Science.gov

Sample records for causal model approach

  1. Quantum Supersymmetric Models in the Causal Approach

    NASA Astrophysics Data System (ADS)

    Grigore, Dan-Radu

    2007-04-01

    We consider the massless supersymmetric vector multiplet in a purely quantum framework. First order gauge invariance determines uniquely the interaction Lagrangian as in the case of Yang-Mills models. Going to the second order of perturbation theory produces an anomaly which cannot be eliminated. We make the analysis of the model working only with the component fields.

  2. A developmental approach to learning causal models for cyber security

    NASA Astrophysics Data System (ADS)

    Mugan, Jonathan

    2013-05-01

    To keep pace with our adversaries, we must expand the scope of machine learning and reasoning to address the breadth of possible attacks. One approach is to employ an algorithm to learn a set of causal models that describes the entire cyber network and each host end node. Such a learning algorithm would run continuously on the system and monitor activity in real time. With a set of causal models, the algorithm could anticipate novel attacks, take actions to thwart them, and predict the second-order effects flood of information, and the algorithm would have to determine which streams of that flood were relevant in which situations. This paper will present the results of efforts toward the application of a developmental learning algorithm to the problem of cyber security. The algorithm is modeled on the principles of human developmental learning and is designed to allow an agent to learn about the computer system in which it resides through active exploration. Children are flexible learners who acquire knowledge by actively exploring their environment and making predictions about what they will find,1, 2 and our algorithm is inspired by the work of the developmental psychologist Jean Piaget.3 Piaget described how children construct knowledge in stages and learn new concepts on top of those they already know. Developmental learning allows our algorithm to focus on subsets of the environment that are most helpful for learning given its current knowledge. In experiments, the algorithm was able to learn the conditions for file exfiltration and use that knowledge to protect sensitive files.

  3. Answering the "Why" Question in Evaluation: The Causal-Model Approach.

    ERIC Educational Resources Information Center

    Petrosino, Anthony

    2000-01-01

    Defines causal-model evaluation and uses an example from the crime prevention literature to contrast this approach with traditional evaluations. Discusses benefits and limitations of the approach, as well as other issues. (SLD)

  4. A novel approach for identifying causal models of complex diseases from family data.

    PubMed

    Park, Leeyoung; Kim, Ju H

    2015-04-01

    Causal models including genetic factors are important for understanding the presentation mechanisms of complex diseases. Familial aggregation and segregation analyses based on polygenic threshold models have been the primary approach to fitting genetic models to the family data of complex diseases. In the current study, an advanced approach to obtaining appropriate causal models for complex diseases based on the sufficient component cause (SCC) model involving combinations of traditional genetics principles was proposed. The probabilities for the entire population, i.e., normal-normal, normal-disease, and disease-disease, were considered for each model for the appropriate handling of common complex diseases. The causal model in the current study included the genetic effects from single genes involving epistasis, complementary gene interactions, gene-environment interactions, and environmental effects. Bayesian inference using a Markov chain Monte Carlo algorithm (MCMC) was used to assess of the proportions of each component for a given population lifetime incidence. This approach is flexible, allowing both common and rare variants within a gene and across multiple genes. An application to schizophrenia data confirmed the complexity of the causal factors. An analysis of diabetes data demonstrated that environmental factors and gene-environment interactions are the main causal factors for type II diabetes. The proposed method is effective and useful for identifying causal models, which can accelerate the development of efficient strategies for identifying causal factors of complex diseases.

  5. [Causal analysis approaches in epidemiology].

    PubMed

    Dumas, O; Siroux, V; Le Moual, N; Varraso, R

    2014-02-01

    Epidemiological research is mostly based on observational studies. Whether such studies can provide evidence of causation remains discussed. Several causal analysis methods have been developed in epidemiology. This paper aims at presenting an overview of these methods: graphical models, path analysis and its extensions, and models based on the counterfactual approach, with a special emphasis on marginal structural models. Graphical approaches have been developed to allow synthetic representations of supposed causal relationships in a given problem. They serve as qualitative support in the study of causal relationships. The sufficient-component cause model has been developed to deal with the issue of multicausality raised by the emergence of chronic multifactorial diseases. Directed acyclic graphs are mostly used as a visual tool to identify possible confounding sources in a study. Structural equations models, the main extension of path analysis, combine a system of equations and a path diagram, representing a set of possible causal relationships. They allow quantifying direct and indirect effects in a general model in which several relationships can be tested simultaneously. Dynamic path analysis further takes into account the role of time. The counterfactual approach defines causality by comparing the observed event and the counterfactual event (the event that would have been observed if, contrary to the fact, the subject had received a different exposure than the one he actually received). This theoretical approach has shown limits of traditional methods to address some causality questions. In particular, in longitudinal studies, when there is time-varying confounding, classical methods (regressions) may be biased. Marginal structural models have been developed to address this issue. In conclusion, "causal models", though they were developed partly independently, are based on equivalent logical foundations. A crucial step in the application of these models is the

  6. Spatial-temporal causal modeling: a data centric approach to climate change attribution (Invited)

    NASA Astrophysics Data System (ADS)

    Lozano, A. C.

    2010-12-01

    Attribution of climate change has been predominantly based on simulations using physical climate models. These approaches rely heavily on the employed models and are thus subject to their shortcomings. Given the physical models’ limitations in describing the complex system of climate, we propose an alternative approach to climate change attribution that is data centric in the sense that it relies on actual measurements of climate variables and human and natural forcing factors. We present a novel class of methods to infer causality from spatial-temporal data, as well as a procedure to incorporate extreme value modeling into our methodology in order to address the attribution of extreme climate events. We develop a collection of causal modeling methods using spatio-temporal data that combine graphical modeling techniques with the notion of Granger causality. “Granger causality” is an operational definition of causality from econometrics, which is based on the premise that if a variable causally affects another, then the past values of the former should be helpful in predicting the future values of the latter. In its basic version, our methodology makes use of the spatial relationship between the various data points, but treats each location as being identically distributed and builds a unique causal graph that is common to all locations. A more flexible framework is then proposed that is less restrictive than having a single causal graph common to all locations, while avoiding the brittleness due to data scarcity that might arise if one were to independently learn a different graph for each location. The solution we propose can be viewed as finding a middle ground by partitioning the locations into subsets that share the same causal structures and pooling the observations from all the time series belonging to the same subset in order to learn more robust causal graphs. More precisely, we make use of relationships between locations (e.g. neighboring

  7. Combining FDI and AI approaches within causal-model-based diagnosis.

    PubMed

    Gentil, Sylviane; Montmain, Jacky; Combastel, Christophe

    2004-10-01

    This paper presents a model-based diagnostic method designed in the context of process supervision. It has been inspired by both artificial intelligence and control theory. AI contributes tools for qualitative modeling, including causal modeling, whose aim is to split a complex process into elementary submodels. Control theory, within the framework of fault detection and isolation (FDI), provides numerical models for generating and testing residuals, and for taking into account inaccuracies in the model, unknown disturbances and noise. Consistency-based reasoning provides a logical foundation for diagnostic reasoning and clarifies fundamental assumptions, such as single fault and exoneration. The diagnostic method presented in the paper benefits from the advantages of all these approaches. Causal modeling enables the method to focus on sufficient relations for fault isolation, which avoids combinatorial explosion. Moreover, it allows the model to be modified easily without changing any aspect of the diagnostic algorithm. The numerical submodels that are used to detect inconsistency benefit from the precise quantitative analysis of the FDI approach. The FDI models are studied in order to link this method with DX component-oriented reasoning. The recursive on-line use of this algorithm is explained and the concept of local exoneration is introduced.

  8. The causal model approach to nutritional problems: an effective tool for research and action at the local level.

    PubMed

    Tonglet, R; Mudosa, M; Badashonderana, M; Beghin, I; Hennart, P

    1992-01-01

    Reported are the results of a case study from Kirotshe rural health district, Northern Kivu, Zaire, where a workshop on the causal model approach to nutrition was organized in 1987. The model has since been used in the field for research design, training of health professionals, nutrition intervention, and community development. The rationale behind this approach is reviewed, the experience accumulated from Kirotshe district is described, and the ways in which the causal model contributes to comprehensive health and nutrition care are discussed. The broad range of possible policy implications of this approach underlines its usefulness for future action.

  9. The causal model approach to nutritional problems: an effective tool for research and action at the local level.

    PubMed Central

    Tonglet, R.; Mudosa, M.; Badashonderana, M.; Beghin, I.; Hennart, P.

    1992-01-01

    Reported are the results of a case study from Kirotshe rural health district, Northern Kivu, Zaire, where a workshop on the causal model approach to nutrition was organized in 1987. The model has since been used in the field for research design, training of health professionals, nutrition intervention, and community development. The rationale behind this approach is reviewed, the experience accumulated from Kirotshe district is described, and the ways in which the causal model contributes to comprehensive health and nutrition care are discussed. The broad range of possible policy implications of this approach underlines its usefulness for future action. PMID:1486667

  10. Evaluating Causal Models.

    ERIC Educational Resources Information Center

    Watt, James H., Jr.

    Pointing out that linear causal models can organize the interrelationships of a large number of variables, this paper contends that such models are particularly useful to mass communication research, which must by necessity deal with complex systems of variables. The paper first outlines briefly the philosophical requirements for establishing a…

  11. A conditional Granger causality model approach for group analysis in functional magnetic resonance imaging.

    PubMed

    Zhou, Zhenyu; Wang, Xunheng; Klahr, Nelson J; Liu, Wei; Arias, Diana; Liu, Hongzhi; von Deneen, Karen M; Wen, Ying; Lu, Zuhong; Xu, Dongrong; Liu, Yijun

    2011-04-01

    Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed to identify effective connectivity in the human brain with functional magnetic resonance imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pair-wise GCM has commonly been applied based on single-voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of fMRI data with GCM. To compare the effectiveness of our approach with traditional pair-wise GCM models, we applied a well-established conditional GCM to preselected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis of an fMRI data set in the temporal domain. Data sets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM-detected brain activation regions in the emotion-related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state data set, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network that can be characterized as both afferent and efferent influences on the medial prefrontal cortex and posterior cingulate cortex. These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive model can achieve greater accuracy

  12. A conditional Granger causality model approach for group analysis in functional MRI

    PubMed Central

    Zhou, Zhenyu; Wang, Xunheng; Klahr, Nelson J.; Liu, Wei; Arias, Diana; Liu, Hongzhi; von Deneen, Karen M.; Wen, Ying; Lu, Zuhong; Xu, Dongrong; Liu, Yijun

    2011-01-01

    Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed for identifying effective connectivity in the human brain with functional MR imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pairwise GCM has commonly been applied based on single voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of an fMRI data with GCM. To compare the effectiveness of our approach with traditional pairwise GCM models, we applied a well-established conditional GCM to pre-selected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis (ICA) of an fMRI dataset in the temporal domain. Datasets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM detected brain activation regions in the emotion related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state dataset, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network (DMN) that can be characterized as both afferent and efferent influences on the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive (MVAR) model can achieve

  13. A copula approach to assessing Granger causality.

    PubMed

    Hu, Meng; Liang, Hualou

    2014-10-15

    In neuroscience, as in many other fields of science and engineering, it is crucial to assess the causal interactions among multivariate time series. Granger causality has been increasingly used to identify causal influence between time series based on multivariate autoregressive models. Such an approach is based on linear regression framework with implicit Gaussian assumption of model noise residuals having constant variance. As a consequence, this measure cannot detect the cause-effect relationship in high-order moments and nonlinear causality. Here, we propose an effective model-free, copula-based Granger causality measure that can be used to reveal nonlinear and high-order moment causality. We first formulate Granger causality as the log-likelihood ratio in terms of conditional distribution, and then derive an efficient estimation procedure using conditional copula. We use resampling techniques to build a baseline null-hypothesis distribution from which statistical significance can be derived. We perform a series of simulations to investigate the performance of our copula-based Granger causality, and compare its performance against other state-of-the-art techniques. Our method is finally applied to neural field potential time series recorded from visual cortex of a monkey while performing a visual illusion task.

  14. When One Model Casts Doubt on Another: A Levels-of-Analysis Approach to Causal Discounting

    ERIC Educational Resources Information Center

    Khemlani, Sangeet S.; Oppenheimer, Daniel M.

    2011-01-01

    Discounting is a phenomenon in causal reasoning in which the presence of one cause casts doubt on another. We provide a survey of the descriptive and formal models that attempt to explain the discounting process and summarize what current models do not account for and where room for improvement exists. We propose a levels-of-analysis framework…

  15. Dynamic causal modelling revisited.

    PubMed

    Friston, K J; Preller, Katrin H; Mathys, Chris; Cagnan, Hayriye; Heinzle, Jakob; Razi, Adeel; Zeidman, Peter

    2017-02-17

    This paper revisits the dynamic causal modelling of fMRI timeseries by replacing the usual (Taylor) approximation to neuronal dynamics with a neural mass model of the canonical microcircuit. This provides a generative or dynamic causal model of laminar specific responses that can generate haemodynamic and electrophysiological measurements. In principle, this allows the fusion of haemodynamic and (event related or induced) electrophysiological responses. Furthermore, it enables Bayesian model comparison of competing hypotheses about physiologically plausible synaptic effects; for example, does attentional modulation act on superficial or deep pyramidal cells - or both? In this technical note, we describe the resulting dynamic causal model and provide an illustrative application to the attention to visual motion dataset used in previous papers. Our focus here is on how to answer long-standing questions in fMRI; for example, do haemodynamic responses reflect extrinsic (afferent) input from distant cortical regions, or do they reflect intrinsic (recurrent) neuronal activity? To what extent do inhibitory interneurons contribute to neurovascular coupling? What is the relationship between haemodynamic responses and the frequency of induced neuronal activity? This paper does not pretend to answer these questions; rather it shows how they can be addressed using neural mass models of fMRI timeseries.

  16. A Causal, Data-driven Approach to Modeling the Kepler Data

    NASA Astrophysics Data System (ADS)

    Wang, Dun; Hogg, David W.; Foreman-Mackey, Daniel; Schölkopf, Bernhard

    2016-09-01

    Astronomical observations are affected by several kinds of noise, each with its own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. The precision of NASA Kepler photometry for exoplanet science—the most precise photometric measurements of stars ever made—appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here, we present the causal pixel model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level so that it can capture very fine-grained information about the variation of the spacecraft. The CPM models the systematic effects in the time series of a pixel using the pixels of many other stars and the assumption that any shared signal in these causally disconnected light curves is caused by instrumental effects. In addition, we use the target star’s future and past (autoregression). By appropriately separating, for each data point, the data into training and test sets, we ensure that information about any transit will be perfectly isolated from the model. The method has four tuning parameters—the number of predictor stars or pixels, the autoregressive window size, and two L2-regularization amplitudes for model components, which we set by cross-validation. We determine values for tuning parameters that works well for most of the stars and apply the method to a corresponding set of target stars. We find that CPM can consistently produce low-noise light curves. In this paper, we demonstrate that pixel-level de-trending is possible while retaining transit signals, and we think that methods like CPM are generally applicable and might be useful for K2, TESS, etc., where the data are not clean postage stamps like Kepler.

  17. Causal Rasch models

    PubMed Central

    Stenner, A. Jackson; Fisher, William P.; Stone, Mark H.; Burdick, Donald S.

    2013-01-01

    Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained. PMID:23986726

  18. Causal models and learning from data: integrating causal modeling and statistical estimation.

    PubMed

    Petersen, Maya L; van der Laan, Mark J

    2014-05-01

    The practice of epidemiology requires asking causal questions. Formal frameworks for causal inference developed over the past decades have the potential to improve the rigor of this process. However, the appropriate role for formal causal thinking in applied epidemiology remains a matter of debate. We argue that a formal causal framework can help in designing a statistical analysis that comes as close as possible to answering the motivating causal question, while making clear what assumptions are required to endow the resulting estimates with a causal interpretation. A systematic approach for the integration of causal modeling with statistical estimation is presented. We highlight some common points of confusion that occur when causal modeling techniques are applied in practice and provide a broad overview on the types of questions that a causal framework can help to address. Our aims are to argue for the utility of formal causal thinking, to clarify what causal models can and cannot do, and to provide an accessible introduction to the flexible and powerful tools provided by causal models.

  19. Granger causality for state-space models

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Seth, Anil K.

    2015-04-01

    Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations—commonplace in application domains as diverse as climate science, econometrics, and the neurosciences—induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.

  20. Granger causality for state-space models.

    PubMed

    Barnett, Lionel; Seth, Anil K

    2015-04-01

    Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations-commonplace in application domains as diverse as climate science, econometrics, and the neurosciences-induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.

  1. Effective connectivity: Influence, causality and biophysical modeling

    PubMed Central

    Valdes-Sosa, Pedro A.; Roebroeck, Alard; Daunizeau, Jean; Friston, Karl

    2011-01-01

    This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering effective connectivity depends critically on state-space models with biophysically informed observation and state equations. These models have to be endowed with priors on unknown parameters and afford checks for model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger Causal Modeling and other approaches. We establish links between past and current statistical causal modeling, in terms of Bayesian dependency graphs and Wiener–Akaike–Granger–Schweder influence measures. We show that some of the challenges faced in this field have promising solutions and speculate on future developments. PMID:21477655

  2. Causality

    NASA Astrophysics Data System (ADS)

    Pearl, Judea

    2000-03-01

    Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.

  3. Analysing connectivity with Granger causality and dynamic causal modelling.

    PubMed

    Friston, Karl; Moran, Rosalyn; Seth, Anil K

    2013-04-01

    This review considers state-of-the-art analyses of functional integration in neuronal macrocircuits. We focus on detecting and estimating directed connectivity in neuronal networks using Granger causality (GC) and dynamic causal modelling (DCM). These approaches are considered in the context of functional segregation and integration and--within functional integration--the distinction between functional and effective connectivity. We review recent developments that have enjoyed a rapid uptake in the discovery and quantification of functional brain architectures. GC and DCM have distinct and complementary ambitions that are usefully considered in relation to the detection of functional connectivity and the identification of models of effective connectivity. We highlight the basic ideas upon which they are grounded, provide a comparative evaluation and point to some outstanding issues.

  4. A General Approach to Causal Mediation Analysis

    ERIC Educational Resources Information Center

    Imai, Kosuke; Keele, Luke; Tingley, Dustin

    2010-01-01

    Traditionally in the social sciences, causal mediation analysis has been formulated, understood, and implemented within the framework of linear structural equation models. We argue and demonstrate that this is problematic for 3 reasons: the lack of a general definition of causal mediation effects independent of a particular statistical model, the…

  5. Causal reasoning with mental models.

    PubMed

    Khemlani, Sangeet S; Barbey, Aron K; Johnson-Laird, Philip N

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.

  6. Causal reasoning with mental models

    PubMed Central

    Khemlani, Sangeet S.; Barbey, Aron K.; Johnson-Laird, Philip N.

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex. PMID:25389398

  7. Hemispheric lateralization in top-down attention during spatial relation processing: a Granger causal model approach.

    PubMed

    Falasca, N W; D'Ascenzo, S; Di Domenico, A; Onofrj, M; Tommasi, L; Laeng, B; Franciotti, R

    2015-04-01

    Magnetoencephalography was recorded during a matching-to-sample plus cueing paradigm, in which participants judged the occurrence of changes in either categorical (CAT) or coordinate (COO) spatial relations. Previously, parietal and frontal lobes were identified as key areas in processing spatial relations and it was shown that each hemisphere was differently involved and modulated by the scope of the attention window (e.g. a large and small cue). In this study, Granger analysis highlighted the patterns of causality among involved brain areas--the direction of information transfer ran from the frontal to the visual cortex in the right hemisphere, whereas it ran in the opposite direction in the left side. Thus, the right frontal area seems to exert top-down influence, supporting the idea that, in this task, top-down signals are selectively related to the right side. Additionally, for CAT change preceded by a small cue, the right frontal gyrus was not involved in the information transfer, indicating a selective specialization of the left hemisphere for this condition. The present findings strengthen the conclusion of the presence of a remarkable hemispheric specialization for spatial relation processing and illustrate the complex interactions between the lateralized parts of the neural network. Moreover, they illustrate how focusing attention over large or small regions of the visual field engages these lateralized networks differently, particularly in the frontal regions of each hemisphere, consistent with the theory that spatial relation judgements require a fronto-parietal network in the left hemisphere for categorical relations and on the right hemisphere for coordinate spatial processing.

  8. Model-based causal closed-loop approach to the estimate of baroreflex sensitivity during propofol anesthesia in patients undergoing coronary artery bypass graft.

    PubMed

    Porta, Alberto; Bari, Vlasta; Bassani, Tito; Marchi, Andrea; Pistuddi, Valeria; Ranucci, Marco

    2013-10-01

    Cardiac baroreflex is a fundamental component of the cardiovascular control. The continuous assessment of baroreflex sensitivity (BRS) from spontaneous heart period (HP) and systolic arterial pressure (SAP) variations during general anesthesia provides relevant information about cardiovascular regulation in physiological conditions. Unfortunately, several difficulties including unknown HP-SAP causal relations, negligible SAP changes, small BRS values, and confounding influences due to mechanical ventilation prevent BRS monitoring from HP and SAP variabilities during general anesthesia. We applied a model-based causal closed-loop approach aiming at BRS assessment during propofol anesthesia in 34 patients undergoing coronary artery bypass graft (CABG) surgery. We found the following: 1) traditional time and frequency domain approaches (i.e., baroreflex sequence, cross-correlation, spectral, and transfer function techniques) exhibited irremediable methodological limitations preventing the assessment of the BRS decrease during propofol anesthesia; 2) Granger causality approach proved that the methodological caveats were linked to the decreased presence of bidirectional closed-loop HP-SAP interactions and to the increased incidence of the HP-SAP uncoupling; 3) our model-based closed-loop approach detected the significant BRS decrease during propofol anesthesia as a likely result of accounting for the influences of mechanical ventilation and causal HP-SAP interactions; and 4) the model-based closed-loop approach found also a diminished gain of the relation from HP to SAP linked to vasodilatation and reduced ventricular contractility during propofol anesthesia. The proposed model-based causal closed-loop approach is more effective than traditional approaches in monitoring cardiovascular control during propofol anesthesia and indicates an overall depression of the HP-SAP closed-loop regulation.

  9. Modeling of causality with metamaterials

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.

    2013-02-01

    Hyperbolic metamaterials may be used to model a 2 + 1-dimensional Minkowski space-time in which the role of time is played by one of the spatial coordinates. When a metamaterial is built and illuminated with a coherent extraordinary laser beam, the stationary pattern of light propagation inside the metamaterial may be treated as a collection of particle world lines, which represents a complete ‘history’ of this 2 + 1-dimensional space-time. While this model may be used to build interesting space-time analogs, such as metamaterial ‘black holes’ and a metamaterial ‘big bang’, it lacks causality: since light inside the metamaterial may propagate back and forth along the ‘timelike’ spatial coordinate, events in the ‘future’ may affect events in the ‘past’. Here we demonstrate that a more sophisticated metamaterial model may fix this deficiency via breaking the mirror and temporal (PT) symmetries of the original model and producing one-way propagation along the ‘timelike’ spatial coordinate. The resulting 2 + 1-dimensional Minkowski space-time appears to be causal. This scenario may be considered as a metamaterial model of the Wheeler-Feynman absorber theory of causality.

  10. Causal relationship between malocclusion and oral muscles dysfunction: a model of approach.

    PubMed

    Saccomanno, S; Antonini, G; D'Alatri, L; D'Angelantonio, M; Fiorita, A; Deli, R

    2012-12-01

    Bad habits result in altered functions which with time can cause anomalies of the orofacial morphology. To solve these problems, orthodontic treatment can be supported by myofunctional therapy in order to recover the normal functionality of the oral muscles. The aim of this study is to assess the need to treat patients with neuromuscular disorders, from both the occlusion and the muscles condition approach in order to obtain the balance needed for the stability of treatment. A sample of 23 patients with atypical swallowing was included in this study, some of them presented thumb sucking and oral breathing. After case history collection, in order to make a correct orthodontic and functional diagnosis, correction of anomalies was carried out since they could compromise the success of the therapy (maxillary contraction, oral breathing, and short lingual fraenum). Then a different therapeutic approach was applied on the basis of the specific dental features. Both from the diagnostic and therapeutic point of view, important results were achieved especially through muscle analysis with dynamometer and surface electromyography. Orthodontic therapy, in the presence of bad habits, is not enough to solve orthodontic issues, it must be combined with a myofunctional treatment. The success of the therapy is granted only when patients and their family comply with the treatment and all factors which can prevent success of the therapy are removed.

  11. A Complex Systems Approach to Causal Discovery in Psychiatry.

    PubMed

    Saxe, Glenn N; Statnikov, Alexander; Fenyo, David; Ren, Jiwen; Li, Zhiguo; Prasad, Meera; Wall, Dennis; Bergman, Nora; Briggs, Ernestine C; Aliferis, Constantin

    2016-01-01

    Conventional research methodologies and data analytic approaches in psychiatric research are unable to reliably infer causal relations without experimental designs, or to make inferences about the functional properties of the complex systems in which psychiatric disorders are embedded. This article describes a series of studies to validate a novel hybrid computational approach--the Complex Systems-Causal Network (CS-CN) method-designed to integrate causal discovery within a complex systems framework for psychiatric research. The CS-CN method was first applied to an existing dataset on psychopathology in 163 children hospitalized with injuries (validation study). Next, it was applied to a much larger dataset of traumatized children (replication study). Finally, the CS-CN method was applied in a controlled experiment using a 'gold standard' dataset for causal discovery and compared with other methods for accurately detecting causal variables (resimulation controlled experiment). The CS-CN method successfully detected a causal network of 111 variables and 167 bivariate relations in the initial validation study. This causal network had well-defined adaptive properties and a set of variables was found that disproportionally contributed to these properties. Modeling the removal of these variables resulted in significant loss of adaptive properties. The CS-CN method was successfully applied in the replication study and performed better than traditional statistical methods, and similarly to state-of-the-art causal discovery algorithms in the causal detection experiment. The CS-CN method was validated, replicated, and yielded both novel and previously validated findings related to risk factors and potential treatments of psychiatric disorders. The novel approach yields both fine-grain (micro) and high-level (macro) insights and thus represents a promising approach for complex systems-oriented research in psychiatry.

  12. The metagenomic approach and causality in virology

    PubMed Central

    Castrignano, Silvana Beres; Nagasse-Sugahara, Teresa Keico

    2015-01-01

    Nowadays, the metagenomic approach has been a very important tool in the discovery of new viruses in environmental and biological samples. Here we discuss how these discoveries may help to elucidate the etiology of diseases and the criteria necessary to establish a causal association between a virus and a disease. PMID:25902566

  13. A Complex Systems Approach to Causal Discovery in Psychiatry

    PubMed Central

    Saxe, Glenn N.; Statnikov, Alexander; Fenyo, David; Ren, Jiwen; Li, Zhiguo; Prasad, Meera; Wall, Dennis; Bergman, Nora; Briggs, Ernestine C.; Aliferis, Constantin

    2016-01-01

    Conventional research methodologies and data analytic approaches in psychiatric research are unable to reliably infer causal relations without experimental designs, or to make inferences about the functional properties of the complex systems in which psychiatric disorders are embedded. This article describes a series of studies to validate a novel hybrid computational approach–the Complex Systems-Causal Network (CS-CN) method–designed to integrate causal discovery within a complex systems framework for psychiatric research. The CS-CN method was first applied to an existing dataset on psychopathology in 163 children hospitalized with injuries (validation study). Next, it was applied to a much larger dataset of traumatized children (replication study). Finally, the CS-CN method was applied in a controlled experiment using a ‘gold standard’ dataset for causal discovery and compared with other methods for accurately detecting causal variables (resimulation controlled experiment). The CS-CN method successfully detected a causal network of 111 variables and 167 bivariate relations in the initial validation study. This causal network had well-defined adaptive properties and a set of variables was found that disproportionally contributed to these properties. Modeling the removal of these variables resulted in significant loss of adaptive properties. The CS-CN method was successfully applied in the replication study and performed better than traditional statistical methods, and similarly to state-of-the-art causal discovery algorithms in the causal detection experiment. The CS-CN method was validated, replicated, and yielded both novel and previously validated findings related to risk factors and potential treatments of psychiatric disorders. The novel approach yields both fine-grain (micro) and high-level (macro) insights and thus represents a promising approach for complex systems-oriented research in psychiatry. PMID:27028297

  14. Compact Representations of Extended Causal Models

    DTIC Science & Technology

    2012-10-01

    models. A number of authors have suggested that an adequate account of actual causation must appeal not only to causal structure , but also to...about both causal structure and normality. Extended causal models are potentially very complex. In this paper, we show how it is possible to achieve...causation must be sensitive to considerations of normality, as well as to causal structure . In (Halpern & Hitchcock, 2011), we suggest a way of

  15. Effect of Age on Complexity and Causality of the Cardiovascular Control: Comparison between Model-Based and Model-Free Approaches

    PubMed Central

    Porta, Alberto; Faes, Luca; Bari, Vlasta; Marchi, Andrea; Bassani, Tito; Nollo, Giandomenico; Perseguini, Natália Maria; Milan, Juliana; Minatel, Vinícius; Borghi-Silva, Audrey; Takahashi, Anielle C. M.; Catai, Aparecida M.

    2014-01-01

    The proposed approach evaluates complexity of the cardiovascular control and causality among cardiovascular regulatory mechanisms from spontaneous variability of heart period (HP), systolic arterial pressure (SAP) and respiration (RESP). It relies on construction of a multivariate embedding space, optimization of the embedding dimension and a procedure allowing the selection of the components most suitable to form the multivariate embedding space. Moreover, it allows the comparison between linear model-based (MB) and nonlinear model-free (MF) techniques and between MF approaches exploiting local predictability (LP) and conditional entropy (CE). The framework was applied to study age-related modifications of complexity and causality in healthy humans in supine resting (REST) and during standing (STAND). We found that: 1) MF approaches are more efficient than the MB method when nonlinear components are present, while the reverse situation holds in presence of high dimensional embedding spaces; 2) the CE method is the least powerful in detecting age-related trends; 3) the association of HP complexity on age suggests an impairment of cardiac regulation and response to STAND; 4) the relation of SAP complexity on age indicates a gradual increase of sympathetic activity and a reduced responsiveness of vasomotor control to STAND; 5) the association from SAP to HP on age during STAND reveals a progressive inefficiency of baroreflex; 6) the reduced connection from HP to SAP with age might be linked to the progressive exploitation of Frank-Starling mechanism at REST and to the progressive increase of peripheral resistances during STAND; 7) at REST the diminished association from RESP to HP with age suggests a vagal withdrawal and a gradual uncoupling between respiratory activity and heart; 8) the weakened connection from RESP to SAP with age might be related to the progressive increase of left ventricular thickness and vascular stiffness and to the gradual decrease of

  16. Assessing causality in multivariate accident models.

    PubMed

    Elvik, Rune

    2011-01-01

    This paper discusses the application of operational criteria of causality to multivariate statistical models developed to identify sources of systematic variation in accident counts, in particular the effects of variables representing safety treatments. Nine criteria of causality serving as the basis for the discussion have been developed. The criteria resemble criteria that have been widely used in epidemiology. To assess whether the coefficients estimated in a multivariate accident prediction model represent causal relationships or are non-causal statistical associations, all criteria of causality are relevant, but the most important criterion is how well a model controls for potentially confounding factors. Examples are given to show how the criteria of causality can be applied to multivariate accident prediction models in order to assess the relationships included in these models. It will often be the case that some of the relationships included in a model can reasonably be treated as causal, whereas for others such an interpretation is less supported. The criteria of causality are indicative only and cannot provide a basis for stringent logical proof of causality. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Structural equation modeling: building and evaluating causal models: Chapter 8

    USGS Publications Warehouse

    Grace, James B.; Scheiner, Samuel M.; Schoolmaster, Donald R.

    2015-01-01

    Scientists frequently wish to study hypotheses about causal relationships, rather than just statistical associations. This chapter addresses the question of how scientists might approach this ambitious task. Here we describe structural equation modeling (SEM), a general modeling framework for the study of causal hypotheses. Our goals are to (a) concisely describe the methodology, (b) illustrate its utility for investigating ecological systems, and (c) provide guidance for its application. Throughout our presentation, we rely on a study of the effects of human activities on wetland ecosystems to make our description of methodology more tangible. We begin by presenting the fundamental principles of SEM, including both its distinguishing characteristics and the requirements for modeling hypotheses about causal networks. We then illustrate SEM procedures and offer guidelines for conducting SEM analyses. Our focus in this presentation is on basic modeling objectives and core techniques. Pointers to additional modeling options are also given.

  18. Perturbative gravity in the causal approach

    NASA Astrophysics Data System (ADS)

    Grigore, D. R.

    2010-01-01

    Quantum theory of the gravitation in the causal approach is studied up to the second order of perturbation theory in the causal approach. We emphasize the use of cohomology methods in this framework. After describing in detail the mathematical structure of the cohomology method we apply it in three different situations: (a) the determination of the most general expression of the interaction Lagrangian; (b) the proof of gauge invariance in the second order of perturbation theory for the pure gravity system—massless and massive; (c) the investigation of the arbitrariness of the second-order chronological products compatible with renormalization principles and gauge invariance (i.e. the renormalization problem in the second order of perturbation theory). In case (a) we investigate pure gravity systems and the interaction of massless gravity with matter (described by scalars and spinors) and massless Yang-Mills fields. We obtain a difference with respect to the classical field theory due to the fact that in quantum field theory one cannot enforce the divergenceless property on the vector potential and this spoils the divergenceless property of the usual energy-momentum tensor. To correct this one needs a supplementary ghost term in the interaction Lagrangian. In all three case, the computations are more simple than by the usual methods.

  19. An introduction to causal modeling in clinical trials.

    PubMed

    Bellamy, Scarlett L; Lin, Julia Y; Ten Have, Thomas R

    2007-01-01

    We review and compare two causal modeling approaches that correspond to two major and distinct classes of inference - efficacy and intervention-based inference - in the context of randomized trials with subject noncompliance. We review the definitions of efficacy and intervention-based effects in the clinical trials literature and relate these to two separate and distinct causal modeling approaches: the structural mean modeling (SMM) approach and the principal stratification, instrumental variable approach. The SMM-based efficacy approach focuses on the effect of actually receiving treatment. In contrast, the principal stratification method addresses the effect of treatment assignment within partially unobserved latent subgroups defined by compliance behavior. While these approaches differ in terms of philosophy, model definitions, and estimation, they estimate the same causal effect under certain assumptions, but estimate very different causal effects when those assumptions are relaxed. We illustrate these results using a randomized psychiatry trial where the focus is physician compliance to the designated protocol and the other examines patient compliance to the designated protocol, both from the same trial. The validity of the models under the instrumental variable, SMM and principal stratification approaches depends on modeling assumptions, some of which may not be verifiable from the observed data and potentially less realistic than the no-confounding assumption made by non-causal approaches. This comparison in terms of efficacy versus intervention-based effects in causal modeling parallels the explanatory versus pragmatic approaches in clinical trials research; therefore researchers should weigh carefully when choosing causal modeling methodology based on whether efficacy or intervention-based effects are of interest.

  20. Compact Representations of Extended Causal Models

    ERIC Educational Resources Information Center

    Halpern, Joseph Y.; Hitchcock, Christopher

    2013-01-01

    Judea Pearl (2000) was the first to propose a definition of actual causation using causal models. A number of authors have suggested that an adequate account of actual causation must appeal not only to causal structure but also to considerations of "normality." In Halpern and Hitchcock (2011), we offer a definition of actual causation…

  1. Hypothesizing and Refining Causal Models,

    DTIC Science & Technology

    1984-12-01

    the purposes of this research, it was critica ! to be able to represent a sequence of events, in which the learning program would look for causal... tlc sense because tliv imply random behavior. This is an oversimplified, but usc^ul telcological assumption about the nature of dependences in designed

  2. Causality modeling for directed disease network.

    PubMed

    Bang, Sunjoo; Kim, Jae-Hoon; Shin, Hyunjung

    2016-09-01

    Causality between two diseases is valuable information as subsidiary information for medicine which is intended for prevention, diagnostics and treatment. Conventional cohort-centric researches are able to obtain very objective results, however, they demands costly experimental expense and long period of time. Recently, data source to clarify causality has been diversified: available information includes gene, protein, metabolic pathway and clinical information. By taking full advantage of those pieces of diverse information, we may extract causalities between diseases, alternatively to cohort-centric researches. In this article, we propose a new approach to define causality between diseases. In order to find causality, three different networks were constructed step by step. Each step has different data sources and different analytical methods, and the prior step sifts causality information to the next step. In the first step, a network defines association between diseases by utilizing disease-gene relations. And then, potential causalities of disease pairs are defined as a network by using prevalence and comorbidity information from clinical results. Finally, disease causalities are confirmed by a network defined from metabolic pathways. The proposed method is applied to data which is collected from database such as MeSH, OMIM, HuDiNe, KEGG and PubMed. The experimental results indicated that disease causality that we found is 19 times higher than that of random guessing. The resulting pairs of causal-effected diseases are validated on medical literatures. http://www.alphaminers.net shin@ajou.ac.kr Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. The Effects of a Model-Based Physics Curriculum Program with a Physics First Approach: a Causal-Comparative Study

    NASA Astrophysics Data System (ADS)

    Liang, Ling L.; Fulmer, Gavin W.; Majerich, David M.; Clevenstine, Richard; Howanski, Raymond

    2012-02-01

    The purpose of this study is to examine the effects of a model-based introductory physics curriculum on conceptual learning in a Physics First (PF) Initiative. This is the first comparative study in physics education that applies the Rasch modeling approach to examine the effects of a model-based curriculum program combined with PF in the United States. Five teachers and 301 students (in grades 9 through 12) in two mid-Atlantic high schools participated in the study. The students' conceptual learning was measured by the Force Concept Inventory (FCI). It was found that the ninth-graders enrolled in the model-based program in a PF initiative achieved substantially greater conceptual understanding of the physics content than those 11th-/12th-graders enrolled in the conventional non-modeling, non-PF program (Honors strand). For the 11th-/12th-graders enrolled in the non-PF, non-honors strands, the modeling classes also outperformed the conventional non-modeling classes. The instructional activity reports by students indicated that the model-based approach was generally implemented in modeling classrooms. A closer examination of the field notes and the classroom observation profiles revealed that the greatest inconsistencies in model-based teaching practices observed were related to classroom interactions or discourse. Implications and recommendations for future studies are also discussed.

  4. Nonlinear parametric model for Granger causality of time series

    NASA Astrophysics Data System (ADS)

    Marinazzo, Daniele; Pellicoro, Mario; Stramaglia, Sebastiano

    2006-06-01

    The notion of Granger causality between two time series examines if the prediction of one series could be improved by incorporating information of the other. In particular, if the prediction error of the first time series is reduced by including measurements from the second time series, then the second time series is said to have a causal influence on the first one. We propose a radial basis function approach to nonlinear Granger causality. The proposed model is not constrained to be additive in variables from the two time series and can approximate any function of these variables, still being suitable to evaluate causality. Usefulness of this measure of causality is shown in two applications. In the first application, a physiological one, we consider time series of heart rate and blood pressure in congestive heart failure patients and patients affected by sepsis: we find that sepsis patients, unlike congestive heart failure patients, show symmetric causal relationships between the two time series. In the second application, we consider the feedback loop in a model of excitatory and inhibitory neurons: we find that in this system causality measures the combined influence of couplings and membrane time constants.

  5. Discounting and Augmentation in Causal Conditional Reasoning: Causal Models or Shallow Encoding?

    PubMed Central

    Hall, Simon; Ali, Nilufa; Chater, Nick

    2016-01-01

    Recent research comparing mental models theory and causal Bayes nets for their ability to account for discounting and augmentation inferences in causal conditional reasoning had some limitations. One of the experiments used an ordinal scale and multiple items and analysed the data by subjects and items. This procedure can create a variety of problems that can be resolved by using an appropriate cumulative link function mixed models approach in which items are treated as random effects. Experiment 1 replicated this earlier experiment and analysed the results using appropriate data analytic techniques. Although successfully replicating earlier research, the pattern of results could be explained by a much simpler “shallow encoding” hypothesis. Experiment 2 introduced a manipulation to critically test this hypothesis. The results favoured the causal Bayes nets predictions and not shallow encoding and were not consistent with mental models theory. Experiment 1 provided qualified support for the causal Bayes net approach using appropriate statistics because it also replicated the failure to observe one of the predicted main effects. Experiment 2 discounted one plausible explanation for this failure. While within the limited goals that were set for these experiments they were successful, more research is required to account for the pattern of findings using this paradigm. PMID:28030583

  6. Investigating the effect of external trauma through a dynamic system modeling approach for clustering causality in diabetic foot ulcer development.

    PubMed

    Salimi, Parisa; Hamedi, Mohsen; Jamshidi, Nima; Vismeh, Milad

    2017-04-01

    Diabetes and its associated complications are realized as one of the most challenging medical conditions threatening more than 29 million people only in the USA. The forecasts suggest a suffering of more than half a billion worldwide by 2030. Amid all diabetic complications, diabetic foot ulcer (DFU) has attracted much scientific investigations to lead to a better management of this disease. In this paper, a system thinking methodology is adopted to investigate the dynamic nature of the ulceration. The causal loop diagram as a tool is utilized to illustrate the well-researched relations and interrelations between causes of the DFU. The result of clustering causality evaluation suggests a vicious loop that relates external trauma to callus. Consequently a hypothesis is presented which localizes development of foot ulceration considering distribution of normal and shear stress. It specifies that normal and tangential forces, as the main representatives of external trauma, play the most important role in foot ulceration. The evaluation of this hypothesis suggests the significance of the information related to both normal and shear stress for managing DFU. The results also discusses how these two react on different locations on foot such as metatarsal head, heel and hallux. The findings of this study can facilitate tackling the complexity of DFU problem and looking for constructive mitigation measures. Moreover they lead to developing a more promising methodology for managing DFU including better prognosis, designing prosthesis and insoles for DFU and patient caring recommendations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Model Averaging for Improving Inference from Causal Diagrams.

    PubMed

    Hamra, Ghassan B; Kaufman, Jay S; Vahratian, Anjel

    2015-08-11

    Model selection is an integral, yet contentious, component of epidemiologic research. Unfortunately, there remains no consensus on how to identify a single, best model among multiple candidate models. Researchers may be prone to selecting the model that best supports their a priori, preferred result; a phenomenon referred to as "wish bias". Directed acyclic graphs (DAGs), based on background causal and substantive knowledge, are a useful tool for specifying a subset of adjustment variables to obtain a causal effect estimate. In many cases, however, a DAG will support multiple, sufficient or minimally-sufficient adjustment sets. Even though all of these may theoretically produce unbiased effect estimates they may, in practice, yield somewhat distinct values, and the need to select between these models once again makes the research enterprise vulnerable to wish bias. In this work, we suggest combining adjustment sets with model averaging techniques to obtain causal estimates based on multiple, theoretically-unbiased models. We use three techniques for averaging the results among multiple candidate models: information criteria weighting, inverse variance weighting, and bootstrapping. We illustrate these approaches with an example from the Pregnancy, Infection, and Nutrition (PIN) study. We show that each averaging technique returns similar, model averaged causal estimates. An a priori strategy of model averaging provides a means of integrating uncertainty in selection among candidate, causal models, while also avoiding the temptation to report the most attractive estimate from a suite of equally valid alternatives.

  8. A Quantum Probability Model of Causal Reasoning

    PubMed Central

    Trueblood, Jennifer S.; Busemeyer, Jerome R.

    2012-01-01

    People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause) with diagnostic judgments (i.e., the conditional probability of a cause given an effect). The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment. PMID:22593747

  9. A quantum probability model of causal reasoning.

    PubMed

    Trueblood, Jennifer S; Busemeyer, Jerome R

    2012-01-01

    People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause) with diagnostic judgments (i.e., the conditional probability of a cause given an effect). The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment.

  10. A time domain frequency-selective multivariate Granger causality approach.

    PubMed

    Leistritz, Lutz; Witte, Herbert

    2016-08-01

    The investigation of effective connectivity is one of the major topics in computational neuroscience to understand the interaction between spatially distributed neuronal units of the brain. Thus, a wide variety of methods has been developed during the last decades to investigate functional and effective connectivity in multivariate systems. Their spectrum ranges from model-based to model-free approaches with a clear separation into time and frequency range methods. We present in this simulation study a novel time domain approach based on Granger's principle of predictability, which allows frequency-selective considerations of directed interactions. It is based on a comparison of prediction errors of multivariate autoregressive models fitted to systematically modified time series. These modifications are based on signal decompositions, which enable a targeted cancellation of specific signal components with specific spectral properties. Depending on the embedded signal decomposition method, a frequency-selective or data-driven signal-adaptive Granger Causality Index may be derived.

  11. Distinguishing Valid from Invalid Causal Indicator Models

    ERIC Educational Resources Information Center

    Cadogan, John W.; Lee, Nick

    2016-01-01

    In this commentary from Issue 14, n3, authors John Cadogan and Nick Lee applaud the paper by Aguirre-Urreta, Rönkkö, and Marakas "Measurement: Interdisciplinary Research and Perspectives", 14(3), 75-97 (2016), since their explanations and simulations work toward demystifying causal indicator models, which are often used by scholars…

  12. Causal Measurement Models: Can Criticism Stimulate Clarification?

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2016-01-01

    In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…

  13. Distinguishing Valid from Invalid Causal Indicator Models

    ERIC Educational Resources Information Center

    Cadogan, John W.; Lee, Nick

    2016-01-01

    In this commentary from Issue 14, n3, authors John Cadogan and Nick Lee applaud the paper by Aguirre-Urreta, Rönkkö, and Marakas "Measurement: Interdisciplinary Research and Perspectives", 14(3), 75-97 (2016), since their explanations and simulations work toward demystifying causal indicator models, which are often used by scholars…

  14. Causal Measurement Models: Can Criticism Stimulate Clarification?

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2016-01-01

    In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…

  15. Applying Causal Discovery to the Output of Climate Models - What Can We Learn from the Causal Signatures?

    NASA Astrophysics Data System (ADS)

    Ebert-Uphoff, I.; Hammerling, D.; Samarasinghe, S.; Baker, A. H.

    2015-12-01

    The framework of causal discovery provides algorithms that seek to identify potential cause-effect relationships from observational data. The output of such algorithms is a graph structure that indicates the potential causal connections between the observed variables. Originally developed for applications in the social sciences and economics, causal discovery has been used with great success in bioinformatics and, most recently, in climate science, primarily to identify interaction patterns between compound climate variables and to track pathways of interactions between different locations around the globe. Here we apply causal discovery to the output data of climate models to learn so-called causal signatures from the data that indicate interactions between the different atmospheric variables. These causal signatures can act like fingerprints for the underlying dynamics and thus serve a variety of diagnostic purposes. We study the use of the causal signatures for three applications: 1) For climate model software verification we suggest to use causal signatures as a means of detecting statistical differences between model runs, thus identifying potential errors and supplementing the Community Earth System Model Ensemble Consistency Testing (CESM-ECT) tool recently developed at NCAR for CESM verification. 2) In the context of data compression of model runs, we will test how much the causal signatures of the model outputs changes after different compression algorithms have been applied. This may result in additional means to determine which type and amount of compression is acceptable. 3) This is the first study applying causal discovery simultaneously to a large number of different atmospheric variables, and in the process of studying the resulting interaction patterns for the two aforementioned applications, we expect to gain some new insights into their relationships from this approach. We will present first results obtained for Applications 1 and 2 above.

  16. Subjective spacetime derived from a causal histories approach

    NASA Astrophysics Data System (ADS)

    Gunji, Yukio-Pegio; Haruna, Taichi; Uragami, Daisuke; Nishikawa, Asaki

    2009-10-01

    The internal description of spacetime can reveal ambiguity regarding an observer’s perception of the present, where an observer can refer to the present as if he were outside spacetime while actually existing in the present. This ambiguity can be expressed as the compatibility between an element and a set, and is here called a/{a}-compatibility. We describe a causal set as a lattice and a causal history as a quotient lattice, and implement the a/{a}-compatibility in the framework of a causal histories approach. This leads to a perpetual change of a pair of causal set and causal history, and can be used to describe subjective spacetime including the déjà vu experience and/or schizophrenic time.

  17. Quantum Common Causes and Quantum Causal Models

    NASA Astrophysics Data System (ADS)

    Allen, John-Mark A.; Barrett, Jonathan; Horsman, Dominic C.; Lee, Ciarán M.; Spekkens, Robert W.

    2017-07-01

    Reichenbach's principle asserts that if two observed variables are found to be correlated, then there should be a causal explanation of these correlations. Furthermore, if the explanation is in terms of a common cause, then the conditional probability distribution over the variables given the complete common cause should factorize. The principle is generalized by the formalism of causal models, in which the causal relationships among variables constrain the form of their joint probability distribution. In the quantum case, however, the observed correlations in Bell experiments cannot be explained in the manner Reichenbach's principle would seem to demand. Motivated by this, we introduce a quantum counterpart to the principle. We demonstrate that under the assumption that quantum dynamics is fundamentally unitary, if a quantum channel with input A and outputs B and C is compatible with A being a complete common cause of B and C , then it must factorize in a particular way. Finally, we show how to generalize our quantum version of Reichenbach's principle to a formalism for quantum causal models and provide examples of how the formalism works.

  18. 'Mendelian randomization': an approach for exploring causal relations in epidemiology.

    PubMed

    Gupta, V; Walia, G K; Sachdeva, M P

    2017-04-01

    To assess the current status of Mendelian randomization (MR) approach in effectively influencing the observational epidemiology for examining causal relationships. Narrative review on studies related to principle, strengths, limitations, and achievements of MR approach. Observational epidemiological studies have repeatedly produced several beneficiary associations which were discarded when tested by standard randomized controlled trials (RCTs). The technique which is more feasible, highly similar to RCTs, and has the potential to establish a causal relationship between modifiable exposures and disease outcomes is known as MR. The technique uses genetic variants related to modifiable traits/exposures as instruments for detecting causal and directional associations with outcomes. In the last decade, the approach of MR has methodologically developed and progressed to a stage of high acceptance among the epidemiologists and is gradually expanding the landscape of causal relationships in non-communicable chronic diseases. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  19. Causal Model of a Health Services System

    PubMed Central

    Anderson, James G.

    1972-01-01

    Path analysis is used to construct a causal model of the health services system serving the state of New Mexico. The model includes a network specifying the causal relationships among a set of social, demographic, and economic variables hypothesized to be related to the health status of the population; a set of mathematical equations that permit prediction of the effects of changes in the values of any one variable on all other variables in the model; and estimates of path coefficients based on U.S. Census data and vital statistics. The model is used to predict both direct and indirect effects on health status of changes in population structure resulting from natural causes or from the intervention of health programs. PMID:5025955

  20. Causality in Psychiatry: A Hybrid Symptom Network Construct Model

    PubMed Central

    Young, Gerald

    2015-01-01

    Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved) that inform approaches to nosology, or classification, such as in the DSM-5 [Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; (1)]. However, network approaches to symptom interaction [i.e., symptoms are formative of the construct; e.g., (2), for posttraumatic stress disorder (PTSD)] are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth non-linear dynamical systems theory (NLDST). The article applies the concept of emergent circular causality (3) to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning) and universal (e.g., causal) processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments. PMID:26635639

  1. Causality in Psychiatry: A Hybrid Symptom Network Construct Model.

    PubMed

    Young, Gerald

    2015-01-01

    Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved) that inform approaches to nosology, or classification, such as in the DSM-5 [Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; (1)]. However, network approaches to symptom interaction [i.e., symptoms are formative of the construct; e.g., (2), for posttraumatic stress disorder (PTSD)] are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth non-linear dynamical systems theory (NLDST). The article applies the concept of emergent circular causality (3) to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning) and universal (e.g., causal) processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments.

  2. A Quantum Bayes Net Approach to Causal Reasoning

    NASA Astrophysics Data System (ADS)

    Trueblood, Jennifer S.; Mistry, Percy K.; Pothos, Emmanuel M.

    When individuals have little knowledge about a causal system and must make causal inferences based on vague and imperfect information, their judgments often deviate from the normative prescription of classical probability. Previously, many researchers have dealt with violations of normative rules by elaborating causal Bayesian networks through the inclusion of hidden variables. While these models often provide good accounts of data, the addition of hidden variables is often post hoc, included when a Bayes net fails to capture data. Further, Bayes nets with multiple hidden variables are often difficult to test. Rather than elaborating a Bayes net with hidden variables, we generalize the probabilistic rules of these models. The basic idea is that any classic Bayes net can be generalized to a quantum Bayes net by replacing the probabilities in the classic model with probability amplitudes in the quantum model. We discuss several predictions of quantum Bayes nets for human causal reasoning.

  3. The Specification of Causal Models with Tetrad IV: A Review

    ERIC Educational Resources Information Center

    Landsheer, J. A.

    2010-01-01

    Tetrad IV is a program designed for the specification of causal models. It is specifically designed to search for causal relations, but also offers the possibility to estimate the parameters of a structural equation model. It offers a remarkable graphical user interface, which facilitates building, evaluating, and searching for causal models. The…

  4. Time-varying linear and nonlinear parametric model for Granger causality analysis.

    PubMed

    Li, Yang; Wei, Hua-Liang; Billings, Steve A; Liao, Xiao-Feng

    2012-04-01

    Statistical measures such as coherence, mutual information, or correlation are usually applied to evaluate the interactions between two or more signals. However, these methods cannot distinguish directions of flow between two signals. The capability to detect causalities is highly desirable for understanding the cooperative nature of complex systems. The main objective of this work is to present a linear and nonlinear time-varying parametric modeling and identification approach that can be used to detect Granger causality, which may change with time and may not be detected by traditional methods. A numerical example, in which the exact causal influences relationships, is presented to illustrate the performance of the method for time-varying Granger causality detection. The approach is applied to EEG signals to track and detect hidden potential causalities. One advantage of the proposed model, compared with traditional Granger causality, is that the results are easier to interpret and yield additional insights into the transient directed dynamical Granger causality interactions.

  5. A psychological approach to learning causal networks.

    PubMed

    Zargoush, Manaf; Alemi, Farrokh; Esposito Vinzi, Vinzenzo; Vang, Jee; Kheirbek, Raya

    2014-06-01

    We examine the role of a common cognitive heuristic in unsupervised learning of Bayesian probability networks from data. Human beings perceive a larger association between causal than diagnostic relationships. This psychological principal can be used to orient the arcs within Bayesian networks by prohibiting the direction that is less predictive. The heuristic increased predictive accuracy by an average of 0.51 % percent, a small amount. It also increased total agreement between different network learning algorithms (Max Spanning Tree, Taboo, EQ, SopLeq, and Taboo Order) by 25 %. Prior to use of the heuristic, the multiple raters Kappa between the algorithms was 0.60 (95 % confidence interval, CI, from 0.53 to 0.67) indicating moderate agreement among the networks learned through different algorithms. After the use of the heuristic, the multiple raters Kappa was 0.85 (95 % CI from 0.78 to 0.92). There was a statistically significant increase in agreement between the five algorithms (alpha < 0.05). These data suggest that the heuristic increased agreement between networks learned through use of different algorithms, without loss of predictive accuracy. Additional research is needed to see if findings persist in other data sets and to explain why a heuristic used by humans could improve construct validity of mathematical algorithms.

  6. A Quantitative Causal Model Theory of Conditional Reasoning

    ERIC Educational Resources Information Center

    Fernbach, Philip M.; Erb, Christopher D.

    2013-01-01

    The authors propose and test a causal model theory of reasoning about conditional arguments with causal content. According to the theory, the acceptability of modus ponens (MP) and affirming the consequent (AC) reflect the conditional likelihood of causes and effects based on a probabilistic causal model of the scenario being judged. Acceptability…

  7. A Quantitative Causal Model Theory of Conditional Reasoning

    ERIC Educational Resources Information Center

    Fernbach, Philip M.; Erb, Christopher D.

    2013-01-01

    The authors propose and test a causal model theory of reasoning about conditional arguments with causal content. According to the theory, the acceptability of modus ponens (MP) and affirming the consequent (AC) reflect the conditional likelihood of causes and effects based on a probabilistic causal model of the scenario being judged. Acceptability…

  8. Statistical approaches for enhancing causal interpretation of the M to Y relation in mediation analysis.

    PubMed

    MacKinnon, David P; Pirlott, Angela G

    2015-02-01

    Statistical mediation methods provide valuable information about underlying mediating psychological processes, but the ability to infer that the mediator variable causes the outcome variable is more complex than widely known. Researchers have recently emphasized how violating assumptions about confounder bias severely limits causal inference of the mediator to dependent variable relation. Our article describes and addresses these limitations by drawing on new statistical developments in causal mediation analysis. We first review the assumptions underlying causal inference and discuss three ways to examine the effects of confounder bias when assumptions are violated. We then describe four approaches to address the influence of confounding variables and enhance causal inference, including comprehensive structural equation models, instrumental variable methods, principal stratification, and inverse probability weighting. Our goal is to further the adoption of statistical methods to enhance causal inference in mediation studies.

  9. Statistical Approaches for Enhancing Causal Interpretation of the M to Y Relation in Mediation Analysis

    PubMed Central

    MacKinnon, David P.; Pirlott, Angela G.

    2016-01-01

    Statistical mediation methods provide valuable information about underlying mediating psychological processes, but the ability to infer that the mediator variable causes the outcome variable is more complex than widely known. Researchers have recently emphasized how violating assumptions about confounder bias severely limits causal inference of the mediator to dependent variable relation. Our article describes and addresses these limitations by drawing on new statistical developments in causal mediation analysis. We first review the assumptions underlying causal inference and discuss three ways to examine the effects of confounder bias when assumptions are violated. We then describe four approaches to address the influence of confounding variables and enhance causal inference, including comprehensive structural equation models, instrumental variable methods, principal stratification, and inverse probability weighting. Our goal is to further the adoption of statistical methods to enhance causal inference in mediation studies. PMID:25063043

  10. Estimating Causal Effects with Ancestral Graph Markov Models

    PubMed Central

    Malinsky, Daniel; Spirtes, Peter

    2017-01-01

    We present an algorithm for estimating bounds on causal effects from observational data which combines graphical model search with simple linear regression. We assume that the underlying system can be represented by a linear structural equation model with no feedback, and we allow for the possibility of latent variables. Under assumptions standard in the causal search literature, we use conditional independence constraints to search for an equivalence class of ancestral graphs. Then, for each model in the equivalence class, we perform the appropriate regression (using causal structure information to determine which covariates to include in the regression) to estimate a set of possible causal effects. Our approach is based on the “IDA” procedure of Maathuis et al. (2009), which assumes that all relevant variables have been measured (i.e., no unmeasured confounders). We generalize their work by relaxing this assumption, which is often violated in applied contexts. We validate the performance of our algorithm on simulated data and demonstrate improved precision over IDA when latent variables are present. PMID:28217244

  11. Causal models in epidemiology: past inheritance and genetic future.

    PubMed

    Vineis, Paolo; Kriebel, David

    2006-07-21

    The eruption of genetic research presents a tremendous opportunity to epidemiologists to improve our ability to identify causes of ill health. Epidemiologists have enthusiastically embraced the new tools of genomics and proteomics to investigate gene-environment interactions. We argue that neither the full import nor limitations of such studies can be appreciated without clarifying underlying theoretical models of interaction, etiologic fraction, and the fundamental concept of causality. We therefore explore different models of causality in the epidemiology of disease arising out of genes, environments, and the interplay between environments and genes. We begin from Rothman's "pie" model of necessary and sufficient causes, and then discuss newer approaches, which provide additional insights into multifactorial causal processes. These include directed acyclic graphs and structural equation models. Caution is urged in the application of two essential and closely related concepts found in many studies: interaction (effect modification) and the etiologic or attributable fraction. We review these concepts and present four important limitations. 1. Interaction is a fundamental characteristic of any causal process involving a series of probabilistic steps, and not a second-order phenomenon identified after first accounting for "main effects". 2. Standard methods of assessing interaction do not adequately consider the life course, and the temporal dynamics through which an individual's sufficient cause is completed. Different individuals may be at different stages of development along the path to disease, but this is not usually measurable. Thus, for example, acquired susceptibility in children can be an important source of variation. 3. A distinction must be made between individual-based and population-level models. Most epidemiologic discussions of causality fail to make this distinction. 4. At the population level, there is additional uncertainty in quantifying

  12. Renewable energy consumption and economic growth in nine OECD countries: bounds test approach and causality analysis.

    PubMed

    Hung-Pin, Lin

    2014-01-01

    The purpose of this paper is to investigate the short-run and long-run causality between renewable energy (RE) consumption and economic growth (EG) in nine OECD countries from the period between 1982 and 2011. To examine the linkage, this paper uses the autoregressive distributed lag (ARDL) bounds testing approach of cointegration test and vector error-correction models to test the causal relationship between variables. The co-integration and causal relationships are found in five countries-United States of America (USA), Japan, Germany, Italy, and United Kingdom (UK). The overall results indicate that (1) a short-run unidirectional causality runs from EG to RE in Italy and UK; (2) long-run unidirectional causalities run from RE to EG for Germany, Italy, and UK; (3) a long-run unidirectional causality runs from EG to RE in USA, and Japan; (4) both long-run and strong unidirectional causalities run from RE to EG for Germany and UK; and (5) Finally, both long-run and strong unidirectional causalities run from EG to RE in only USA. Further evidence reveals that policies for renewable energy conservation may have no impact on economic growth in France, Denmark, Portugal, and Spain.

  13. Renewable Energy Consumption and Economic Growth in Nine OECD Countries: Bounds Test Approach and Causality Analysis

    PubMed Central

    Hung-Pin, Lin

    2014-01-01

    The purpose of this paper is to investigate the short-run and long-run causality between renewable energy (RE) consumption and economic growth (EG) in nine OECD countries from the period between 1982 and 2011. To examine the linkage, this paper uses the autoregressive distributed lag (ARDL) bounds testing approach of cointegration test and vector error-correction models to test the causal relationship between variables. The co-integration and causal relationships are found in five countries—United States of America (USA), Japan, Germany, Italy, and United Kingdom (UK). The overall results indicate that (1) a short-run unidirectional causality runs from EG to RE in Italy and UK; (2) long-run unidirectional causalities run from RE to EG for Germany, Italy, and UK; (3) a long-run unidirectional causality runs from EG to RE in USA, and Japan; (4) both long-run and strong unidirectional causalities run from RE to EG for Germany and UK; and (5) Finally, both long-run and strong unidirectional causalities run from EG to RE in only USA. Further evidence reveals that policies for renewable energy conservation may have no impact on economic growth in France, Denmark, Portugal, and Spain. PMID:24558343

  14. New approaches to establish genetic causality.

    PubMed

    McNally, Elizabeth M; George, Alfred L

    2015-10-01

    Cardiovascular medicine has evolved rapidly in the era of genomics with many diseases having primary genetic origins becoming the subject of intense investigation. The resulting avalanche of information on the molecular causes of these disorders has prompted a revolution in our understanding of disease mechanisms and provided new avenues for diagnoses. At the heart of this revolution is the need to correctly classify genetic variants discovered during the course of research or reported from clinical genetic testing. This review will address current concepts related to establishing the cause and effect relationship between genomic variants and heart diseases. A survey of general approaches used for functional annotation of variants will also be presented.

  15. Dynamic causal modelling of distributed electromagnetic responses

    PubMed Central

    Daunizeau, Jean; Kiebel, Stefan J.; Friston, Karl J.

    2009-01-01

    In this note, we describe a variant of dynamic causal modelling for evoked responses as measured with electroencephalography or magnetoencephalography (EEG and MEG). We depart from equivalent current dipole formulations of DCM, and extend it to provide spatiotemporal source estimates that are spatially distributed. The spatial model is based upon neural-field equations that model neuronal activity on the cortical manifold. We approximate this description of electrocortical activity with a set of local standing-waves that are coupled though their temporal dynamics. The ensuing distributed DCM models source as a mixture of overlapping patches on the cortical mesh. Time-varying activity in this mixture, caused by activity in other sources and exogenous inputs, is propagated through appropriate lead-field or gain-matrices to generate observed sensor data. This spatial model has three key advantages. First, it is more appropriate than equivalent current dipole models, when real source activity is distributed locally within a cortical area. Second, the spatial degrees of freedom of the model can be specified and therefore optimised using model selection. Finally, the model is linear in the spatial parameters, which finesses model inversion. Here, we describe the distributed spatial model and present a comparative evaluation with conventional equivalent current dipole (ECD) models of auditory processing, as measured with EEG. PMID:19398015

  16. Hypothesis Formulation, Model Interpretation, and Model Equivalence: Implications of a Mereological Causal Interpretation of Structural Equation Models

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2008-01-01

    One can distinguish statistical models used in causal modeling from the causal interpretations that align them with substantive hypotheses. Causal modeling typically assumes an efficient causal interpretation of the statistical model. Causal modeling can also make use of mereological causal interpretations in which the state of the parts…

  17. Causal modeling of panic disorder theories.

    PubMed

    Fava, Leonardo; Morton, John

    2009-11-01

    We compare a variety of theories of panic disorder using a neutral framework: causal modeling. The framework requires identification of key constructs and specification of their interaction. Biological, cognitive, and behavioral elements of the theory have to be clearly distinguished, as do critical past events and current trigger conditions. The theories compared were drawn from the psycho-dynamic, cognitive, and neurobiological literature. We conclude that there are substantive differences among the cognitive theories and between the biological theories reviewed. However, cognitive and biological theories appear to be compatible in principle. It is not clear whether substantive differences among theories are due to the existence of subtypes of PD or due to the predominance of multifactorial cause. It is argued that current treatment methods imply particular theories, and that particular patterns of success and failure can be understood in relation to theory through the methods we have employed.

  18. The role of causal models in analogical inference.

    PubMed

    Lee, Hee Seung; Holyoak, Keith J

    2008-09-01

    Computational models of analogy have assumed that the strength of an inductive inference about the target is based directly on similarity of the analogs and in particular on shared higher order relations. In contrast, work in philosophy of science suggests that analogical inference is also guided by causal models of the source and target. In 3 experiments, the authors explored the possibility that people may use causal models to assess the strength of analogical inferences. Experiments 1-2 showed that reducing analogical overlap by eliminating a shared causal relation (a preventive cause present in the source) from the target increased inductive strength even though it decreased similarity of the analogs. These findings were extended in Experiment 3 to cross-domain analogical inferences based on correspondences between higher order causal relations. Analogical inference appears to be mediated by building and then running a causal model. The implications of the present findings for theories of both analogy and causal inference are discussed.

  19. Assessing a surrogate predictive value: a causal inference approach.

    PubMed

    Alonso, Ariel; Van der Elst, Wim; Meyvisch, Paul

    2017-03-30

    Several methods have been developed for the evaluation of surrogate endpoints within the causal-inference and meta-analytic paradigms. In both paradigms, much effort has been made to assess the capacity of the surrogate to predict the causal treatment effect on the true endpoint. In the present work, the so-called surrogate predictive function (SPF) is introduced for that purpose, using potential outcomes. The relationship between the SPF and the individual causal association, a new metric of surrogacy recently proposed in the literature, is studied in detail. It is shown that the SPF, in conjunction with the individual causal association, can offer an appealing quantification of the surrogate predictive value. However, neither the distribution of the potential outcomes nor the SPF are identifiable from the data. These identifiability issues are tackled using a two-step procedure. In the first step, the region of the parametric space of the distribution of the potential outcomes, compatible with the data at hand, is geometrically characterized. Further, in a second step, a Monte Carlo approach is used to study the behavior of the SPF on the previous region. The method is illustrated using data from a clinical trial involving schizophrenic patients and a newly developed and user friendly R package Surrogate is provided to carry out the validation exercise. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Gauge invariance of quantum gravity in the causal approach

    NASA Astrophysics Data System (ADS)

    Schorn, Ivo

    1997-03-01

    We investigate gauge invariance of perturbative quantum gravity without matter fields in the causal Epstein - Glaser approach. This approach uses free fields only so that all objects of the theory are mathematically well defined. The first-order graviton self-couplings are obtained from the Einstein - Hilbert Lagrangian written in terms of Goldberg variables and expanded to lowest order on the flat Minkowski background metric (linearized Einstein theory). Similar to Yang - Mills theory, gauge invariance to first order requires an additional coupling to fermionic ghost fields. For second-order tree graphs, gauge invariance generates four-graviton normalization terms, which agree exactly with the next order of the expansion of the Einstein - Hilbert Lagrangian. Gauge invariance of the ghost sector is then examined in detail. It is stressed that, despite some formal similarities, the concept of operator gauge invariance used in the causal method is different from the conventional BRS-invariance commonly used in the literature.

  1. Causality and persistence in ecological systems: a nonparametric spectral granger causality approach.

    PubMed

    Detto, Matteo; Molini, Annalisa; Katul, Gabriel; Stoy, Paul; Palmroth, Sari; Baldocchi, Dennis

    2012-04-01

    Abstract Directionality in coupling, defined as the linkage relating causes to their effects at a later time, can be used to explain the core dynamics of ecological systems by untangling direct and feedback relationships between the different components of the systems. Inferring causality from measured ecological variables sampled through time remains a formidable challenge further made difficult by the action of periodic drivers overlapping the natural dynamics of the system. Periodicity in the drivers can often mask the self-sustained oscillations originating from the autonomous dynamics. While linear and direct causal relationships are commonly addressed in the time domain, using the well-established machinery of Granger causality (G-causality), the presence of periodic forcing requires frequency-based statistics (e.g., the Fourier transform), able to distinguish coupling induced by oscillations in external drivers from genuine endogenous interactions. Recent nonparametric spectral extensions of G-causality to the frequency domain pave the way for the scale-by-scale decomposition of causality, which can improve our ability to link oscillatory behaviors of ecological networks to causal mechanisms. The performance of both spectral G-causality and its conditional extension for multivariate systems is explored in quantifying causal interactions within ecological networks. Through two case studies involving synthetic and actual time series, it is demonstrated that conditional G-causality outperforms standard G-causality in identifying causal links and their concomitant timescales.

  2. Manifest Variable Granger Causality Models for Developmental Research: A Taxonomy

    ERIC Educational Resources Information Center

    von Eye, Alexander; Wiedermann, Wolfgang

    2015-01-01

    Granger models are popular when it comes to testing hypotheses that relate series of measures causally to each other. In this article, we propose a taxonomy of Granger causality models. The taxonomy results from crossing the four variables Order of Lag, Type of (Contemporaneous) Effect, Direction of Effect, and Segment of Dependent Series…

  3. Manifest Variable Granger Causality Models for Developmental Research: A Taxonomy

    ERIC Educational Resources Information Center

    von Eye, Alexander; Wiedermann, Wolfgang

    2015-01-01

    Granger models are popular when it comes to testing hypotheses that relate series of measures causally to each other. In this article, we propose a taxonomy of Granger causality models. The taxonomy results from crossing the four variables Order of Lag, Type of (Contemporaneous) Effect, Direction of Effect, and Segment of Dependent Series…

  4. Dynamic causal modelling of anticipatory skin conductance responses

    PubMed Central

    Bach, Dominik R.; Daunizeau, Jean; Friston, Karl J.; Dolan, Raymond J.

    2010-01-01

    Anticipatory skin conductance responses [SCRs] are a widely used measure of aversive conditioning in humans. Here, we describe a dynamic causal model [DCM] of how anticipatory, evoked, and spontaneous skin conductance changes are generated by sudomotor nerve activity. Inversion of this model, using variational Bayes, provides a means of inferring the most likely sympathetic nerve activity, given observed skin conductance responses. In two fear conditioning experiments, we demonstrate the predictive validity of the DCM by showing it has greater sensitivity to the effects of conditioning, relative to alternative (conventional) response estimates. Furthermore, we establish face validity by showing that trial-by-trial estimates of anticipatory sudomotor activity are better predicted by formal learning models, relative to response estimates from peak-scoring approaches. The model furnishes a potentially powerful approach to characterising SCR that exploits knowledge about how these signals are generated. PMID:20599582

  5. Nonlinear Modeling of Causal Interrelationships in Neuronal Ensembles

    PubMed Central

    Zanos, Theodoros P.; Courellis, Spiros H.; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.; Marmarelis, Vasilis Z.

    2009-01-01

    The increasing availability of multiunit recordings gives new urgency to the need for effective analysis of “multidimensional” time-series data that are derived from the recorded activity of neuronal ensembles in the form of multiple sequences of action potentials—treated mathematically as point-processes and computationally as spike-trains. Whether in conditions of spontaneous activity or under conditions of external stimulation, the objective is the identification and quantification of possible causal links among the neurons generating the observed binary signals. A multiple-input/multiple-output (MIMO) modeling methodology is presented that can be used to quantify the neuronal dynamics of causal interrelationships in neuronal ensembles using spike-train data recorded from individual neurons. These causal interrelationships are modeled as transformations of spike-trains recorded from a set of neurons designated as the “inputs” into spike-trains recorded from another set of neurons designated as the “outputs.” The MIMO model is composed of a set of multiinput/single-output (MISO) modules, one for each output. Each module is the cascade of a MISO Volterra model and a threshold operator generating the output spikes. The Laguerre expansion approach is used to estimate the Volterra kernels of each MISO module from the respective input–output data using the least-squares method. The predictive performance of the model is evaluated with the use of the receiver operating characteristic (ROC) curve, from which the optimum threshold is also selected. The Mann–Whitney statistic is used to select the significant inputs for each output by examining the statistical significance of improvements in the predictive accuracy of the model when the respective inputs is included. Illustrative examples are presented for a simulated system and for an actual application using multiunit data recordings from the hippocampus of a behaving rat. PMID:18701382

  6. Causal Modeling and Research on Teacher EducaLion.

    ERIC Educational Resources Information Center

    Denton, Jon J.; Mabry, M. Patrick, Jr.

    The technique of causal modeling as applied to theoretical constructs in teacher education is demonstrated. The abstract principles of causality are explained, and are applied to various educational research needs. An example is made using data collected from a sample of 44 secondary level students who participated in a one semester student…

  7. Theories of Conduct Disorder: A Causal Modelling Analysis

    ERIC Educational Resources Information Center

    Krol, N.; Morton, J.; De Bruyn, E.

    2004-01-01

    Background: If a clinician has to make decisions on diagnosis and treatment, he or she is confronted with a variety of causal theories. In order to compare these theories a neutral terminology and notational system is needed. The Causal Modelling framework involving three levels of description--biological, cognitive and behavioural--has previously…

  8. A Causal Model of Factors Influencing Faculty Use of Technology

    ERIC Educational Resources Information Center

    Meyer, Katrina A.; Xu, Yonghong Jade

    2009-01-01

    Based on earlier studies using the 1999 and 2004 National Study of Postsecondary Faculty (NSOPF) data [1, 2], a causal model explaining faculty technology use was constructed. Path analysis was used to test the causal effects of age, gender, highest degree, discipline (health science or not), recent research productivity, and teaching load on…

  9. Causal Inferences with Group Based Trajectory Models

    ERIC Educational Resources Information Center

    Haviland, Amelia M.; Nagin, Daniel S.

    2005-01-01

    A central theme of research on human development and psychopathology is whether a therapeutic intervention or a turning-point event, such as a family break-up, alters the trajectory of the behavior under study. This paper lays out and applies a method for using observational longitudinal data to make more confident causal inferences about the…

  10. The Causal Foundations of Structural Equation Modeling

    DTIC Science & Technology

    2012-02-16

    and Baumrind (1993).” This, together with the steady influx of statisticians into the field, has left SEM re- searchers in a quandary about the...considerations. Journal of Personality and Social Psychology 51 1173–1182. Baumrind , D. (1993). Specious causal attributions in social sciences: The

  11. A Hybrid Causal Search Algorithm for Latent Variable Models

    PubMed Central

    Ogarrio, Juan Miguel; Spirtes, Peter; Ramsey, Joe

    2017-01-01

    Existing score-based causal model search algorithms such as GES (and a speeded up version, FGS) are asymptotically correct, fast, and reliable, but make the unrealistic assumption that the true causal graph does not contain any unmeasured confounders. There are several constraint-based causal search algorithms (e.g RFCI, FCI, or FCI+) that are asymptotically correct without assuming that there are no unmeasured confounders, but often perform poorly on small samples. We describe a combined score and constraint-based algorithm, GFCI, that we prove is asymptotically correct. On synthetic data, GFCI is only slightly slower than RFCI but more accurate than FCI, RFCI and FCI+. PMID:28239434

  12. Towards Effective Elicitation of NIN-AND Tree Causal Models

    NASA Astrophysics Data System (ADS)

    Xiang, Yang; Li, Yu; Zhu, Zoe Jingyu

    To specify a Bayes net (BN), a conditional probability table (CPT), often of an effect conditioned on its n causes, needs assessed for each node. It generally has the complexity exponential on n. Noisy-OR reduces the complexity to linear, but can only represent reinforcing causal interactions. The non-impeding noisy-AND (NIN-AND) tree is the first causal model that explicitly expresses reinforcement, undermining, and their mixture. It has linear complexity, but requires elicitation of a tree topology for types of causal interactions. We study their topology space and develop two novel techniques for more effective elicitation.

  13. The Mental Representation of Causal Conditional Reasoning: Mental Models or Causal Models

    ERIC Educational Resources Information Center

    Ali, Nilufa; Chater, Nick; Oaksford, Mike

    2011-01-01

    In this paper, two experiments are reported investigating the nature of the cognitive representations underlying causal conditional reasoning performance. The predictions of causal and logical interpretations of the conditional diverge sharply when inferences involving "pairs" of conditionals--such as "if P[subscript 1] then Q" and "if P[subscript…

  14. Causal nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach.

    PubMed

    Gul, Sehrish; Zou, Xiang; Hassan, Che Hashim; Azam, Muhammad; Zaman, Khalid

    2015-12-01

    This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions.

  15. A causal approach to the study of fertility and familism.

    PubMed

    Krishnan, V

    1990-01-01

    This paper tests, within the framework of LISREL, the causal structures of fertility using data from the 1973-74 Growth of Alberta Family Study (GAFS) of women aged 18-44 who are currently married or living common-law. Differential fertility among two groups of women classified by nativity also are examined. The women's background characteristics (e.g., age, religiosity, and education) are viewed as exogenous variables. The endogenous variables are familism and expected family size; familism is designated as an intermediate variable in the model, linking demographic and socioeconomic (including cultural) factors to fertility, The results indicate that familism acts as an important variable explaining fertility, particularly, among foreign-born women. The study confirms and extends earlier research findings that religiosity and education influence couples' fertility, the former positively and the latter negatively.

  16. Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies

    ERIC Educational Resources Information Center

    Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio

    2016-01-01

    We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…

  17. Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies

    ERIC Educational Resources Information Center

    Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio

    2016-01-01

    We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…

  18. Bridging the Gap: Dynamic Causal Modeling and Granger Causality Analysis of Resting State Functional Magnetic Resonance Imaging.

    PubMed

    Bajaj, Sahil; Adhikari, Bhim M; Friston, Karl J; Dhamala, Mukesh

    2016-09-16

    Granger causality (GC) and dynamic causal modeling (DCM) are the two key approaches used to determine the directed interactions among brain areas. Recent discussions have provided a constructive account of the merits and demerits. GC, on one side, considers dependencies among measured responses, whereas DCM, on the other, models how neuronal activity in one brain area causes dynamics in another. In this study, our objective was to establish construct validity between GC and DCM in the context of resting state functional magnetic resonance imaging (fMRI). We first established the face validity of both approaches using simulated fMRI time series, with endogenous fluctuations in two nodes. Crucially, we tested both unidirectional and bidirectional connections between the two nodes to ensure that both approaches give veridical and consistent results, in terms of model comparison. We then applied both techniques to empirical data and examined their consistency in terms of the (quantitative) in-degree of key nodes of the default mode. Our simulation results suggested a (qualitative) consistency between GC and DCM. Furthermore, by applying nonparametric GC and stochastic DCM to resting-state fMRI data, we confirmed that both GC and DCM infer similar (quantitative) directionality between the posterior cingulate cortex (PCC), the medial prefrontal cortex, the left middle temporal cortex, and the left angular gyrus. These findings suggest that GC and DCM can be used to estimate directed functional and effective connectivity from fMRI measurements in a consistent manner.

  19. The Causal Meaning of Genomic Predictors and How It Affects Construction and Comparison of Genome-Enabled Selection Models

    PubMed Central

    Valente, Bruno D.; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J. M.

    2015-01-01

    The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability. PMID:25908318

  20. Using multivariate cross correlations, Granger causality and graphical models to quantify spatiotemporal synchronization and causality between pest populations.

    PubMed

    Damos, Petros

    2016-08-05

    This work combines multivariate time series analysis and graph theory to detect synchronization and causality among certain ecological variables and to represent significant correlations via network projections. Four different statistical tools (cross-correlations, partial cross-correlations, Granger causality and partial Granger causality) utilized to quantify correlation strength and causality among biological entities. These indices correspond to different ways to estimate the relationships between different variables and to construct ecological networks using the variables as nodes and the indices as edges. Specifically, correlations and Granger causality indices introduce rules that define the associations (links) between the ecological variables (nodes). This approach is used for the first time to analyze time series of moth populations as well as temperature and relative humidity in order to detect spatiotemporal synchronization over an agricultural study area and to illustrate significant correlations and causality interactions via graphical models. The networks resulting from the different approaches are trimmed and show how the network configurations are affected by each construction technique. The Granger statistical rules provide a simple test to determine whether one series (population) is caused by another series (i.e. environmental variable or other population) even when they are not correlated. In most cases, the statistical analysis and the related graphical models, revealed intra-specific links, a fact that may be linked to similarities in pest population life cycles and synchronizations. Graph theoretic landscape projections reveal that significant associations in the populations are not subject to landscape characteristics. Populations may be linked over great distances through physical features such as rivers and not only at adjacent locations in which significant interactions are more likely to appear. In some cases, incidental connections

  1. Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models

    NASA Astrophysics Data System (ADS)

    Sizochenko, Natalia; Gajewicz, Agnieszka; Leszczynski, Jerzy; Puzyn, Tomasz

    2016-03-01

    In this paper, we suggest that causal inference methods could be efficiently used in Quantitative Structure-Activity Relationships (QSAR) modeling as additional validation criteria within quality evaluation of the model. Verification of the relationships between descriptors and toxicity or other activity in the QSAR model has a vital role in understanding the mechanisms of action. The well-known phrase ``correlation does not imply causation'' reflects insight statistically correlated with the endpoint descriptor may not cause the emergence of this endpoint. Hence, paradigmatic shifts must be undertaken when moving from traditional statistical correlation analysis to causal analysis of multivariate data. Methods of causal discovery have been applied for broader physical insight into mechanisms of action and interpretation of the developed nano-QSAR models. Previously developed nano-QSAR models for toxicity of 17 nano-sized metal oxides towards E. coli bacteria have been validated by means of the causality criteria. Using the descriptors confirmed by the causal technique, we have developed new models consistent with the straightforward causal-reasoning account. It was proven that causal inference methods are able to provide a more robust mechanistic interpretation of the developed nano-QSAR models.In this paper, we suggest that causal inference methods could be efficiently used in Quantitative Structure-Activity Relationships (QSAR) modeling as additional validation criteria within quality evaluation of the model. Verification of the relationships between descriptors and toxicity or other activity in the QSAR model has a vital role in understanding the mechanisms of action. The well-known phrase ``correlation does not imply causation'' reflects insight statistically correlated with the endpoint descriptor may not cause the emergence of this endpoint. Hence, paradigmatic shifts must be undertaken when moving from traditional statistical correlation analysis to causal

  2. A new causal model of dental diseases associated with endocarditis.

    PubMed

    Drangsholt, M T

    1998-07-01

    Infective endocarditis (IE) is a serious disease that is associated with dental diseases and treatment. The objective of this study was to summarize the epidemiological information about IE and reevaluate previous causal models in light of this evidence. The world biomedical literature was searched from 1930 to 1996 for descriptive and analytic epidemiological studies of IE. Multiple searching strategies were performed on 9 databases, including MEDLINE, CATLINE, and WORLDCAT. Results show that: 1) the incidence of IE varies between 0.70 to 6.8 per 100,000 person-years: 2) the incidence of IE increases 20 fold with advancing age: 3) over 50% of all IE cases are not associated with either an obvious procedural or infectious event 3 months prior to developing symptoms; 4) about 8% of all IE cases are associated with periodontal or dental disease without a dental procedure: 5) the time from the diagnosis of heart valve deformities to the development of IE approaches 20 years: 6) the median time from identifiable procedures to the onset of IE symptoms is about 2 to 4 weeks: 7) the risk of IE after a dental procedure is probably in the range of 1 per 3,000 to 5,000 procedures: and 8) over 80% of all IE cases are acquired in the community, and the bacteria are part of the host's endogenous flora. The synthesis of these data demonstrates that IE is a disorder with the epidemiological picture of a chronic disease such as cancer, instead of an acute infectious disease, with a long latent period and possibly several definable intermediates or stages. A new causal model is proposed that includes early bacteremias that may "prime" the endothelial surface of the heart valves over many years, and a late bacteremia over days to weeks that allows adherence and colonization of the valve, resulting in the characteristic fulminant infection.

  3. Enhancing scientific reasoning by refining students' models of multivariable causality

    NASA Astrophysics Data System (ADS)

    Keselman, Alla

    Inquiry learning as an educational method is gaining increasing support among elementary and middle school educators. In inquiry activities at the middle school level, students are typically asked to conduct investigations and infer causal relationships about multivariable causal systems. In these activities, students usually demonstrate significant strategic weaknesses and insufficient metastrategic understanding of task demands. Present work suggests that these weaknesses arise from students' deficient mental models of multivariable causality, in which effects of individual features are neither additive, nor constant. This study is an attempt to develop an intervention aimed at enhancing scientific reasoning by refining students' models of multivariable causality. Three groups of students engaged in a scientific investigation activity over seven weekly sessions. By creating unique combinations of five features potentially involved in earthquake mechanism and observing associated risk meter readings, students had to find out which of the features were causal, and to learn to predict earthquake risk. Additionally, students in the instructional and practice groups engaged in self-directed practice in making scientific predictions. The instructional group also participated in weekly instructional sessions on making predictions based on multivariable causality. Students in the practice and instructional conditions showed small to moderate improvement in their attention to the evidence and in their metastrategic ability to recognize effective investigative strategies in the work of other students. They also demonstrated a trend towards making a greater number of valid inferences than the control group students. Additionally, students in the instructional condition showed significant improvement in their ability to draw inferences based on multiple records. They also developed more accurate knowledge about non-causal features of the system. These gains were maintained

  4. A Causal Model of Teacher Acceptance of Technology

    ERIC Educational Resources Information Center

    Chang, Jui-Ling; Lieu, Pang-Tien; Liang, Jung-Hui; Liu, Hsiang-Te; Wong, Seng-lee

    2012-01-01

    This study proposes a causal model for investigating teacher acceptance of technology. We received 258 effective replies from teachers at public and private universities in Taiwan. A questionnaire survey was utilized to test the proposed model. The Lisrel was applied to test the proposed hypotheses. The result shows that computer self-efficacy has…

  5. Causal Model of Stress and Coping: Women in Management.

    ERIC Educational Resources Information Center

    Long, Bonita C.; And Others

    1992-01-01

    Tested model of managerial women's (n=249) stress. Model was developed from Lazarus's theoretical framework of stress/coping and incorporated causal antecedent constructs (demographics, sex role attitudes, agentic traits), mediating constructs (environment, appraisals, engagement coping, disengagement coping), and outcomes (work performance,…

  6. What Is the Latent Variable in Causal Indicator Models?

    ERIC Educational Resources Information Center

    Howell, Roy D.

    2014-01-01

    Building on the work of Bollen (2007) and Bollen & Bauldry (2011), Bainter and Bollen (this issue) clarifies several points of confusion in the literature regarding causal indicator models. This author would certainly agree that the effect indicator (reflective) measurement model is inappropriate for some indicators (such as the social…

  7. Knowledge-Based Causal Attribution: The Abnormal Conditions Focus Model.

    ERIC Educational Resources Information Center

    Hilton, Denis J.; Slugoski, Ben R.

    1986-01-01

    A model grounded in recent ordinary language philosophy is proposed which postulates that subjects employ counterfactual and contrastive criteria of causal ascription, as unified in the notion of an abnormal condition. Two experiments satisfy the three criteria specified for an adequate test of the abnormal conditions focus model. (Author/LMO)

  8. The Role of Causal Models in Analogical Inference

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Holyoak, Keith J.

    2008-01-01

    Computational models of analogy have assumed that the strength of an inductive inference about the target is based directly on similarity of the analogs and in particular on shared higher order relations. In contrast, work in philosophy of science suggests that analogical inference is also guided by causal models of the source and target. In 3…

  9. What Is the Latent Variable in Causal Indicator Models?

    ERIC Educational Resources Information Center

    Howell, Roy D.

    2014-01-01

    Building on the work of Bollen (2007) and Bollen & Bauldry (2011), Bainter and Bollen (this issue) clarifies several points of confusion in the literature regarding causal indicator models. This author would certainly agree that the effect indicator (reflective) measurement model is inappropriate for some indicators (such as the social…

  10. Causal Indicator Models: Unresolved Issues of Construction and Evaluation

    ERIC Educational Resources Information Center

    West, Stephen G.; Grimm, Kevin J.

    2014-01-01

    These authors agree with Bainter and Bollen that causal effects represents a useful measurement structure in some applications. The structure of the science of the measurement problem should determine the model; the measurement model should not determine the science. They also applaud Bainter and Bollen's important reminder that the full…

  11. Whither Causal Models in the Neuroscience of ADHD?

    ERIC Educational Resources Information Center

    Coghill, Dave; Nigg, Joel; Rothenberger, Aribert; Sonuga-Barke, Edmund; Tannock, Rosemary

    2005-01-01

    In this paper we examine the current status of the science of ADHD from a theoretical point of view. While the field has reached the point at which a number of causal models have been proposed, it remains some distance away from demonstrating the viability of such models empirically. We identify a number of existing barriers and make proposals as…

  12. Causal Indicator Models: Unresolved Issues of Construction and Evaluation

    ERIC Educational Resources Information Center

    West, Stephen G.; Grimm, Kevin J.

    2014-01-01

    These authors agree with Bainter and Bollen that causal effects represents a useful measurement structure in some applications. The structure of the science of the measurement problem should determine the model; the measurement model should not determine the science. They also applaud Bainter and Bollen's important reminder that the full…

  13. Whither Causal Models in the Neuroscience of ADHD?

    ERIC Educational Resources Information Center

    Coghill, Dave; Nigg, Joel; Rothenberger, Aribert; Sonuga-Barke, Edmund; Tannock, Rosemary

    2005-01-01

    In this paper we examine the current status of the science of ADHD from a theoretical point of view. While the field has reached the point at which a number of causal models have been proposed, it remains some distance away from demonstrating the viability of such models empirically. We identify a number of existing barriers and make proposals as…

  14. Formalizing the Role of Agent-Based Modeling in Causal Inference and Epidemiology

    PubMed Central

    Marshall, Brandon D. L.; Galea, Sandro

    2015-01-01

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. PMID:25480821

  15. Formalizing the role of agent-based modeling in causal inference and epidemiology.

    PubMed

    Marshall, Brandon D L; Galea, Sandro

    2015-01-15

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry.

  16. Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models.

    PubMed

    Sizochenko, Natalia; Gajewicz, Agnieszka; Leszczynski, Jerzy; Puzyn, Tomasz

    2016-04-07

    In this paper, we suggest that causal inference methods could be efficiently used in Quantitative Structure-Activity Relationships (QSAR) modeling as additional validation criteria within quality evaluation of the model. Verification of the relationships between descriptors and toxicity or other activity in the QSAR model has a vital role in understanding the mechanisms of action. The well-known phrase "correlation does not imply causation" reflects insight statistically correlated with the endpoint descriptor may not cause the emergence of this endpoint. Hence, paradigmatic shifts must be undertaken when moving from traditional statistical correlation analysis to causal analysis of multivariate data. Methods of causal discovery have been applied for broader physical insight into mechanisms of action and interpretation of the developed nano-QSAR models. Previously developed nano-QSAR models for toxicity of 17 nano-sized metal oxides towards E. coli bacteria have been validated by means of the causality criteria. Using the descriptors confirmed by the causal technique, we have developed new models consistent with the straightforward causal-reasoning account. It was proven that causal inference methods are able to provide a more robust mechanistic interpretation of the developed nano-QSAR models.

  17. Institutional Quality and Generalized Trust: A Nonrecursive Causal Model

    ERIC Educational Resources Information Center

    Robbins, Blaine G.

    2012-01-01

    This paper investigates the association between institutional quality and generalized trust. Despite the importance of the topic, little quantitative empirical evidence exists to support either unidirectional or bidirectional causality for the reason that cross-sectional studies rarely model the reciprocal relationship between institutional…

  18. Sex Differences in a Causal Model of Career Maturity.

    ERIC Educational Resources Information Center

    King, Suzanne

    1989-01-01

    Studied sex differences among high school students (N=318) in career development process to determine whether sex differences exist in way six independent variables interact in career maturity causal model of career maturity and to compare each variable's effect on career maturity. Results suggest significant sex differences consistent with…

  19. Political Socialization and Mass Media Use: A Reverse Causality Model.

    ERIC Educational Resources Information Center

    Tan, Alexis S.

    A reverse causality model treating mass media use for public affairs information as a result rather than as a cause of political behavior was tested utilizing surveys of 190 Mexican-American, 176 black, and 225 white adults. The criterion variable used in each sample was frequency of television and newspaper use for public affairs information. The…

  20. Sex Differences in a Causal Model of Career Maturity.

    ERIC Educational Resources Information Center

    King, Suzanne

    1989-01-01

    Studied sex differences among high school students (N=318) in career development process to determine whether sex differences exist in way six independent variables interact in career maturity causal model of career maturity and to compare each variable's effect on career maturity. Results suggest significant sex differences consistent with…

  1. Institutional Quality and Generalized Trust: A Nonrecursive Causal Model

    ERIC Educational Resources Information Center

    Robbins, Blaine G.

    2012-01-01

    This paper investigates the association between institutional quality and generalized trust. Despite the importance of the topic, little quantitative empirical evidence exists to support either unidirectional or bidirectional causality for the reason that cross-sectional studies rarely model the reciprocal relationship between institutional…

  2. Applying a causal framework to system modeling.

    PubMed

    Lieu, C A; Elliston, K O

    2007-01-01

    The emerging field of systems biology represents a revolution in our ability to understand biology. Perhaps for the first time in history we have the capacity to pursue biological understanding using a computer-aided integrative approach in conjunction with classical reductionist approaches. Technology has given us not only the ability to identify and measure the individual molecules of life and the way they change, but also the power to study these molecules and their changes in the context of a big picture. It is through the creation of a computer-aided framework for human understanding that we can begin to comprehend how these collections of molecules act as integrated biological systems, and to utilize this knowledge to rationally engineer the future of science and medicine.

  3. Nanoparticles in the environment: assessment using the causal diagram approach

    PubMed Central

    2012-01-01

    Nanoparticles (NPs) cause concern for health and safety as their impact on the environment and humans is not known. Relatively few studies have investigated the toxicological and environmental effects of exposure to naturally occurring NPs (NNPs) and man-made or engineered NPs (ENPs) that are known to have a wide variety of effects once taken up into an organism. A review of recent knowledge (between 2000-2010) on NP sources, and their behaviour, exposure and effects on the environment and humans was performed. An integrated approach was used to comprise available scientific information within an interdisciplinary logical framework, to identify knowledge gaps and to describe environment and health linkages for NNPs and ENPs. The causal diagram has been developed as a method to handle the complexity of issues on NP safety, from their exposure to the effects on the environment and health. It gives an overview of available scientific information starting with common sources of NPs and their interactions with various environmental processes that may pose threats to both human health and the environment. Effects of NNPs on dust cloud formation and decrease in sunlight intensity were found to be important environmental changes with direct and indirect implication in various human health problems. NNPs and ENPs exposure and their accumulation in biological matrices such as microbiota, plants and humans may result in various adverse effects. The impact of some NPs on human health by ROS generation was found to be one of the major causes to develop various diseases. A proposed cause-effects diagram for NPs is designed considering both NNPs and ENPs. It represents a valuable information package and user-friendly tool for various stakeholders including students, researchers and policy makers, to better understand and communicate on issues related to NPs. PMID:22759495

  4. Limitations of individual causal models, causal graphs, and ignorability assumptions, as illustrated by random confounding and design unfaithfulness.

    PubMed

    Greenland, Sander; Mansournia, Mohammad Ali

    2015-10-01

    We describe how ordinary interpretations of causal models and causal graphs fail to capture important distinctions among ignorable allocation mechanisms for subject selection or allocation. We illustrate these limitations in the case of random confounding and designs that prevent such confounding. In many experimental designs individual treatment allocations are dependent, and explicit population models are needed to show this dependency. In particular, certain designs impose unfaithful covariate-treatment distributions to prevent random confounding, yet ordinary causal graphs cannot discriminate between these unconfounded designs and confounded studies. Causal models for populations are better suited for displaying these phenomena than are individual-level models, because they allow representation of allocation dependencies as well as outcome dependencies across individuals. Nonetheless, even with this extension, ordinary graphical models still fail to capture distinctions between hypothetical superpopulations (sampling distributions) and observed populations (actual distributions), although potential-outcome models can be adapted to show these distinctions and their consequences.

  5. Modeling the Causal Regulation of Transversely Accelerated Ion (TAI) Outflows

    NASA Astrophysics Data System (ADS)

    Varney, R. H.; Wiltberger, M. J.; Zhang, B.; Schmitt, P.; Lotko, W.

    2013-12-01

    TAIs are generated by wave particle interactions driven by waves at temporal and spatial scales which are inaccessible in global coupled geospace models. So far attempts to include TAI outflows in global models have focused on the use of empirical correlations between observed outflow fluxes and various inputs such as DC Poynting flux, Alfvénic Poynting flux, and electron precipitation fluxes. These treatments ignore feedbacks between the outflow and the state of the ionosphere and assume the spatial and temporal distributions of the outflows are identical to those of their drivers. This work presents an alternative approach which can overcome these deficiencies while still being sufficiently computationally efficient to couple into a global modeling framework. TAIs are incorporated into a 3-D fluid model of the ionosphere and polar wind by modeling them as a separate fluid which obeys transport equations appropriate for monoenergetic conic distributions. The characteristics of the TAI outflow produced depend on the assumed transverse heating rates and the 'promotion rate' which connects the TAI fluid to the thermal O+ fluid. Using drivers extracted from runs of the Coupled Magnetosphere Ionosphere Thermosphere (CMIT) model, different strategies for causally regulating these free parameters are explored. The model can reproduce many of the observed features of TAI outflows but also exhibits physical attributes that empirical relationships alone miss. These characteristics include flux limiting of the outflow from below when intense outflow creates high-altitude cavities, time delays between the onset of transverse heating and the appearance of outflow, and spatial distributions of outflow which are different from the spatial distributions of the applied transverse heating and which depend on the ionospheric convection pattern.

  6. Critical region for an Ising model coupled to causal triangulations

    NASA Astrophysics Data System (ADS)

    Cerda-Hernández, J.

    2017-02-01

    This paper extends the results obtained by Hernández et al for the annealed Ising model coupled to two-dimensional causal dynamical triangulations. We employ the Fortuin‑Kasteleyn (FK) representation in order to determine a region in the quadrant of the parameters β,μ >0 where the critical curve for the annealed model is possibly located. This can be done by outlining a region where the model has a unique infinite-volume Gibbs measure, and a region where the finite-volume Gibbs measure does not have weak limit (in fact, does not exist if the volume is large enough). We also improve the region where the model has a one dimensional geometry with respect to the unique weak limit measure, which implies that the Ising model on causal triangulation does not have phase transition in this region. Furthermore, we provide a better approximation of the free energy for the coupled model.

  7. Causal Discovery of Dynamic Systems

    ERIC Educational Resources Information Center

    Voortman, Mark

    2010-01-01

    Recently, several philosophical and computational approaches to causality have used an interventionist framework to clarify the concept of causality [Spirtes et al., 2000, Pearl, 2000, Woodward, 2005]. The characteristic feature of the interventionist approach is that causal models are potentially useful in predicting the effects of manipulations.…

  8. Causal Discovery of Dynamic Systems

    ERIC Educational Resources Information Center

    Voortman, Mark

    2010-01-01

    Recently, several philosophical and computational approaches to causality have used an interventionist framework to clarify the concept of causality [Spirtes et al., 2000, Pearl, 2000, Woodward, 2005]. The characteristic feature of the interventionist approach is that causal models are potentially useful in predicting the effects of manipulations.…

  9. Models and Moves: Focusing on Dimensions of Causal Complexity To Achieve Deeper Scientific Understanding.

    ERIC Educational Resources Information Center

    Perkins, David N.; Grotzer, Tina A.

    This paper presents the results of a research project based on the Understandings of Consequence Project. This study motivated students to engage in inquiry in science classrooms. The complexity of the models is divided into four categories--underlying causality, relational causality, probabilistic causality, and emergent causality--and provides…

  10. Dynamic Granger-Geweke causality modeling with application to interictal spike propagation.

    PubMed

    Lin, Fa-Hsuan; Hara, Keiko; Solo, Victor; Vangel, Mark; Belliveau, John W; Stufflebeam, Steven M; Hämäläinen, Matti S

    2009-06-01

    A persistent problem in developing plausible neurophysiological models of perception, cognition, and action is the difficulty of characterizing the interactions between different neural systems. Previous studies have approached this problem by estimating causal influences across brain areas activated during cognitive processing using structural equation modeling (SEM) and, more recently, with Granger-Geweke causality. While SEM is complicated by the need for a priori directional connectivity information, the temporal resolution of dynamic Granger-Geweke estimates is limited because the underlying autoregressive (AR) models assume stationarity over the period of analysis. We have developed a novel optimal method for obtaining data-driven directional causality estimates with high temporal resolution in both time and frequency domains. This is achieved by simultaneously optimizing the length of the analysis window and the chosen AR model order using the SURE criterion. Dynamic Granger-Geweke causality in time and frequency domains is subsequently calculated within a moving analysis window. We tested our algorithm by calculating the Granger-Geweke causality of epileptic spike propagation from the right frontal lobe to the left frontal lobe. The results quantitatively suggested that the epileptic activity at the left frontal lobe was propagated from the right frontal lobe, in agreement with the clinical diagnosis. Our novel computational tool can be used to help elucidate complex directional interactions in the human brain.

  11. Dynamic Granger-Geweke causality modeling with application to interictal spike propagation

    PubMed Central

    Lin, Fa-Hsuan; Hara, Keiko; Solo, Victor; Vangel, Mark; Belliveau, John W.; Stufflebeam, Steven M.; Hamalainen, Matti S.

    2010-01-01

    A persistent problem in developing plausible neurophysiological models of perception, cognition, and action is the difficulty of characterizing the interactions between different neural systems. Previous studies have approached this problem by estimating causal influences across brain areas activated during cognitive processing using Structural Equation Modeling and, more recently, with Granger-Geweke causality. While SEM is complicated by the need for a priori directional connectivity information, the temporal resolution of dynamic Granger-Geweke estimates is limited because the underlying autoregressive (AR) models assume stationarity over the period of analysis. We have developed a novel optimal method for obtaining data-driven directional causality estimates with high temporal resolution in both time and frequency domains. This is achieved by simultaneously optimizing the length of the analysis window and the chosen AR model order using the SURE criterion. Dynamic Granger-Geweke causality in time and frequency domains is subsequently calculated within a moving analysis window. We tested our algorithm by calculating the Granger-Geweke causality of epileptic spike propagation from the right frontal lobe to the left frontal lobe. The results quantitatively suggested the epileptic activity at the left frontal lobe was propagated from the right frontal lobe, in agreement with the clinical diagnosis. Our novel computational tool can be used to help elucidate complex directional interactions in the human brain. PMID:19378280

  12. Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems

    PubMed Central

    Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K.; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C.; Hoeng, Julia

    2015-01-01

    With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com PMID:25887162

  13. Measured, modeled, and causal conceptions of fitness

    PubMed Central

    Abrams, Marshall

    2012-01-01

    This paper proposes partial answers to the following questions: in what senses can fitness differences plausibly be considered causes of evolution?What relationships are there between fitness concepts used in empirical research, modeling, and abstract theoretical proposals? How does the relevance of different fitness concepts depend on research questions and methodological constraints? The paper develops a novel taxonomy of fitness concepts, beginning with type fitness (a property of a genotype or phenotype), token fitness (a property of a particular individual), and purely mathematical fitness. Type fitness includes statistical type fitness, which can be measured from population data, and parametric type fitness, which is an underlying property estimated by statistical type fitnesses. Token fitness includes measurable token fitness, which can be measured on an individual, and tendential token fitness, which is assumed to be an underlying property of the individual in its environmental circumstances. Some of the paper's conclusions can be outlined as follows: claims that fitness differences do not cause evolution are reasonable when fitness is treated as statistical type fitness, measurable token fitness, or purely mathematical fitness. Some of the ways in which statistical methods are used in population genetics suggest that what natural selection involves are differences in parametric type fitnesses. Further, it's reasonable to think that differences in parametric type fitness can cause evolution. Tendential token fitnesses, however, are not themselves sufficient for natural selection. Though parametric type fitnesses are typically not directly measurable, they can be modeled with purely mathematical fitnesses and estimated by statistical type fitnesses, which in turn are defined in terms of measurable token fitnesses. The paper clarifies the ways in which fitnesses depend on pragmatic choices made by researchers. PMID:23112804

  14. Dynamical Causal Modeling from a Quantum Dynamical Perspective

    SciTech Connect

    Demiralp, Emre; Demiralp, Metin

    2010-09-30

    Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called ''Quantum Harmonical Form (QHF)''. QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, this limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.

  15. Causal Model Progressions as a Foundation for Intelligent Learning Environments.

    DTIC Science & Technology

    1987-11-01

    Learning Environments 12. PERSONAL AUTHOR(S? Barbara Y. White and John R. Frederiksen 13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year...architecture of a new type of learning environment that incorporates features of microworlds and of intelligent tutorng systems. The environment is based on...The design principles underlying the creation of one type of causal model are then given (for zero-order models of electrical circuit behavior); and

  16. Spectral properties of a double-quantum-dot structure: A causal Green's function approach

    NASA Astrophysics Data System (ADS)

    You, J. Q.; Zheng, Hou-Zhi

    1999-09-01

    Spectral properties of a double quantum dot (QD) structure are studied by a causal Green's function (GF) approach. The double QD system is modeled by an Anderson-type Hamiltonian in which both the intra- and interdot Coulomb interactions are taken into account. The GF's are derived by an equation-of-motion method and the real-space renormalization-group technique. The numerical results show that the average occupation number of electrons in the QD exhibits staircase features and the local density of states depends appreciably on the electron occupation of the dot.

  17. Interventionist causal models in psychiatry: repositioning the mind-body problem.

    PubMed

    Kendler, K S; Campbell, J

    2009-06-01

    The diversity of research methods applied to psychiatric disorders results in a confusing plethora of causal claims. To help make sense of these claims, the interventionist model (IM) of causality has several attractive features. First, it connects causation with the practical interests of psychiatry, defining causation in terms of 'what would happen under interventions', a question of key interest to those of us whose interest is ultimately in intervening to prevent and treat illness. Second, it distinguishes between predictive-correlative and true causal relationships, an essential issue cutting across many areas in psychiatric research. Third, the IM is non-reductive and agnostic to issues of mind-body problem. Fourth, the IM model cleanly separates issues of causation from questions about the underlying mechanism. Clarifying causal influences can usefully structure the search for underlying mechanisms. Fifth, it provides a sorely needed conceptual rigor to multi-level modeling, thereby avoiding a return to uncritical holistic approaches that 'everything is relevant' to psychiatric illness. Sixth, the IM provides a clear way to judge both the generality and depth of explanations. In conclusion, the IM can provide a single, clear empirical framework for the evaluation of all causal claims of relevance to psychiatry and presents psychiatry with a method of avoiding the sterile metaphysical arguments about mind and brain which have preoccupied our field but yielded little of practical benefit.

  18. Intelligent diagnosis of jaundice with dynamic uncertain causality graph model.

    PubMed

    Hao, Shao-Rui; Geng, Shi-Chao; Fan, Lin-Xiao; Chen, Jia-Jia; Zhang, Qin; Li, Lan-Juan

    2017-05-01

    Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A "chaining" inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure.

  19. Intelligent diagnosis of jaundice with dynamic uncertain causality graph model*

    PubMed Central

    Hao, Shao-rui; Geng, Shi-chao; Fan, Lin-xiao; Chen, Jia-jia; Zhang, Qin; Li, Lan-juan

    2017-01-01

    Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A “chaining” inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure. PMID:28471111

  20. Dark matter perturbations and viscosity: A causal approach

    NASA Astrophysics Data System (ADS)

    Acquaviva, Giovanni; John, Anslyn; Pénin, Aurélie

    2016-08-01

    The inclusion of dissipative effects in cosmic fluids modifies their clustering properties and could have observable effects on the formation of large-scale structures. We analyze the evolution of density perturbations of cold dark matter endowed with causal bulk viscosity. The perturbative analysis is carried out in the Newtonian approximation and the bulk viscosity is described by the causal Israel-Stewart (IS) theory. In contrast to the noncausal Eckart theory, we obtain a third-order evolution equation for the density contrast that depends on three free parameters. For certain parameter values, the density contrast and growth factor in IS mimic their behavior in Λ CDM when z ≥1 . Interestingly, and contrary to intuition, certain sets of parameters lead to an increase of the clustering.

  1. Multivariate dynamical systems models for estimating causal interactions in fMRI

    PubMed Central

    Ryali, Srikanth; Supekar, Kaustubh; Chen, Tianwen; Menon, Vinod

    2010-01-01

    Analysis of dynamical interactions between distributed brain areas is of fundamental importance for understanding cognitive information processing. However, estimating dynamic causal interactions between brain regions using functional magnetic resonance imaging (fMRI) poses several unique challenges. For one, fMRI measures Blood Oxygenation Level Dependent (BOLD) signals, rather than the underlying latent neuronal activity. Second, regional variations in the hemodynamic response function (HRF) can significantly influence estimation of casual interactions between them. Third, causal interactions between brain regions can change with experimental context over time. To overcome these problems, we developed a novel state-space Multivariate Dynamical Systems (MDS) model to estimate intrinsic and experimentally-induced modulatory causal interactions between multiple brain regions. A probabilistic graphical framework is then used to estimate the parameters of MDS as applied to fMRI data. We show that MDS accurately takes into account regional variations in the HRF and estimates dynamic causal interactions at the level of latent signals. We develop and compare two estimation procedures using maximum likelihood estimation (MLE) and variational Bayesian (VB) approaches for inferring model parameters. Using extensive computer simulations, we demonstrate that, compared to Granger causal analysis (GCA), MDS exhibits superior performance for a wide range of signal to noise ratios (SNRs), sample length and network size. Our simulations also suggest that GCA fails to uncover causal interactions when there is a conflict between the direction of intrinsic and modulatory influences. Furthermore, we show that MDS estimation using VB methods is more robust and performs significantly better at low SNRs and shorter time series than MDS with MLE. Our study suggests that VB estimation of MDS provides a robust method for estimating and interpreting causal network interactions in fMRI data

  2. Performance bounds for dynamic causal modeling of brain connectivity.

    PubMed

    Wu, Shun Chi; Swindlehurst, A Lee

    2012-01-01

    The use of complex dynamical models have been proposed for describing the connections and causal interactions between different regions of the brain. The goal of these models is to accurately mimic the event-related potentials observed by EEG/MEG measurement systems, and are useful in understanding overall brain functionality. In this paper, we focus on a class of nonlinear dynamic causal models (DCM) that are described by a set of connectivity parameters. In practice, the DCM parameters are inferred using data obtained by an EEG or MEG sensor array in response to a certain event or stimulus, and the resulting estimates are used to analyze the strength and direction of the causal interactions between different brain regions. The usefulness of the parameter estimates will depend on how accurately they can be estimated, which in turn will depend on noise, the sampling rate, number of data samples collected, the accuracy of the source localization and reconstruction steps, etc. The goal of this paper is to derive Cramér-Rao performance bounds for DCM estimates, and examine the behavior of the bounds under different operating conditions.

  3. Teaching-Learning by Means of a Fuzzy-Causal User Model

    NASA Astrophysics Data System (ADS)

    Peña Ayala, Alejandro

    In this research the teaching-learning phenomenon that occurs during an E-learning experience is tackled from a fuzzy-causal perspective. The approach is suitable for dealing with intangible objects of a domain, such as personality, that are stated as linguistic variables. In addition, the bias that teaching content exerts on the user’s mind is sketched through causal relationships. Moreover, by means of fuzzy-causal inference, the user’s apprenticeship is estimated prior to delivering a lecture. This supposition is taken into account to adapt the behavior of a Web-based education system (WBES). As a result of an experimental trial, volunteers that took options of lectures chosen by this user model (UM) achieved higher learning than participants who received lectures’ options that were randomly selected. Such empirical evidence contributes to encourage researchers of the added value that a UM offers to adapt a WBES.

  4. A Longitudinal Study of Hong Kong Chinese University Students' Academic Causal Attributions, Self-Concept, Learning Approaches, and Their Causal Effects on Achievement.

    ERIC Educational Resources Information Center

    Yin, Lai Po

    The longitudinal changes in the causal attributions, academic self-concept, and learning approaches of 549 university students in Hong Kong were studied. Students were enrolled in two different disciplines: language/health studies (n=272) and construction/engineering (n=277). Measurements of causal dimensions, academic self-concept, learning…

  5. There aren't plenty more fish in the sea: a causal network approach.

    PubMed

    Nikolic, Milena; Lagnado, David A

    2015-11-01

    The current research investigated how lay representations of the causes of an environmental problem may underlie individuals' reasoning about the issue. Naïve participants completed an experiment that involved two main tasks. The causal diagram task required participants to depict the causal relations between a set of factors related to overfishing and to estimate the strength of these relations. The counterfactual task required participants to judge the effect of counterfactual suppositions based on the diagrammed factors. We explored two major questions: (1) what is the relation between individual causal models and counterfactual judgments? Consistent with previous findings (e.g., Green et al., 1998, Br. J. Soc. Psychology, 37, 415), these judgments were best explained by a combination of the strength of both direct and indirect causal paths. (2) To what extent do people use two-way causal thinking when reasoning about an environmental problem? In contrast to previous research (e.g., White, 2008, Appl. Cogn. Psychology, 22, 559), analyses based on individual causal networks revealed the presence of numerous feedback loops. The studies support the value of analysing individual causal models in contrast to consensual representations. Theoretical and practical implications are discussed in relation to causal reasoning as well as environmental psychology.

  6. Processing of positive-causal and negative-causal coherence relations in primary school children and adults: a test of the cumulative cognitive complexity approach in German.

    PubMed

    Knoepke, Julia; Richter, Tobias; Isberner, Maj-Britt; Naumann, Johannes; Neeb, Yvonne; Weinert, Sabine

    2017-03-01

    Establishing local coherence relations is central to text comprehension. Positive-causal coherence relations link a cause and its consequence, whereas negative-causal coherence relations add a contrastive meaning (negation) to the causal link. According to the cumulative cognitive complexity approach, negative-causal coherence relations are cognitively more complex than positive-causal ones. Therefore, they require greater cognitive effort during text comprehension and are acquired later in language development. The present cross-sectional study tested these predictions for German primary school children from Grades 1 to 4 and adults in reading and listening comprehension. Accuracy data in a semantic verification task support the predictions of the cumulative cognitive complexity approach. Negative-causal coherence relations are cognitively more demanding than positive-causal ones. Moreover, our findings indicate that children's comprehension of negative-causal coherence relations continues to develop throughout the course of primary school. Findings are discussed with respect to the generalizability of the cumulative cognitive complexity approach to German.

  7. Do trend extraction approaches affect causality detection in climate change studies?

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Hassani, Hossein; Ghodsi, Mansi; Mukherjee, Zinnia; Gupta, Rangan

    2017-03-01

    Various scientific studies have investigated the causal link between solar activity (SS) and the earth's temperature (GT). Results from literature indicate that both the detected structural breaks and existing trend have significant effects on the causality detection outcomes. In this paper, we make a contribution to this literature by evaluating and comparing seven trend extraction methods covering various aspects of trend extraction studies to date. In addition, we extend previous work by using Convergent Cross Mapping (CCM) - an advanced non-parametric causality detection technique to provide evidence on the effect of existing trend in global temperature on the causality detection outcome. This paper illustrates the use of a method to find the most reliable trend extraction approach for data preprocessing, as well as provides detailed analyses of the causality detection of each component by this approach to achieve a better understanding of the causal link between SS and GT. Furthermore, the corresponding CCM results indicate increasing significance of causal effect from SS to GT since 1880 to recent years, which provide solid evidences that may contribute on explaining the escalating global tendency of warming up recent decades.

  8. Causal models of trip replanning in TravTek

    SciTech Connect

    Schryver, J.C.

    1998-07-01

    The TravTek operational field test was conducted to evaluate the effectiveness of route planning, route guidance and various navigational aiding modalities for Advanced Traveler Information Systems in ground vehicles. A causal network was constructed in order to achieve a better understanding of the dependencies among variables implicated in the replanning process. Causal inferences were modeled using path analysis techniques. The original Yoked Driver study reported that addition of real-time navigation planning did not increase trip efficiency during initial trip planning. Data mining of the relatively complete database revealed that the incidence of dynamic trip replanning was only 0.51% or 1 out of every 198 trips. Nevertheless, the replanning acceptance rate was 92.8%, suggesting that less conservative criteria might have been acceptable to drivers. Several points can be made based upon the path analysis techniques. Drivers who rejected better route offers were more likely to be male renters; rejected routes were apparently offered at earlier times with a lower predicted time savings and fewer maneuvers. Failure to accept a better route also apparently resulted in fewer wrong-turn deviations. Contrary to expectations, wrong-turn count and time loss appeared as semi-independent hubs in the resultant causal network. Implications of the path analysis are discussed. Proposals for in-vehicle information systems are formulated to increase driver participation as co-planner, and increase the likelihood that trip replanning will positively impact trip efficiency.

  9. Applying optimal model selection in principal stratification for causal inference.

    PubMed

    Odondi, Lang'o; McNamee, Roseanne

    2013-05-20

    Noncompliance to treatment allocation is a key source of complication for causal inference. Efficacy estimation is likely to be compounded by the presence of noncompliance in both treatment arms of clinical trials where the intention-to-treat estimate provides a biased estimator for the true causal estimate even under homogeneous treatment effects assumption. Principal stratification method has been developed to address such posttreatment complications. The present work extends a principal stratification method that adjusts for noncompliance in two-treatment arms trials by developing model selection for covariates predicting compliance to treatment in each arm. We apply the method to analyse data from the Esprit study, which was conducted to ascertain whether unopposed oestrogen (hormone replacement therapy) reduced the risk of further cardiac events in postmenopausal women who survive a first myocardial infarction. We adjust for noncompliance in both treatment arms under a Bayesian framework to produce causal risk ratio estimates for each principal stratum. For mild values of a sensitivity parameter and using separate predictors of compliance in each arm, principal stratification results suggested that compliance with hormone replacement therapy only would reduce the risk for death and myocardial reinfarction by about 47% and 25%, respectively, whereas compliance with either treatment would reduce the risk for death by 13% and reinfarction by 60% among the most compliant. However, the results were sensitive to the user-defined sensitivity parameter.

  10. Population metrics for suicide events: A causal inference approach.

    PubMed

    He, Hua; Lu, Naiji; Stephens, Brady; Xia, Yinglin; Bossarte, Robert M; Kane, Cathleen P; Tang, Wan; Tu, Xin M

    2017-01-01

    Large-scale public health prevention initiatives and interventions are a very important component to current public health strategies. But evaluating effects of such large-scale prevention/intervention faces a lot of challenges due to confounding effects and heterogeneity of study population. In this paper, we will develop metrics to assess the risk for suicide events based on causal inference framework when the study population is heterogeneous. The proposed metrics deal with the confounding effect by first estimating the risk of suicide events within each of the risk levels, number of prior attempts, and then taking a weighted sum of the conditional probabilities. The metrics provide unbiased estimates of the risk of suicide events. Simulation studies and a real data example will be used to demonstrate the proposed metrics.

  11. Neural Representation and Causal Models in Motor Cortex.

    PubMed

    Chaisanguanthum, Kris S; Shen, Helen H; Sabes, Philip N

    2017-03-22

    Dorsal premotor (PMd) and primary motor (M1) cortices play a central role in mapping sensation to movement. Many studies of these areas have focused on correlation-based tuning curves relating neural activity to task or movement parameters, but the link between tuning and movement generation is unclear. We recorded motor preparatory activity from populations of neurons in PMd/M1 as macaque monkeys performed a visually guided reaching task and show that tuning curves for sensory inputs (reach target direction) and motor outputs (initial movement direction) are not typically aligned. We then used a simple, causal model to determine the expected relationship between sensory and motor tuning. The model shows that movement variability is minimized when output neurons (those that directly drive movement) have target and movement tuning that are linearly related across targets and cells. In contrast, for neurons that only affect movement via projections to output neurons, the relationship between target and movement tuning is determined by the pattern of projections to output neurons and may even be uncorrelated, as was observed for the PMd/M1 population as a whole. We therefore determined the relationship between target and movement tuning for subpopulations of cells defined by the temporal duration of their spike waveforms, which may distinguish cell types. We found a strong correlation between target and movement tuning for only a subpopulation of neurons with intermediate spike durations (trough-to-peak ∼350 μs after high-pass filtering), suggesting that these cells have the most direct role in driving motor output.SIGNIFICANCE STATEMENT This study focuses on how macaque premotor and primary motor cortices transform sensory inputs into motor outputs. We develop empirical and theoretical links between causal models of this transformation and more traditional, correlation-based "tuning curve" analyses. Contrary to common assumptions, we show that sensory and motor

  12. Risk-Based Causal Modeling of Airborne Loss of Separation

    NASA Technical Reports Server (NTRS)

    Geuther, Steven C.; Shih, Ann T.

    2015-01-01

    Maintaining safe separation between aircraft remains one of the key aviation challenges as the Next Generation Air Transportation System (NextGen) emerges. The goals of the NextGen are to increase capacity and reduce flight delays to meet the aviation demand growth through the 2025 time frame while maintaining safety and efficiency. The envisioned NextGen is expected to enable high air traffic density, diverse fleet operations in the airspace, and a decrease in separation distance. All of these factors contribute to the potential for Loss of Separation (LOS) between aircraft. LOS is a precursor to a potential mid-air collision (MAC). The NASA Airspace Operations and Safety Program (AOSP) is committed to developing aircraft separation assurance concepts and technologies to mitigate LOS instances, therefore, preventing MAC. This paper focuses on the analysis of causal and contributing factors of LOS accidents and incidents leading to MAC occurrences. Mid-air collisions among large commercial aircraft are rare in the past decade, therefore, the LOS instances in this study are for general aviation using visual flight rules in the years 2000-2010. The study includes the investigation of causal paths leading to LOS, and the development of the Airborne Loss of Separation Analysis Model (ALOSAM) using Bayesian Belief Networks (BBN) to capture the multi-dependent relations of causal factors. The ALOSAM is currently a qualitative model, although further development could lead to a quantitative model. ALOSAM could then be used to perform impact analysis of concepts and technologies in the AOSP portfolio on the reduction of LOS risk.

  13. Causal Models and Exploratory Analysis in Heterogeneous Information Fusion for Detecting Potential Terrorists

    DTIC Science & Technology

    2015-11-01

    using information fusion to assess whether individuals pose a terrorism threat. Methodologically, we illustrate how causal social-science models can be...focused on terrorism , but the research should be relevant to law enforcement, intelligence, and other domains. Our approach is very different from...the characteristics identified above. When assessing an individual for the degree to which he poses a threat of terrorism , information derives from

  14. Causality and Composite Structure

    SciTech Connect

    Joglekar, Satish D.

    2007-10-03

    In this talk, we discuss the question of whether a composite structure of elementary particles, with a length scale 1/{lambda}, can leave observable effects of non-locality and causality violation at higher energies (but {<=}{lambda}); employing a model-independent approach based on Bogoliubov-Shirkov formulation of causality. We formulate a condition which must be fulfilled for the derived theory to be causal, if the fundamental theory is so; and analyze it to exhibit possibilities which fulfil and which violate the condition. We comment on how causality violating amplitudes can arise.

  15. Causal chain analysis and root causes: the GIWA approach.

    PubMed

    Belausteguigoitia, Juan Carlos

    2004-02-01

    The Global International Waters Assessment (GIWA) was created to help develop a priority setting mechanism for actions in international waters. Apart from assessing the severity of environmental problems in ecosystems, the GIWA's task is to analyze potential policy actions that could solve or mitigate these problems. Given the complex nature of the problems, understanding their root causes is essential to develop effective solutions. The GIWA provides a framework to analyze these causes, which is based on identifying the factors that shape human behavior in relation to the use (direct or indirect) of aquatic resources. Two sets of factors are analyzed. The first one consists of social coordination mechanisms (institutions). Faults in these mechanisms lead to wasteful use of resources. The second consists of factors that do not cause wasteful use of resources per se (poverty, trade, demographic growth, technology), but expose and magnify the faults of the first group of factors. The picture that comes out is that diagnosing simple generic causes, e.g. poverty or trade, without analyzing the case specific ways in which the root causes act and interact to degrade the environment, will likely ignore important links that may put the effectiveness of the recommended policies at risk. A summary of the causal chain analysis for the Colorado River Delta is provided as an example.

  16. Uncertainty in Propensity Score Estimation: Bayesian Methods for Variable Selection and Model Averaged Causal Effects.

    PubMed

    Zigler, Corwin Matthew; Dominici, Francesca

    2014-01-01

    Causal inference with observational data frequently relies on the notion of the propensity score (PS) to adjust treatment comparisons for observed confounding factors. As decisions in the era of "big data" are increasingly reliant on large and complex collections of digital data, researchers are frequently confronted with decisions regarding which of a high-dimensional covariate set to include in the PS model in order to satisfy the assumptions necessary for estimating average causal effects. Typically, simple or ad-hoc methods are employed to arrive at a single PS model, without acknowledging the uncertainty associated with the model selection. We propose three Bayesian methods for PS variable selection and model averaging that 1) select relevant variables from a set of candidate variables to include in the PS model and 2) estimate causal treatment effects as weighted averages of estimates under different PS models. The associated weight for each PS model reflects the data-driven support for that model's ability to adjust for the necessary variables. We illustrate features of our proposed approaches with a simulation study, and ultimately use our methods to compare the effectiveness of surgical vs. nonsurgical treatment for brain tumors among 2,606 Medicare beneficiaries. Supplementary materials are available online.

  17. Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory

    PubMed Central

    Gopnik, Alison; Wellman, Henry M.

    2012-01-01

    We propose a new version of the “theory theory” grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and non-technical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists. PMID:22582739

  18. Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory.

    PubMed

    Gopnik, Alison; Wellman, Henry M

    2012-11-01

    We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and nontechnical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and the psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists.

  19. Spatiotemporal causal modeling for the management of Dengue Fever

    NASA Astrophysics Data System (ADS)

    Yu, Hwa-Lung; Huang, Tailin; Lee, Chieh-Han

    2015-04-01

    Increasing climatic extremes have caused growing concerns about the health effects and disease outbreaks. The association between climate variation and the occurrence of epidemic diseases play an important role on a country's public health systems. Part of the impacts are direct casualties associated with the increasing frequency and intensity of typhoons, the proliferation of disease vectors and the short-term increase of clinic visits on gastro-intestinal discomforts, diarrhea, dermatosis, or psychological trauma. Other impacts come indirectly from the influence of disasters on the ecological and socio-economic systems, including the changes of air/water quality, living environment and employment condition. Previous risk assessment studies on dengue fever focus mostly on climatic and non-climatic factors and their association with vectors' reproducing pattern. The public-health implication may appear simple. Considering the seasonal changes and regional differences, however, the causality of the impacts is full of uncertainties. Without further investigation, the underlying dengue fever risk dynamics may not be assessed accurately. The objective of this study is to develop an epistemic framework for assessing dynamic dengue fever risk across space and time. The proposed framework integrates cross-departmental data, including public-health databases, precipitation data over time and various socio-economic data. We explore public-health issues induced by typhoon through literature review and spatiotemporal analytic techniques on public health databases. From those data, we identify relevant variables and possible causal relationships, and their spatiotemporal patterns derived from our proposed spatiotemporal techniques. Eventually, we create a spatiotemporal causal network and a framework for modeling dynamic dengue fever risk.

  20. Uncertainty in Propensity Score Estimation: Bayesian Methods for Variable Selection and Model Averaged Causal Effects

    PubMed Central

    Zigler, Corwin Matthew; Dominici, Francesca

    2014-01-01

    Causal inference with observational data frequently relies on the notion of the propensity score (PS) to adjust treatment comparisons for observed confounding factors. As decisions in the era of “big data” are increasingly reliant on large and complex collections of digital data, researchers are frequently confronted with decisions regarding which of a high-dimensional covariate set to include in the PS model in order to satisfy the assumptions necessary for estimating average causal effects. Typically, simple or ad-hoc methods are employed to arrive at a single PS model, without acknowledging the uncertainty associated with the model selection. We propose three Bayesian methods for PS variable selection and model averaging that 1) select relevant variables from a set of candidate variables to include in the PS model and 2) estimate causal treatment effects as weighted averages of estimates under different PS models. The associated weight for each PS model reflects the data-driven support for that model’s ability to adjust for the necessary variables. We illustrate features of our proposed approaches with a simulation study, and ultimately use our methods to compare the effectiveness of surgical vs. nonsurgical treatment for brain tumors among 2,606 Medicare beneficiaries. Supplementary materials are available online. PMID:24696528

  1. On inference of causality for discrete state models in a multiscale context

    PubMed Central

    Gerber, Susanne; Horenko, Illia

    2014-01-01

    Discrete state models are a common tool of modeling in many areas. E.g., Markov state models as a particular representative of this model family became one of the major instruments for analysis and understanding of processes in molecular dynamics (MD). Here we extend the scope of discrete state models to the case of systematically missing scales, resulting in a nonstationary and nonhomogeneous formulation of the inference problem. We demonstrate how the recently developed tools of nonstationary data analysis and information theory can be used to identify the simultaneously most optimal (in terms of describing the given data) and most simple (in terms of complexity and causality) discrete state models. We apply the resulting formalism to a problem from molecular dynamics and show how the results can be used to understand the spatial and temporal causality information beyond the usual assumptions. We demonstrate that the most optimal explanation for the appropriately discretized/coarse-grained MD torsion angles data in a polypeptide is given by the causality that is localized both in time and in space, opening new possibilities for deploying percolation theory and stochastic subgridscale modeling approaches in the area of MD. PMID:25267630

  2. Mediation Analysis With Intermediate Confounding: Structural Equation Modeling Viewed Through the Causal Inference Lens

    PubMed Central

    De Stavola, Bianca L.; Daniel, Rhian M.; Ploubidis, George B.; Micali, Nadia

    2015-01-01

    The study of mediation has a long tradition in the social sciences and a relatively more recent one in epidemiology. The first school is linked to path analysis and structural equation models (SEMs), while the second is related mostly to methods developed within the potential outcomes approach to causal inference. By giving model-free definitions of direct and indirect effects and clear assumptions for their identification, the latter school has formalized notions intuitively developed in the former and has greatly increased the flexibility of the models involved. However, through its predominant focus on nonparametric identification, the causal inference approach to effect decomposition via natural effects is limited to settings that exclude intermediate confounders. Such confounders are naturally dealt with (albeit with the caveats of informality and modeling inflexibility) in the SEM framework. Therefore, it seems pertinent to revisit SEMs with intermediate confounders, armed with the formal definitions and (parametric) identification assumptions from causal inference. Here we investigate: 1) how identification assumptions affect the specification of SEMs, 2) whether the more restrictive SEM assumptions can be relaxed, and 3) whether existing sensitivity analyses can be extended to this setting. Data from the Avon Longitudinal Study of Parents and Children (1990–2005) are used for illustration. PMID:25504026

  3. Mediation analysis with intermediate confounding: structural equation modeling viewed through the causal inference lens.

    PubMed

    De Stavola, Bianca L; Daniel, Rhian M; Ploubidis, George B; Micali, Nadia

    2015-01-01

    The study of mediation has a long tradition in the social sciences and a relatively more recent one in epidemiology. The first school is linked to path analysis and structural equation models (SEMs), while the second is related mostly to methods developed within the potential outcomes approach to causal inference. By giving model-free definitions of direct and indirect effects and clear assumptions for their identification, the latter school has formalized notions intuitively developed in the former and has greatly increased the flexibility of the models involved. However, through its predominant focus on nonparametric identification, the causal inference approach to effect decomposition via natural effects is limited to settings that exclude intermediate confounders. Such confounders are naturally dealt with (albeit with the caveats of informality and modeling inflexibility) in the SEM framework. Therefore, it seems pertinent to revisit SEMs with intermediate confounders, armed with the formal definitions and (parametric) identification assumptions from causal inference. Here we investigate: 1) how identification assumptions affect the specification of SEMs, 2) whether the more restrictive SEM assumptions can be relaxed, and 3) whether existing sensitivity analyses can be extended to this setting. Data from the Avon Longitudinal Study of Parents and Children (1990-2005) are used for illustration.

  4. [The Granger causality models and their applications in brain effective connectivity networks].

    PubMed

    Zhao, Tiezhu; Zheng, Gang; Pan, Zhiying; Li, Qiang; Wang, Li; Lu, Guangming

    2013-12-01

    Granger causality model is an analysis method that requires no priori knowledge and emphasizes time sequence. Such model applied to brain effective connectivity network can reflect the directional connectivity among brain regions or neurons. This paper reviews the principle of Granger causality model, basic test steps and improved models, analyzes and discusses applications and existing problems of Granger causality model in brain effective connectivity network.

  5. mpdcm: A toolbox for massively parallel dynamic causal modeling.

    PubMed

    Aponte, Eduardo A; Raman, Sudhir; Sengupta, Biswa; Penny, Will D; Stephan, Klaas E; Heinzle, Jakob

    2016-01-15

    Dynamic causal modeling (DCM) for fMRI is an established method for Bayesian system identification and inference on effective brain connectivity. DCM relies on a biophysical model that links hidden neuronal activity to measurable BOLD signals. Currently, biophysical simulations from DCM constitute a serious computational hindrance. Here, we present Massively Parallel Dynamic Causal Modeling (mpdcm), a toolbox designed to address this bottleneck. mpdcm delegates the generation of simulations from DCM's biophysical model to graphical processing units (GPUs). Simulations are generated in parallel by implementing a low storage explicit Runge-Kutta's scheme on a GPU architecture. mpdcm is publicly available under the GPLv3 license. We found that mpdcm efficiently generates large number of simulations without compromising their accuracy. As applications of mpdcm, we suggest two computationally expensive sampling algorithms: thermodynamic integration and parallel tempering. mpdcm is up to two orders of magnitude more efficient than the standard implementation in the software package SPM. Parallel tempering increases the mixing properties of the traditional Metropolis-Hastings algorithm at low computational cost given efficient, parallel simulations of a model. Future applications of DCM will likely require increasingly large computational resources, for example, when the likelihood landscape of a model is multimodal, or when implementing sampling methods for multi-subject analysis. Due to the wide availability of GPUs, algorithmic advances can be readily available in the absence of access to large computer grids, or when there is a lack of expertise to implement algorithms in such grids. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Sophisticated Merging Over Random Partitions: A Scalable and Robust Causal Discovery Approach.

    PubMed

    Cai, Ruichu; Zhang, Zhenjie; Hao, Zhifeng; Winslett, Marianne

    2017-08-24

    Scalable causal discovery is an essential technology to a wide spectrum of applications, including biomedical studies and social network evolution analysis. To tackle the difficulty of high dimensionality, a number of solutions are proposed in the literature, generally dividing the original variable domain into smaller subdomains by computation intensive partitioning strategies. These approaches usually suffer significant structural errors when the partitioning strategies fail to recognize true causal edges across the output subdomains. Such a structural error accumulates quickly with the growing depth of recursive partitioning, due to the lack of correction mechanism over causally connected variables when they are wrongly divided into two subdomains, finally jeopardizing the robustness of the integrated results. This paper proposes a completely different strategy to solve the problem, powered by a lightweight random partitioning scheme together with a carefully designed merging algorithm over results from the random partitions. Based on the randomness properties of the partitioning scheme, we design a suite of tricks for the merging algorithm, in order to support propagation-based significance enhancement, maximal acyclic subgraph causal ordering, and order-sensitive redundancy elimination. Theoretical studies as well as empirical evaluations verify the genericity, effectiveness, and scalability of our proposal on both simulated and real-world causal structures when the scheme is used in combination with a variety of causal solvers known effective on smaller domains.

  7. Granger Causality in Multivariate Time Series Using a Time-Ordered Restricted Vector Autoregressive Model

    NASA Astrophysics Data System (ADS)

    Siggiridou, Elsa; Kugiumtzis, Dimitris

    2016-04-01

    Granger causality has been used for the investigation of the inter-dependence structure of the underlying systems of multi-variate time series. In particular, the direct causal effects are commonly estimated by the conditional Granger causality index (CGCI). In the presence of many observed variables and relatively short time series, CGCI may fail because it is based on vector autoregressive models (VAR) involving a large number of coefficients to be estimated. In this work, the VAR is restricted by a scheme that modifies the recently developed method of backward-in-time selection (BTS) of the lagged variables and the CGCI is combined with BTS. Further, the proposed approach is compared favorably to other restricted VAR representations, such as the top-down strategy, the bottom-up strategy, and the least absolute shrinkage and selection operator (LASSO), in terms of sensitivity and specificity of CGCI. This is shown by using simulations of linear and nonlinear, low and high-dimensional systems and different time series lengths. For nonlinear systems, CGCI from the restricted VAR representations are compared with analogous nonlinear causality indices. Further, CGCI in conjunction with BTS and other restricted VAR representations is applied to multi-channel scalp electroencephalogram (EEG) recordings of epileptic patients containing epileptiform discharges. CGCI on the restricted VAR, and BTS in particular, could track the changes in brain connectivity before, during and after epileptiform discharges, which was not possible using the full VAR representation.

  8. Graphic modeling of epithelial transport system: causality of dissipation.

    PubMed

    Imai, Yusuke

    2003-06-01

    The epithelial transport system is a thermodynamic system which is composed of membranes and fluid compartments. The membranes are assumed to be dissipative subsystems in which power dissipates, and fluid compartments are capacitive subsystems in which power is stored. Each subsystem can be subdivided into elementary thermodynamic processes, and can be represented by generalized capacitors, power transducers and resistors in a bond graph. In the modeling of the dissipative subsystem, the causality of the dissipative process was taken into consideration and the representation of power coupling was developed. The dissipative subsystem can be represented by a combination of coupling modules and conductors. Phenomenological equations with parameters from the model were derived. This study shows that the behavior of transport systems can be simulated using these equations.

  9. Causal Inference and Model Selection in Complex Settings

    NASA Astrophysics Data System (ADS)

    Zhao, Shandong

    Propensity score methods have become a part of the standard toolkit for applied researchers who wish to ascertain causal effects from observational data. While they were originally developed for binary treatments, several researchers have proposed generalizations of the propensity score methodology for non-binary treatment regimes. In this article, we firstly review three main methods that generalize propensity scores in this direction, namely, inverse propensity weighting (IPW), the propensity function (P-FUNCTION), and the generalized propensity score (GPS), along with recent extensions of the GPS that aim to improve its robustness. We compare the assumptions, theoretical properties, and empirical performance of these methods. We propose three new methods that provide robust causal estimation based on the P-FUNCTION and GPS. While our proposed P-FUNCTION-based estimator preforms well, we generally advise caution in that all available methods can be biased by model misspecification and extrapolation. In a related line of research, we consider adjustment for posttreatment covariates in causal inference. Even in a randomized experiment, observations might have different compliance performance under treatment and control assignment. This posttreatment covariate cannot be adjusted using standard statistical methods. We review the principal stratification framework which allows for modeling this effect as part of its Bayesian hierarchical models. We generalize the current model to add the possibility of adjusting for pretreatment covariates. We also propose a new estimator of the average treatment effect over the entire population. In a third line of research, we discuss the spectral line detection problem in high energy astrophysics. We carefully review how this problem can be statistically formulated as a precise hypothesis test with point null hypothesis, why a usual likelihood ratio test does not apply for problem of this nature, and a doable fix to correctly

  10. Dynamic causal modelling of evoked potentials: A reproducibility study

    PubMed Central

    Garrido, Marta I.; Kilner, James M.; Kiebel, Stefan J.; Stephan, Klaas E.; Friston, Karl J.

    2007-01-01

    Dynamic causal modelling (DCM) has been applied recently to event-related responses (ERPs) measured with EEG/MEG. DCM attempts to explain ERPs using a network of interacting cortical sources and waveform differences in terms of coupling changes among sources. The aim of this work was to establish the validity of DCM by assessing its reproducibility across subjects. We used an oddball paradigm to elicit mismatch responses. Sources of cortical activity were modelled as equivalent current dipoles, using a biophysical informed spatiotemporal forward model that included connections among neuronal subpopulations in each source. Bayesian inversion provided estimates of changes in coupling among sources and the marginal likelihood of each model. By specifying different connectivity models we were able to evaluate three different hypotheses: differences in the ERPs to rare and frequent events are mediated by changes in forward connections (F-model), backward connections (B-model) or both (FB-model). The results were remarkably consistent over subjects. In all but one subject, the forward model was better than the backward model. This is an important result because these models have the same number of parameters (i.e., the complexity). Furthermore, the FB-model was significantly better than both, in 7 out of 11 subjects. This is another important result because it shows that a more complex model (that can fit the data more accurately) is not necessarily the most likely model. At the group level the FB-model supervened. We discuss these findings in terms of the validity and usefulness of DCM in characterising EEG/MEG data and its ability to model ERPs in a mechanistic fashion. PMID:17478106

  11. Grief among Surviving Family Members of Homicide Victims: A Causal Approach.

    ERIC Educational Resources Information Center

    Sprang, M. Virginia; And Others

    1993-01-01

    Proposed causal model to delineate predictors of self-reported grief among surviving family members of homicide victims. Evaluated model using data from survey of members of "Victims of Violence" support groups. Results generally supported model and indicated that correlates of grief differed across gender-specific subgroups in terms of their…

  12. Causal Network Models for Predicting Compound Targets and Driving Pathways in Cancer.

    PubMed

    Jaeger, Savina; Min, Junxia; Nigsch, Florian; Camargo, Miguel; Hutz, Janna; Cornett, Allen; Cleaver, Stephen; Buckler, Alan; Jenkins, Jeremy L

    2014-06-01

    Gene-expression data are often used to infer pathways regulating transcriptional responses. For example, differentially expressed genes (DEGs) induced by compound treatment can help characterize hits from phenotypic screens, either by correlation with known drug signatures or by pathway enrichment. Pathway enrichment is, however, typically computed with DEGs rather than "upstream" nodes that are potentially causal of "downstream" changes. Here, we present graph-based models to predict causal targets from compound-microarray data. We test several approaches to traversing network topology, and show that a consensus minimum-rank score (SigNet) beat individual methods and could highly rank compound targets among all network nodes. In addition, larger, less canonical networks outperformed linear canonical interactions. Importantly, pathway enrichment using causal nodes rather than DEGs recovers relevant pathways more often. To further validate our approach, we used integrated data sets from the Cancer Genome Atlas to identify driving pathways in triple-negative breast cancer. Critical pathways were uncovered, including the epidermal growth factor receptor 2-phosphatidylinositide 3-kinase-AKT-MAPK growth pathway andATR-p53-BRCA DNA damage pathway, in addition to unexpected pathways, such as TGF-WNT cytoskeleton remodeling, IL12-induced interferon gamma production, and TNFR-IAP (inhibitor of apoptosis) apoptosis; the latter was validated by pooled small hairpin RNA profiling in cancer cells. Overall, our approach can bridge transcriptional profiles to compound targets and driving pathways in cancer.

  13. Mendelian Randomization as an Approach to Assess Causality Using Observational Data.

    PubMed

    Sekula, Peggy; Del Greco M, Fabiola; Pattaro, Cristian; Köttgen, Anna

    2016-11-01

    Mendelian randomization refers to an analytic approach to assess the causality of an observed association between a modifiable exposure or risk factor and a clinically relevant outcome. It presents a valuable tool, especially when randomized controlled trials to examine causality are not feasible and observational studies provide biased associations because of confounding or reverse causality. These issues are addressed by using genetic variants as instrumental variables for the tested exposure: the alleles of this exposure-associated genetic variant are randomly allocated and not subject to reverse causation. This, together with the wide availability of published genetic associations to screen for suitable genetic instrumental variables make Mendelian randomization a time- and cost-efficient approach and contribute to its increasing popularity for assessing and screening for potentially causal associations. An observed association between the genetic instrumental variable and the outcome supports the hypothesis that the exposure in question is causally related to the outcome. This review provides an overview of the Mendelian randomization method, addresses assumptions and implications, and includes illustrative examples. We also discuss special issues in nephrology, such as inverse risk factor associations in advanced disease, and outline opportunities to design Mendelian randomization studies around kidney function and disease. Copyright © 2016 by the American Society of Nephrology.

  14. Stochastic dynamic causal modelling of FMRI data with multiple-model Kalman filters.

    PubMed

    Osório, P; Rosa, P; Silvestre, C; Figueiredo, P

    2015-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Neural Signals and Images". Dynamic Causal Modelling (DCM) is a generic formalism to study effective brain connectivity based on neuroimaging data, particularly functional Magnetic Resonance Imaging (fMRI). Recently, there have been attempts at modifying this model to allow for stochastic disturbances in the states of the model. This paper proposes the Multiple-Model Kalman Filtering (MMKF) technique as a stochastic identification model discriminating among different hypothetical connectivity structures in the DCM framework; moreover, the performance compared to a similar deterministic identification model is assessed. The integration of the stochastic DCM equations is first presented, and a MMKF algorithm is then developed to perform model selection based on these equations. Monte Carlo simulations are performed in order to investigate the ability of MMKF to distinguish between different connectivity structures and to estimate hidden states under both deterministic and stochastic DCM. The simulations show that the proposed MMKF algorithm was able to successfully select the correct connectivity model structure from a set of pre-specified plausible alternatives. Moreover, the stochastic approach by MMKF was more effective compared to its deterministic counterpart, both in the selection of the correct connectivity structure and in the estimation of the hidden states. These results demonstrate the applicability of a MMKF approach to the study of effective brain connectivity using DCM, particularly when a stochastic formulation is desirable.

  15. Estimating causal effects for multivalued treatments: a comparison of approaches.

    PubMed

    Linden, Ariel; Uysal, S Derya; Ryan, Andrew; Adams, John L

    2016-02-20

    Interventions with multivalued treatments are common in medical and health research, such as when comparing the efficacy of competing drugs or interventions, or comparing between various doses of a particular drug. In recent years, there has been a growing interest in the development of multivalued treatment effect estimators using observational data. In this paper, we compare the performance of commonly used regression-based methods that estimate multivalued treatment effects based on the unconfoundedness assumption. These estimation methods fall into three general categories: (i) estimators based on a model for the outcome variable using conventional regression adjustment; (ii) weighted estimators based on a model for the treatment assignment; and (iii) 'doubly-robust' estimators that model both the treatment assignment and outcome variable within the same framework. We assess the performance of these models using Monte Carlo simulation and demonstrate their application with empirical data. Our results show that (i) when models estimating both the treatment and outcome are correctly specified, all adjustment methods provide similar unbiased estimates; (ii) when the outcome model is misspecified, regression adjustment performs poorly, while all the weighting methods provide unbiased estimates; (iii) when the treatment model is misspecified, methods based solely on modeling the treatment perform poorly, while regression adjustment and the doubly robust models provide unbiased estimates; and (iv) when both the treatment and outcome models are misspecified, all methods perform poorly. Given that researchers will rarely know which of the two models is misspecified, our results support the use of doubly robust estimation. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Explaining quantum correlations through evolution of causal models

    NASA Astrophysics Data System (ADS)

    Harper, Robin; Chapman, Robert J.; Ferrie, Christopher; Granade, Christopher; Kueng, Richard; Naoumenko, Daniel; Flammia, Steven T.; Peruzzo, Alberto

    2017-04-01

    We propose a framework for the systematic and quantitative generalization of Bell's theorem using causal networks. We first consider the multiobjective optimization problem of matching observed data while minimizing the causal effect of nonlocal variables and prove an inequality for the optimal region that both strengthens and generalizes Bell's theorem. To solve the optimization problem (rather than simply bound it), we develop a genetic algorithm treating as individuals causal networks. By applying our algorithm to a photonic Bell experiment, we demonstrate the trade-off between the quantitative relaxation of one or more local causality assumptions and the ability of data to match quantum correlations.

  17. Estimation and Inference for the Causal Effect of Receiving Treatment on a Multinomial Outcome: An Alternative Approach

    PubMed Central

    Baker, Stuart G.

    2010-01-01

    SUMMARY Recently Cheng (Biometrics, 2009) proposed a model for the causal effect of receiving treatment when there is all-or-none compliance in one randomization group, with maximum likelihood estimation based on convex programming. We discuss an alternative approach that involves a model for all-or-none compliance in two randomization groups and estimation via a perfect fit or an EM algorithm for count data. We believe this approach is easier to implement, which would facilitate the reproduction of calculations. PMID:20560933

  18. Missing data estimation in fMRI dynamic causal modeling.

    PubMed

    Zaghlool, Shaza B; Wyatt, Christopher L

    2014-01-01

    Dynamic Causal Modeling (DCM) can be used to quantify cognitive function in individuals as effective connectivity. However, ambiguity among subjects in the number and location of discernible active regions prevents all candidate models from being compared in all subjects, precluding the use of DCM as an individual cognitive phenotyping tool. This paper proposes a solution to this problem by treating missing regions in the first-level analysis as missing data, and performing estimation of the time course associated with any missing region using one of four candidate methods: zero-filling, average-filling, noise-filling using a fixed stochastic process, or one estimated using expectation-maximization. The effect of this estimation scheme was analyzed by treating it as a preprocessing step to DCM and observing the resulting effects on model evidence. Simulation studies show that estimation using expectation-maximization yields the highest classification accuracy using a simple loss function and highest model evidence, relative to other methods. This result held for various dataset sizes and varying numbers of model choice. In real data, application to Go/No-Go and Simon tasks allowed computation of signals from the missing nodes and the consequent computation of model evidence in all subjects compared to 62 and 48 percent respectively if no preprocessing was performed. These results demonstrate the face validity of the preprocessing scheme and open the possibility of using single-subject DCM as an individual cognitive phenotyping tool.

  19. Campbell and Rubin: A Primer and Comparison of Their Approaches to Causal Inference in Field Settings

    ERIC Educational Resources Information Center

    Shadish, William R.

    2010-01-01

    This article compares Donald Campbell's and Donald Rubin's work on causal inference in field settings on issues of epistemology, theories of cause and effect, methodology, statistics, generalization, and terminology. The two approaches are quite different but compatible, differing mostly in matters of bandwidth versus fidelity. Campbell's work…

  20. Campbell and Rubin: A Primer and Comparison of Their Approaches to Causal Inference in Field Settings

    ERIC Educational Resources Information Center

    Shadish, William R.

    2010-01-01

    This article compares Donald Campbell's and Donald Rubin's work on causal inference in field settings on issues of epistemology, theories of cause and effect, methodology, statistics, generalization, and terminology. The two approaches are quite different but compatible, differing mostly in matters of bandwidth versus fidelity. Campbell's work…

  1. Physiologically informed dynamic causal modeling of fMRI data.

    PubMed

    Havlicek, Martin; Roebroeck, Alard; Friston, Karl; Gardumi, Anna; Ivanov, Dimo; Uludag, Kamil

    2015-11-15

    The functional MRI (fMRI) signal is an indirect measure of neuronal activity. In order to deconvolve the neuronal activity from the experimental fMRI data, biophysical generative models have been proposed describing the link between neuronal activity and the cerebral blood flow (the neurovascular coupling), and further the hemodynamic response and the BOLD signal equation. These generative models have been employed both for single brain area deconvolution and to infer effective connectivity in networks of multiple brain areas. In the current paper, we introduce a new fMRI model inspired by experimental observations about the physiological underpinnings of the BOLD signal and compare it with the generative models currently used in dynamic causal modeling (DCM), a widely used framework to study effective connectivity in the brain. We consider three fundamental aspects of such generative models for fMRI: (i) an adaptive two-state neuronal model that accounts for a wide repertoire of neuronal responses during and after stimulation; (ii) feedforward neurovascular coupling that links neuronal activity to blood flow; and (iii) a balloon model that can account for vascular uncoupling between the blood flow and the blood volume. Finally, we adjust the parameterization of the BOLD signal equation for different magnetic field strengths. This paper focuses on the form, motivation and phenomenology of DCMs for fMRI and the characteristics of the various models are demonstrated using simulations. These simulations emphasize a more accurate modeling of the transient BOLD responses - such as adaptive decreases to sustained inputs during stimulation and the post-stimulus undershoot. In addition, we demonstrate using experimental data that it is necessary to take into account both neuronal and vascular transients to accurately model the signal dynamics of fMRI data. By refining the models of the transient responses, we provide a more informed perspective on the underlying neuronal

  2. Neural masses and fields in dynamic causal modeling

    PubMed Central

    Moran, Rosalyn; Pinotsis, Dimitris A.; Friston, Karl

    2013-01-01

    Dynamic causal modeling (DCM) provides a framework for the analysis of effective connectivity among neuronal subpopulations that subtend invasive (electrocorticograms and local field potentials) and non-invasive (electroencephalography and magnetoencephalography) electrophysiological responses. This paper reviews the suite of neuronal population models including neural masses, fields and conductance-based models that are used in DCM. These models are expressed in terms of sets of differential equations that allow one to model the synaptic underpinnings of connectivity. We describe early developments using neural mass models, where convolution-based dynamics are used to generate responses in laminar-specific populations of excitatory and inhibitory cells. We show that these models, though resting on only two simple transforms, can recapitulate the characteristics of both evoked and spectral responses observed empirically. Using an identical neuronal architecture, we show that a set of conductance based models—that consider the dynamics of specific ion-channels—present a richer space of responses; owing to non-linear interactions between conductances and membrane potentials. We propose that conductance-based models may be more appropriate when spectra present with multiple resonances. Finally, we outline a third class of models, where each neuronal subpopulation is treated as a field; in other words, as a manifold on the cortical surface. By explicitly accounting for the spatial propagation of cortical activity through partial differential equations (PDEs), we show that the topology of connectivity—through local lateral interactions among cortical layers—may be inferred, even in the absence of spatially resolved data. We also show that these models allow for a detailed analysis of structure–function relationships in the cortex. Our review highlights the relationship among these models and how the hypothesis asked of empirical data suggests an appropriate

  3. Calculating and Understanding: Formal Models and Causal Explanations in Science, Common Reasoning and Physics Teaching

    NASA Astrophysics Data System (ADS)

    Besson, Ugo

    2010-03-01

    This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought and daily life, it has long been the subject of debate and criticism among philosophers and scientists. In this paper, I begin by providing a description of some general tendencies of common reasoning that have been identified by didactic research. Thereafter, I briefly discuss the role of causality in science, as well as some different types of explanation employed in the field of physics. I then present some results of a study examining the causal reasoning used by students in solid and fluid mechanics. The differences found between the types of reasoning typical of common thought and those usually proposed during instruction can create learning difficulties and impede student motivation. Many students do not seem satisfied by the mere application of formal laws and functional relations. Instead, they express the need for a causal explanation, a mechanism that allows them to understand how a state of affairs has come about. I discuss few didactic strategies aimed at overcoming these problems, and describe, in general terms, two examples of mechanics teaching sequences which were developed and tested in different contexts. The paper ends with a reflection on the possible role to be played in physics learning by intuitive and imaginative thought, and the use of simple explanatory models based on physical analogies and causal mechanisms.

  4. Counterfactuals and Causal Models: Introduction to the Special Issue

    ERIC Educational Resources Information Center

    Sloman, Steven A.

    2013-01-01

    Judea Pearl won the 2010 Rumelhart Prize in computational cognitive science due to his seminal contributions to the development of Bayes nets and causal Bayes nets, frameworks that are central to multiple domains of the computational study of mind. At the heart of the causal Bayes nets formalism is the notion of a counterfactual, a representation…

  5. Counterfactuals and Causal Models: Introduction to the Special Issue

    ERIC Educational Resources Information Center

    Sloman, Steven A.

    2013-01-01

    Judea Pearl won the 2010 Rumelhart Prize in computational cognitive science due to his seminal contributions to the development of Bayes nets and causal Bayes nets, frameworks that are central to multiple domains of the computational study of mind. At the heart of the causal Bayes nets formalism is the notion of a counterfactual, a representation…

  6. Cause and Event: Supporting Causal Claims through Logistic Models

    ERIC Educational Resources Information Center

    O'Connell, Ann A.; Gray, DeLeon L.

    2011-01-01

    Efforts to identify and support credible causal claims have received intense interest in the research community, particularly over the past few decades. In this paper, we focus on the use of statistical procedures designed to support causal claims for a treatment or intervention when the response variable of interest is dichotomous. We identify…

  7. Cause and Event: Supporting Causal Claims through Logistic Models

    ERIC Educational Resources Information Center

    O'Connell, Ann A.; Gray, DeLeon L.

    2011-01-01

    Efforts to identify and support credible causal claims have received intense interest in the research community, particularly over the past few decades. In this paper, we focus on the use of statistical procedures designed to support causal claims for a treatment or intervention when the response variable of interest is dichotomous. We identify…

  8. Evaluating Social Causality and Responsibility Models: An Initial Report

    DTIC Science & Technology

    2005-01-01

    events and executed actions as inputs. Causal information and social information are also important inputs. Causal information includes an action ... theory and a plan library (discussed below). Social information specifies social roles and the power relationship of the roles. The in- ference

  9. Dynamic causal models of steady-state responses

    PubMed Central

    Moran, R.J.; Stephan, K.E.; Seidenbecher, T.; Pape, H.-C.; Dolan, R.J.; Friston, K.J.

    2009-01-01

    In this paper, we describe a dynamic causal model (DCM) of steady-state responses in electrophysiological data that are summarised in terms of their cross-spectral density. These spectral data-features are generated by a biologically plausible, neural-mass model of coupled electromagnetic sources; where each source comprises three sub-populations. Under linearity and stationarity assumptions, the model's biophysical parameters (e.g., post-synaptic receptor density and time constants) prescribe the cross-spectral density of responses measured directly (e.g., local field potentials) or indirectly through some lead-field (e.g., electroencephalographic and magnetoencephalographic data). Inversion of the ensuing DCM provides conditional probabilities on the synaptic parameters of intrinsic and extrinsic connections in the underlying neuronal network. This means we can make inferences about synaptic physiology, as well as changes induced by pharmacological or behavioural manipulations, using the cross-spectral density of invasive or non-invasive electrophysiological recordings. In this paper, we focus on the form of the model, its inversion and validation using synthetic and real data. We conclude with an illustrative application to multi-channel local field potential data acquired during a learning experiment in mice. PMID:19000769

  10. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.

    PubMed

    Kogelman, Lisette J A; Zhernakova, Daria V; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2015-10-20

    Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate < 0.05), of which the cis-eQTLs were associated with metabolic pathways. We reduced the eQTL search space by focusing on differentially expressed and co-expressed genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we

  11. Dynamic causal modelling for functional near-infrared spectroscopy

    PubMed Central

    Tak, S.; Kempny, A.M.; Friston, K.J.; Leff, A.P.; Penny, W.D.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging technique for measuring changes in cerebral hemoglobin concentration via optical absorption changes. Although there is great interest in using fNIRS to study brain connectivity, current methods are unable to infer the directionality of neuronal connections. In this paper, we apply Dynamic Causal Modelling (DCM) to fNIRS data. Specifically, we present a generative model of how observed fNIRS data are caused by interactions among hidden neuronal states. Inversion of this generative model, using an established Bayesian framework (variational Laplace), then enables inference about changes in directed connectivity at the neuronal level. Using experimental data acquired during motor imagery and motor execution tasks, we show that directed (i.e., effective) connectivity from the supplementary motor area to the primary motor cortex is negatively modulated by motor imagery, and this suppressive influence causes reduced activity in the primary motor cortex during motor imagery. These results are consistent with findings of previous functional magnetic resonance imaging (fMRI) studies, suggesting that the proposed method enables one to infer directed interactions in the brain mediated by neuronal dynamics from measurements of optical density changes. PMID:25724757

  12. Gradient-based MCMC samplers for dynamic causal modelling.

    PubMed

    Sengupta, Biswa; Friston, Karl J; Penny, Will D

    2016-01-15

    In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton's equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R) manifold. While LMC-R requires minimal tuning, the implementation of HMC-E is heavily dependent on its tuning parameters. These parameters are therefore optimised by learning a Gaussian process model of the time-normalised sample correlation matrix. This allows one to formulate an objective function that balances tuning parameter exploration and exploitation, furnishing an intervention-free inference scheme. Using neural mass models (NMMs)-a class of biophysically motivated DCMs-we find that HMC-E is statistically more efficient than LMC-R (with a Riemannian metric); yet both gradient-based samplers are far superior to the random walk Metropolis algorithm, which proves inadequate to steer away from dynamical instability. Copyright © 2015. Published by Elsevier Inc.

  13. Gradient-based MCMC samplers for dynamic causal modelling

    PubMed Central

    Sengupta, Biswa; Friston, Karl J.; Penny, Will D.

    2016-01-01

    In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton’s equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R) manifold. While LMC-R requires minimal tuning, the implementation of HMC-E is heavily dependent on its tuning parameters. These parameters are therefore optimised by learning a Gaussian process model of the time-normalised sample correlation matrix. This allows one to formulate an objective function that balances tuning parameter exploration and exploitation, furnishing an intervention-free inference scheme. Using neural mass models (NMMs)—a class of biophysically motivated DCMs—we find that HMC-E is statistically more efficient than LMC-R (with a Riemannian metric); yet both gradient-based samplers are far superior to the random walk Metropolis algorithm, which proves inadequate to steer away from dynamical instability. PMID:26213349

  14. A Causal Model for Joint Evaluation of Placebo and Treatment-Specific Effects in Clinical Trials

    PubMed Central

    Zhang, Zhiwei; Kotz, Richard M.; Wang, Chenguang; Ruan, Shiling; Ho, Martin

    2014-01-01

    Summary Evaluation of medical treatments is frequently complicated by the presence of substantial placebo effects, especially on relatively subjective endpoints, and the standard solution to this problem is a randomized, double-blinded, placebo-controlled clinical trial. However, effective blinding does not guarantee that all patients have the same belief or mentality about which treatment they have received (or treatmentality, for brevity), making it difficult to interpret the usual intent-to-treat effect as a causal effect. We discuss the causal relationships among treatment, treatmentality and the clinical outcome of interest, and propose a causal model for joint evaluation of placebo and treatment-specific effects. The model highlights the importance of measuring and incorporating patient treatmentality and suggests that each treatment group should be considered a separate observational study with a patient's treatmentality playing the role of an uncontrolled exposure. This perspective allows us to adapt existing methods for dealing with confounding to joint estimation of placebo and treatment-specific effects using measured treatmentality data, commonly known as blinding assessment data. We first apply this approach to the most common type of blinding assessment data, which is categorical, and illustrate the methods using an example from asthma. We then propose that blinding assessment data can be collected as a continuous variable, specifically when a patient's treatmentality is measured as a subjective probability, and describe analytic methods for that case. PMID:23432119

  15. Establishing Causality Using Longitudinal Hierarchical Linear Modeling: An Illustration Predicting Achievement From Self-Control.

    PubMed

    Duckworth, Angela Lee; Tsukayama, Eli; May, Henry

    2010-10-01

    The predictive validity of personality for important life outcomes is well established, but conventional longitudinal analyses cannot rule out the possibility that unmeasured third-variable confounds fully account for the observed relationships. Longitudinal hierarchical linear models (HLM) with time-varying covariates allow each subject to serve as his or her own control, thus eliminating between-individual confounds. HLM also allows the directionality of the causal relationship to be tested by reversing time-lagged predictor and outcome variables. We illustrate these techniques through a series of models that demonstrate that within-individual changes in self-control over time predict subsequent changes in GPA but not vice-versa. The evidence supporting a causal role for self-control was not moderated by IQ, gender, ethnicity, or income. Further analyses rule out one time-varying confound: self-esteem. The analytic approach taken in this study provides the strongest evidence to date for the causal role of self-control in determining achievement.

  16. Learning about causes from people and about people as causes: probabilistic models and social causal reasoning.

    PubMed

    Buchsbaum, Daphna; Seiver, Elizabeth; Bridgers, Sophie; Gopnik, Alison

    2012-01-01

    A major challenge children face is uncovering the causal structure of the world around them. Previous research on children's causal inference has demonstrated their ability to learn about causal relationships in the physical environment using probabilistic evidence. However, children must also learn about causal relationships in the social environment, including discovering the causes of other people's behavior, and understanding the causal relationships between others' goal-directed actions and the outcomes of those actions. In this chapter, we argue that social reasoning and causal reasoning are deeply linked, both in the real world and in children's minds. Children use both types of information together and in fact reason about both physical and social causation in fundamentally similar ways. We suggest that children jointly construct and update causal theories about their social and physical environment and that this process is best captured by probabilistic models of cognition. We first present studies showing that adults are able to jointly infer causal structure and human action structure from videos of unsegmented human motion. Next, we describe how children use social information to make inferences about physical causes. We show that the pedagogical nature of a demonstrator influences children's choices of which actions to imitate from within a causal sequence and that this social information interacts with statistical causal evidence. We then discuss how children combine evidence from an informant's testimony and expressed confidence with evidence from their own causal observations to infer the efficacy of different potential causes. We also discuss how children use these same causal observations to make inferences about the knowledge state of the social informant. Finally, we suggest that psychological causation and attribution are part of the same causal system as physical causation. We present evidence that just as children use covariation between

  17. Does Teaching Students How to Explicitly Model the Causal Structure of Systems Improve Their Understanding of These Systems?

    ERIC Educational Resources Information Center

    Jensen, Eva

    2014-01-01

    If students really understand the systems they study, they would be able to tell how changes in the system would affect a result. This demands that the students understand the mechanisms that drive its behaviour. The study investigates potential merits of learning how to explicitly model the causal structure of systems. The approach and…

  18. Does Teaching Students How to Explicitly Model the Causal Structure of Systems Improve Their Understanding of These Systems?

    ERIC Educational Resources Information Center

    Jensen, Eva

    2014-01-01

    If students really understand the systems they study, they would be able to tell how changes in the system would affect a result. This demands that the students understand the mechanisms that drive its behaviour. The study investigates potential merits of learning how to explicitly model the causal structure of systems. The approach and…

  19. Sensory Impairments and Autism: A Re-Examination of Causal Modelling

    ERIC Educational Resources Information Center

    Gerrard, Sue; Rugg, Gordon

    2009-01-01

    Sensory impairments are widely reported in autism, but remain largely unexplained by existing models. This article examines Kanner's causal reasoning and identifies unsupported assumptions implicit in later empirical work. Our analysis supports a heterogeneous causal model for autistic characteristics. We propose that the development of a…

  20. A Test of a Causal Model of Communication and Burnout in the Teaching Profession.

    ERIC Educational Resources Information Center

    Starnaman, Sandra M.; Miller, Katherine I.

    1992-01-01

    Develops and tests a causal model of the relationship among burnout, communication, organizational stressors, and outcomes in the educational setting. Finds that the causal model developed indicates that teachers' workload and support from their principal influenced role conflict and role ambiguity. Finds that these role stressors, in turn,…

  1. Sensory Impairments and Autism: A Re-Examination of Causal Modelling

    ERIC Educational Resources Information Center

    Gerrard, Sue; Rugg, Gordon

    2009-01-01

    Sensory impairments are widely reported in autism, but remain largely unexplained by existing models. This article examines Kanner's causal reasoning and identifies unsupported assumptions implicit in later empirical work. Our analysis supports a heterogeneous causal model for autistic characteristics. We propose that the development of a…

  2. How can we cope with the complexity of the environment? A "Learning by modelling" approach using qualitative reasoning for developing causal models and simulations with focus on Sustainable River Catchment Management

    NASA Astrophysics Data System (ADS)

    Poppe, Michaela; Zitek, Andreas; Salles, Paulo; Bredeweg, Bert; Muhar, Susanne

    2010-05-01

    The education system needs strategies to attract future scientists and practitioners. There is an alarming decline in the number of students choosing science subjects. Reasons for this include the perceived complexity and the lack of effective cognitive tools that enable learners to acquire the expertise in a way that fits its qualitative nature. The DynaLearn project utilises a "Learning by modelling" approach to deliver an individualised and engaging cognitive tool for acquiring conceptual knowledge. The modelling approach is based on qualitative reasoning, a research area within artificial intelligence, and allows for capturing and simulating qualitative systems knowledge. Educational activities within the DynaLearn software address topics at different levels of complexity, depending on the educational goals and settings. DynaLearn uses virtual characters in the learning environment as agents for engaging and motivating the students during their modelling exercise. The DynaLearn software represents an interactive learning environment in which learners are in control of their learning activities. The software is able to coach them individually based on their current progress, their knowledge needs and learning goals. Within the project 70 expert models on different environmental issues covering seven core topics (Earth Systems and Resources, The Living World, Human population, Land and Water Use, Energy Resources and Consumption, Pollution, and Global Changes) will be delivered. In the context of the core topic "Land and Water Use" the Institute of Hydrobiology and Aquatic Ecosystem Management has developed a model on Sustainable River Catchment Management. River systems with their catchments have been tremendously altered due to human pressures with serious consequences for the ecological integrity of riverine landscapes. The operation of hydropower plants, the implementation of flood protection measures, the regulation of flow and sediment regime and intensive

  3. Modeling the Perception of Audiovisual Distance: Bayesian Causal Inference and Other Models

    PubMed Central

    2016-01-01

    Studies of audiovisual perception of distance are rare. Here, visual and auditory cue interactions in distance are tested against several multisensory models, including a modified causal inference model. In this causal inference model predictions of estimate distributions are included. In our study, the audiovisual perception of distance was overall better explained by Bayesian causal inference than by other traditional models, such as sensory dominance and mandatory integration, and no interaction. Causal inference resolved with probability matching yielded the best fit to the data. Finally, we propose that sensory weights can also be estimated from causal inference. The analysis of the sensory weights allows us to obtain windows within which there is an interaction between the audiovisual stimuli. We find that the visual stimulus always contributes by more than 80% to the perception of visual distance. The visual stimulus also contributes by more than 50% to the perception of auditory distance, but only within a mobile window of interaction, which ranges from 1 to 4 m. PMID:27959919

  4. The causal pie model: an epidemiological method applied to evolutionary biology and ecology.

    PubMed

    Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette

    2014-05-01

    A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a "causal pie" of "component causes". Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made.

  5. The causal pie model: an epidemiological method applied to evolutionary biology and ecology

    PubMed Central

    Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette

    2014-01-01

    A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a “causal pie” of “component causes”. Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made. PMID:24963386

  6. Causal inference as an emerging statistical approach in neurology: an example for epilepsy in the elderly.

    PubMed

    Moura, Lidia Mvr; Westover, M Brandon; Kwasnik, David; Cole, Andrew J; Hsu, John

    2017-01-01

    The elderly population faces an increasing number of cases of chronic neurological conditions, such as epilepsy and Alzheimer's disease. Because the elderly with epilepsy are commonly excluded from randomized controlled clinical trials, there are few rigorous studies to guide clinical practice. When the elderly are eligible for trials, they either rarely participate or frequently have poor adherence to therapy, thus limiting both generalizability and validity. In contrast, large observational data sets are increasingly available, but are susceptible to bias when using common analytic approaches. Recent developments in causal inference-analytic approaches also introduce the possibility of emulating randomized controlled trials to yield valid estimates. We provide a practical example of the application of the principles of causal inference to a large observational data set of patients with epilepsy. This review also provides a framework for comparative-effectiveness research in chronic neurological conditions.

  7. Causal inference as an emerging statistical approach in neurology: an example for epilepsy in the elderly

    PubMed Central

    Moura, Lidia MVR; Westover, M Brandon; Kwasnik, David; Cole, Andrew J; Hsu, John

    2017-01-01

    The elderly population faces an increasing number of cases of chronic neurological conditions, such as epilepsy and Alzheimer’s disease. Because the elderly with epilepsy are commonly excluded from randomized controlled clinical trials, there are few rigorous studies to guide clinical practice. When the elderly are eligible for trials, they either rarely participate or frequently have poor adherence to therapy, thus limiting both generalizability and validity. In contrast, large observational data sets are increasingly available, but are susceptible to bias when using common analytic approaches. Recent developments in causal inference-analytic approaches also introduce the possibility of emulating randomized controlled trials to yield valid estimates. We provide a practical example of the application of the principles of causal inference to a large observational data set of patients with epilepsy. This review also provides a framework for comparative-effectiveness research in chronic neurological conditions. PMID:28115873

  8. Towards an Algebra for Analyzing Causal Relations.

    ERIC Educational Resources Information Center

    Ellett, Frederick S., Jr.; Ericson, David P.

    Correlation-based approaches to causal analysis contain too much irrelevant information that masks and modulates the true nature of causal processes in the world. Both causal modeling and path analysis/structural equations give the wrong answers for certain conceptions of causation, given certain assumptions about the "error" variables.…

  9. Trajectories and causal phase-space approach to relativistic quantum mechanics

    SciTech Connect

    Holland, P.R.; Kyprianidis, A.; Vigier, J.P.

    1987-05-01

    The authors analyze phase-space approaches to relativistic quantum mechanics from the viewpoint of the causal interpretation. In particular, they discuss the canonical phase space associated with stochastic quantization, its relation to Hilbert space, and the Wigner-Moyal formalism. They then consider the nature of Feynman paths, and the problem of nonlocality, and conclude that a perfectly consistent relativistically covariant interpretation of quantum mechanics which retains the notion of particle trajectory is possible.

  10. Testing a Model of Diabetes Self-Care Management: A Causal Model Analysis with LISREL.

    ERIC Educational Resources Information Center

    Nowacek, George A.; And Others

    1990-01-01

    A diabetes-management model is presented, which includes an attitudinal element and depicts relationships among causal elements. LISREL-VI was used to analyze data from 115 Type-I and 105 Type-II patients. The data did not closely fit the model. Results support the importance of the personal meaning of diabetes. (TJH)

  11. Estimators for Clustered Education RCTs Using the Neyman Model for Causal Inference

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2013-01-01

    This article examines the estimation of two-stage clustered designs for education randomized control trials (RCTs) using the nonparametric Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for…

  12. Dynamic Interactions and Intersubjectivity: Challenges to Causal Modeling in Studies of College Student Debt

    ERIC Educational Resources Information Center

    Dowd, Alicia C.

    2008-01-01

    Loans are a central component of college finance, yet research has generated a dearth of strong evidence of their effect on student choices. This article examines challenges to causal modeling regarding the effects of borrowing and the prospects of indebtedness on students' college-going behaviors. Statistical estimates of causal effects are…

  13. Causal Agency Theory: Reconceptualizing a Functional Model of Self-Determination

    ERIC Educational Resources Information Center

    Shogren, Karrie A.; Wehmeyer, Michael L.; Palmer, Susan B.; Forber-Pratt, Anjali J.; Little, Todd J.; Lopez, Shane

    2015-01-01

    This paper introduces Causal Agency Theory, an extension of the functional model of self-determination. Causal Agency Theory addresses the need for interventions and assessments pertaining to selfdetermination for all students and incorporates the significant advances in understanding of disability and in the field of positive psychology since the…

  14. Estimators for Clustered Education RCTs Using the Neyman Model for Causal Inference

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2013-01-01

    This article examines the estimation of two-stage clustered designs for education randomized control trials (RCTs) using the nonparametric Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for…

  15. Causal Agency Theory: Reconceptualizing a Functional Model of Self-Determination

    ERIC Educational Resources Information Center

    Shogren, Karrie A.; Wehmeyer, Michael L.; Palmer, Susan B.; Forber-Pratt, Anjali J.; Little, Todd J.; Lopez, Shane

    2015-01-01

    This paper introduces Causal Agency Theory, an extension of the functional model of self-determination. Causal Agency Theory addresses the need for interventions and assessments pertaining to selfdetermination for all students and incorporates the significant advances in understanding of disability and in the field of positive psychology since the…

  16. Collinearity and causal diagrams – a lesson on the importance of model specification

    PubMed Central

    Schisterman, Enrique F.; Perkins, Neil J.; Mumford, Sunni L.; Ahrens, Katherine A.; Mitchell, Emily M.

    2016-01-01

    Background Correlated data are ubiquitous in epidemiologic research, particularly in nutritional and environmental epidemiology where mixtures of factors are studied. Our objective is to demonstrate how highly correlated data arise in epidemiologic research and provide guidance on how to proceed analytically when faced with highly correlated data utilizing a directed acyclic graph approach. Methods We identified three fundamental structural scenarios in which high correlation between a given variable and the exposure can arise: intermediates, confounders, and colliders. For each of these scenarios we evaluated the consequences of increasing correlation between the given variable and the exposure on the bias and variance for the total effect of the exposure on the outcome using unadjusted and adjusted models. We derived closed form solutions for continuous outcomes using linear regression and empirically present our findings for binary outcomes using logistic regression. Results For models properly specified, total effect estimates remained unbiased even when there was almost perfect correlation between the exposure and a given intermediate, confounder, or collider. In general, as the correlation increased the variance of the parameter estimate for the exposure in the adjusted models increased, while in the unadjusted models it increased to a lesser extent or decreased. Conclusion Our findings highlight the importance of considering the causal framework under study when specifying regression models. Strategies that do not take into consideration the causal structure may lead to biased effect estimation for the original question of interest, even under high correlation. PMID:27676260

  17. Seeing Perfectly Fitting Factor Models That Are Causally Misspecified: Understanding That Close-Fitting Models Can Be Worse

    ERIC Educational Resources Information Center

    Hayduk, Leslie

    2014-01-01

    Researchers using factor analysis tend to dismiss the significant ill fit of factor models by presuming that if their factor model is close-to-fitting, it is probably close to being properly causally specified. Close fit may indeed result from a model being close to properly causally specified, but close-fitting factor models can also be seriously…

  18. Seeing Perfectly Fitting Factor Models That Are Causally Misspecified: Understanding That Close-Fitting Models Can Be Worse

    ERIC Educational Resources Information Center

    Hayduk, Leslie

    2014-01-01

    Researchers using factor analysis tend to dismiss the significant ill fit of factor models by presuming that if their factor model is close-to-fitting, it is probably close to being properly causally specified. Close fit may indeed result from a model being close to properly causally specified, but close-fitting factor models can also be seriously…

  19. Conditional spectrum computation incorporating multiple causal earthquakes and ground-motion prediction models

    USGS Publications Warehouse

    Lin, Ting; Harmsen, Stephen C.; Baker, Jack W.; Luco, Nicolas

    2013-01-01

    The conditional spectrum (CS) is a target spectrum (with conditional mean and conditional standard deviation) that links seismic hazard information with ground-motion selection for nonlinear dynamic analysis. Probabilistic seismic hazard analysis (PSHA) estimates the ground-motion hazard by incorporating the aleatory uncertainties in all earthquake scenarios and resulting ground motions, as well as the epistemic uncertainties in ground-motion prediction models (GMPMs) and seismic source models. Typical CS calculations to date are produced for a single earthquake scenario using a single GMPM, but more precise use requires consideration of at least multiple causal earthquakes and multiple GMPMs that are often considered in a PSHA computation. This paper presents the mathematics underlying these more precise CS calculations. Despite requiring more effort to compute than approximate calculations using a single causal earthquake and GMPM, the proposed approach produces an exact output that has a theoretical basis. To demonstrate the results of this approach and compare the exact and approximate calculations, several example calculations are performed for real sites in the western United States. The results also provide some insights regarding the circumstances under which approximate results are likely to closely match more exact results. To facilitate these more precise calculations for real applications, the exact CS calculations can now be performed for real sites in the United States using new deaggregation features in the U.S. Geological Survey hazard mapping tools. Details regarding this implementation are discussed in this paper.

  20. A causal model for longitudinal randomised trials with time-dependent non-compliance.

    PubMed

    Becque, Taeko; White, Ian R; Haggard, Mark

    2015-05-30

    In the presence of non-compliance, conventional analysis by intention-to-treat provides an unbiased comparison of treatment policies but typically under-estimates treatment efficacy. With all-or-nothing compliance, efficacy may be specified as the complier-average causal effect (CACE), where compliers are those who receive intervention if and only if randomised to it. We extend the CACE approach to model longitudinal data with time-dependent non-compliance, focusing on the situation in which those randomised to control may receive treatment and allowing treatment effects to vary arbitrarily over time. Defining compliance type to be the time of surgical intervention if randomised to control, so that compliers are patients who would not have received treatment at all if they had been randomised to control, we construct a causal model for the multivariate outcome conditional on compliance type and randomised arm. This model is applied to the trial of alternative regimens for glue ear treatment evaluating surgical interventions in childhood ear disease, where outcomes are measured over five time points, and receipt of surgical intervention in the control arm may occur at any time. We fit the models using Markov chain Monte Carlo methods to obtain estimates of the CACE at successive times after receiving the intervention. In this trial, over a half of those randomised to control eventually receive intervention. We find that surgery is more beneficial than control at 6months, with a small but non-significant beneficial effect at 12months.

  1. Causal Indicator Models Have Nothing to Do with Measurement

    ERIC Educational Resources Information Center

    Howell, Roy D.; Breivik, Einar

    2016-01-01

    In this article, Roy Howell, and Einar Breivik, congratulate Aguirre-Urreta, M. I., Rönkkö, M., & Marakas, G. M., for their work (2016) "Omission of Causal Indicators: Consequences and Implications for Measurement," Measurement: Interdisciplinary Research and Perspectives, 14(3), 75-97. doi:10.1080/15366367.2016.1205935. They call it…

  2. A Bayesian Nonparametric Causal Model for Regression Discontinuity Designs

    ERIC Educational Resources Information Center

    Karabatsos, George; Walker, Stephen G.

    2013-01-01

    The regression discontinuity (RD) design (Thistlewaite & Campbell, 1960; Cook, 2008) provides a framework to identify and estimate causal effects from a non-randomized design. Each subject of a RD design is assigned to the treatment (versus assignment to a non-treatment) whenever her/his observed value of the assignment variable equals or…

  3. Causal Indicator Models Have Nothing to Do with Measurement

    ERIC Educational Resources Information Center

    Howell, Roy D.; Breivik, Einar

    2016-01-01

    In this article, Roy Howell, and Einar Breivik, congratulate Aguirre-Urreta, M. I., Rönkkö, M., & Marakas, G. M., for their work (2016) "Omission of Causal Indicators: Consequences and Implications for Measurement," Measurement: Interdisciplinary Research and Perspectives, 14(3), 75-97. doi:10.1080/15366367.2016.1205935. They call it…

  4. Visual causal models enhance clinical explanations of treatments for generalized anxiety disorder.

    PubMed

    Kim, Nancy S; Khalife, Danielle; Judge, Kelly A; Paulus, Daniel J; Jordan, Jake T; Yopchick, Jennelle E

    2013-01-01

    A daily challenge in clinical practice is to adequately explain disorders and treatments to patients of varying levels of literacy in a time-limited situation. Drawing jointly upon research on causal reasoning and multimodal theory, the authors asked whether adding visual causal models to clinical explanations promotes patient learning. Participants were 86 people currently or formerly diagnosed with a mood disorder and 104 lay people in Boston, Massachusetts, USA, who were randomly assigned to receive either a visual causal model (dual-mode) presentation or auditory-only presentation of an explanation about generalized anxiety disorder and its treatment. Participants' knowledge was tested before, immediately after, and 4 weeks after the presentation. Patients and lay people learned significantly more from visual causal model presentations than from auditory-only presentations, and visual causal models were perceived to be helpful. Participants retained some information 4 weeks after the presentation, although the advantage of visual causal models did not persist in the long term. In conclusion, dual-mode presentations featuring visual causal models yield significant relative gains in patient comprehension immediately after the clinical session, at a time when the authors suggest that patients may be most willing to begin the recommended treatment plan.

  5. Causality and headache triggers

    PubMed Central

    Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.

    2013-01-01

    Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872

  6. Causal inference based on counterfactuals

    PubMed Central

    Höfler, M

    2005-01-01

    Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept. PMID:16159397

  7. A local adjustment strategy for the initialization of dynamic causal modelling to infer effective connectivity in brain epileptic structures.

    PubMed

    Xiang, Wentao; Karfoul, Ahmad; Shu, Huazhong; Le Bouquin Jeannès, Régine

    2017-03-07

    This paper addresses the question of effective connectivity in the human cerebral cortex in the context of epilepsy. Among model based approaches to infer brain connectivity, spectral Dynamic Causal Modelling is a conventional technique for which we propose an alternative to estimate cross spectral density. The proposed strategy we investigated tackles the sub-estimation of the free energy using the well-known variational Expectation-Maximization algorithm highly sensitive to the initialization of the parameters vector by a permanent local adjustment of the initialization process. The performance of the proposed strategy in terms of effective connectivity identification is assessed using simulated data generated by a neuronal mass model (simulating unidirectional and bidirectional flows) and real epileptic intracerebral Electroencephalographic signals. Results show the efficiency of proposed approach compared to the conventional Dynamic Causal Modelling and the one wherein a deterministic annealing scheme is employed.

  8. Causal Models with Unmeasured Variables: An Introduction to LISREL.

    ERIC Educational Resources Information Center

    Wolfle, Lee M.

    Whenever one uses ordinary least squares regression, one is making an implicit assumption that all of the independent variables have been measured without error. Such an assumption is obviously unrealistic for most social data. One approach for estimating such regression models is to measure implied coefficients between latent variables for which…

  9. Quantitative models and strength of evidence in causal inference

    NASA Astrophysics Data System (ADS)

    Gerritsen, J.; Bailey, J.; Boschen, C.; Burton, J.; Lowman, B.; Ludwig, J.; Wilkes, S.; Wirts, J.; Zheng, L.

    2005-05-01

    Human activities such as mining, logging, agriculture and residential development have caused biological degradation to streams of West Virginia. Total Maximum Daily Loads (TMDLs) are being developed for all biologically-impaired streams within the state, and require causes of impairment to be identified so that pollutants can be controlled. Using a statewide dataset, we examined macroinvertebrate community response to single and multiple stressors, and applied two quantitative modeling approaches for ranking stressors. A "dirty reference" approach examined community composition in clean and predefined stressed sites, and tolerance values of individual taxa were estimated with reciprocal averaging. We integrated the empirical models of biological impairment with onsite field observations of biota, habitat, water quality, watershed observations, within a strength of evidence approach to infer causes of impairment. Candidate causes were screened to eliminate those shown not to co-occur with effects. Remaining candidate causes were ranked according to considerations of evidence within each watershed, as well as from the statewide empirical models and from other published sources. Strongest inferences were obtained where the independent predictive model agreed with within-watershed observations of stressor measures. Final stressor determinations for each watershed will be used for the development and implementation of TMDLs.

  10. Does teaching students how to explicitly model the causal structure of systems improve their understanding of these systems?

    NASA Astrophysics Data System (ADS)

    Jensen, Eva

    2014-07-01

    If students really understand the systems they study, they would be able to tell how changes in the system would affect a result. This demands that the students understand the mechanisms that drive its behaviour. The study investigates potential merits of learning how to explicitly model the causal structure of systems. The approach and performance of 15 system dynamics students who are taught to explicitly model the causal structure of the systems they study were compared with the approach and performance of 22 engineering students, who generally did not receive such training. The task was to bring a computer-simulated predator-and-prey ecology to equilibrium. The system dynamics students were significantly more likely than the engineering students to correctly frame the problem. They were not much better at solving the task, however. It seemed that they had only learnt how to make models and not how to use them for reasoning.

  11. Linear Models: A Useful Microscope for Causal Analysis

    DTIC Science & Technology

    2013-02-01

    Conference on Artificial Intelligence and Statistics (AISTATS). La Palma, Canary Islands. Berkson, J. (1946). Limitations of the application of...combined causal and diagnostic reasoning in inference systems. In Proceedings of the Eighth International Joint Conference on Artificial Intelligence ...Uncertainty in Artificial Intelligence . AUAI, Corvallis, OR, 417–424. <http://ftp.cs.ucla.edu/pub/stat ser/r356.pdf>. Pearl, J. (2010b). On measurement

  12. Causal modelling applied to the risk assessment of a wastewater discharge.

    PubMed

    Paul, Warren L; Rokahr, Pat A; Webb, Jeff M; Rees, Gavin N; Clune, Tim S

    2016-03-01

    Bayesian networks (BNs), or causal Bayesian networks, have become quite popular in ecological risk assessment and natural resource management because of their utility as a communication and decision-support tool. Since their development in the field of artificial intelligence in the 1980s, however, Bayesian networks have evolved and merged with structural equation modelling (SEM). Unlike BNs, which are constrained to encode causal knowledge in conditional probability tables, SEMs encode this knowledge in structural equations, which is thought to be a more natural language for expressing causal information. This merger has clarified the causal content of SEMs and generalised the method such that it can now be performed using standard statistical techniques. As it was with BNs, the utility of this new generation of SEM in ecological risk assessment will need to be demonstrated with examples to foster an understanding and acceptance of the method. Here, we applied SEM to the risk assessment of a wastewater discharge to a stream, with a particular focus on the process of translating a causal diagram (conceptual model) into a statistical model which might then be used in the decision-making and evaluation stages of the risk assessment. The process of building and testing a spatial causal model is demonstrated using data from a spatial sampling design, and the implications of the resulting model are discussed in terms of the risk assessment. It is argued that a spatiotemporal causal model would have greater external validity than the spatial model, enabling broader generalisations to be made regarding the impact of a discharge, and greater value as a tool for evaluating the effects of potential treatment plant upgrades. Suggestions are made on how the causal model could be augmented to include temporal as well as spatial information, including suggestions for appropriate statistical models and analyses.

  13. A causal model for the effectiveness of internal quality assurance for the health science area.

    PubMed

    Seeorn, Kittiya

    2005-10-01

    The purposes of this research were 1) to study the effectiveness of Internal Quality Assurance (IQA) of the Health science area, and 2) to study the factors affecting the effectiveness of the IQA of the Health science area. A causal model has been developed by the researcher comprised of the 6 exogenous latent variables: Attitude towards quality assurance, Teamwork, Staff training, Resource sufficiency, Organizational culture, and Leadership, and the 4 endogenous latent variables, which are the effectiveness of the IQA, Student-centered approach, Decentralized administration, PDCA cycle of work (Plan-Do-Check-Act), and Staff job satisfaction. The research sample consisted of 108 health science faculties derived by stratified random sampling technique. Data were collected by 10 questionnaires having reliability ranging from 0.79 to 0.96. Data analyses were descriptive statistics, and Linear Structure Relationship (LISREL) analysis. The major findings were as follows: 1. The 4 dimensions of effectiveness for the IQA of the Health science areas were significantly higher at the .05 level, after the Health science faculty applied the IQA programme according to the National Education Act of 1999. 2. The causal model of the effectiveness of the IQA was valid and fitted the empirical data. The 6 predictors accounted for 83% of the variance in the effectiveness of IQA. Culture and Leadership were the predictors that significantly accounted for the effectiveness of the IQA.

  14. Causal reasoning with forces

    PubMed Central

    Wolff, Phillip; Barbey, Aron K.

    2015-01-01

    Causal composition allows people to generate new causal relations by combining existing causal knowledge. We introduce a new computational model of such reasoning, the force theory, which holds that people compose causal relations by simulating the processes that join forces in the world, and compare this theory with the mental model theory (Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain causal composition on the basis of mental models and structural equations, respectively. In one experiment, the force theory was uniquely able to account for people's ability to compose causal relationships from complex animations of real-world events. In three additional experiments, the force theory did as well as or better than the other two theories in explaining the causal compositions people generated from linguistically presented causal relations. Implications for causal learning and the hierarchical structure of causal knowledge are discussed. PMID:25653611

  15. A Bio-Inspired Memory Model Embedded with a Causality Reasoning Function for Structural Fault Location

    PubMed Central

    Zheng, Wei; Wu, Chunxian

    2015-01-01

    Structural health monitoring (SHM) is challenged by massive data storage pressure and structural fault location. In response to these issues, a bio-inspired memory model that is embedded with a causality reasoning function is proposed for fault location. First, the SHM data for processing are divided into three temporal memory areas to control data volume reasonably. Second, the inherent potential of the causal relationships in structural state monitoring is mined. Causality and dependence indices are also proposed to establish the mechanism of quantitative description of the reason and result events. Third, a mechanism of causality reasoning is developed for the reason and result events to locate faults in a SHM system. Finally, a deformation experiment conducted on a steel spring plate demonstrates that the proposed model can be applied to real-time acquisition, compact data storage, and system fault location in a SHM system. Moreover, the model is compared with some typical methods based on an experimental benchmark dataset. PMID:25798991

  16. Structure-Based Statistical Mechanical Model Accounts for the Causality and Energetics of Allosteric Communication

    PubMed Central

    Guarnera, Enrico; Berezovsky, Igor N.

    2016-01-01

    Allostery is one of the pervasive mechanisms through which proteins in living systems carry out enzymatic activity, cell signaling, and metabolism control. Effective modeling of the protein function regulation requires a synthesis of the thermodynamic and structural views of allostery. We present here a structure-based statistical mechanical model of allostery, allowing one to observe causality of communication between regulatory and functional sites, and to estimate per residue free energy changes. Based on the consideration of ligand free and ligand bound systems in the context of a harmonic model, corresponding sets of characteristic normal modes are obtained and used as inputs for an allosteric potential. This potential quantifies the mean work exerted on a residue due to the local motion of its neighbors. Subsequently, in a statistical mechanical framework the entropic contribution to allosteric free energy of a residue is directly calculated from the comparison of conformational ensembles in the ligand free and ligand bound systems. As a result, this method provides a systematic approach for analyzing the energetics of allosteric communication based on a single structure. The feasibility of the approach was tested on a variety of allosteric proteins, heterogeneous in terms of size, topology and degree of oligomerization. The allosteric free energy calculations show the diversity of ways and complexity of scenarios existing in the phenomenology of allosteric causality and communication. The presented model is a step forward in developing the computational techniques aimed at detecting allosteric sites and obtaining the discriminative power between agonistic and antagonistic effectors, which are among the major goals in allosteric drug design. PMID:26939022

  17. [Causal models of achievement motive, goal orientation, intrinsic interest, and academic achievement in classroom].

    PubMed

    Tanaka, A; Yamauchi, H

    2000-10-01

    This study investigated the effect of achievement motive on goal orientation, and that of goal orientation on intrinsic interest in learning and academic achievement, based on the model proposed by Elliot and Church (1997). A sample of 222 fifth and sixth grade students of an elementary school, and another of 307 seventh, eighth and ninth grade students of a junior high school participated in the study. The approach-avoidance framework of Elliot and Harackiewicz (1996) was used to classify goal orientations. With multiple-sample structural equation modeling, the paths in two causal models, one for each of the elementary and junior high school samples, were compared. A path was found from hope for success to mastery orientation, from both hope for success and fear of failure to performance-approach orientation, and from fear of failure to performance-avoidance orientation. Mastery and performance-approach orientations each had a positive effect on intrinsic interest in learning. For elementary school children, performance-approach orientation enhanced academic achievement, and for junior high school students, mastery orientation mainly facilitated it. Performance-avoidance orientation had a negative effect on both intrinsic interest and academic achievement.

  18. Identification of causal effects on binary outcomes using structural mean models

    PubMed Central

    Clarke, Paul S.; Windmeijer, Frank

    2010-01-01

    Structural mean models (SMMs) were originally formulated to estimate causal effects among those selecting treatment in randomized controlled trials affected by nonignorable noncompliance. It has already been established that SMMs can identify these causal effects in randomized placebo-controlled trials under fairly weak assumptions. SMMs are now being used to analyze other types of study where identification depends on a no effect modification assumption. We highlight how this assumption depends crucially on the unknown causal model that generated the data, and so is difficult to justify. However, we also highlight that, if treatment selection is monotonic, additive and multiplicative SMMs do identify local (or complier) causal effects, but that the double-logistic SMM estimator does not without further assumptions. We clarify the proper interpretation of inferences from SMMs by means of an application and a simulation study. PMID:20522728

  19. A new life-span approach to conscientiousness and health: combining the pieces of the causal puzzle.

    PubMed

    Friedman, Howard S; Kern, Margaret L; Hampson, Sarah E; Duckworth, Angela Lee

    2014-05-01

    Conscientiousness has been shown to predict healthy behaviors, healthy social relationships, and physical health and longevity. The causal links, however, are complex and not well elaborated. Many extant studies have used comparable measures for conscientiousness, and a systematic endeavor to build cross-study analyses for conscientiousness and health now seems feasible. Of particular interest are efforts to construct new, more comprehensive causal models by linking findings and combining data from existing studies of different cohorts. Although methodological perils can threaten such integration, such efforts offer an early opportunity to enliven a life course perspective on conscientiousness, to see whether component facets of conscientiousness remain related to each other and to relevant mediators across broad spans of time, and to bolster the findings of the few long-term longitudinal studies of the dynamics of personality and health. A promising approach to testing new models involves pooling data from extant studies as an efficient and heuristic prelude to large-scale testing of interventions.

  20. Investigating causality between interacting brain areas with multivariate autoregressive models of MEG sensor data.

    PubMed

    Michalareas, George; Schoffelen, Jan-Mathijs; Paterson, Gavin; Gross, Joachim

    2013-04-01

    In this work, we investigate the feasibility to estimating causal interactions between brain regions based on multivariate autoregressive models (MAR models) fitted to magnetoencephalographic (MEG) sensor measurements. We first demonstrate the theoretical feasibility of estimating source level causal interactions after projection of the sensor-level model coefficients onto the locations of the neural sources. Next, we show with simulated MEG data that causality, as measured by partial directed coherence (PDC), can be correctly reconstructed if the locations of the interacting brain areas are known. We further demonstrate, if a very large number of brain voxels is considered as potential activation sources, that PDC as a measure to reconstruct causal interactions is less accurate. In such case the MAR model coefficients alone contain meaningful causality information. The proposed method overcomes the problems of model nonrobustness and large computation times encountered during causality analysis by existing methods. These methods first project MEG sensor time-series onto a large number of brain locations after which the MAR model is built on this large number of source-level time-series. Instead, through this work, we demonstrate that by building the MAR model on the sensor-level and then projecting only the MAR coefficients in source space, the true casual pathways are recovered even when a very large number of locations are considered as sources. The main contribution of this work is that by this methodology entire brain causality maps can be efficiently derived without any a priori selection of regions of interest. Copyright © 2011 Wiley Periodicals, Inc.

  1. Investigating Causality Between Interacting Brain Areas with Multivariate Autoregressive Models of MEG Sensor Data

    PubMed Central

    Michalareas, George; Schoffelen, Jan-Mathijs; Paterson, Gavin; Gross, Joachim

    2013-01-01

    Abstract In this work, we investigate the feasibility to estimating causal interactions between brain regions based on multivariate autoregressive models (MAR models) fitted to magnetoencephalographic (MEG) sensor measurements. We first demonstrate the theoretical feasibility of estimating source level causal interactions after projection of the sensor-level model coefficients onto the locations of the neural sources. Next, we show with simulated MEG data that causality, as measured by partial directed coherence (PDC), can be correctly reconstructed if the locations of the interacting brain areas are known. We further demonstrate, if a very large number of brain voxels is considered as potential activation sources, that PDC as a measure to reconstruct causal interactions is less accurate. In such case the MAR model coefficients alone contain meaningful causality information. The proposed method overcomes the problems of model nonrobustness and large computation times encountered during causality analysis by existing methods. These methods first project MEG sensor time-series onto a large number of brain locations after which the MAR model is built on this large number of source-level time-series. Instead, through this work, we demonstrate that by building the MAR model on the sensor-level and then projecting only the MAR coefficients in source space, the true casual pathways are recovered even when a very large number of locations are considered as sources. The main contribution of this work is that by this methodology entire brain causality maps can be efficiently derived without any a priori selection of regions of interest. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc. PMID:22328419

  2. Inferring Tree Causal Models of Cancer Progression with Probability Raising

    PubMed Central

    Mauri, Giancarlo; Antoniotti, Marco; Mishra, Bud

    2014-01-01

    Existing techniques to reconstruct tree models of progression for accumulative processes, such as cancer, seek to estimate causation by combining correlation and a frequentist notion of temporal priority. In this paper, we define a novel theoretical framework called CAPRESE (CAncer PRogression Extraction with Single Edges) to reconstruct such models based on the notion of probabilistic causation defined by Suppes. We consider a general reconstruction setting complicated by the presence of noise in the data due to biological variation, as well as experimental or measurement errors. To improve tolerance to noise we define and use a shrinkage-like estimator. We prove the correctness of our algorithm by showing asymptotic convergence to the correct tree under mild constraints on the level of noise. Moreover, on synthetic data, we show that our approach outperforms the state-of-the-art, that it is efficient even with a relatively small number of samples and that its performance quickly converges to its asymptote as the number of samples increases. For real cancer datasets obtained with different technologies, we highlight biologically significant differences in the progressions inferred with respect to other competing techniques and we also show how to validate conjectured biological relations with progression models. PMID:25299648

  3. Inferring tree causal models of cancer progression with probability raising.

    PubMed

    Olde Loohuis, Loes; Loohuis, Loes Olde; Caravagna, Giulio; Graudenzi, Alex; Ramazzotti, Daniele; Mauri, Giancarlo; Antoniotti, Marco; Mishra, Bud

    2014-01-01

    Existing techniques to reconstruct tree models of progression for accumulative processes, such as cancer, seek to estimate causation by combining correlation and a frequentist notion of temporal priority. In this paper, we define a novel theoretical framework called CAPRESE (CAncer PRogression Extraction with Single Edges) to reconstruct such models based on the notion of probabilistic causation defined by Suppes. We consider a general reconstruction setting complicated by the presence of noise in the data due to biological variation, as well as experimental or measurement errors. To improve tolerance to noise we define and use a shrinkage-like estimator. We prove the correctness of our algorithm by showing asymptotic convergence to the correct tree under mild constraints on the level of noise. Moreover, on synthetic data, we show that our approach outperforms the state-of-the-art, that it is efficient even with a relatively small number of samples and that its performance quickly converges to its asymptote as the number of samples increases. For real cancer datasets obtained with different technologies, we highlight biologically significant differences in the progressions inferred with respect to other competing techniques and we also show how to validate conjectured biological relations with progression models.

  4. Campbell's and Rubin's Perspectives on Causal Inference

    ERIC Educational Resources Information Center

    West, Stephen G.; Thoemmes, Felix

    2010-01-01

    Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on…

  5. Campbell's and Rubin's Perspectives on Causal Inference

    ERIC Educational Resources Information Center

    West, Stephen G.; Thoemmes, Felix

    2010-01-01

    Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on…

  6. Test of a Drug Use Causal Model Using Asymptotically Distribution Free Methods.

    ERIC Educational Resources Information Center

    Huba, George J.; Bentler, Peter M.

    1983-01-01

    Reexamined previous statistical comparisons of two models for adolescent drug abuse using new statistical estimation methods in causal modeling not requiring assumptions about normally distributed variables. An asymptotically distribution free method shows that the models fit even better than assumed in the initial work. (Author/JAC)

  7. Affirming Proposed Variable Relationship Patterns in a Conceptual Nursing Model by Converting Qualitative Data to Causal Loop Diagrams

    PubMed Central

    Browne, Jennifer A.

    2016-01-01

    Even with decades of use, there is minimal understanding about the impact that the use of Health Information Technology has on nursing work and workarounds. Reliance on quantitative methods has to some degree constrained our understanding by viewing phenomena from only one perspective. This multimethods research used qualitative data to develop causal loop diagrams and inform a Health Information Technology Workaround model. This approach can play an important role in generating an improved understanding of nursing clinical workflow and workarounds. This research strategy has not been identified in nursing literature to date, but perhaps will encourage future exploration and paradigm crossing. Investigating the use of causal loop diagrams and systems modelling in nursing can create an opportunity to enrich our insights and encourage scientific dialogue about the complexity of clinical workflow and the integration of Health Information Technology. PMID:28269931

  8. Expectations and Interpretations During Causal Learning

    PubMed Central

    Luhmann, Christian C.; Ahn, Woo-kyoung

    2012-01-01

    In existing models of causal induction, 4 types of covariation information (i.e., presence/absence of an event followed by presence/absence of another event) always exert identical influences on causal strength judgments (e.g., joint presence of events always suggests a generative causal relationship). In contrast, we suggest that, due to expectations developed during causal learning, learners give varied interpretations to covariation information as it is encountered and that these interpretations influence the resulting causal beliefs. In Experiments 1A–1C, participants’ interpretations of observations during a causal learning task were dynamic, expectation based, and, furthermore, strongly tied to subsequent causal judgments. Experiment 2 demonstrated that adding trials of joint absence or joint presence of events, whose roles have been traditionally interpreted as increasing causal strengths, could result in decreased overall causal judgments and that adding trials where one event occurs in the absence of another, whose roles have been traditionally interpreted as decreasing causal strengths, could result in increased overall causal judgments. We discuss implications for traditional models of causal learning and how a more top-down approach (e.g., Bayesian) would be more compatible with the current findings. PMID:21534705

  9. A proxy outcome approach for causal effect in observational studies: a simulation study.

    PubMed

    Liang, Wenbin; Zhao, Yuejen; Lee, Andy H

    2014-01-01

    Known and unknown/unmeasured risk factors are the main sources of confounding effects in observational studies and can lead to false observations of elevated protective or hazardous effects. In this study, we investigate an alternative approach of analysis that is operated on field-specific knowledge rather than pure statistical assumptions. The proposed approach introduces a proxy outcome into the estimation system. A proxy outcome possesses the following characteristics: (i) the exposure of interest is not a cause for the proxy outcome; (ii) causes of the proxy outcome and the study outcome are subsets of a collection of correlated variables. Based on these two conditions, the confounding-effect-driven association between the exposure and proxy outcome can then be measured and used as a proxy estimate for the effects of unknown/unmeasured confounders on the outcome of interest. Performance of this approach is tested by a simulation study, whereby 500 different scenarios are generated, with the causal factors of a proxy outcome and a study outcome being partly overlapped under low-to-moderate correlations. The simulation results demonstrate that the conventional approach only led to a correct conclusion in 21% of the 500 scenarios, as compared to 72.2% for the alternative approach. The proposed method can be applied in observational studies in social science and health research that evaluates the health impact of behaviour and mental health problems.

  10. Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates

    PubMed Central

    Bollen, Kenneth A.; Bauldry, Shawn

    2013-01-01

    In the last two decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that we can classify indicators into two categories, effect (reflective) indicators and causal (formative) indicators. This paper argues that the dichotomous view is too simple. Instead, there are effect indicators and three types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the “three Cs”). Causal indicators have conceptual unity and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variable(s). Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects and composites are a matter of convenience. The failure to distinguish the “three Cs” has led to confusion and questions such as: are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points. PMID:21767021

  11. A Note on the Usefulness of the Behavioural Rasch Selection Model for Causal Inference in the Social Sciences

    NASA Astrophysics Data System (ADS)

    Rabbitt, Matthew P.

    2016-11-01

    Social scientists are often interested in examining causal relationships where the outcome of interest is represented by an intangible concept, such as an individual's well-being or ability. Estimating causal relationships in this scenario is particularly challenging because the social scientist must rely on measurement models to measure individual's properties or attributes and then address issues related to survey data, such as omitted variables. In this paper, the usefulness of the recently proposed behavioural Rasch selection model is explored using a series of Monte Carlo experiments. The behavioural Rasch selection model is particularly useful for these types of applications because it is capable of estimating the causal effect of a binary treatment effect on an outcome that is represented by an intangible concept using cross-sectional data. Other methodology typically relies of summary measures from measurement models that require additional assumptions, some of which make these approaches less efficient. Recommendations for application of the behavioural Rasch selection model are made based on results from the Monte Carlo experiments.

  12. A Tool To Support Failure Mode And Effects Analysis Based On Causal Modelling And Reasoning

    NASA Astrophysics Data System (ADS)

    Underwood, W. E.; Laib, S. L.

    1987-05-01

    A prototype knowledge-based system has been developed that supports Failure Mode & Effects Analysis (FMEA). The knowledge base consists of causal models of components and a representation for coupling these components into assemblies and systems. The causal models are qualitative models. They allow reasoning as to whether variables are increasing, decreasing or steady. The analysis strategies used by the prototype allow it to determine the effects of failure modes on the function of the part, the failure effect on the assembly the part is contained in, and the effect on the subsystem containing the assembly.

  13. Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI☆

    PubMed Central

    Koush, Yury; Rosa, Maria Joao; Robineau, Fabien; Heinen, Klaartje; W. Rieger, Sebastian; Weiskopf, Nikolaus; Vuilleumier, Patrik; Van De Ville, Dimitri; Scharnowski, Frank

    2013-01-01

    Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks. PMID:23668967

  14. Scheduling with partial orders and a causal model

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; Carciofini, Jim; Hadden, George D.

    1993-01-01

    In an ongoing project at Honeywell SRC, we are constructing a prototype scheduling system for a NASA domain using the 'Time Map Manager' (TMM). The TMM representations are flexible enough to permit the representation of precedence constraints, metric constraints between activities, and constraints relative to a variety of references (e.g., Mission Elapsed Time vs. Mission Day). The TMM also supports a simple form of causal reasoning (projection), dynamic database updates, and monitoring specified database properties as changes occur over time. The greatest apparent advantage to using the TMM is the flexibility added to the scheduling process: schedules are constructed by a process of 'iterative refinement,' in which scheduling decisions correspond to constraining an activity either with respect to another activity or with respect to one time line. The schedule becomes more detailed as activities and constraints are added. Undoing a scheduling decision means removing a constraint, not removing an activity from a specified place on the time line. For example, we can move an activity around on the time line by deleting constraints and adding new ones.

  15. Localization of causal locus in the genome of the brown macroalga Ectocarpus: NGS-based mapping and positional cloning approaches.

    PubMed

    Billoud, Bernard; Jouanno, Émilie; Nehr, Zofia; Carton, Baptiste; Rolland, Élodie; Chenivesse, Sabine; Charrier, Bénédicte

    2015-01-01

    Mutagenesis is the only process by which unpredicted biological gene function can be identified. Despite that several macroalgal developmental mutants have been generated, their causal mutation was never identified, because experimental conditions were not gathered at that time. Today, progresses in macroalgal genomics and judicious choices of suitable genetic models make mutated gene identification possible. This article presents a comparative study of two methods aiming at identifying a genetic locus in the brown alga Ectocarpus siliculosus: positional cloning and Next-Generation Sequencing (NGS)-based mapping. Once necessary preliminary experimental tools were gathered, we tested both analyses on an Ectocarpus morphogenetic mutant. We show how a narrower localization results from the combination of the two methods. Advantages and drawbacks of these two approaches as well as potential transfer to other macroalgae are discussed.

  16. Localization of causal locus in the genome of the brown macroalga Ectocarpus: NGS-based mapping and positional cloning approaches

    PubMed Central

    Billoud, Bernard; Jouanno, Émilie; Nehr, Zofia; Carton, Baptiste; Rolland, Élodie; Chenivesse, Sabine; Charrier, Bénédicte

    2015-01-01

    Mutagenesis is the only process by which unpredicted biological gene function can be identified. Despite that several macroalgal developmental mutants have been generated, their causal mutation was never identified, because experimental conditions were not gathered at that time. Today, progresses in macroalgal genomics and judicious choices of suitable genetic models make mutated gene identification possible. This article presents a comparative study of two methods aiming at identifying a genetic locus in the brown alga Ectocarpus siliculosus: positional cloning and Next-Generation Sequencing (NGS)-based mapping. Once necessary preliminary experimental tools were gathered, we tested both analyses on an Ectocarpus morphogenetic mutant. We show how a narrower localization results from the combination of the two methods. Advantages and drawbacks of these two approaches as well as potential transfer to other macroalgae are discussed. PMID:25745426

  17. Calculating and Understanding: Formal Models and Causal Explanations in Science, Common Reasoning and Physics Teaching

    ERIC Educational Resources Information Center

    Besson, Ugo

    2010-01-01

    This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought…

  18. Calculating and Understanding: Formal Models and Causal Explanations in Science, Common Reasoning and Physics Teaching

    ERIC Educational Resources Information Center

    Besson, Ugo

    2010-01-01

    This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought…

  19. Presenting the Students' Academic Achievement Causal Model based on Goal Orientation.

    PubMed

    Nasiri, Ebrahim; Pour-Safar, Ali; Taheri, Mahdokht; Sedighi Pashaky, Abdullah; Asadi Louyeh, Ataollah

    2017-10-01

    Several factors play a role in academic achievement, individual's excellence and capability to do actions and tasks that the learner is in charge of in learning areas. The main goal of this study was to present academic achievement causal model based on the dimensions of goal orientation and learning approaches among the students of Medical Science and Dentistry courses in Guilan University of Medical Sciences in 2013. This study is based on a cross-sectional model. The participants included 175 first and second students of the Medical and Dentistry schools in Guilan University of Medical Sciences selected by random cluster sampling [121 persons (69%) Medical Basic Science students and 54 (30.9%) Dentistry students]. The measurement tool included the Goal Orientation Scale of Bouffard and Study Process Questionnaire of Biggs) and the students' Grade Point Average. The study data were analyzed using Pearson correlation coefficient and structural equations modeling. SPSS 14 and Amos were used to analyze the data. The results indicated a significant relationship between goal orientation and learning strategies (P<0.05). In addition, the results revealed that a significant relationship exists between learning strategies[Deep Learning (r=0.37, P<0.05), Surface Learning (r=-0.21,P<0.05)], and academic achievement.The suggested model of research is fitted to the data of the research. Results showed that the students' academic achievement model fits with experimental data, so it can be used in learning principles which lead to students' achievement in learning.

  20. Learning World Models in Environments with Manifest Causal Structure,

    DTIC Science & Technology

    1995-05-01

    Stochastic Domains, in `Proceedings, AAAI-93’, Washington, DC, pp. 574{579. Drescher, G. L. (1989), Made-Up Minds: A Constructivist Approach to Arti...cial Intelli- gence, PhD thesis, MIT. Drescher, G. L. (1991), Made-Up Minds: A Constructivist Approach to Arti cial Intelli- gence, The MIT Press...Representation and Reasoning’, pp. 441{452. Ramstad, R. M. (1992), A Constructivist Approach to Arti cial Intelligence Reexamined, PhD thesis, MIT. Rice, J

  1. Causality links among renewable energy consumption, CO2 emissions, and economic growth in Africa: evidence from a panel ARDL-PMG approach.

    PubMed

    Attiaoui, Imed; Toumi, Hassen; Ammouri, Bilel; Gargouri, Ilhem

    2017-04-05

    This research examines the causality (For the remainder of the paper, the notion of causality refers to Granger causality.) links among renewable energy consumption (REC), CO2 emissions (CE), non-renewable energy consumption (NREC), and economic growth (GDP) using an autoregressive distributed lag model based on the pooled mean group estimation (ARDL-PMG) and applying Granger causality tests for a panel consisting of 22 African countries for the period between 1990 and 2011. There is unidirectional and irreversible short-run causality from CE to GDP. The causal direction between CE and REC is unobservable over the short-term. Moreover, we find unidirectional, short-run causality from REC to GDP. When testing per pair of variables, there are short-run bidirectional causalities among REC, CE, and GDP. However, if we add CE to the variables REC and NREC, the causality to GDP is observable, and causality from the pair REC and NREC to economic growth is neutral. Likewise, if we add NREC to the variables GDP and REC, there is causality. There are bidirectional long-run causalities among REC, CE, and GDP, which supports the feedback assumption. Causality from GDP to REC is not strong for the panel. If we test per pair of variables, the strong causality from GDP and CE to REC is neutral. The long-run PMG estimates show that NREC and gross domestic product increase CE, whereas REC decreases CE.

  2. Critical Thinking and Political Participation: The Development and Assessment of a Causal Model.

    ERIC Educational Resources Information Center

    Guyton, Edith M.

    An assessment of a four-stage conceptual model reveals that critical thinking has indirect positive effects on political participation through its direct effects on personal control, political efficacy, and democratic attitudes. The model establishes causal relationships among selected personality variables (self-esteem, personal control, and…

  3. Critical Thinking and Political Participation: The Development and Assessment of a Causal Model.

    ERIC Educational Resources Information Center

    Guyton, Edith M.

    An assessment of a four-stage conceptual model reveals that critical thinking has indirect positive effects on political participation through its direct effects on personal control, political efficacy, and democratic attitudes. The model establishes causal relationships among selected personality variables (self-esteem, personal control, and…

  4. Epidemiological causality.

    PubMed

    Morabia, Alfredo

    2005-01-01

    Epidemiological methods, which combine population thinking and group comparisons, can primarily identify causes of disease in populations. There is therefore a tension between our intuitive notion of a cause, which we want to be deterministic and invariant at the individual level, and the epidemiological notion of causes, which are invariant only at the population level. Epidemiologists have given heretofore a pragmatic solution to this tension. Causal inference in epidemiology consists in checking the logical coherence of a causality statement and determining whether what has been found grossly contradicts what we think we already know: how strong is the association? Is there a dose-response relationship? Does the cause precede the effect? Is the effect biologically plausible? Etc. This approach to causal inference can be traced back to the English philosophers David Hume and John Stuart Mill. On the other hand, the mode of establishing causality, devised by Jakob Henle and Robert Koch, which has been fruitful in bacteriology, requires that in every instance the effect invariably follows the cause (e.g., inoculation of Koch bacillus and tuberculosis). This is incompatible with epidemiological causality which has to deal with probabilistic effects (e.g., smoking and lung cancer), and is therefore invariant only for the population.

  5. Dynamic Causal Modelling of epileptic seizure propagation pathways: a combined EEG-fMRI study.

    PubMed

    Murta, Teresa; Leal, Alberto; Garrido, Marta I; Figueiredo, Patrícia

    2012-09-01

    Simultaneous EEG-fMRI offers the possibility of non-invasively studying the spatiotemporal dynamics of epileptic activity propagation from the focus towards an extended brain network, through the identification of the haemodynamic correlates of ictal electrical discharges. In epilepsy associated with hypothalamic hamartomas (HH), seizures are known to originate in the HH but different propagation pathways have been proposed. Here, Dynamic Causal Modelling (DCM) was employed to estimate the seizure propagation pathway from fMRI data recorded in a HH patient, by testing a set of clinically plausible network connectivity models of discharge propagation. The model consistent with early propagation from the HH to the temporal-occipital lobe followed by the frontal lobe was selected as the most likely model to explain the data. Our results demonstrate the applicability of DCM to investigate patient-specific effective connectivity in epileptic networks identified with EEG-fMRI. In this way, it is possible to study the propagation pathway of seizure activity, which has potentially great impact in the decision of the surgical approach for epilepsy treatment.

  6. The control outcome calibration approach for causal inference with unobserved confounding.

    PubMed

    Tchetgen Tchetgen, Eric

    2014-03-01

    Unobserved confounding can seldom be ruled out with certainty in nonexperimental studies. Negative controls are sometimes used in epidemiologic practice to detect the presence of unobserved confounding. An outcome is said to be a valid negative control variable to the extent that it is influenced by unobserved confounders of the exposure effects on the outcome in view, although not directly influenced by the exposure. Thus, a negative control outcome found to be empirically associated with the exposure after adjustment for observed confounders indicates that unobserved confounding may be present. In this paper, we go beyond the use of control outcomes to detect possible unobserved confounding and propose to use control outcomes in a simple but formal counterfactual-based approach to correct causal effect estimates for bias due to unobserved confounding. The proposed control outcome calibration approach is developed in the context of a continuous or binary outcome, and the control outcome and the exposure can be discrete or continuous. A sensitivity analysis technique is also developed, which can be used to assess the degree to which a violation of the main identifying assumption of the control outcome calibration approach might impact inference about the effect of the exposure on the outcome in view.

  7. Synchronizaton and causality across time-scales of observed and modelled ENSO dynamics

    NASA Astrophysics Data System (ADS)

    Jajcay, Nikola; Kravtsov, Sergey; Tsonis, Anastasios A.; Paluš, Milan

    2016-04-01

    Phase-phase and phase-amplitude interactions between dynamics on different temporal scales has been observed in ENSO dynamics, captured by the NINO3.4 index, using the approach for identification of cross-scale interactions introduced recently by Paluš [1]. The most pronounced interactions across scales are phase coherence and phase-phase causality in which the annual cycle influences the dynamics on the quasibiennial scale. The phase of slower phenomena on the scale 4-6 years influences not only the combination frequencies around the period one year, but also the phase of the annual cycle and also the amplitude of the oscillations in the quasibiennial range. In order to understand these nonlinear phenomena we investigate cross-scale interactions in synthetic, modelled NINO3.4 time series. The models taken into account were a selection of 96 historic runs from CMIP5 project, and two low-dimensional models - parametric recharge oscillator (PRO) [2], which is a two-dimensional dynamical model and a data-driven model based on the idea of linear inverse models [3]. The latter is a statistical model, in our setting 25-dimensional. While the two dimensions of the PRO model are not enough to capture all the cross-scale interactions, the results from the data-driven model are more promising and they resemble the interactions found in NINO3.4 measured data set. We believe that combination of models of different complexity will help to uncover mechanisms of the cross-scale interactions which might be the key for better understanding of the irregularities in the ENSO dynamics. This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001. [1] M. Palus, Phys. Rev. Let. 112 078702 (2014) [2] K. Stein et al., J. Climate, 27, 14 (2014) [3] Kondrashov et al., J. Climate, 18, 21 (2005)

  8. Modeling the Mechanism of Action of a DGAT1 Inhibitor Using a Causal Reasoning Platform

    PubMed Central

    Enayetallah, Ahmed E.; Ziemek, Daniel; Leininger, Michael T.; Randhawa, Ranjit; Yang, Jianxin; Manion, Tara B.; Mather, Dawn E.; Zavadoski, William J.; Kuhn, Max; Treadway, Judith L.; des Etages, Shelly Ann G.; Gibbs, E. Michael; Greene, Nigel; Steppan, Claire M.

    2011-01-01

    Triglyceride accumulation is associated with obesity and type 2 diabetes. Genetic disruption of diacylglycerol acyltransferase 1 (DGAT1), which catalyzes the final reaction of triglyceride synthesis, confers dramatic resistance to high-fat diet induced obesity. Hence, DGAT1 is considered a potential therapeutic target for treating obesity and related metabolic disorders. However, the molecular events shaping the mechanism of action of DGAT1 pharmacological inhibition have not been fully explored yet. Here, we investigate the metabolic molecular mechanisms induced in response to pharmacological inhibition of DGAT1 using a recently developed computational systems biology approach, the Causal Reasoning Engine (CRE). The CRE algorithm utilizes microarray transcriptomic data and causal statements derived from the biomedical literature to infer upstream molecular events driving these transcriptional changes. The inferred upstream events (also called hypotheses) are aggregated into biological models using a set of analytical tools that allow for evaluation and integration of the hypotheses in context of their supporting evidence. In comparison to gene ontology enrichment analysis which pointed to high-level changes in metabolic processes, the CRE results provide detailed molecular hypotheses to explain the measured transcriptional changes. CRE analysis of gene expression changes in high fat habituated rats treated with a potent and selective DGAT1 inhibitor demonstrate that the majority of transcriptomic changes support a metabolic network indicative of reversal of high fat diet effects that includes a number of molecular hypotheses such as PPARG, HNF4A and SREBPs. Finally, the CRE-generated molecular hypotheses from DGAT1 inhibitor treated rats were found to capture the major molecular characteristics of DGAT1 deficient mice, supporting a phenotype of decreased lipid and increased insulin sensitivity. PMID:22073239

  9. Distinguishing causal interactions in neural populations.

    PubMed

    Seth, Anil K; Edelman, Gerald M

    2007-04-01

    We describe a theoretical network analysis that can distinguish statistically causal interactions in population neural activity leading to a specific output. We introduce the concept of a causal core to refer to the set of neuronal interactions that are causally significant for the output, as assessed by Granger causality. Because our approach requires extensive knowledge of neuronal connectivity and dynamics, an illustrative example is provided by analysis of Darwin X, a brain-based device that allows precise recording of the activity of neuronal units during behavior. In Darwin X, a simulated neuronal model of the hippocampus and surrounding cortical areas supports learning of a spatial navigation task in a real environment. Analysis of Darwin X reveals that large repertoires of neuronal interactions contain comparatively small causal cores and that these causal cores become smaller during learning, a finding that may reflect the selection of specific causal pathways from diverse neuronal repertoires.

  10. Investigation of effective connectivity in the motor cortex of fMRI data using Granger causality model

    NASA Astrophysics Data System (ADS)

    Wu, Xingchun; Tang, Ni; Yin, Kai; Wu, Xia; Wen, Xiaotong; Yao, Li; Zhao, Xiaojie

    2007-03-01

    Effective connectivity of brain regions based on brain data (e.g. EEG, fMRI, etc.) is a focused research at present. Many researchers tried to investigate it using different methods. Granger causality model (GCM) is presently used to investigate effective connectivity of brain regions more and more. It can explore causal relationship between time series, meaning that if a time-series y causes x, then knowledge of y should help predict future values of x. In present work, time invariant GCM was applied to fMRI data considering slow changing of blood oxygenation level dependent (BOLD). The time invariant GCM often requires determining model order, estimating model parameters and significance test. In particular, we extended significance test method to make results more reasonable. The fMRI data were acquired from finger movement experiment of two right-handed subjects. We obtained the activation maps of two subjects using SPM'2 software firstly. Then we chose left SMA and left SMC as regions of interest (ROIs) with different radiuses, and calculated causality from left SMA to left SMC using the mean time courses of the two ROIs. The results from both subjects showed that left SMA influenced on left SMC. Hence GCM was suggested to be an effective approach in investigation of effective connectivity based on fMRI data.

  11. Combining GWAS and RNA-Seq Approaches for Detection of the Causal Mutation for Hereditary Junctional Epidermolysis Bullosa in Sheep.

    PubMed

    Suárez-Vega, Aroa; Gutiérrez-Gil, Beatriz; Benavides, Julio; Perez, Valentín; Tosser-Klopp, Gwenola; Klopp, Christophe; Keennel, Stephen J; Arranz, Juan José

    2015-01-01

    In this study, we demonstrate the use of a genome-wide association mapping together with RNA-seq in a reduced number of samples, as an efficient approach to detect the causal mutation for a Mendelian disease. Junctional epidermolysis bullosa is a recessive genodermatosis that manifests with neonatal mechanical fragility of the skin, blistering confined to the lamina lucida of the basement membrane and severe alteration of the hemidesmosomal junctions. In Spanish Churra sheep, junctional epidermolysis bullosa (JEB) has been detected in two commercial flocks. The JEB locus was mapped to Ovis aries chromosome 11 by GWAS and subsequently fine-mapped to an 868-kb homozygous segment using the identical-by-descent method. The ITGB4, which is located within this region, was identified as the best positional and functional candidate gene. The RNA-seq variant analysis enabled us to discover a 4-bp deletion within exon 33 of the ITGB4 gene (c.4412_4415del). The c.4412_4415del mutation causes a frameshift resulting in a premature stop codon at position 1472 of the integrin β4 protein. A functional analysis of this deletion revealed decreased levels of mRNA in JEB skin samples and the absence of integrin β4 labeling in immunohistochemical assays. Genotyping of c.4412_4415del showed perfect concordance with the recessive mode of the disease phenotype. Selection against this causal mutation will now be used to solve the problem of JEB in flocks of Churra sheep. Furthermore, the identification of the ITGB4 mutation means that affected sheep can be used as a large mammal animal model for the human form of epidermolysis bullosa with aplasia cutis. Our approach evidences that RNA-seq offers cost-effective alternative to identify variants in the species in which high resolution exome-sequencing is not straightforward.

  12. Combining GWAS and RNA-Seq Approaches for Detection of the Causal Mutation for Hereditary Junctional Epidermolysis Bullosa in Sheep

    PubMed Central

    Suárez-Vega, Aroa; Gutiérrez-Gil, Beatriz; Benavides, Julio; Perez, Valentín; Tosser-Klopp, Gwenola; Klopp, Christophe; Keennel, Stephen J.; Arranz, Juan José

    2015-01-01

    In this study, we demonstrate the use of a genome-wide association mapping together with RNA-seq in a reduced number of samples, as an efficient approach to detect the causal mutation for a Mendelian disease. Junctional epidermolysis bullosa is a recessive genodermatosis that manifests with neonatal mechanical fragility of the skin, blistering confined to the lamina lucida of the basement membrane and severe alteration of the hemidesmosomal junctions. In Spanish Churra sheep, junctional epidermolysis bullosa (JEB) has been detected in two commercial flocks. The JEB locus was mapped to Ovis aries chromosome 11 by GWAS and subsequently fine-mapped to an 868-kb homozygous segment using the identical-by-descent method. The ITGB4, which is located within this region, was identified as the best positional and functional candidate gene. The RNA-seq variant analysis enabled us to discover a 4-bp deletion within exon 33 of the ITGB4 gene (c.4412_4415del). The c.4412_4415del mutation causes a frameshift resulting in a premature stop codon at position 1472 of the integrin β4 protein. A functional analysis of this deletion revealed decreased levels of mRNA in JEB skin samples and the absence of integrin β4 labeling in immunohistochemical assays. Genotyping of c.4412_4415del showed perfect concordance with the recessive mode of the disease phenotype. Selection against this causal mutation will now be used to solve the problem of JEB in flocks of Churra sheep. Furthermore, the identification of the ITGB4 mutation means that affected sheep can be used as a large mammal animal model for the human form of epidermolysis bullosa with aplasia cutis. Our approach evidences that RNA-seq offers cost-effective alternative to identify variants in the species in which high resolution exome-sequencing is not straightforward. PMID:25955497

  13. Confirmatory Analytic Tests of Three Causal Models Relating Job Perceptions to Job Satisfaction.

    DTIC Science & Technology

    1984-12-01

    Perceptions ~Job SatisfactionD I~i- Confirmatory Analysi s Precognitive Postcognitive L ft A e S T R A f T I ( C O n" " n ," , V fV f f vv r e # d o i t c e...in the causal order, and job perceptions and job satisfaction are reciprocally related; (b) a precognitive -recursive model in which job perceptions...occur after job satisfaction in the causal order and are effects but not causes of job satisfaction; and (c) a precognitive DD FOR 1473 EDITION 01O NOV

  14. Predicting Adaptive Performance in Multicultural Teams: A Causal Model

    DTIC Science & Technology

    2008-02-01

    Applied Psychology, 91, 1189-1207. [6] Byrne, B. M. (2001). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Mahwah...means of Factor Analysis (FA), Multidimensional Scaling (MDS), and Structural Equation Modeling (LISREL). Unpublished manuscript; in process of being... equation modeling . New York, NY: Guilford Press. [14] Kozlowski, S. W. J., Gully, S. M., Brown, K. G., Salas, E., Smith, E. M., & Nason, E. R. (2001

  15. Long-Term Consequences of Early Sexual Initiation on Young Adult Health: A Causal Inference Approach

    ERIC Educational Resources Information Center

    Kugler, Kari C.; Vasilenko, Sara A.; Butera, Nicole M.; Coffman, Donna L.

    2017-01-01

    Although early sexual initiation has been linked to negative outcomes, it is unknown whether these effects are causal. In this study, we use propensity score methods to estimate the causal effect of early sexual initiation on young adult sexual risk behaviors and health outcomes using data from the National Longitudinal Study of Adolescent to…

  16. Hume, Mill, Hill, and the Sui Generis Epidemiologic Approach to Causal Inference

    PubMed Central

    Morabia, Alfredo

    2013-01-01

    The epidemiologic approach to causal inference (i.e., Hill's viewpoints) consists of evaluating potential causes from the following 2, noncumulative angles: 1) established results from comparative, observational, or experimental epidemiologic studies; and 2) reviews of nonepidemiologic evidence. It does not involve statements of statistical significance. The philosophical roots of Hill's viewpoints are unknown. Superficially, they seem to descend from the ideas of Hume and Mill. Hill's viewpoints, however, use a different kind of evidence and have different purposes than do Hume's rules or Mill's system of logic. In a nutshell, Hume ignores comparative evidence central to Hill's viewpoints. Mill's logic disqualifies as invalid nonexperimental evidence, which forms the bulk of epidemiologic findings reviewed from Hill's viewpoints. The approaches by Hume and Mill cannot corroborate successful implementations of Hill's viewpoints. Besides Hume and Mill, the epidemiologic literature is clueless about a plausible, pre-1965 philosophical origin of Hill's viewpoints. Thus, Hill's viewpoints may be philosophically novel, sui generis, still waiting to be validated and justified. PMID:24071010

  17. Hume, Mill, Hill, and the sui generis epidemiologic approach to causal inference.

    PubMed

    Morabia, Alfredo

    2013-11-15

    The epidemiologic approach to causal inference (i.e., Hill's viewpoints) consists of evaluating potential causes from the following 2, noncumulative angles: 1) established results from comparative, observational, or experimental epidemiologic studies; and 2) reviews of nonepidemiologic evidence. It does not involve statements of statistical significance. The philosophical roots of Hill's viewpoints are unknown. Superficially, they seem to descend from the ideas of Hume and Mill. Hill's viewpoints, however, use a different kind of evidence and have different purposes than do Hume's rules or Mill's system of logic. In a nutshell, Hume ignores comparative evidence central to Hill's viewpoints. Mill's logic disqualifies as invalid nonexperimental evidence, which forms the bulk of epidemiologic findings reviewed from Hill's viewpoints. The approaches by Hume and Mill cannot corroborate successful implementations of Hill's viewpoints. Besides Hume and Mill, the epidemiologic literature is clueless about a plausible, pre-1965 philosophical origin of Hill's viewpoints. Thus, Hill's viewpoints may be philosophically novel, sui generis, still waiting to be validated and justified.

  18. Sex and Self-Control Theory: The Measures and Causal Model May Be Different

    ERIC Educational Resources Information Center

    Higgins, George E.; Tewksbury, Richard

    2006-01-01

    This study examines the distribution differences across sexes in key measures of self-control theory and differences in a causal model. Using cross-sectional data from juveniles ("n" = 1,500), the study shows mean-level differences in many of the self-control, risky behavior, and delinquency measures. Structural equation modeling…

  19. Pretense, Counterfactuals, and Bayesian Causal Models: Why What Is Not Real Really Matters

    ERIC Educational Resources Information Center

    Weisberg, Deena S.; Gopnik, Alison

    2013-01-01

    Young children spend a large portion of their time pretending about non-real situations. Why? We answer this question by using the framework of Bayesian causal models to argue that pretending and counterfactual reasoning engage the same component cognitive abilities: disengaging with current reality, making inferences about an alternative…

  20. The Relationship between Social Anxiety and Social Support in Adolescents: A Test of Competing Causal Models

    ERIC Educational Resources Information Center

    Calsyn, Robert J.; Winter, Joel P.; Burger, Gary K.

    2005-01-01

    This study compared the strength of competing causal models in explaining the relationship between perceived support, enacted support, and social anxiety in adolescents. The social causation hypothesis postulates that social support causes social anxiety, whereas the social selection hypothesis postulates that social anxiety causes social support.…

  1. Examining a Causal Model of Early Drug Involvement Among Inner City Junior High School Youths.

    ERIC Educational Resources Information Center

    Dembo, Richard; And Others

    Reflecting the need to construct more inclusive, socially and culturally relevant conceptions of drug use than currently exist, the determinants of drug involvement among inner-city youths within the context of a causal model were investigated. The drug involvement of the Black and Puerto Rican junior high school girls and boys was hypothesized to…

  2. Hindsight Bias Doesn't Always Come Easy: Causal Models, Cognitive Effort, and Creeping Determinism

    ERIC Educational Resources Information Center

    Nestler, Steffen; Blank, Hartmut; von Collani, Gernot

    2008-01-01

    Creeping determinism, a form of hindsight bias, refers to people's hindsight perceptions of events as being determined or inevitable. This article proposes, on the basis of a causal-model theory of creeping determinism, that the underlying processes are effortful, and hence creeping determinism should disappear when individuals lack the cognitive…

  3. A Dynamic Causal Modeling Analysis of the Effective Connectivities Underlying Top-Down Letter Processing

    ERIC Educational Resources Information Center

    Liu, Jiangang; Li, Jun; Rieth, Cory A.; Huber, David E.; Tian, Jie; Lee, Kang

    2011-01-01

    The present study employed dynamic causal modeling to investigate the effective functional connectivity between regions of the neural network involved in top-down letter processing. We used an illusory letter detection paradigm in which participants detected letters while viewing pure noise images. When participants detected letters, the response…

  4. Causal Analysis to Enhance Creative Problem-Solving: Performance and Effects on Mental Models

    ERIC Educational Resources Information Center

    Hester, Kimberly S.; Robledo, Issac C.; Barrett, Jamie D.; Peterson, David R.; Hougen, Dean P.; Day, Eric A.; Mumford, Michael D.

    2012-01-01

    In recent years, it has become apparent that knowledge is a critical component of creative thought. One form of knowledge that might be particularly important to creative thought relies on the mental models people employ to understand novel, ill-defined problems. In this study, undergraduates were given training in the use of causal relationships…

  5. Implications of Three Causal Models for the Measurement of Halo Error.

    ERIC Educational Resources Information Center

    Fisicaro, Sebastiano A.; Lance, Charles E.

    1990-01-01

    Three conceptual definitions of halo error are reviewed in the context of causal models of halo error. A corrected correlational measurement of halo error is derived, and the traditional and corrected measures are compared empirically for a 1986 study of 52 undergraduate students' ratings of a lecturer's performance. (SLD)

  6. A Dynamic Causal Modeling Analysis of the Effective Connectivities Underlying Top-Down Letter Processing

    ERIC Educational Resources Information Center

    Liu, Jiangang; Li, Jun; Rieth, Cory A.; Huber, David E.; Tian, Jie; Lee, Kang

    2011-01-01

    The present study employed dynamic causal modeling to investigate the effective functional connectivity between regions of the neural network involved in top-down letter processing. We used an illusory letter detection paradigm in which participants detected letters while viewing pure noise images. When participants detected letters, the response…

  7. Implications of Three Causal Models for the Measurement of Halo Error.

    ERIC Educational Resources Information Center

    Fisicaro, Sebastiano A.; Lance, Charles E.

    1990-01-01

    Three conceptual definitions of halo error are reviewed in the context of causal models of halo error. A corrected correlational measurement of halo error is derived, and the traditional and corrected measures are compared empirically for a 1986 study of 52 undergraduate students' ratings of a lecturer's performance. (SLD)

  8. Examining a Causal Model of Early Drug Involvement Among Inner City Junior High School Youths.

    ERIC Educational Resources Information Center

    Dembo, Richard; And Others

    Reflecting the need to construct more inclusive, socially and culturally relevant conceptions of drug use than currently exist, the determinants of drug involvement among inner-city youths within the context of a causal model were investigated. The drug involvement of the Black and Puerto Rican junior high school girls and boys was hypothesized to…

  9. The Impact of School Leadership on School Level Factors: Validation of a Causal Model

    ERIC Educational Resources Information Center

    Kruger, Meta L.; Witziers, Bob; Sleegers, Peter

    2007-01-01

    This study aims to contribute to a better understanding of the antecedents and effects of educational leadership, and of the influence of the principal's leadership on intervening and outcome variables. A path analysis was conducted to test and validate a causal model. The results show no direct or indirect effects of educational leadership on…

  10. Pretense, Counterfactuals, and Bayesian Causal Models: Why What Is Not Real Really Matters

    ERIC Educational Resources Information Center

    Weisberg, Deena S.; Gopnik, Alison

    2013-01-01

    Young children spend a large portion of their time pretending about non-real situations. Why? We answer this question by using the framework of Bayesian causal models to argue that pretending and counterfactual reasoning engage the same component cognitive abilities: disengaging with current reality, making inferences about an alternative…

  11. Sex and Self-Control Theory: The Measures and Causal Model May Be Different

    ERIC Educational Resources Information Center

    Higgins, George E.; Tewksbury, Richard

    2006-01-01

    This study examines the distribution differences across sexes in key measures of self-control theory and differences in a causal model. Using cross-sectional data from juveniles ("n" = 1,500), the study shows mean-level differences in many of the self-control, risky behavior, and delinquency measures. Structural equation modeling…

  12. The Impact of School Leadership on School Level Factors: Validation of a Causal Model

    ERIC Educational Resources Information Center

    Kruger, Meta L.; Witziers, Bob; Sleegers, Peter

    2007-01-01

    This study aims to contribute to a better understanding of the antecedents and effects of educational leadership, and of the influence of the principal's leadership on intervening and outcome variables. A path analysis was conducted to test and validate a causal model. The results show no direct or indirect effects of educational leadership on…

  13. Causal Analysis to Enhance Creative Problem-Solving: Performance and Effects on Mental Models

    ERIC Educational Resources Information Center

    Hester, Kimberly S.; Robledo, Issac C.; Barrett, Jamie D.; Peterson, David R.; Hougen, Dean P.; Day, Eric A.; Mumford, Michael D.

    2012-01-01

    In recent years, it has become apparent that knowledge is a critical component of creative thought. One form of knowledge that might be particularly important to creative thought relies on the mental models people employ to understand novel, ill-defined problems. In this study, undergraduates were given training in the use of causal relationships…

  14. A Causal Model for the Development of Scientific Reasoning in Adolescents.

    ERIC Educational Resources Information Center

    Stuessy, Carol L.

    A model for the development of scientific reasoning in adolescents was formulated largely upon the basis of Piagetian theory. Included as potential determinants of scientific reasoning were: experience; age; locus of control; field dependence-independence (FID); rigidity/flexibility; intelligence quotient (IQ); and sex. Causal relationships…

  15. Causal Models in the Acquisition and Instruction of Programming Skills

    DTIC Science & Technology

    1997-08-01

    intelligent tutoring. Artificial Intelligence, 42, 7-49. Anderson, J. R., Boyle, C. F., Farrell, R. G., & Reiser, B. J. (1987a). Cognitive principles in the... intelliegence approach to computer-aided instruction. IEEE Transactions on Man-Machine Systems, 11, 190-202. Clancey, W. J. (1987). Knowledge-based tutoring: The...8 Anderson, J. R. (1990). The teacher’s apprentice: Building an algebra tutor. In R. Freedle (Ed.), Artificial intelligence and the future of

  16. Causal system modeling in chronic disease epidemiology: a proposal.

    PubMed

    Ness, Roberta B; Koopman, James S; Roberts, Mark S

    2007-07-01

    We propose dynamic systems models as one component of the epidemiologic toolbox. Systems models reflect the fact that diseases are caused within complex molecular, biological, and social systems, with positive and negative feedback. Such models predict empiric observations, provide a framework for clarifying what new data is needed, allow for complex interactions between variables at levels from the subcellular to the community, and incorporate known feedbacks between systems elements at these various levels. In all of these ways, they have the capability to advance the science of epidemiology.

  17. The Epstein–Glaser causal approach to the light-front QED{sub 4}. II: Vacuum polarization tensor

    SciTech Connect

    Bufalo, R.; Pimentel, B.M.; Soto, D.E.

    2014-12-15

    In this work we show how to construct the one-loop vacuum polarization for light-front QED{sub 4} in the framework of the perturbative causal theory. Usually, in the canonical approach, it is considered for the fermionic propagator the so-called instantaneous term, but it is known in the literature that this term is controversial because it can be omitted by computational reasons; for instance, by compensation or vanishing by dimensional regularization. In this work we propose a solution to this paradox. First, in the Epstein–Glaser causal theory, it is shown that the fermionic propagator does not have instantaneous term, and with this propagator we calculate the one-loop vacuum polarization, from this calculation it follows the same result as those obtained by the standard approach, but without reclaiming any extra assumptions. Moreover, since the perturbative causal theory is defined in the distributional framework, we can also show the reason behind our obtaining the same result whether we consider or not the instantaneous fermionic propagator term. - Highlights: • We develop the Epstein–Glaser causal approach for light-front field theory. • We evaluate in detail the vacuum polarization at one-loop for the light-front QED. • We discuss the subtle issues of the Instantaneous part of the fermionic propagator in the light-front. • We evaluate the vacuum polarization at one-loop for the light-front QED with the Instantaneous fermionic part.

  18. New graduate perception of clinical competence: testing a causal model.

    PubMed

    Baramee, Julaluk; Blegen, Mary A

    2003-05-01

    The purpose of this study was to test relationships among variables hypothesized to affect new graduate perceptions of clinical competence. The proposed model was developed based on several theories in sociology, education and nursing. Seven variables were selected for their potential contributions to graduates' perceptions of clinical competence. The sample included 468 new graduates from six baccalaureate nursing programs in Thailand. Path analysis indicated that student effort, perception of clinical learning environment (CLE) and program grade point average had direct effects on perception of clinical competence whereas hardiness had an indirect effect on the outcome variables through its impacts on student effort, perception of CLE and perception of student-faculty relationship. The model explained 8-12% of variance in the subscales of clinical competence.

  19. A causal model of chronic obstructive pulmonary disease (COPD) risk.

    PubMed

    Cox, Louis Anthony Tony

    2011-01-01

    Research on the etiology of chronic pulmonary disease (COPD), an irreversible degenerative lung disease affecting 15% to 20% of smokers, has blossomed over the past half-century. Profound new insights have emerged from a combination of in vitro and -omics studies on affected lung cell populations (including cytotoxic CD8(+) T lymphocytes, regulatory CD4(+) helper T cells, dendritic cells, alveolar macrophages and neutrophils, alveolar and bronchiolar epithelial cells, goblet cells, and fibroblasts) and extracellular matrix components (especially, elastin and collagen fibers); in vivo studies on wild-type and genetically engineered mice and other rodents; clinical investigation of cell- and molecular-level changes in asymptomatic smokers and COPD patients; genetic studies of susceptible and rapidly-progressing phenotypes (both human and animal); biomarker studies of enzyme and protein degradation products in induced sputum, bronchiolar lavage, urine, and blood; and epidemiological and clinical investigations of the time course of disease progression. To this rich mix of data, we add a relatively simple in silico computational model that incorporates recent insights into COPD disease causation and progression. Our model explains irreversible degeneration of lung tissue as resulting from a cascade of positive feedback loops: a macrophage inflammation loop, a neutrophil inflammation loop, and an alveolar epithelial cell apoptosis loop. Unrepaired damage results in clinical symptoms. The resulting model illustrates how to simplify and make more understandable the main aspects of the very complex dynamics of COPD initiation and progression, as well as how to predict the effects on risk of interventions that affect specific biological responses.

  20. Joint Modeling Compliance and Outcome for Causal Analysis in Longitudinal Studies

    PubMed Central

    Gao, Xin; Brown, Gregory K.; Elliott, Michael R.

    2013-01-01

    This article discusses joint modeling of compliance and outcome for longitudinal studies when noncompliance is present. We focus on two-arm randomized longitudinal studies in which subjects are randomized at baseline, treatment is applied repeatedly over time, and compliance behaviors and clinical outcomes are measured and recorded repeatedly over time. In the proposed Markov compliance and outcome model, we use the potential outcome framework to define pre-randomization principal strata from the joint distribution of compliance under treatment and control arms, and estimate the effect of treatment within each principal strata. Besides the causal effect of the treatment, our proposed model can estimate the impact of the causal effect of the treatment at a given time on the future compliance. Bayesian methods are used to estimate the parameters. The results are illustrated using a study assessing the effect of cognitive behavior therapy on depression. A simulation study is used to assess the repeated sampling properties of the proposed model. PMID:23576159

  1. Causality issues of particle detector models in QFT and quantum optics

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, Eduardo

    2015-11-01

    We analyze the constraints that causality imposes on some of the particle detector models employed in quantum field theory in general and, in particular, on those used in quantum optics (or superconducting circuits) to model atoms interacting with light. Namely, we show that disallowing faster-than-light communication can impose severe constraints on the applicability of particle detector models in three different common scenarios: (1) when the detectors are spatially smeared, (2) when a UV cutoff is introduced in the theory and (3) under one of the most typical approximations made in quantum optics: the rotating-wave approximation. We identify the scenarios in which the models' causal behavior can and cannot be cured.

  2. Joint modeling compliance and outcome for causal analysis in longitudinal studies.

    PubMed

    Gao, Xin; Brown, Gregory K; Elliott, Michael R

    2014-09-10

    This article discusses joint modeling of compliance and outcome for longitudinal studies when noncompliance is present. We focus on two-arm randomized longitudinal studies in which subjects are randomized at baseline, treatment is applied repeatedly over time, and compliance behaviors and clinical outcomes are measured and recorded repeatedly over time. In the proposed Markov compliance and outcome model, we use the potential outcome framework to define pre-randomization principal strata from the joint distribution of compliance under treatment and control arms, and estimate the effect of treatment within each principal strata. Besides the causal effect of the treatment, our proposed model can estimate the impact of the causal effect of the treatment at a given time on future compliance. Bayesian methods are used to estimate the parameters. The results are illustrated using a study assessing the effect of cognitive behavior therapy on depression. A simulation study is used to assess the repeated sampling properties of the proposed model.

  3. Mendelian Randomization versus Path Models: Making Causal Inferences in Genetic Epidemiology.

    PubMed

    Ziegler, Andreas; Mwambi, Henry; König, Inke R

    2015-01-01

    The term Mendelian randomization is popular in the current literature. The first aim of this work is to describe the idea of Mendelian randomization studies and the assumptions required for drawing valid conclusions. The second aim is to contrast Mendelian randomization and path modeling when different 'omics' levels are considered jointly. We define Mendelian randomization as introduced by Katan in 1986, and review its crucial assumptions. We introduce path models as the relevant additional component to the current use of Mendelian randomization studies in 'omics'. Real data examples for the association between lipid levels and coronary artery disease illustrate the use of path models. Numerous assumptions underlie Mendelian randomization, and they are difficult to be fulfilled in applications. Path models are suitable for investigating causality, and they should not be mixed up with the term Mendelian randomization. In many applications, path modeling would be the appropriate analysis in addition to a simple Mendelian randomization analysis. Mendelian randomization and path models use different concepts for causal inference. Path modeling but not simple Mendelian randomization analysis is well suited to study causality with different levels of 'omics' data. 2015 S. Karger AG, Basel.

  4. Gradient-free MCMC methods for dynamic causal modelling

    DOE PAGES

    Sengupta, Biswa; Friston, Karl J.; Penny, Will D.

    2015-03-14

    Here, we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density -- albeit at almost 1000% increase in computational time, in comparisonmore » to the most efficient algorithm (i.e., the adaptive MCMC sampler).« less

  5. Gradient-free MCMC methods for dynamic causal modelling

    PubMed Central

    Sengupta, Biswa; Friston, Karl J.; Penny, Will D.

    2015-01-01

    In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-based samplers are more efficient compared with random walk Metropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms of compute time. Slice-sampling yields the highest number of independent samples from the target density — albeit at almost 1000% increase in computational time, in comparison to the most efficient algorithm (i.e., the adaptive MCMC sampler). PMID:25776212

  6. Health Literacy Scale and Causal Model of Childhood Overweight.

    PubMed

    Intarakamhang, Ungsinun; Intarakamhang, Patrawut

    2017-01-28

    WHO focuses on developing health literacy (HL) referring to cognitive and social skills. Our objectives were to develop a scale for evaluating the HL level of Thai childhood overweight, and develop a path model of health behavior (HB) for preventing obesity. A cross-sectional study. This research used a mixed method. Overall, 2,000 school students were aged 9 to 14 yr collected by stratified random sampling from all parts of Thailand in 2014. Data were analyzed by CFA, LISREL. Reliability of HL and HB scale ranged 0.62 to 0.82 and factor loading ranged 0.33 to 0.80, the subjects had low level of HL (60.0%) and fair level of HB (58.4%), and the path model of HB, could be influenced by HL from three paths. Path 1 started from the health knowledge and understanding that directly influenced the eating behavior (effect sized - β was 0.13, P<0.05. Path 2 the health knowledge and understanding that influenced managing their health conditions, media literacy, and making appropriate health-related decision β=0.07, 0.98, and 0.05, respectively. Path 3 the accessing the information and services that influenced communicating for added skills, media literacy, and making appropriate health-related decision β=0.63, 0.93, 0.98, and 0.05. Finally, basic level of HL measured from health knowledge and understanding and accessing the information and services that influenced HB through interactive, and critical level β= 0.76, 0.97, and 0.55, respectively. HL Scale for Thai childhood overweight should be implemented as a screening tool developing HL by the public policy for health promotion.

  7. Assessing parameter identifiability for dynamic causal modeling of fMRI data

    PubMed Central

    Arand, Carolin; Scheller, Elisa; Seeber, Benjamin; Timmer, Jens; Klöppel, Stefan; Schelter, Björn

    2015-01-01

    Deterministic dynamic causal modeling (DCM) for fMRI data is a sophisticated approach to analyse effective connectivity in terms of directed interactions between brain regions of interest. To date it is difficult to know if acquired fMRI data will yield precise estimation of DCM parameters. Focusing on parameter identifiability, an important prerequisite for research questions on directed connectivity, we present an approach inferring if parameters of an envisaged DCM are identifiable based on information from fMRI data. With the freely available “attention to motion” dataset, we investigate identifiability of two DCMs and show how different imaging specifications impact on identifiability. We used the profile likelihood, which has successfully been applied in systems biology, to assess the identifiability of parameters in a DCM with specified scanning parameters. Parameters are identifiable when minima of the profile likelihood as well as finite confidence intervals for the parameters exist. Intermediate epoch duration, shorter TR and longer session duration generally increased the information content in the data and thus improved identifiability. Irrespective of biological factors such as size and location of a region, attention should be paid to densely interconnected regions in a DCM, as those seem to be prone to non-identifiability. Our approach, available in the DCMident toolbox, enables to judge if the parameters of an envisaged DCM are sufficiently determined by underlying data without priors as opposed to primarily reflecting the Bayesian priors in a SPM–DCM. Assessments with the DCMident toolbox prior to a study will lead to improved identifiability of the parameters and thus might prevent suboptimal data acquisition. Thus, the toolbox can be used as a preprocessing step to provide immediate statements on parameter identifiability. PMID:25750612

  8. Establishing causality in the decline and deformity of amphibians: The amphibian research and monitoring initiative model

    USGS Publications Warehouse

    Little, E.E.; Bridges, C.M.; Linder, G.; Boone, M.; ,

    2003-01-01

    Research to date has indicated that a range of environmental variables such as disease, parasitism, predation, competition, environmental contamination, solar ultraviolet radiation, climate change, or habitat alteration may be responsible for declining amphibian populations and the appearance of deformed organisms, yet in many cases no definitive environmental variable stands out as a causal factor. Multiple Stressors are often present in the habitat, and interactions among these can magnify injury to biota. This raises the possibility that the additive or synergistic impact of these Stressors may be the underlying cause of amphibian declines. Effective management for the restoration of amphibian populations requires the identification of causal factors contributing to their declines. A systematic approach to determine causality is especially important because initial impressions may be misleading or ambiguous. In addition, the evaluation of amphibian populations requires consideration of a broader spatial scale than commonly used in regulatory monitoring. We describe a systematic three-tiered approach to determine causality in amphibian declines and deformities. Tier 1 includes an evaluation of historic databases and extant data and would involve a desktop synopsis of the status of various stressors as well as site visits. Tier 2 studies are iterative, hypothesis driven studies beginning with general tests and continuing with analyses of increasing complexity as certain stressors are identified for further investigation. Tier 3 applies information developed in Tier 2 as predictive indicators of habitats and species at risk over broad landscape scales and provides decision support for the adaptive management of amphibian recovery. This comprehensive, tiered program could provide a mechanistic approach to identifying and addressing specific stressors responsible for amphibian declines across various landscapes.

  9. Analogical and category-based inference: a theoretical integration with Bayesian causal models.

    PubMed

    Holyoak, Keith J; Lee, Hee Seung; Lu, Hongjing

    2010-11-01

    A fundamental issue for theories of human induction is to specify constraints on potential inferences. For inferences based on shared category membership, an analogy, and/or a relational schema, it appears that the basic goal of induction is to make accurate and goal-relevant inferences that are sensitive to uncertainty. People can use source information at various levels of abstraction (including both specific instances and more general categories), coupled with prior causal knowledge, to build a causal model for a target situation, which in turn constrains inferences about the target. We propose a computational theory in the framework of Bayesian inference and test its predictions (parameter-free for the cases we consider) in a series of experiments in which people were asked to assess the probabilities of various causal predictions and attributions about a target on the basis of source knowledge about generative and preventive causes. The theory proved successful in accounting for systematic patterns of judgments about interrelated types of causal inferences, including evidence that analogical inferences are partially dissociable from overall mapping quality.

  10. Edge replacement and minimality as models of causal inference in children.

    PubMed

    Buchanan, David W; Sobel, David M

    2014-01-01

    Recently, much research has focused on causal graphical models (CGMs) as a computational-level description of how children represent cause and effect. While this research program has shown promise, there are aspects of causal reasoning that CGMs have difficulty accommodating. We propose a new formalism that amends CGMs. This edge replacement grammar formalizes one existing and one novel theoretical commitment. The existing idea is that children are determinists, in the sense that they believe that apparent randomness comes from hidden complexity, rather than inherent nondeterminism in the world. The new idea is that children think of causation as a branching process: causal relations grow not directly from the cause, but from existing relations between the cause and other effects. We have shown elsewhere that these two commitments together, when formalized, can explain and quantitatively fit the otherwise puzzling effect of nonindependence observed in the adult causal reasoning literature. We then test the qualitative predictions of this new formalism on children in a series of three experiments.

  11. Modeling and Encoding Clinical Causal Relationships in a Medical Knowledge Base

    PubMed Central

    Blum, Robert L.

    1983-01-01

    This paper presents a method for the computer modeling and encoding of clinical causal relationships (CR's). This method draws on the theory of multivariate linear models and path analysis. The representation was used to encode medical CR's derived empirically from a clinical database by the RX computer project described in SCAMC82. The emphasis in the representation is on capturing the intensities of effects and the variation in the effects across a patient population. This information is used by RX in determining the validity of other CR's. The representation uses a directed graph formalism in which the nodes are frames and the arcs contain seven descriptive features of individual CR's: intensity, distribution, direction, mathematical form, setting, validity, and evidence. Because natural systems (such as the human body) are inherently probabilistic, linear models are useful in representing causal flow in them.

  12. Deep brain stimulation for neurodegenerative disease: a computational blueprint using dynamic causal modeling.

    PubMed

    Moran, Rosalyn

    2015-01-01

    Advances in deep brain stimulation (DBS) therapeutics for neurological and psychiatric disorders represent a new clinical avenue that may potentially augment or adjunct traditional pharmacological approaches to disease treatment. Using modern molecular biology and genomics, pharmacological development proceeds through an albeit lengthy and expensive pipeline from candidate compound to preclinical and clinical trials. Such a pathway, however, is lacking in the field of neurostimulation, with developments arising from a selection of early sources and motivated by diverse fields including surgery and neuroscience. In this chapter, I propose that biophysical models of connected brain networks optimized using empirical neuroimaging data from patients and healthy controls can provide a principled computational pipeline for testing and developing neurostimulation interventions. Dynamic causal modeling (DCM) provides such a computational framework, serving as a method to test effective connectivity between and within regions of an active brain network. Importantly, the methodology links brain dynamics with behavior by directly assessing experimental task effects under different behavioral or cognitive sets. Therefore, healthy brain dynamics in circuits of interest can be defined mathematically with stimulation interventions in pathological counterparts simulated with the goal of restoring normal functionality. In this chapter, I outline the dynamic characterization of brain circuits using DCM and propose a blueprint for testing in silico, the effects of stimulation in neurodegenerative disorders affecting cognition. In particular, the models can be simulated to test whether neuroimaging correlates of nondiseased brain dynamics can be reinstantiated in a pathological setting using DBS. Thus, the key advantage of this framework is that distributed effects of DBS on neural circuitry and network connectivity can be predicted in silico. The chapter also includes a review of how

  13. A causal model of contraceptive intention and its gender comparison among Taiwanese sexually inexperienced adolescents.

    PubMed

    Wang, Ruey-Hsia; Cheng, Chung-Ping; Chou, Fan-Hao

    2008-04-01

    To test latent constructs of social influences, contraceptive attitude and self-efficacy for contraception as a causal model of contraceptive intention among adolescents and to search for possible gender differences in the causal model of contraceptive intention. A greater understanding of the causal model of contraceptive intention among sexually inexperienced adolescents will help nurses design contraceptive programmes to improve adolescent contraceptive use when they have sex. Design. This was a cross-sectional study; 770 boys and 685 girls that self-reported not being sexually experienced were selected for this study. An anonymous questionnaire was used to collect data. By structural equation modelling using the eqs 6.1 software, a hypothesized structural model of contraceptive intention was tested. For both genders, social influences affected contraceptive intention indirectly through the contraceptive attitude and self-efficacy for contraception. Contraceptive attitude and self-efficacy for contraception affected contraceptive intention directly. Contraceptive attitude also affected contraceptive intention indirectly through the mediation of self-efficacy for contraception. There were gender differences in the variances of contraceptive intention explained by contraceptive attitude, self-efficacy for contraception and social influences. Nevertheless, the data explain only a low proportion of the variability in contraceptive intention. More causal constructs influencing contraceptive intention should be explored in future. Personal factors and social influences operate interdependently to influence contraceptive intention among sexually inexperienced adolescents. Gender is a moderator that can modify the influential level of social influences, contraceptive attitude and self-efficacy for contraception on contraceptive intention. Nurses should operate personal factors and social influences interdependently when they are designing intervention programmes for

  14. Correlation of causal factors that influence construction safety performance: A model.

    PubMed

    Rodrigues, F; Coutinho, A; Cardoso, C

    2015-01-01

    The construction sector has presented positive development regarding the decrease in occupational accident rates in recent years. Regardless, the construction sector stands out systematically from other industries due to its high number of fatalities. The aim of this paper is to deeply understand the causality of construction accidents from the early design phase through a model. This study reviewed several research papers presenting various analytical models that correlate the contributing factors to occupational accidents in this sector. This study also analysed different construction projects and conducted a survey of design and site supervision teams. This paper proposes a model developed from the analysis of existing ones, which correlates the causal factors through all the construction phases. It was concluded that effective risk prevention can only be achieved by a global correlation of causal factors including not only production ones but also client requirements, financial climate, design team competence, project and risk management, financial capacity, health and safety policy and early planning. Accordingly, a model is proposed.

  15. Comparing causality measures of fMRI data using PCA, CCA and vector autoregressive modelling.

    PubMed

    Shah, Adnan; Khalid, Muhammad Usman; Seghouane, Abd-Krim

    2012-01-01

    Extracting the directional interaction between activated brain areas from functional magnetic resonance imaging (fMRI) time series measurements of their activity is a significant step in understanding the process of brain functions. In this paper, the directional interaction between fMRI time series characterizing the activity of two neuronal sites is quantified using two measures; one derived based on univariate autoregressive and autoregressive exogenous (AR/ARX) and other derived based on multivariate vector autoregressive and vector autoregressive exogenous (VAR/VARX) models. The significance and effectiveness of these measures is illustrated on both simulated and real fMRI data sets. It has been revealed that VAR modelling of the regions of interest is robust in inferring true causality compared to principal component analysis (PCA) and canonical correlation analysis (CCA) based causality methods.

  16. The opportune time to invest in residential properties - Engle-Granger cointegration test and Granger causality test approach

    NASA Astrophysics Data System (ADS)

    Chee-Yin, Yip; Hock-Eam, Lim

    2014-12-01

    This paper examines using housing supply as proxy to house prices, the causal relationship on house prices among 8 states in Malaysia by applying the Engle-Granger cointegration test and Granger causality test approach. The target states are Perak, Selangor, Penang, Federal Territory of Kuala Lumpur (WPKL or Kuala Lumpur), Kedah, Negeri Sembilan, Sabah and Sarawak. The primary aim of this study is to estimate how long (in months) house prices in Perak lag behind that of Selangor, Penang and WPKL. We classify the 8 states into two categories - developed and developing states. We use Engle-Granger cointegration test and Granger causality test to examine the long run and short run equilibrium relationship among the two categories.. It is found that the causal relationship is bidirectional in Perak and Sabah, Perak and Selangor while it is unidirectional for Perak and Sarawak, Perak and Penang, Perak and WPKL. The speed of deviation adjustment is about 273%, suggesting that the pricing dynamic of Perak has a 32- month or 2 3/4- year lag behind that of WPKL, Selangor and Penang. Such information will be useful to investors, house buyers and speculators.

  17. Recursive causality in evolution: a model for epigenetic mechanisms in cancer development.

    PubMed

    Haslberger, A; Varga, F; Karlic, H

    2006-01-01

    Interactions between adaptative and selective processes are illustrated in the model of recursive causality as defined in Rupert Riedl's systems theory of evolution. One of the main features of this theory also termed as theory of evolving complexity is the centrality of the notion of 'recursive' or 'feedback' causality - 'the idea that every biological effect in living systems, in some way, feeds back to its own cause'. Our hypothesis is that "recursive" or "feedback" causality provides a model for explaining the consequences of interacting genetic and epigenetic mechanisms which are known to play a key role in development of cancer. Epigenetics includes any process that alters gene activity without changes of the DNA sequence. The most important epigenetic mechanisms are DNA-methylation and chromatin remodeling. Hypomethylation of so-called oncogenes and hypermethylation of tumor suppressor genes appear to be critical determinants of cancer. Folic acid, vitamin B12 and other nutrients influence the function of enzymes that participate in various methylation processes by affecting the supply of methyl groups into a variety of molecules which may be directly or indirectly associated with cancerogenesis. We present an example from our own studies by showing that vitamin D3 has the potential to de-methylate the osteocalcin-promoter in MG63 osteosarcoma cells. Consequently, a stimulation of osteocalcin synthesis can be observed. The above mentioned enzymes also play a role in development and differentiation of cells and organisms and thus illustrate the close association between evolutionary and developmental mechanisms. This enabled new ways to understand the interaction between the genome and environment and may improve biomedical concepts including environmental health aspects where epigenetic and genetic modifications are closely associated. Recent observations showed that methylated nucleotides in the gene promoter may serve as a target for solar UV

  18. Multifactorial causal model of brain (dis)organization and therapeutic intervention: Application to Alzheimer's disease.

    PubMed

    Iturria-Medina, Yasser; Carbonell, Félix M; Sotero, Roberto C; Chouinard-Decorte, Francois; Evans, Alan C

    2017-05-15

    Generative models focused on multifactorial causal mechanisms in brain disorders are scarce and generally based on limited data. Despite the biological importance of the multiple interacting processes, their effects remain poorly characterized from an integrative analytic perspective. Here, we propose a spatiotemporal multifactorial causal model (MCM) of brain (dis)organization and therapeutic intervention that accounts for local causal interactions, effects propagation via physical brain networks, cognitive alterations, and identification of optimum therapeutic interventions. In this article, we focus on describing the model and applying it at the population-based level for studying late onset Alzheimer's disease (LOAD). By interrelating six different neuroimaging modalities and cognitive measurements, this model accurately predicts spatiotemporal alterations in brain amyloid-β (Aβ) burden, glucose metabolism, vascular flow, resting state functional activity, structural properties, and cognitive integrity. The results suggest that a vascular dysregulation may be the most-likely initial pathologic event leading to LOAD. Nevertheless, they also suggest that LOAD it is not caused by a unique dominant biological factor (e.g. vascular or Aβ) but by the complex interplay among multiple relevant direct interactions. Furthermore, using theoretical control analysis of the identified population-based multifactorial causal network, we show the crucial advantage of using combinatorial over single-target treatments, explain why one-target Aβ based therapies might fail to improve clinical outcomes, and propose an efficiency ranking of possible LOAD interventions. Although still requiring further validation at the individual level, this work presents the first analytic framework for dynamic multifactorial brain (dis)organization that may explain both the pathologic evolution of progressive neurological disorders and operationalize the influence of multiple interventional

  19. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach.

    PubMed

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A; Zhang, Wenbo; He, Bin

    2016-10-11

    Combined source imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a noninvasive fashion. Source imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source imaging algorithms to both find the network nodes (regions of interest) and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation timecourses and apply Granger analysis on the extracted series to study brain networks under realistic conditions.

  20. Olfactory Network Differences in Master Sommeliers: Connectivity Analysis Using Granger Causality and Graph Theoretical Approach.

    PubMed

    Sreenivasan, Karthik; Zhuang, Xiaowei; Banks, Sarah J; Mishra, Virendra; Yang, Zhengshi; Deshpande, Gopikrishna; Cordes, Dietmar

    2017-03-01

    Previous studies investigating the differences in olfactory processing and judgments between trained sommeliers and controls have shown increased activations in brain regions involving higher level cognitive processes in sommeliers. However, there is little information about the influence of expertise on causal connectivity and topological properties of the connectivity networks between these regions. Therefore, the current study focuses on addressing these questions in a functional magnetic resonance imaging (fMRI) study of olfactory perception in Master Sommeliers. fMRI data were acquired from Master Sommeliers and control participants during different olfactory and nonolfactory tasks. Mean time series were extracted from 90 different regions of interest (ROIs; based on Automated Anatomical Labeling atlas). The underlying neuronal variables were extracted using blind hemodynamic deconvolution and then input into a dynamic multivariate autoregressive model to obtain connectivity between every pair of ROIs as a function of time. These connectivity values were then statistically compared to obtain paths that were significantly different between the two groups. The obtained connectivity matrices were further studied using graph theoretical methods. In sommeliers, significantly greater connectivity was observed in connections involving the precuneus, caudate, putamen, and several frontal and temporal regions. The controls showed increased connectivity from the left hippocampus to the frontal regions. Furthermore, the sommeliers exhibited significantly higher small-world topology than the controls. These findings are significant, given that learning about neuroplasticity in adulthood in these regions may then have added clinical importance in diseases such as Alzheimer's and Parkinson's where early neurodegeneration is isolated to regions important in smell.

  1. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology

    USGS Publications Warehouse

    Eisenhauer, Nico; Powell, Jeff R; Grace, James B.; Bowker, Matthew A.

    2015-01-01

    In this perspectives paper we highlight a heretofore underused statistical method in soil ecological research, structural equation modeling (SEM). SEM is commonly used in the general ecological literature to develop causal understanding from observational data, but has been more slowly adopted by soil ecologists. We provide some basic information on the many advantages and possibilities associated with using SEM and provide some examples of how SEM can be used by soil ecologists to shift focus from describing patterns to developing causal understanding and inspiring new types of experimental tests. SEM is a promising tool to aid the growth of soil ecology as a discipline, particularly by supporting research that is increasingly hypothesis-driven and interdisciplinary, thus shining light into the black box of interactions belowground.

  2. Model-free causality analysis of cardiovascular variability detects the amelioration of autonomic control in Parkinson's disease patients undergoing mechanical stimulation.

    PubMed

    Bassani, Tito; Bari, Vlasta; Marchi, Andrea; Tassin, Stefano; Dalla Vecchia, Laura; Canesi, Margherita; Barbic, Franca; Furlan, Raffaello; Porta, Alberto

    2014-07-01

    We tested the hypothesis that causality analysis, applied to the spontaneous beat-to-beat variability of heart period (HP) and systolic arterial pressure (SAP), can identify the improvement of autonomic control linked to plantar mechanical stimulation in patients with Parkinson's disease (PD). A causality index, measuring the strength of the association from SAP to HP variability, and derived according to the Granger paradigm (i.e. SAP causes HP if the inclusion of SAP into the set of signals utilized to describe cardiovascular interactions improves the prediction of HP series), was calculated using both linear model-based (MB) and nonlinear model-free (MF) approaches. Univariate HP and SAP variability indices in time and frequency domains, and bivariate descriptors of the HP-SAP variability interactions were computed as well. We studied ten PD patients (age range: 57-78 years; Hoehn-Yahr scale: 2-3; six males, four females) without orthostatic hypotension or symptoms of orthostatic intolerance and 'on-time' according to their habitual pharmacological treatment. PD patients underwent recordings at rest in a supine position and during a head-up tilt before, and 24 h after, mechanical stimulation was applied to the plantar surface of both feet. The MF causality analysis indicated a greater involvement of baroreflex in regulating HP-SAP variability interactions after mechanical stimulation. Remarkably, MB causality and more traditional univariate or bivariate techniques could not detect changes in cardiovascular regulation after mechanical stimulation, thus stressing the importance of accounting for nonlinear dynamics in PD patients. Due to the higher statistical power of MF causality we suggest its exploitation to monitor the baroreflex control improvement in PD patients, and we encourage the clinical application of the Granger causality approach to evaluate the modification of the autonomic control in relation to the application of a pharmacological treatment, a

  3. A Bayesian network approach for causal inferences in pesticide risk assessment and management

    EPA Science Inventory

    Pesticide risk assessment and management must balance societal benefits and ecosystem protection, based on quantified risks and the strength of the causal linkages between uses of the pesticide and socioeconomic and ecological endpoints of concern. A Bayesian network (BN) is a gr...

  4. A Bayesian network approach for causal inferences in pesticide risk assessment and management

    EPA Science Inventory

    Pesticide risk assessment and management must balance societal benefits and ecosystem protection, based on quantified risks and the strength of the causal linkages between uses of the pesticide and socioeconomic and ecological endpoints of concern. A Bayesian network (BN) is a gr...

  5. Causal Responsibility and Counterfactuals

    PubMed Central

    Lagnado, David A; Gerstenberg, Tobias; Zultan, Ro'i

    2013-01-01

    How do people attribute responsibility in situations where the contributions of multiple agents combine to produce a joint outcome? The prevalence of over-determination in such cases makes this a difficult problem for counterfactual theories of causal responsibility. In this article, we explore a general framework for assigning responsibility in multiple agent contexts. We draw on the structural model account of actual causation (e.g., Halpern & Pearl, 2005) and its extension to responsibility judgments (Chockler & Halpern, 2004). We review the main theoretical and empirical issues that arise from this literature and propose a novel model of intuitive judgments of responsibility. This model is a function of both pivotality (whether an agent made a difference to the outcome) and criticality (how important the agent is perceived to be for the outcome, before any actions are taken). The model explains empirical results from previous studies and is supported by a new experiment that manipulates both pivotality and criticality. We also discuss possible extensions of this model to deal with a broader range of causal situations. Overall, our approach emphasizes the close interrelations between causality, counterfactuals, and responsibility attributions. PMID:23855451

  6. Causal responsibility and counterfactuals.

    PubMed

    Lagnado, David A; Gerstenberg, Tobias; Zultan, Ro'i

    2013-08-01

    How do people attribute responsibility in situations where the contributions of multiple agents combine to produce a joint outcome? The prevalence of over-determination in such cases makes this a difficult problem for counterfactual theories of causal responsibility. In this article, we explore a general framework for assigning responsibility in multiple agent contexts. We draw on the structural model account of actual causation (e.g., Halpern & Pearl, 2005) and its extension to responsibility judgments (Chockler & Halpern, 2004). We review the main theoretical and empirical issues that arise from this literature and propose a novel model of intuitive judgments of responsibility. This model is a function of both pivotality (whether an agent made a difference to the outcome) and criticality (how important the agent is perceived to be for the outcome, before any actions are taken). The model explains empirical results from previous studies and is supported by a new experiment that manipulates both pivotality and criticality. We also discuss possible extensions of this model to deal with a broader range of causal situations. Overall, our approach emphasizes the close interrelations between causality, counterfactuals, and responsibility attributions. Copyright © 2013 Cognitive Science Society, Inc.

  7. From animal model to human brain networking: dynamic causal modeling of motivational systems.

    PubMed

    Gonen, Tal; Admon, Roee; Podlipsky, Ilana; Hendler, Talma

    2012-05-23

    An organism's behavior is sensitive to different reinforcements in the environment. Based on extensive animal literature, the reinforcement sensitivity theory (RST) proposes three separate neurobehavioral systems to account for such context-sensitive behavior, affecting the tendency to react to punishment, reward, or goal-conflict stimuli. The translation of animal findings to complex human behavior, however, is far from obvious. To examine whether the neural networks underlying humans' motivational processes are similar to those proposed by the RST model, we conducted a functional MRI study, in which 24 healthy subjects performed an interactive game that engaged the different motivational systems using distinct time periods (states) of punishment, reward, and conflict. Crucially, we found that the different motivational states elicited activations in brain regions that corresponded exactly to the brain systems underlying RST. Moreover, dynamic causal modeling of each motivational system confirmed that the coupling strengths between the key brain regions of each system were enabled selectively by the appropriate motivational state. These results may shed light on the impairments that underlie psychopathologies associated with dysfunctional motivational processes and provide a translational validity for the RST.

  8. Bayesian networks improve causal environmental ...

    EPA Pesticide Factsheets

    Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on value

  9. Variable Selection for Confounder Control, Flexible Modeling and Collaborative Targeted Minimum Loss-Based Estimation in Causal Inference.

    PubMed

    Schnitzer, Mireille E; Lok, Judith J; Gruber, Susan

    2016-05-01

    This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010 [27]) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low- and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios.

  10. Variable selection for confounder control, flexible modeling and Collaborative Targeted Minimum Loss-based Estimation in causal inference

    PubMed Central

    Schnitzer, Mireille E.; Lok, Judith J.; Gruber, Susan

    2015-01-01

    This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low-and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios. PMID:26226129

  11. Testing a Landsat-based approach for mapping disturbance causality in U.S. forests

    Treesearch

    Todd A. Schroeder; Karen G. Schleeweis; Gretchen G. Moisen; Chris Toney; Warren B. Cohen; Elizabeth A. Freeman; Zhiqiang Yang; Chengquan Huang

    2017-01-01

    In light of Earth's changing climate and growing human population, there is an urgent need to improve monitoring of natural and anthropogenic disturbanceswhich effect forests' ability to sequester carbon and provide other ecosystem services. In this study, a two-step modeling approach was used to map the type and timing of forest disturbances occurring...

  12. Using Stochastic Causal Trees to Augment Bayesian Networks for Modeling eQTL Datasets

    PubMed Central

    2011-01-01

    Background The combination of genotypic and genome-wide expression data arising from segregating populations offers an unprecedented opportunity to model and dissect complex phenotypes. The immense potential offered by these data derives from the fact that genotypic variation is the sole source of perturbation and can therefore be used to reconcile changes in gene expression programs with the parental genotypes. To date, several methodologies have been developed for modeling eQTL data. These methods generally leverage genotypic data to resolve causal relationships among gene pairs implicated as associates in the expression data. In particular, leading studies have augmented Bayesian networks with genotypic data, providing a powerful framework for learning and modeling causal relationships. While these initial efforts have provided promising results, one major drawback associated with these methods is that they are generally limited to resolving causal orderings for transcripts most proximal to the genomic loci. In this manuscript, we present a probabilistic method capable of learning the causal relationships between transcripts at all levels in the network. We use the information provided by our method as a prior for Bayesian network structure learning, resulting in enhanced performance for gene network reconstruction. Results Using established protocols to synthesize eQTL networks and corresponding data, we show that our method achieves improved performance over existing leading methods. For the goal of gene network reconstruction, our method achieves improvements in recall ranging from 20% to 90% across a broad range of precision levels and for datasets of varying sample sizes. Additionally, we show that the learned networks can be utilized for expression quantitative trait loci mapping, resulting in upwards of 10-fold increases in recall over traditional univariate mapping. Conclusions Using the information from our method as a prior for Bayesian network

  13. Hindsight bias doesn't always come easy: causal models, cognitive effort, and creeping determinism.

    PubMed

    Nestler, Steffen; Blank, Hartmut; von Collani, Gernot

    2008-09-01

    Creeping determinism, a form of hindsight bias, refers to people's hindsight perceptions of events as being determined or inevitable. This article proposes, on the basis of a causal-model theory of creeping determinism, that the underlying processes are effortful, and hence creeping determinism should disappear when individuals lack the cognitive resources to make sense of an outcome. In Experiments 1 and 2, participants were asked to read a scenario while they were under either low or high processing load. Participants who had the cognitive resources to make sense of the outcome perceived it as more probable and necessary than did participants under high processing load or participants who did not receive outcome information. Experiment 3 was designed to separate 2 postulated subprocesses and showed that the attenuating effect of processing load on hindsight bias is not due to a disruption of the retrieval of potential causal antecedents but to a disruption of their evaluation. Together the 3 experiments show that the processes underlying creeping determinism are effortful, and they highlight the crucial role of causal reasoning in the perception of past events. (c) 2008 APA, all rights reserved.

  14. Using causal models to distinguish between neurogenesis-dependent and -independent effects on behaviour.

    PubMed

    Lazic, Stanley E

    2012-05-07

    There has been a substantial amount of research on the relationship between hippocampal neurogenesis and behaviour over the past 15 years, but the causal role that new neurons have on cognitive and affective behavioural tasks is still far from clear. This is partly due to the difficulty of manipulating levels of neurogenesis without inducing off-target effects, which might also influence behaviour. In addition, the analytical methods typically used do not directly test whether neurogenesis mediates the effect of an intervention on behaviour. Previous studies may have incorrectly attributed changes in behavioural performance to neurogenesis because the role of known (or unknown) neurogenesis-independent mechanisms was not formally taken into consideration during the analysis. Causal models can tease apart complex causal relationships and were used to demonstrate that the effect of exercise on pattern separation is via neurogenesis-independent mechanisms. Many studies in the neurogenesis literature would benefit from the use of statistical methods that can separate neurogenesis-dependent from neurogenesis-independent effects on behaviour.

  15. Testing causal models of the relationship between childhood gender atypical behaviour and parent-child relationship.

    PubMed

    Alanko, Katarina; Santtila, Pekka; Salo, Benny; Jern, Patrik; Johansson, Ada; Sandnabba, N Kenneth

    2011-06-01

    An association between childhood gender atypical behaviour (GAB) and a negative parent-child relationship has been demonstrated in several studies, yet the causal relationship of this association is not fully understood. In the present study, different models of causation between childhood GAB and parent-child relationships were tested. Direction of causation modelling was applied to twin data from a population-based sample (n= 2,565) of Finnish 33- to 43-year-old twins. Participants completed retrospective self-report questionnaires. Five different models of causation were then fitted to the data: GAB → parent-child relationship, parent-child relationship → GAB, reciprocal causation, a bivariate genetic model, and a model assuming no correlation. It was found that a model in which GAB and quality of mother-child, and father-child relationship reciprocally affect each other best fitted the data. The findings are discussed in light of how we should understand, including causality, the association between GAB and parent-child relationship.

  16. Toward a formalized account of attitudes: The Causal Attitude Network (CAN) model.

    PubMed

    Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van den Berg, Helma; Conner, Mark; van der Maas, Han L J

    2016-01-01

    This article introduces the Causal Attitude Network (CAN) model, which conceptualizes attitudes as networks consisting of evaluative reactions and interactions between these reactions. Relevant evaluative reactions include beliefs, feelings, and behaviors toward the attitude object. Interactions between these reactions arise through direct causal influences (e.g., the belief that snakes are dangerous causes fear of snakes) and mechanisms that support evaluative consistency between related contents of evaluative reactions (e.g., people tend to align their belief that snakes are useful with their belief that snakes help maintain ecological balance). In the CAN model, the structure of attitude networks conforms to a small-world structure: evaluative reactions that are similar to each other form tight clusters, which are connected by a sparser set of "shortcuts" between them. We argue that the CAN model provides a realistic formalized measurement model of attitudes and therefore fills a crucial gap in the attitude literature. Furthermore, the CAN model provides testable predictions for the structure of attitudes and how they develop, remain stable, and change over time. Attitude strength is conceptualized in terms of the connectivity of attitude networks and we show that this provides a parsimonious account of the differences between strong and weak attitudes. We discuss the CAN model in relation to possible extensions, implication for the assessment of attitudes, and possibilities for further study. (c) 2015 APA, all rights reserved).

  17. The causal nexus between carbon dioxide emissions and agricultural ecosystem-an econometric approach.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2017-01-01

    Achieving a long-term food security and preventing hunger include a better nutrition through sustainable systems of production, distribution, and consumption. Nonetheless, the quest for an alternative to increasing global food supply to meet the growing demand has led to the use of poor agricultural practices that promote climate change. Given the contribution of the agricultural ecosystem towards greenhouse gas (GHG) emissions, this study investigated the causal nexus between carbon dioxide emissions and agricultural ecosystem by employing a data spanning from 1961 to 2012. Evidence from long-run elasticity shows that a 1 % increase in the area of rice paddy harvested will increase carbon dioxide emissions by 1.49 %, a 1 % increase in biomass-burned crop residues will increase carbon dioxide emissions by 1.00 %, a 1 % increase in cereal production will increase carbon dioxide emissions by 1.38 %, and a 1 % increase in agricultural machinery will decrease carbon dioxide emissions by 0.09 % in the long run. There was a bidirectional causality between carbon dioxide emissions, cereal production, and biomass-burned crop residues. The Granger causality shows that the agricultural ecosystem in Ghana is sensitive to climate change vulnerability.

  18. An introduction to causal inference.

    PubMed

    Pearl, Judea

    2010-02-26

    This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underlie all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: those about (1) the effects of potential interventions, (2) probabilities of counterfactuals, and (3) direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation.

  19. Deconstructing Constructivism: Modeling Causal Relationships Among Constructivist Learning Environment Factors and Student Outcomes in Introductory Chemistry

    NASA Astrophysics Data System (ADS)

    Komperda, Regis

    The purpose of this dissertation is to test a model of relationships among factors characterizing aspects of a student-centered constructivist learning environment and student outcomes of satisfaction and academic achievement in introductory undergraduate chemistry courses. Constructivism was chosen as the theoretical foundation for this research because of its widespread use in chemical education research and practice. In a constructivist learning environment the role of the teacher shifts from delivering content towards facilitating active student engagement in activities that encourage individual knowledge construction through discussion and application of content. Constructivist approaches to teaching introductory chemistry courses have been adopted by some instructors as a way to improve student outcomes, but little research has been done on the causal relationships among particular aspects of the learning environment and student outcomes. This makes it difficult for classroom teachers to know which aspects of a constructivist teaching approach are critical to adopt and which may be modified to better suit a particular learning environment while still improving student outcomes. To investigate a model of these relationships, a survey designed to measure student perceptions of three factors characterizing a constructivist learning environment in online courses was adapted for use in face-to-face chemistry courses. These three factors, teaching presence, social presence, and cognitive presence, were measured using a slightly modified version of the Community of Inquiry (CoI) instrument. The student outcomes investigated in this research were satisfaction and academic achievement, as measured by standardized American Chemical Society (ACS) exam scores and course grades. Structural equation modeling (SEM) was used to statistically model relationships among the three presence factors and student outcome variables for 391 students enrolled in six sections of a

  20. Information recovery in molecular biology: causal modelling of regulated promoter switching experiments.

    PubMed

    Anderssen, Robert S; Helliwell, Christopher A

    2013-07-01

    The recovery of information from indirect measurements takes different forms depending on the sophistication with which the process being researched can be modelled mathematically. The forms range from (1) the historical and classical inverse problems regularization situation where explicit models which guaranteed existence and uniqueness have been formulated, through (2) situations where model formulation is performed implicitly as a calibration-and-prediction ansatz, to (3) the exploratory (biology) situation where the underlying mechanism is unknown and constraining information about its dynamics is being sought through appropriate experimentation. Each represents a different aspect of the solution of inverse problems. It is the nature of the exploratory form that is discussed in this paper. The focus is the causal modelling of regulated promoter switching experiments performed to understand the dynamics of the genetic control of various biological developmental processes such as vernalization in plants; in particular, regulated promoter switching experiments used to examine the relationship between FLC transcription activity and the associated histone H3 lysine 27 trimethylation at a vernalization-responsive gene in plants. Using a causal representation with Kohlrausch function fading memory, it is shown how such modelling can be used to quantitatively assess the closeness of the linking of one biological process with another, and, in particular, to conclude that the dynamics of FLC transcription and associated H3K27me3 activity are closely linked biologically.

  1. Exploratory Causal Analysis in Bivariate Time Series Data

    NASA Astrophysics Data System (ADS)

    McCracken, James M.

    Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data

  2. A methodology to model causal relationships on offshore safety assessment focusing on human and organizational factors.

    PubMed

    Ren, J; Jenkinson, I; Wang, J; Xu, D L; Yang, J B

    2008-01-01

    Focusing on people and organizations, this paper aims to contribute to offshore safety assessment by proposing a methodology to model causal relationships. The methodology is proposed in a general sense that it will be capable of accommodating modeling of multiple risk factors considered in offshore operations and will have the ability to deal with different types of data that may come from different resources. Reason's "Swiss cheese" model is used to form a generic offshore safety assessment framework, and Bayesian Network (BN) is tailored to fit into the framework to construct a causal relationship model. The proposed framework uses a five-level-structure model to address latent failures within the causal sequence of events. The five levels include Root causes level, Trigger events level, Incidents level, Accidents level, and Consequences level. To analyze and model a specified offshore installation safety, a BN model was established following the guideline of the proposed five-level framework. A range of events was specified, and the related prior and conditional probabilities regarding the BN model were assigned based on the inherent characteristics of each event. This paper shows that Reason's "Swiss cheese" model and BN can be jointly used in offshore safety assessment. On the one hand, the five-level conceptual model is enhanced by BNs that are capable of providing graphical demonstration of inter-relationships as well as calculating numerical values of occurrence likelihood for each failure event. Bayesian inference mechanism also makes it possible to monitor how a safety situation changes when information flow travel forwards and backwards within the networks. On the other hand, BN modeling relies heavily on experts' personal experiences and is therefore highly domain specific. "Swiss cheese" model is such a theoretic framework that it is based on solid behavioral theory and therefore can be used to provide industry with a roadmap for BN modeling and

  3. A Statistical Approach to Fine Mapping for the Identification of Potential Causal Variants Related to Bone Mineral Density.

    PubMed

    Greenbaum, Jonathan; Deng, Hong-Wen

    2017-08-01

    Although genomewide association studies (GWASs) have been able to successfully identify dozens of genetic loci associated with bone mineral density (BMD) and osteoporosis-related traits, very few of these loci have been confirmed to be causal. This is because in a given genetic region there may exist many trait-associated SNPs that are highly correlated. Although this correlation is useful for discovering novel associations, the high degree of linkage disequilibrium that persists throughout the genome presents a major challenge to discern which among these correlated variants has a direct effect on the trait. In this study we apply a recently developed Bayesian fine-mapping method, PAINTOR, to determine the SNPs that have the highest probability of causality for femoral neck (FNK) BMD and lumbar spine (LS) BMD. The advantage of this method is that it allows for the incorporation of information about GWAS summary statistics, linkage disequilibrium, and functional annotations to calculate a posterior probability of causality for SNPs across all loci of interest. We present a list of the top 10 candidate SNPs for each BMD trait to be followed up in future functional validation experiments. The SNPs rs2566752 (WLS) and rs436792 (ZNF621 and CTNNB1) are particularly noteworthy because they have more than 90% probability to be causal for both FNK and LS BMD. Using this statistical fine-mapping approach we expect to gain a better understanding of the genetic determinants contributing to BMD at multiple skeletal sites. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  4. Influence of Resting Venous Blood Volume Fraction on Dynamic Causal Modeling and System Identifiability

    PubMed Central

    Hu, Zhenghui; Ni, Pengyu; Wan, Qun; Zhang, Yan; Shi, Pengcheng; Lin, Qiang

    2016-01-01

    Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity. PMID:27389074

  5. Influence of Resting Venous Blood Volume Fraction on Dynamic Causal Modeling and System Identifiability.

    PubMed

    Hu, Zhenghui; Ni, Pengyu; Wan, Qun; Zhang, Yan; Shi, Pengcheng; Lin, Qiang

    2016-07-08

    Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity.

  6. Neural pathways in processing of sexual arousal: a dynamic causal modeling study.

    PubMed

    Seok, J-W; Park, M-S; Sohn, J-H

    2016-09-01

    Three decades of research have investigated brain processing of visual sexual stimuli with neuroimaging methods. These researchers have found that sexual arousal stimuli elicit activity in a broad neural network of cortical and subcortical brain areas that are known to be associated with cognitive, emotional, motivational and physiological components. However, it is not completely understood how these neural systems integrate and modulated incoming information. Therefore, we identify cerebral areas whose activations were correlated with sexual arousal using event-related functional magnetic resonance imaging and used the dynamic causal modeling method for searching the effective connectivity about the sexual arousal processing network. Thirteen heterosexual males were scanned while they passively viewed alternating short trials of erotic and neutral pictures on a monitor. We created a subset of seven models based on our results and previous studies and selected a dominant connectivity model. Consequently, we suggest a dynamic causal model of the brain processes mediating the cognitive, emotional, motivational and physiological factors of human male sexual arousal. These findings are significant implications for the neuropsychology of male sexuality.

  7. Causality as an emergent macroscopic phenomenon: The Lee-Wick O(N) model

    SciTech Connect

    Grinstein, Benjamin; O'Connell, Donal; Wise, Mark B.

    2009-05-15

    In quantum mechanics the deterministic property of classical physics is an emergent phenomenon appropriate only on macroscopic scales. Lee and Wick introduced Lorentz invariant quantum theories where causality is an emergent phenomenon appropriate for macroscopic time scales. In this paper we analyze a Lee-Wick version of the O(N) model. We argue that in the large-N limit this theory has a unitary and Lorentz invariant S matrix and is therefore free of paradoxes in scattering experiments. We discuss some of its acausal properties.

  8. The Reactive-Causal Architecture: Introducing an Emotion Model along with Theories of Needs

    NASA Astrophysics Data System (ADS)

    Aydin, Ali Orhan; Orgun, Mehmet Ali

    In the entertainment application area, one of the major aims is to develop believable agents. To achieve this aim, agents should be highly autonomous, situated, flexible, and display affect. The Reactive-Causal Architecture (ReCau) is proposed to simulate these core attributes. In its current form, ReCau cannot explain the effects of emotions on intelligent behaviour. This study aims is to further improve the emotion model of ReCau to explain the effects of emotions on intelligent behaviour. This improvement allows ReCau to be emotional to support the development of believable agents.

  9. Social Structure Shapes Cultural Stereotypes and Emotions: A Causal Test of the Stereotype Content Model

    PubMed Central

    Caprariello, Peter A.; Cuddy, Amy J. C.; Fiske, Susan T.

    2013-01-01

    The stereotype content model (SCM) posits that social structure predicts specific cultural stereotypes and associated emotional prejudices. No prior evidence at a societal level has manipulated both structural predictors and measured both stereotypes and prejudices. In the present study, participants (n = 120) responded to an immigration scenario depicting a high- or low-status group, competitive or not competitive, and rated their likely stereotype (on warmth and competence) and elicited emotional prejudices (admiration, contempt, envy, and pity). Seven of eight specific predictions are fully confirmed, supporting the SCM's predicted causality for social structural effects on cultural stereotypes and emotional prejudices. PMID:24285928

  10. Estimation of Causal Mediation Effects for a Dichotomous Outcome in Multiple-Mediator Models using the Mediation Formula

    PubMed Central

    Nelson, Suchitra; Albert, Jeffrey M.

    2013-01-01

    Mediators are intermediate variables in the causal pathway between an exposure and an outcome. Mediation analysis investigates the extent to which exposure effects occur through these variables, thus revealing causal mechanisms. In this paper, we consider the estimation of the mediation effect when the outcome is binary and multiple mediators of different types exist. We give a precise definition of the total mediation effect as well as decomposed mediation effects through individual or sets of mediators using the potential outcomes framework. We formulate a model of joint distribution (probit-normal) using continuous latent variables for any binary mediators to account for correlations among multiple mediators. A mediation formula approach is proposed to estimate the total mediation effect and decomposed mediation effects based on this parametric model. Estimation of mediation effects through individual or subsets of mediators requires an assumption involving the joint distribution of multiple counterfactuals. We conduct a simulation study that demonstrates low bias of mediation effect estimators for two-mediator models with various combinations of mediator types. The results also show that the power to detect a non-zero total mediation effect increases as the correlation coefficient between two mediators increases, while power for individual mediation effects reaches a maximum when the mediators are uncorrelated. We illustrate our approach by applying it to a retrospective cohort study of dental caries in adolescents with low and high socioeconomic status. Sensitivity analysis is performed to assess the robustness of conclusions regarding mediation effects when the assumption of no unmeasured mediator-outcome confounders is violated. PMID:23650048

  11. Erythropoietin Dose and Mortality in Hemodialysis Patients: Marginal Structural Model to Examine Causality

    PubMed Central

    Streja, Elani; Park, Jongha; Chan, Ting-Yan; Lee, Janet; Soohoo, Melissa; Rhee, Connie M.; Arah, Onyebuchi A.; Kalantar-Zadeh, Kamyar

    2016-01-01

    It has been previously reported that a higher erythropoiesis stimulating agent (ESA) dose in hemodialysis patients is associated with adverse outcomes including mortality; however the causal relationship between ESA and mortality is still hotly debated. We hypothesize ESA dose indeed exhibits a direct linear relationship with mortality in models of association implementing the use of a marginal structural model (MSM), which controls for time-varying confounding and examines causality in the ESA dose-mortality relationship. We conducted a retrospective cohort study of 128 598 adult hemodialysis patients over a 5-year follow-up period to evaluate the association between weekly ESA (epoetin-α) dose and mortality risk. A MSM was used to account for baseline and time-varying covariates especially laboratory measures including hemoglobin level and markers of malnutrition-inflammation status. There was a dose-dependent positive association between weekly epoetin-α doses ≥18 000 U/week and mortality risk. Compared to ESA dose of <6 000 U/week, adjusted odds ratios (95% confidence interval) were 1.02 (0.94–1.10), 1.08 (1.00–1.18), 1.17 (1.06–1.28), 1.27 (1.15–1.41), and 1.52 (1.37–1.69) for ESA dose of 6 000 to <12 000, 12 000 to <18 000, 18 000 to <24 000, 24 000 to <30 000, and ≥30 000 U/week, respectively. High ESA dose may be causally associated with excessive mortality, which is supportive of guidelines which advocate for conservative management of ESA dosing regimen in hemodialysis patients. PMID:27298736

  12. Door-to-Needle Delays in Minor Stroke: A Causal Inference Approach.

    PubMed

    Rostanski, Sara K; Shahn, Zachary; Elkind, Mitchell S V; Liberman, Ava L; Marshall, Randolph S; Stillman, Joshua I; Williams, Olajide; Willey, Joshua Z

    2017-07-01

    Thrombolysis rates among minor stroke (MS) patients are increasing because of increased recognition of disability in this group and guideline changes regarding treatment indications. We examined the association of delays in door-to-needle (DTN) time with stroke severity. We performed a retrospective analysis of all stroke patients who received intravenous tissue-type plasminogen activator in our emergency department between July 1, 2011, and February 29, 2016. Baseline characteristics and DTN were compared between MS (National Institutes of Health Stroke Scale score ≤5) and nonminor strokes (National Institutes of Health Stroke Scale score >5). We applied causal inference methodology to estimate the magnitude and mechanisms of the causal effect of stroke severity on DTN. Of 315 patients, 133 patients (42.2%) had National Institutes of Health Stroke Scale score ≤5. Median DTN was longer in MS than nonminor strokes (58 versus 53 minutes; P=0.01); fewer MS patients had DTN ≤45 minutes (19.5% versus 32.4%; P=0.01). MS patients were less likely to use emergency medical services (EMS; 62.6% versus 89.6%, P<0.01) and to receive EMS prenotification (43.9% versus 72.4%; P<0.01). Causal analyses estimated MS increased average DTN by 6 minutes, partly through mode of arrival. EMS prenotification decreased average DTN by 10 minutes in MS patients. MS had longer DTN times, an effect partly explained by patterns of EMS prenotification. Interventions to improve EMS recognition of MS may accelerate care. © 2017 American Heart Association, Inc.

  13. Darwin's diagram of divergence of taxa as a causal model for the origin of species.

    PubMed

    Bouzat, Juan L

    2014-03-01

    On the basis that Darwin's theory of evolution encompasses two logically independent processes (common descent and natural selection), the only figure in On the Origin of Species (the Diagram of Divergence of Taxa) is often interpreted as illustrative of only one of these processes: the branching patterns representing common ancestry. Here, I argue that Darwin's Diagram of Divergence of Taxa represents a broad conceptual model of Darwin's theory, illustrating the causal efficacy of natural selection in producing well-defined varieties and ultimately species. The Tree Diagram encompasses the idea that natural selection explains common descent and the origin of organic diversity, thus representing a comprehensive model of Darwin's theory on the origin of species. I describe Darwin's Tree Diagram in relation to his argumentative strategy under the vera causa principle, and suggest that the testing of his theory based on the evidence from the geological record, the geographical distribution of organisms, and the mutual affinities of organic beings can be framed under the hypothetico-deductive method. Darwin's Diagram of Divergence of Taxa therefore represents a broad conceptual model that helps understanding the causal construction of Darwin's theory of evolution, the structure of his argumentative strategy, and the nature of his scientific methodology.

  14. A preliminary evaluation of causal models of male and female acquisition of pilot skills.

    PubMed

    Carretta, T R; Ree, M J

    1997-01-01

    Based on a previous study, a causal model of acquisition of pilot job knowledge and flying skills was tested on separate samples of male and female students. Causal model parameters were estimated separately for each sample and, due to the small sample size for women, no between-groups statistical tests were conducted. The results are viewed as tentative because of the small sample of female students; however, the path coefficient parameter estimates are still useful. The model showed a direct influence of general cognitive ability (g) on the acquisition of job knowledge and an indirect influence on the acquisition of flying skills. The direct and indirect influence of cognitive ability on flying skills was a little stronger for women than for men. Additionally, the path between prior job knowledge (JKp) and flying performance was somewhat stronger for women than for men. Consistent with previous findings, the influence of early flying skills on later flying skills was very strong. No argument for a sex-separated training syllabus is supported.

  15. The relationship of family characteristics and bipolar disorder using causal-pie models.

    PubMed

    Chen, Y-C; Kao, C-F; Lu, M-K; Yang, Y-K; Liao, S-C; Jang, F-L; Chen, W J; Lu, R-B; Kuo, P-H

    2014-01-01

    Many family characteristics were reported to increase the risk of bipolar disorder (BPD). The development of BPD may be mediated through different pathways, involving diverse risk factor profiles. We evaluated the associations of family characteristics to build influential causal-pie models to estimate their contributions on the risk of developing BPD at the population level. We recruited 329 clinically diagnosed BPD patients and 202 healthy controls to collect information in parental psychopathology, parent-child relationship, and conflict within family. Other than logistic regression models, we applied causal-pie models to identify pathways involved with different family factors for BPD. The risk of BPD was significantly increased with parental depression, neurosis, anxiety, paternal substance use problems, and poor relationship with parents. Having a depressed mother further predicted early onset of BPD. Additionally, a greater risk for BPD was observed with higher numbers of paternal/maternal psychopathologies. Three significant risk profiles were identified for BPD, including paternal substance use problems (73.0%), maternal depression (17.6%), and through poor relationship with parents and conflict within the family (6.3%). Our findings demonstrate that different aspects of family characteristics elicit negative impacts on bipolar illness, which can be utilized to target specific factors to design and employ efficient intervention programs.

  16. Tracking slow modulations in synaptic gain using dynamic causal modelling: validation in epilepsy.

    PubMed

    Papadopoulou, Margarita; Leite, Marco; van Mierlo, Pieter; Vonck, Kristl; Lemieux, Louis; Friston, Karl; Marinazzo, Daniele

    2015-02-15

    In this work we propose a proof of principle that dynamic causal modelling can identify plausible mechanisms at the synaptic level underlying brain state changes over a timescale of seconds. As a benchmark example for validation we used intracranial electroencephalographic signals in a human subject. These data were used to infer the (effective connectivity) architecture of synaptic connections among neural populations assumed to generate seizure activity. Dynamic causal modelling allowed us to quantify empirical changes in spectral activity in terms of a trajectory in parameter space - identifying key synaptic parameters or connections that cause observed signals. Using recordings from three seizures in one patient, we considered a network of two sources (within and just outside the putative ictal zone). Bayesian model selection was used to identify the intrinsic (within-source) and extrinsic (between-source) connectivity. Having established the underlying architecture, we were able to track the evolution of key connectivity parameters (e.g., inhibitory connections to superficial pyramidal cells) and test specific hypotheses about the synaptic mechanisms involved in ictogenesis. Our key finding was that intrinsic synaptic changes were sufficient to explain seizure onset, where these changes showed dissociable time courses over several seconds. Crucially, these changes spoke to an increase in the sensitivity of principal cells to intrinsic inhibitory afferents and a transient loss of excitatory-inhibitory balance.

  17. Granger causality revisited.

    PubMed

    Friston, Karl J; Bastos, André M; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir

    2014-11-01

    This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality - providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes - as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling.

  18. Granger causality revisited

    PubMed Central

    Friston, Karl J.; Bastos, André M.; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir

    2014-01-01

    This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality — providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes — as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling. PMID:25003817

  19. Combining group-based trajectory modeling and propensity score matching for causal inferences in nonexperimental longitudinal data.

    PubMed

    Haviland, Amelia; Nagin, Daniel S; Rosenbaum, Paul R; Tremblay, Richard E

    2008-03-01

    A central theme of research on human development and psychopathology is whether a therapeutic intervention or a turning-point event, such as a family break-up, alters the trajectory of the behavior under study. This article describes and applies a method for using observational longitudinal data to make more transparent causal inferences about the impact of such events on developmental trajectories. The method combines 2 distinct lines of research: work on the use of finite mixture modeling to analyze developmental trajectories and work on propensity score matching. The propensity scores are used to balance observed covariates and the trajectory groups are used to control pretreatment measures of response. The trajectory groups also aid in characterizing classes of subjects for which no good matches are available. The approach is demonstrated with an analysis of the impact of gang membership on violent delinquency based on data from a large longitudinal study conducted in Montréal, Canada.

  20. Non-Abelian Gauge Symmetry in the Causal Epstein-Glaser Approach

    NASA Astrophysics Data System (ADS)

    Hurth, Tobias

    Non-Abelian gauge symmetry in (3 + 1)-dimensional space-time is analyzed in the causal Epstein-Glaser framework. In this formalism, the technical details concerning the well-known UV and IR problem in quantum field theory are separated and reduced to well-defined problems, namely the causal splitting and the adiabatic switching of operator-valued distributions. Non-Abelian gauge invariance in perturbation theory is completely discussed in the well-defined Fock space of free asymptotic fields. The LSZ formalism is not used in this construction. The linear operator condition of asymptotic gauge invariance is sufficient for the unitarity of the S matrix in the physical subspace and the usual Slavnov-Taylor identities. We explicitly derive the most general specific coupling compatible with this condition. By analyzing only tree graphs in the second order of perturbation theory we show that the well-known Yang-Mills couplings with anticommuting ghosts are the only ones which are compatible with asymptotic gauge invariance. The required generalizations for linear gauges are given.

  1. Instrumental variable approaches to identifying the causal effect of educational attainment on dementia risk.

    PubMed

    Nguyen, Thu T; Tchetgen Tchetgen, Eric J; Kawachi, Ichiro; Gilman, Stephen E; Walter, Stefan; Liu, Sze Y; Manly, Jennifer J; Glymour, M Maria

    2016-01-01

    Education is an established correlate of cognitive status in older adulthood, but whether expanding educational opportunities would improve cognitive functioning remains unclear given limitations of prior studies for causal inference. Therefore, we conducted instrumental variable (IV) analyses of the association between education and dementia risk, using for the first time in this area, genetic variants as instruments as well as state-level school policies. IV analyses in the Health and Retirement Study cohort (1998-2010) used two sets of instruments: (1) a genetic risk score constructed from three single-nucleotide polymorphisms (SNPs; n = 7981); and (2) compulsory schooling laws (CSLs) and state school characteristics (term length, student teacher ratios, and expenditures; n = 10,955). Using the genetic risk score as an IV, there was a 1.1% reduction in dementia risk per year of schooling (95% confidence interval, -2.4 to 0.02). Leveraging compulsory schooling laws and state school characteristics as IVs, there was a substantially larger protective effect (-9.5%; 95% confidence interval, -14.8 to -4.2). Analyses evaluating the plausibility of the IV assumptions indicated estimates derived from analyses relying on CSLs provide the best estimates of the causal effect of education. IV analyses suggest education is protective against risk of dementia in older adulthood. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Instrumental variable approaches to identifying the causal effect of educational attainment on dementia risk

    PubMed Central

    Nguyen, Thu T.; Tchetgen Tchetgen, Eric J.; Kawachi, Ichiro; Gilman, Stephen E.; Walter, Stefan; Liu, Sze Y.; Manly, Jennifer; Glymour, M. Maria

    2015-01-01

    Purpose Education is an established correlate of cognitive status in older adulthood, but whether expanding educational opportunities would improve cognitive functioning remains unclear given limitations of prior studies for causal inference. Therefore, we conducted instrumental variable (IV) analyses of the association between education and dementia risk, using for the first time in this area, genetic variants as instruments as well as state-level school policies. Methods IV analyses in the Health and Retirement Study cohort (1998–2010) used two sets of instruments: 1) a genetic risk score constructed from three single nucleotide polymorphisms (SNPs) (n=8,054); and 2) compulsory schooling laws (CSLs) and state school characteristics (term length, student teacher ratios, and expenditures) (n=13,167). Results Employing the genetic risk score as an IV, there was a 1.1% reduction in dementia risk per year of schooling (95% CI: −2.4, 0.02). Leveraging compulsory schooling laws and state school characteristics as IVs, there was a substantially larger protective effect (−9.5%; 95% CI: −14.8, −4.2). Analyses evaluating the plausibility of the IV assumptions indicated estimates derived from analyses relying on CSLs provide the best estimates of the causal effect of education. Conclusion IV analyses suggest education is protective against risk of dementia in older adulthood. PMID:26633592

  3. The Epstein-Glaser causal approach to the light-front QED4. I: Free theory

    NASA Astrophysics Data System (ADS)

    Bufalo, R.; Pimentel, B. M.; Soto, D. E.

    2014-12-01

    In this work we present the study of light-front field theories in the realm of the axiomatic theory. It is known that when one uses the light-cone gauge pathological poles (k+) - n arises, demanding a prescription to be employed in order to tame these ill-defined poles and to have the correct Feynman integrals due to the lack of Wick rotation in such theories. In order to shed a new light on this long standing problem we present here a discussion based on the use of rigorous mathematical machinery of the distributional theory combined with physical concepts, such as causality, to show how to deal with these singular propagators in a general fashion without making use of any prescription. The first step of our development will consist in showing how the analytic representation for propagators arises by requiring general physical properties within the framework of Wightman's formalism. From that we shall determine the equal-time (anti)commutation relations in the light-front form for the scalar and fermionic fields, as well as for the dynamical components of the electromagnetic field. In conclusion, we introduce the Epstein-Glaser causal method in order to have a mathematical rigorous description of the free propagators of the theory, allowing us to discuss a general treatment for propagators of the type (k+) - n. Afterwards, we show that at given conditions our results reproduce known prescriptions in the literature.

  4. Causality, mathematical models and statistical association: dismantling evidence-based medicine.

    PubMed

    Thompson, R Paul

    2010-04-01

    From humble beginnings, largely at the medical school at McMaster University, Canada, the evidence-based medicine (EBM) movement has enjoyed a spectacular rise in international acceptance over the last 25 years. Randomized controlled trials (RCTs) and systematic reviews based on them have pride of place (the gold standard) in EBM's hierarchy of evidence; models and theories are relegated to the bottom of the hierarchy. In the last decade, RCTs have been extensively criticized. I briefly rehearse those criticisms because they are an important backdrop to the criticism of EBM developed in this paper. In essence, the argument developed here is that RCTs use mathematics solely as a tool of analysis rather than as the language of the science and that this fundamentally affects the validity of causal claims. As EBM gives pride of place to RCTs and devalues theoretical models - a devaluation that would be incomprehensible to a physicist or biologist - the validity of EBM's causal claims and knowledge claims are weak and far from a 'gold standard'.

  5. Dynamic causal modeling of spatiotemporal integration of phonological and semantic processes: an electroencephalographic study

    PubMed Central

    Yvert, Gaëtan; Perrone-Bertolotti, Marcela; Baciu, Monica; David, Olivier

    2012-01-01

    Integration of phonological and lexico-semantic processes is essential for visual word recognition. Here we used dynamic causal modeling of event-related potentials, combined with group source reconstruction, to estimate how those processes translate into context-dependent modulation of effective connectivity within the temporal-frontal language network. Fifteen healthy human subjects performed a phoneme detection task in pseudo-words and a semantic categorization task in words. Cortical current densities revealed the sequential activation of temporal regions, from the occipital-temporal junction towards the anterior temporal lobe, before reaching the inferior frontal gyrus. A difference of activation between phonology and semantics was identified in the anterior temporal lobe, within the 240–300 ms peristimulus time-window. Dynamic causal modeling indicated this increase of activation of the anterior temporal lobe in the semantic condition as a consequence of an increase of forward connectivity from the posterior inferior temporal lobe to the anterior temporal lobe. In addition, fast activation of the inferior frontal region, that allowed a feedback control of frontal regions on the superior temporal and posterior inferior temporal cortices, was found to be likely. Our results precisely describe spatio-temporal network mechanisms occurring during integration of phonological and semantic processes. In particular, they support the hypothesis of multiple pathways within the temporal lobe for language processing, where frontal regions would exert a top-down control on temporal regions in the recruitment of the anterior temporal lobe for semantic processing. PMID:22442091

  6. Comparing two causal models of career maturity for hearing-impaired adolescents.

    PubMed

    King, S

    1990-01-01

    Conte (1983) suggested that existing theories of career development are inadequate for disabled populations because they fail to take into consideration the special life events and characteristics of people with a disability. The purpose of this study was to determine if Conte's reservations about contemporary theories could be supported by data. To this end, two causal models of career development were developed: one with five variables unique to the experience of the hearing impaired and the other without. Using data collected from 71 hearing-impaired adolescents, path analyses were conducted and the two models were compared for their ability to explain variance in career maturity. The results suggest that, although the second model may be more descriptive of the career development process for the deaf, it is no more powerful than the first in explaining variance in career maturity.

  7. Modelling the impact of causal and non-causal factors on disruption duration for Toronto's subway system: An exploratory investigation using hazard modelling.

    PubMed

    Louie, Jacob; Shalaby, Amer; Habib, Khandker Nurul

    2017-01-01

    Most investigations of incident-related delay duration in the transportation context are restricted to highway traffic, with little attention given to delays due to transit service disruptions. Studies of transit-based delay duration are also considerably less comprehensive than their highway counterparts with respect to examining the effects of non-causal variables on the delay duration. However, delays due to incidents in public transit service can have serious consequences on the overall urban transportation system due to the pivotal and vital role of public transit. The ability to predict the durations of various types of transit system incidents is indispensable for better management and mitigation of service disruptions. This paper presents a detailed investigation on incident delay durations in Toronto's subway system over the year 2013, focusing on the effects of the incidents' location and time, the train-type involved, and the non-adherence to proper recovery procedures. Accelerated Failure Time (AFT) hazard models are estimated to investigate the relationship between these factors and the resulting delay duration. The empirical investigation reveals that incident types that impact both safety and operations simultaneously generally have longer expected delays than incident types that impact either safety or operations alone. Incidents at interchange stations are cleared faster than incidents at non-interchange stations. Incidents during peak periods have nearly the same delay durations as off-peak incidents. The estimated models are believed to be useful tools in predicting the relative magnitude of incident delay duration for better management of subway operations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Nonlinear connectivity by Granger causality.

    PubMed

    Marinazzo, Daniele; Liao, Wei; Chen, Huafu; Stramaglia, Sebastiano

    2011-09-15

    The communication among neuronal populations, reflected by transient synchronous activity, is the mechanism underlying the information processing in the brain. Although it is widely assumed that the interactions among those populations (i.e. functional connectivity) are highly nonlinear, the amount of nonlinear information transmission and its functional roles are not clear. The state of the art to understand the communication between brain systems are dynamic causal modeling (DCM) and Granger causality. While DCM models nonlinear couplings, Granger causality, which constitutes a major tool to reveal effective connectivity, and is widely used to analyze EEG/MEG data as well as fMRI signals, is usually applied in its linear version. In order to capture nonlinear interactions between even short and noisy time series, a few approaches have been proposed. We review them and focus on a recently proposed flexible approach has been recently proposed, consisting in the kernel version of Granger causality. We show the application of the proposed approach on EEG signals and fMRI data.

  9. Spatio-temporal interaction between absorbing aerosols and temperature: Correlation and causality based approach

    NASA Astrophysics Data System (ADS)

    Dave, P.; Bhushan, M.; Venkataraman, C.

    2016-12-01

    Indian subcontinent, in particular, the Indo-gangetic plain (IGP) has witnessed large temperature anomalies (Ratnam et al., 2016) along with high emission of absorbing aerosols (AA) (Gazala, et al., 2005). The anomalous high temperature observed over this region may bear a relationship with high AA emissions. Different studies have been conducted to understand AA and temperature relationships (Turco et al., 1983; Hansen et al., 1997, 2005; Seinfeld 2008; Ramanathan et al. 2010b; Ban-Weiss et al., 2012). It was found that when the AA was injected in the lower- mid troposphere the surface air temperature increases while injection of AA at higher troposphere-lower stratosphere surface temperature decreases. These studies used simulation based results to establish link between AA and temperature (Hansen et al., 1997, 2005; Ban-Weiss et al., 2012). The current work focuses on identifying the causal influence of AA on temperature using observational and re-analysis data over Indian subcontinent using cross correlation (CCs) and Granger causality (GC) (Granger, 1969). Aerosol index (AI) from TOMS-OMI was used as index for AA while ERA-interim reanalysis data was used for temperature at varying altitude. Period of study was March-April-May-June (MAMJ) for years 1979-2015. CCs were calculated for all the atmospheric layers. In each layer nearby and distant pixels (>500 kms) with high CCs were identified using clustering technique. It was found that that AI and Temperature shows statistically significant cross-correlations for co-located and distant pixels and more prominently over IGP. The CCs fades away with higher altitudes. CCs analysis was followed by GC analysis to identify the lag over which AI can influence the Temperature. GC also supported the findings of CCs analysis. It is an early attempt to link persisting large temperature anomalies with absorbing aerosols and may help in identifying the role of absorbing aerosol in causing heat waves.

  10. Causal Model Comparison Shows That Human Representation Learning Is Not Bayesian.

    PubMed

    Geana, Andra; Niv, Yael

    2014-01-01

    How do we learn what features of our multidimensional environment are relevant in a given task? To study the computational process underlying this type of "representation learning," we propose a novel method of causal model comparison. Participants played a probabilistic learning task that required them to identify one relevant feature among several irrelevant ones. To compare between two models of this learning process, we ran each model alongside the participant during task performance, making predictions regarding the values underlying the participant's choices in real time. To test the validity of each model's predictions, we used the predicted values to try to perturb the participant's learning process: We crafted stimuli to either facilitate or hinder comparison between the most highly valued features. A model whose predictions coincide with the learned values in the participant's mind is expected to be effective in perturbing learning in this way, whereas a model whose predictions stray from the true learning process should not. Indeed, we show that in our task a reinforcement-learning model could help or hurt participants' learning, whereas a Bayesian ideal observer model could not. Beyond informing us about the notably suboptimal (but computationally more tractable) substrates of human representation learning, our manipulation suggests a sensitive method for model comparison, which allows us to change the course of people's learning in real time. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Causal modeling of secondary science students' intentions to enroll in physics

    NASA Astrophysics Data System (ADS)

    Crawley, Frank E.; Black, Carolyn B.

    The purpose of this study was to explore the utility of the theory of planned behavior model developed by social psychologists for understanding and predicting the behavioral intentions of secondary science students regarding enrolling in physics. In particular, the study used a three-stage causal model to investigate the links from external variables to behavioral, normative, and control beliefs; from beliefs to attitudes, subjective norm, and perceived behavioral control; and from attitudes, subjective norm, and perceived behavioral control to behavioral intentions. The causal modeling method was employed to verify the underlying causes of secondary science students' interest in enrolling physics as predicted in the theory of planned behavior. Data were collected from secondary science students (N = 264) residing in a central Texas city who were enrolled in earth science (8th grade), biology (9th grade), physical science (10th grade), or chemistry (11th grade) courses. Cause-and-effect relationships were analyzed using path analysis to test the direct effects of model variables specified in the theory of planned behavior. Results of this study indicated that students' intention to enroll in a high school physics course was determined by their attitude toward enrollment and their degree of perceived behavioral control. Attitude, subjective norm, and perceived behavioral control were, in turn, formed as a result of specific beliefs that students held about enrolling in physics. Grade level and career goals were found to be instrumental in shaping students' attitude. Immediate family members were identified as major referents in the social support system for enrolling in physics. Course and extracurricular conflicts and the fear of failure were shown to be the primary beliefs obstructing students' perception of control over physics enrollment. Specific recommendations are offered to researchers and practitioners for strengthening secondary school students

  12. A structural equation model of soil metal bioavailability to earthworms: confronting causal theory and observations using a laboratory exposure to field-contaminated soils.

    PubMed

    Beaumelle, Léa; Vile, Denis; Lamy, Isabelle; Vandenbulcke, Franck; Gimbert, Frédéric; Hedde, Mickaël

    2016-11-01

    Structural equation models (SEM) are increasingly used in ecology as multivariate analysis that can represent theoretical variables and address complex sets of hypotheses. Here we demonstrate the interest of SEM in ecotoxicology, more precisely to test the three-step concept of metal bioavailability to earthworms. The SEM modeled the three-step causal chain between environmental availability, environmental bioavailability and toxicological bioavailability. In the model, each step is an unmeasured (latent) variable reflected by several observed variables. In an exposure experiment designed specifically to test this SEM for Cd, Pb and Zn, Aporrectodea caliginosa was exposed to 31 agricultural field-contaminated soils. Chemical and biological measurements used included CaC12-extractable metal concentrations in soils, free ion concentration in soil solution as predicted by a geochemical model, dissolved metal concentration as predicted by a semi-mechanistic model, internal metal concentrations in total earthworms and in subcellular fractions, and several biomarkers. The observations verified the causal definition of Cd and Pb bioavailability in the SEM, but not for Zn. Several indicators consistently reflected the hypothetical causal definition and could thus be pertinent measurements of Cd and Pb bioavailability to earthworm in field-contaminated soils. SEM highlights that the metals present in the soil solution and easily extractable are not the main source of available metals for earthworms. This study further highlights SEM as a powerful tool that can handle natural ecosystem complexity, thus participating to the paradigm change in ecotoxicology from a bottom-up to a top-down approach.

  13. Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare

    2017-07-01

    The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.

  14. Experimental Animal Models Evaluating the Causal Role of Lipoprotein(a) in Atherosclerosis and Aortic Stenosis.

    PubMed

    Yeang, Calvin; Cotter, Bruno; Tsimikas, Sotirios

    2016-02-01

    Lipoprotein(a) [Lp(a)], comprised of apolipoprotein(a) [apo(a)] and a low-density lipoprotein-like particle, is a genetically determined, causal risk factor for cardiovascular disease and calcific aortic valve stenosis. Lp(a) is the major plasma lipoprotein carrier of oxidized phospholipids, is pro-inflammatory, inhibits plasminogen activation, and promotes smooth muscle cell proliferation, as defined mostly through in vitro studies. Although Lp(a) is not expressed in commonly studied laboratory animals, mouse and rabbit models transgenic for Lp(a) and apo(a) have been developed to address their pathogenicity in vivo. These models have provided significant insights into the pathophysiology of Lp(a), particularly in understanding the mechanisms of Lp(a) in mediating atherosclerosis. Studies in Lp(a)-transgenic mouse models have demonstrated that apo(a) is retained in atheromas and suggest that it promotes fatty streak formation. Furthermore, rabbit models have shown that Lp(a) promotes atherosclerosis and vascular calcification. However, many of these models have limitations. Mouse models need to be transgenic for both apo(a) and human apolipoprotein B-100 since apo(a) does not covalently associated with mouse apoB to form Lp(a). In established mouse and rabbit models of atherosclerosis, Lp(a) levels are low, generally < 20 mg/dL, which is considered to be within the normal range in humans. Furthermore, only one apo(a) isoform can be expressed in a given model whereas over 40 isoforms exist in humans. Mouse models should also ideally be studied in an LDL receptor negative background for atherosclerosis studies, as mice don't develop sufficiently elevated plasma cholesterol to study atherosclerosis in detail. With recent data that cardiovascular disease and calcific aortic valve stenosis is causally mediated by the LPA gene, development of optimized Lp(a)-transgenic animal models will provide an opportunity to further understand the mechanistic role of Lp(a) in

  15. CADDIS Volume 1. Stressor Identification: About Causal Assessment

    EPA Pesticide Factsheets

    An introduction to the history of our approach to causal assessment, A chronology of causal history and philosophy, An introduction to causal history and philosophy, References for the Causal Assessment Background section of Stressor Identification

  16. Efficiency characterization of a large neuronal network: A causal information approach

    NASA Astrophysics Data System (ADS)

    Montani, Fernando; Deleglise, Emilia B.; Rosso, Osvaldo A.

    2014-05-01

    When inhibitory neurons constitute about 40% of neurons they could have an important antinociceptive role, as they would easily regulate the level of activity of other neurons. We consider a simple network of cortical spiking neurons with axonal conduction delays and spike timing dependent plasticity, representative of a cortical column or hypercolumn with a large proportion of inhibitory neurons. Each neuron fires following a Hodgkin-Huxley like dynamics and it is interconnected randomly to other neurons. The network dynamics is investigated estimating Bandt and Pompe probability distribution function associated to the interspike intervals and taking different degrees of interconnectivity across neurons. More specifically we take into account the fine temporal “structures” of the complex neuronal signals not just by using the probability distributions associated to the interspike intervals, but instead considering much more subtle measures accounting for their causal information: the Shannon permutation entropy, Fisher permutation information and permutation statistical complexity. This allows us to investigate how the information of the system might saturate to a finite value as the degree of interconnectivity across neurons grows, inferring the emergent dynamical properties of the system.

  17. Explaining prosocial intentions: testing causal relationships in the norm activation model.

    PubMed

    Steg, Linda; de Groot, Judith

    2010-12-01

    This paper examines factors influencing prosocial intentions. On the basis of the norm activation model (NAM), we propose that four variables influence prosocial intentions or behaviours: (1) personal norms (PN), reflecting feelings of moral obligation to engage in prosocial behaviour, (2) awareness of adverse consequences of not acting prosocially, (3) ascription of responsibility for the negative consequences of not acting prosocially, and (4) perceived control over the problems. We conducted a series of experimental studies to examine how the NAM variables are causally related. As hypothesized, problem awareness, responsibility, and outcome efficacy played an important role in the development of PN and various types of prosocial intentions in the social as well as environmental domain.

  18. Causal Inference in Occupational Epidemiology: Accounting for the Healthy Worker Effect by Using Structural Nested Models

    PubMed Central

    Naimi, Ashley I.; Richardson, David B.; Cole, Stephen R.

    2013-01-01

    In a recent issue of the Journal, Kirkeleit et al. (Am J Epidemiol. 2013;177(11):1218–1224) provided empirical evidence for the potential of the healthy worker effect in a large cohort of Norwegian workers across a range of occupations. In this commentary, we provide some historical context, define the healthy worker effect by using causal diagrams, and use simulated data to illustrate how structural nested models can be used to estimate exposure effects while accounting for the healthy worker survivor effect in 4 simple steps. We provide technical details and annotated SAS software (SAS Institute, Inc., Cary, North Carolina) code corresponding to the example analysis in the Web Appendices, available at http://aje.oxfordjournals.org/. PMID:24077092

  19. Dynamic Causal Modeling applied to fMRI data shows high reliability

    PubMed Central

    Schuyler, Brianna; Ollinger, John M.; Oakes, Terrence R.; Johnstone, Tom; Davidson, Richard J.

    2010-01-01

    Sensitivity, specificity, and reproducibility are vital to interpret neuroscientific results from functional magnetic resonance imaging (fMRI) experiments. Here we examine the scan-rescan reliability of the percent signal change (PSC) and parameters estimated using Dynamic Causal Modeling (DCM) in scans taken in the same scan session, less than five minutes apart. We find fair to good reliability of PSC in regions that are involved with the task, and fair to excellent reliability with DCM. Also, the DCM analysis uncovers group differences that were not present in the analysis of PSC, which implies that DCM may be more sensitive to the nuances of signal changes in fMRI data. PMID:19619665

  20. A causal model of burnout among self-managed work team members.

    PubMed

    Elloy, D F; Terpening, W; Kohls, J

    2001-05-01

    The findings on burnout that are almost universally from research in service settings are applied to an industrial setting with self-managed work teams. Researchers formulated several hypotheses on the basis of this literature. These hypotheses were then used to develop a structural (causal) model that was tested and refined using LISREL 8. Data were collected from 320 employees concerning perceptions of several job and organization conditions, as well as the three components of burnout. Results indicated that role conflict contributed to emotional exhaustion, and participation in work teams diminished it. Job ambiguity, low co-worker support, and low job ability contributed to feelings of low personal accomplishment. These results were consistent with previous findings. When insufficient time to complete a job was removed from the workload measures, workload actually diminished burnout, a finding opposite from previous research. Other organization factors had no significant impact on burnout in this setting.

  1. Causal inference in occupational epidemiology: accounting for the healthy worker effect by using structural nested models.

    PubMed

    Naimi, Ashley I; Richardson, David B; Cole, Stephen R

    2013-12-15

    In a recent issue of the Journal, Kirkeleit et al. (Am J Epidemiol. 2013;177(11):1218-1224) provided empirical evidence for the potential of the healthy worker effect in a large cohort of Norwegian workers across a range of occupations. In this commentary, we provide some historical context, define the healthy worker effect by using causal diagrams, and use simulated data to illustrate how structural nested models can be used to estimate exposure effects while accounting for the healthy worker survivor effect in 4 simple steps. We provide technical details and annotated SAS software (SAS Institute, Inc., Cary, North Carolina) code corresponding to the example analysis in the Web Appendices, available at http://aje.oxfordjournals.org/.

  2. Examining the Theory of Planned Behavior Applied to Condom Use: The Effect-Indicator vs. Causal-Indicator Models

    PubMed Central

    Carmack, Chakema C.; Lewis-Moss, Rhonda K.

    2010-01-01

    The authors investigated whether a causal-indicator model or an effect-indicator model of the theory of planned behavior (TPB) is more suitable for predicting behavioral intention and for which behaviors. No previous studies have evaluated this question using the same sample and same behavior. In this study, African American adolescents ages 12–17 participating in risk reduction classes were assessed on their initial attitudes, norms, perceived control, and intention regarding condom use. Second-order structural equation modeling indicated that the effect-indicator model exhibited superior fit above the causal-indicator model. Furthermore, modeling the behavioral antecedents in a causal way may not be as accurate due to the underlying uni-dimensional nature of attitudes, subjective norms, and control. The TPB was not disconfirmed as a suitable model for African American adolescents’ regarding condom use. Prevention programs may benefit by focusing on adolescent behavior change with regard to the global components in order to influence more specific concepts of these social cognitions. Editors’ Strategic Implications: Despite limitations including correlational data, this study yields implications for prevention programming and, more broadly, an important theoretical elaboration on effect-indicator and causal-indicator models of the TPB. PMID:19949867

  3. Applying a Multiple Group Causal Indicator Modeling Framework to the Reading Comprehension Skills of Third, Seventh, and Tenth Grade Students

    ERIC Educational Resources Information Center

    Tighe, Elizabeth L.; Wagner, Richard K.; Schatschneider, Christopher

    2015-01-01

    This study demonstrates the utility of applying a causal indicator modeling framework to investigate important predictors of reading comprehension in third, seventh, and tenth grade students. The results indicated that a 4-factor multiple indicator multiple indicator cause (MIMIC) model of reading comprehension provided adequate fit at each grade…

  4. Applying a Multiple Group Causal Indicator Modeling Framework to the Reading Comprehension Skills of Third, Seventh, and Tenth Grade Students

    ERIC Educational Resources Information Center

    Tighe, Elizabeth L.; Wagner, Richard K.; Schatschneider, Christopher

    2015-01-01

    This study demonstrates the utility of applying a causal indicator modeling framework to investigate important predictors of reading comprehension in third, seventh, and tenth grade students. The results indicated that a 4-factor multiple indicator multiple indicator cause (MIMIC) model of reading comprehension provided adequate fit at each grade…

  5. Structure and Strength in Causal Induction

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2005-01-01

    We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…

  6. Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models.

    PubMed

    Wang, Chi; Dominici, Francesca; Parmigiani, Giovanni; Zigler, Corwin Matthew

    2015-09-01

    Confounder selection and adjustment are essential elements of assessing the causal effect of an exposure or treatment in observational studies. Building upon work by Wang et al. (2012, Biometrics 68, 661-671) and Lefebvre et al. (2014, Statistics in Medicine 33, 2797-2813), we propose and evaluate a Bayesian method to estimate average causal effects in studies with a large number of potential confounders, relatively few observations, likely interactions between confounders and the exposure of interest, and uncertainty on which confounders and interaction terms should be included. Our method is applicable across all exposures and outcomes that can be handled through generalized linear models. In this general setting, estimation of the average causal effect is different from estimation of the exposure coefficient in the outcome model due to noncollapsibility. We implement a Bayesian bootstrap procedure to integrate over the distribution of potential confounders and to estimate the causal effect. Our method permits estimation of both the overall population causal effect and effects in specified subpopulations, providing clear characterization of heterogeneous exposure effects that may vary considerably across different covariate profiles. Simulation studies demonstrate that the proposed method performs well in small sample size situations with 100-150 observations and 50 covariates. The method is applied to data on 15,060 US Medicare beneficiaries diagnosed with a malignant brain tumor between 2000 and 2009 to evaluate whether surgery reduces hospital readmissions within 30 days of diagnosis.

  7. Empirical evaluation of the conceptual model underpinning a regional aquatic long-term monitoring program using causal modelling

    USGS Publications Warehouse

    Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.

    2015-01-01

    Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of

  8. Causal and causally separable processes

    NASA Astrophysics Data System (ADS)

    Oreshkov, Ognyan; Giarmatzi, Christina

    2016-09-01

    The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B, either A is in the causal past of B, B is in the causal past of A, or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and

  9. Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task.

    PubMed

    Bönstrup, Marlene; Schulz, Robert; Feldheim, Jan; Hummel, Friedhelm C; Gerloff, Christian

    2016-01-01

    Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) have demonstrated movement-related causal information flow from secondary to primary motor areas and have provided evidence for nonlinear cross-frequency interactions among motor areas. The present study sought to investigate to what extent fMRI- and EEG-based DCM might provide complementary and synergistic insights into neuronal network dynamics. Both modalities share principal similarities in the formulation of the DCM. Thus, we hypothesized that DCM based on induced EEG responses (DCM-IR) and on fMRI would reveal congruent task-dependent network dynamics. Brain electrical (63-channel surface EEG) and Blood Oxygenation Level Dependent (BOLD) signals were recorded in separate sessions from 14 healthy participants performing simple isometric right and left hand grips. DCM-IR and DCM-fMRI were used to estimate coupling parameters modulated by right and left hand grips within a core motor network of six regions comprising bilateral primary motor cortex (M1), ventral premotor cortex (PMv) and supplementary motor area (SMA). We found that DCM-fMRI and DCM-IR similarly revealed significant grip-related increases in facilitatory coupling between SMA and M1 contralateral to the active hand. A grip-dependent interhemispheric reciprocal inhibition between M1 bilaterally was only revealed by DCM-fMRI but not by DCM-IR. Frequency-resolved coupling analysis showed that the information flow from contralateral SMA to M1 was predominantly a linear alpha-to-alpha (9-13Hz) interaction. We also detected some cross-frequency coupling from SMA to contralateral M1, i.e., between lower beta (14-21Hz) at the SMA and higher beta (22-30Hz) at M1 during right hand grip and between alpha (9-13Hz) at SMA and lower beta (14-21Hz) at M1

  10. The Epstein–Glaser causal approach to the light-front QED{sub 4}. I: Free theory

    SciTech Connect

    Bufalo, R. Pimentel, B.M. Soto, D.E.

    2014-12-15

    In this work we present the study of light-front field theories in the realm of the axiomatic theory. It is known that when one uses the light-cone gauge pathological poles (k{sup +}){sup −n} arises, demanding a prescription to be employed in order to tame these ill-defined poles and to have the correct Feynman integrals due to the lack of Wick rotation in such theories. In order to shed a new light on this long standing problem we present here a discussion based on the use of rigorous mathematical machinery of the distributional theory combined with physical concepts, such as causality, to show how to deal with these singular propagators in a general fashion without making use of any prescription. The first step of our development will consist in showing how the analytic representation for propagators arises by requiring general physical properties within the framework of Wightman’s formalism. From that we shall determine the equal-time (anti)commutation relations in the light-front form for the scalar and fermionic fields, as well as for the dynamical components of the electromagnetic field. In conclusion, we introduce the Epstein–Glaser causal method in order to have a mathematical rigorous description of the free propagators of the theory, allowing us to discuss a general treatment for propagators of the type (k{sup +}){sup −n}. Afterwards, we show that at given conditions our results reproduce known prescriptions in the literature. - Highlights: • We develop the analytic representation for propagators in Wightman’s framework. • We make use of the analytic representation to obtain equal-time (anti)commutation relations in the light-front. • We derive the free Feynman propagators for the light-front quantum electrodynamics in the Epstein–Glaser approach. • We determine a general expression for the propagator associated to the light-cone poles (k{sup +}){sup −n} in the causal approach.

  11. The development of causal reasoning.

    PubMed

    Kuhn, Deanna

    2012-05-01

    How do inference rules for causal learning themselves change developmentally? A model of the development of causal reasoning must address this question, as well as specify the inference rules. Here, the evidence for developmental changes in processes of causal reasoning is reviewed, with the distinction made between diagnostic causal inference and causal prediction. Also addressed is the paradox of a causal reasoning literature that highlights the competencies of young children and the proneness to error among adults. WIREs Cogn Sci 2012, 3:327-335. doi: 10.1002/wcs.1160 For further resources related to this article, please visit the WIREs website.

  12. Programs as Causal Models: Speculations on Mental Programs and Mental Representation

    ERIC Educational Resources Information Center

    Chater, Nick; Oaksford, Mike

    2013-01-01

    Judea Pearl has argued that counterfactuals and causality are central to intelligence, whether natural or artificial, and has helped create a rich mathematical and computational framework for formally analyzing causality. Here, we draw out connections between these notions and various current issues in cognitive science, including the nature of…

  13. Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.; Bauldry, Shawn

    2011-01-01

    In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of…

  14. Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.; Bauldry, Shawn

    2011-01-01

    In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of…

  15. Programs as Causal Models: Speculations on Mental Programs and Mental Representation

    ERIC Educational Resources Information Center

    Chater, Nick; Oaksford, Mike

    2013-01-01

    Judea Pearl has argued that counterfactuals and causality are central to intelligence, whether natural or artificial, and has helped create a rich mathematical and computational framework for formally analyzing causality. Here, we draw out connections between these notions and various current issues in cognitive science, including the nature of…

  16. Incorporating Transmission Into Causal Models of Infectious Diseases for Improved Understanding of the Effect and Impact of Risk Factors.

    PubMed

    Paynter, Stuart

    2016-03-15

    Conventional measures of causality (which compare risks between exposed and unexposed individuals) do not factor in the population-scale dynamics of infectious disease transmission. We used mathematical models of 2 childhood infections (respiratory syncytial virus and rotavirus) to illustrate this problem. These models incorporated 3 causal pathways whereby malnutrition could act to increase the incidence of severe infection: increasing the proportion of infected children who develop severe infection, increasing the children's susceptibility to infection, and increasing infectiousness. For risk factors that increased the proportion of infected children who developed severe infection, the population attributable fraction (PAF) calculated conventionally was the same as the PAF calculated directly from the models. However, for risk factors that increased transmission (by either increasing susceptibility to infection or increasing infectiousness), the PAF calculated directly from the models was much larger than that predicted by the conventional PAF calculation. The models also showed that even when conventional studies find no association between a risk factor and an outcome, risk factors that increase transmission can still have a large impact on disease burden. For a complete picture of infectious disease causality, transmission effects must be incorporated into causal models.

  17. Detection of Motor Changes in Huntington's Disease Using Dynamic Causal Modeling.

    PubMed

    Minkova, Lora; Scheller, Elisa; Peter, Jessica; Abdulkadir, Ahmed; Kaller, Christoph P; Roos, Raymund A; Durr, Alexandra; Leavitt, Blair R; Tabrizi, Sarah J; Klöppel, Stefan

    2015-01-01

    Deficits in motor functioning are one of the hallmarks of Huntington's disease (HD), a genetically caused neurodegenerative disorder. We applied functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) to assess changes that occur with disease progression in the neural circuitry of key areas associated with executive and cognitive aspects of motor control. Seventy-seven healthy controls, 62 pre-symptomatic HD gene carriers (preHD), and 16 patients with manifest HD symptoms (earlyHD) performed a motor finger-tapping fMRI task with systematically varying speed and complexity. DCM was used to assess the causal interactions among seven pre-defined regions of interest, comprising primary motor cortex, supplementary motor area (SMA), dorsal premotor cortex, and superior parietal cortex. To capture heterogeneity among HD gene carriers, DCM parameters were entered into a hierarchical cluster analysis using Ward's method and squared Euclidian distance as a measure of similarity. After applying Bonferroni correction for the number of tests, DCM analysis revealed a group difference that was not present in the conventional fMRI analysis. We found an inhibitory effect of complexity on the connection from parietal to premotor areas in preHD, which became excitatory in earlyHD and correlated with putamen atrophy. While speed of finger movements did not modulate the connection from caudal to pre-SMA in controls and preHD, this connection became strongly negative in earlyHD. This second effect did not survive correction for multiple comparisons. Hierarchical clustering separated the gene mutation carriers into three clusters that also differed significantly between these two connections and thereby confirmed their relevance. DCM proved useful in identifying group differences that would have remained undetected by standard analyses and may aid in the investigation of between-subject heterogeneity.

  18. Sedimentary selenium as a causal factor for adverse biological effects: Toxicity thresholds and stream modeling

    SciTech Connect

    Va Derveer, W.; Canton, S.

    1995-12-31

    Selenium (Se) in the aquatic environment exhibits a strong association with particulate organic matter and as a result, measurements of waterborne concentration can be an unreliable predictor of bioaccumulation and adverse effects. Particulate-bound Se, typically measured as sedimentary Se, has been repeatedly implicated as a causal factor for Se bioaccumulation and subsequent potential for reproductive failures in fish and/or birds at sites receiving coal-fired power plant and refinery effluents as well as irrigation drainage. In fact, the premise that adverse biological effects are largely induced by sedimentary Se satisfies all of Hill`s criteria for a causal association. Despite these findings, most efforts to control Se continue to focus on waterborne concentrations because sedimentary toxicity thresholds are largely unknown. Sedimentary Se and associated biological effects data from studies of Se-bearing industrial effluent and irrigation drainage were compiled to initiate development of biological effects thresholds, The probability of adverse effects on fish or birds appears to be low up to a sedimentary Se concentration of about 2.8 {micro}g/g dry weight and high at 6.4 {micro}g/g dry weight (10th and 50th percentile of effects data, respectively). In addition, a preliminary regression model was derived for predicting dissolved to sedimentary Se transfer in streams as an interactive function of site-specific sedimentary organic carbon content (R{sup 2} = 0,870, p < 0.001) based on irrigation drainage studies in Colorado. This dissolved Se interaction with sedimentary organic carbon provides a possible explanation for the variable biological response to waterborne Se-organic-rich sites are predisposed to greater Se bioaccumulation and subsequent biological effects than organic-poor sites.

  19. Posttraumatic stress disorder among Vietnam Theater Veterans. A causal model of etiology in a community sample.

    PubMed

    Fontana, A; Rosenheck, R

    1994-12-01

    Data from the National Vietnam Veterans Readjustment Study, conducted from 1986 to 1988, were used to develop and cross-validate a model of the etiology of posttraumatic stress disorder (PTSD) among a community sample of 1198 male Vietnam theater veterans. The initial model specified causal paths among five sets of variables, ordered according to their historical occurrence: a) premilitary risk factors and traumas, b) war-related and non-war-related traumas during the military, c) homecoming reception, d) postmilitary traumas, and e) PTSD. The initial model was refined and then cross-validated, leading to the specification of a final model with highly satisfactory fit and parsimony. In terms of the magnitude of their contribution to the development of PTSD, lack of support from family and friends at the time of the homecoming and exposure to combat were the two most influential contributors. Other contributing factors, in order of importance, were Hispanic ethnicity, societal rejection at the time of homecoming, childhood abuse, participation in abusive violence, and family instability. Exposure to war-related and non-war-related traumas occurred largely independently of each other, with war-related traumas contributing substantially more than non-war-related traumas to the development of PTSD. Limitations to interpretation of the results are noted due to the retrospective nature of the data and the inevitable omission of other etiological factors.

  20. Calibrating the pixel-level Kepler imaging data with a causal data-driven model

    NASA Astrophysics Data System (ADS)

    Wang, Dun; Foreman-Mackey, Daniel; Hogg, David W.; Schölkopf, Bernhard

    2015-01-01

    In general, astronomical observations are affected by several kinds of noise, each with it's own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. In particular, the precision of NASA Kepler photometry for exoplanet science—the most precise photometric measurements of stars ever made—appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here we present the Causal Pixel Model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level (not the photometric measurement level); it can capture more fine-grained information about the variation of the spacecraft than is available in the pixel-summed aperture photometry. The basic idea is that CPM predicts each target pixel value from a large number of pixels of other stars sharing the instrument variabilities while not containing any information on possible transits at the target star. In addition, we use the target star's future and past (auto-regression). By appropriately separating the data into training and test sets, we ensure that information about any transit will be perfectly isolated from the fitting of the model. The method has four hyper-parameters (the number of predictor stars, the auto-regressive window size, and two L2-regularization amplitudes for model components), which we set by cross-validation. We determine a generic set of hyper-parameters that works well on most of the stars with 11≤V≤12 mag and apply the method to a corresponding set of target stars with known planet transits. We find that we can consistently outperform (for the purposes of exoplanet detection) the Kepler Pre-search Data Conditioning (PDC) method for exoplanet discovery, often improving the SNR by a factor of two. While we have not yet exhaustively tested the method at other

  1. Marginal Structural Models for Skewed Outcomes: Identifying Causal Relationships in Health Care Utilization

    PubMed Central

    Héroux, Julie; Moodie, Erica E. M.; Strumpf, Erin; Coyle, Natalie; Tousignant, Pierre; Diop, Mamadou

    2017-01-01

    Evaluating the impacts of clinical or policy interventions on health care utilization requires addressing methodological challenges for causal inference while also analyzing highly skewed data. We examine the impact of registering with a Family Medicine Group (FMG), an integrated primary care model in Quebec, on hospitalization and emergency department visits using propensity scores to adjust for baseline characteristics and marginal structural models to account for time-varying exposure. We also evaluate the performance of different marginal structural GLMs in the presence of highly skewed data and conduct a simulation study to determine the robustness of different GLMs to distributional model mis-specification. Although the simulations found that the zero-inflated Poisson likelihood performed the best overall, the negative binomial likelihood gave the best fit for both outcomes in the real dataset. Our results suggest that registration to a FMG for all three years caused a small reduction in the number of emergency room visits, and no significant change in the number of hospitalizations in the final year. PMID:24167024

  2. Posttraumatic stress disorder among female Vietnam veterans: a causal model of etiology.

    PubMed Central

    Fontana, A; Schwartz, L S; Rosenheck, R

    1997-01-01

    OBJECTIVES: The Vietnam and Persian Gulf wars have awakened people to the realization that military service can be traumatizing for women as well as men. This study investigated the etiological roles of both war and sexual trauma in the development of chronic posttraumatic stress disorder among female Vietnam veterans. METHODS: Data from the National Vietnam Veterans Readjustment Study for 396 Vietnam theater women and 250 Vietnam era women were analyzed with structural equation modeling. RESULTS: An etiological model with highly satisfactory fit and parsimony was developed. Exposure to war trauma contributed to the probability of posttraumatic stress disorder in theater women, as did sexual trauma in both theater and era women. Lack of social support at the time of homecoming acted as a powerful mediator of trauma for both groups of women. CONCLUSIONS: Within the constraints and assumptions of causal modeling, there is evidence that both war trauma and sexual trauma are powerful contributors to the development of posttraumatic stress disorder among female Vietnam veterans. PMID:9103092

  3. Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling.

    PubMed

    Cooray, Gerald K; Sengupta, Biswa; Douglas, Pamela; Englund, Marita; Wickstrom, Ronny; Friston, Karl

    2015-09-01

    We characterised the pathophysiology of seizure onset in terms of slow fluctuations in synaptic efficacy using EEG in patients with anti-N-methyl-d-aspartate receptor (NMDA-R) encephalitis. EEG recordings were obtained from two female patients with anti-NMDA-R encephalitis with recurrent partial seizures (ages 19 and 31). Focal electrographic seizure activity was localised using an empirical Bayes beamformer. The spectral density of reconstructed source activity was then characterised with dynamic causal modelling (DCM). Eight models were compared for each patient, to evaluate the relative contribution of changes in intrinsic (excitatory and inhibitory) connectivity and endogenous afferent input. Bayesian model comparison established a role for changes in both excitatory and inhibitory connectivity during seizure activity (in addition to changes in the exogenous input). Seizures in both patients were associated with a sequence of changes in inhibitory and excitatory connectivity; a transient increase in inhibitory connectivity followed by a transient increase in excitatory connectivity and a final peak of excitatory-inhibitory balance at seizure offset. These systematic fluctuations in excitatory and inhibitory gain may be characteristic of (anti NMDA-R encephalitis) seizures. We present these results as a case study and replication to motivate analyses of larger patient cohorts, to see whether our findings generalise and further characterise the mechanisms of seizure activity in anti-NMDA-R encephalitis.

  4. Introduction to causal diagrams for confounder selection.

    PubMed

    Williamson, Elizabeth J; Aitken, Zoe; Lawrie, Jock; Dharmage, Shyamali C; Burgess, John A; Forbes, Andrew B

    2014-04-01

    In respiratory health research, interest often lies in estimating the effect of an exposure on a health outcome. If randomization of the exposure of interest is not possible, estimating its effect is typically complicated by confounding bias. This can often be dealt with by controlling for the variables causing the confounding, if measured, in the statistical analysis. Common statistical methods used to achieve this include multivariable regression models adjusting for selected confounding variables or stratification on those variables. Therefore, a key question is which measured variables need to be controlled for in order to remove confounding. An approach to confounder-selection based on the use of causal diagrams (often called directed acyclic graphs) is discussed. A causal diagram is a visual representation of the causal relationships believed to exist between the variables of interest, including the exposure, outcome and potential confounding variables. After creating a causal diagram for the research question, an intuitive and easy-to-use set of rules can be applied, based on a foundation of rigorous mathematics, to decide which measured variables must be controlled for in the statistical analysis in order to remove confounding, to the extent that is possible using the available data. This approach is illustrated by constructing a causal diagram for the research question: 'Does personal smoking affect the risk of subsequent asthma?'. Using data taken from the Tasmanian Longitudinal Health Study, the statistical analysis suggested by the causal diagram approach was performed.

  5. Testing the Causal Links between School Climate, School Violence, and School Academic Performance: A Cross-Lagged Panel Autoregressive Model

    ERIC Educational Resources Information Center

    Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan; Wrabel, Stephani L.

    2016-01-01

    The present study explores the causal link between school climate, school violence, and a school's general academic performance over time using a school-level, cross-lagged panel autoregressive modeling design. We hypothesized that reductions in school violence and climate improvement would lead to schools' overall improved academic performance.…

  6. Testing the Causal Links between School Climate, School Violence, and School Academic Performance: A Cross-Lagged Panel Autoregressive Model

    ERIC Educational Resources Information Center

    Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan; Wrabel, Stephani L.

    2016-01-01

    The present study explores the causal link between school climate, school violence, and a school's general academic performance over time using a school-level, cross-lagged panel autoregressive modeling design. We hypothesized that reductions in school violence and climate improvement would lead to schools' overall improved academic performance.…

  7. Making valid causal inferences from observational data.

    PubMed

    Martin, Wayne

    2014-02-15

    The ability to make strong causal inferences, based on data derived from outside of the laboratory, is largely restricted to data arising from well-designed randomized control trials. Nonetheless, a number of methods have been developed to improve our ability to make valid causal inferences from data arising from observational studies. In this paper, I review concepts of causation as a background to counterfactual causal ideas; the latter ideas are central to much of current causal theory. Confounding greatly constrains causal inferences in all observational studies. Confounding is a biased measure of effect that results when one or more variables, that are both antecedent to the exposure and associated with the outcome, are differentially distributed between the exposed and non-exposed groups. Historically, the most common approach to control confounding has been multivariable modeling; however, the limitations of this approach are discussed. My suggestions for improving causal inferences include asking better questions (relates to counterfactual ideas and "thought" trials); improving study design through the use of forward projection; and using propensity scores to identify potential confounders and enhance exchangeability, prior to seeing the outcome data. If time-dependent confounders are present (as they are in many longitudinal studies), more-advanced methods such as marginal structural models need to be implemented. Tutorials and examples are cited where possible. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Neural networks for action representation: a functional magnetic-resonance imaging and dynamic causal modeling study

    PubMed Central

    Sasaki, Akihiro T.; Kochiyama, Takanori; Sugiura, Motoaki; Tanabe, Hiroki C.; Sadato, Norihiro

    2012-01-01

    Automatic mimicry is based on the tight linkage between motor and perception action representations in which internal models play a key role. Based on the anatomical connection, we hypothesized that the direct effective connectivity from the posterior superior temporal sulcus (pSTS) to the ventral premotor area (PMv) formed an inverse internal model, converting visual representation into a motor plan, and that reverse connectivity formed a forward internal model, converting the motor plan into a sensory outcome of action. To test this hypothesis, we employed dynamic causal-modeling analysis with functional magnetic-resonance imaging (fMRI). Twenty-four normal participants underwent a change-detection task involving two visually-presented balls that were either manually rotated by the investigator's right hand (“Hand”) or automatically rotated. The effective connectivity from the pSTS to the PMv was enhanced by hand observation and suppressed by execution, corresponding to the inverse model. Opposite effects were observed from the PMv to the pSTS, suggesting the forward model. Additionally, both execution and hand observation commonly enhanced the effective connectivity from the pSTS to the inferior parietal lobule (IPL), the IPL to the primary sensorimotor cortex (S/M1), the PMv to the IPL, and the PMv to the S/M1. Representation of the hand action therefore was implemented in the motor system including the S/M1. During hand observation, effective connectivity toward the pSTS was suppressed whereas that toward the PMv and S/M1 was enhanced. Thus, the action-representation network acted as a dynamic feedback-control system during action observation. PMID:22912611

  9. Taking Emergence Seriously: The Centrality of Circular Causality for Dynamic Systems Approaches to Development

    ERIC Educational Resources Information Center

    Witherington, David C.

    2011-01-01

    The dynamic systems (DS) approach has emerged as an influential and potentially unifying metatheory for developmental science. Its central platform--the argument against design--suggests that structure spontaneously and without prescription emerges through self-organization. In one of the most prominent accounts of DS, Thelen and her colleagues…

  10. Semiparametric transformation models for causal inference in time to event studies with all-or-nothing compliance

    PubMed Central

    Yu, Wen; Chen, Kani; Sobel, Michael E.; Ying, Zhiliang

    2014-01-01

    We consider causal inference in randomized survival studies with right censored outcomes and all-or-nothing compliance, using semiparametric transformation models to estimate the distribution of survival times in treatment and control groups, conditional on covariates and latent compliance type. Estimands depending on these distributions, for example, the complier average causal effect (CACE), the complier effect on survival beyond time t, and the complier quantile effect are then considered. Maximum likelihood is used to estimate the parameters of the transformation models, using a specially designed expectation-maximization (EM) algorithm to overcome the computational difficulties created by the mixture structure of the problem and the infinite dimensional parameter in the transformation models. The estimators are shown to be consistent, asymptotically normal, and semiparametrically efficient. Inferential procedures for the causal parameters are developed. A simulation study is conducted to evaluate the finite sample performance of the estimated causal parameters. We also apply our methodology to a randomized study conducted by the Health Insurance Plan of Greater New York to assess the reduction in breast cancer mortality due to screening. PMID:25870521

  11. Semiparametric transformation models for causal inference in time to event studies with all-or-nothing compliance.

    PubMed

    Yu, Wen; Chen, Kani; Sobel, Michael E; Ying, Zhiliang

    2015-03-01

    We consider causal inference in randomized survival studies with right censored outcomes and all-or-nothing compliance, using semiparametric transformation models to estimate the distribution of survival times in treatment and control groups, conditional on covariates and latent compliance type. Estimands depending on these distributions, for example, the complier average causal effect (CACE), the complier effect on survival beyond time t, and the complier quantile effect are then considered. Maximum likelihood is used to estimate the parameters of the transformation models, using a specially designed expectation-maximization (EM) algorithm to overcome the computational difficulties created by the mixture structure of the problem and the infinite dimensional parameter in the transformation models. The estimators are shown to be consistent, asymptotically normal, and semiparametrically efficient. Inferential procedures for the causal parameters are developed. A simulation study is conducted to evaluate the finite sample performance of the estimated causal parameters. We also apply our methodology to a randomized study conducted by the Health Insurance Plan of Greater New York to assess the reduction in breast cancer mortality due to screening.

  12. Infertile Individuals’ Marital Relationship Status, Happiness, and Mental Health: A Causal Model

    PubMed Central

    Ahmadi Forooshany, Seyed Habiballah; Yazdkhasti, Fariba; Safari Hajataghaie, Saiede; Nasr Esfahani, Mohammad Hossein

    2014-01-01

    Background This study examined the causal model of relation between marital relation- ship status, happiness, and mental health in infertile individuals. Materials and Methods In this descriptive study, 155 subjects (men: 52 and women: 78), who had been visited in one of the infertility Centers, voluntarily participated in a self-evaluation. Golombok Rust Inventory of Marital Status, Oxford Happiness Ques- tionnaire, and General Health Questionnaire were used as instruments of the study. Data was analyzed by SPSS17 and Amos 5 software using descriptive statistics, independent sample t test, and path analysis. Results Disregarding the gender factor, marital relationship status was directly related to happiness (p<0.05) and happiness was directly related to mental health, (p<0.05). Also, indirect relation between marital relationship status and mental health was significant (p<0.05). These results were confirmed in women participants but in men participants only the direct relation between happiness and mental health was significant (p<0.05). Conclusion Based on goodness of model fit in fitness indexes, happiness had a mediator role in relation between marital relationship status and mental health in infertile individu- als disregarding the gender factor. Also, considering the gender factor, only in infertile women, marital relationship status can directly and indirectly affect happiness and mental health. PMID:25379161

  13. Causal relationship model between variables using linear regression to improve professional commitment of lecturer

    NASA Astrophysics Data System (ADS)

    Setyaningsih, S.

    2017-01-01

    The main element to build a leading university requires lecturer commitment in a professional manner. Commitment is measured through willpower, loyalty, pride, loyalty, and integrity as a professional lecturer. A total of 135 from 337 university lecturers were sampled to collect data. Data were analyzed using validity and reliability test and multiple linear regression. Many studies have found a link on the commitment of lecturers, but the basic cause of the causal relationship is generally neglected. These results indicate that the professional commitment of lecturers affected by variables empowerment, academic culture, and trust. The relationship model between variables is composed of three substructures. The first substructure consists of endogenous variables professional commitment and exogenous three variables, namely the academic culture, empowerment and trust, as well as residue variable ɛ y . The second substructure consists of one endogenous variable that is trust and two exogenous variables, namely empowerment and academic culture and the residue variable ɛ 3. The third substructure consists of one endogenous variable, namely the academic culture and exogenous variables, namely empowerment as well as residue variable ɛ 2. Multiple linear regression was used in the path model for each substructure. The results showed that the hypothesis has been proved and these findings provide empirical evidence that increasing the variables will have an impact on increasing the professional commitment of the lecturers.

  14. Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating

    PubMed Central

    Cooray, Gerald K.; Sengupta, Biswa; Douglas, Pamela K.; Friston, Karl

    2016-01-01

    Seizure activity in EEG recordings can persist for hours with seizure dynamics changing rapidly over time and space. To characterise the spatiotemporal evolution of seizure activity, large data sets often need to be analysed. Dynamic causal modelling (DCM) can be used to estimate the synaptic drivers of cortical dynamics during a seizure; however, the requisite (Bayesian) inversion procedure is computationally expensive. In this note, we describe a straightforward procedure, within the DCM framework, that provides efficient inversion of seizure activity measured with non-invasive and invasive physiological recordings; namely, EEG/ECoG. We describe the theoretical background behind a Bayesian belief updating scheme for DCM. The scheme is tested on simulated and empirical seizure activity (recorded both invasively and non-invasively) and compared with standard Bayesian inversion. We show that the Bayesian belief updating scheme provides similar estimates of time-varying synaptic parameters, compared to standard schemes, indicating no significant qualitative change in accuracy. The difference in variance explained was small (less than 5%). The updating method was substantially more efficient, taking approximately 5–10 min compared to approximately 1–2 h. Moreover, the setup of the model under the updating scheme allows for a clear specification of how neuronal variables fluctuate over separable timescales. This method now allows us to investigate the effect of fast (neuronal) activity on slow fluctuations in (synaptic) parameters, paving a way forward to understand how seizure activity is generated. PMID:26220742

  15. Coping with dating errors in causality estimation

    NASA Astrophysics Data System (ADS)

    Smirnov, D. A.; Marwan, N.; Breitenbach, S. F. M.; Lechleitner, F.; Kurths, J.

    2017-01-01

    We consider the problem of estimating causal influences between observed processes from time series possibly corrupted by errors in the time variable (dating errors) which are typical in palaeoclimatology, planetary science and astrophysics. “Causality ratio” based on the Wiener-Granger causality is proposed and studied for a paradigmatic class of model systems to reveal conditions under which it correctly indicates directionality of unidirectional coupling. It is argued that in the case of a priori known directionality, the causality ratio allows a characterization of dating errors and observational noise. Finally, we apply the developed approach to palaeoclimatic data and quantify the influence of solar activity on tropical Atlantic climate dynamics over the last two millennia. A stronger solar influence in the first millennium A.D. is inferred. The results also suggest a dating error of about 20 years in the solar proxy time series over the same period.

  16. Modeling the dynamics of disaster evolution along causality networks with cycle chains

    NASA Astrophysics Data System (ADS)

    Li, Jian; Chen, Changkun

    2014-05-01

    A model for describing the evolution process of disasters, especially for disaster causality networks with cycle chains, has been developed. In the model, the impacts from the causative nodes, self-recovery behaviors, repair by government, internal noise and impacts outside the system have been taken into consideration. In particular, the cumulative effect of the inducing relationship between the causative node and its son node, due to cycle chain, has been quantified by the new model. Based on the proposed model, a parametric study, covering a range of conditional probability of directed inducing links, delay coefficient for disaster evolution and self-recovery coefficient during the recovery process, has been conducted by means of simulations. The results of these simulations point towards a phase transition of the disaster system with cycle chains when increasing conditional probability of directed inducing links or self-recovery coefficient. Particularly, we observe a critical conditional probability of directed inducing links and a critical self-recovery coefficient, beyond which, the whole system may be out of control after certain evolution time, regardless of the fact that the initial disturbance has disappeared. In addition, it is interesting to find that increasing delay coefficient cannot suppress the disaster evolution completely, for a disaster system that is potentially out of control due to the self-reinforce of cycle chains. Of course, the disaster evolution velocity drops when increasing delay coefficient, and this has a positive significance on disaster rescue. Further, it also illustrates that it is a bad strategy to arrange the total rescue resources uniformly during the disaster rescue process, while the strategy that disseminating more resources on the nodes in cycle chains and arranging the rescue resources in line with the potential maximum deviation of nodes, will have higher efficiency. With our model, it is possible for people to get an

  17. Dynamic Causal Modelling and physiological confounds: a functional MRI study of vagus nerve stimulation.

    PubMed

    Reyt, Sébastien; Picq, Chloé; Sinniger, Valérie; Clarençon, Didier; Bonaz, Bruno; David, Olivier

    2010-10-01

    Dynamic Causal Modelling (DCM) has been proposed to estimate neuronal connectivity from functional magnetic resonance imaging (fMRI) using a biophysical model that links synaptic activity to hemodynamic processes. However, it is well known that fMRI is sensitive not only to neuronal activity, but also to many other psychophysiological responses which may be task-related, such as changes in cardio-respiratory activity. They are not explicitly taken into account in the generative models of DCM and their effects on estimated neuronal connectivity are not known. The main goal of this study was to report the face validity of DCM in the presence of strong physiological confounds that presumably cannot be corrected for, using an fMRI experiment of vagus nerve stimulation (VNS) performed in rats. First, a simple simulation was used to evaluate the principled ability of DCM to recover directed connectivity in the presence of a confounding factor. Second, we tested the experimental validity using measures of the BOLD correlates of left 5Hz VNS. Because VNS mostly activates the central autonomic regulation system, fMRI signals were likely to represent both direct and indirect vascular responses to such activation. In addition to the inference of standard statistical parametric maps, DCM was thus used to estimate directed neural connectivity in a small brain network including the nucleus tractus solitarius (NTS) known to receive vagal afferents. Though blood pressure changes may constitute a major physiological confound in this dataset, model comparison of DCMs still allowed the identification of the NTS as the input station of the VNS pathway to the brain. Our study indicates that current developments of DCM are robust to psychophysiological responses to some extent, but does not exclude the need to develop specific models of brain - body interactions within the DCM framework to better estimate neuronal connectivity from fMRI time series. Copyright 2010 Elsevier Inc. All

  18. Inferring phenotypic causal structures among meat quality traits and the application of a structural equation model in Japanese Black cattle.

    PubMed

    Inoue, K; Valente, B D; Shoji, N; Honda, T; Oyama, K; Rosa, G J M

    2016-10-01

    Meat quality is one of the most important traits determining carcass price in the Japanese beef market. Optimized breeding goals and management practices for the improvement of meat quality traits requires knowledge regarding any potential functional relationships between them. In this context, the objective of this research was to infer phenotypic causal networks involving beef marbling score (BMS), beef color score (BCL), firmness of beef (FIR), texture of beef (TEX), beef fat color score (BFS), and the ratio of MUFA to SFA (MUS) from 11,855 Japanese Black cattle. The inductive causation (IC) algorithm was implemented to search for causal links among these traits and was conditionally applied to their joint distribution on genetic effects. This information was obtained from the posterior distribution of the residual (co)variance matrix of a standard Bayesian multiple trait model (MTM). Apart from BFS, the IC algorithm implemented with 95% highest posterior density (HPD) intervals detected only undirected links among the traits. However, as a result of the application of 80% HPD intervals, more links were recovered and the undirected links were changed into directed ones, except between FIR and TEX. Therefore, 2 competing causal networks resulting from the IC algorithm, with either the arrow FIR → TEX or the arrow FIR ← TEX, were fitted using a structural equation model () to infer causal structure coefficients between the selected traits. Results indicated similar genetic and residual variances as well as genetic correlation estimates from both structural equation models. The genetic variances in BMS, FIR, and TEX from the structural equation models were smaller than those obtained from the MTM. In contrast, the variances in BCL, BFS, and MUS, which were not conditioned on any of the other traits in the causal structures, had no significant differences between the structural equation model and MTM. The structural coefficient for the path from MUS (BCL) to BMS

  19. Human causal discovery from observational data.

    PubMed Central

    Hashem, A. I.; Cooper, G. F.

    1996-01-01

    Utilizing Bayesian belief networks as a model of causality, we examined medical students' ability to discover causal relationships from observational data. Nine sets of patient cases were generated from relatively simple causal belief networks by stochastic simulation. Twenty participants examined the data sets and attempted to discover the underlying causal relationships. Performance was poor in general, except at discovering the absence of a causal relationship. This work supports the potential for combining human and computer methods for causal discovery. PMID:8947621

  20. The development of causal categorization.

    PubMed

    Hayes, Brett K; Rehder, Bob

    2012-08-01

    Two experiments examined the impact of causal relations between features on categorization in 5- to 6-year-old children and adults. Participants learned artificial categories containing instances with causally related features and noncausal features. They then selected the most likely category member from a series of novel test pairs. Classification patterns and logistic regression were used to diagnose the presence of independent effects of causal coherence, causal status, and relational centrality. Adult classification was driven primarily by coherence when causal links were deterministic (Experiment 1) but showed additional influences of causal status when links were probabilistic (Experiment 2). Children's classification was based primarily on causal coherence in both cases. There was no effect of relational centrality in either age group. These results suggest that the generative model (Rehder, 2003a) provides a good account of causal categorization in children as well as adults. Copyright © 2012 Cognitive Science Society, Inc.

  1. Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study.

    PubMed

    Saleh, Soha; Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei; Tunik, Eugene

    2017-01-01

    Mirror visual feedback (MVF) is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical) or opposite (mirror) hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional) action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with non

  2. Granger Causality Relationships between Local Field Potentials in an Animal Model of Temporal Lobe Epilepsy

    PubMed Central

    Cadotte, Alex J.; DeMarse, Thomas B.; Mareci, Thomas H.; Parekh, Mansi; Talathi, Sachin S.; Hwang, Dong-Uk; Ditto, William L.; Ding, Mingzhou; Carney, Paul R.

    2010-01-01

    An understanding of the in vivo spatial emergence of abnormal brain activity during spontaneous seizure onset is critical to future early seizure detection and closed-loop seizure prevention therapies. In this study, we use Granger causality (GC) to determine the strength and direction of relationships between local field potentials (LFPs) recorded from bilateral microelectrode arrays in an intermittent spontaneous seizure model of chronic temporal lobe epilepsy before, during, and after Racine grade partial onset generalized seizures. Our results indicate distinct patterns of directional GC relationships within the hippocampus, specifically from the CA1 subfield to the dentate gryus, prior to and during seizure onset. Our results suggest sequential and hierarchical temporal relationships between the CA1 and dentate gyrus within and across hippocampal hemispheres during seizure. Additionally, our analysis suggests a reversal in the direction of GC relationships during seizure, from an abnormal pattern to more anatomically expected pattern. This reversal correlates well with the observed behavioral transition from tonic to clonic seizure in time-locked video. These findings highlight the utility of GC to reveal dynamic directional temporal relationships between multichannel LFP recordings from multiple brain regions during unprovoked spontaneous seizures. PMID:20304005

  3. Reasoning the Causality of City Sprawl, Traffic Congestion, and Green Land Disappearance in Taiwan Using the CLD Model

    PubMed Central

    Chen, Mei-Chih; Chang, Kaowen

    2014-01-01

    Many city governments choose to supply more developable land and transportation infrastructure with the hope of attracting people and businesses to their cities. However, like those in Taiwan, major cities worldwide suffer from traffic congestion. This study applies the system thinking logic of the causal loops diagram (CLD) model in the System Dynamics (SD) approach to analyze the issue of traffic congestion and other issues related to roads and land development in Taiwan’s cities. Comparing the characteristics of development trends with yearbook data for 2002 to 2013 for all of Taiwan’s cities, this study explores the developing phenomenon of unlimited city sprawl and identifies the cause and effect relationships in the characteristics of development trends in traffic congestion, high-density population aggregation in cities, land development, and green land disappearance resulting from city sprawl. This study provides conclusions for Taiwan’s cities’ sustainability and development (S&D). When developing S&D policies, during decision making processes concerning city planning and land use management, governments should think with a holistic view of carrying capacity with the assistance of system thinking to clarify the prejudices in favor of the unlimited developing phenomena resulting from city sprawl. PMID:25383609

  4. Reasoning the causality of city sprawl, traffic congestion, and green land disappearance in Taiwan using the CLD model.

    PubMed

    Chen, Mei-Chih; Chang, Kaowen

    2014-11-06

    Many city governments choose to supply more developable land and transportation infrastructure with the hope of attracting people and businesses to their cities. However, like those in Taiwan, major cities worldwide suffer from traffic congestion. This study applies the system thinking logic of the causal loops diagram (CLD) model in the System Dynamics (SD) approach to analyze the issue of traffic congestion and other issues related to roads and land development in Taiwan's cities. Comparing the characteristics of development trends with yearbook data for 2002 to 2013 for all of Taiwan's cities, this study explores the developing phenomenon of unlimited city sprawl and identifies the cause and effect relationships in the characteristics of development trends in traffic congestion, high-density population aggregation in cities, land development, and green land disappearance resulting from city sprawl. This study provides conclusions for Taiwan's cities' sustainability and development (S&D). When developing S&D policies, during decision making processes concerning city planning and land use management, governments should think with a holistic view of carrying capacity with the assistance of system thinking to clarify the prejudices in favor of the unlimited developing phenomena resulting from city sprawl.

  5. Numerical limitations in application of vector autoregressive modeling and Granger causality to analysis of EEG time series

    NASA Astrophysics Data System (ADS)

    Kammerdiner, Alla; Xanthopoulos, Petros; Pardalos, Panos M.

    2007-11-01

    In this chapter a potential problem with application of the Granger-causality based on the simple vector autoregressive (VAR) modeling to EEG data is investigated. Although some initial studies tested whether the data support the stationarity assumption of VAR, the stability of the estimated model is rarely (if ever) been verified. In fact, in cases when the stability condition is violated the process may exhibit a random walk like behavior or even be explosive. The problem is illustrated by an example.

  6. The Teacher, the Physician and the Person: Exploring Causal Connections between Teaching Performance and Role Model Types Using Directed Acyclic Graphs

    PubMed Central

    Boerebach, Benjamin C. M.; Lombarts, Kiki M. J. M. H.; Scherpbier, Albert J. J.; Arah, Onyebuchi A.

    2013-01-01

    Background In fledgling areas of research, evidence supporting causal assumptions is often scarce due to the small number of empirical studies conducted. In many studies it remains unclear what impact explicit and implicit causal assumptions have on the research findings; only the primary assumptions of the researchers are often presented. This is particularly true for research on the effect of faculty’s teaching performance on their role modeling. Therefore, there is a need for robust frameworks and methods for transparent formal presentation of the underlying causal assumptions used in assessing the causal effects of teaching performance on role modeling. This study explores the effects of different (plausible) causal assumptions on research outcomes. Methods This study revisits a previously published study about the influence of faculty’s teaching performance on their role modeling (as teacher-supervisor, physician and person). We drew eight directed acyclic graphs (DAGs) to visually represent different plausible causal relationships between the variables under study. These DAGs were subsequently translated into corresponding statistical models, and regression analyses were performed to estimate the associations between teaching performance and role modeling. Results The different causal models were compatible with major differences in the magnitude of the relationship between faculty’s teaching performance and their role modeling. Odds ratios for the associations between teaching performance and the three role model types ranged from 31.1 to 73.6 for the teacher-supervisor role, from 3.7 to 15.5 for the physician role, and from 2.8 to 13.8 for the person role. Conclusions Different sets of assumptions about causal relationships in role modeling research can be visually depicted using DAGs, which are then used to guide both statistical analysis and interpretation of results. Since study conclusions can be sensitive to different causal assumptions, results

  7. The teacher, the physician and the person: exploring causal connections between teaching performance and role model types using directed acyclic graphs.

    PubMed

    Boerebach, Benjamin C M; Lombarts, Kiki M J M H; Scherpbier, Albert J J; Arah, Onyebuchi A

    2013-01-01

    In fledgling areas of research, evidence supporting causal assumptions is often scarce due to the small number of empirical studies conducted. In many studies it remains unclear what impact explicit and implicit causal assumptions have on the research findings; only the primary assumptions of the researchers are often presented. This is particularly true for research on the effect of faculty's teaching performance on their role modeling. Therefore, there is a need for robust frameworks and methods for transparent formal presentation of the underlying causal assumptions used in assessing the causal effects of teaching performance on role modeling. This study explores the effects of different (plausible) causal assumptions on research outcomes. This study revisits a previously published study about the influence of faculty's teaching performance on their role modeling (as teacher-supervisor, physician and person). We drew eight directed acyclic graphs (DAGs) to visually represent different plausible causal relationships between the variables under study. These DAGs were subsequently translated into corresponding statistical models, and regression analyses were performed to estimate the associations between teaching performance and role modeling. The different causal models were compatible with major differences in the magnitude of the relationship between faculty's teaching performance and their role modeling. Odds ratios for the associations between teaching performance and the three role model types ranged from 31.1 to 73.6 for the teacher-supervisor role, from 3.7 to 15.5 for the physician role, and from 2.8 to 13.8 for the person role. Different sets of assumptions about causal relationships in role modeling research can be visually depicted using DAGs, which are then used to guide both statistical analysis and interpretation of results. Since study conclusions can be sensitive to different causal assumptions, results should be interpreted in the light of causal

  8. Abnormal causal attribution leads to advantageous economic decision-making: A neuropsychological approach

    PubMed Central

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    People tend to assume that outcomes are caused by dispositional factors, e.g., a person’s constitution or personality, even when the actual cause is due to situational factors, e.g., luck or coincidence. This is known as the ‘correspondence bias.’ This tendency can lead normal, intelligent persons to make suboptimal decisions. Here, we used a neuropsychological approach to investigate the neural basis of the correspondence bias, by studying economic decision-making in patients with damage to the ventromedial prefrontal cortex (vmPFC). Given the role of the vmPFC in social cognition, we predicted that vmPFC is necessary for the normal correspondence bias. In our experiment, consistent with expectations, healthy (N=46) and brain-damaged (N=30) comparison participants displayed the correspondence bias when investing and invested no differently when given dispositional or situational information. By contrast, vmPFC patients (N=17) displayed a lack of correspondence bias and invested more when given dispositional than situational information. The results support the conclusion that vmPFC is critical for normal social inference and the correspondence bias, and our findings help clarify the important (and potentially disadvantageous) role of social inference in economic decision-making. PMID:23574584

  9. Silent Expectations: Dynamic Causal Modeling of Cortical Prediction and Attention to Sounds That Weren't.

    PubMed

    Chennu, Srivas; Noreika, Valdas; Gueorguiev, David; Shtyrov, Yury; Bekinschtein, Tristan A; Henson, Richard

    2016-08-10

    There is increasing evidence that human perception is realized by a hierarchy of neural processes in which predictions sent backward from higher levels result in prediction errors that are fed forward from lower levels, to update the current model of the environment. Moreover, the precision of prediction errors is thought to be modulated by attention. Much of this evidence comes from paradigms in which a stimulus differs from that predicted by the recent history of other stimuli (generating a so-called "mismatch response"). There is less evidence from situations where a prediction is not fulfilled by any sensory input (an "omission" response). This situation arguably provides a more direct measure of "top-down" predictions in the absence of confounding "bottom-up" input. We applied Dynamic Causal Modeling of evoked electromagnetic responses recorded by EEG and MEG to an auditory paradigm in which we factorially crossed the presence versus absence of "bottom-up" stimuli with the presence versus absence of "top-down" attention. Model comparison revealed that both mismatch and omission responses were mediated by increased forward and backward connections, differing primarily in the driving input. In both responses, modeling results suggested that the presence of attention selectively modulated backward "prediction" connections. Our results provide new model-driven evidence of the pure top-down prediction signal posited in theories of hierarchical perception, and highlight the role of attentional precision in strengthening this prediction. Human auditory perception is thought to be realized by a network of neurons that maintain a model of and predict future stimuli. Much of the evidence for this comes from experiments where a stimulus unexpectedly differs from previous ones, which generates a well-known "mismatch response." But what happens when a stimulus is unexpectedly omitted altogether? By measuring the brain's electromagnetic activity, we show that it also

  10. Silent Expectations: Dynamic Causal Modeling of Cortical Prediction and Attention to Sounds That Weren't

    PubMed Central

    Noreika, Valdas; Gueorguiev, David; Shtyrov, Yury; Bekinschtein, Tristan A.; Henson, Richard

    2016-01-01

    There is increasing evidence that human perception is realized by a hierarchy of neural processes in which predictions sent backward from higher levels result in prediction errors that are fed forward from lower levels, to update the current model of the environment. Moreover, the precision of prediction errors is thought to be modulated by attention. Much of this evidence comes from paradigms in which a stimulus differs from that predicted by the recent history of other stimuli (generating a so-called “mismatch response”). There is less evidence from situations where a prediction is not fulfilled by any sensory input (an “omission” response). This situation arguably provides a more direct measure of “top-down” predictions in the absence of confounding “bottom-up” input. We applied Dynamic Causal Modeling of evoked electromagnetic responses recorded by EEG and MEG to an auditory paradigm in which we factorially crossed the presence versus absence of “bottom-up” stimuli with the presence versus absence of “top-down” attention. Model comparison revealed that both mismatch and omission responses were mediated by increased forward and backward connections, differing primarily in the driving input. In both responses, modeling results suggested that the presence of attention selectively modulated backward “prediction” connections. Our results provide new model-driven evidence of the pure top-down prediction signal posited in theories of hierarchical perception, and highlight the role of attentional precision in strengthening this prediction. SIGNIFICANCE STATEMENT Human auditory perception is thought to be realized by a network of neurons that maintain a model of and predict future stimuli. Much of the evidence for this comes from experiments where a stimulus unexpectedly differs from previous ones, which generates a well-known “mismatch response.” But what happens when a stimulus is unexpectedly omitted altogether? By measuring the brain

  11. From Granger causality to long-term causality: Application to climatic data

    NASA Astrophysics Data System (ADS)

    Smirnov, Dmitry A.; Mokhov, Igor I.

    2009-07-01

    Quantitative characterization of interaction between processes from time series is often required in different fields of natural science including geophysics and biophysics. Typically, one estimates “short-term” influences, e.g., the widely used Granger causality is defined via one-step-ahead predictions. Such an approach does not reveal how strongly the “long-term” behavior of one process under study is affected by the others. To overcome this problem, we introduce the concept of long-term causality, which extends the concept of Granger causality. The long-term causality is estimated from data via empirical modeling and analysis of model dynamics under different conditions. Apart from mathematical examples, we apply both approaches to find out how strongly the global surface temperature (GST) is affected by variations in carbon dioxide atmospheric content, solar activity, and volcanic activity during the last 150 years. Influences of all the three factors on GST are detected with the Granger causality. However, the long-term causality shows that the rise in GST during the last decades can be explained only if the anthropogenic factor (CO2) is taken into account in a model.

  12. Relativistic causality

    NASA Astrophysics Data System (ADS)

    Valente, Giovanni; Owen Weatherall, James

    2014-11-01

    Relativity theory is often taken to include, or to imply, a prohibition on superluminal propagation of causal processes. Yet, what exactly the prohibition on superluminal propagation amounts to and how one should deal with its possible violation have remained open philosophical problems, both in the context of the metaphysics of causation and the foundations of physics. In particular, recent work in philosophy of physics has focused on the causal structure of spacetime in relativity theory and on how this causal structure manifests itself in our most fundamental theories of matter. These topics were the subject of a workshop on "Relativistic Causality in Quantum Field Theory and General Relativity" that we organized (along with John Earman) at the Center for Philosophy of Science in Pittsburgh on April 5-7, 2013. The present Special Issue comprises contributions by speakers in that workshop as well as several other experts exploring different aspects of relativistic causality. We are grateful to the journal for hosting this Special Issue, to the journal's managing editor, Femke Kuiling, for her help and support in putting the issue together, and to the authors and the referees for their excellent work.

  13. Attribution and social cognitive neuroscience: a new approach for the "online-assessment" of causality ascriptions and their emotional consequences.

    PubMed

    Terbeck, Sylvia; Chesterman, Paul; Fischmeister, Florian Ph S; Leodolter, Ulrich; Bauer, Herbert

    2008-08-15

    Attribution theory plays a central role in understanding cognitive processes that have emotional consequences; however, there has been very limited attention to its neural basis. After reviewing classical studies in social psychology in which attribution has been experimentally manipulated we developed a new approach that allows the investigation of state attributions and emotional consequences using neuroscience methodologies. Participants responded to the Erikson Flanker Task, but, in order to maintain the participant's beliefs about the nature of the task and to produce a significant number of error responses, an adaptive algorithm tuned the available time to respond such that, dependent on the subject's current performance, the negative feedback rate was held at chance level. In order to initiate variation in attribution participants were informed that one and the same task was either easy or difficult. As a result of these two different instructions the two groups differed significantly in error attribution only on the locus of causality dimension. Additionally, attributions were found to be stable over a large number of trials, while accuracy and reaction time remained the same. Thus, the new paradigm is particularly suitable for cognitive neuroscience research that evaluates brain behaviour relationships of higher order processes in 'simulated achievement settings'.

  14. Explaining Racial Disparities in Child Asthma Readmission Using a Causal Inference Approach.

    PubMed

    Beck, Andrew F; Huang, Bin; Auger, Katherine A; Ryan, Patrick H; Chen, Chen; Kahn, Robert S

    2016-07-01

    difference between African American and white children with respect to readmission hazard no longer reached the level of significance (hazard ratio, 1.18; 95% CI, 0.87-1.60; Cox P = .30 and log-rank P = .39). A total of 80% of the observed readmission disparity between African American and white children could be explained after statistically balancing available biologic, environmental, disease management, access to care, and socioeconomic and hardship variables across racial groups. Such a comprehensive, well-framed approach to exposures that are associated with morbidity is critical as we attempt to better understand and lessen persistent child asthma disparities.

  15. Explaining Racial Disparities in Child Asthma Readmission Using a Causal Inference Approach

    PubMed Central

    Beck, Andrew F.; Huang, Bin; Auger, Katherine A.; Ryan, Patrick H.; Chen, Chen; Kahn, Robert S.

    2017-01-01

    access variables resulted in 80% of the readmission disparity being explained. The difference between African American and white children with respect to readmission hazard no longer reached the level of significance (hazard ratio, 1.18; 95% CI, 0.87–1.60; Cox P = .30 and log-rank P = .39). CONCLUSIONS AND RELEVANCE A total of 80% of the observed readmission disparity between African American and white children could be explained after statistically balancing available biologic, environmental, disease management, access to care, and socioeconomic and hardship variables across racial groups. Such a comprehensive, well-framed approach to exposures that are associated with morbidity is critical as we attempt to better understand and lessen persistent child asthma disparities. PMID:27182793

  16. Causal linear parametric model for baroreflex gain assessment in patients with recent myocardial infarction.

    PubMed

    Nollo, G; Porta, A; Faes, L; Del Greco, M; Disertori, M; Ravelli, F

    2001-04-01

    Spectral and cross-spectral analysis of R-R interval and systolic arterial pressure (SAP) spontaneous fluctuations have been proposed for noninvasive evaluation of baroreflex sensitivity (BRS). However, results are not in good agreement with clinical measurements. In this study, a bivariate parametric autoregressive model with exogenous input (ARXAR model), able to divide the R-R variability into SAP-related and -unrelated parts, was used to quantify the gain (alpha(ARXAR)) of the baroreflex regulatory mechanism. For performance assessing, two traditional noninvasive methods based on frequency domain analysis [spectral, baroreflex gain by autogressive model (alpha(AR)); cross-spectral, baroreflex gain by bivariate autoregressive model (alpha(2AR))] and one based on the time domain [baroreflex gain by sequence analysis (alpha(SEQ))] were considered and compared with the baroreflex gain by phenylephrine test (alpha(PHE)). The BRS evaluation was performed on 30 patients (61 +/- 10 yr) with recent (10 +/- 3 days) myocardial infarction. The ARXAR model allowed dividing the R-R variability (950 +/- 1,099 ms(2)) into SAP-related (256 +/- 418 ms(2)) and SAP-unrelated (694 +/- 728 ms(2)) parts. alpha(AR) (12.2 +/- 6.1 ms/mmHg) and alpha(2AR) (8.9 +/- 5.6 ms/mmHg) as well as alpha(SEQ) (12.6 +/- 7.1 ms/mmHg) overestimated BRS assessed by alpha(PHE) (6.4 +/- 4.7 ms/mmHg), whereas the ARXAR index gave a comparable value (alpha(ARXAR) = 5.4 +/- 3.3 ms/mmHg). All noninvasive methods were significantly correlated to alpha(PHE) (alpha(ARXAR) and alpha(SEQ) were more correlated than the other indexes). Thus the baroreflex gain obtained describing the causal dependence of R-R interval on SAP showed a good agreement with alpha(PHE) and may provide additional information regarding the gain estimation in the frequency domain.

  17. A Causal Inference Model Explains Perception of the McGurk Effect and Other Incongruent Audiovisual Speech

    PubMed Central

    Magnotti, John F.

    2017-01-01

    Audiovisual speech integration combines information from auditory speech (talker’s voice) and visual speech (talker’s mouth movements) to improve perceptual accuracy. However, if the auditory and visual speech emanate from different talkers, integration decreases accuracy. Therefore, a key step in audiovisual speech perception is deciding whether auditory and visual speech have the same source, a process known as causal inference. A well-known illusion, the McGurk Effect, consists of incongruent audiovisual syllables, such as auditory “ba” + visual “ga” (AbaVga), that are integrated to produce a fused percept (“da”). This illusion raises two fundamental questions: first, given the incongruence between the auditory and visual syllables in the McGurk stimulus, why are they integrated; and second, why does the McGurk effect not occur for other, very similar syllables (e.g., AgaVba). We describe a simplified model of causal inference in multisensory speech perception (CIMS) that predicts the perception of arbitrary combinations of auditory and visual speech. We applied this model to behavioral data collected from 60 subjects perceiving both McGurk and non-McGurk incongruent speech stimuli. The CIMS model successfully predicted both the audiovisual integration observed for McGurk stimuli and the lack of integration observed for non-McGurk stimuli. An identical model without causal inference failed to accurately predict perception for either form of incongruent speech. The CIMS model uses causal inference to provide a computational framework for studying how the brain performs one of its most important tasks, integrating auditory and visual speech cues to allow us to communicate with others. PMID:28207734

  18. The causal effect of red blood cell folate on genome-wide methylation in cord blood: a Mendelian randomization approach.

    PubMed

    Binder, Alexandra M; Michels, Karin B

    2013-12-04

    Investigation of the biological mechanism by which folate acts to affect fetal development can inform appraisal of expected benefits and risk management. This research is ethically imperative given the ubiquity of folic acid fortified products in the US. Considering that folate is an essential component in the one-carbon metabolism pathway that provides methyl groups for DNA methylation, epigenetic modifications provide a putative molecular mechanism mediating the effect of folic acid supplementation on neonatal and pediatric outcomes. In this study we use a Mendelian Randomization Unnecessary approach to assess the effect of red blood cell (RBC) folate on genome-wide DNA methylation in cord blood. Site-specific CpG methylation within the proximal promoter regions of approximately 14,500 genes was analyzed using the Illumina Infinium Human Methylation27 Bead Chip for 50 infants from the Epigenetic Birth Cohort at Brigham and Women's Hospital in Boston. Using methylenetetrahydrofolate reductase genotype as the instrument, the Mendelian Randomization approach identified 7 CpG loci with a significant (mostly positive) association between RBC folate and methylation level. Among the genes in closest proximity to this significant subset of CpG loci, several enriched biologic processes were involved in nucleic acid transport and metabolic processing. Compared to the standard ordinary least squares regression method, our estimates were demonstrated to be more robust to unmeasured confounding. To the authors' knowledge, this is the largest genome-wide analysis of the effects of folate on methylation pattern, and the first to employ Mendelian Randomization to assess the effects of an exposure on epigenetic modifications. These results can help guide future analyses of the causal effects of periconceptional folate levels on candidate pathways.

  19. Altered retrieval of melodic information in congenital amusia: insights from dynamic causal modeling of MEG data.

    PubMed

    Albouy, Philippe; Mattout, Jérémie; Sanchez, Gaëtan; Tillmann, Barbara; Caclin, Anne

    2015-01-01

    Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and short-term memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the short-term memory retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in "Different" trials and to its equivalent (original) tone in "Same" trials were compared between groups using Dynamic Causal Modeling (DCM). DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with notably an increase in "Same" trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain.

  20. Altered retrieval of melodic information in congenital amusia: insights from dynamic causal modeling of MEG data

    PubMed Central

    Albouy, Philippe; Mattout, Jérémie; Sanchez, Gaëtan; Tillmann, Barbara; Caclin, Anne

    2015-01-01

    Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and short-term memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the short-term memory retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in “Different” trials and to its equivalent (original) tone in “Same” trials were compared between groups using Dynamic Causal Modeling (DCM). DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with notably an increase in “Same” trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain. PMID:25698955

  1. Aging into Perceptual Control: A Dynamic Causal Modeling for fMRI Study of Bistable Perception

    PubMed Central

    Dowlati, Ehsan; Adams, Sarah E.; Stiles, Alexandra B.; Moran, Rosalyn J.

    2016-01-01

    Aging is accompanied by stereotyped changes in functional brain activations, for example a cortical shift in activity patterns from posterior to anterior regions is one hallmark revealed by functional magnetic resonance imaging (fMRI) of aging cognition. Whether these neuronal effects of aging could potentially contribute to an amelioration of or resistance to the cognitive symptoms associated with psychopathology remains to be explored. We used a visual illusion paradigm to address whether aging affects the cortical control of perceptual beliefs and biases. Our aim was to understand the effective connectivity associated with volitional control of ambiguous visual stimuli and to test whether greater top-down control of early visual networks emerged with advancing age. Using a bias training paradigm for ambiguous images we found that older participants (n = 16) resisted experimenter-induced visual bias compared to a younger cohort (n = 14) and that this resistance was associated with greater activity in prefrontal and temporal cortices. By applying Dynamic Causal Models for fMRI we uncovered a selective recruitment of top-down connections from the middle temporal to Lingual gyrus (LIN) by the older cohort during the perceptual switch decision following bias training. In contrast, our younger cohort did not exhibit any consistent connectivity effects but instead showed a loss of driving inputs to orbitofrontal sources following training. These findings suggest that perceptual beliefs are more readily controlled by top-down strategies in older adults and introduce age-dependent neural mechanisms that may be important for understanding aberrant belief states associated with psychopathology. PMID:27064235

  2. Causal inference in public health.

    PubMed

    Glass, Thomas A; Goodman, Steven N; Hernán, Miguel A; Samet, Jonathan M

    2013-01-01

    Causal inference has a central role in public health; the determination that an association is causal indicates the possibility for intervention. We review and comment on the long-used guidelines for interpreting evidence as supporting a causal association and contrast them with the potential outcomes framework that encourages thinking in terms of causes that are interventions. We argue that in public health this framework is more suitable, providing an estimate of an action's consequences rather than the less precise notion of a risk factor's causal effect. A variety of modern statistical methods adopt this approach. When an intervention cannot be specified, causal relations can still exist, but how to intervene to change the outcome will be unclear. In application, the often-complex structure of causal processes needs to be acknowledged and appropriate data collected to study them. These newer approaches need to be brought to bear on the increasingly complex public health challenges of our globalized world.

  3. Redundant variables and Granger causality

    NASA Astrophysics Data System (ADS)

    Angelini, L.; de Tommaso, M.; Marinazzo, D.; Nitti, L.; Pellicoro, M.; Stramaglia, S.

    2010-03-01

    We discuss the use of multivariate Granger causality in presence of redundant variables: the application of the standard analysis, in this case, leads to under estimation of causalities. Using the un-normalized version of the causality index, we quantitatively develop the notions of redundancy and synergy in the frame of causality and propose two approaches to group redundant variables: (i) for a given target, the remaining variables are grouped so as to maximize the total causality and (ii) the whole set of variables is partitioned to maximize the sum of the causalities between subsets. We show the application to a real neurological experiment, aiming to a deeper understanding of the physiological basis of abnormal neuronal oscillations in the migraine brain. The outcome by our approach reveals the change in the informational pattern due to repetitive transcranial magnetic stimulations.

  4. Causal inference in multi-state models-sickness absence and work for 1145 participants after work rehabilitation.

    PubMed

    Gran, Jon Michael; Lie, Stein Atle; Øyeflaten, Irene; Borgan, Ørnulf; Aalen, Odd O

    2015-10-23

    Multi-state models, as an extension of traditional models in survival analysis, have proved to be a flexible framework for analysing the transitions between various states of sickness absence and work over time. In this paper we study a cohort of work rehabilitation participants and analyse their subsequent sickness absence using Norwegian registry data on sickness benefits. Our aim is to study how detailed individual covariate information from questionnaires explain differences in sickness absence and work, and to use methods from causal inference to assess the effect of interventions to reduce sickness absence. Examples of the latter are to evaluate the use of partial versus full time sick leave and to estimate the effect of a cooperation agreement on a more inclusive working life. Covariate adjusted transition intensities are estimated using Cox proportional hazards and Aalen additive hazards models, while the effect of interventions are assessed using methods of inverse probability weighting and G-computation. Results from covariate adjusted analyses show great differences in sickness absence and work for patients with assumed high risk and low risk covariate characteristics, for example based on age, type of work, income, health score and type of diagnosis. Causal analyses show small effects of partial versus full time sick leave and a positive effect of having a cooperation agreement, with about 5 percent points higher probability of returning to work. Detailed covariate information is important for explaining transitions between different states of sickness absence and work, also for patient specific cohorts. Methods for causal inference can provide the needed tools for going from covariate specific estimates to population average effects in multi-state models, and identify causal parameters with a straightforward interpretation based on interventions.

  5. A Program for Standard Errors of Indirect Effects in Recursive Causal Models.

    ERIC Educational Resources Information Center

    Wolfle, Lee M.; Ethington, Corinna A.

    In his early exposition of path analysis, Duncan (1966) noted that the method "provides a calculus for indirect effects." Despite the interest in indirect causal effects, most users treat them as if they are population parameters and do not test whether they are statistically significant. Sobel (1982) has recently derived the asymptotic…

  6. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models

    PubMed Central

    Daunizeau, J.; Friston, K.J.; Kiebel, S.J.

    2009-01-01

    In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power. PMID:19862351

  7. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models.

    PubMed

    Daunizeau, J; Friston, K J; Kiebel, S J

    2009-11-01

    In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.

  8. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models

    NASA Astrophysics Data System (ADS)

    Daunizeau, J.; Friston, K. J.; Kiebel, S. J.

    2009-11-01

    In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.

  9. Multi-model Ensembling based on Predictor State Space: Seasonal Streamflow Forecasts and Causal Relations

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Devineni, N.; Ghosh, S.

    2006-12-01

    Seasonal streamflow forecasts contingent on climate information are essential for short-term planning and for setting up contingency measures during extreme years. Recent research show that operational climate forecasts obtained from multiple General Circulation Models (GCM) have improved predictability than climate forecasts from single GCMs. In this study, we present a new approach for multi-model ensembling by evaluating model performance from the predictor state space. By analyzing the model performance using retrospective forecasts, we show that any systematic errors in model prediction with reference to the predictor state could be reduced by combining forecasts from multiple models as well as with climatology. The methodology is demonstrated for obtaining seasonal streamflow forecasts for the Neuse river basin from two different GCMs and from two statistical models. We employ Rank Probability Score (RPS) as the basis for performing developing multi-model ensembles. The performance of the multi-model forecasts are compared with the individual model's performance using various forecast verification measures including reliability diagrams and likelihood ratio. By developing both retrospective and adaptive forecasts using this methodology, we show that evaluating the model performance from predictor state space is a good alternative in developing multi-model ensembles instead of climatology (long-term predictability) based model performance evaluation.

  10. A Granger causality measure for point process models of ensemble neural spiking activity.

    PubMed

    Kim, Sanggyun; Putrino, David; Ghosh, Soumya; Brown, Emery N

    2011-03-01

    The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood function to relate a neuron's spiking probability to possible covariates, such as its own spiking history and the concurrent activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary motor cortex (MI) of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process data, and has the potential to provide unique physiological insights when applied to neural spike trains.

  11. Causal Model of Survival After Pulmonary Metastasectomy of Colorectal Cancer: A Nationwide Prospective Registry.

    PubMed

    Embun, Raul; Rivas de Andrés, Juan J; Call, Sergi; de Olaiz Navarro, Beatriz; Freixinet, Jorge L; Bolufer, Sergio; Jarabo, Jose R; Pajuelo, Nuria; Molins, Laureano

    2016-05-01

    Although numerous existing studies have analyzed the prognostic factors of patients who have had surgical intervention for lung metastases of colorectal carcinoma (CRC), many of the results obtained until now have been contradictory. As a consequence, there is no established consensus about which group of prognostic factors could have a greater value when considered together. This was a multicenter prospective cohort study that included all patients who underwent a first pulmonary metastasectomy of CRC, with radical intent, during a 2-year period (March 2008 to February 2010). The follow-up continued until March 2013, and an analysis of disease-specific survival (DSS), determined from the first pulmonary metastasectomy, was implemented. The selection of the best submodel was taken based on their coefficient of determination (R(2)) and how parsimonious they were depending on the number of variables included. The series, consisting of 522 patients, presented the following survival rates: median, 54.9 months; 3-year DSS, 69.4% (95% confidence interval [CI], 65% to 73.8%); and 5-year DSS, 46.1% (95% CI, 38.5% to 53.7%). The resulting survival model consisted of disease-free interval of 12 months or less (hazard ratio [HR], 1.76; 95% CI, 1.21 to 2.54; p = 0.003), carcinoembryonic antigen level exceeding 5 ng/mL (HR, 1.50; 95% CI, 1.04 to 2.17; p = 0.028), bilateral lung disease (HR, 1.81; 95% CI, 1.20 to 2.75; p = 0.005), and thoracic lymph node involvement (HR, 2.71; 95% CI, 1.44 to 5.12; p = 0.002). According to these results from the Spanish Group of Lung Metastases of Colo-Rectal Cancer, the combination of these four variables-disease-free interval, carcinoembryonic antigen level, laterality, and thoracic lymph node involvement-constitutes the first-choice survival causal model based on the clinical and pathologic factors most frequently referenced in literature. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Experimental test of nonlocal causality

    PubMed Central

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro

    2016-01-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045

  13. Experimental test of nonlocal causality.

    PubMed

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro

    2016-08-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.

  14. Modeling Causal Relationship Between Brain Regions Within the Drug-Cue Processing Network in Chronic Cocaine Smokers.

    PubMed

    Ray, Suchismita; Haney, Margaret; Hanson, Catherine; Biswal, Bharat; Hanson, Stephen José

    2015-12-01

    The cues associated with drugs of abuse have an essential role in perpetuating problematic use, yet effective connectivity or the causal interaction between brain regions mediating the processing of drug cues has not been defined. The aim of this fMRI study was to model the causal interaction between brain regions within the drug-cue processing network in chronic cocaine smokers and matched control participants during a cocaine-cue exposure task. Specifically, cocaine-smoking (15M; 5F) and healthy control (13M; 4F) participants viewed cocaine and neutral cues while in the scanner (a Siemens 3 T magnet). We examined whole brain activation, including activation related to drug-cue processing. Time series data extracted from ROIs determined through our General Linear Model (GLM) analysis and prior publications were used as input to IMaGES, a computationally powerful Bayesian search algorithm. During cocaine-cue exposure, cocaine users showed a particular feed-forward effective connectivity pattern between the ROIs of the drug-cue processing network (amygdala → hippocampus → dorsal striatum → insula → medial frontal cortex, dorsolateral prefrontal cortex, anterior cingulate cortex) that was not present when the controls viewed the cocaine cues. Cocaine craving ratings positively correlated with the strength of the causal influence of the insula on the dorsolateral prefrontal cortex in cocaine users. This study is the first demonstration of a causal interaction between ROIs within the drug-cue processing network in cocaine users. This study provides insight into the mechanism underlying continued substance use and has implications for monitoring treatment response.

  15. Modeling Causal Relationship Between Brain Regions Within the Drug-Cue Processing Network in Chronic Cocaine Smokers

    PubMed Central

    Ray, Suchismita; Haney, Margaret; Hanson, Catherine; Biswal, Bharat; Hanson, Stephen José

    2015-01-01

    The cues associated with drugs of abuse have an essential role in perpetuating problematic use, yet effective connectivity or the causal interaction between brain regions mediating the processing of drug cues has not been defined. The aim of this fMRI study was to model the causal interaction between brain regions within the drug-cue processing network in chronic cocaine smokers and matched control participants during a cocaine-cue exposure task. Specifically, cocaine-smoking (15M; 5F) and healthy control (13M; 4F) participants viewed cocaine and neutral cues while in the scanner (a Siemens 3 T magnet). We examined whole brain activation, including activation related to drug-cue processing. Time series data extracted from ROIs determined through our General Linear Model (GLM) analysis and prior publications were used as input to IMaGES, a computationally powerful Bayesian search algorithm. During cocaine-cue exposure, cocaine users showed a particular feed-forward effective connectivity pattern between the ROIs of the drug-cue processing network (amygdala→hippocampus→dorsal striatum→insula→medial frontal cortex, dorsolateral prefrontal cortex, anterior cingulate cortex) that was not present when the controls viewed the cocaine cues. Cocaine craving ratings positively correlated with the strength of the causal influence of the insula on the dorsolateral prefrontal cortex in cocaine users. This study is the first demonstration of a causal interaction between ROIs within the drug-cue processing network in cocaine users. This study provides insight into the mechanism underlying continued substance use and has implications for monitoring treatment response. PMID:26038158

  16. Polish spaces of causal curves

    NASA Astrophysics Data System (ADS)

    Miller, Tomasz

    2017-06-01

    We propose and study a new approach to the topologization of spaces of (possibly not all) future-directed causal curves in a stably causal spacetime. It relies on parametrizing the curves ;in accordance; with a chosen time function. Thus obtained topological spaces of causal curves are separable and completely metrizable, i.e. Polish. The latter property renders them particularly useful in the optimal transport theory. To illustrate this fact, we explore the notion of a causal time-evolution of measures in globally hyperbolic spacetimes and discuss its physical interpretation.

  17. Simulations of a modified SOP model applied to retrospective revaluation of human causal learning.

    PubMed

    Aitken, Michael R F; Dickinson, Anthony

    2005-05-01

    Dickinson and Burke (1996) proposed a modified version of Wagner's (1981) SOP associative theory to explain retrospective revaluation of human causal judgments. In this modified SOP (MSOP), excitatory learning occurs when cue and outcome representations are either both directly activated or both associatively activated. By contrast, inhibitory learning occurs when one representation is directly activated while the other is associatively activated. Finite node simulations of MSOP yielded simple acquisition, overshadowing, blocking, and inhibitory learning under forward contingencies. Importantly, retrospective revaluation was predicted in the form of unovershadowing and backward inhibitory learning. However, MSOP did not yield backward blocking. These predictions are evaluated against the relevant empirical evidence and contrasted with the predictions of other associative theories that have been applied to retrospective revaluation of human causal and predictive learning.

  18. Commentary on Causal Prescriptive Statements

    ERIC Educational Resources Information Center

    Graesser, Arthur C.; Hu, Xiangen

    2011-01-01

    Causal prescriptive statements are valued in the social sciences when there is the goal of helping people through interventions. The articles in this special issue cover different methods for testing causal prescriptive statements. This commentary identifies both virtues and liabilities of these different approaches. We argue that it is extremely…

  19. Commentary on Causal Prescriptive Statements

    ERIC Educational Resources Information Center

    Graesser, Arthur C.; Hu, Xiangen

    2011-01-01

    Causal prescriptive statements are valued in the social sciences when there is the goal of helping people through interventions. The articles in this special issue cover different methods for testing causal prescriptive statements. This commentary identifies both virtues and liabilities of these different approaches. We argue that it is extremely…

  20. Is ovarian hyperstimulation associated with higher blood pressure in 4-year-old IVF offspring? Part II: an explorative causal inference approach.

    PubMed

    La Bastide-Van Gemert, Sacha; Seggers, Jorien; Haadsma, Maaike L; Heineman, Maas Jan; Middelburg, Karin J; Roseboom, Tessa J; Schendelaar, Pamela; Hadders-Algra, Mijna; Van den Heuvel, Edwin R

    2014-03-01

    What causal relationships underlie the associations between ovarian stimulation, the IVF procedure, parental-, fertility- and child characteristics, and blood pressure (BP) and anthropometrics of 4-year-old IVF children? Causal models compatible with the data suggest the presence of positive direct effects of controlled ovarian hyperstimulation as applied in IVF (COH-IVF) on systolic blood pressure (SBP) percentiles and subscapular skinfold thickness. Increasing evidence suggests that IVF is associated with higher blood pressure and altered body fat distribution in offspring, but underlying mechanisms describing the causal relationships between the variables are largely unknown. In this assessor-blinded follow-up study, 194 children were assessed. The attrition rate until the 4-year-old assessment was 10%. We measured blood pressure and anthropometrics of 4-year-old singletons born following COH-IVF (n = 63), or born following modified natural cycle IVF (MNC-IVF, n = 52) or born to subfertile couples who conceived naturally (Sub-NC, n = 79). Primary outcome measures were the SBP and diastolic blood pressure (DBP) percentiles. Anthropometrics included triceps and subscapular skinfold thickness. Causal inference search algorithms and structural equation modeling were applied. Explorative analyses suggested a direct effect of COH on SBP percentiles and on subscapular skinfold thickness. This hypothesis needs confirmation with additional, preferably larger, studies. Search algorithms were used as explorative tools to generate hypotheses on the causal mechanisms underlying fertility treatment, blood pressure, anthropometrics and other variables. More studies using larger groups are needed to draw firm conclusions. Our findings are in line with other studies describing adverse effects of IVF on cardiometabolic outcome, but this is the first study suggesting a causal mechanism underlying this association. Perhaps ovarian hyperstimulation negatively influences

  1. A study of problems encountered in Granger causality analysis from a neuroscience perspective.

    PubMed

    Stokes, Patrick A; Purdon, Patrick L

    2017-08-22

    Granger causality methods were developed to analyze the flow of information between time series. These methods have become more widely applied in neuroscience. Frequency-domain causality measures, such as those of Geweke, as well as multivariate methods, have particular appeal in neuroscience due to the prevalence of oscillatory phenomena and highly multivariate experimental recordings. Despite its widespread application in many fields, there are ongoing concerns regarding the applicability of Granger causality methods in neuroscience. When are these methods appropriate? How reliably do they recover the system structure underlying the observed data? What do frequency-domain causality measures tell us about the functional properties of oscillatory neural systems? In this paper, we analyze fundamental properties of Granger-Geweke (GG) causality, both computational and conceptual. Specifically, we show that (i) GG causality estimates can be either severely biased or of high variance, both leading to spurious results; (ii) even if estimated correctly, GG causality estimates alone are not interpretable without examining the component behaviors of the system model; and (iii) GG causality ignores critical components of a system's dynamics. Based on this analysis, we find that the notion of causality quantified is incompatible with the objectives of many neuroscience investigations, leading to highly counterintuitive and potentially misleading results. Through the analysis of these problems, we provide important conceptual clarification of GG causality, with implications for other related causality approaches and for the role of causality analyses in neuroscience as a whole.

  2. A study of problems encountered in Granger causality analysis from a neuroscience perspective

    PubMed Central

    Stokes, Patrick A.; Purdon, Patrick L.

    2017-01-01

    Granger causality methods were developed to analyze the flow of information between time series. These methods have become more widely applied in neuroscience. Frequency-domain causality measures, such as those of Geweke, as well as multivariate methods, have particular appeal in neuroscience due to the prevalence of oscillatory phenomena and highly multivariate experimental recordings. Despite its widespread application in many fields, there are ongoing concerns regarding the applicability of Granger causality methods in neuroscience. When are these methods appropriate? How reliably do they recover the system structure underlying the observed data? What do frequency-domain causality measures tell us about the functional properties of oscillatory neural systems? In this paper, we analyze fundamental properties of Granger–Geweke (GG) causality, both computational and conceptual. Specifically, we show that (i) GG causality estimates can be either severely biased or of high variance, both leading to spurious results; (ii) even if estimated correctly, GG causality estimates alone are not interpretable without examining the component behaviors of the system model; and (iii) GG causality ignores critical components of a system’s dynamics. Based on this analysis, we find that the notion of causality quantified is incompatible with the objectives of many neuroscience investigations, leading to highly counterintuitive and potentially misleading results. Through the analysis of these problems, we provide important conceptual clarification of GG causality, with implications for other related causality approaches and for the role of causality analyses in neuroscience as a whole. PMID:28778996

  3. Linking canonical microcircuits and neuronal activity: Dynamic causal modelling of laminar recordings.

    PubMed

    Pinotsis, D A; Geerts, J P; Pinto, L; FitzGerald, T H B; Litvak, V; Auksztulewicz, R; Friston, K J

    2017-02-01

    Neural models describe brain activity at different scales, ranging from single cells to whole brain networks. Here, we attempt to reconcile models operating at the microscopic (compartmental) and mesoscopic (neural mass) scales to analyse data from microelectrode recordings of intralaminar neural activity. Although these two classes of models operate at different scales, it is relatively straightforward to create neural mass models of ensemble activity that are equipped with priors obtained after fitting data generated by detailed microscopic models. This provides generative (forward) models of measured neuronal responses that retain construct validity in relation to compartmental models. We illustrate our approach using cross spectral responses obtained from V1 during a visual perception paradigm that involved optogenetic manipulation of the basal forebrain. We find that the resulting neural mass model can distinguish between activity in distinct cortical layers - both with and without optogenetic activation - and that cholinergic input appears to enhance (disinhibit) superficial layer activity relative to deep layers. This is particularly interesting from the perspective of predictive coding, where neuromodulators are thought to boost prediction errors that ascend the cortical hierarchy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. A New Life-Span Approach to Conscientiousness and Health: Combining the Pieces of the Causal Puzzle

    ERIC Educational Resources Information Center

    Friedman, Howard S.; Kern, Margaret L.; Hampson, Sarah E.; Duckworth, Angela Lee

    2014-01-01

    Conscientiousness has been shown to predict healthy behaviors, healthy social relationships, and physical health and longevity. The causal links, however, are complex and not well elaborated. Many extant studies have used comparable measures for conscientiousness, and a systematic endeavor to build cross-study analyses for conscientiousness and…

  5. The Well-Being of Children Born to Teen Mothers: Multiple Approaches to Assessing the Causal Links. JCPR Working Paper.

    ERIC Educational Resources Information Center

    Levine, Judith A.; Pollack, Harold

    This study used linked maternal-child data from the 1997-1998 National Longitudinal Survey of Youth to explore the wellbeing of children born to teenage mothers. Two econometric techniques explored the causal impact of early childbearing on subsequent child and adolescent outcomes. First, a fixed-effect, cousin-comparison analysis controlled for…

  6. Learning a theory of causality.

    PubMed

    Goodman, Noah D; Ullman, Tomer D; Tenenbaum, Joshua B

    2011-01-01

    The very early appearance of abstract knowledge is often taken as evidence for innateness. We explore the relative learning speeds of abstract and specific knowledge within a Bayesian framework and the role for innate structure. We focus on knowledge about causality, seen as a domain-general intuitive theory, and ask whether this knowledge can be learned from co-occurrence of events. We begin by phrasing the causal Bayes nets theory of causality and a range of alternatives in a logical language for relational theories. This allows us to explore simultaneous inductive learning of an abstract theory of causality and a causal model for each of several causal systems. We find that the correct theory of causality can be learned relatively quickly, often becoming available before specific causal theories have been learned--an effect we term the blessing of abstraction. We then explore the effect of providing a variety of auxiliary evidence and find that a collection of simple perceptual input analyzers can help to bootstrap abstract knowledge. Together, these results suggest that the most efficient route to causal knowledge may be to build in not an abstract notion of causality but a powerful inductive learning mechanism and a variety of perceptual supports. While these results are purely computational, they have implications for cognitive development, which we explore in the conclusion.

  7. The Agent-based Approach: A New Direction for Computational Models of Development.

    ERIC Educational Resources Information Center

    Schlesinger, Matthew; Parisi, Domenico

    2001-01-01

    Introduces the concepts of online and offline sampling and highlights the role of online sampling in agent-based models of learning and development. Compares the strengths of each approach for modeling particular developmental phenomena and research questions. Describes a recent agent-based model of infant causal perception. Discusses limitations…

  8. Evaluating WAIS-IV structure through a different psychometric lens: structural causal model discovery as an alternative to confirmatory factor analysis.

    PubMed

    van Dijk, Marjolein J A M; Claassen, Tom; Suwartono, Christiany; van der Veld, William M; van der Heijden, Paul T; Hendriks, Marc P H

    Since the publication of the WAIS-IV in the U.S. in 2008, efforts have been made to explore the structural validity by applying factor analysis to various samples. This study aims to achieve a more fine-grained understanding of the structure of the Dutch language version of the WAIS-IV (WAIS-IV-NL) by applying an alternative analysis based on causal modeling in addition to confirmatory factor analysis (CFA). The Bayesian Constraint-based Causal Discovery (BCCD) algorithm learns underlying network structures directly from data and assesses more complex structures than is possible with factor analysis. WAIS-IV-NL profiles of two clinical samples of 202 patients (i.e. patients with temporal lobe epilepsy and a mixed psychiatric outpatient group) were analyzed and contrasted with a matched control group (N = 202) selected from the Dutch standardization sample of the WAIS-IV-NL to investigate internal structure by means of CFA and BCCD. With CFA, the four-factor structure as proposed by Wechsler demonstrates acceptable fit in all three subsamples. However, BCCD revealed three consistent clusters (verbal comprehension, visual processing, and processing speed) in all three subsamples. The combination of Arithmetic and Digit Span as a coherent working memory factor could not be verified, and Matrix Reasoning appeared to be isolated. With BCCD, some discrepancies from the proposed four-factor structure are exemplified. Furthermore, these results fit CHC theory of intelligence more clearly. Consistent clustering patterns indicate these results are robust. The structural causal discovery approach may be helpful in better interpreting existing tests, the development of new tests, and aid in diagnostic instruments.

  9. Identifying the Default Mode Network Structure Using Dynamic Causal Modeling on Resting-state Functional Magnetic Resonance Imaging

    PubMed Central

    Di, Xin; Biswal, Bharat B.

    2013-01-01

    The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on resting-state fMRI dataset to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01–0.08 Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model that the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight on the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data. PMID:23927904

  10. Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging.

    PubMed

    Di, Xin; Biswal, Bharat B

    2014-02-01

    The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on a resting-state fMRI data set to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01-0.08Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model wherein the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight into the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data.

  11. Assessing dynamic spectral causality by lagged adaptive directed transfer function and instantaneous effect factor.

    PubMed

    Xu, Haojie; Lu, Yunfeng; Zhu, Shanan; He, Bin

    2014-07-01

    It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The nonzero covariance of the model's residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the "causal ordering" is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In this study, we first investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in time

  12. A pedagogical walkthrough of computational modeling and simulation of Wnt signaling pathway using static causal models in MATLAB.

    PubMed

    Sinha, Shriprakash

    2016-12-01

    Simulation study in systems biology involving computational experiments dealing with Wnt signaling pathways abound in literature but often lack a pedagogical perspective that might ease the understanding of beginner students and researchers in transition, who intend to work on the modeling of the pathway. This paucity might happen due to restrictive business policies which enforce an unwanted embargo on the sharing of important scientific knowledge. A tutorial introduction to computational modeling of Wnt signaling pathway in a human colorectal cancer dataset using static Bayesian network models is provided. The walkthrough might aid biologists/informaticians in understanding the design of computational experiments that is interleaved with exposition of the Matlab code and causal models from Bayesian network toolbox. The manuscript elucidates the coding contents of the advance article by Sinha (Integr. Biol. 6:1034-1048, 2014) and takes the reader in a step-by-step process of how (a) the collection and the transformation of the available biological information from literature is done, (b) the integration of the heterogeneous data and prior biological knowledge in the network is achieved, (c) the simulation study is designed, (d) the hypothesis regarding a biological phenomena is transformed into computational framework, and (e) results and inferences drawn using d-connectivity/separability are reported. The manuscript finally ends with a programming assignment to help the readers get hands-on experience of a perturbation project. Description of Matlab files is made available under GNU GPL v3 license at the Google code project on https://code.google.com/p/static-bn-for-wnt-signaling-pathway and https: //sites.google.com/site/shriprakashsinha/shriprakashsinha/projects/static-bn-for-wnt-signaling-pathway. Latest updates can be found in the latter website.

  13. Dynamic Causal Modeling of Hippocampal Links within the Human Default Mode Network: Lateralization and Computational Stability of Effective Connections

    PubMed Central

    Ushakov, Vadim; Sharaev, Maksim G.; Kartashov, Sergey I.; Zavyalova, Viktoria V.; Verkhlyutov, Vitaliy M.; Velichkovsky, Boris M.

    2016-01-01

    The purpose of this paper was to study causal relationships between left and right hippocampal regions (LHIP and RHIP, respectively) within the default mode network (DMN) as represented by its key structures: the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and the inferior parietal cortex of left (LIPC) and right (RIPC) hemispheres. Furthermore, we were interested in testing the stability of the connectivity patterns when adding or deleting regions of interest. The functional magnetic resonance imaging (fMRI) data from a group of 30 healthy right-handed subjects in the resting state were collected and a connectivity analysis was performed. To model the effective connectivity, we used the spectral Dynamic Causal Modeling (DCM). Three DCM analyses were completed. Two of them modeled interaction between five nodes that included four DMN key structures in addition to either LHIP or RHIP. The last DCM analysis modeled interactions between four nodes whereby one of the main DMN structures, PCC, was excluded from the analysis. The results of all DCM analyses indicated a high level of stability in the computational method: those parts of the winning models that included the key DMN structures demonstrated causal relations known from recent research. However, we discovered new results as well. First of all, we found a pronounced asymmetry in LHIP and RHIP connections. LHIP demonstrated a high involvement of DMN activity with preponderant information outflow to all other DMN regions. Causal interactions of LHIP were bidirectional only in the case of LIPC. On the contrary, RHIP was primarily affected by inputs from LIPC, RIPC, and LHIP without influencing these or other DMN key structures. For the first time, an inhibitory link was found from MPFC to LIPC, which may indicate the subjects’ effort to maintain a resting state. Functional connectivity data echoed these results, though they also showed links not reflected in the patterns of effective

  14. Dynamic Causal Modeling of Hippocampal Links within the Human Default Mode Network: Lateralization and Computational Stability of Effective Connections.

    PubMed

    Ushakov, Vadim; Sharaev, Maksim G; Kartashov, Sergey I; Zavyalova, Viktoria V; Verkhlyutov, Vitaliy M; Velichkovsky, Boris M

    2016-01-01

    The purpose of this paper was to study causal relationships between left and right hippocampal regions (LHIP and RHIP, respectively) within the default mode network (DMN) as represented by its key structures: the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and the inferior parietal cortex of left (LIPC) and right (RIPC) hemispheres. Furthermore, we were interested in testing the stability of the connectivity patterns when adding or deleting regions of interest. The functional magnetic resonance imaging (fMRI) data from a group of 30 healthy right-handed subjects in the resting state were collected and a connectivity analysis was performed. To model the effective connectivity, we used the spectral Dynamic Causal Modeling (DCM). Three DCM analyses were completed. Two of them modeled interaction between five nodes that included four DMN key structures in addition to either LHIP or RHIP. The last DCM analysis modeled interactions between four nodes whereby one of the main DMN structures, PCC, was excluded from the analysis. The results of all DCM analyses indicated a high level of stability in the computational method: those parts of the winning models that included the key DMN structures demonstrated causal relations known from recent research. However, we discovered new results as well. First of all, we found a pronounced asymmetry in LHIP and RHIP connections. LHIP demonstrated a high involvement of DMN activity with preponderant information outflow to all other DMN regions. Causal interactions of LHIP were bidirectional only in the case of LIPC. On the contrary, RHIP was primarily affected by inputs from LIPC, RIPC, and LHIP without influencing these or other DMN key structures. For the first time, an inhibitory link was found from MPFC to LIPC, which may indicate the subjects' effort to maintain a resting state. Functional connectivity data echoed these results, though they also showed links not reflected in the patterns of effective

  15. Exploring the relationship between child physical abuse and adult dating violence using a causal inference approach in an emerging adult population in South Korea.

    PubMed

    Jennings, Wesley G; Park, MiRang; Richards, Tara N; Tomsich, Elizabeth; Gover, Angela; Powers, Ráchael A

    2014-12-01

    Child maltreatment is one of the most commonly examined risk factors for violence in dating relationships. Often referred to as the intergenerational transmission of violence or cycle of violence, a fair amount of research suggests that experiencing abuse during childhood significantly increases the likelihood of involvement in violent relationships later, but these conclusions are primarily based on correlational research designs. Furthermore, the majority of research linking childhood maltreatment and dating violence has focused on samples of young people from the United States. Considering these limitations, the current study uses a rigorous, propensity score matching approach to estimate the causal effect of experiencing child physical abuse on adult dating violence among a large sample of South Korean emerging adults. Results indicate that the link between child physical abuse and adult dating violence is spurious rather than causal. Study limitations and implications are discussed.

  16. What Is Going on Inside the Arrows? Discovering the Hidden Springs in Causal Models

    PubMed Central

    Murray-Watters, Alexander; Glymour, Clark

    2016-01-01

    Using Gebharter's (2014) representation, we consider aspects of the problem of discovering the structure of unmeasured sub-mechanisms when the variables in those sub-mechanisms have not been measured. Exploiting an early insight of Sober's (1998), we provide a correct algorithm for identifying latent, endogenous structure—sub-mechanisms—for a restricted class of structures. The algorithm can be merged with other methods for discovering causal relations among unmeasured variables, and feedback relations between measured variables and unobserved causes can sometimes be learned. PMID:27313331

  17. The Mediation Formula: A Guide to the Assessment of Causal Pathways in Nonlinear Models

    DTIC Science & Technology

    2011-10-27

    human biology.2 Graphical identification conditions for expressions of the type E(Y |do(x), do(z1), do(z2), . . . , do( zk )) in the presence of...Academy of Political and Social Science 628 200–208. Hafeman, D. and Schwartz, S. (2009). Opening the black box: A motiva- tion for the assessment of... Science Department Los Angeles, CA, 90095-1596, USA judea@cs.ucla.edu October 27, 2011 Abstract Mediation analysis aims to uncover causal pathways along

  18. Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data

    PubMed Central

    Sharaev, Maksim G.; Zavyalova, Viktoria V.; Ushakov, Vadim L.; Kartashov, Sergey I.; Velichkovsky, Boris M.

    2016-01-01

    The Default Mode Network (DMN) is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of Blood-oxygen-level dependent (BOLD) activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e., effective connectivity), however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC). For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy subjects (1000 time points from each one) was acquired and spectral dynamic causal modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078–0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p < 0.05). Connections between mPFC and PCC are bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain’s functioning at resting state. PMID:26869900

  19. Structural Equations and Causal Explanations: Some Challenges for Causal SEM

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2010-01-01

    One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…

  20. Structural Equations and Causal Explanations: Some Challenges for Causal SEM

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2010-01-01

    One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…

  1. Assessing Dynamic Spectral Causality by Lagged Adaptive Directed Transfer Function and Instantaneous Effect Factor

    PubMed Central

    Xu, Haojie; Lu, Yunfeng; Zhu, Shanan

    2014-01-01

    It is of significance to assess the dynamic spectral causality among physiological signals. Several practical estimators adapted from spectral Granger causality have been exploited to track dynamic causality based on the framework of time-varying multivariate autoregressive (tvMVAR) models. The non-zero covariance of the model’s residuals has been used to describe the instantaneous effect phenomenon in some causality estimators. However, for the situations with Gaussian residuals in some autoregressive models, it is challenging to distinguish the directed instantaneous causality if the sufficient prior information about the “causal ordering” is missing. Here, we propose a new algorithm to assess the time-varying causal ordering of tvMVAR model under the assumption that the signals follow the same acyclic causal ordering for all time lags and to estimate the instantaneous effect factor (IEF) value in order to track the dynamic directed instantaneous connectivity. The time-lagged adaptive directed transfer function (ADTF) is also estimated to assess the lagged causality after removing the instantaneous effect. In the present study, we firstly investigated the performance of the causal-ordering estimation algorithm and the accuracy of IEF value. Then, we presented the results of IEF and time-lagged ADTF method by comparing with the conventional ADTF method through simulations of various propagation models. Statistical analysis results suggest that the new algorithm could accurately estimate the causal ordering and give a good estimation of the IEF values in the Gaussian residual conditions. Meanwhile, the time-lagged ADTF approach is also more accurate in estimating the time-lagged dynamic interactions in a complex nervous system after extracting the instantaneous effect. In addition to the simulation studies, we applied the proposed method to estimate the dynamic spectral causality on real visual evoked potential (VEP) data in a human subject. Its usefulness in

  2. Zigzagging causality EPR model: answer to Vigier and coworkers and to Sutherland

    SciTech Connect

    de Beauregard, O.C.

    1987-08-01

    The concept of propagation in time of Vigier and co-workers (V et al.) implies the ideal of a supertime; it is thus alien to most Minkowskian pictures and certainly to the authors. From this stems much of V et al.'s misunderstandings of his position. In steady motion of a classical fluid nobody thinks that momentum conservation is violated, or that momentum is shot upstream without cause because of the suction from the sinks. Similarly with momentum-energy in spacetime and the acceptance of an advanced causality. As for the CT invariance of the Feynman propagator, the causality asymmetry it entails is factlike, not lawlike. The geometrical counterpart of the symmetry between prediction and retrodiction and between retarded and advanced waves, as expressed in the alternative expressions = = for a transition amplitude between a preparation lt. slashA> and a measurement lt. slashB>, is CPT-invariant, not PT-invariant. These three expressions respectively illustrate the collapse, the retrocollapse, and the symmetric collapse-and-retrocollapse concepts. As for Sutherland's argument, what it falsifies is not the authors retrocausation concept but the hidden-variables assumption he has unwittingly made.

  3. On the zigzagging causality EPR model: Answer to Vigier and coworkers and to Sutherland

    NASA Astrophysics Data System (ADS)

    Costa de Beauregard, O.

    1987-08-01

    The concept of “propagation in time” of Vigier and co-workers (V et al.) implies the idea of a supertime; it is thus alien to most Minkowskian pictures and certainly to mine. From this stems much of V et al.'s misunderstandings of my position. In steady motion of a classical fluid nobody thinks that “momentum conservation is violated,” or that “momentum is shot upstream without cause” because of the suction from the sinks! Similarly with momentum-energy in space-time and the acceptance of an advanced causality. As for the CT invariance of the Feynman propagator, the causality asymmetry it entails is factlike, not lawlike. The geometrical counterpart of the symmetry between prediction and retrodiction and between retarded and advanced waves, as expressed in the alternative expressions == for a transition amplitude between a preparation |A> and a measurement |B>, is CPT-invariant, not PT-invariant. These three expressions respectively illustrate the collapse, the retrocollapse, and the symmetric collapse-and-retrocollapse concepts. As for Sutherland's argument, what it “falsifies” is not my retrocausation concept but the hidden-variables assumption he has unwittingly made.

  4. From meta-omics to causality: experimental models for human microbiome research.

    PubMed

    Fritz, Joëlle V; Desai, Mahesh S; Shah, Pranjul; Schneider, Jochen G; Wilmes, Paul

    2013-05-03

    Large-scale 'meta-omic' projects are greatly advancing our knowledge of the human microbiome and its specific role in governing health and disease states. A myriad of ongoing studies aim at identifying links between microbial community disequilibria (dysbiosis) and human diseases. However, due to the inherent complexity and heterogeneity of the human microbiome, cross-sectional, case-control and longitudinal studies may not have enough statistical power to allow causation to be deduced from patterns of association between variables in high-resolution omic datasets. Therefore, to move beyond reliance on the empirical method, experiments are critical. For these, robust experimental models are required that allow the systematic manipulation of variables to test the multitude of hypotheses, which arise from high-throughput molecular studies. Particularly promising in this respect are microfluidics-based in vitro co-culture systems, which allow high-throughput first-pass experiments aimed at proving cause-and-effect relationships prior to testing of hypotheses in animal models. This review focuses on widely used in vivo, in vitro, ex vivo and in silico approaches to study host-microbial community interactions. Such systems, either used in isolation or in a combinatory experimental approach, will allow systematic investigations of the impact of microbes on the health and disease of the human host. All the currently available models present pros and cons, which are described and discussed. Moreover, suggestions are made on how to develop future experimental models that not only allow the study of host-microbiota interactions but are also amenable to high-throughput experimentation.

  5. Causal Premise Semantics

    ERIC Educational Resources Information Center

    Kaufmann, Stefan

    2013-01-01

    The rise of causality and the attendant graph-theoretic modeling tools in the study of counterfactual reasoning has had resounding effects in many areas of cognitive science, but it has thus far not permeated the mainstream in linguistic theory to a comparable degree. In this study I show that a version of the predominant framework for the formal…

  6. Causal Premise Semantics

    ERIC Educational Resources Information Center

    Kaufmann, Stefan

    2013-01-01

    The rise of causality and the attendant graph-theoretic modeling tools in the study of counterfactual reasoning has had resounding effects in many areas of cognitive science, but it has thus far not permeated the mainstream in linguistic theory to a comparable degree. In this study I show that a version of the predominant framework for the formal…

  7. A Systems Genetics Approach Implicates USF1, FADS3, and Other Causal Candidate Genes for Familial Combined Hyperlipidemia

    PubMed Central

    Plaisier, Christopher L.; Horvath, Steve; Huertas-Vazquez, Adriana; Cruz-Bautista, Ivette; Herrera, Miguel F.; Tusie-Luna, Teresa; Aguilar-Salinas, Carlos; Pajukanta, Päivi

    2009-01-01

    We hypothesized that a common SNP in the 3' untranslated region of the upstream transcription factor 1 (USF1), rs3737787, may affect lipid traits by influencing gene expression levels, and we investigated this possibility utilizing the Mexican population, which has a high predisposition to dyslipidemia. We first associated rs3737787 genotypes in Mexican Familial Combined Hyperlipidemia (FCHL) case/control fat biopsies, with global expression patterns. To identify sets of co-expressed genes co-regulated by similar factors such as transcription factors, genetic variants, or environmental effects, we utilized weighted gene co-expression network analysis (WGCNA). Through WGCNA in the Mexican FCHL fat biopsies we identified two significant Triglyceride (TG)-associated co-expression modules. One of these modules was also associated with FCHL, the other FCHL component traits, and rs3737787 genotypes. This USF1-regulated FCHL-associated (URFA) module was enriched for genes involved in lipid metabolic processes. Using systems genetics procedures we identified 18 causal candidate genes in the URFA module. The FCHL causal candidate gene fatty acid desaturase 3 (FADS3) was associated with TGs in a recent Caucasian genome-wide significant association study and we replicated this association in Mexican FCHL families. Based on a USF1-regulated FCHL-associated co-expression module and SNP rs3737787, we identify a set of causal candidate genes for FCHL-related traits. We then provide evidence from two independent datasets supporting FADS3 as a causal gene for FCHL and elevated TGs in Mexicans. PMID:19750004

  8. A Bayesian Semiparametric Multivariate Causal Model, with Automatic Covariate Selection and for Possibly-Nonignorable Missing Data

    ERIC Educational Resources Information Center

    Karabatsos, G.; Walker, S.G.

    2010-01-01

    Causal inference is central to educational research, where in data analysis the aim is to learn the causal effects of educational treatments on academic achievement, to evaluate educational policies and practice. Compared to a correlational analysis, a causal analysis enables policymakers to make more meaningful statements about the efficacy of…

  9. Causal Inference in Retrospective Studies.

    ERIC Educational Resources Information Center

    Holland, Paul W.; Rubin, Donald B.

    1988-01-01

    The problem of drawing causal inferences from retrospective case-controlled studies is considered. A model for causal inference in prospective studies is applied to retrospective studies. Limitations of case-controlled studies are formulated concerning relevant parameters that can be estimated in such studies. A coffee-drinking/myocardial…

  10. Causal Inference in Retrospective Studies.

    ERIC Educational Resources Information Center

    Holland, Paul W.; Rubin, Donald B.

    1988-01-01

    The problem of drawing causal inferences from retrospective case-controlled studies is considered. A model for causal inference in prospective studies is applied to retrospective studies. Limitations of case-controlled studies are formulated concerning relevant parameters that can be estimated in such studies. A coffee-drinking/myocardial…

  11. Peer cluster theory and adolescent alcohol use: an explanation of alcohol use and a comparative analysis between two causal models.

    PubMed

    Rose, C D

    1999-01-01

    This study tests the premise of peer cluster theory as it applies to individual alcohol use, and makes a comparative analysis between its ability to explain alcohol use and marijuana use. Using the results of a 1996 drug and alcohol survey of 1312 Western Kentucky University students, path analysis was used to measure the influence of six of peer cluster theory's psychosocial characteristics on the percentage of the respondent's college friends who use alcohol. All of these variables were then regressed on the respondent's alcohol use. The results of the causal models did show some support for peer cluster theory. The direct effect of the student's association with alcohol-using peers on individual alcohol use was shown to have the strongest direct influence on this outcome variable. However, a few limitations of this theoretical perspective were identified. The causal model for alcohol use showed that the indirect influence of two of these psychosocial characteristics (parental attitudes on alcohol use and success in school) was weaker than their direct influence on individual alcohol use. And, the comparative analysis showed that peer cluster theory is better suited to explain the use of marijuana than the use of alcohol.

  12. Behaviour Modelling, Instruction and Exploration Training Approaches in Group and Individual Contexts

    ERIC Educational Resources Information Center

    Truman, G. E.

    2009-01-01

    Behaviour modelling has been associated with higher learning outcomes compared to other training approaches. These cumulative research findings create imperative to examine underlying causal mechanisms or contingency factors that may promote behaviour modelling's advantages even further. We propose group-based learning as one contingency factor…

  13. Causal prophylactic efficacy of primaquine, tafenoquine, and atovaquone-proguanil against Plasmodium cynomolgi in a rhesus monkey model.

    PubMed

    DiTusa, Charles; Kozar, Michael P; Pybus, Brandon; Sousa, Jason; Berman, Jonathan; Gettayacamin, Montip; Im-erbsin, Rawiwan; Tungtaeng, Anchalee; Ohrt, Colin

    2014-10-01

    Since the 1940s, the large animal model to assess novel causal prophylactic antimalarial agents has been the Plasmodium cynomolgi sporozoite-infected Indian-origin rhesus monkey. In 2009 the model was reassessed with 3 clinical standards: primaquine (PQ), tafenoquine (TQ), and atovaquone-proguanil. Both control monkeys were parasitemic on day 8 post-sporozoite inoculation on day 0. Primaquine at 1.78 mg base/kg/day on days (-1) to 8 protected 1 monkey and delayed parasitemia patency of the other monkey to day 49. Tafenoquine at 6 mg base/kg/day on days (-1) to 1 protected both monkeys. However, atovaquone-proguanil at 10 mg atovaquone/kg/day on days (-1) to 8 did not protect either monkey and delayed patency only to days 18-19. Primaquine and TQ at the employed regimens are proposed as appropriate doses of positive control drugs for the model at present.

  14. Causal discovery from medical textual data.

    PubMed Central

    Mani, S.; Cooper, G. F.

    2000-01-01

    Medical records usually incorporate investigative reports, historical notes, patient encounters or discharge summaries as textual data. This study focused on learning causal relationships from intensive care unit (ICU) discharge summaries of 1611 patients. Identification of the causal factors of clinical conditions and outcomes can help us formulate better management, prevention and control strategies for the improvement of health care. For causal discovery we applied the Local Causal Discovery (LCD) algorithm, which uses the framework of causal Bayesian Networks to represent causal relationships among model variables. LCD takes as input a dataset and outputs causes of the form variable Y causally influences variable Z. Using the words that occur in the discharge summaries as attributes for input, LCD output 8 purported causal relationships. The relationships ranked as most probable subjectively appear to be most causally plausible. PMID:11079942

  15. Causal discovery from medical textual data.

    PubMed

    Mani, S; Cooper, G F

    2000-01-01

    Medical records usually incorporate investigative reports, historical notes, patient encounters or discharge summaries as textual data. This study focused on learning causal relationships from intensive care unit (ICU) discharge summaries of 1611 patients. Identification of the causal factors of clinical conditions and outcomes can help us formulate better management, prevention and control strategies for the improvement of health care. For causal discovery we applied the Local Causal Discovery (LCD) algorithm, which uses the framework of causal Bayesian Networks to represent causal relationships among model variables. LCD takes as input a dataset and outputs causes of the form variable Y causally influences variable Z. Using the words that occur in the discharge summaries as attributes for input, LCD output 8 purported causal relationships. The relationships ranked as most probable subjectively appear to be most causally plausible.

  16. Paradoxical Behavior of Granger Causality

    NASA Astrophysics Data System (ADS)

    Witt, Annette; Battaglia, Demian; Gail, Alexander

    2013-03-01

    Granger causality is a standard tool for the description of directed interaction of network components and is popular in many scientific fields including econometrics, neuroscience and climate science. For time series that can be modeled as bivariate auto-regressive processes we analytically derive an expression for spectrally decomposed Granger Causality (SDGC) and show that this quantity depends only on two out of four groups of model parameters. Then we present examples of such processes whose SDGC expose paradoxical behavior in the sense that causality is high for frequency ranges with low spectral power. For avoiding misinterpretations of Granger causality analysis we propose to complement it by partial spectral analysis. Our findings are illustrated by an example from brain electrophysiology. Finally, we draw implications for the conventional definition of Granger causality. Bernstein Center for Computational Neuroscience Goettingen

  17. Analyzing multiple spike trains with nonparametric Granger causality.

    PubMed

    Nedungadi, Aatira G; Rangarajan, Govindan; Jain, Neeraj; Ding, Mingzhou

    2009-08-01

    Simultaneous recordings of spike trains from multiple single neurons are becoming commonplace. Understanding the interaction patterns among these spike trains remains a key research area. A question of interest is the evaluation of information flow between neurons through the analysis of whether one spike train exerts causal influence on another. For continuous-valued time series data, Granger causality has proven an effective method for this purpose. However, the basis for Granger causality estimation is autoregressive data modeling, which is not directly applicable to spike trains. Various filtering options distort the properties of spike trains as point processes. Here we propose a new nonparametric approach to estimate Granger causality directly from the Fourier transforms of spike train data. We validate the method on synthetic spike trains generated by model networks of neurons with known connectivity patterns and then apply it to neurons simultaneously recorded from the thalamus and the primary somatosensory cortex of a squirrel monkey undergoing tactile stimulation.

  18. Causal Mediation Analysis for the Cox Proportional Hazards Model with a Smooth Baseline Hazard Estimator.

    PubMed

    Wang, Wei; Albert, Jeffrey M

    2017-08-01

    An important problem within the social, behavioral, and health sciences is how to partition an exposure effect (e.g. treatment or risk factor) among specific pathway effects and to quantify the importance of each pathway. Mediation analysis based on the potential outcomes framework is an important tool to address this problem and we consider the estimation of mediation effects for the proportional hazards model in this paper. We give precise definitions of the total effect, natural indirect effect, and natural direct effect in terms of the survival probability, hazard function, and restricted mean survival time within the standard two-stage mediation framework. To estimate the mediation effects on different scales, we propose a mediation formula approach in which simple parametric models (fractional polynomials or restricted cubic splines) are utilized to approximate the baseline log cumulative hazard function. Simulation study results demonstrate low bias of the mediation effect estimators and close-to-nominal coverage probability of the confidence intervals for a wide range of complex hazard shapes. We apply this method to the Jackson Heart Study data and conduct sensitivity analysis to assess the impact on the mediation effects inference when the no unmeasured mediator-outcome confounding assumption is violated.

  19. A Case Study of the Impact of Data-Adaptive Versus Model-Based Estimation of the Propensity Scores on Causal Inferences from Three Inverse Probability Weighting Estimators.

    PubMed

    Neugebauer, Romain; Schmittdiel, Julie A; van der Laan, Mark J

    2016-05-01

    Consistent estimation of causal effects with inverse probability weighting estimators is known to rely on consistent estimation of propensity scores. To alleviate the bias expected from incorrect model specification for these nuisance parameters in observational studies, data-adaptive estimation and in particular an ensemble learning approach known as Super Learning has been proposed as an alternative to the common practice of estimation based on arbitrary model specification. While the theoretical arguments against the use of the latter haphazard estimation strategy are evident, the extent to which data-adaptive estimation can improve inferences in practice is not. Some practitioners may view bias concerns over arbitrary parametric assumptions as academic considerations that are inconsequential in practice. They may also be wary of data-adaptive estimation of the propensity scores for fear of greatly increasing estimation variability due to extreme weight values. With this report, we aim to contribute to the understanding of the potential practical consequences of the choice of estimation strategy for the propensity scores in real-world comparative effectiveness research. We implement secondary analyses of Electronic Health Record data from a large cohort of type 2 diabetes patients to evaluate the effects of four adaptive treatment intensification strategies for glucose control (dynamic treatment regimens) on subsequent development or progression of urinary albumin excretion. Three Inverse Probability Weighting estimators are implemented using both model-based and data-adaptive estimation strategies for the propensity scores. Their practical performances for proper confounding and selection bias adjustment are compared and evaluated against results from previous randomized experiments. Results suggest both potential reduction in bias and increase in efficiency at the cost of an increase in computing time when using Super Learning to implement Inverse Probability

  20. Scalar Matter Coupled to Quantum Gravity in the Causal Approach. One-Loop Calculations and Perturbative Gauge Invariance

    NASA Astrophysics Data System (ADS)

    Grillo, Nicola

    2001-02-01

    Quantum gravity coupled to scalar massive matter fields is investigated in the framework of causal perturbation theory using the Epstein-Glaser regularization/renormalization scheme. Detailed one-loop calculations include the matter loop graviton self-energy and the matter self-energy. The condition of perturbative operator gauge invariance to second order implies the usual Slavnov-Ward identities for the graviton two-point connected Green function in the loop graph sector and generates the correct quartic graviton-matter interaction in the tree graph sector. The mass zero case is also discussed.