release of sugars from diverse pretreatment/biomass combinations. GENPLAT comprises four elements: individual pure enzymes, statistical design of experiments, robotic pipeting of biomass slurries and enzymes, and automated colorimeteric determination of released Glc and Xyl. Individual enzymes are produced by expression in Pichia pastoris or Trichoderma reesei, or by chromatographic purification from commercial cocktails or from extracts of novel microorganisms. Simplex lattice (fractional factorial) mixture models are designed using commercial Design of Experiment statistical software. Enzyme mixtures of high complexity are constructed using robotic pipeting into a 96-well format. The measurement of released Glc and Xyl is automated using enzyme-linked colorimetric assays. Optimized enzyme mixtures containing as many as 16 components have been tested on a variety of feedstock and pretreatment combinations. GENPLAT is adaptable to mixtures of pure enzymes, mixtures of commercial products (e.g., Accellerase 1000 and Novozyme 188), extracts of novel microbes, or combinations thereof. To make and test mixtures of ˜10 pure enzymes requires less than 100 μg of each protein and fewer than 100 total reactions, when operated at a final total loading of 15 mg protein/g glucan. We use enzymes from several sources. Enzymes can be purified from natural sources such as fungal cultures (e.g., Aspergillus niger, Cochliobolus carbonum, and Galerina marginata), or they can be made by expression of the encoding genes (obtained from the increasing number of microbial genome sequences) in hosts such as E. coli, Pichia pastoris, or a filamentous fungus such as T. reesei. Proteins can also be purified from commercial enzyme cocktails (e.g., Multifect Xylanase, Novozyme 188). An increasing number of pure enzymes, including glycosyl hydrolases, cell wall-active esterases, proteases, and lyases, are available from commercial sources, e.g., Megazyme, Inc. (www.megazyme.com), NZYTech (www.nzytech.com), and PROZOMIX (www.prozomix.com). Design-Expert software (Stat-Ease, Inc.) is used to create simplex-lattice designs and to analyze responses (in this case, Glc and Xyl release). Mixtures contain 4-20 components, which can vary in proportion between 0 and 100%. Assay points typically include the extreme vertices with a sufficient number of intervening points to generate a valid model. In the terminology of experimental design, most of our studies are "mixture" experiments, meaning that the sum of all components adds to a total fixed protein loading (expressed as mg/g glucan). The number of mixtures in the simplex-lattice depends on both the number of components in the mixture and the degree of polynomial (quadratic or cubic). For example, a 6-component experiment will entail 63 separate reactions with an augmented special cubic model, which can detect three-way interactions, whereas only 23 individual reactions are necessary with an augmented quadratic model. For mixtures containing more than eight components, a quadratic experimental design is more practical, and in our experience such models are usually statistically valid. All enzyme loadings are expressed as a percentage of the final total loading (which for our experiments is typically 15 mg protein/g glucan). For "core" enzymes, the lower percentage limit is set to 5%. This limit was derived from our experience in which yields of Glc and/or Xyl were very low if any core enzyme was present at 0%. Poor models result from too many samples showing very low Glc or Xyl yields. Setting a lower limit in turn determines an upper limit. That is, for a six-component experiment, if the lower limit for each single component is set to 5%, then the upper limit of each single component will be 75%. The lower limits of all other enzymes considered as "accessory" are set to 0%. "Core" and "accessory" are somewhat arbitrary designations and will differ depending on the substrate, but in our studies the core enzymes for release of Glc from corn stover comprise the following enzymes from T. reesei: CBH1 (also known as Cel7A), CBH2 (Cel6A), EG1(Cel7B), BG (β-glucosidase), EX3 (endo-β1,4-xylanase, GH10), and BX (β-xylosidase).

  2. Detailed finite element method modeling of evaporating multi-component droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diddens, Christian, E-mail: C.Diddens@tue.nl

    The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet.more » Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.« less

  3. Glass formation of a DMSO-water mixture probed with a photosynthetic pigment.

    PubMed

    Huerta-Viga, Adriana; Nguyen, Linh-Lan; Amirjalayer, Saeed; Sim, Jamie H N; Zhang, Zhengyang; Tan, Howe-Siang

    2018-06-19

    Despite their extensive industrial usage, glass-forming liquids are not fully understood, and methods to investigate their dynamical heterogeneity are sought after. Here we show how the appearance of a second component in the visible absorption spectrum of a photosynthetic pigment upon cooling can be used to probe the glass transition of a dimethylsulfoxide-water mixture. The changes in the relative ratio of the two components with respect to temperature follow a sigmoid curve, and we show that the second component arises due to protonation of the pigment at low temperatures. Furthermore, from visible transient absorption spectra we show that, unlike the first component, the dynamics of the second component slows down significantly at lower temperatures, suggesting that there are two distinct environments with fast and slow fluctuations. Our results therefore enable a new method to characterize the dynamical heterogeneity of glass-forming liquids.

  4. Characterization of the Androgen-sensitive MDA-kb2 Cell Line for Assessing Complex Environmental Mixtures

    EPA Science Inventory

    Complex mixtures of synthetic and natural androgens and estrogens, and many other non-steroidal components are commonly released to the aquatic environment from anthropogenic sources. It is important to understand the potential interactive (i.e., additive, synergistic, antagonist...

  5. Air Quality Modeling Needs for Exposure Assessment form the Source-To-Outcome Perspective

    EPA Science Inventory

    Humans are exposed continuously to mixtures of air pollutants. The compositions of these mixtures vary with time and location and their components originate from many types of sources, both local and distant, including industrial facilities, vehicles, consumer products, and more....

  6. Molecular Dynamics Evaluation of Dielectric-Constant Mixing Rules for H2O-CO2 at Geologic Conditions

    PubMed Central

    Mountain, Raymond D.; Harvey, Allan H.

    2015-01-01

    Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H2O–CO2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range. PMID:26664009

  7. Molecular Dynamics Evaluation of Dielectric-Constant Mixing Rules for H2O-CO2 at Geologic Conditions.

    PubMed

    Mountain, Raymond D; Harvey, Allan H

    2015-10-01

    Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H 2 O-CO 2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range.

  8. Synergy in Protein–Osmolyte Mixtures

    PubMed Central

    2014-01-01

    Virtually all taxa use osmolytes to protect cells against biochemical stress. Osmolytes often occur in mixtures, such as the classical combination of urea with TMAO (trimethylamine N-oxide) in cartilaginous fish or the cocktail of at least six different osmolytes in the kidney. The concentration patterns of osmolyte mixtures found in vivo make it likely that synergy between them plays an important role. Using statistical mechanical n-component Kirkwood–Buff theory, we show from first principles that synergy in protein–osmolyte systems can arise from two separable sources: (1) mutual alteration of protein surface solvation and (2) effects mediated through bulk osmolyte chemical activities. We illustrate both effects in a four-component system with the experimental example of the unfolding of a notch ankyrin domain in urea–TMAO mixtures, which make urea a less effective denaturant and TMAO a more effective stabilizer. Protein surface effects are primarily responsible for this synergy. The specific patterns of surface solvation point to denatured state expansion as the main factor, as opposed to direct competition. PMID:25490052

  9. Air Pollution Exposures and Circulating Biomarkers of Effect in a Susceptible Population: Clues to Potential Causal Component mixtures and mechanisms

    PubMed Central

    Delfino, Ralph J.; Staimer, Norbert; Tjoa, Thomas; Gillen, Daniel L.; Polidori, Andrea; Arhami, Mohammad; Kleinman, Micheal T.; Vaziri, Nosratola D.; Longhurst, John; Sioutas, Constantinos

    2009-01-01

    Background Mechanisms involving oxidative stress and inflammation have been proposed to explain associations of ambient air pollution with cardiovascular morbidity and mortality. Experimental evidence suggests that organic components and ultrafine particles (UFP) are important. Methods We conducted a panel study of 60 elderly subjects with coronary artery disease living in retirement communities within the Los Angeles, California, air basin. Weekly biomarkers of inflammation included plasma interleukin-6, tumor necrosis factor-α soluble receptor II (sTNF-RII), soluble platelet selectin (sP-selectin), and C-reactive protein (CRP). Biomarkers of erythrocyte antioxidant activity included glutathione peroxidase-1 and superoxide dismutase. Exposures included outdoor home daily particle mass [particulate matter < 0.25, 0.25–2.5, and 2.5–10 μm in aerodynamic diameter (PM0.25, PM0.25–2.5, PM2.5–10)], and hourly elemental and black carbon (EC–BC), estimated primary and secondary organic carbon (OCpri, SOC), particle number (PN), carbon monoxide (CO), and nitrogen oxides–nitrogen dioxide (NOx–NO2). We analyzed the relation of biomarkers to exposures with mixed effects models adjusted for potential confounders. Results Primary combustion markers (EC–BC, OCpri, CO, NOx–NO2), but not SOC, were positively associated with inflammatory biomarkers and inversely associated with erythrocyte anti-oxidant enzymes (n = 578). PN and PM0.25 were more strongly associated with biomarkers than PM0.25–2.5. Associations for all exposures were stronger during cooler periods when only OCpri, PN, and NOx were higher. We found weaker associations with statin (sTNF-RII, CRP) and clopidogrel use (sP-selectin). Conclusions Traffic-related air pollutants are associated with increased systemic inflammation, increased platelet activation, and decreased erythrocyte antioxidant enzyme activity, which may be partly behind air pollutant–related increases in systemic inflammation. Differences in association by particle size, OC fraction, and seasonal period suggest components carried by UFP are important. PMID:19672402

  10. A Phagostimulant Blend for the Asian Citrus Psyllid.

    PubMed

    Lapointe, Stephen L; Hall, David G; George, Justin

    2016-09-01

    Chemical cues that elicit orientation by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), are of interest because it is the primary vector of the causal pathogen of citrus greening disease. Non-pesticidal control methods for D. citri remain a high priority for the citrus industry. While searching for semiochemicals that may be involved in orientation to host plants, we previously identified a blend of formic and acetic acids that stimulated substrate probing by D. citri. Here, we applied geometric mixture designs and response surface modeling to identify and optimize a 3-component blend that further increased the number of salivary sheaths produced by D. citri on a wax substrate containing a 3.5:1.6:1 blend of formic acid, acetic acid, and p-cymene, respectively. No evidence was found for remote orientation by D. citri adults through olfaction to the phagostimulant blends. Increased probing in response to the presence of phagostimulants in the wax matrix occurred after contact with the substrate. Yellow wax beads always attracted more D. citri adults and received more probes compared with white wax beads. Yellow beads containing the 3-component blend of phagostimulants were probed by D. citri 2 to 3 times more often compared with yellow beads alone. The phagostimulant effect also was tested by covering wax beads containing the 3-component blend with a plastic film to minimize olfaction or contact chemoreception by antennation. The plastic film did not affect the probing response, thus suggesting that chemosensation was associated with mouthparts and not olfactory receptors. Salivary sheaths produced in wax beads containing the phagostimulant blend were 4.5 times longer than sheaths produced in beads without tastants. This phenomenon might be used to improve a trap, design an attract-and-kill product, or enhance other means of managing D. citri and citrus greening disease.

  11. A Multivariate Granger Causality Concept towards Full Brain Functional Connectivity.

    PubMed

    Schmidt, Christoph; Pester, Britta; Schmid-Hertel, Nicole; Witte, Herbert; Wismüller, Axel; Leistritz, Lutz

    2016-01-01

    Detecting changes of spatially high-resolution functional connectivity patterns in the brain is crucial for improving the fundamental understanding of brain function in both health and disease, yet still poses one of the biggest challenges in computational neuroscience. Currently, classical multivariate Granger Causality analyses of directed interactions between single process components in coupled systems are commonly restricted to spatially low- dimensional data, which requires a pre-selection or aggregation of time series as a preprocessing step. In this paper we propose a new fully multivariate Granger Causality approach with embedded dimension reduction that makes it possible to obtain a representation of functional connectivity for spatially high-dimensional data. The resulting functional connectivity networks may consist of several thousand vertices and thus contain more detailed information compared to connectivity networks obtained from approaches based on particular regions of interest. Our large scale Granger Causality approach is applied to synthetic and resting state fMRI data with a focus on how well network community structure, which represents a functional segmentation of the network, is preserved. It is demonstrated that a number of different community detection algorithms, which utilize a variety of algorithmic strategies and exploit topological features differently, reveal meaningful information on the underlying network module structure.

  12. Comparing the Cognitive Process of Circular Causality in Two Patients with Strokes through Qualitative Analysis.

    PubMed

    Derakhshanrad, Seyed Alireza; Piven, Emily; Ghoochani, Bahareh Zeynalzadeh

    2017-10-01

    Walter J. Freeman pioneered the neurodynamic model of brain activity when he described the brain dynamics for cognitive information transfer as the process of circular causality at intention, meaning, and perception (IMP) levels. This view contributed substantially to establishment of the Intention, Meaning, and Perception Model of Neuro-occupation in occupational therapy. As described by the model, IMP levels are three components of the brain dynamics system, with nonlinear connections that enable cognitive function to be processed in a circular causality fashion, known as Cognitive Process of Circular Causality (CPCC). Although considerable research has been devoted to study the brain dynamics by sophisticated computerized imaging techniques, less attention has been paid to study it through investigating the adaptation process of thoughts and behaviors. To explore how CPCC manifested thinking and behavioral patterns, a qualitative case study was conducted on two matched female participants with strokes, who were of comparable ages, affected sides, and other characteristics, except for their resilience and motivational behaviors. CPCC was compared by matrix analysis between two participants, using content analysis with pre-determined categories. Different patterns of thinking and behavior may have happened, due to disparate regulation of CPCC between two participants.

  13. Coactivation of Gustatory and Olfactory Signals in Flavor Perception

    PubMed Central

    Veldhuizen, Maria G.; Shepard, Timothy G.; Wang, Miao-Fen

    2010-01-01

    It is easier to detect mixtures of gustatory and olfactory flavorants than to detect either component alone. But does the detection of mixtures exceed the level predicted by probability summation, assuming independent detection of each component? To answer this question, we measured simple response times (RTs) to detect brief pulses of one of 3 flavorants (sucrose [gustatory], citral [olfactory], sucrose–citral mixture) or water, presented into the mouth by a computer-operated, automated flow system. Subjects were instructed to press a button as soon as they detected any of the 3 nonwater stimuli. Responses to the mixtures were faster (RTs smaller) than predicted by a model of probability summation of independently detected signals, suggesting positive coactivation (integration) of gustation and retronasal olfaction in flavor perception. Evidence for integration appeared mainly in the fastest 60% of the responses, indicating that integration arises relatively early in flavor processing. Results were similar when the 3 possible flavorants, and water, were interleaved within the same session (experimental condition), and when each flavorant was interleaved with water only (control conditions). This outcome suggests that subjects did not attend selectively to one flavor component or the other in the experimental condition and further supports the conclusion that (late) decisional or attentional strategies do not exert a large influence on the gustatory–olfactory flavor integration. PMID:20032112

  14. Neurons and Objects: The Case of Auditory Cortex

    PubMed Central

    Nelken, Israel; Bar-Yosef, Omer

    2008-01-01

    Sounds are encoded into electrical activity in the inner ear, where they are represented (roughly) as patterns of energy in narrow frequency bands. However, sounds are perceived in terms of their high-order properties. It is generally believed that this transformation is performed along the auditory hierarchy, with low-level physical cues computed at early stages of the auditory system and high-level abstract qualities at high-order cortical areas. The functional position of primary auditory cortex (A1) in this scheme is unclear – is it ‘early’, encoding physical cues, or is it ‘late’, already encoding abstract qualities? Here we argue that neurons in cat A1 show sensitivity to high-level features of sounds. In particular, these neurons may already show sensitivity to ‘auditory objects’. The evidence for this claim comes from studies in which individual sounds are presented singly and in mixtures. Many neurons in cat A1 respond to mixtures in the same way they respond to one of the individual components of the mixture, and in many cases neurons may respond to a low-level component of the mixture rather than to the acoustically dominant one, even though the same neurons respond to the acoustically-dominant component when presented alone. PMID:18982113

  15. Understanding deformation mechanisms during powder compaction using principal component analysis of compression data.

    PubMed

    Roopwani, Rahul; Buckner, Ira S

    2011-10-14

    Principal component analysis (PCA) was applied to pharmaceutical powder compaction. A solid fraction parameter (SF(c/d)) and a mechanical work parameter (W(c/d)) representing irreversible compression behavior were determined as functions of applied load. Multivariate analysis of the compression data was carried out using PCA. The first principal component (PC1) showed loadings for the solid fraction and work values that agreed with changes in the relative significance of plastic deformation to consolidation at different pressures. The PC1 scores showed the same rank order as the relative plasticity ranking derived from the literature for common pharmaceutical materials. The utility of PC1 in understanding deformation was extended to binary mixtures using a subset of the original materials. Combinations of brittle and plastic materials were characterized using the PCA method. The relationships between PC1 scores and the weight fractions of the mixtures were typically linear showing ideal mixing in their deformation behaviors. The mixture consisting of two plastic materials was the only combination to show a consistent positive deviation from ideality. The application of PCA to solid fraction and mechanical work data appears to be an effective means of predicting deformation behavior during compaction of simple powder mixtures. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Effect of air humidity on the removal of carbon tetrachloride from air using Cu-BTC metal-organic framework.

    PubMed

    Martín-Calvo, Ana; García-Pérez, Elena; García-Sánchez, Almudena; Bueno-Pérez, Rocío; Hamad, Said; Calero, Sofia

    2011-06-21

    We have used interatomic potential-based simulations to study the removal of carbon tetrachloride from air at 298 K, using Cu-BTC metal organic framework. We have developed new sets of Lennard-Jones parameters that accurately describe the vapour-liquid equilibrium curves of carbon tetrachloride and the main components from air (oxygen, nitrogen, and argon). Using these parameters we performed Monte Carlo simulations for the following systems: (a) single component adsorption of carbon tetrachloride, oxygen, nitrogen, and argon molecules, (b) binary Ar/CCl(4), O(2)/CCl(4), and N(2)/CCl(4) mixtures with bulk gas compositions 99 : 1 and 99.9 : 0.1, (c) ternary O(2)/N(2)/Ar mixtures with both, equimolar and 21 : 78 : 1 bulk gas composition, (d) quaternary mixture formed by 0.1% of CCl(4) pollutant, 20.979% O(2), 77.922% N(2), and 0.999% Ar, and (e) five-component mixtures corresponding to 0.1% of CCl(4) pollutant in air with relative humidity ranging from 0 to 100%. The carbon tetrachloride adsorption selectivity and the self-diffusivity and preferential sitting of the different molecules in the structure are studied for all the systems.

  17. Cure modeling in real-time prediction: How much does it help?

    PubMed

    Ying, Gui-Shuang; Zhang, Qiang; Lan, Yu; Li, Yimei; Heitjan, Daniel F

    2017-08-01

    Various parametric and nonparametric modeling approaches exist for real-time prediction in time-to-event clinical trials. Recently, Chen (2016 BMC Biomedical Research Methodology 16) proposed a prediction method based on parametric cure-mixture modeling, intending to cover those situations where it appears that a non-negligible fraction of subjects is cured. In this article we apply a Weibull cure-mixture model to create predictions, demonstrating the approach in RTOG 0129, a randomized trial in head-and-neck cancer. We compare the ultimate realized data in RTOG 0129 to interim predictions from a Weibull cure-mixture model, a standard Weibull model without a cure component, and a nonparametric model based on the Bayesian bootstrap. The standard Weibull model predicted that events would occur earlier than the Weibull cure-mixture model, but the difference was unremarkable until late in the trial when evidence for a cure became clear. Nonparametric predictions often gave undefined predictions or infinite prediction intervals, particularly at early stages of the trial. Simulations suggest that cure modeling can yield better-calibrated prediction intervals when there is a cured component, or the appearance of a cured component, but at a substantial cost in the average width of the intervals. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. State relations for a two-phase mixture of reacting explosives and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, Shiro; Saburi, Tei; Ogata, Yuji

    2007-10-15

    To assess the assumptions behind the two phase mixture rule for reacting explosives, the shock-to-detonation transition process was calculated for high explosives using a finite difference method. An ignition and growth model and the Jones-Wilkins-Lee (JWL) equations of state were employed. The simple mixture rule assumes that the reacting explosive is a simple mixture of the reactant and product components. Four different assumptions, such as that of thermal equilibrium and isotropy, were adopted to calculate the pressure. The main purpose of this paper is to present the answer to the question of why the numerical results of shock-initiation are insensitivemore » to the assumptions adopted. The equations of state for reactants and products were assessed by considering plots of the specific internal energy E and specific volume V. If the slopes of the constant-pressure lines for both components in the E-V plane are almost the same, it is demonstrated that the numerical results are insensitive to the assumptions adopted. We have found that the relation for the specific volumes of the two components can be approximately expressed by a single curve of the specific volume of the reactant vs that of the products. We discuss this relationship in terms of the results of the numerical simulation. (author)« less

  19. Optimum Tolerance Design Using Component-Amount and Mixture-Amount Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Ozler, Cenk; Sehirlioglu, Ali Kemal

    2013-08-01

    One type of tolerance design problem involves optimizing component and assembly tolerances to minimize the total cost (sum of manufacturing cost and quality loss). Previous literature recommended using traditional response surface (RS) designs and models to solve this type of tolerance design problem. In this article, component-amount (CA) and mixture-amount (MA) approaches are proposed as more appropriate for solving this type of tolerance design problem. The advantages of the CA and MA approaches over the RS approach are discussed. Reasons for choosing between the CA and MA approaches are also discussed. The CA and MA approaches (experimental design, response modeling,more » and optimization) are illustrated using real examples.« less

  20. The study of theoretical and experimental feasibilities of the rocket fuel components ignition by laser radiation

    NASA Astrophysics Data System (ADS)

    Belyaev, Vadim S.; Guterman, Vitaly Y.; Ivanov, Anatoly V.

    2004-06-01

    The report presents the theoretical and experimental results obtained during the first year of the ISTC project No. 1926. The energy and temporal characteristics of the laser radiation necessary to ignite the working components mixture in a rocket engine combustion chamber have been predicted. Two approaches have been studied: the optical gas fuel laser-induced breakdown; the laser-initiated plasma torch on target surface. The possibilities and conditions of the rocket fuel components ignition by a laser beam in the differently designed combustion chambers have been estimated and studied. The comparative analysis shows that both the optical spark and light focusing on target techniques can ignite the mixture.

  1. A-TEEMTM, a new molecular fingerprinting technique: simultaneous absorbance-transmission and fluorescence excitation-emission matrix method

    NASA Astrophysics Data System (ADS)

    Quatela, Alessia; Gilmore, Adam M.; Steege Gall, Karen E.; Sandros, Marinella; Csatorday, Karoly; Siemiarczuk, Alex; (Ben Yang, Boqian; Camenen, Loïc

    2018-04-01

    We investigate the new simultaneous absorbance-transmission and fluorescence excitation-emission matrix method for rapid and effective characterization of the varying components from a mixture. The absorbance-transmission and fluorescence excitation-emission matrix method uniquely facilitates correction of fluorescence inner-filter effects to yield quantitative fluorescence spectral information that is largely independent of component concentration. This is significant because it allows one to effectively monitor quantitative component changes using multivariate methods and to generate and evaluate spectral libraries. We present the use of this novel instrument in different fields: i.e. tracking changes in complex mixtures including natural water, wine as well as monitoring stability and aggregation of hormones for biotherapeutics.

  2. A twin-sibling study on the relationship between exercise attitudes and exercise behavior.

    PubMed

    Huppertz, Charlotte; Bartels, Meike; Jansen, Iris E; Boomsma, Dorret I; Willemsen, Gonneke; de Moor, Marleen H M; de Geus, Eco J C

    2014-01-01

    Social cognitive models of health behavior propose that individual differences in leisure time exercise behavior are influenced by the attitudes towards exercise. At the same time, large scale twin-family studies show a significant influence of genetic factors on regular exercise behavior. This twin-sibling study aimed to unite these findings by demonstrating that exercise attitudes can be heritable themselves. Secondly, the genetic and environmental cross-trait correlations and the monozygotic (MZ) twin intrapair differences model were used to test whether the association between exercise attitudes and exercise behavior can be causal. Survey data were obtained from 5,095 twins and siblings (18-50 years). A genetic contribution was found for exercise behavior (50 % in males, 43 % in females) and for the six exercise attitude components derived from principal component analysis: perceived benefits (21, 27 %), lack of skills, support and/or resources (45, 48 %), time constraints (25, 30 %), lack of energy (34, 44 %), lack of enjoyment (47, 44 %), and embarrassment (42, 49 %). These components were predictive of leisure time exercise behavior (R(2) = 28 %). Bivariate modeling further showed that all the genetic (0.36 < |rA| < 0.80) and all but two unique environmental (0.00 < |rE| < 0.27) correlations between exercise attitudes and exercise behavior were significantly different from zero, which is a necessary condition for the existence of a causal effect driving the association. The correlations between the MZ twins' difference scores were in line with this finding. It is concluded that exercise attitudes and exercise behavior are heritable, that attitudes and behavior are partly correlated through pleiotropic genetic effects, but that the data are compatible with a causal association between exercise attitudes and behavior.

  3. A Twin-Sibling Study on the Relationship Between Exercise Attitudes and Exercise Behavior

    PubMed Central

    Bartels, Meike; Jansen, Iris E.; Boomsma, Dorret I.; Willemsen, Gonneke; de Moor, Marleen H. M.; de Geus, Eco J. C.

    2013-01-01

    Social cognitive models of health behavior propose that individual differences in leisure time exercise behavior are influenced by the attitudes towards exercise. At the same time, large scale twin-family studies show a significant influence of genetic factors on regular exercise behavior. This twin–sibling study aimed to unite these findings by demonstrating that exercise attitudes can be heritable themselves. Secondly, the genetic and environmental cross-trait correlations and the monozygotic (MZ) twin intrapair differences model were used to test whether the association between exercise attitudes and exercise behavior can be causal. Survey data were obtained from 5,095 twins and siblings (18–50 years). A genetic contribution was found for exercise behavior (50 % in males, 43 % in females) and for the six exercise attitude components derived from principal component analysis: perceived benefits (21, 27 %), lack of skills, support and/or resources (45, 48 %), time constraints (25, 30 %), lack of energy (34, 44 %), lack of enjoyment (47, 44 %), and embarrassment (42, 49 %). These components were predictive of leisure time exercise behavior (R2 = 28 %). Bivariate modeling further showed that all the genetic (0.36 <|rA| <0.80) and all but two unique environmental (0.00 <|rE| <0.27) correlations between exercise attitudes and exercise behavior were significantly different from zero, which is a necessary condition for the existence of a causal effect driving the association. The correlations between the MZ twins’ difference scores were in line with this finding. It is concluded that exercise attitudes and exercise behavior are heritable, that attitudes and behavior are partly correlated through pleiotropic genetic effects, but that the data are compatible with a causal association between exercise attitudes and behavior. PMID:24072598

  4. Dynamics of polymerization induced phase separation in reactive polymer blends

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyung

    Mechanisms and dynamics of phase decomposition following polymerization induced phase separation (PIPS) of reactive polymer blends have been investigated experimentally and theoretically. The phenomenon of PIPS is a non-equilibrium and non-linear dynamic process. The mechanism of PIPS has been thought to be a nucleation and growth (NG) type originally, however, newer results indicate spinodal decomposition (SD). In PIPS, the coexistence curve generally passes through the reaction temperature at off-critical compositions, thus phase separation has to be initiated first in the metastable region where nucleation occurs. When the system farther drifts from the metastable to unstable region, the NG structure transforms to the SD bicontinuous morphology. The crossover behavior of PIPS may be called nucleation initiated spinodal decomposition (NISD). The formation of newer domains between the existing ones is responsible for the early stage of PIPS. Since PIPS is non- equilibrium kinetic process, it would not be surprising to discern either or both structures. The phase separation dynamics of DGEBA/CTBN mixtures having various kinds of curing agents from low reactivity to high reactivity and various amount of curing agents were examined at various reaction temperatures. The phase separation behavior was monitored by a quantity of scattered light intensity experimentally and by a quantity of collective structure factor numerically. Prior to the study of phase separation dynamics, a preliminary investigation on the isothermal cure behavior of the mixtures were executed in order to determine reaction kinetics parameters. The cure behavior followed the overall second order reaction kinetics. Next, based on the knowledge obtained from the phase separation dynamics study of DGEBA/CTBN mixtures, the phase separation dynamics of various composition of DGEBA/R45EPI mixtures having MDA as a curing agent were investigated. The phase separation behavior was quite dependent upon the composition variation. R45EPI itself can react with itself or with DGEBA without curing, therefore three-component system was considered in this mixture. For the numerical studies of this three- component mixture, a system that is composed of a reactive component-1 that is miscible with its growing molecules and another reactive component-2 that is not miscible with its growing molecules was considered with crosslinking reaction kinetics of the each component.

  5. Predicting the response of olfactory sensory neurons to odor mixtures from single odor response

    NASA Astrophysics Data System (ADS)

    Marasco, Addolorata; de Paris, Alessandro; Migliore, Michele

    2016-04-01

    The response of olfactory receptor neurons to odor mixtures is not well understood. Here, using experimental constraints, we investigate the mathematical structure of the odor response space and its consequences. The analysis suggests that the odor response space is 3-dimensional, and predicts that the dose-response curve of an odor receptor can be obtained, in most cases, from three primary components with specific properties. This opens the way to an objective procedure to obtain specific olfactory receptor responses by manipulating mixtures in a mathematically predictable manner. This result is general and applies, independently of the number of odor components, to any olfactory sensory neuron type with a response curve that can be represented as a sigmoidal function of the odor concentration.

  6. Separator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashbrook, C.L.

    1970-09-22

    A separator consists of a housing having an upper fluid inlet and a lower fluid outlet in the sides of the housing. An inverted conical tube is disposed internally of the housing and is in fluid communication with the fluid inlet. The upper fluid inlet tangentially intersects the inverted conical tube so as to create a rotating vortex upon introduction of the mixture. Axially disposed within the vortex tube at the upper end is a withdrawal tube for removing lighter mixture components that are drawn toward the center of the tube. At the lower end of the vortex tube ismore » an adjustable impact plate for transmitting a concussion wave through the vortexed body, so as to cause cavitation. Heavier mixture components gravitate toward the lower fluid outlet and are withdrawn through it. (7 claims)« less

  7. A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays.

    PubMed

    McLachlan, G J; Bean, R W; Jones, L Ben-Tovim

    2006-07-01

    An important problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. We provide a straightforward and easily implemented method for estimating the posterior probability that an individual gene is null. The problem can be expressed in a two-component mixture framework, using an empirical Bayes approach. Current methods of implementing this approach either have some limitations due to the minimal assumptions made or with more specific assumptions are computationally intensive. By converting to a z-score the value of the test statistic used to test the significance of each gene, we propose a simple two-component normal mixture that models adequately the distribution of this score. The usefulness of our approach is demonstrated on three real datasets.

  8. Mixture-mixture design for the fingerprint optimization of chromatographic mobile phases and extraction solutions for Camellia sinensis.

    PubMed

    Borges, Cleber N; Bruns, Roy E; Almeida, Aline A; Scarminio, Ieda S

    2007-07-09

    A composite simplex centroid-simplex centroid mixture design is proposed for simultaneously optimizing two mixture systems. The complementary model is formed by multiplying special cubic models for the two systems. The design was applied to the simultaneous optimization of both mobile phase chromatographic mixtures and extraction mixtures for the Camellia sinensis Chinese tea plant. The extraction mixtures investigated contained varying proportions of ethyl acetate, ethanol and dichloromethane while the mobile phase was made up of varying proportions of methanol, acetonitrile and a methanol-acetonitrile-water (MAW) 15%:15%:70% mixture. The experiments were block randomized corresponding to a split-plot error structure to minimize laboratory work and reduce environmental impact. Coefficients of an initial saturated model were obtained using Scheffe-type equations. A cumulative probability graph was used to determine an approximate reduced model. The split-plot error structure was then introduced into the reduced model by applying generalized least square equations with variance components calculated using the restricted maximum likelihood approach. A model was developed to calculate the number of peaks observed with the chromatographic detector at 210 nm. A 20-term model contained essentially all the statistical information of the initial model and had a root mean square calibration error of 1.38. The model was used to predict the number of peaks eluted in chromatograms obtained from extraction solutions that correspond to axial points of the simplex centroid design. The significant model coefficients are interpreted in terms of interacting linear, quadratic and cubic effects of the mobile phase and extraction solution components.

  9. Investigating Mixture Interactions of Astringent Stimuli Using the Isobole Approach

    PubMed Central

    Fleming, Erin E.; Ziegler, Gregory R.

    2016-01-01

    Abstract Astringents (alum, malic acid, tannic acid) representing 3 broad classes (multivalent salts, organic acids, and polyphenols) were characterized alone, and as 2- and 3-component mixtures using isoboles. In experiment 1, participants rated 7 attributes (“astringency,” the sub-qualities “drying,” “roughing,” and “puckering,” and the side tastes “bitterness,” “sourness,” and “sweetness”) using direct scaling. Quality specific power functions were calculated for each stimulus. In experiment 2, the same participants characterized 2- and 3-component mixtures. Multiple factor analysis (MFA) and hierarchical clustering on attribute ratings across stimuli indicate “astringency” is highly related to “bitterness” as well as “puckering,” and the subqualities “drying” and “roughing” are somewhat redundant. Moreover, power functions were used to calculate indices of interaction (I) for each attribute/mixture combination. For “astringency,” there was evidence of antagonism, regardless of the type of mixture. Conversely, for subqualities, the pattern of interaction depended on the mixture type. Alum/tannic acid and tannic acid/malic acid mixtures showed evidence of synergy for “drying” and “roughing”; alum/malic acid mixtures showed evidence of antagonism for “drying,” “roughing,” and “puckering.” Collectively, these data clarify some semantic ambiguity regarding astringency and its subqualities, as well as the nature of interactions of among different types of astringents. Present data are not inconsistent with the idea that astringency arises from multiple mechanisms, although it remains to be determined whether the synergy observed here might reflect simultaneous activation of these multiple mechanisms. PMID:27252355

  10. Influence of protein size on surface-enhanced Raman scattering (SERS) spectra in binary protein mixtures.

    PubMed

    Avci, Ertug; Culha, Mustafa

    2014-01-01

    The size-dependent interactions of eight blood proteins with silver nanoparticles (AgNPs) in their binary mixtures were investigated using surface-enhanced Raman scattering (SERS). Principal component analysis (PCA) was performed on the SERS spectra of each binary mixture, and the differentiation ability of the mixtures was tested. It was found that the effect of relative concentration change on the SERS spectra of the binary mixtures of small proteins could be detected using PCA. However, this change was not observed with the binary mixtures of large proteins. This study demonstrated that the relative interactions of the smaller proteins with an average size of 50 nm AgNPs smaller than the large proteins could be monitored, and this information can be used for the detection of proteins in protein mixtures.

  11. Collinearity and Causal Diagrams: A Lesson on the Importance of Model Specification.

    PubMed

    Schisterman, Enrique F; Perkins, Neil J; Mumford, Sunni L; Ahrens, Katherine A; Mitchell, Emily M

    2017-01-01

    Correlated data are ubiquitous in epidemiologic research, particularly in nutritional and environmental epidemiology where mixtures of factors are often studied. Our objectives are to demonstrate how highly correlated data arise in epidemiologic research and provide guidance, using a directed acyclic graph approach, on how to proceed analytically when faced with highly correlated data. We identified three fundamental structural scenarios in which high correlation between a given variable and the exposure can arise: intermediates, confounders, and colliders. For each of these scenarios, we evaluated the consequences of increasing correlation between the given variable and the exposure on the bias and variance for the total effect of the exposure on the outcome using unadjusted and adjusted models. We derived closed-form solutions for continuous outcomes using linear regression and empirically present our findings for binary outcomes using logistic regression. For models properly specified, total effect estimates remained unbiased even when there was almost perfect correlation between the exposure and a given intermediate, confounder, or collider. In general, as the correlation increased, the variance of the parameter estimate for the exposure in the adjusted models increased, while in the unadjusted models, the variance increased to a lesser extent or decreased. Our findings highlight the importance of considering the causal framework under study when specifying regression models. Strategies that do not take into consideration the causal structure may lead to biased effect estimation for the original question of interest, even under high correlation.

  12. A hybrid pareto mixture for conditional asymmetric fat-tailed distributions.

    PubMed

    Carreau, Julie; Bengio, Yoshua

    2009-07-01

    In many cases, we observe some variables X that contain predictive information over a scalar variable of interest Y , with (X,Y) pairs observed in a training set. We can take advantage of this information to estimate the conditional density p(Y|X = x). In this paper, we propose a conditional mixture model with hybrid Pareto components to estimate p(Y|X = x). The hybrid Pareto is a Gaussian whose upper tail has been replaced by a generalized Pareto tail. A third parameter, in addition to the location and spread parameters of the Gaussian, controls the heaviness of the upper tail. Using the hybrid Pareto in a mixture model results in a nonparametric estimator that can adapt to multimodality, asymmetry, and heavy tails. A conditional density estimator is built by modeling the parameters of the mixture estimator as functions of X. We use a neural network to implement these functions. Such conditional density estimators have important applications in many domains such as finance and insurance. We show experimentally that this novel approach better models the conditional density in terms of likelihood, compared to competing algorithms: conditional mixture models with other types of components and a classical kernel-based nonparametric model.

  13. Modified method to improve the design of Petlyuk distillation columns

    PubMed Central

    2014-01-01

    Background A response surface analysis was performed to study the effect of the composition and feeding thermal conditions of ternary mixtures on the number of theoretical stages and the energy consumption of Petlyuk columns. A modification of the pre-design algorithm was necessary for this purpose. Results The modified algorithm provided feasible results in 100% of the studied cases, compared with only 8.89% for the current algorithm. The proposed algorithm allowed us to attain the desired separations, despite the type of mixture and the operating conditions in the feed stream, something that was not possible with the traditional pre-design method. The results showed that the type of mixture had great influence on the number of stages and on energy consumption. A higher number of stages and a lower consumption of energy were attained with mixtures rich in the light component, while higher energy consumption occurred when the mixture was rich in the heavy component. Conclusions The proposed strategy expands the search of an optimal design of Petlyuk columns within a feasible region, which allow us to find a feasible design that meets output specifications and low thermal loads. PMID:25061476

  14. Molecular interactions in the betaine monohydrate-polyol deep eutectic solvents: Experimental and computational studies

    NASA Astrophysics Data System (ADS)

    Zahrina, Ida; Mulia, Kamarza; Yanuar, Arry; Nasikin, Mohammad

    2018-04-01

    DES (deep eutectic solvents) are a new class of ionic liquids that have excellent properties. The strength of interaction between molecules in the DES affects their properties and applications. In this work, the strength of molecular interactions between components in the betaine monohydrate salt and polyol (glycerol or/and propylene glycol) eutectic mixtures was studied by experimental and computational studies. The melting point and fusion enthalpy of the mixtures were measured using STA (Simultaneous Thermal Analyzer). The nature and strength of intermolecular interactions were observed by FT-IR and NMR spectroscopy. The molecular dynamics simulation was used to determine the number of H-bonds, percent occupancy, and radial distribution functions in the eutectic mixtures. The interaction between betaine monohydrate and polyol is following order: betaine monohydrate-glycerol-propylene glycol > betaine monohydrate-glycerol > betaine monohydrate-propylene glycol, where the latter is the eutectic mixture with the lowest stability, strength and extent of the hydrogen bonding interactions between component molecules. The presence of intra-molecular hydrogen bonding interactions, the inter-molecular hydrogen bonding interactions between betaine molecule and polyol, and also interactions between polyol and H2O of betaine monohydrate in the eutectic mixtures.

  15. Is the Reaction Equilibrium Composition in Non-ideal Mixtures Uniquely Determined by the Initial Composition?

    NASA Astrophysics Data System (ADS)

    Sefcik, Jan

    1998-05-01

    Reaction equilibrium can be mathematically described by the equilibrium equation and the reaction equilibrium composition can be calculated by solving this equation. It can be proved by non-elementary thermodynamic arguments that for a generic system with given initial composition, temperature and pressure there is a unique stable equilibrium state corresponding to the global minimum of the Gibbs free energy function. However, when the concept of equilibrium is introduced in undergraduate chemistry and chemical engineering courses, such arguments are generally not accessible. When there is a single reaction equilibrium among mixture components and the components form an ideal mixture, it has been demonstrated by a simple, elegant mathematical argument that there is a unique composition satisfying the equilibrium equation. It has been also suggested that this particular argument extends to non-ideal mixtures by simply incorporating activity coefficients. We show that the argument extension to non-ideal systems is not generally valid. Increasing non-ideality can result in non-monotonicity of the function crucial for the simple uniqueness argument, and only later it leads to non-uniqueness and hence phase separation. The main feature responsible for this is a composition dependence of activity coefficients in non-ideal mixtures.

  16. Chemometric Data Analysis for Deconvolution of Overlapped Ion Mobility Profiles

    NASA Astrophysics Data System (ADS)

    Zekavat, Behrooz; Solouki, Touradj

    2012-11-01

    We present the details of a data analysis approach for deconvolution of the ion mobility (IM) overlapped or unresolved species. This approach takes advantage of the ion fragmentation variations as a function of the IM arrival time. The data analysis involves the use of an in-house developed data preprocessing platform for the conversion of the original post-IM/collision-induced dissociation mass spectrometry (post-IM/CID MS) data to a Matlab compatible format for chemometric analysis. We show that principle component analysis (PCA) can be used to examine the post-IM/CID MS profiles for the presence of mobility-overlapped species. Subsequently, using an interactive self-modeling mixture analysis technique, we show how to calculate the total IM spectrum (TIMS) and CID mass spectrum for each component of the IM overlapped mixtures. Moreover, we show that PCA and IM deconvolution techniques provide complementary results to evaluate the validity of the calculated TIMS profiles. We use two binary mixtures with overlapping IM profiles, including (1) a mixture of two non-isobaric peptides (neurotensin (RRPYIL) and a hexapeptide (WHWLQL)), and (2) an isobaric sugar isomer mixture of raffinose and maltotriose, to demonstrate the applicability of the IM deconvolution.

  17. Bayesian Hierarchical Grouping: perceptual grouping as mixture estimation

    PubMed Central

    Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2015-01-01

    We propose a novel framework for perceptual grouping based on the idea of mixture models, called Bayesian Hierarchical Grouping (BHG). In BHG we assume that the configuration of image elements is generated by a mixture of distinct objects, each of which generates image elements according to some generative assumptions. Grouping, in this framework, means estimating the number and the parameters of the mixture components that generated the image, including estimating which image elements are “owned” by which objects. We present a tractable implementation of the framework, based on the hierarchical clustering approach of Heller and Ghahramani (2005). We illustrate it with examples drawn from a number of classical perceptual grouping problems, including dot clustering, contour integration, and part decomposition. Our approach yields an intuitive hierarchical representation of image elements, giving an explicit decomposition of the image into mixture components, along with estimates of the probability of various candidate decompositions. We show that BHG accounts well for a diverse range of empirical data drawn from the literature. Because BHG provides a principled quantification of the plausibility of grouping interpretations over a wide range of grouping problems, we argue that it provides an appealing unifying account of the elusive Gestalt notion of Prägnanz. PMID:26322548

  18. Method of absorbing UF.sub.6 from gaseous mixtures in alkamine absorbents

    DOEpatents

    Lafferty, Robert H.; Smiley, Seymour H.; Radimer, Kenneth J.

    1976-04-06

    A method of recovering uranium hexafluoride from gaseous mixtures employing as an absorbent a liquid composition at least one of the components of which is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2.

  19. AGONISTIC SENSORY EFFECTS OF AIRBORNE CHEMICALS IN MIXTURES: ODOR, NASAL PUNGENCY, AND EYE IRRITATION

    EPA Science Inventory

    Threshold responses of odor, nasal pungency (irritation), and eye irritation were measured for single chemicals (1-propanol, 1-hexanol, ethyl acetate, heptyl acetate, 2-pentanone, 2-heptanone, toluene, ethyl benzene, and propyl benzene) and mixtures of them (two three-component m...

  20. Toxicity of DEDGN (Diethyleneglycol Dinitrate), Synthetic-HC Smoke Combustion Products, Solvent Yellow 33 and Solvent Green 3 to Freshwater Aquatic Organisms.

    DTIC Science & Technology

    1987-01-15

    stock mixture of these components caused both an algistatic and algicidal effect on the alga. The rainbow trout and the water flea had 96-h and 48-h...stock mixture of these components caused both an algistatic and algicidal effect on the alga. LC50 values for the rainbow trout and the water flea...growth period, cell counts did not increase significantly from the initial inoculum level. 2. Algicidal concentration. This is the lowest concentration

  1. General Analytical Procedure for Determination of Acidity Parameters of Weak Acids and Bases

    PubMed Central

    Pilarski, Bogusław; Kaliszan, Roman; Wyrzykowski, Dariusz; Młodzianowski, Janusz; Balińska, Agata

    2015-01-01

    The paper presents a new convenient, inexpensive, and reagent-saving general methodology for the determination of pK a values for components of the mixture of diverse chemical classes weak organic acids and bases in water solution, without the need to separate individual analytes. The data obtained from simple pH-metric microtitrations are numerically processed into reliable pK a values for each component of the mixture. Excellent agreement has been obtained between the determined pK a values and the reference literature data for compounds studied. PMID:25692072

  2. General analytical procedure for determination of acidity parameters of weak acids and bases.

    PubMed

    Pilarski, Bogusław; Kaliszan, Roman; Wyrzykowski, Dariusz; Młodzianowski, Janusz; Balińska, Agata

    2015-01-01

    The paper presents a new convenient, inexpensive, and reagent-saving general methodology for the determination of pK a values for components of the mixture of diverse chemical classes weak organic acids and bases in water solution, without the need to separate individual analytes. The data obtained from simple pH-metric microtitrations are numerically processed into reliable pK a values for each component of the mixture. Excellent agreement has been obtained between the determined pK a values and the reference literature data for compounds studied.

  3. Evaluation of solution stability for two-component polydisperse systems by small-angle scattering

    NASA Astrophysics Data System (ADS)

    Kryukova, A. E.; Konarev, P. V.; Volkov, V. V.

    2017-12-01

    The article is devoted to the modelling of small-angle scattering data using the program MIXTURE designed for the study of polydisperse multicomponent mixtures. In this work we present the results of solution stability studies for theoretical small-angle scattering data sets from two-component models. It was demonstrated that the addition of the noise to the data influences the stability range of the restored structural parameters. The recommendations for the optimal minimization schemes that permit to restore the volume size distributions for polydisperse systems are suggested.

  4. Support vector regression and artificial neural network models for stability indicating analysis of mebeverine hydrochloride and sulpiride mixtures in pharmaceutical preparation: A comparative study

    NASA Astrophysics Data System (ADS)

    Naguib, Ibrahim A.; Darwish, Hany W.

    2012-02-01

    A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer.

  5. Phase Behavior of Binary Mixture of Heptaethylene Glycol Decyl Ether and Water: Formation of Phase Compound in Solid Phase

    PubMed

    Nibu; Suemori; Inoue

    1997-07-01

    Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were used to construct and characterize the phase diagram for a binary mixture of heptaethylene glycol decyl ether (C10 E7 ) and water in the temperature range from -60 to 80°C. Plots of the endothermic peak temperatures obtained by DSC measurements against compositions provided eutectic solid-liquid phase boundaries with a eutectic composition of 34 wt% of H2 O. On the other hand, heat of fusion per unit weight of the mixture changed discretely at the composition corresponding to the "eutectic" composition. Furthermore, the IR spectra obtained for the mixture in the solid phase were well reproduced as a superposition of those for the mixture of 34 wt% H2 O and pure components but were not reproduced by superimposing the spectra obtained for the solid surfactant and ice. These observations indicate that a solid phase compound is formed between C10 E7 and water with a stoichiometry of 1:14 and that the compound and pure components exist as separate phases, rather than the phases separating into surfactant and ice, which would be expected if the C10 E7 /water mixture formed a true eutectic mixture system. It is estimated from the composition corresponding to the phase compounds that two molecules of water per oxyethylene unit are bound to hydrophilic polyoxyethylene chain of C10 E7 to form a hydrated compound.

  6. Comparative Toxicogenomic Responses to the Flame Retardant mITP in Developing Zebrafish.

    PubMed

    Haggard, Derik E; Das, Siba R; Tanguay, Robert L

    2017-02-20

    Monosubstituted isopropylated triaryl phosphate (mITP) is a major component of Firemaster 550, an additive flame retardant mixture commonly used in polyurethane foams. Developmental toxicity studies in zebrafish established mITP as the most toxic component of FM 550, which causes pericardial edema and heart looping failure. Mechanistic studies showed that mITP is an aryl hydrocarbon receptor (AhR) ligand; however, the cardiotoxic effects of mITP were independent of the AhR. We performed comparative whole genome transcriptomics in wild-type and ahr2 hu3335 zebrafish, which lack functional ahr2, to identify transcriptional signatures causally involved in the mechanism of mITP-induced cardiotoxicity. Regardless of ahr2 status, mITP exposure resulted in decreased expression of transcripts related to the synthesis of all-trans-retinoic acid and a host of Hox genes. Clustered gene ontology enrichment analysis showed unique enrichment in biological processes related to xenobiotic metabolism and response to external stimuli in wild-type samples. Transcript enrichments overlapping both genotypes involved the retinoid metabolic process and sensory/visual perception biological processes. Examination of the gene-gene interaction network of the differentially expressed transcripts in both genetic backgrounds demonstrated a strong AhR interaction network specific to wild-type samples, with overlapping genes regulated by retinoic acid receptors (RARs). A transcriptome analysis of control ahr2-null zebrafish identified potential cross-talk among AhR, Nrf2, and Hif1α. Collectively, we confirmed that mITP is an AhR ligand and present evidence in support of our hypothesis that mITP's developmental cardiotoxic effects are mediated by inhibition at the RAR level.

  7. An Examination of Commercial Aviation Accidents and Incidents Related to Integrated Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Briggs, Jeffrey L.; Thomas, Megan A.; Evans, Joni K.; Jones, Sharon M.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project is one of the four projects within the National Aeronautics and Space Administration's (NASA) Aviation Safety Program (AvSafe). The IVHM Project conducts research to develop validated tools and technologies for automated detection, diagnosis, and prognosis that enable mitigation of adverse events during flight. Adverse events include those that arise from system, subsystem, or component failure, faults, and malfunctions due to damage, degradation, or environmental hazards that occur during flight. Determining the causal factors and adverse events related to IVHM technologies will help in the formulation of research requirements and establish a list of example adverse conditions against which IVHM technologies can be evaluated. This paper documents the results of an examination of the most recent statistical/prognostic accident and incident data that is available from the Aviation Safety Information Analysis and Sharing (ASIAS) System to determine the causal factors of system/component failures and/or malfunctions in U.S. commercial aviation accidents and incidents.

  8. Qualitative reasoning for biological network inference from systematic perturbation experiments.

    PubMed

    Badaloni, Silvana; Di Camillo, Barbara; Sambo, Francesco

    2012-01-01

    The systematic perturbation of the components of a biological system has been proven among the most informative experimental setups for the identification of causal relations between the components. In this paper, we present Systematic Perturbation-Qualitative Reasoning (SPQR), a novel Qualitative Reasoning approach to automate the interpretation of the results of systematic perturbation experiments. Our method is based on a qualitative abstraction of the experimental data: for each perturbation experiment, measured values of the observed variables are modeled as lower, equal or higher than the measurements in the wild type condition, when no perturbation is applied. The algorithm exploits a set of IF-THEN rules to infer causal relations between the variables, analyzing the patterns of propagation of the perturbation signals through the biological network, and is specifically designed to minimize the rate of false positives among the inferred relations. Tested on both simulated and real perturbation data, SPQR indeed exhibits a significantly higher precision than the state of the art.

  9. Balanced identity in the minimal groups paradigm.

    PubMed

    Dunham, Yarrow

    2013-01-01

    Balanced Identity Theory [1] formalizes a set of relationships between group attitude, group identification, and self-esteem. While these relationships have been demonstrated for familiar and highly salient social categories, questions remain regarding the generality of the balance phenomenon and its causal versus descriptive status. Supporting the generality and rapidity of cognitive balance, four studies demonstrate that the central predictions of balance are supported even for previously unfamiliar "minimal" social groups to which participants have just been randomly assigned. Further, supporting a causal as opposed to merely descriptive interpretation, manipulating any one component of the balance model (group attitude, group identification, or self-esteem) affects at least one of the related components. Interestingly, the broader pattern of cognitive balance was preserved across such manipulations only when the manipulation strengthens as opposes to weakens the manipulated construct. Taken together, these findings indicate that Balanced Identity Theory has promise as a general theory of intergroup attitudes, and that it may be able to shed light on prior inconsistencies concerning the relationship between self-esteem and intergroup bias.

  10. Determinants of propranolol’s selective effect on loss aversion

    PubMed Central

    Sokol-Hessner, Peter; Lackovic, Sandra F.; Tobe, Russell H.; Camerer, Colin F.; Leventhal, Bennett L.; Phelps, Elizabeth A.

    2015-01-01

    Research on emotion and decision-making has suggested that arousal mediates risky decisions (e.g., Bechara et al., 1997), but several distinct and often confounded processes drive such choices. Here, we used econometric modeling to separate and quantify the unique contributions of loss aversion, risk sensitivity and choice consistency to risky decision-making. We administered the beta-blocker propranolol in a double-blind, placebo-controlled within-subjects study, targeting the neurohormonal basis of physiological arousal. Matching our intervention’s pharmacological specificity with a quantitative model delineating decision-making components allowed us to identify the causal relationships between arousal and decision-making that do and do not exist. Propranolol selectively reduced loss aversion in a baseline- and dose-dependent manner (i.e. as a function of initial loss aversion and body-mass index), and did not affect risk sensitivity or choice consistency. These findings provide evidence for a specific, modulatory, and causal relationship between precise components of both emotion and risky decision-making. PMID:26063441

  11. The emperor's tailors: the failure of the medical weight loss paradigm and its causal role in the obesity of America.

    PubMed

    Puterbaugh, J S

    2009-06-01

    During the past century, the medical profession has developed a paradigm for the treatment of obesity, which prescribes specific exercise and dietary goals under the umbrella of 'lifestyle change'. It has three components, all of which evolved from origins that had nothing to do with weight control. First, it is individually prescriptive, that is weight loss is considered the responsibility of the individual as contrasted to a societal or group responsibility. Second, it recommends exercise aimed towards structured, or non-functional, activities with a variety of physiological endpoints. Last, dietary goals are defined by calories, exchanges, food groups and various nutritional components. Diets are usually grouped by these goals. This model is unique to America, it is not working and it has also played a causal role in the obesity it is attempting to eliminate. A new model must be developed, which contains an observationally based societal prescription and links activity with functional outcomes and diets, which are food rather than nutritionally based.

  12. The emergence of gravity as a retro-causal post-inflation macro-quantum-coherent holographic vacuum Higgs-Goldstone field

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack; Levit, Creon

    2009-06-01

    We present a model for the origin of gravity, dark energy and dark matter: Dark energy and dark matter are residual pre-inflation false vacuum random zero point energy (w = - 1) of large-scale negative, and short-scale positive pressure, respectively, corresponding to the "zero point" (incoherent) component of a superfluid (supersolid) ground state. Gravity, in contrast, arises from the 2nd order topological defects in the post-inflation virtual "condensate" (coherent) component. We predict, as a consequence, that the LHC will never detect exotic real on-mass-shell particles that can explain dark matter ΩMDM approx 0.23. We also point out that the future holographic dark energy de Sitter horizon is a total absorber (in the sense of retro-causal Wheeler-Feynman action-at-a-distance electrodynamics) because it is an infinite redshift surface for static detectors. Therefore, the advanced Hawking-Unruh thermal radiation from the future de Sitter horizon is a candidate for the negative pressure dark vacuum energy.

  13. Energy, momentum, and angular momentum of sound pulses.

    PubMed

    Lekner, John

    2017-12-01

    Pulse solutions of the wave equation can be expressed as superpositions of scalar monochromatic beam wavefunctions (solutions of the Helmholtz equation). This formulation leads to causal (unidirectional) propagation, in contrast to all currently known closed-form solutions of the wave equation. Application is made to the evaluation of the energy, momentum, and angular momentum of acoustic pulses, as integrals over the beam and pulse weight functions. Equivalence is established between integration over space of the energy, momentum, and angular momentum densities, and integration over the wavevector weight function. The inequality linking the total energy and the total momentum is made explicit in terms of the weight function formulation. It is shown that a general pulse can be viewed as a superposition of phonons, each with energy ℏck, z component of momentum ℏq, and z component of angular momentum ℏm. A closed-form solution of the wave equation is found, which is localized and causal, and its energy and momentum are evaluated explicitly.

  14. How Many Separable Sources? Model Selection In Independent Components Analysis

    PubMed Central

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988

  15. Synergism and Combinatorial Coding for Binary Odor Mixture Perception in Drosophila

    PubMed Central

    Chakraborty, Tuhin Subhra; Siddiqi, Obaid

    2016-01-01

    Most odors in the natural environment are mixtures of several compounds. Olfactory receptors housed in the olfactory sensory neurons detect these odors and transmit the information to the brain, leading to decision-making. But whether the olfactory system detects the ingredients of a mixture separately or treats mixtures as different entities is not well understood. Using Drosophila melanogaster as a model system, we have demonstrated that fruit flies perceive binary odor mixtures in a manner that is heavily dependent on both the proportion and the degree of dilution of the components, suggesting a combinatorial coding at the peripheral level. This coding strategy appears to be receptor specific and is independent of interneuronal interactions. PMID:27588303

  16. VARIATION OF THE VISCOSITY OF CERTAIN GAS-OXYGEN MIXTURES UNDER THE INFLUENCE OF MAGNETIC FIELD; Variatia Viscozitatii unor Amestecuri de Gaze cu Oxigen sub Influenta unui Cimp Magnetic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ursu, I.

    1958-01-01

    The paramagnetic effects of oxygen and gas-oxygen mixtures are discussed. One of the paramagnetic effect the varistion of viscosity during the viscous flow in a magnetic field. The viscosity of gaseous oxygen and certain gas-oxygen mixtures decreased when the flow occurred in a magnetic field. The dependence of this effect on the size of the capillaries and porous materials was investigated. The viscosity was also found to vary with the concentration of oxygen and the other components forming the mixture. The results of the investigations with various gas mixtures are graphically shown. (A.C.)

  17. Chemical composition and mixing-state of ice residuals sampled within mixed phase clouds

    NASA Astrophysics Data System (ADS)

    Ebert, M.; Worringen, A.; Benker, N.; Mertes, S.; Weingartner, E.; Weinbruch, S.

    2010-10-01

    During an intensive campaign at the high alpine research station Jungfraujoch, Switzerland, in February/March 2006 ice particle residuals within mixed-phase clouds were sampled using the Ice-counterflow virtual impactor (Ice-CVI). Size, morphology, chemical composition, mineralogy and mixing state of the ice residual and the interstitial (i.e., non-activated) aerosol particles were analyzed by scanning and transmission electron microscopy. Ice nuclei (IN) were identified from the significant enrichment of particle groups in the ice residual (IR) samples relative to the interstitial aerosol. In terms of number lead-bearing particles are enriched by a factor of approximately 25, complex internal mixtures with silicates or metal oxides as major components by a factor of 11, and mixtures of secondary aerosol and soot (C-O-S particles) by a factor of 2. Other particle groups (sulfates, sea salt, Ca-rich particles, external silicates) observed in the ice-residual samples cannot be assigned unambiguously as IN. Between 9 and 24% of all IR are Pb-bearing particles. Pb was found as major component in around 10% of these particles (PbO, PbCl2). In the other particles, Pb was found as some 100 nm sized agglomerates consisting of 3-8 nm sized primary particles (PbS, elemental Pb). C-O-S particles are present in the IR at an abundance of 17-27%. The soot component within these particles is strongly aged. Complex internal mixtures occur in the IR at an abundance of 9-15%. Most IN identified at the Jungfraujoch station are internal mixtures containing anthropogenic components (either as main or minor constituent), and it is concluded that admixture of the anthropogenic component is responsible for the increased IN efficiency within mixed phase clouds. The mixing state appears to be a key parameter for the ice nucleation behaviour that cannot be predicted from the separate components contained within the individual particles.

  18. Optimization of marine waste based-growth media for microbial lipase production using mixture design methodology.

    PubMed

    Sellami, Mohamed; Kedachi, Samiha; Frikha, Fakher; Miled, Nabil; Ben Rebah, Faouzi

    2013-01-01

    Lipase production by Staphylococcus xylosus and Rhizopus oryzae was investigated using a culture medium based on a mixture of synthetic medium and supernatants generated from tuna by-products and Ulva rigida biomass. The proportion of the three medium components was optimized using the simplex-centroid mixture design method (SCMD). Results indicated that the experimental data were in good agreement with predicted values, indicating that SCMD was a reliable method for determining the optimum mixture proportion of the growth medium. Maximal lipase activities of 12.5 and 23.5 IU/mL were obtained with a 50:50 (v:v) mixture of synthetic medium and tuna by-product supernatant for Staphylococcus xylosus and Rhizopus oryzae, respectively. The predicted responses from these mixture proportions were also validated experimentally.

  19. Statistical mixture design selective extraction of compounds with antioxidant activity and total polyphenol content from Trichilia catigua.

    PubMed

    Lonni, Audrey Alesandra Stinghen Garcia; Longhini, Renata; Lopes, Gisely Cristiny; de Mello, João Carlos Palazzo; Scarminio, Ieda Spacino

    2012-03-16

    Statistical design mixtures of water, methanol, acetone and ethanol were used to extract material from Trichilia catigua (Meliaceae) barks to study the effects of different solvents and their mixtures on its yield, total polyphenol content and antioxidant activity. The experimental results and their response surface models showed that quaternary mixtures with approximately equal proportions of all four solvents provided the highest yields, total polyphenol contents and antioxidant activities of the crude extracts followed by ternary design mixtures. Principal component and hierarchical clustering analysis of the HPLC-DAD spectra of the chromatographic peaks of 1:1:1:1 water-methanol-acetone-ethanol mixture extracts indicate the presence of cinchonains, gallic acid derivatives, natural polyphenols, flavanoids, catechins, and epicatechins. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Phase behaviour of the symmetric binary mixture from thermodynamic perturbation theory.

    PubMed

    Dorsaz, N; Foffi, G

    2010-03-17

    We study the phase behaviour of symmetric binary mixtures of hard core Yukawa (HCY) particles via thermodynamic perturbation theory (TPT). We show that all the topologies of phase diagram reported for the symmetric binary mixtures are correctly reproduced within the TPT approach. In a second step we use the capability of TPT to be straightforwardly extended to mixtures that are nonsymmetric in size. Starting from mixtures that belong to the different topologies of symmetric binary mixtures we investigate the effect on the phase behaviour when an asymmetry in the diameters of the two components is introduced. Interestingly, when the energy of interaction between unlike particles is weaker than the interaction between like particles, the propensity for the solution to demix is found to increase strongly with size asymmetry.

  1. Response of selected plant and insect species to simulated SRM exhaust mixtures and to exhaust components from SRM fuels

    NASA Technical Reports Server (NTRS)

    Heck, W. W.

    1980-01-01

    The possible biologic effects of exhaust products from solid rocket motor (SRM) burns associated with the space shuttle are examined. The major components of the exhaust that might have an adverse effect on vegetation, HCl and Al2O3 are studied. Dose response curves for native and cultivated plants and selected insects exposed to simulated exhaust and component chemicals from SRM exhaust are presented. A system for dispensing and monitoring component chemicals of SRM exhaust (HCl and Al2O3) and a system for exposing test plants to simulated SRM exhaust (controlled fuel burns) are described. The effects of HCl, Al2O3, and mixtures of the two on the honeybee, the corn earworm, and the common lacewing and the effects of simulated exhaust on the honeybee are discussed.

  2. Deciphering the Functional Composition of Fusogenic Liposomes

    PubMed Central

    Kolašinac, Rejhana; Kleusch, Christian; Braun, Tobias; Merkel, Rudolf; Csiszár, Agnes

    2018-01-01

    Cationic liposomes are frequently used as carrier particles for nucleic acid delivery. The most popular formulation is the equimolar mixture of two components, a cationic lipid and a neutral phosphoethanolamine. Its uptake pathway has been described as endocytosis. The presence of an aromatic molecule as a third component strongly influences the cellular uptake process and results in complete membrane fusion instead of endocytosis. Here, we systematically varied all three components of this lipid mixture and determined how efficiently the resulting particles fused with the plasma membrane of living mammalian cells. Our results show that an aromatic molecule and a cationic lipid component with conical molecular shape are essential for efficient fusion induction. While a neutral lipid is not mandatory, it can be used to control fusion efficiency and, in the most extreme case, to revert the uptake mechanism back to endocytosis. PMID:29364187

  3. Experimental evidence for excess entropy discontinuities in glass-forming solutions.

    PubMed

    Lienhard, Daniel M; Zobrist, Bernhard; Zuend, Andreas; Krieger, Ulrich K; Peter, Thomas

    2012-02-21

    Glass transition temperatures T(g) are investigated in aqueous binary and multi-component solutions consisting of citric acid, calcium nitrate (Ca(NO(3))(2)), malonic acid, raffinose, and ammonium bisulfate (NH(4)HSO(4)) using a differential scanning calorimeter. Based on measured glass transition temperatures of binary aqueous mixtures and fitted binary coefficients, the T(g) of multi-component systems can be predicted using mixing rules. However, the experimentally observed T(g) in multi-component solutions show considerable deviations from two theoretical approaches considered. The deviations from these predictions are explained in terms of the molar excess mixing entropy difference between the supercooled liquid and glassy state at T(g). The multi-component mixtures involve contributions to these excess mixing entropies that the mixing rules do not take into account. © 2012 American Institute of Physics

  4. Mixture modeling of multi-component data sets with application to ion-probe zircon ages

    NASA Astrophysics Data System (ADS)

    Sambridge, M. S.; Compston, W.

    1994-12-01

    A method is presented for detecting multiple components in a population of analytical observations for zircon and other ages. The procedure uses an approach known as mixture modeling, in order to estimate the most likely ages, proportions and number of distinct components in a given data set. Particular attention is paid to estimating errors in the estimated ages and proportions. At each stage of the procedure several alternative numerical approaches are suggested, each having their own advantages in terms of efficency and accuracy. The methodology is tested on synthetic data sets simulating two or more mixed populations of zircon ages. In this case true ages and proportions of each population are known and compare well with the results of the new procedure. Two examples are presented of its use with sets of SHRIMP U-238 - Pb-206 zircon ages from Palaeozoic rocks. A published data set for altered zircons from bentonite at Meishucun, South China, previously treated as a single-component population after screening for gross alteration effects, can be resolved into two components by the new procedure and their ages, proportions and standard errors estimated. The older component, at 530 +/- 5 Ma (2 sigma), is our best current estimate for the age of the bentonite. Mixture modeling of a data set for unaltered zircons from a tonalite elsewhere defines the magmatic U-238 - Pb-206 age at high precision (2 sigma +/- 1.5 Ma), but one-quarter of the 41 analyses detect hidden and significantly older cores.

  5. Thermal and volumetric properties of methanol-hexamethylphosphortriamide mixtures under standard conditions

    NASA Astrophysics Data System (ADS)

    Batov, D. V.; Kustov, A. V.; Antonova, O. A.; Smirnova, N. L.

    2017-02-01

    Enthalpic and volumetric characteristics of mixing in a methanol (MeOH)-hexamethylphosphortriamide (HMPT, 2) mixture are studied. Based on an analysis of concentration changes in the obtained data and the calculated partial molar characteristics, it is shown that at 0.2 molar fractions > x 2 > 0.7 molar fractions, the variation in the composition of the mixture slightly alters the character of intermolecular interactions characteristic of pure components. It is found that MeOH-HMPT mixtures experience most changes in intermolecular interaction and structure within the range of 0.2-0.7 molar fractions of HMPT.

  6. ELECTROSTATIC PRECIPITATION AN AN ALTERNATIVE METHOD FOR /IN VITRO/ EXPOSURES TO MIXTURES OF GASES AND PARTICLES

    EPA Science Inventory

    There is an increasing interest in examining complex urban air pollution mixtures that include both particulate and gaseous components. Conventional methodologies are unable to expose lung cells in vitro simultaneously to both particulate and gaseous pollutants that are being for...

  7. Estimating the impact of grouping misclassification on risk prediction when using the relative potency factors method to assess mixtures risk

    EPA Science Inventory

    Environmental health risk assessments of chemical mixtures that rely on component approaches often begin by grouping the chemicals of concern according to toxicological similarity. Approaches that assume dose addition typically are used for groups of similarly-acting chemicals an...

  8. Combining Toxicological and Chemical Characterization of Complex Mixtures to Understand the Impact of the Unknown Fraction

    EPA Science Inventory

    Toxicological assessment of adverse health outcomes associated with exposure to complex mixtures provides an integrated response of the organism (or in vitro test system) that accounts for additivity among the components (both dose and response) as well as any greater than or les...

  9. Risk assessments for mixtures: technical methods commonly used in the United States

    EPA Science Inventory

    A brief (20 minute) talk on the technical approaches used by EPA and other US agencies to assess risks posed by combined exposures to one or more chemicals. The talk systemically reviews the methodologies (whole-mixtures and component-based approaches) that are or have been used ...

  10. Conceptual Model for Assessing Criteria Air Pollutants in a Multipollutant Context: A Modified Adverse Outcome Pathway Approach

    EPA Science Inventory

    Background: Air pollution consists of a complex mixture of particulate and gaseous components. Individual criteria and other hazardous air pollutants have been linked to adverse respiratory and cardiovascular health outcomes. However, assessing risk of air pollutant mixtures is d...

  11. COMPONENT-BASED AND WHOLE-MIXTURE TECHNIQUES FOR ADDRESSING THE TOXICITY OF DRINKING-WATER DISINFECTION BY-PRODUCT MIXTURES

    EPA Science Inventory

    Chemical disinfection of water is of direct public health benefit as it results in decreased waterborne illness. The chemicals used to disinfect water react with naturally occurring organic matter, bromide and iodide in the source water, resulting in the formation of disinfection...

  12. POWER AND SAMPLE SIZE CALCULATIONS FOR LINEAR HYPOTHESES ASSOCIATED WITH MIXTURES OF MANY COMPONENTS USING FIXED-RATIO RAY DESIGNS

    EPA Science Inventory

    Response surface methodology, often supported by factorial designs, is the classical experimental approach that is widely accepted for detecting and characterizing interactions among chemicals in a mixture. In an effort to reduce the experimental effort as the number of compound...

  13. The Pulmonary Surfactant: Impact of Tobacco Smoke and Related Compounds on Surfactant and Lung Development

    PubMed Central

    Scott, J Elliott

    2004-01-01

    Cigarette smoking, one of the most pervasive habits in society, presents many well established health risks. While lung cancer is probably the most common and well documented disease associated with tobacco exposure, it is becoming clear from recent research that many other diseases are causally related to smoking. Whether from direct smoking or inhaling environmental tobacco smoke (ETS), termed secondhand smoke, the cells of the respiratory tissues and the lining pulmonary surfactant are the first body tissues to be directly exposed to the many thousands of toxic chemicals in tobacco. Considering the vast surface area of the lung and the extreme attenuation of the blood-air barrier, it is not surprising that this organ is the primary route for exposure, not just to smoke but to most environmental contaminants. Recent research has shown that the pulmonary surfactant, a complex mixture of phospholipids and proteins, is the first site of defense against particulates or gas components of smoke. However, it is not clear what effect smoke has on the surfactant. Most studies have demonstrated that smoking reduces bronchoalveolar lavage phospholipid levels. Some components of smoke also appear to have a direct detergent-like effect on the surfactant while others appear to alter cycling or secretion. Ultimately these effects are reflected in changes in the dynamics of the surfactant system and, clinically in changes in lung mechanics. Similarly, exposure of the developing fetal lung through maternal smoking results in postnatal alterations in lung mechanics and higher incidents of wheezing and coughing. Direct exposure of developing lung to nicotine induces changes suggestive of fetal stress. Furthermore, identification of nicotinic receptors in fetal lung airways and corresponding increases in airway connective tissue support a possible involvement of nicotine in postnatal asthma development. Finally, at the level of the alveoli of the lung, colocalization of nicotinic receptors and surfactant-specific protein in alveolar cells is suggestive of a role in surfactant metabolism. Further research is needed to determine the mechanistic effects of smoke and its components on surfactant function and, importantly, the effects of smoke components on the developing pulmonary system. PMID:19570267

  14. The Pulmonary Surfactant: Impact of Tobacco Smoke and Related Compounds on Surfactant and Lung Development

    PubMed Central

    Scott, J Elliott

    2004-01-01

    Cigarette smoking, one of the most pervasive habits in society, presents many well established health risks. While lung cancer is probably the most common and well documented disease associated with tobacco exposure, it is becoming clear from recent research that many other diseases are causally related to smoking. Whether from direct smoking or inhaling environmental tobacco smoke (ETS), termed secondhand smoke, the cells of the respiratory tissues and the lining pulmonary surfactant are the first body tissues to be directly exposed to the many thousands of toxic chemicals in tobacco. Considering the vast surface area of the lung and the extreme attenuation of the blood-air barrier, it is not surprising that this organ is the primary route for exposure, not just to smoke but to most environmental contaminants. Recent research has shown that the pulmonary surfactant, a complex mixture of phospholipids and proteins, is the first site of defense against particulates or gas components of smoke. However, it is not clear what effect smoke has on the surfactant. Most studies have demonstrated that smoking reduces bronchoalveolar lavage phospholipid levels. Some components of smoke also appear to have a direct detergent-like effect on the surfactant while others appear to alter cycling or secretion. Ultimately these effects are reflected in changes in the dynamics of the surfactant system and, clinically in changes in lung mechanics. Similarly, exposure of the developing fetal lung through maternal smoking results in postnatal alterations in lung mechanics and higher incidents of wheezing and coughing. Direct exposure of developing lung to nicotine induces changes suggestive of fetal stress. Furthermore, identification of nicotinic receptors in fetal lung airways and corresponding increases in airway connective tissue support a possible involvement of nicotine in postnatal asthma development. Finally, at the level of the alveoli of the lung, colocalization of nicotinic receptors and surfactant-specific protein in alveolar cells is suggestive of a role in surfactant metabolism. Further research is needed to determine the mechanistic effects of smoke and its components on surfactant function and, importantly, the effects of smoke components on the developing pulmonary system.

  15. Extracellular matrix and growth factors in branching morphogenesis

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1993-01-01

    The unifying hypothesis of the NSCORT in gravitational biology postulates that the ECM and growth factors are key interrelated components of a macromolecular regulatory system. The ECM is known to be important in growth and branching morphogenesis of embryonic organs. Growth factors have been detected in the developing embryo, and often the pattern of localization is associated with areas undergoing epithelial-mesenchymal interactions. Causal relationships between these components may be of fundamental importance in control of branching morphogenesis.

  16. Less common applications of simulated moving bed chromatography in the pharmaceutical industry.

    PubMed

    Huthmann, E; Juza, M

    2005-10-21

    Simulated moving bed (SMB) chromatography is often perceived in the pharmaceutical industry as chromatographic method for separating binary mixtures, like racemates. However, SMB can also be used for unbalanced separations, i.e. binary mixtures of varying compositions and multi-component mixtures. These less common application modes of isocratic SMB chromatography are exemplified for four different compounds (racemates and diastereomers) and discussed in view of the so-called 'triangle theory' from an industrial perspective.

  17. Cross-cultural examination of beliefs about the causes of bulimia nervosa among Australian and Japanese females.

    PubMed

    Dryer, Rachel; Uesaka, Yuri; Manalo, Emmanuel; Tyson, Graham

    2015-03-01

    To identify similarities and differences in beliefs about the causes of Bulimia Nervosa (BN) held by Asian (Japanese) women and Western (Australian) women, and hence, to examine the applicability of belief models of eating disorders (ED) across different cultures. Four hundred three Japanese and 256 Australian female university students (aged 17-35 years) completed a questionnaire that gauged beliefs about the causes of BN. Among the Australian women, the four-component structure of perceived causes (dieting and eating practices, family dynamics, socio-cultural pressure, and psychological vulnerability) found in Dryer et al. (2012) was replicated. Among the Japanese women, however, a three-component structure (without the psychological vulnerability component) was obtained. The groups also differed in the causal component they most strongly endorsed, that being socio-cultural pressure for the Australian women, and dieting and eating practices for the Japanese women. The Japanese participants were found to endorse three out of the four Western-based causal explanations for BN, but the relative importance they placed on those explanations differed from that of the Australian participants. Further research is needed, particularly to establish whether Japanese women simply fail to see psychological vulnerability as a viable cause of BN, or there are in fact cultural differences in the extent to which such vulnerability causes BN. © 2014 Wiley Periodicals, Inc.

  18. Amiloride-Sensitive and Amiloride-Insensitive Responses to NaCl + Acid Mixtures in Hamster Chorda Tympani Nerve

    PubMed Central

    Hettinger, Thomas P.; Savoy, Lawrence D.; Frank, Marion E.

    2012-01-01

    Component signaling in taste mixtures containing both beneficial and dangerous chemicals depends on peripheral processing. Unidirectional mixture suppression of chorda tympani (CT) nerve responses to sucrose by quinine and acid is documented for golden hamsters (Mesocricetus auratus). To investigate mixtures of NaCl and acids, we recorded multifiber responses to 50 mM NaCl, 1 and 3 mM citric acid and acetic acid, 250 μM citric acid, 20 mM acetic acid, and all binary combinations of each acid with NaCl (with and without 30 μM amiloride added). By blocking epithelial Na+ channels, amiloride treatment separated amiloride-sensitive NaCl-specific responses from amiloride-insensitive electrolyte-generalist responses, which encompass all of the CT response to the acids as well as responses to NaCl. Like CT sucrose responses, the amiloride-sensitive NaCl responses were suppressed by as much as 50% by citric acid (P = 0.001). The amiloride-insensitive electrolyte-generalist responses to NaCl + acid mixtures approximated the sum of NaCl and acid component responses. Thus, although NaCl-specific responses to NaCl were weakened in NaCl–acid mixtures, electrolyte-generalist responses to acid and NaCl, which tastes KCl-like, were transmitted undiminished in intensity to the central nervous system. The 2 distinct CT pathways are consistent with known rodent behavioral discriminations. PMID:22451526

  19. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes.

    PubMed

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B

    2010-09-07

    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.

  20. Mixtures and their risk assessment in toxicology.

    PubMed

    Mumtaz, Moiz M; Hansen, Hugh; Pohl, Hana R

    2011-01-01

    For communities generally and for persons living in the vicinity of waste sites specifically, potential exposures to chemical mixtures are genuine concerns. Such concerns often arise from perceptions of a site's higher than anticipated toxicity due to synergistic interactions among chemicals. This chapter outlines some historical approaches to mixtures risk assessment. It also outlines ATSDR's current approach to toxicity risk assessment. The ATSDR's joint toxicity assessment guidance for chemical mixtures addresses interactions among components of chemical mixtures. The guidance recommends a series of steps that include simple calculations for a systematic analysis of data leading to conclusions regarding any hazards chemical mixtures might pose. These conclusions can, in turn, lead to recommendations such as targeted research to fill data gaps, development of new methods using current science, and health education to raise awareness of residents and health care providers. The chapter also provides examples of future trends in chemical mixtures assessment.

  1. [CoCuMnOx Photocatalyzed Oxidation of Multi-component VOCs and Kinetic Analysis].

    PubMed

    Meng, Hai-long; Bo, Long-li; Liu, Jia-dong; Gao, Bo; Feng, Qi-qi; Tan, Na; Xie, Shuai

    2016-05-15

    Solar energy absorption coating CoCuMnOx was prepared by co-precipitation method and applied to photodegrade multi- component VOCs including toluene, ethyl acetate and acetone under visible light irradiation. The photocatalytic oxidation performance of toluene, ethyl acetate and acetone was analyzed and reaction kinetics of VOCs were investigated synchronously. The research indicated that removal rates of single-component toluene, ethyl acetate and acetone were 57%, 62% and 58% respectively under conditions of 400 mg · m⁻³ initial concentration, 120 mm illumination distance, 1 g/350 cm² dosage of CoCuMnOx and 6 h of irradiation time by 100 W tungsten halogen lamp. Due to the competition among different VOCs, removal efficiencies in three-component mixture were reduced by 5%-26% as compared with single VOC. Degradation processes of single-component VOC and three-component VOCs both fitted pseudo first order reaction kinetics, and kinetic constants of toluene, ethyl acetate and acetone were 0.002, 0.002 8 and 0.002 33 min⁻¹ respectively under single-component condition. Reaction rates of VOCs in three-component mixture were 0.49-0.88 times of single components.

  2. Toxicity evaluation of glyphosate agrochemical components using Japanese medaka (Oryzias latipes) and DNA microarray gene expression analysis.

    PubMed

    Uchida, Masaya; Takumi, Shota; Tachikawa, Keiko; Yamauchi, Ryoko; Goto, Yoshiyuki; Matsusaki, Hiromi; Nakamura, Hiroshi; Kagami, Yoshihiro; Kusano, Teruhiko; Arizono, Koji

    2012-01-01

    Using glyphosate agrochemical components, we investigated their acute toxicity to juvenile Japanese medaka (Oryzias latipes) as well as their toxic impact at gene expression level on the liver tissues of adult medaka using DNA microarray. In our acute toxicity test, juvenile medaka were exposed for 96 hr to each of the following glyphosate agrochemical components: 10~160 mg/l of glyphosate, 1.25~20 mg/l of fatty acid alkanolamide surfactant (DA), and 12~416 mg/l of a fully formulated glyphosate herbicide. As a result, LC(50) values of glyphosate, DA, and the glyphosate herbicide were > 160 mg/l, 8.5 mg/l, and 76.8 mg/l, respectively. On the other hand, adult male medaka fish were exposed to each of the glyphosate agrochemical components for 48 hr at the following concentrations: 16 mg/l of glyphosate, 0.5 mg/l of DA, and 16 mg/l-glyphosate/0.5 mg/l-DA mixture. Interestingly, DNA microarray analysis revealed that there were no significant gene expression changes in the medaka liver after exposure to glyphosate. Nevertheless, 78 and 138 genes were significantly induced by DA and the glyphosate/DA mixture, respectively. Furthermore, we identified five common genes that were affected by DA and glyphosate/DA mixture. These results suggested that glyphosate itself possessed very low toxicity as previously reported by some researchers at least to the small laboratory fish, and the major toxicity of the glyphosate agrochemical resided mainly in DA and perhaps in unintentionally generated byproduct(s) of glyphosate-DA mixture.

  3. Functional ability loss in sensory impaired and sensory unimpaired very old adults: analyzing causal relations with positive affect across four years.

    PubMed

    Wahl, Hans-Werner; Drapaniotis, Philipp M; Heyl, Vera

    2014-11-01

    This paper focuses on the relationship between functional ability (FA) and positive affect (PA), a major component of well-being, in sensory impaired very old adults (SI) compared with sensory unimpaired individuals (UI). Previous research mostly suggests a robust causal impact of FA on PA. However, some research, drawing from Fredrickson's broaden-and-build theory, also points to the possibility of an inverse causality between FA and PA. We examine in this paper both of these causal directions in SI as well as UI individuals across a 4year observation period. Additionally, we checked for the role of negative affect (NA). The T1-T2 sample comprised 81 out of 237 SI individuals (visually or hearing impaired) assessed at T1, with a mean age at T1 of 81.8years, and 87 UI individuals out of 150 assessed at T1, with a mean age at T1 of 81.5years. Established scales were used to assess FA, PA, and NA. Using cross-lagged panel analysis to examine the direction of causality, our findings indicate that FA has significant impact on PA in both the SI and the UI group, whereas the alternative causal pathway was not confirmed. Both cross-lagged relationships between FA and NA were non-significant. No group differences in path strengths between SI and UI were present. Our study provides evidence that FA is a key competence for successful emotional aging in vulnerable groups of very old adults such as SI as well as in UI adults in advanced old age. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Are polychlorinated biphenyl residues adequately describe by aroclor mixture equivalents. Isomer-specific principal components analysis of such residues in fish and turtles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, T.R.; Stalling, D.L.; Rice, C.L.

    1987-01-01

    Polychlorinated biphenyl (PCB) residues from fish and turtles were analyzed with SIMCA (Soft Independent Modeling of Class Analogy), a principal components analysis technique. A series of technical Aroclors were also analyzed to provide a reference data set for pattern recognition. Environmental PCB residues are often expressed in terms of relative Aroclor composition. In this work, we assessed the similarity of Aroclors to class models derived for fish and turtles to ascertain if the PCB residues in the samples could be described by an Aroclor or Aroclor mixture. Using PCA, we found that these samples could not be described by anmore » Aroclor or Aroclor mixture and that it would be inappropriate to report these samples as such. 18 references, 3 figures, 3 tables.« less

  5. Cryogenic homogenization and sampling of heterogeneous multi-phase feedstock

    DOEpatents

    Doyle, Glenn Michael; Ideker, Virgene Linda; Siegwarth, James David

    2002-01-01

    An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (-196.degree. C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.

  6. Differentiation of Chemical Components in a Binary Solvent Vapor Mixture Using Carbon/Polymer Composite-Based Chemiresistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Sanjay V.; Jenkins, Mark W.; Hughes, Robert C.

    1999-07-19

    We demonstrate a ''universal solvent sensor'' constructed from a small array of carbon/polymer composite chemiresistors that respond to solvents spanning a wide range of Hildebrand volubility parameters. Conductive carbon particles provide electrical continuity in these composite films. When the polymer matrix absorbs solvent vapors, the composite film swells, the average separation between carbon particles increases, and an increase in film resistance results, as some of the conduction pathways are broken. The adverse effects of contact resistance at high solvent concentrations are reported. Solvent vapors including isooctane, ethanol, dlisopropyhnethylphosphonate (DIMP), and water are correctly identified (''classified'') using three chemiresistors, their compositemore » coatings chosen to span the full range of volubility parameters. With the same three sensors, binary mixtures of solvent vapor and water vapor are correctly classified, following classification, two sensors suffice to determine the concentrations of both vapor components. Polyethylene vinylacetate and polyvinyl alcohol (PVA) are two such polymers that are used to classify binary mixtures of DIMP with water vapor; the PVA/carbon-particle-composite films are sensitive to less than 0.25{degree}A relative humidity. The Sandia-developed VERI (Visual-Empirical Region of Influence) technique is used as a method of pattern recognition to classify the solvents and mixtures and to distinguish them from water vapor. In many cases, the response of a given composite sensing film to a binary mixture deviates significantly from the sum of the responses to the isolated vapor components at the same concentrations. While these nonlinearities pose significant difficulty for (primarily) linear methods such as principal components analysis, VERI handles both linear and nonlinear data with equal ease. In the present study the maximum speciation accuracy is achieved by an array containing three or four sensor elements, with the addition of more sensors resulting in a measurable accuracy decrease.« less

  7. Cross-phase separation of nanowires and nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Fang; Duoss, Eric; Han, Jinkyu

    In one embodiment, a process includes creating a mixture of an aqueous component, nanowires and nanoparticles, and a hydrophobic solvent and allowing migration of the nanowires to the hydrophobic solvent, where the nanoparticles remain in the aqueous component. Moreover, the nanowires and nanoparticles are in the aqueous component before the migration.

  8. Evaluation of biochar-anaerobic potato digestate mixtures as renewable components of horticultural potting media

    USDA-ARS?s Scientific Manuscript database

    Various formulations are used in horticultural potting media, with sphagnum peat moss, vermiculite and perlite currently among the most common components. We are examining a dried anaerobic digestate remaining after the fermentation of potato processing wastes to replace organic components such as p...

  9. NIST Libraries of Peptide Fragmentation Mass Spectra Databass

    National Institute of Standards and Technology Data Gateway

    SRD 4 NIST Libraries of Peptide Fragmentation Mass Spectra Databass (PC database for purchase)   Interactive computer program for predicting thermodynamic and transport properties of pure fluids and fluid mixtures containing up to 20 components. The components are selected from a database of 196 components, mostly hydrocarbons.

  10. Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants

    PubMed Central

    Marriott, Poppy E.; Sibout, Richard; Lapierre, Catherine; Fangel, Jonatan U.; Willats, William G. T.; Hofte, Herman; Gómez, Leonardo D.; McQueen-Mason, Simon J.

    2014-01-01

    Lignocellulosic plant biomass is an attractive feedstock for the production of sustainable biofuels, but the commercialization of such products is hampered by the high costs of processing this material into fermentable sugars (saccharification). One approach to lowering these costs is to produce crops with cell walls that are more susceptible to hydrolysis to reduce preprocessing and enzyme inputs. To deepen our understanding of the molecular genetic basis of lignocellulose recalcitrance, we have screened a mutagenized population of the model grass Brachypodium distachyon for improved saccharification with an industrial polysaccharide-degrading enzyme mixture. From an initial screen of 2,400 M2 plants, we selected 12 lines that showed heritable improvements in saccharification, mostly with no significant reduction in plant size or stem strength. Characterization of these putative mutants revealed a variety of alterations in cell-wall components. We have mapped the underlying genetic lesions responsible for increased saccharification using a deep sequencing approach, and here we report the mapping of one of the causal mutations to a narrow region in chromosome 2. The most likely candidate gene in this region encodes a GT61 glycosyltransferase, which has been implicated in arabinoxylan substitution. Our work shows that forward genetic screening provides a powerful route to identify factors that impact on lignocellulose digestibility, with implications for improving feedstock for cellulosic biofuel production. PMID:25246540

  11. Improvement of a mixture experiment model relating the component proportions to the size of nanonized itraconazole particles in extemporary suspensions

    DOE PAGES

    Pattarino, Franco; Piepel, Greg; Rinaldi, Maurizio

    2018-03-03

    A paper by Foglio Bonda et al. published previously in this journal (2016, Vol. 83, pp. 175–183) discussed the use of mixture experiment design and modeling methods to study how the proportions of three components in an extemporaneous oral suspension affected the mean diameter of drug particles (Z ave). The three components were itraconazole (ITZ), Tween 20 (TW20), and Methocel® E5 (E5). This commentary addresses some errors and other issues in the previous paper, and also discusses an improved model relating proportions of ITZ, TW20, and E5 to Z ave. The improved model contains six of the 10 terms inmore » the full-cubic mixture model, which were selected using a different cross-validation procedure than used in the previous paper. In conclusion, compared to the four-term model presented in the previous paper, the improved model fit the data better, had excellent cross-validation performance, and the predicted Z ave of a validation point was within model uncertainty of the measured value.« less

  12. Improvement of a mixture experiment model relating the component proportions to the size of nanonized itraconazole particles in extemporary suspensions.

    PubMed

    Pattarino, Franco; Piepel, Greg; Rinaldi, Maurizio

    2018-05-30

    A paper by Foglio Bonda et al. published previously in this journal (2016, Vol. 83, pp. 175-183) discussed the use of mixture experiment design and modeling methods to study how the proportions of three components in an extemporaneous oral suspension affected the mean diameter of drug particles (Z ave ). The three components were itraconazole (ITZ), Tween 20 (TW20), and Methocel® E5 (E5). This commentary addresses some errors and other issues in the previous paper, and also discusses an improved model relating proportions of ITZ, TW20, and E5 to Z ave . The improved model contains six of the 10 terms in the full-cubic mixture model, which were selected using a different cross-validation procedure than used in the previous paper. Compared to the four-term model presented in the previous paper, the improved model fit the data better, had excellent cross-validation performance, and the predicted Z ave of a validation point was within model uncertainty of the measured value. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Improvement of a mixture experiment model relating the component proportions to the size of nanonized itraconazole particles in extemporary suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattarino, Franco; Piepel, Greg; Rinaldi, Maurizio

    A paper by Foglio Bonda et al. published previously in this journal (2016, Vol. 83, pp. 175–183) discussed the use of mixture experiment design and modeling methods to study how the proportions of three components in an extemporaneous oral suspension affected the mean diameter of drug particles (Z ave). The three components were itraconazole (ITZ), Tween 20 (TW20), and Methocel® E5 (E5). This commentary addresses some errors and other issues in the previous paper, and also discusses an improved model relating proportions of ITZ, TW20, and E5 to Z ave. The improved model contains six of the 10 terms inmore » the full-cubic mixture model, which were selected using a different cross-validation procedure than used in the previous paper. In conclusion, compared to the four-term model presented in the previous paper, the improved model fit the data better, had excellent cross-validation performance, and the predicted Z ave of a validation point was within model uncertainty of the measured value.« less

  14. A modeling approach to account for toxicokinetic interactions in the calculation of biological hazard index for chemical mixtures.

    PubMed

    Haddad, S; Tardif, R; Viau, C; Krishnan, K

    1999-09-05

    Biological hazard index (BHI) is defined as biological level tolerable for exposure to mixture, and is calculated by an equation similar to the conventional hazard index. The BHI calculation, at the present time, is advocated for use in situations where toxicokinetic interactions do not occur among mixture constituents. The objective of this study was to develop an approach for calculating interactions-based BHI for chemical mixtures. The approach consisted of simulating the concentration of exposure indicator in the biological matrix of choice (e.g. venous blood) for each component of the mixture to which workers are exposed and then comparing these to the established BEI values, for calculating the BHI. The simulation of biomarker concentrations was performed using a physiologically-based toxicokinetic (PBTK) model which accounted for the mechanism of interactions among all mixture components (e.g. competitive inhibition). The usefulness of the present approach is illustrated by calculating BHI for varying ambient concentrations of a mixture of three chemicals (toluene (5-40 ppm), m-xylene (10-50 ppm), and ethylbenzene (10-50 ppm)). The results show that the interactions-based BHI can be greater or smaller than that calculated on the basis of additivity principle, particularly at high exposure concentrations. At lower exposure concentrations (e.g. 20 ppm each of toluene, m-xylene and ethylbenzene), the BHI values obtained using the conventional methodology are similar to the interactions-based methodology, confirming that the consequences of competitive inhibition are negligible at lower concentrations. The advantage of the PBTK model-based methodology developed in this study relates to the fact that, the concentrations of individual chemicals in mixtures that will not result in a significant increase in the BHI (i.e. > 1) can be determined by iterative simulation.

  15. Predicting mixture toxicity of seven phenolic compounds with similar and dissimilar action mechanisms to Vibrio qinghaiensis sp.nov.Q67.

    PubMed

    Huang, Wei Ying; Liu, Fei; Liu, Shu Shen; Ge, Hui Lin; Chen, Hong Han

    2011-09-01

    The predictions of mixture toxicity for chemicals are commonly based on two models: concentration addition (CA) and independent action (IA). Whether the CA and IA can predict mixture toxicity of phenolic compounds with similar and dissimilar action mechanisms was studied. The mixture toxicity was predicted on the basis of the concentration-response data of individual compounds. Test mixtures at different concentration ratios and concentration levels were designed using two methods. The results showed that the Weibull function fit well with the concentration-response data of all the components and their mixtures, with all relative coefficients (Rs) greater than 0.99 and root mean squared errors (RMSEs) less than 0.04. The predicted values from CA and IA models conformed to observed values of the mixtures. Therefore, it can be concluded that both CA and IA can predict reliable results for the mixture toxicity of the phenolic compounds with similar and dissimilar action mechanisms. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Poisson Mixture Regression Models for Heart Disease Prediction.

    PubMed

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  17. Poisson Mixture Regression Models for Heart Disease Prediction

    PubMed Central

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  18. Ionic liquid/water mixtures: from hostility to conciliation.

    PubMed

    Kohno, Yuki; Ohno, Hiroyuki

    2012-07-21

    Water was originally inimical to ionic liquids (ILs) especially in the analysis of their detailed properties. Various data on the properties of ILs indicate that there are two ways to design functions of ionic liquids. The first is to change the structure of component ions, to provide "task-specific ILs". The second is to mix ILs with other components, such as other ILs, organic solvents or water. Mixing makes it easy to control the properties of the solution. In this strategy, water is now a very important partner. Below, we summarise our recent results on the properties of IL/water mixtures. Stable phase separation is an effective method in some separation processes. Conversely, a dynamic phase change between a homogeneous mixture and separation of phases is important in many fields. Analysis of the relation between phase behaviour and the hydration state of the component ions indicates that the pattern of phase separation is governed by the hydrophilicity of the ions. Sufficiently hydrophilic ions yielded ILs that are miscible with water, and hydrophobic ions gave stable phase separation with water. ILs composed of hydrophobic but hydrated ions undergo a dynamic phase change between a homogeneous mixture and separate phases according to temperature. ILs having more than seven water molecules per ion pair undergo this phase transition. These dynamic phase changes are considered, with some examples, and application is made to the separation of water-soluble proteins.

  19. Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins.

    PubMed

    Avan, Aslı Neslihan; Demirci Çekiç, Sema; Uzunboy, Seda; Apak, Reşat

    2016-08-12

    Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET)-based total antioxidant capacity (TAC) assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC), and ferric reducing antioxidant power (FRAP), were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols) mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol) and (phenol + protein) mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II) compounds were added to stabilize the thiol components in the form of Hg(II)-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols) mixtures.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razhev, A M; Kargapol'tsev, E S; Churkin, D S

    Results of an experimental study of the influence of a gas mixture (laser active medium) composition on an output energy and total efficiency of gas-discharge excimer lasers on ArF* (193 nm), KrCl* (222 nm), KrF* (248 nm) and XeCl* (308 nm) molecules operating without a buffer gas are presented. The optimal ratios of gas components (from the viewpoint of a maximum output energy) of an active medium are found, which provide an efficient operation of laser sources. It is experimentally confirmed that for gas-discharge excimer lasers on halogenides of inert gases the presence of a buffer gas in an activemore » medium is not a necessary condition for efficient operation. For the first time, in two-component gas mixtures of repetitively pulsed gas-discharge excimer lasers on electron transitions of excimer molecules ArF*, KrCl*, KrF* and XeCl*, the pulsed energy of laser radiation obtained under pumping by a transverse volume electric discharge in a low-pressure gas mixture without a buffer gas reached up to 170 mJ and a high pulsed output power (of up to 24 MW) was obtained at a FWHM duration of the KrF-laser pulse of 7 ns. The maximal total efficiency obtained in the experiment with two-component gas mixtures of KrF and XeCl lasers was 0.8%. (lasers)« less

  1. [Antioxidant properties of essential oils from lemon, grapefruit, coriander, clove, and their mixtures].

    PubMed

    Misharina, T A; Samusenko, A L

    2008-01-01

    Antioxidant properties of individual essential oils from lemon (Citrus limon L.), pink grapefruit (Citrus paradise L.), coriander (Coriandrum sativum L.), and clove (Caryophyllus aromaticus L.) buds and their mixtures were studied by capillary gas-liquid chromatography. Antioxidant activity was assessed by oxidation of the aliphatic aldehyde hexanal to the carboxylic acid. The lowest and highest antioxidant activities were exhibited by grapefruit and clove bud essential oils, respectively. Mixtures containing clove bud essential oil also strongly inhibited oxidation of hexanal. Changes in the composition of essential oils and their mixtures in the course of long-term storage in the light were studied. The stability of components of lemon and coriander essential oils in mixtures increased compared to individual essential oils.

  2. Computation of geometric representation of novel spectrophotometric methods used for the analysis of minor components in pharmaceutical preparations.

    PubMed

    Lotfy, Hayam M; Saleh, Sarah S; Hassan, Nagiba Y; Salem, Hesham

    2015-01-01

    Novel spectrophotometric methods were applied for the determination of the minor component tetryzoline HCl (TZH) in its ternary mixture with ofloxacin (OFX) and prednisolone acetate (PA) in the ratio of (1:5:7.5), and in its binary mixture with sodium cromoglicate (SCG) in the ratio of (1:80). The novel spectrophotometric methods determined the minor component (TZH) successfully in the two selected mixtures by computing the geometrical relationship of either standard addition or subtraction. The novel spectrophotometric methods are: geometrical amplitude modulation (GAM), geometrical induced amplitude modulation (GIAM), ratio H-point standard addition method (RHPSAM) and compensated area under the curve (CAUC). The proposed methods were successfully applied for the determination of the minor component TZH below its concentration range. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Application of a two-stream radiative transfer model for leaf lignin and cellulose concentrations from spectral reflectance measurements, part 2

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Vandenbosch, Jeannette; Grove, Cindy I.

    1993-01-01

    We used the Kubelka-Munk theory of diffuse spectral reflectance in layers to analyze influences of multiple chemical components in leaves. As opposed to empirical approaches to estimation of plant chemistry, the full spectral resolution of laboratory reflectance data was retained in an attempt to estimate lignin or other constituent concentrations from spectral band positions. A leaf water reflectance spectrum was derived from theoretical mixing rules, reflectance observations, and calculations from theory of intrinsic k- and s-functions. Residual reflectance bands were then isolated from spectra of fresh green leaves. These proved hard to interpret for composition in terms of simple two component mixtures such as lignin and cellulose. We next investigated spectral and dilution influences of other possible components (starch, protein). These components, among others, added to cellulose in hypothetical mixtures, produce band displacements similar to lignin, but will disguise by dilution the actual abundance of lignin present in a multicomponent system. This renders interpretation of band positions problematical. Knowledge of end-members and their spectra, and a more elaborate mixture analysis procedure may be called for. Good observational atmospheric and instrumental conditions and knowledge thereof are required for retrieval of expected subtle reflectance variations present in spectra of green vegetation.

  4. Effect of surface ionization on wetting layers

    NASA Technical Reports Server (NTRS)

    Kayser, R. F.

    1986-01-01

    A surface ionization model due to Langmuir is generalized to liquid mixtures of polar and nonpolar components in contact with ionizable substrates. When a predominantly nonpolar mixture is near a miscibility gap, thick wetting layers of the conjugate polar phase form on the substrate. Such charged layers can be much thicker than similar wetting layers stabilized by dispersion forces. This model may explain the 0.4- to 0.6-micron-thick wetting layers formed in stirred mixtures of nitromethane and carbon disulfide in contact with glass.

  5. Mathematical Sense-Making in Quantum Mechanics: An Initial Peek

    ERIC Educational Resources Information Center

    Dreyfus, Benjamin W.; Elby, Andrew; Gupta, Ayush; Sohr, Erin Ronayne

    2017-01-01

    Mathematical sense-making--looking for coherence between the structure of the mathematical formalism and causal or functional relations in the world--is a core component of physics expertise. Some physics education research studies have explored what mathematical sense-making looks like at the introductory physics level, while some historians and…

  6. Interpersonal Valence Dimensions as Discriminators of Communication Contexts: An Empirical Assessment of Dyadic Linkages.

    ERIC Educational Resources Information Center

    Garrison, John P.; And Others

    The capability of 14 interpersonal dimensions to predict dyadic communication contexts was investigated in this study. Friend, acquaintance, co-worker, and family contexts were examined. The interpersonal valence construct, based on a coactive or mutual-causal paradigm, encompasses traditional source-valence components (credibility, power,…

  7. Deciphering potential mechanisms of anaerobic soil disinfestation (ASD)-mediated control of Pratylenchus penetrans

    USDA-ARS?s Scientific Manuscript database

    Pratylenchus penetrans is a component of the apple replant disease (ARD) causal pathogen complex. The potential role for biological mechanisms contributing to ASD-mediated suppression of P. penetrans was examined in greenhouse study using orchard soil with a history of ARD. Populations of P. penetra...

  8. Data-Driven Belief Revision in Children and Adults

    ERIC Educational Resources Information Center

    Masnick, Amy M.; Klahr, David; Knowles, Erica R.

    2017-01-01

    The ability to use numerical evidence to revise beliefs about the physical world is an essential component of scientific reasoning that begins to develop in middle childhood. In 2 studies, we explored how data variability and consistency with participants' initial beliefs about causal factors associated with pendulums affected their ability to…

  9. Children's Use of Categories and Mental States to Predict Social Behavior

    ERIC Educational Resources Information Center

    Chalik, Lisa; Rivera, Cyrielle; Rhodes, Marjorie

    2014-01-01

    Integrating generic information about categories with knowledge of specific individuals is a critical component of successful inductive inferences. The present study tested whether children's approach to this task systematically shifts as they develop causal understandings of the mechanisms that shape individual action. In the current study, 3-and…

  10. Antennal and behavioral response of the Asian citrus psyllid (Diaphorina citri Kuwayama) to degradation products of citrus volatiles

    USDA-ARS?s Scientific Manuscript database

    Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) vectors the bacterial causal pathogen of the deadly citrus disease, Huanglongbing (citrus greening) which is a major threat to citrus industry worldwide. We studied antennal and behavioral responses to principal components of head...

  11. The Psychological Rights of the Child and Sexual Identity.

    ERIC Educational Resources Information Center

    Ramage, Jean C.; And Others

    1982-01-01

    Recent thinking about the components of sexual identity (biological sex, gender identity, sexual preference, and social sex role) are examined. It is argued that confusion between correlation and causality in these areas restrict the development of all children. Examples and suggestions for avoiding stereotyping of school children are given.…

  12. Heat detection and compositions and devices therefor

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1975-01-01

    Temperature change of a substrate such as a microelectronic component is sensed and detected by means of a mixture of a weak molecular complex of an electron donor compound such as an organic amine and an electron acceptor compound such as nitroaromatic compound. The mixture is encapsulated in a clear binder such as a vinyl resin.

  13. Identification and evaluation of composition in food powder using point-scan Raman spectral imaging

    USDA-ARS?s Scientific Manuscript database

    This study used Raman spectral imaging coupled with self-modeling mixture analysis (SMA) for identification of three components mixed into a complex food powder mixture. Vanillin, melamine, and sugar were mixed together at 10 different concentration levels (spanning 1% to 10%, w/w) into powdered non...

  14. COMPONENT-BASED AND WHOLE-MIXTURE TECHNIQUES FOR ADDRESSING THE TOXICITY OF DRINKING WATER DISINFECTION BYPRODUCT MIXTURES

    EPA Science Inventory

    ABSTRACT

    Chemical disinfection of water is of direct public health benefit as it results in decreased waterborne illness. The chemicals used to disinfect water react with naturally occurring organic matter and bromide in the source water, resulting in the formation of a m...

  15. Estimating the impact of grouping misclassification on risk prediction when using the relative potency factors method to assess mixtures risk -Presentation

    EPA Science Inventory

    Environmental health risk assessments of chemical mixtures that rely on component approaches often begin by grouping the chemicals of concern according to toxicological similarity. Approaches that assume dose addition typically are used for groups of similarly-acting chemicals an...

  16. On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy.

    PubMed

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-09-07

    We demonstrate that silver nanorod (AgNR) array substrates can be used for on-chip separation and detection of chemical mixtures by combining ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The UTLC-SERS plate consists of an AgNR array fabricated by oblique angle deposition. The capability of the AgNR substrates to separate the different compounds in a mixture was explored using a mixture of four dyes and a mixture of melamine and Rhodamine 6G at varied concentrations with different mobile phase solvents. After UTLC separation, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the potential for separating the test dyes with plate heights as low as 9.6 μm. The limits of detection are between 10(-5)-10(-6) M. Furthermore, we show that the coupling of UTLC with SERS improves the SERS detection specificity, as small amounts of target analytes can be separated from the interfering background components.

  17. Separation of mixtures of chemical elements in plasma

    NASA Astrophysics Data System (ADS)

    Dolgolenko, D. A.; Muromkin, Yu A.

    2017-10-01

    This paper reviews proposals on the plasma processing of radioactive waste (RW) and spent nuclear fuel (SNF). The chemical processing of SNF based on the extraction of its components from water solutions is rather expensive and produces new waste. The paper considers experimental research on plasma separation of mixtures of chemical elements and isotopes, whose results can help evaluate the plasma methods of RW and SNF reprocessing. The analysis identifies the difference between ionization levels of RW and SNF components at their transition to the plasma phase as a reason why all plasma methods are difficult to apply.

  18. Cellular thermosetting fluoropolymers and process for making them

    NASA Technical Reports Server (NTRS)

    Lee, Sheng Y.

    1988-01-01

    Thermosetting fluoropolymer foams are made by mixing fluid from thermosetting fluoropolymer components having a substantial fluoride content, placing the mixture in a pressure tight chamber, filling the chamber with a gas, at a relatively low pressure, that is unreactive with the fluoropolymer components, allowing the mixture to gel, removing the gelled fluoropolymer from the chamber and therafter heating the fluoropolymer at a relatively low temperature to simultaneously cure and foam the fluoropolymer. The resulting fluoropolymer product is closed celled with the cells storing the gas employed for foaming. The fluoropolymer resins employed may be any thermosetting fluoropolymer including fluoroepoxies, fluoropolyurethanes and fluoroacrylates.

  19. Cellular thermosetting fluorodiepoxide polymers

    NASA Technical Reports Server (NTRS)

    Lee, Sheng Y. (Inventor)

    1989-01-01

    Thermosetting fluoropolymer foams are made by mixing fluid form thermosetting fluoropolymer components having a substantial fluorine content, placing the mixture in a pressure tight chamber, filling the chamber with a gas, at relatively low pressure, that is unreactive with the fluoropolymer components, allowing the mixture to gel, removing the gelled fluoropolymer from the chamber and thereafter heating the fluoropolymer at a relatively low temperature to simultaneously sure and foam the fluoropolymer. The resulting fluoropolymer product is closed celled with the cells storing the gas employed for foaming. The fluoropolymer resins employed may be any thermosetting fluoropolymer including fluoroepoxies, fluoropolyurethanes and fluoroacrylates.

  20. Numerical simulation of infrared radiation absorption for diagnostics of gas-aerosol medium by remote sensing data

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Egorov, O. V.; Kashirskii, D. E.; Shefer, O. V.

    2015-11-01

    Calculated absorption spectra of the mixture of gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3), contained in the exhausts of aircraft and rocket engines are demonstrated. Based on the model of gas-aerosol medium, a numerical study of the spectral dependence of the absorptance for different ratios of gas and aerosol components was carried out. The influence of microphysical and optical properties of the components of the mixture on the spectral features of absorption of gas-aerosol medium was established.

  1. LIQUID PHASE SINTERING OF METALLIC CARBIDES

    DOEpatents

    Hammond, J.; Sease, J.D.

    1964-01-21

    An improved method is given for fabricating uranium carbide composites, The method comprises forming a homogeneous mixture of powdered uranium carbide, a uranium intermetallic compound which wets and forms a eutectic with said carbide and has a non-uranium component which has a relatively high vapor pressure at a temperature in the range 1200 to 1500 deg C, and an organic binder, pressing said mixture to a composite of desired green strength, and then vacuum sintering said composite at the eutectic forming temperature for a period sufficient to remove at least a portion of the non-uranium containing component of said eutectic. (AEC)

  2. A Search for New Fuel Components in Explosive Mixtures with Ammonium Nitrate

    DTIC Science & Technology

    1981-04-30

    i AP-PENIMY A. rol~our Tnd#Ix entrl-s for dyes tested for euatecticmixture form7ation with wnmoniua.i nitrate 12010 C.!. Snivent tR.. d 3...lirainhto. %k ith sodium hydroide itnd sodium ýhlnrate l1r6nner, BP 739 182 o d )r nitrate (GP I1S52q) lh-lftier, Gi’ 3628P 9 (1’. 1, 308) (it) Iaat...K -__ __ __ __ _ R___ __ _ __ LEVEL... 0 Final Report A SEARCH FOR NEW FUEL COMPONENTS IN EXPLOSIVE MIXTURES WITH AMMONIUM NITRATE -m i Dr. Maurice C

  3. Evaluation and validation of social and psychological markers in randomised trials of complex interventions in mental health: a methodological research programme.

    PubMed

    Dunn, Graham; Emsley, Richard; Liu, Hanhua; Landau, Sabine; Green, Jonathan; White, Ian; Pickles, Andrew

    2015-11-01

    The development of the capability and capacity to evaluate the outcomes of trials of complex interventions is a key priority of the National Institute for Health Research (NIHR) and the Medical Research Council (MRC). The evaluation of complex treatment programmes for mental illness (e.g. cognitive-behavioural therapy for depression or psychosis) not only is a vital component of this research in its own right but also provides a well-established model for the evaluation of complex interventions in other clinical areas. In the context of efficacy and mechanism evaluation (EME) there is a particular need for robust methods for making valid causal inference in explanatory analyses of the mechanisms of treatment-induced change in clinical outcomes in randomised clinical trials. The key objective was to produce statistical methods to enable trial investigators to make valid causal inferences about the mechanisms of treatment-induced change in these clinical outcomes. The primary objective of this report is to disseminate this methodology, aiming specifically at trial practitioners. The three components of the research were (1) the extension of instrumental variable (IV) methods to latent growth curve models and growth mixture models for repeated-measures data; (2) the development of designs and regression methods for parallel trials; and (3) the evaluation of the sensitivity/robustness of findings to the assumptions necessary for model identifiability. We illustrate our methods with applications from psychological and psychosocial intervention trials, keeping the technical details to a minimum, leaving the reporting of the more theoretical and mathematically demanding results for publication in appropriate specialist journals. We show how to estimate treatment effects and introduce methods for EME. We explain the use of IV methods and principal stratification to evaluate the role of putative treatment effect mediators and therapeutic process measures. These results are extended to the analysis of longitudinal data structures. We consider the design of EME trials. We focus on designs to create convincing IVs, bearing in mind assumptions needed to attain model identifiability. A key area of application that has become apparent during this work is the potential role of treatment moderators (predictive markers) in the evaluation of treatment effect mechanisms for personalised therapies (stratified medicine). We consider the role of targeted therapies and multiarm trials and the use of parallel trials to help elucidate the evaluation of mediators working in parallel. In order to demonstrate both efficacy and mechanism, it is necessary to (1) demonstrate a treatment effect on the primary (clinical) outcome, (2) demonstrate a treatment effect on the putative mediator (mechanism) and (3) demonstrate a causal effect from the mediator to the outcome. Appropriate regression models should be applied for (3) or alternative IV procedures, which account for unmeasured confounding, provided that a valid instrument can be identified. Stratified medicine may provide a setting where such instruments can be designed into the trial. This work could be extended by considering improved trial designs, sample size considerations and measurement properties. The project presents independent research funded under the MRC-NIHR Methodology Research Programme (grant reference G0900678).

  4. New Perspectives on Specific Immune-Depletion Technique Using Monoclonal Antibodies against Small Active Molecules in Herbs

    PubMed Central

    Wang, Xue-Qian; Cheng, Fa-Feng; Qu, Hui-Hua; Zhao, Yan; Yu, Cai; Liu, Yuan-Jun; Zhu, Wen-Xiang; Wang, Qing-Guo

    2014-01-01

    One of the main focuses in Chinese Medicine research is the identification of efficacious components in Chinese herbal medicine (CHM). Studies in such area are difficult due to the complexity and the synergistic characteristics of CHM. Current methods to track and separate active components are not adequate to meet the needs of revealing effects and identify substances and pharmacological mechanisms, which directly restrict the modernization and globalization of CHM. In this paper, a new methodology to deplete a single active component via immunoassay was introduced. The specific active component in a CHM mixture can then be identified and studied through comparative analyses of the pharmacological effects before and after immune depletion. With this new methodology, degree of contribution of a particular component to the whole complex herbal mixture can be elucidated, and its synergistic property with other components can be determined. The new method can reflect not only the overall combined pharmacological effects of CHM but also the effect of individual component. It is an effective way to explain the degree of contribution of one specific component to the overall activity of a CHM prescription. PMID:24772180

  5. Effect of open metal sites on adsorption of polar and nonpolar molecules in metal-organic framework Cu-BTC.

    PubMed

    Karra, Jagadeswara R; Walton, Krista S

    2008-08-19

    Atomistic grand canonical Monte Carlo simulations were performed in this work to investigate the role of open copper sites of Cu-BTC in affecting the separation of carbon monoxide from binary mixtures containing methane, nitrogen, or hydrogen. Mixtures containing 5%, 50%, or 95% CO were examined. The simulations show that electrostatic interactions between the CO dipole and the partial charges on the metal-organic framework (MOF) atoms dominate the adsorption mechanism. The binary simulations show that Cu-BTC is quite selective for CO over hydrogen and nitrogen for all three mixture compositions at 298 K. The removal of CO from a 5% mixture with methane is slightly enhanced by the electrostatic interactions of CO with the copper sites. However, the pore space of Cu-BTC is large enough to accommodate both molecules at their pure-component loadings, and in general, Cu-BTC exhibits no significant selectivity for CO over methane for the equimolar and 95% mixtures. On the basis of the pure-component and low-concentration behavior of CO, the results indicate that MOFs with open metal sites have the potential for enhancing adsorption separations of molecules of differing polarities, but the pore size relative to the sorbate size will also play a significant role.

  6. Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senesac, Larry R; Datskos, Panos G; Sepaniak, Michael J

    2006-01-01

    In the present work, we have performed analyte species and concentration identification using an array of ten differentially functionalized microcantilevers coupled with a back-propagation artificial neural network pattern recognition algorithm. The array consists of ten nanostructured silicon microcantilevers functionalized by polymeric and gas chromatography phases and macrocyclic receptors as spatially dense, differentially responding sensing layers for identification and quantitation of individual analyte(s) and their binary mixtures. The array response (i.e. cantilever bending) to analyte vapor was measured by an optical readout scheme and the responses were recorded for a selection of individual analytes as well as several binary mixtures. Anmore » artificial neural network (ANN) was designed and trained to recognize not only the individual analytes and binary mixtures, but also to determine the concentration of individual components in a mixture. To the best of our knowledge, ANNs have not been applied to microcantilever array responses previously to determine concentrations of individual analytes. The trained ANN correctly identified the eleven test analyte(s) as individual components, most with probabilities greater than 97%, whereas it did not misidentify an unknown (untrained) analyte. Demonstrated unique aspects of this work include an ability to measure binary mixtures and provide both qualitative (identification) and quantitative (concentration) information with array-ANN-based sensor methodologies.« less

  7. Global concentration additivity and prediction of mixture toxicities, taking nitrobenzene derivatives as an example.

    PubMed

    Li, Tong; Liu, Shu-Shen; Qu, Rui; Liu, Hai-Ling

    2017-10-01

    The toxicity of a mixture depends not only on the mixture concentration level but also on the mixture ratio. For a multiple-component mixture (MCM) system with a definite chemical composition, the mixture toxicity can be predicted only if the global concentration additivity (GCA) is validated. The so-called GCA means that the toxicity of any mixture in the MCM system is the concentration additive, regardless of what its mixture ratio and concentration level. However, many mixture toxicity reports have usually employed one mixture ratio (such as the EC 50 ratio), the equivalent effect concentration ratio (EECR) design, to specify several mixtures. EECR mixtures cannot simulate the concentration diversity and mixture ratio diversity of mixtures in the real environment, and it is impossible to validate the GCA. Therefore, in this paper, the uniform design ray (UD-Ray) was used to select nine mixture ratios (rays) in the mixture system of five nitrobenzene derivatives (NBDs). The representative UD-Ray mixtures can effectively and rationally describe the diversity in the NBD mixture system. The toxicities of the mixtures to Vibrio qinghaiensis sp.-Q67 were determined by the microplate toxicity analysis (MTA). For each UD-Ray mixture, the concentration addition (CA) model was used to validate whether the mixture toxicity is additive. All of the UD-Ray mixtures of five NBDs are global concentration additive. Afterwards, the CA is employed to predict the toxicities of the external mixtures from three EECR mixture rays with the NOEC, EC 30 , and EC 70 ratios. The predictive toxicities are in good agreement with the experimental toxicities, which testifies to the predictability of the mixture toxicity of the NBDs. Copyright © 2017. Published by Elsevier Inc.

  8. Deflagration-to-detonation transition in spiral channels

    NASA Astrophysics Data System (ADS)

    Golovastov, S. V.; Mikushkin, A. Yu.; Golub, V. V.

    2017-10-01

    The deflagration-to-detonation transition in hydrogen-air mixtures that fill spiral channels has been studied. A spiral channel has been produced in a cylindrical detonation tube with a twisted ribbon inside. The gas mixture has been ignited by means of a spark gap switch. The predetonation distance versus the twisted ribbon configuration and molar ratio between the gas mixture components has been determined. A pulling force exerted by the detonation tube after a single event of hydrogen-air mixture burnout has been found for four configurations of the twisted ribbon. Conditions under which the use of a spiral tube can be more effective (increase the pulling force) have been formulated.

  9. Determination of the sequences of protein-derived peptides and peptide mixtures by mass spectrometry

    PubMed Central

    Morris, Howard R.; Williams, Dudley H.; Ambler, Richard P.

    1971-01-01

    Micro-quantities of protein-derived peptides have been converted into N-acetylated permethyl derivatives, and their sequences determined by low-resolution mass spectrometry without prior knowledge of their amino acid compositions or lengths. A new strategy is suggested for the mass spectrometric sequencing of oligopeptides or proteins, involving gel filtration of protein hydrolysates and subsequent sequence analysis of peptide mixtures. Finally, results are given that demonstrate for the first time the use of mass spectrometry for the analysis of a protein-derived peptide mixture, again without prior knowledge of the protein or components within the mixture. PMID:5158904

  10. Viscosity minima in binary mixtures of ionic liquids + molecular solvents.

    PubMed

    Tariq, M; Shimizu, K; Esperança, J M S S; Canongia Lopes, J N; Rebelo, L P N

    2015-05-28

    The viscosity (η) of four binary mixtures (ionic liquids plus molecular solvents, ILs+MSs) was measured in the 283.15 < T/K < 363.15 temperature range. Different IL/MS combinations were selected in such a way that the corresponding η(T) functions exhibit crossover temperatures at which both pure components present identical viscosity values. Consequently, most of the obtained mixture isotherms, η(x), exhibit clear viscosity minima in the studied T-x range. The results are interpreted using auxiliary molecular dynamics (MD) simulation data in order to correlate the observed η(T,x) trends with the interactions in each mixture, including the balance between electrostatic forces and hydrogen bonding.

  11. How to interpret cognitive training studies: A reply to Lindskog & Winman

    PubMed Central

    Park, Joonkoo; Brannon, Elizabeth M.

    2017-01-01

    In our previous studies, we demonstrated that repeated training on an approximate arithmetic task selectively improves symbolic arithmetic performance (Park & Brannon, 2013, 2014). We proposed that mental manipulation of quantity is the common cognitive component between approximate arithmetic and symbolic arithmetic, driving the causal relationship between the two. In a commentary to our work, Lindskog and Winman argue that there is no evidence of performance improvement during approximate arithmetic training and that this challenges the proposed causal relationship between approximate arithmetic and symbolic arithmetic. Here, we argue that causality in cognitive training experiments is interpreted from the selectivity of transfer effects and does not hinge upon improved performance in the training task. This is because changes in the unobservable cognitive elements underlying the transfer effect may not be observable from performance measures in the training task. We also question the validity of Lindskog and Winman’s simulation approach for testing for a training effect, given that simulations require a valid and sufficient model of a decision process, which is often difficult to achieve. Finally we provide an empirical approach to testing the training effects in adaptive training. Our analysis reveals new evidence that approximate arithmetic performance improved over the course of training in Park and Brannon (2014). We maintain that our data supports the conclusion that approximate arithmetic training leads to improvement in symbolic arithmetic driven by the common cognitive component of mental quantity manipulation. PMID:26972469

  12. Mixture optimization for mixed gas Joule-Thomson cycle

    NASA Astrophysics Data System (ADS)

    Detlor, J.; Pfotenhauer, J.; Nellis, G.

    2017-12-01

    An appropriate gas mixture can provide lower temperatures and higher cooling power when used in a Joule-Thomson (JT) cycle than is possible with a pure fluid. However, selecting gas mixtures to meet specific cooling loads and cycle parameters is a challenging design problem. This study focuses on the development of a computational tool to optimize gas mixture compositions for specific operating parameters. This study expands on prior research by exploring higher heat rejection temperatures and lower pressure ratios. A mixture optimization model has been developed which determines an optimal three-component mixture based on the analysis of the maximum value of the minimum value of isothermal enthalpy change, ΔhT , that occurs over the temperature range. This allows optimal mixture compositions to be determined for a mixed gas JT system with load temperatures down to 110 K and supply temperatures above room temperature for pressure ratios as small as 3:1. The mixture optimization model has been paired with a separate evaluation of the percent of the heat exchanger that exists in a two-phase range in order to begin the process of selecting a mixture for experimental investigation.

  13. Near-infrared reflectance spectra of mixtures of kaolin-group minerals: Use in clay mineral studies

    USGS Publications Warehouse

    Crowley, James K.; Vergo, Norma

    1988-01-01

    Near-infrared (NIR) reflectance spectra for mixtures of ordered kaolinite and ordered dickite have been found to simulate the spectral response of disordered kaolinite. The amount of octahedral vacancy disorder in nine disordered kaolinite samples was estimated by comparing the sample spectra to the spectra of reference mixtures. The resulting estimates are consistent with previously published estimates of vacancy disorder for similar kaolin minerals that were modeled from calculated X-ray diffraction patterns. The ordered kaolinite and dickite samples used in the reference mixtures were carefully selected to avoid undesirable particle size effects that could bias the spectral results.NIR spectra were also recorded for laboratory mixtures of ordered kaolinite and halloysite to assess whether the spectra could be potentially useful for determining mineral proportions in natural physical mixtures of these two clays. Although the kaolinite-halloysite proportions could only be roughly estimated from the mixture spectra, the halloysite component was evident even when halloysite was present in only minor amounts. A similar approach using NIR spectra for laboratory mixtures may have applications in other studies of natural clay mixtures.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orton, Frances; Ermler, Sibylle; Kugathas, Subramaniam

    Many xenobiotics have been identified as in vitro androgen receptor (AR) antagonists, but information about their ability to produce combined effects at low concentrations is missing. Such data can reveal whether joint effects at the receptor are induced at low levels and may support the prioritisation of in vivo evaluations and provide orientations for the grouping of anti-androgens in cumulative risk assessment. Combinations of 30 AR antagonists from a wide range of sources and exposure routes (pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene, perfluorooctane sulfonate and pentabromodiphenyl ether) were tested using a reporter gene assay (MDA-kb2). Chemicals were combinedmore » at three mixture ratios, equivalent to single components' effect concentrations that inhibit the action of dihydrotesterone by 1%, 10% or 20%. Concentration addition (CA) and independent action were used to calculate additivity expectations. We observed complete suppression of dihydrotestosterone effects when chemicals were combined at individual concentrations eliciting 1%, 10% or 20% AR antagonistic effect. Due to the large number of mixture components, the combined AR antagonistic effects occurred at very low concentrations of individual mixture components. CA slightly underestimated the combined effects at all mixture ratios. In conclusion, large numbers of AR antagonists from a wide variety of sources and exposure routes have the ability of acting together at the receptor to produce joint effects at very low concentrations. Significant mixture effects are observed when chemicals are combined at concentrations that individually do not induce observable AR antagonistic effects. Cumulative risk assessment for AR antagonists should apply grouping criteria based on effects where data are available, rather than on criteria of chemical similarity. - Highlights: • Mixtures of AR antagonists at low individual concentrations cause complete inhibition. • Concentration addition was an appropriate prediction model for observed effects. • Risk assessment for AR antagonists should use grouping criteria based on effects.« less

  15. Toxicokinetics and oral bioavailability of halogenated acetic acids mixtures in naïve and GSTzeta-depleted rats.

    PubMed

    Saghir, Shakil A; Schultz, Irvin R

    2005-04-01

    Disinfection of drinking water typically produces a mixture of mono-, di-, and tri-halogenated acetic acids (HAAs). In this study, we investigated the toxicokinetics of HAA mixtures in naive and glutathione transferase zeta 1 (GSTzeta)-depleted male F344 rats administered orally or iv to Mixture-1 (monobromo [MBAA]- dichloro- [DCAA], chlorodibromo- [CDBAA], tribromo- [TBAA] acetic acids) or Mixture-2 (bromochloro- [BCAA], dibromo- [DBAA], trichloro- [TCAA] bromodichloro- [BDCAA] acetic acids) at a dose of 25 micromol/kg HAA. Serial blood samples were collected at various times up to 36 h, and the plasma concentrations of each HAA quantified by GC-ECD. Rats were pretreated for 7 d with drinking water containing 0.2 g/l DCAA to deplete the GSTzeta (GSTZ1-1) activity in the liver. An additional group of GSTzeta-depleted rats were orally dosed with each mixture and euthanized at 0.25, 0.5, 1, 2, and 4 h to determine tissue distribution of mixture components. In both mixtures, GSTzeta depletion primarily affected the toxicokinetics of di-HAAs (DCAA, BCAA, and DBAA), with the total body clearance (Cl b) decreasing 3- to 10-fold. Interestingly, DCAA pretreatment appeared to increase the elimination of Mixture-2 tri-HAAs (TCAA and BDCAA). After oral administration, DCAA exhibited a complex time-course plasma profile with secondary peaks appearing long after completion of the initial absorption phase. This phenomenon coincided with elevated DCA levels in the lower portion of the GI tract compared to CDBAA and TBAA. Comparison of the results with previous studies employing similar or higher doses of individual HAAs indicated the primary difference in HAA toxicokinetics when administered as mixture was a reduction in Cl b. These results suggest competitive interactions between tri- and di-HAAs beyond what would be predicted from individual HAA studies. For di-HAAs, the total dose is important, as clearance is dose dependent due to competition for GSTzeta. When considering HAA dosimetry, importance should be placed on both the components of the mixture and prior exposure history to di-HAAs.

  16. Observation of vapor bubble of non-azeotropic binary mixture in microgravity with a two-wavelength interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, Yoshiyuki; Iwasaki, Akira

    1999-07-01

    Although non-azeotropic mixtures are considered to be promising working fluids in advanced energy conversion systems, the primary technical problems in the heat transfer degradation in phase change processes cause economical handicap to wide-spread applications. The boiling behavior of mixtures still remains a number of basic questions being not answered yet, and the present authors believe that the most essential information for the boiling process in non-azeotropic mixtures is how temperature and concentration profiles are developed around the bubbles. The present study attempts at understanding fundamental heat and mass transfer mechanisms in nucleate pool boiling of non-azeotropic binary mixtures, and withmore » the knowledge to develop a passive boiling heat transfer enhancement eventually. To this end, the authors have employed microgravity environment for rather detailed observation around vapor bubbles in the course of boiling inception and bubble growth. A two-wavelength Mach-Zehnder interferometer has been developed, which withstands mechanical shock caused by gravity change from very low gravity of the order of 10{sup {minus}5} g to relatively high gravity of approximately 8 g exposed during deceleration period. A series of experiments on single vapor bubbles for CFC113 single component and CFC12/CFC112 non-azeotropic binary mixture have been conducted under a high quality microgravity conditions available in 10-second free-fall facility of Japan Microgravity Center (JAMIC). The results for single component liquid showed a strong influence due to Marangoni effect caused by the temperature profile around the bubble. The results for non-azeotropic binary mixture showed, however, considerably different behavior from single component liquid. Both temperature and concentration profiles around a single vapor bubble were evaluated from the interferograms. The temperature and concentration layers established around the bubbles were nearly one order of magnitude larger than those predicted by thermal diffusion and mass diffusion. The temperature and concentration profiles evaluated from the present experiments suggest the role of Marangoni effects due to both concentration profile and temperature profile around the bubble interface.« less

  17. Further Evaluation of the Tripartite Structure of Subjective Well-Being: Evidence From Longitudinal and Experimental Studies.

    PubMed

    Metler, Samantha J; Busseri, Michael A

    2017-04-01

    Subjective well-being (SWB; Diener, 1984) comprises three primary components: life satisfaction (LS), positive affect (PA), and negative affect (NA). Multiple competing conceptualizations of the tripartite structure of SWB have been employed, resulting in widespread ambiguity concerning the definition, operationalization, analysis, and synthesis of SWB-related findings (Busseri & Sadava, 2011). We report two studies evaluating two predominant structural models (as recently identified by Busseri, 2015): a hierarchical model comprising a higher-order latent SWB factor with LS, PA, and NA as indicators; and a causal systems model specifying unidirectional effects of PA and NA on LS. A longitudinal study (N = 452; M age  = 18.54; 76.5% female) and a lab-based experiment (N = 195; M age  = 20.42 years; 87.6% female; 81.5% Caucasian) were undertaken. Structural models were evaluated with respect to (a) associations among SWB components across time (three months, three years in Study 1; one week in Study 2) and (b) the impact of manipulating the individual SWB components (Study 2). A hierarchical structural model was supported in both studies; conflicting evidence was found for the causal systems model. A hierarchical model provides a robust conceptualization for the tripartite structure of SWB. © 2015 Wiley Periodicals, Inc.

  18. Predicting phase behavior of mixtures of reservoir fluids with carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, R.B.; Lingane, P.J.

    1983-01-01

    The use of an equation of state to predict phase behavior during carbon dioxide flooding is well established. The characterization of the C/sub 7/ fraction and the selection of interaction parameters are the most important variables. Single-contact phase behavior is presented for mixtures of Ford Geraldine (Delaware), Maljamar (Grayburg), West Sussex (Shannon), and Reservoir D reservoir fluids, and of a synthetic oil with carbon dioxide. The phase behavior of these mixtures can be reproduced using 3 to 5 pseudo components and common interaction parameters. The critical properties of the pseudo components are calculated from detailed oil characterizations. Because the parametersmore » are not further adjusted, this approach reduces the empiricism in fitting phase data and may result in a more accurate representation of the system as the composition of the oil changes during the approach to miscibility. 21 references.« less

  19. Observational Evidence for Small-Scale Mixture of Weak and Strong Fields in the Quiet Sun

    NASA Astrophysics Data System (ADS)

    Socas-Navarro, H.; Lites, B. W.

    2004-11-01

    Three different maps of the quiet Sun, observed with the Advanced Stokes Polarimeter (ASP) and the Diffraction-Limited Stokes Polarimeter (DLSP), show evidence of strong (~=1700 G) and weak (<500 G) fields coexisting within the resolution element at both network and internetwork locations. The angular resolution of the observations is of 1" (ASP) and 0.6" (DLSP). Even at the higher DLSP resolution, a significant fraction of the network magnetic patches harbor a mixture of strong and weak fields. Internetwork elements that exhibit kG fields when analyzed with a single-component atmosphere are also shown to harbor considerable amounts of weak fields. Only those patches for which a single-component analysis yields weak fields do not show this mixture of field strengths. Finally, there is a larger fractional area of weak fields in the convective upflows than in the downflows.

  20. Variable-temperature cryogenic trap for the separation of gas mixtures

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1978-01-01

    The paper describes a continuous variable-temperature U-shaped cold trap which can both purify vacuum-line combustion products for subsequent stable isotopic analysis and isolate the methane and ethane constituents of natural gases. The canister containing the trap is submerged in liquid nitrogen, and, as the gas cools, the gas mixture components condense sequentially according to their relative vapor pressures. After the about 12 min required for the bottom of the trap to reach the liquid-nitrogen temperature, passage of electric current through the resistance wire wrapped around the tubing covering the U-trap permits distillation of successive gas components at optimal temperatures. Data on the separation achieved for two mixtures, the first being typical vacuum-line combustion products of geochemical samples such as rocks and the second being natural gas, are presented, and the thermal behavior and power consumption are reported.

Top