Sample records for causal modeling analysis

  1. Causal Analysis After Haavelmo

    PubMed Central

    Heckman, James; Pinto, Rodrigo

    2014-01-01

    Haavelmo's seminal 1943 and 1944 papers are the first rigorous treatment of causality. In them, he distinguished the definition of causal parameters from their identification. He showed that causal parameters are defined using hypothetical models that assign variation to some of the inputs determining outcomes while holding all other inputs fixed. He thus formalized and made operational Marshall's (1890) ceteris paribus analysis. We embed Haavelmo's framework into the recursive framework of Directed Acyclic Graphs (DAGs) used in one influential recent approach to causality (Pearl, 2000) and in the related literature on Bayesian nets (Lauritzen, 1996). We compare the simplicity of an analysis of causality based on Haavelmo's methodology with the complex and nonintuitive approach used in the causal literature of DAGs—the “do-calculus” of Pearl (2009). We discuss the severe limitations of DAGs and in particular of the do-calculus of Pearl in securing identification of economic models. We extend our framework to consider models for simultaneous causality, a central contribution of Haavelmo. In general cases, DAGs cannot be used to analyze models for simultaneous causality, but Haavelmo's approach naturally generalizes to cover them. PMID:25729123

  2. [Causal analysis approaches in epidemiology].

    PubMed

    Dumas, O; Siroux, V; Le Moual, N; Varraso, R

    2014-02-01

    Epidemiological research is mostly based on observational studies. Whether such studies can provide evidence of causation remains discussed. Several causal analysis methods have been developed in epidemiology. This paper aims at presenting an overview of these methods: graphical models, path analysis and its extensions, and models based on the counterfactual approach, with a special emphasis on marginal structural models. Graphical approaches have been developed to allow synthetic representations of supposed causal relationships in a given problem. They serve as qualitative support in the study of causal relationships. The sufficient-component cause model has been developed to deal with the issue of multicausality raised by the emergence of chronic multifactorial diseases. Directed acyclic graphs are mostly used as a visual tool to identify possible confounding sources in a study. Structural equations models, the main extension of path analysis, combine a system of equations and a path diagram, representing a set of possible causal relationships. They allow quantifying direct and indirect effects in a general model in which several relationships can be tested simultaneously. Dynamic path analysis further takes into account the role of time. The counterfactual approach defines causality by comparing the observed event and the counterfactual event (the event that would have been observed if, contrary to the fact, the subject had received a different exposure than the one he actually received). This theoretical approach has shown limits of traditional methods to address some causality questions. In particular, in longitudinal studies, when there is time-varying confounding, classical methods (regressions) may be biased. Marginal structural models have been developed to address this issue. In conclusion, "causal models", though they were developed partly independently, are based on equivalent logical foundations. A crucial step in the application of these models is the formulation of causal hypotheses, which will be a basis for all methodological choices. Beyond this step, statistical analysis tools recently developed offer new possibilities to delineate complex relationships, in particular in life course epidemiology. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Detectability of Granger causality for subsampled continuous-time neurophysiological processes.

    PubMed

    Barnett, Lionel; Seth, Anil K

    2017-01-01

    Granger causality is well established within the neurosciences for inference of directed functional connectivity from neurophysiological data. These data usually consist of time series which subsample a continuous-time biophysiological process. While it is well known that subsampling can lead to imputation of spurious causal connections where none exist, less is known about the effects of subsampling on the ability to reliably detect causal connections which do exist. We present a theoretical analysis of the effects of subsampling on Granger-causal inference. Neurophysiological processes typically feature signal propagation delays on multiple time scales; accordingly, we base our analysis on a distributed-lag, continuous-time stochastic model, and consider Granger causality in continuous time at finite prediction horizons. Via exact analytical solutions, we identify relationships among sampling frequency, underlying causal time scales and detectability of causalities. We reveal complex interactions between the time scale(s) of neural signal propagation and sampling frequency. We demonstrate that detectability decays exponentially as the sample time interval increases beyond causal delay times, identify detectability "black spots" and "sweet spots", and show that downsampling may potentially improve detectability. We also demonstrate that the invariance of Granger causality under causal, invertible filtering fails at finite prediction horizons, with particular implications for inference of Granger causality from fMRI data. Our analysis emphasises that sampling rates for causal analysis of neurophysiological time series should be informed by domain-specific time scales, and that state-space modelling should be preferred to purely autoregressive modelling. On the basis of a very general model that captures the structure of neurophysiological processes, we are able to help identify confounds, and offer practical insights, for successful detection of causal connectivity from neurophysiological recordings. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A General Approach to Causal Mediation Analysis

    ERIC Educational Resources Information Center

    Imai, Kosuke; Keele, Luke; Tingley, Dustin

    2010-01-01

    Traditionally in the social sciences, causal mediation analysis has been formulated, understood, and implemented within the framework of linear structural equation models. We argue and demonstrate that this is problematic for 3 reasons: the lack of a general definition of causal mediation effects independent of a particular statistical model, the…

  5. Reflections on Heckman and Pinto’s Causal Analysis After Haavelmo

    DTIC Science & Technology

    2013-11-01

    Econometric Analysis , Cambridge University Press, 477–490, 1995. Halpern, J. (1998). Axiomatizing causal reasoning. In Uncertainty in Artificial...Models, Structural Models and Econometric Policy Evaluation. Elsevier B.V., Amsterdam, 4779–4874. Heckman, J. J. (1979). Sample selection bias as a...Reflections on Heckman and Pinto’s “Causal Analysis After Haavelmo” Judea Pearl University of California, Los Angeles Computer Science Department Los

  6. Structure and Strength in Causal Induction

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2005-01-01

    We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…

  7. Causality analysis in business performance measurement system using system dynamics methodology

    NASA Astrophysics Data System (ADS)

    Yusof, Zainuridah; Yusoff, Wan Fadzilah Wan; Maarof, Faridah

    2014-07-01

    One of the main components of the Balanced Scorecard (BSC) that differentiates it from any other performance measurement system (PMS) is the Strategy Map with its unidirectional causality feature. Despite its apparent popularity, criticisms on the causality have been rigorously discussed by earlier researchers. In seeking empirical evidence of causality, propositions based on the service profit chain theory were developed and tested using the econometrics analysis, Granger causality test on the 45 data points. However, the insufficiency of well-established causality models was found as only 40% of the causal linkages were supported by the data. Expert knowledge was suggested to be used in the situations of insufficiency of historical data. The Delphi method was selected and conducted in obtaining the consensus of the causality existence among the 15 selected expert persons by utilizing 3 rounds of questionnaires. Study revealed that only 20% of the propositions were not supported. The existences of bidirectional causality which demonstrate significant dynamic environmental complexity through interaction among measures were obtained from both methods. With that, a computer modeling and simulation using System Dynamics (SD) methodology was develop as an experimental platform to identify how policies impacting the business performance in such environments. The reproduction, sensitivity and extreme condition tests were conducted onto developed SD model to ensure their capability in mimic the reality, robustness and validity for causality analysis platform. This study applied a theoretical service management model within the BSC domain to a practical situation using SD methodology where very limited work has been done.

  8. Identifying Seizure Onset Zone From the Causal Connectivity Inferred Using Directed Information

    NASA Astrophysics Data System (ADS)

    Malladi, Rakesh; Kalamangalam, Giridhar; Tandon, Nitin; Aazhang, Behnaam

    2016-10-01

    In this paper, we developed a model-based and a data-driven estimator for directed information (DI) to infer the causal connectivity graph between electrocorticographic (ECoG) signals recorded from brain and to identify the seizure onset zone (SOZ) in epileptic patients. Directed information, an information theoretic quantity, is a general metric to infer causal connectivity between time-series and is not restricted to a particular class of models unlike the popular metrics based on Granger causality or transfer entropy. The proposed estimators are shown to be almost surely convergent. Causal connectivity between ECoG electrodes in five epileptic patients is inferred using the proposed DI estimators, after validating their performance on simulated data. We then proposed a model-based and a data-driven SOZ identification algorithm to identify SOZ from the causal connectivity inferred using model-based and data-driven DI estimators respectively. The data-driven SOZ identification outperforms the model-based SOZ identification algorithm when benchmarked against visual analysis by neurologist, the current clinical gold standard. The causal connectivity analysis presented here is the first step towards developing novel non-surgical treatments for epilepsy.

  9. Sensory Impairments and Autism: A Re-Examination of Causal Modelling

    ERIC Educational Resources Information Center

    Gerrard, Sue; Rugg, Gordon

    2009-01-01

    Sensory impairments are widely reported in autism, but remain largely unexplained by existing models. This article examines Kanner's causal reasoning and identifies unsupported assumptions implicit in later empirical work. Our analysis supports a heterogeneous causal model for autistic characteristics. We propose that the development of a…

  10. The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation

    DTIC Science & Technology

    2015-02-20

    being integrated within MAT, including Granger causality. Granger causality tests whether a data series helps when predicting future values of another...relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 424-438. Granger, C. W. (1980). Testing ... testing dataset. This effort is described in Section 3.2. 3.1. Improvements in Granger Causality User Interface Various metrics of causality are

  11. The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation

    DTIC Science & Technology

    2013-11-20

    Granger causality F-test validation 3.1.2. Dynamic time warping for uneven temporal relationships Many causal relationships are imperfectly...mapping for dynamic feedback models Granger causality and DTW can identify causal relationships and consider complex temporal factors. However, many ...variant of the tf-idf algorithm (Manning, Raghavan, Schutze et al., 2008), typically used in search engines, to “score” features. The (-log tf) in

  12. Granger causality for state-space models

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Seth, Anil K.

    2015-04-01

    Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations—commonplace in application domains as diverse as climate science, econometrics, and the neurosciences—induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.

  13. Paradoxical Behavior of Granger Causality

    NASA Astrophysics Data System (ADS)

    Witt, Annette; Battaglia, Demian; Gail, Alexander

    2013-03-01

    Granger causality is a standard tool for the description of directed interaction of network components and is popular in many scientific fields including econometrics, neuroscience and climate science. For time series that can be modeled as bivariate auto-regressive processes we analytically derive an expression for spectrally decomposed Granger Causality (SDGC) and show that this quantity depends only on two out of four groups of model parameters. Then we present examples of such processes whose SDGC expose paradoxical behavior in the sense that causality is high for frequency ranges with low spectral power. For avoiding misinterpretations of Granger causality analysis we propose to complement it by partial spectral analysis. Our findings are illustrated by an example from brain electrophysiology. Finally, we draw implications for the conventional definition of Granger causality. Bernstein Center for Computational Neuroscience Goettingen

  14. Loop Analysis of Causal Feedback in Epidemiology: An Illustration Relating To Urban Neighborhoods and Resident Depressive Experiences

    PubMed Central

    2008-01-01

    The causal feedback implied by urban neighborhood conditions that shape human health experiences, that in turn shape neighborhood conditions through a complex causal web, raises a challenge for traditional epidemiological causal analyses. This article introduces the loop analysis method, and builds off of a core loop model linking neighborhood property vacancy rate, resident depressive symptoms, rate of neighborhood death, and rate of neighborhood exit in a feedback network. I justify and apply loop analysis to the specific example of depressive symptoms and abandoned urban residential property to show how inquiries into the behavior of causal systems can answer different kinds of hypotheses, and thereby compliment those of causal modeling using statistical models. Neighborhood physical conditions that are only indirectly influenced by depressive symptoms may nevertheless manifest in the mental health experiences of their residents; conversely, neighborhood physical conditions may be a significant mental health risk for the population of neighborhood residents. I find that participatory greenspace programs are likely to produce adaptive responses in depressive symptoms and different neighborhood conditions, which are different in character to non-participatory greenspace interventions. PMID:17706851

  15. Dynamic Granger-Geweke causality modeling with application to interictal spike propagation

    PubMed Central

    Lin, Fa-Hsuan; Hara, Keiko; Solo, Victor; Vangel, Mark; Belliveau, John W.; Stufflebeam, Steven M.; Hamalainen, Matti S.

    2010-01-01

    A persistent problem in developing plausible neurophysiological models of perception, cognition, and action is the difficulty of characterizing the interactions between different neural systems. Previous studies have approached this problem by estimating causal influences across brain areas activated during cognitive processing using Structural Equation Modeling and, more recently, with Granger-Geweke causality. While SEM is complicated by the need for a priori directional connectivity information, the temporal resolution of dynamic Granger-Geweke estimates is limited because the underlying autoregressive (AR) models assume stationarity over the period of analysis. We have developed a novel optimal method for obtaining data-driven directional causality estimates with high temporal resolution in both time and frequency domains. This is achieved by simultaneously optimizing the length of the analysis window and the chosen AR model order using the SURE criterion. Dynamic Granger-Geweke causality in time and frequency domains is subsequently calculated within a moving analysis window. We tested our algorithm by calculating the Granger-Geweke causality of epileptic spike propagation from the right frontal lobe to the left frontal lobe. The results quantitatively suggested the epileptic activity at the left frontal lobe was propagated from the right frontal lobe, in agreement with the clinical diagnosis. Our novel computational tool can be used to help elucidate complex directional interactions in the human brain. PMID:19378280

  16. Causal modeling in international migration research: a methodological prolegomenon.

    PubMed

    Papademetriou, D G; Hopple, G W

    1982-10-01

    The authors examine the value of using models to study the migration process. In particular, they demonstrate the potential utility of a partial least squares modeling approach to the causal analysis of international migration.

  17. Interactive Planning under Uncertainty with Casual Modeling and Analysis

    DTIC Science & Technology

    2006-01-01

    Tool ( CAT ), a system for creating and analyzing causal models similar to Bayes networks. In order to use CAT as a tool for planning, users go through...an iterative process in which they use CAT to create and an- alyze alternative plans. One of the biggest difficulties is that the number of possible...Causal Analysis Tool ( CAT ), which is a tool for representing and analyzing causal networks sim- ilar to Bayesian networks. In order to represent plans

  18. Granger causality revisited

    PubMed Central

    Friston, Karl J.; Bastos, André M.; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir

    2014-01-01

    This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality — providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes — as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling. PMID:25003817

  19. Causality Analysis of fMRI Data Based on the Directed Information Theory Framework.

    PubMed

    Wang, Zhe; Alahmadi, Ahmed; Zhu, David C; Li, Tongtong

    2016-05-01

    This paper aims to conduct fMRI-based causality analysis in brain connectivity by exploiting the directed information (DI) theory framework. Unlike the well-known Granger causality (GC) analysis, which relies on the linear prediction technique, the DI theory framework does not have any modeling constraints on the sequences to be evaluated and ensures estimation convergence. Moreover, it can be used to generate the GC graphs. In this paper, first, we introduce the core concepts in the DI framework. Second, we present how to conduct causality analysis using DI measures between two time series. We provide the detailed procedure on how to calculate the DI for two finite-time series. The two major steps involved here are optimal bin size selection for data digitization and probability estimation. Finally, we demonstrate the applicability of DI-based causality analysis using both the simulated data and experimental fMRI data, and compare the results with that of the GC analysis. Our analysis indicates that GC analysis is effective in detecting linear or nearly linear causal relationship, but may have difficulty in capturing nonlinear causal relationships. On the other hand, DI-based causality analysis is more effective in capturing both linear and nonlinear causal relationships. Moreover, it is observed that brain connectivity among different regions generally involves dynamic two-way information transmissions between them. Our results show that when bidirectional information flow is present, DI is more effective than GC to quantify the overall causal relationship.

  20. Modeling the Perception of Audiovisual Distance: Bayesian Causal Inference and Other Models

    PubMed Central

    2016-01-01

    Studies of audiovisual perception of distance are rare. Here, visual and auditory cue interactions in distance are tested against several multisensory models, including a modified causal inference model. In this causal inference model predictions of estimate distributions are included. In our study, the audiovisual perception of distance was overall better explained by Bayesian causal inference than by other traditional models, such as sensory dominance and mandatory integration, and no interaction. Causal inference resolved with probability matching yielded the best fit to the data. Finally, we propose that sensory weights can also be estimated from causal inference. The analysis of the sensory weights allows us to obtain windows within which there is an interaction between the audiovisual stimuli. We find that the visual stimulus always contributes by more than 80% to the perception of visual distance. The visual stimulus also contributes by more than 50% to the perception of auditory distance, but only within a mobile window of interaction, which ranges from 1 to 4 m. PMID:27959919

  1. Influence analysis for high-dimensional time series with an application to epileptic seizure onset zone detection

    PubMed Central

    Flamm, Christoph; Graef, Andreas; Pirker, Susanne; Baumgartner, Christoph; Deistler, Manfred

    2013-01-01

    Granger causality is a useful concept for studying causal relations in networks. However, numerical problems occur when applying the corresponding methodology to high-dimensional time series showing co-movement, e.g. EEG recordings or economic data. In order to deal with these shortcomings, we propose a novel method for the causal analysis of such multivariate time series based on Granger causality and factor models. We present the theoretical background, successfully assess our methodology with the help of simulated data and show a potential application in EEG analysis of epileptic seizures. PMID:23354014

  2. A causal analysis framework for land-use change and the potential role of bioenergy policy

    DOE PAGES

    Efroymson, Rebecca A.; Kline, Keith L.; Angelsen, Arild; ...

    2016-10-05

    Here we propose a causal analysis framework to increase the reliability of land-use change (LUC) models and the accuracy of net greenhouse gas (GHG) emissions calculations for biofuels. The health-sciences-inspired framework is used here to determine probable causes of LUC, with an emphasis on bioenergy and deforestation. Calculations of net GHG emissions for LUC are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under national (U.S., U.K.), state (California), and European Union regulations. Biofuel policymakers and scientists continue to discuss whether presumed indirect land-use change (ILUC) estimates, which often involve deforestation, should be includedmore » in GHG accounting for biofuel pathways. Current estimates of ILUC for bioenergy rely largely on economic simulation models that focus on causal pathways involving global commodity trade and use coarse land cover data with simple land classification systems. ILUC estimates are highly uncertain, partly because changes are not clearly defined and key causal links are not sufficiently included in the models. The proposed causal analysis framework begins with a definition of the change that has occurred and proceeds to a strength-of-evidence approach based on types of epidemiological evidence including plausibility of the relationship, completeness of the causal pathway, spatial co-occurrence, time order, analogous agents, simulation model results, and quantitative agent response relationships.Lastly, we discuss how LUC may be allocated among probable causes for policy purposes and how the application of the framework has the potential to increase the validity of LUC models and resolve ILUC and biofuel controversies.« less

  3. A causal analysis framework for land-use change and the potential role of bioenergy policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroymson, Rebecca A.; Kline, Keith L.; Angelsen, Arild

    Here we propose a causal analysis framework to increase the reliability of land-use change (LUC) models and the accuracy of net greenhouse gas (GHG) emissions calculations for biofuels. The health-sciences-inspired framework is used here to determine probable causes of LUC, with an emphasis on bioenergy and deforestation. Calculations of net GHG emissions for LUC are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under national (U.S., U.K.), state (California), and European Union regulations. Biofuel policymakers and scientists continue to discuss whether presumed indirect land-use change (ILUC) estimates, which often involve deforestation, should be includedmore » in GHG accounting for biofuel pathways. Current estimates of ILUC for bioenergy rely largely on economic simulation models that focus on causal pathways involving global commodity trade and use coarse land cover data with simple land classification systems. ILUC estimates are highly uncertain, partly because changes are not clearly defined and key causal links are not sufficiently included in the models. The proposed causal analysis framework begins with a definition of the change that has occurred and proceeds to a strength-of-evidence approach based on types of epidemiological evidence including plausibility of the relationship, completeness of the causal pathway, spatial co-occurrence, time order, analogous agents, simulation model results, and quantitative agent response relationships.Lastly, we discuss how LUC may be allocated among probable causes for policy purposes and how the application of the framework has the potential to increase the validity of LUC models and resolve ILUC and biofuel controversies.« less

  4. The Causal Meaning of Genomic Predictors and How It Affects Construction and Comparison of Genome-Enabled Selection Models

    PubMed Central

    Valente, Bruno D.; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J. M.

    2015-01-01

    The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability. PMID:25908318

  5. Granger causality--statistical analysis under a configural perspective.

    PubMed

    von Eye, Alexander; Wiedermann, Wolfgang; Mun, Eun-Young

    2014-03-01

    The concept of Granger causality can be used to examine putative causal relations between two series of scores. Based on regression models, it is asked whether one series can be considered the cause for the second series. In this article, we propose extending the pool of methods available for testing hypotheses that are compatible with Granger causation by adopting a configural perspective. This perspective allows researchers to assume that effects exist for specific categories only or for specific sectors of the data space, but not for other categories or sectors. Configural Frequency Analysis (CFA) is proposed as the method of analysis from a configural perspective. CFA base models are derived for the exploratory analysis of Granger causation. These models are specified so that they parallel the regression models used for variable-oriented analysis of hypotheses of Granger causation. An example from the development of aggression in adolescence is used. The example shows that only one pattern of change in aggressive impulses over time Granger-causes change in physical aggression against peers.

  6. Testing a Model of Diabetes Self-Care Management: A Causal Model Analysis with LISREL.

    ERIC Educational Resources Information Center

    Nowacek, George A.; And Others

    1990-01-01

    A diabetes-management model is presented, which includes an attitudinal element and depicts relationships among causal elements. LISREL-VI was used to analyze data from 115 Type-I and 105 Type-II patients. The data did not closely fit the model. Results support the importance of the personal meaning of diabetes. (TJH)

  7. Specious causal attributions in the social sciences: the reformulated stepping-stone theory of heroin use as exemplar.

    PubMed

    Baumrind, D

    1983-12-01

    The claims based on causal models employing either statistical or experimental controls are examined and found to be excessive when applied to social or behavioral science data. An exemplary case, in which strong causal claims are made on the basis of a weak version of the regularity model of cause, is critiqued. O'Donnell and Clayton claim that in order to establish that marijuana use is a cause of heroin use (their "reformulated stepping-stone" hypothesis), it is necessary and sufficient to demonstrate that marijuana use precedes heroin use and that the statistically significant association between the two does not vanish when the effects of other variables deemed to be prior to both of them are removed. I argue that O'Donnell and Clayton's version of the regularity model is not sufficient to establish cause and that the planning of social interventions both presumes and requires a generative rather than a regularity causal model. Causal modeling using statistical controls is of value when it compels the investigator to make explicit and to justify a causal explanation but not when it is offered as a substitute for a generative analysis of causal connection.

  8. The Teacher, the Physician and the Person: Exploring Causal Connections between Teaching Performance and Role Model Types Using Directed Acyclic Graphs

    PubMed Central

    Boerebach, Benjamin C. M.; Lombarts, Kiki M. J. M. H.; Scherpbier, Albert J. J.; Arah, Onyebuchi A.

    2013-01-01

    Background In fledgling areas of research, evidence supporting causal assumptions is often scarce due to the small number of empirical studies conducted. In many studies it remains unclear what impact explicit and implicit causal assumptions have on the research findings; only the primary assumptions of the researchers are often presented. This is particularly true for research on the effect of faculty’s teaching performance on their role modeling. Therefore, there is a need for robust frameworks and methods for transparent formal presentation of the underlying causal assumptions used in assessing the causal effects of teaching performance on role modeling. This study explores the effects of different (plausible) causal assumptions on research outcomes. Methods This study revisits a previously published study about the influence of faculty’s teaching performance on their role modeling (as teacher-supervisor, physician and person). We drew eight directed acyclic graphs (DAGs) to visually represent different plausible causal relationships between the variables under study. These DAGs were subsequently translated into corresponding statistical models, and regression analyses were performed to estimate the associations between teaching performance and role modeling. Results The different causal models were compatible with major differences in the magnitude of the relationship between faculty’s teaching performance and their role modeling. Odds ratios for the associations between teaching performance and the three role model types ranged from 31.1 to 73.6 for the teacher-supervisor role, from 3.7 to 15.5 for the physician role, and from 2.8 to 13.8 for the person role. Conclusions Different sets of assumptions about causal relationships in role modeling research can be visually depicted using DAGs, which are then used to guide both statistical analysis and interpretation of results. Since study conclusions can be sensitive to different causal assumptions, results should be interpreted in the light of causal assumptions made in each study. PMID:23936020

  9. Kernel canonical-correlation Granger causality for multiple time series

    NASA Astrophysics Data System (ADS)

    Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu

    2011-04-01

    Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.

  10. A Causal Inference Analysis of the Effect of Wildland Fire ...

    EPA Pesticide Factsheets

    Wildfire smoke is a major contributor to ambient air pollution levels. In this talk, we develop a spatio-temporal model to estimate the contribution of fire smoke to overall air pollution in different regions of the country. We combine numerical model output with observational data within a causal inference framework. Our methods account for aggregation and potential bias of the numerical model simulation, and address uncertainty in the causal estimates. We apply the proposed method to estimation of ozone and fine particulate matter from wildland fires and the impact on health burden assessment. We develop a causal inference framework to assess contributions of fire to ambient PM in the presence of spatial interference.

  11. Verification of Causal Influences of Reasoning Skills and Epistemology on Physics Conceptual Learning

    ERIC Educational Resources Information Center

    Ding, Lin

    2014-01-01

    This study seeks to test the causal influences of reasoning skills and epistemologies on student conceptual learning in physics. A causal model, integrating multiple variables that were investigated separately in the prior literature, is proposed and tested through path analysis. These variables include student preinstructional reasoning skills…

  12. How causal analysis can reveal autonomy in models of biological systems

    NASA Astrophysics Data System (ADS)

    Marshall, William; Kim, Hyunju; Walker, Sara I.; Tononi, Giulio; Albantakis, Larissa

    2017-11-01

    Standard techniques for studying biological systems largely focus on their dynamical or, more recently, their informational properties, usually taking either a reductionist or holistic perspective. Yet, studying only individual system elements or the dynamics of the system as a whole disregards the organizational structure of the system-whether there are subsets of elements with joint causes or effects, and whether the system is strongly integrated or composed of several loosely interacting components. Integrated information theory offers a theoretical framework to (1) investigate the compositional cause-effect structure of a system and to (2) identify causal borders of highly integrated elements comprising local maxima of intrinsic cause-effect power. Here we apply this comprehensive causal analysis to a Boolean network model of the fission yeast (Schizosaccharomyces pombe) cell cycle. We demonstrate that this biological model features a non-trivial causal architecture, whose discovery may provide insights about the real cell cycle that could not be gained from holistic or reductionist approaches. We also show how some specific properties of this underlying causal architecture relate to the biological notion of autonomy. Ultimately, we suggest that analysing the causal organization of a system, including key features like intrinsic control and stable causal borders, should prove relevant for distinguishing life from non-life, and thus could also illuminate the origin of life problem. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  13. Testing concordance of instrumental variable effects in generalized linear models with application to Mendelian randomization

    PubMed Central

    Dai, James Y.; Chan, Kwun Chuen Gary; Hsu, Li

    2014-01-01

    Instrumental variable regression is one way to overcome unmeasured confounding and estimate causal effect in observational studies. Built on structural mean models, there has been considerale work recently developed for consistent estimation of causal relative risk and causal odds ratio. Such models can sometimes suffer from identification issues for weak instruments. This hampered the applicability of Mendelian randomization analysis in genetic epidemiology. When there are multiple genetic variants available as instrumental variables, and causal effect is defined in a generalized linear model in the presence of unmeasured confounders, we propose to test concordance between instrumental variable effects on the intermediate exposure and instrumental variable effects on the disease outcome, as a means to test the causal effect. We show that a class of generalized least squares estimators provide valid and consistent tests of causality. For causal effect of a continuous exposure on a dichotomous outcome in logistic models, the proposed estimators are shown to be asymptotically conservative. When the disease outcome is rare, such estimators are consistent due to the log-linear approximation of the logistic function. Optimality of such estimators relative to the well-known two-stage least squares estimator and the double-logistic structural mean model is further discussed. PMID:24863158

  14. Applying causal mediation analysis to personality disorder research.

    PubMed

    Walters, Glenn D

    2018-01-01

    This article is designed to address fundamental issues in the application of causal mediation analysis to research on personality disorders. Causal mediation analysis is used to identify mechanisms of effect by testing variables as putative links between the independent and dependent variables. As such, it would appear to have relevance to personality disorder research. It is argued that proper implementation of causal mediation analysis requires that investigators take several factors into account. These factors are discussed under 5 headings: variable selection, model specification, significance evaluation, effect size estimation, and sensitivity testing. First, care must be taken when selecting the independent, dependent, mediator, and control variables for a mediation analysis. Some variables make better mediators than others and all variables should be based on reasonably reliable indicators. Second, the mediation model needs to be properly specified. This requires that the data for the analysis be prospectively or historically ordered and possess proper causal direction. Third, it is imperative that the significance of the identified pathways be established, preferably with a nonparametric bootstrap resampling approach. Fourth, effect size estimates should be computed or competing pathways compared. Finally, investigators employing the mediation method are advised to perform a sensitivity analysis. Additional topics covered in this article include parallel and serial multiple mediation designs, moderation, and the relationship between mediation and moderation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Implementation and reporting of causal mediation analysis in 2015: a systematic review in epidemiological studies.

    PubMed

    Liu, Shao-Hsien; Ulbricht, Christine M; Chrysanthopoulou, Stavroula A; Lapane, Kate L

    2016-07-20

    Causal mediation analysis is often used to understand the impact of variables along the causal pathway of an occurrence relation. How well studies apply and report the elements of causal mediation analysis remains unknown. We systematically reviewed epidemiological studies published in 2015 that employed causal mediation analysis to estimate direct and indirect effects of observed associations between an exposure on an outcome. We identified potential epidemiological studies through conducting a citation search within Web of Science and a keyword search within PubMed. Two reviewers independently screened studies for eligibility. For eligible studies, one reviewer performed data extraction, and a senior epidemiologist confirmed the extracted information. Empirical application and methodological details of the technique were extracted and summarized. Thirteen studies were eligible for data extraction. While the majority of studies reported and identified the effects of measures, most studies lacked sufficient details on the extent to which identifiability assumptions were satisfied. Although most studies addressed issues of unmeasured confounders either from empirical approaches or sensitivity analyses, the majority did not examine the potential bias arising from the measurement error of the mediator. Some studies allowed for exposure-mediator interaction and only a few presented results from models both with and without interactions. Power calculations were scarce. Reporting of causal mediation analysis is varied and suboptimal. Given that the application of causal mediation analysis will likely continue to increase, developing standards of reporting of causal mediation analysis in epidemiological research would be prudent.

  16. Structural Equations and Path Analysis for Discrete Data.

    ERIC Educational Resources Information Center

    Winship, Christopher; Mare, Robert D.

    1983-01-01

    Presented is an approach to causal models in which some or all variables are discretely measured, showing that path analytic methods permit quantification of causal relationships among variables with the same flexibility and power of interpretation as is feasible in models including only continuous variables. Examples are provided. (Author/IS)

  17. Using path analysis to examine causal relationships among balanced scorecard performance indicators for general hospitals: the case of a public hospital system in Taiwan.

    PubMed

    Yang, Ming-Chin; Tung, Yu-Chi

    2006-01-01

    Examining whether the causal relationships among the performance indicators of the balanced scorecard (BSC) framework exist in hospitals is the aim of this article. Data were collected from all twenty-one general hospitals in a public hospital system and their supervising agency for the 3-year period, 2000-2002. The results of the path analyses identified significant causal relationships among four perspectives in the BSC model. We also verified the relationships among indicators within each perspective, some of which varied as time changed. We conclude that hospital administrators can use path analysis to help them identify and manage leading indicators when adopting the BSC model. However, they should also validate causal relationships between leading and lagging indicators periodically because the management environment changes constantly.

  18. Estimating short-run and long-run interaction mechanisms in interictal state.

    PubMed

    Ozkaya, Ata; Korürek, Mehmet

    2010-04-01

    We address the issue of analyzing electroencephalogram (EEG) from seizure patients in order to test, model and determine the statistical properties that distinguish between EEG states (interictal, pre-ictal, ictal) by introducing a new class of time series analysis methods. In the present study: firstly, we employ statistical methods to determine the non-stationary behavior of focal interictal epileptiform series within very short time intervals; secondly, for such intervals that are deemed non-stationary we suggest the concept of Autoregressive Integrated Moving Average (ARIMA) process modelling, well known in time series analysis. We finally address the queries of causal relationships between epileptic states and between brain areas during epileptiform activity. We estimate the interaction between different EEG series (channels) in short time intervals by performing Granger-causality analysis and also estimate such interaction in long time intervals by employing Cointegration analysis, both analysis methods are well-known in econometrics. Here we find: first, that the causal relationship between neuronal assemblies can be identified according to the duration and the direction of their possible mutual influences; second, that although the estimated bidirectional causality in short time intervals yields that the neuronal ensembles positively affect each other, in long time intervals neither of them is affected (increasing amplitudes) from this relationship. Moreover, Cointegration analysis of the EEG series enables us to identify whether there is a causal link from the interictal state to ictal state.

  19. Causality Analysis of Neural Connectivity: Critical Examination of Existing Methods and Advances of New Methods

    PubMed Central

    Hu, Sanqing; Dai, Guojun; Worrell, Gregory A.; Dai, Qionghai; Liang, Hualou

    2012-01-01

    Granger causality (GC) is one of the most popular measures to reveal causality influence of time series and has been widely applied in economics and neuroscience. Especially, its counterpart in frequency domain, spectral GC, as well as other Granger-like causality measures have recently been applied to study causal interactions between brain areas in different frequency ranges during cognitive and perceptual tasks. In this paper, we show that: 1) GC in time domain cannot correctly determine how strongly one time series influences the other when there is directional causality between two time series, and 2) spectral GC and other Granger-like causality measures have inherent shortcomings and/or limitations because of the use of the transfer function (or its inverse matrix) and partial information of the linear regression model. On the other hand, we propose two novel causality measures (in time and frequency domains) for the linear regression model, called new causality and new spectral causality, respectively, which are more reasonable and understandable than GC or Granger-like measures. Especially, from one simple example, we point out that, in time domain, both new causality and GC adopt the concept of proportion, but they are defined on two different equations where one equation (for GC) is only part of the other (for new causality), thus the new causality is a natural extension of GC and has a sound conceptual/theoretical basis, and GC is not the desired causal influence at all. By several examples, we confirm that new causality measures have distinct advantages over GC or Granger-like measures. Finally, we conduct event-related potential causality analysis for a subject with intracranial depth electrodes undergoing evaluation for epilepsy surgery, and show that, in the frequency domain, all measures reveal significant directional event-related causality, but the result from new spectral causality is consistent with event-related time–frequency power spectrum activity. The spectral GC as well as other Granger-like measures are shown to generate misleading results. The proposed new causality measures may have wide potential applications in economics and neuroscience. PMID:21511564

  20. Investigating Causality Between Interacting Brain Areas with Multivariate Autoregressive Models of MEG Sensor Data

    PubMed Central

    Michalareas, George; Schoffelen, Jan-Mathijs; Paterson, Gavin; Gross, Joachim

    2013-01-01

    Abstract In this work, we investigate the feasibility to estimating causal interactions between brain regions based on multivariate autoregressive models (MAR models) fitted to magnetoencephalographic (MEG) sensor measurements. We first demonstrate the theoretical feasibility of estimating source level causal interactions after projection of the sensor-level model coefficients onto the locations of the neural sources. Next, we show with simulated MEG data that causality, as measured by partial directed coherence (PDC), can be correctly reconstructed if the locations of the interacting brain areas are known. We further demonstrate, if a very large number of brain voxels is considered as potential activation sources, that PDC as a measure to reconstruct causal interactions is less accurate. In such case the MAR model coefficients alone contain meaningful causality information. The proposed method overcomes the problems of model nonrobustness and large computation times encountered during causality analysis by existing methods. These methods first project MEG sensor time-series onto a large number of brain locations after which the MAR model is built on this large number of source-level time-series. Instead, through this work, we demonstrate that by building the MAR model on the sensor-level and then projecting only the MAR coefficients in source space, the true casual pathways are recovered even when a very large number of locations are considered as sources. The main contribution of this work is that by this methodology entire brain causality maps can be efficiently derived without any a priori selection of regions of interest. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc. PMID:22328419

  1. Critical Factors Analysis for Offshore Software Development Success by Structural Equation Modeling

    NASA Astrophysics Data System (ADS)

    Wada, Yoshihisa; Tsuji, Hiroshi

    In order to analyze the success/failure factors in offshore software development service by the structural equation modeling, this paper proposes to follow two approaches together; domain knowledge based heuristic analysis and factor analysis based rational analysis. The former works for generating and verifying of hypothesis to find factors and causalities. The latter works for verifying factors introduced by theory to build the model without heuristics. Following the proposed combined approaches for the responses from skilled project managers of the questionnaire, this paper found that the vendor property has high causality for the success compared to software property and project property.

  2. Generalized causal mediation and path analysis: Extensions and practical considerations.

    PubMed

    Albert, Jeffrey M; Cho, Jang Ik; Liu, Yiying; Nelson, Suchitra

    2018-01-01

    Causal mediation analysis seeks to decompose the effect of a treatment or exposure among multiple possible paths and provide casually interpretable path-specific effect estimates. Recent advances have extended causal mediation analysis to situations with a sequence of mediators or multiple contemporaneous mediators. However, available methods still have limitations, and computational and other challenges remain. The present paper provides an extended causal mediation and path analysis methodology. The new method, implemented in the new R package, gmediation (described in a companion paper), accommodates both a sequence (two stages) of mediators and multiple mediators at each stage, and allows for multiple types of outcomes following generalized linear models. The methodology can also handle unsaturated models and clustered data. Addressing other practical issues, we provide new guidelines for the choice of a decomposition, and for the choice of a reference group multiplier for the reduction of Monte Carlo error in mediation formula computations. The new method is applied to data from a cohort study to illuminate the contribution of alternative biological and behavioral paths in the effect of socioeconomic status on dental caries in adolescence.

  3. A Dynamic Causal Modeling Analysis of the Effective Connectivities Underlying Top-Down Letter Processing

    ERIC Educational Resources Information Center

    Liu, Jiangang; Li, Jun; Rieth, Cory A.; Huber, David E.; Tian, Jie; Lee, Kang

    2011-01-01

    The present study employed dynamic causal modeling to investigate the effective functional connectivity between regions of the neural network involved in top-down letter processing. We used an illusory letter detection paradigm in which participants detected letters while viewing pure noise images. When participants detected letters, the response…

  4. The mutual causality analysis between the stock and futures markets

    NASA Astrophysics Data System (ADS)

    Yao, Can-Zhong; Lin, Qing-Wen

    2017-07-01

    In this paper we employ the conditional Granger causality model to estimate the information flow, and find that the improved model outperforms the Granger causality model in revealing the asymmetric correlation between stocks and futures in the Chinese market. First, we find that information flows estimated by Granger causality tests from futures to stocks are greater than those from stocks to futures. Additionally, average correlation coefficients capture some important characteristics between stock prices and information flows over time. Further, we find that direct information flows estimated by conditional Granger causality tests from stocks to futures are greater than those from futures to stocks. Besides, the substantial increases of information flows and direct information flows exhibit a certain degree of synchronism with the occurrences of important events. Finally, the comparative analysis with the asymmetric ratio and the bootstrap technique demonstrates the slight asymmetry of information flows and the significant asymmetry of direct information flows. It reveals that the information flows from futures to stocks are slightly greater than those in the reverse direction, while the direct information flows from stocks to futures are significantly greater than those in the reverse direction.

  5. Comparing the Cognitive Process of Circular Causality in Two Patients with Strokes through Qualitative Analysis.

    PubMed

    Derakhshanrad, Seyed Alireza; Piven, Emily; Ghoochani, Bahareh Zeynalzadeh

    2017-10-01

    Walter J. Freeman pioneered the neurodynamic model of brain activity when he described the brain dynamics for cognitive information transfer as the process of circular causality at intention, meaning, and perception (IMP) levels. This view contributed substantially to establishment of the Intention, Meaning, and Perception Model of Neuro-occupation in occupational therapy. As described by the model, IMP levels are three components of the brain dynamics system, with nonlinear connections that enable cognitive function to be processed in a circular causality fashion, known as Cognitive Process of Circular Causality (CPCC). Although considerable research has been devoted to study the brain dynamics by sophisticated computerized imaging techniques, less attention has been paid to study it through investigating the adaptation process of thoughts and behaviors. To explore how CPCC manifested thinking and behavioral patterns, a qualitative case study was conducted on two matched female participants with strokes, who were of comparable ages, affected sides, and other characteristics, except for their resilience and motivational behaviors. CPCC was compared by matrix analysis between two participants, using content analysis with pre-determined categories. Different patterns of thinking and behavior may have happened, due to disparate regulation of CPCC between two participants.

  6. CAUSAL INFERENCE WITH A GRAPHICAL HIERARCHY OF INTERVENTIONS

    PubMed Central

    Shpitser, Ilya; Tchetgen, Eric Tchetgen

    2017-01-01

    Identifying causal parameters from observational data is fraught with subtleties due to the issues of selection bias and confounding. In addition, more complex questions of interest, such as effects of treatment on the treated and mediated effects may not always be identified even in data where treatment assignment is known and under investigator control, or may be identified under one causal model but not another. Increasingly complex effects of interest, coupled with a diversity of causal models in use resulted in a fragmented view of identification. This fragmentation makes it unnecessarily difficult to determine if a given parameter is identified (and in what model), and what assumptions must hold for this to be the case. This, in turn, complicates the development of estimation theory and sensitivity analysis procedures. In this paper, we give a unifying view of a large class of causal effects of interest, including novel effects not previously considered, in terms of a hierarchy of interventions, and show that identification theory for this large class reduces to an identification theory of random variables under interventions from this hierarchy. Moreover, we show that one type of intervention in the hierarchy is naturally associated with queries identified under the Finest Fully Randomized Causally Interpretable Structure Tree Graph (FFRCISTG) model of Robins (via the extended g-formula), and another is naturally associated with queries identified under the Non-Parametric Structural Equation Model with Independent Errors (NPSEM-IE) of Pearl, via a more general functional we call the edge g-formula. Our results motivate the study of estimation theory for the edge g-formula, since we show it arises both in mediation analysis, and in settings where treatment assignment has unobserved causes, such as models associated with Pearl’s front-door criterion. PMID:28919652

  7. CAUSAL INFERENCE WITH A GRAPHICAL HIERARCHY OF INTERVENTIONS.

    PubMed

    Shpitser, Ilya; Tchetgen, Eric Tchetgen

    2016-12-01

    Identifying causal parameters from observational data is fraught with subtleties due to the issues of selection bias and confounding. In addition, more complex questions of interest, such as effects of treatment on the treated and mediated effects may not always be identified even in data where treatment assignment is known and under investigator control, or may be identified under one causal model but not another. Increasingly complex effects of interest, coupled with a diversity of causal models in use resulted in a fragmented view of identification. This fragmentation makes it unnecessarily difficult to determine if a given parameter is identified (and in what model), and what assumptions must hold for this to be the case. This, in turn, complicates the development of estimation theory and sensitivity analysis procedures. In this paper, we give a unifying view of a large class of causal effects of interest, including novel effects not previously considered, in terms of a hierarchy of interventions, and show that identification theory for this large class reduces to an identification theory of random variables under interventions from this hierarchy. Moreover, we show that one type of intervention in the hierarchy is naturally associated with queries identified under the Finest Fully Randomized Causally Interpretable Structure Tree Graph (FFRCISTG) model of Robins (via the extended g-formula), and another is naturally associated with queries identified under the Non-Parametric Structural Equation Model with Independent Errors (NPSEM-IE) of Pearl, via a more general functional we call the edge g-formula. Our results motivate the study of estimation theory for the edge g-formula, since we show it arises both in mediation analysis, and in settings where treatment assignment has unobserved causes, such as models associated with Pearl's front-door criterion.

  8. Causal Analysis to Enhance Creative Problem-Solving: Performance and Effects on Mental Models

    ERIC Educational Resources Information Center

    Hester, Kimberly S.; Robledo, Issac C.; Barrett, Jamie D.; Peterson, David R.; Hougen, Dean P.; Day, Eric A.; Mumford, Michael D.

    2012-01-01

    In recent years, it has become apparent that knowledge is a critical component of creative thought. One form of knowledge that might be particularly important to creative thought relies on the mental models people employ to understand novel, ill-defined problems. In this study, undergraduates were given training in the use of causal relationships…

  9. Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks.

    PubMed

    Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Galka, Andreas; Granert, Oliver; Wolff, Stephan; Deuschl, Guenther; Raethjen, Jan; Heute, Ulrich; Muthuraman, Muthuraman

    2013-01-01

    Brain activity can be measured using different modalities. Since most of the modalities tend to complement each other, it seems promising to measure them simultaneously. In to be presented research, the data recorded from Functional Magnetic Resonance Imaging (fMRI) and Near Infrared Spectroscopy (NIRS), simultaneously, are subjected to causality analysis using time-resolved partial directed coherence (tPDC). Time-resolved partial directed coherence uses the principle of state space modelling to estimate Multivariate Autoregressive (MVAR) coefficients. This method is useful to visualize both frequency and time dynamics of causality between the time series. Afterwards, causality results from different modalities are compared by estimating the Spearman correlation. In to be presented study, we used directionality vectors to analyze correlation, rather than actual signal vectors. Results show that causality analysis of the fMRI correlates more closely to causality results of oxy-NIRS as compared to deoxy-NIRS in case of a finger sequencing task. However, in case of simple finger tapping, no clear difference between oxy-fMRI and deoxy-fMRI correlation is identified.

  10. Translating context to causality in cardiovascular disparities research.

    PubMed

    Benn, Emma K T; Goldfeld, Keith S

    2016-04-01

    Moving from a descriptive focus to a comprehensive analysis grounded in causal inference can be particularly daunting for disparities researchers. However, even a simple model supported by the theoretical underpinnings of causality gives researchers a better chance to make correct inferences about possible interventions that can benefit our most vulnerable populations. This commentary provides a brief description of how race/ethnicity and context relate to questions of causality, and uses a hypothetical scenario to explore how different researchers might analyze the data to estimate causal effects of interest. Perhaps although not entirely removed of bias, these causal estimates will move us a step closer to understanding how to intervene. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Causal networks clarify productivity-richness interrelations, bivariate plots do not

    USGS Publications Warehouse

    Grace, James B.; Adler, Peter B.; Harpole, W. Stanley; Borer, Elizabeth T.; Seabloom, Eric W.

    2014-01-01

    We urge ecologists to consider productivity–richness relationships through the lens of causal networks to advance our understanding beyond bivariate analysis. Further, we emphasize that models based on a causal network conceptualization can also provide more meaningful guidance for conservation management than can a bivariate perspective. Measuring only two variables does not permit the evaluation of complex ideas nor resolve debates about underlying mechanisms.

  12. The Analysis of the Contribution of Human Factors to the In-Flight Loss of Control Accidents

    NASA Technical Reports Server (NTRS)

    Ancel, Ersin; Shih, Ann T.

    2012-01-01

    In-flight loss of control (LOC) is currently the leading cause of fatal accidents based on various commercial aircraft accident statistics. As the Next Generation Air Transportation System (NextGen) emerges, new contributing factors leading to LOC are anticipated. The NASA Aviation Safety Program (AvSP), along with other aviation agencies and communities are actively developing safety products to mitigate the LOC risk. This paper discusses the approach used to construct a generic integrated LOC accident framework (LOCAF) model based on a detailed review of LOC accidents over the past two decades. The LOCAF model is comprised of causal factors from the domain of human factors, aircraft system component failures, and atmospheric environment. The multiple interdependent causal factors are expressed in an Object-Oriented Bayesian belief network. In addition to predicting the likelihood of LOC accident occurrence, the system-level integrated LOCAF model is able to evaluate the impact of new safety technology products developed in AvSP. This provides valuable information to decision makers in strategizing NASA's aviation safety technology portfolio. The focus of this paper is on the analysis of human causal factors in the model, including the contributions from flight crew and maintenance workers. The Human Factors Analysis and Classification System (HFACS) taxonomy was used to develop human related causal factors. The preliminary results from the baseline LOCAF model are also presented.

  13. Lorentz-violating SO(3) model: Discussing unitarity, causality, and 't Hooft-Polyakov monopoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpelli, A.P. Baeta; Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ; Helayeel-Neto, J.A.

    2006-05-15

    In this paper, we extend the analysis of the Lorentz-violating Quantum Electrodynamics to the non-Abelian case: an SO(3) Yang-Mills Lagrangian with the addition of the non-Abelian Chern-Simons-type term. We consider the spontaneous symmetry breaking of the model and inspect its spectrum in order to check if unitarity and causality are respected. An analysis of the topological structure is also carried out and we show that a 't Hooft-Polyakov solution for monopoles is still present.

  14. Temperature, Not Fine Particulate Matter (PM2.5), is Causally Associated with Short-Term Acute Daily Mortality Rates: Results from One Hundred United States Cities

    PubMed Central

    Cox, Tony; Popken, Douglas; Ricci, Paolo F

    2013-01-01

    Exposures to fine particulate matter (PM2.5) in air (C) have been suspected of contributing causally to increased acute (e.g., same-day or next-day) human mortality rates (R). We tested this causal hypothesis in 100 United States cities using the publicly available NMMAPS database. Although a significant, approximately linear, statistical C-R association exists in simple statistical models, closer analysis suggests that it is not causal. Surprisingly, conditioning on other variables that have been extensively considered in previous analyses (usually using splines or other smoothers to approximate their effects), such as month of the year and mean daily temperature, suggests that they create strong, nonlinear confounding that explains the statistical association between PM2.5 and mortality rates in this data set. As this finding disagrees with conventional wisdom, we apply several different techniques to examine it. Conditional independence tests for potential causation, non-parametric classification tree analysis, Bayesian Model Averaging (BMA), and Granger-Sims causality testing, show no evidence that PM2.5 concentrations have any causal impact on increasing mortality rates. This apparent absence of a causal C-R relation, despite their statistical association, has potentially important implications for managing and communicating the uncertain health risks associated with, but not necessarily caused by, PM2.5 exposures. PMID:23983662

  15. Taking a systems approach to ecological systems

    USGS Publications Warehouse

    Grace, James B.

    2015-01-01

    Increasingly, there is interest in a systems-level understanding of ecological problems, which requires the evaluation of more complex, causal hypotheses. In this issue of the Journal of Vegetation Science, Soliveres et al. use structural equation modeling to test a causal network hypothesis about how tree canopies affect understorey communities. Historical analysis suggests structural equation modeling has been under-utilized in ecology.

  16. Tools for Detecting Causality in Space Systems

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Wing, S.

    2017-12-01

    Complex systems such as the solar and magnetospheric envivonment often exhibit patterns of behavior that suggest underlying organizing principles. Causality is a key organizing principle that is particularly difficult to establish in strongly coupled nonlinear systems, but essential for understanding and modeling the behavior of systems. While traditional methods of time-series analysis can identify linear correlations, they do not adequately quantify the distinction between causal and coincidental dependence. We discuss tools for detecting causality including: granger causality, transfer entropy, conditional redundancy, and convergent cross maps. The tools are illustrated by applications to magnetospheric and solar physics including radiation belt, Dst (a magnetospheric state variable), substorm, and solar cycle dynamics.

  17. Causality

    NASA Astrophysics Data System (ADS)

    Pearl, Judea

    2000-03-01

    Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.

  18. Causal Loop Analysis of coastal geomorphological systems

    NASA Astrophysics Data System (ADS)

    Payo, Andres; Hall, Jim W.; French, Jon; Sutherland, James; van Maanen, Barend; Nicholls, Robert J.; Reeve, Dominic E.

    2016-03-01

    As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a model, the modeller can readily assess if critical feedback loops are included.

  19. Correlation of causal factors that influence construction safety performance: A model.

    PubMed

    Rodrigues, F; Coutinho, A; Cardoso, C

    2015-01-01

    The construction sector has presented positive development regarding the decrease in occupational accident rates in recent years. Regardless, the construction sector stands out systematically from other industries due to its high number of fatalities. The aim of this paper is to deeply understand the causality of construction accidents from the early design phase through a model. This study reviewed several research papers presenting various analytical models that correlate the contributing factors to occupational accidents in this sector. This study also analysed different construction projects and conducted a survey of design and site supervision teams. This paper proposes a model developed from the analysis of existing ones, which correlates the causal factors through all the construction phases. It was concluded that effective risk prevention can only be achieved by a global correlation of causal factors including not only production ones but also client requirements, financial climate, design team competence, project and risk management, financial capacity, health and safety policy and early planning. Accordingly, a model is proposed.

  20. Confirmatory Analytic Tests of Three Causal Models Relating Job Perceptions to Job Satisfaction.

    DTIC Science & Technology

    1984-12-01

    Perceptions ~Job SatisfactionD I~i- Confirmatory Analysi s Precognitive Postcognitive L ft A e S T R A f T I ( C O n" " n ," , V fV f f vv r e # d o i t c e...in the causal order, and job perceptions and job satisfaction are reciprocally related; (b) a precognitive -recursive model in which job perceptions...occur after job satisfaction in the causal order and are effects but not causes of job satisfaction; and (c) a precognitive DD FOR 1473 EDITION 01O NOV

  1. Causal transfer function analysis to describe closed loop interactions between cardiovascular and cardiorespiratory variability signals.

    PubMed

    Faes, L; Porta, A; Cucino, R; Cerutti, S; Antolini, R; Nollo, G

    2004-06-01

    Although the concept of transfer function is intrinsically related to an input-output relationship, the traditional and widely used estimation method merges both feedback and feedforward interactions between the two analyzed signals. This limitation may endanger the reliability of transfer function analysis in biological systems characterized by closed loop interactions. In this study, a method for estimating the transfer function between closed loop interacting signals was proposed and validated in the field of cardiovascular and cardiorespiratory variability. The two analyzed signals x and y were described by a bivariate autoregressive model, and the causal transfer function from x to y was estimated after imposing causality by setting to zero the model coefficients representative of the reverse effects from y to x. The method was tested in simulations reproducing linear open and closed loop interactions, showing a better adherence of the causal transfer function to the theoretical curves with respect to the traditional approach in presence of non-negligible reverse effects. It was then applied in ten healthy young subjects to characterize the transfer functions from respiration to heart period (RR interval) and to systolic arterial pressure (SAP), and from SAP to RR interval. In the first two cases, the causal and non-causal transfer function estimates were comparable, indicating that respiration, acting as exogenous signal, sets an open loop relationship upon SAP and RR interval. On the contrary, causal and traditional transfer functions from SAP to RR were significantly different, suggesting the presence of a considerable influence on the opposite causal direction. Thus, the proposed causal approach seems to be appropriate for the estimation of parameters, like the gain and the phase lag from SAP to RR interval, which have a large clinical and physiological relevance.

  2. Measurement Models for Reasoned Action Theory.

    PubMed

    Hennessy, Michael; Bleakley, Amy; Fishbein, Martin

    2012-03-01

    Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are effect indicators that reflect the operation of a latent variable scale. We identify the issues when effect and causal indicators are present in a single analysis and conclude that both types of indicators can be incorporated in the analysis of data based on the reasoned action approach.

  3. Causal Reasoning in Medicine: Analysis of a Protocol.

    ERIC Educational Resources Information Center

    Kuipers, Benjamin; Kassirer, Jerome P.

    1984-01-01

    Describes the construction of a knowledge representation from the identification of the problem (nephrotic syndrome) to a running computer simulation of causal reasoning to provide a vertical slice of the construction of a cognitive model. Interactions between textbook knowledge, observations of human experts, and computational requirements are…

  4. Modelling cointegration and Granger causality network to detect long-term equilibrium and diffusion paths in the financial system.

    PubMed

    Gao, Xiangyun; Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng

    2018-03-01

    Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion.

  5. Modelling cointegration and Granger causality network to detect long-term equilibrium and diffusion paths in the financial system

    PubMed Central

    Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng

    2018-01-01

    Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion. PMID:29657804

  6. Complex Causal Process Diagrams for Analyzing the Health Impacts of Policy Interventions

    PubMed Central

    Joffe, Michael; Mindell, Jennifer

    2006-01-01

    Causal diagrams are rigorous tools for controlling confounding. They also can be used to describe complex causal systems, which is done routinely in communicable disease epidemiology. The use of change diagrams has advantages over static diagrams, because change diagrams are more tractable, relate better to interventions, and have clearer interpretations. Causal diagrams are a useful basis for modeling. They make assumptions explicit, provide a framework for analysis, generate testable predictions, explore the effects of interventions, and identify data gaps. Causal diagrams can be used to integrate different types of information and to facilitate communication both among public health experts and between public health experts and experts in other fields. Causal diagrams allow the use of instrumental variables, which can help control confounding and reverse causation. PMID:16449586

  7. Exploratory Causal Analysis in Bivariate Time Series Data

    NASA Astrophysics Data System (ADS)

    McCracken, James M.

    Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data sets, but little research exists of how these tools compare to each other in practice. This work introduces and defines exploratory causal analysis (ECA) to address this issue along with the concept of data causality in the taxonomy of causal studies introduced in this work. The motivation is to provide a framework for exploring potential causal structures in time series data sets. ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise.

  8. Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains

    PubMed Central

    Krumin, Michael; Shoham, Shy

    2010-01-01

    Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705

  9. Causal inference with missing exposure information: Methods and applications to an obstetric study.

    PubMed

    Zhang, Zhiwei; Liu, Wei; Zhang, Bo; Tang, Li; Zhang, Jun

    2016-10-01

    Causal inference in observational studies is frequently challenged by the occurrence of missing data, in addition to confounding. Motivated by the Consortium on Safe Labor, a large observational study of obstetric labor practice and birth outcomes, this article focuses on the problem of missing exposure information in a causal analysis of observational data. This problem can be approached from different angles (i.e. missing covariates and causal inference), and useful methods can be obtained by drawing upon the available techniques and insights in both areas. In this article, we describe and compare a collection of methods based on different modeling assumptions, under standard assumptions for missing data (i.e. missing-at-random and positivity) and for causal inference with complete data (i.e. no unmeasured confounding and another positivity assumption). These methods involve three models: one for treatment assignment, one for the dependence of outcome on treatment and covariates, and one for the missing data mechanism. In general, consistent estimation of causal quantities requires correct specification of at least two of the three models, although there may be some flexibility as to which two models need to be correct. Such flexibility is afforded by doubly robust estimators adapted from the missing covariates literature and the literature on causal inference with complete data, and by a newly developed triply robust estimator that is consistent if any two of the three models are correct. The methods are applied to the Consortium on Safe Labor data and compared in a simulation study mimicking the Consortium on Safe Labor. © The Author(s) 2013.

  10. Inferring action structure and causal relationships in continuous sequences of human action.

    PubMed

    Buchsbaum, Daphna; Griffiths, Thomas L; Plunkett, Dillon; Gopnik, Alison; Baldwin, Dare

    2015-02-01

    In the real world, causal variables do not come pre-identified or occur in isolation, but instead are embedded within a continuous temporal stream of events. A challenge faced by both human learners and machine learning algorithms is identifying subsequences that correspond to the appropriate variables for causal inference. A specific instance of this problem is action segmentation: dividing a sequence of observed behavior into meaningful actions, and determining which of those actions lead to effects in the world. Here we present a Bayesian analysis of how statistical and causal cues to segmentation should optimally be combined, as well as four experiments investigating human action segmentation and causal inference. We find that both people and our model are sensitive to statistical regularities and causal structure in continuous action, and are able to combine these sources of information in order to correctly infer both causal relationships and segmentation boundaries. Copyright © 2014. Published by Elsevier Inc.

  11. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data

    PubMed Central

    Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2015-01-01

    Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919

  12. ­Understanding Information Flow Interaction along Separable Causal Paths in Environmental Signals

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Kumar, P.

    2017-12-01

    Multivariate environmental signals reflect the outcome of complex inter-dependencies, such as those in ecohydrologic systems. Transfer entropy and information partitioning approaches have been used to characterize such dependencies. However, these approaches capture net information flow occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within an interested subsystem through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [2015] to develop a framework for quantifying information decomposition along separable causal paths. Momentary information transfer along causal paths captures the amount of information flow between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique and redundant information flow through separable causal paths. Multivariate analysis using this novel approach reveals precise understanding of causality and feedback. We illustrate our approach with synthetic and observed time series data. We believe the proposed framework helps better delineate the internal structure of complex systems in geoscience where huge amounts of observational datasets exist, and it will also help the modeling community by providing a new way to look at the complexity of real and modeled systems. Runge, Jakob. "Quantifying information transfer and mediation along causal pathways in complex systems." Physical Review E 92.6 (2015): 062829.

  13. Measurement Models for Reasoned Action Theory

    PubMed Central

    Hennessy, Michael; Bleakley, Amy; Fishbein, Martin

    2012-01-01

    Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are effect indicators that reflect the operation of a latent variable scale. We identify the issues when effect and causal indicators are present in a single analysis and conclude that both types of indicators can be incorporated in the analysis of data based on the reasoned action approach. PMID:23243315

  14. A complete graphical criterion for the adjustment formula in mediation analysis.

    PubMed

    Shpitser, Ilya; VanderWeele, Tyler J

    2011-03-04

    Various assumptions have been used in the literature to identify natural direct and indirect effects in mediation analysis. These effects are of interest because they allow for effect decomposition of a total effect into a direct and indirect effect even in the presence of interactions or non-linear models. In this paper, we consider the relation and interpretation of various identification assumptions in terms of causal diagrams interpreted as a set of non-parametric structural equations. We show that for such causal diagrams, two sets of assumptions for identification that have been described in the literature are in fact equivalent in the sense that if either set of assumptions holds for all models inducing a particular causal diagram, then the other set of assumptions will also hold for all models inducing that diagram. We moreover build on prior work concerning a complete graphical identification criterion for covariate adjustment for total effects to provide a complete graphical criterion for using covariate adjustment to identify natural direct and indirect effects. Finally, we show that this criterion is equivalent to the two sets of independence assumptions used previously for mediation analysis.

  15. STAMP-Based HRA Considering Causality Within a Sociotechnical System: A Case of Minuteman III Missile Accident.

    PubMed

    Rong, Hao; Tian, Jin

    2015-05-01

    The study contributes to human reliability analysis (HRA) by proposing a method that focuses more on human error causality within a sociotechnical system, illustrating its rationality and feasibility by using a case of the Minuteman (MM) III missile accident. Due to the complexity and dynamics within a sociotechnical system, previous analyses of accidents involving human and organizational factors clearly demonstrated that the methods using a sequential accident model are inadequate to analyze human error within a sociotechnical system. System-theoretic accident model and processes (STAMP) was used to develop a universal framework of human error causal analysis. To elaborate the causal relationships and demonstrate the dynamics of human error, system dynamics (SD) modeling was conducted based on the framework. A total of 41 contributing factors, categorized into four types of human error, were identified through the STAMP-based analysis. All factors are related to a broad view of sociotechnical systems, and more comprehensive than the causation presented in the accident investigation report issued officially. Recommendations regarding both technical and managerial improvement for a lower risk of the accident are proposed. The interests of an interdisciplinary approach provide complementary support between system safety and human factors. The integrated method based on STAMP and SD model contributes to HRA effectively. The proposed method will be beneficial to HRA, risk assessment, and control of the MM III operating process, as well as other sociotechnical systems. © 2014, Human Factors and Ergonomics Society.

  16. Inferring Causalities in Landscape Genetics: An Extension of Wright's Causal Modeling to Distance Matrices.

    PubMed

    Fourtune, Lisa; Prunier, Jérôme G; Paz-Vinas, Ivan; Loot, Géraldine; Veyssière, Charlotte; Blanchet, Simon

    2018-04-01

    Identifying landscape features that affect functional connectivity among populations is a major challenge in fundamental and applied sciences. Landscape genetics combines landscape and genetic data to address this issue, with the main objective of disentangling direct and indirect relationships among an intricate set of variables. Causal modeling has strong potential to address the complex nature of landscape genetic data sets. However, this statistical approach was not initially developed to address the pairwise distance matrices commonly used in landscape genetics. Here, we aimed to extend the applicability of two causal modeling methods-that is, maximum-likelihood path analysis and the directional separation test-by developing statistical approaches aimed at handling distance matrices and improving functional connectivity inference. Using simulations, we showed that these approaches greatly improved the robustness of the absolute (using a frequentist approach) and relative (using an information-theoretic approach) fits of the tested models. We used an empirical data set combining genetic information on a freshwater fish species (Gobio occitaniae) and detailed landscape descriptors to demonstrate the usefulness of causal modeling to identify functional connectivity in wild populations. Specifically, we demonstrated how direct and indirect relationships involving altitude, temperature, and oxygen concentration influenced within- and between-population genetic diversity of G. occitaniae.

  17. Best (but oft-forgotten) practices: mediation analysis.

    PubMed

    Fairchild, Amanda J; McDaniel, Heather L

    2017-06-01

    This contribution in the "Best (but Oft-Forgotten) Practices" series considers mediation analysis. A mediator (sometimes referred to as an intermediate variable, surrogate endpoint, or intermediate endpoint) is a third variable that explains how or why ≥2 other variables relate in a putative causal pathway. The current article discusses mediation analysis with the ultimate intention of helping nutrition researchers to clarify the rationale for examining mediation, avoid common pitfalls when using the model, and conduct well-informed analyses that can contribute to improving causal inference in evaluations of underlying mechanisms of effects on nutrition-related behavioral and health outcomes. We give specific attention to underevaluated limitations inherent in common approaches to mediation. In addition, we discuss how to conduct a power analysis for mediation models and offer an applied example to demonstrate mediation analysis. Finally, we provide an example write-up of mediation analysis results as a model for applied researchers. © 2017 American Society for Nutrition.

  18. Best (but oft-forgotten) practices: mediation analysis12

    PubMed Central

    McDaniel, Heather L

    2017-01-01

    This contribution in the “Best (but Oft-Forgotten) Practices” series considers mediation analysis. A mediator (sometimes referred to as an intermediate variable, surrogate endpoint, or intermediate endpoint) is a third variable that explains how or why ≥2 other variables relate in a putative causal pathway. The current article discusses mediation analysis with the ultimate intention of helping nutrition researchers to clarify the rationale for examining mediation, avoid common pitfalls when using the model, and conduct well-informed analyses that can contribute to improving causal inference in evaluations of underlying mechanisms of effects on nutrition-related behavioral and health outcomes. We give specific attention to underevaluated limitations inherent in common approaches to mediation. In addition, we discuss how to conduct a power analysis for mediation models and offer an applied example to demonstrate mediation analysis. Finally, we provide an example write-up of mediation analysis results as a model for applied researchers. PMID:28446497

  19. Causality, mediation and time: a dynamic viewpoint

    PubMed Central

    Aalen, Odd O; Røysland, Kjetil; Gran, Jon Michael; Ledergerber, Bruno

    2012-01-01

    Summary. Time dynamics are often ignored in causal modelling. Clearly, causality must operate in time and we show how this corresponds to a mechanistic, or system, understanding of causality. The established counterfactual definitions of direct and indirect effects depend on an ability to manipulate the mediator which may not hold in practice, and we argue that a mechanistic view may be better. Graphical representations based on local independence graphs and dynamic path analysis are used to facilitate communication as well as providing an overview of the dynamic relations ‘at a glance’. The relationship between causality as understood in a mechanistic and in an interventionist sense is discussed. An example using data from the Swiss HIV Cohort Study is presented. PMID:23193356

  20. Two-step estimation in ratio-of-mediator-probability weighted causal mediation analysis.

    PubMed

    Bein, Edward; Deutsch, Jonah; Hong, Guanglei; Porter, Kristin E; Qin, Xu; Yang, Cheng

    2018-04-15

    This study investigates appropriate estimation of estimator variability in the context of causal mediation analysis that employs propensity score-based weighting. Such an analysis decomposes the total effect of a treatment on the outcome into an indirect effect transmitted through a focal mediator and a direct effect bypassing the mediator. Ratio-of-mediator-probability weighting estimates these causal effects by adjusting for the confounding impact of a large number of pretreatment covariates through propensity score-based weighting. In step 1, a propensity score model is estimated. In step 2, the causal effects of interest are estimated using weights derived from the prior step's regression coefficient estimates. Statistical inferences obtained from this 2-step estimation procedure are potentially problematic if the estimated standard errors of the causal effect estimates do not reflect the sampling uncertainty in the estimation of the weights. This study extends to ratio-of-mediator-probability weighting analysis a solution to the 2-step estimation problem by stacking the score functions from both steps. We derive the asymptotic variance-covariance matrix for the indirect effect and direct effect 2-step estimators, provide simulation results, and illustrate with an application study. Our simulation results indicate that the sampling uncertainty in the estimated weights should not be ignored. The standard error estimation using the stacking procedure offers a viable alternative to bootstrap standard error estimation. We discuss broad implications of this approach for causal analysis involving propensity score-based weighting. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Comments: Causal Interpretations of Mediation Effects

    ERIC Educational Resources Information Center

    Jo, Booil; Stuart, Elizabeth A.

    2012-01-01

    The authors thank Dr. Lindsay Page for providing a nice illustration of the use of the principal stratification framework to define causal effects, and a Bayesian model for effect estimation. They hope that her well-written article will help expose education researchers to these concepts and methods, and move the field of mediation analysis in…

  2. Education and Economic Growth in Pakistan: A Cointegration and Causality Analysis

    ERIC Educational Resources Information Center

    Afzal, Muhammad; Rehman, Hafeez Ur; Farooq, Muhammad Shahid; Sarwar, Kafeel

    2011-01-01

    This study explored the cointegration and causality between education and economic growth in Pakistan by using time series data on real gross domestic product (RGDP), labour force, physical capital and education from 1970-1971 to 2008-2009 were used. Autoregressive Distributed Lag (ARDL) Model of Cointegration and the Augmented Granger Causality…

  3. Verification of causal influences of reasoning skills and epistemology on physics conceptual learning

    NASA Astrophysics Data System (ADS)

    Ding, Lin

    2014-12-01

    This study seeks to test the causal influences of reasoning skills and epistemologies on student conceptual learning in physics. A causal model, integrating multiple variables that were investigated separately in the prior literature, is proposed and tested through path analysis. These variables include student preinstructional reasoning skills measured by the Classroom Test of Scientific Reasoning, pre- and postepistemological views measured by the Colorado Learning Attitudes about Science Survey, and pre- and postperformance on Newtonian concepts measured by the Force Concept Inventory. Students from a traditionally taught calculus-based introductory mechanics course at a research university participated in the study. Results largely support the postulated causal model and reveal strong influences of reasoning skills and preinstructional epistemology on student conceptual learning gains. Interestingly enough, postinstructional epistemology does not appear to have a significant influence on student learning gains. Moreover, pre- and postinstructional epistemology, although barely different from each other on average, have little causal connection between them.

  4. [Exploration of influencing factors of price of herbal based on VAR model].

    PubMed

    Wang, Nuo; Liu, Shu-Zhen; Yang, Guang

    2014-10-01

    Based on vector auto-regression (VAR) model, this paper takes advantage of Granger causality test, variance decomposition and impulse response analysis techniques to carry out a comprehensive study of the factors influencing the price of Chinese herbal, including herbal cultivation costs, acreage, natural disasters, the residents' needs and inflation. The study found that there is Granger causality relationship between inflation and herbal prices, cultivation costs and herbal prices. And in the total variance analysis of Chinese herbal and medicine price index, the largest contribution to it is from its own fluctuations, followed by the cultivation costs and inflation.

  5. Formalizing Neurath's ship: Approximate algorithms for online causal learning.

    PubMed

    Bramley, Neil R; Dayan, Peter; Griffiths, Thomas L; Lagnado, David A

    2017-04-01

    Higher-level cognition depends on the ability to learn models of the world. We can characterize this at the computational level as a structure-learning problem with the goal of best identifying the prevailing causal relationships among a set of relata. However, the computational cost of performing exact Bayesian inference over causal models grows rapidly as the number of relata increases. This implies that the cognitive processes underlying causal learning must be substantially approximate. A powerful class of approximations that focuses on the sequential absorption of successive inputs is captured by the Neurath's ship metaphor in philosophy of science, where theory change is cast as a stochastic and gradual process shaped as much by people's limited willingness to abandon their current theory when considering alternatives as by the ground truth they hope to approach. Inspired by this metaphor and by algorithms for approximating Bayesian inference in machine learning, we propose an algorithmic-level model of causal structure learning under which learners represent only a single global hypothesis that they update locally as they gather evidence. We propose a related scheme for understanding how, under these limitations, learners choose informative interventions that manipulate the causal system to help elucidate its workings. We find support for our approach in the analysis of 3 experiments. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. EEG-Based Quantification of Cortical Current Density and Dynamic Causal Connectivity Generalized across Subjects Performing BCI-Monitored Cognitive Tasks

    PubMed Central

    Courellis, Hristos; Mullen, Tim; Poizner, Howard; Cauwenberghs, Gert; Iversen, John R.

    2017-01-01

    Quantification of dynamic causal interactions among brain regions constitutes an important component of conducting research and developing applications in experimental and translational neuroscience. Furthermore, cortical networks with dynamic causal connectivity in brain-computer interface (BCI) applications offer a more comprehensive view of brain states implicated in behavior than do individual brain regions. However, models of cortical network dynamics are difficult to generalize across subjects because current electroencephalography (EEG) signal analysis techniques are limited in their ability to reliably localize sources across subjects. We propose an algorithmic and computational framework for identifying cortical networks across subjects in which dynamic causal connectivity is modeled among user-selected cortical regions of interest (ROIs). We demonstrate the strength of the proposed framework using a “reach/saccade to spatial target” cognitive task performed by 10 right-handed individuals. Modeling of causal cortical interactions was accomplished through measurement of cortical activity using (EEG), application of independent component clustering to identify cortical ROIs as network nodes, estimation of cortical current density using cortically constrained low resolution electromagnetic brain tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative cortical activity signals from each ROI, and quantification of the dynamic causal interaction among the identified ROIs using the Short-time direct Directed Transfer function (SdDTF). The resulting cortical network and the computed causal dynamics among its nodes exhibited physiologically plausible behavior, consistent with past results reported in the literature. This physiological plausibility of the results strengthens the framework's applicability in reliably capturing complex brain functionality, which is required by applications, such as diagnostics and BCI. PMID:28566997

  7. Modelling runway incursion severity.

    PubMed

    Wilke, Sabine; Majumdar, Arnab; Ochieng, Washington Y

    2015-06-01

    Analysis of the causes underlying runway incursions is fundamental for the development of effective mitigation measures. However, there are significant weaknesses in the current methods to model these factors. This paper proposes a structured framework for modelling causal factors and their relationship to severity, which includes a description of the airport surface system architecture, establishment of terminological definitions, the determination and collection of appropriate data, the analysis of occurrences for severity and causes, and the execution of a statistical analysis framework. It is implemented in the context of U.S. airports, enabling the identification of a number of priority interventions, including the need for better investigation and causal factor capture, recommendations for airfield design, operating scenarios and technologies, and better training for human operators in the system. The framework is recommended for the analysis of runway incursions to support safety improvements and the methodology is transferable to other areas of aviation safety risk analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Causal Models for Mediation Analysis: An Introduction to Structural Mean Models.

    PubMed

    Zheng, Cheng; Atkins, David C; Zhou, Xiao-Hua; Rhew, Isaac C

    2015-01-01

    Mediation analyses are critical to understanding why behavioral interventions work. To yield a causal interpretation, common mediation approaches must make an assumption of "sequential ignorability." The current article describes an alternative approach to causal mediation called structural mean models (SMMs). A specific SMM called a rank-preserving model (RPM) is introduced in the context of an applied example. Particular attention is given to the assumptions of both approaches to mediation. Applying both mediation approaches to the college student drinking data yield notable differences in the magnitude of effects. Simulated examples reveal instances in which the traditional approach can yield strongly biased results, whereas the RPM approach remains unbiased in these cases. At the same time, the RPM approach has its own assumptions that must be met for correct inference, such as the existence of a covariate that strongly moderates the effect of the intervention on the mediator and no unmeasured confounders that also serve as a moderator of the effect of the intervention or the mediator on the outcome. The RPM approach to mediation offers an alternative way to perform mediation analysis when there may be unmeasured confounders.

  9. Causation in risk assessment and management: models, inference, biases, and a microbial risk-benefit case study.

    PubMed

    Cox, L A; Ricci, P F

    2005-04-01

    Causal inference of exposure-response relations from data is a challenging aspect of risk assessment with important implications for public and private risk management. Such inference, which is fundamentally empirical and based on exposure (or dose)-response models, seldom arises from a single set of data; rather, it requires integrating heterogeneous information from diverse sources and disciplines including epidemiology, toxicology, and cell and molecular biology. The causal aspects we discuss focus on these three aspects: drawing sound inferences about causal relations from one or more observational studies; addressing and resolving biases that can affect a single multivariate empirical exposure-response study; and applying the results from these considerations to the microbiological risk management of human health risks and benefits of a ban on antibiotic use in animals, in the context of banning enrofloxacin or macrolides, antibiotics used against bacterial illnesses in poultry, and the effects of such bans on changing the risk of human food-borne campylobacteriosis infections. The purposes of this paper are to describe novel causal methods for assessing empirical causation and inference; exemplify how to deal with biases that routinely arise in multivariate exposure- or dose-response modeling; and provide a simplified discussion of a case study of causal inference using microbial risk analysis as an example. The case study supports the conclusion that the human health benefits from a ban are unlikely to be greater than the excess human health risks that it could create, even when accounting for uncertainty. We conclude that quantitative causal analysis of risks is a preferable to qualitative assessments because it does not involve unjustified loss of information and is sound under the inferential use of risk results by management.

  10. Learning to learn causal models.

    PubMed

    Kemp, Charles; Goodman, Noah D; Tenenbaum, Joshua B

    2010-09-01

    Learning to understand a single causal system can be an achievement, but humans must learn about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian framework that helps to explain how learning about several causal systems can accelerate learning about systems that are subsequently encountered. Given experience with a set of objects, our framework learns a causal model for each object and a causal schema that captures commonalities among these causal models. The schema organizes the objects into categories and specifies the causal powers and characteristic features of these categories and the characteristic causal interactions between categories. A schema of this kind allows causal models for subsequent objects to be rapidly learned, and we explore this accelerated learning in four experiments. Our results confirm that humans learn rapidly about the causal powers of novel objects, and we show that our framework accounts better for our data than alternative models of causal learning. Copyright © 2010 Cognitive Science Society, Inc.

  11. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis.

    PubMed

    Ishikawa, Akira

    2017-11-27

    Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  12. Calculating and Understanding: Formal Models and Causal Explanations in Science, Common Reasoning and Physics Teaching

    ERIC Educational Resources Information Center

    Besson, Ugo

    2010-01-01

    This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought…

  13. A Longitudinal Developmental Analysis of Students' Causality Beliefs about School Performance

    ERIC Educational Resources Information Center

    Roque, Isabel; de Lemos, Marina Serra; Gonçalves, Teresa

    2014-01-01

    This study examined the development of school-related causality beliefs which are children's generalized perceptions of the utility or power of different categories of specific means in producing school outcomes. Based on the action theory perspective, we analyzed the developmental model of these beliefs as well as the trajectories of the…

  14. Causal reasoning with forces

    PubMed Central

    Wolff, Phillip; Barbey, Aron K.

    2015-01-01

    Causal composition allows people to generate new causal relations by combining existing causal knowledge. We introduce a new computational model of such reasoning, the force theory, which holds that people compose causal relations by simulating the processes that join forces in the world, and compare this theory with the mental model theory (Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain causal composition on the basis of mental models and structural equations, respectively. In one experiment, the force theory was uniquely able to account for people's ability to compose causal relationships from complex animations of real-world events. In three additional experiments, the force theory did as well as or better than the other two theories in explaining the causal compositions people generated from linguistically presented causal relations. Implications for causal learning and the hierarchical structure of causal knowledge are discussed. PMID:25653611

  15. Causal Relationships between the Psychological Acceptance Process of Athletic Injury and Athletic Rehabilitation Behavior

    PubMed Central

    Tatsumi, Tomonori; Takenouchi, Takashi

    2014-01-01

    [Purpose] The purpose of this study was to examine the causal relationships between the psychological acceptance process of athletic injury and athletic-rehabilitation behavior. [Subjects] One hundred forty-four athletes who had injury experiences participated in this study, and 133 (mean age = 20.21 years, SD = 1.07; mean weeks without playing sports = 7.97 weeks, SD = 11.26) of them provided valid questionnaire responses which were subjected to analysis. [Methods] The subjects were asked to answer our originally designed questionnaire, the Psychosocial Recovery Factor Scale (PSRF-S), and two other pre-existing scales, the Athletic Injury Psychological Acceptance Scale and the Athletic-Rehabilitation Dedication Scale. [Results] The results of factor analysis indicate “emotional stability”, “social competence in the team”, “temporal perspective”, and “communication with the teammates” are factors of the PSRF-S. Lastly, the causal model in which psychosocial recovery factors are mediated by psychological acceptance of athletic injury, and influence on rehabilitation behaviors, was examined using structural equation modeling (SEM). The results of SEM indicate that the factors of emotional stability and temporal perspective are mediated by the psychological acceptance of the injury, which positively influences athletic-rehabilitation dedication. [Conclusion] The causal model was confirmed to be valid. PMID:25202190

  16. The relationship between pollutant emissions, renewable energy, nuclear energy and GDP: empirical evidence from 18 developed and developing countries

    NASA Astrophysics Data System (ADS)

    Ben Mbarek, Mounir; Saidi, Kais; Amamri, Mounira

    2018-07-01

    This document investigates the causal relationship between nuclear energy (NE), pollutant emissions (CO2 emissions), gross domestic product (GDP) and renewable energy (RE) using dynamic panel data models for a global panel consisting of 18 countries (developed and developing) covering the 1990-2013 period. Our results indicate that there is a co-integration between variables. The unit root test suggests that all the variables are stationary in first differences. The paper further examines the link using the Granger causality analysis of vector error correction model, which indicates a unidirectional relationship running from GDP per capita to pollutant emissions for the developed and developing countries. However, there is a unidirectional causality from GDP per capita to RE in the short and long run. This finding confirms the conservation hypothesis. Similarly, there is no causality between NE and GDP per capita.

  17. Numerical limitations in application of vector autoregressive modeling and Granger causality to analysis of EEG time series

    NASA Astrophysics Data System (ADS)

    Kammerdiner, Alla; Xanthopoulos, Petros; Pardalos, Panos M.

    2007-11-01

    In this chapter a potential problem with application of the Granger-causality based on the simple vector autoregressive (VAR) modeling to EEG data is investigated. Although some initial studies tested whether the data support the stationarity assumption of VAR, the stability of the estimated model is rarely (if ever) been verified. In fact, in cases when the stability condition is violated the process may exhibit a random walk like behavior or even be explosive. The problem is illustrated by an example.

  18. Social networks help to infer causality in the tumor microenvironment.

    PubMed

    Crespo, Isaac; Doucey, Marie-Agnès; Xenarios, Ioannis

    2016-03-15

    Networks have become a popular way to conceptualize a system of interacting elements, such as electronic circuits, social communication, metabolism or gene regulation. Network inference, analysis, and modeling techniques have been developed in different areas of science and technology, such as computer science, mathematics, physics, and biology, with an active interdisciplinary exchange of concepts and approaches. However, some concepts seem to belong to a specific field without a clear transferability to other domains. At the same time, it is increasingly recognized that within some biological systems--such as the tumor microenvironment--where different types of resident and infiltrating cells interact to carry out their functions, the complexity of the system demands a theoretical framework, such as statistical inference, graph analysis and dynamical models, in order to asses and study the information derived from high-throughput experimental technologies. In this article we propose to adopt and adapt the concepts of influence and investment from the world of social network analysis to biological problems, and in particular to apply this approach to infer causality in the tumor microenvironment. We showed that constructing a bidirectional network of influence between cell and cell communication molecules allowed us to determine the direction of inferred regulations at the expression level and correctly recapitulate cause-effect relationships described in literature. This work constitutes an example of a transfer of knowledge and concepts from the world of social network analysis to biomedical research, in particular to infer network causality in biological networks. This causality elucidation is essential to model the homeostatic response of biological systems to internal and external factors, such as environmental conditions, pathogens or treatments.

  19. Risk-Based Causal Modeling of Airborne Loss of Separation

    NASA Technical Reports Server (NTRS)

    Geuther, Steven C.; Shih, Ann T.

    2015-01-01

    Maintaining safe separation between aircraft remains one of the key aviation challenges as the Next Generation Air Transportation System (NextGen) emerges. The goals of the NextGen are to increase capacity and reduce flight delays to meet the aviation demand growth through the 2025 time frame while maintaining safety and efficiency. The envisioned NextGen is expected to enable high air traffic density, diverse fleet operations in the airspace, and a decrease in separation distance. All of these factors contribute to the potential for Loss of Separation (LOS) between aircraft. LOS is a precursor to a potential mid-air collision (MAC). The NASA Airspace Operations and Safety Program (AOSP) is committed to developing aircraft separation assurance concepts and technologies to mitigate LOS instances, therefore, preventing MAC. This paper focuses on the analysis of causal and contributing factors of LOS accidents and incidents leading to MAC occurrences. Mid-air collisions among large commercial aircraft are rare in the past decade, therefore, the LOS instances in this study are for general aviation using visual flight rules in the years 2000-2010. The study includes the investigation of causal paths leading to LOS, and the development of the Airborne Loss of Separation Analysis Model (ALOSAM) using Bayesian Belief Networks (BBN) to capture the multi-dependent relations of causal factors. The ALOSAM is currently a qualitative model, although further development could lead to a quantitative model. ALOSAM could then be used to perform impact analysis of concepts and technologies in the AOSP portfolio on the reduction of LOS risk.

  20. Non-Gaussian Methods for Causal Structure Learning.

    PubMed

    Shimizu, Shohei

    2018-05-22

    Causal structure learning is one of the most exciting new topics in the fields of machine learning and statistics. In many empirical sciences including prevention science, the causal mechanisms underlying various phenomena need to be studied. Nevertheless, in many cases, classical methods for causal structure learning are not capable of estimating the causal structure of variables. This is because it explicitly or implicitly assumes Gaussianity of data and typically utilizes only the covariance structure. In many applications, however, non-Gaussian data are often obtained, which means that more information may be contained in the data distribution than the covariance matrix is capable of containing. Thus, many new methods have recently been proposed for using the non-Gaussian structure of data and inferring the causal structure of variables. This paper introduces prevention scientists to such causal structure learning methods, particularly those based on the linear, non-Gaussian, acyclic model known as LiNGAM. These non-Gaussian data analysis tools can fully estimate the underlying causal structures of variables under assumptions even in the presence of unobserved common causes. This feature is in contrast to other approaches. A simulated example is also provided.

  1. Consequences of bullying victimization in childhood and adolescence: A systematic review and meta-analysis

    PubMed Central

    Moore, Sophie E; Norman, Rosana E; Suetani, Shuichi; Thomas, Hannah J; Sly, Peter D; Scott, James G

    2017-01-01

    AIM To identify health and psychosocial problems associated with bullying victimization and conduct a meta-analysis summarizing the causal evidence. METHODS A systematic review was conducted using PubMed, EMBASE, ERIC and PsycINFO electronic databases up to 28 February 2015. The study included published longitudinal and cross-sectional articles that examined health and psychosocial consequences of bullying victimization. All meta-analyses were based on quality-effects models. Evidence for causality was assessed using Bradford Hill criteria and the grading system developed by the World Cancer Research Fund. RESULTS Out of 317 articles assessed for eligibility, 165 satisfied the predetermined inclusion criteria for meta-analysis. Statistically significant associations were observed between bullying victimization and a wide range of adverse health and psychosocial problems. The evidence was strongest for causal associations between bullying victimization and mental health problems such as depression, anxiety, poor general health and suicidal ideation and behaviours. Probable causal associations existed between bullying victimization and tobacco and illicit drug use. CONCLUSION Strong evidence exists for a causal relationship between bullying victimization, mental health problems and substance use. Evidence also exists for associations between bullying victimization and other adverse health and psychosocial problems, however, there is insufficient evidence to conclude causality. The strong evidence that bullying victimization is causative of mental illness highlights the need for schools to implement effective interventions to address bullying behaviours. PMID:28401049

  2. Causal discovery and inference: concepts and recent methodological advances.

    PubMed

    Spirtes, Peter; Zhang, Kun

    This paper aims to give a broad coverage of central concepts and principles involved in automated causal inference and emerging approaches to causal discovery from i.i.d data and from time series. After reviewing concepts including manipulations, causal models, sample predictive modeling, causal predictive modeling, and structural equation models, we present the constraint-based approach to causal discovery, which relies on the conditional independence relationships in the data, and discuss the assumptions underlying its validity. We then focus on causal discovery based on structural equations models, in which a key issue is the identifiability of the causal structure implied by appropriately defined structural equation models: in the two-variable case, under what conditions (and why) is the causal direction between the two variables identifiable? We show that the independence between the error term and causes, together with appropriate structural constraints on the structural equation, makes it possible. Next, we report some recent advances in causal discovery from time series. Assuming that the causal relations are linear with nonGaussian noise, we mention two problems which are traditionally difficult to solve, namely causal discovery from subsampled data and that in the presence of confounding time series. Finally, we list a number of open questions in the field of causal discovery and inference.

  3. A quantum causal discovery algorithm

    NASA Astrophysics Data System (ADS)

    Giarmatzi, Christina; Costa, Fabio

    2018-03-01

    Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm opens the route to more general quantum causal discovery methods.

  4. Supporting cognition in systems biology analysis: findings on users' processes and design implications.

    PubMed

    Mirel, Barbara

    2009-02-13

    Current usability studies of bioinformatics tools suggest that tools for exploratory analysis support some tasks related to finding relationships of interest but not the deep causal insights necessary for formulating plausible and credible hypotheses. To better understand design requirements for gaining these causal insights in systems biology analyses a longitudinal field study of 15 biomedical researchers was conducted. Researchers interacted with the same protein-protein interaction tools to discover possible disease mechanisms for further experimentation. Findings reveal patterns in scientists' exploratory and explanatory analysis and reveal that tools positively supported a number of well-structured query and analysis tasks. But for several of scientists' more complex, higher order ways of knowing and reasoning the tools did not offer adequate support. Results show that for a better fit with scientists' cognition for exploratory analysis systems biology tools need to better match scientists' processes for validating, for making a transition from classification to model-based reasoning, and for engaging in causal mental modelling. As the next great frontier in bioinformatics usability, tool designs for exploratory systems biology analysis need to move beyond the successes already achieved in supporting formulaic query and analysis tasks and now reduce current mismatches with several of scientists' higher order analytical practices. The implications of results for tool designs are discussed.

  5. Renewable energy consumption and economic growth in nine OECD countries: bounds test approach and causality analysis.

    PubMed

    Hung-Pin, Lin

    2014-01-01

    The purpose of this paper is to investigate the short-run and long-run causality between renewable energy (RE) consumption and economic growth (EG) in nine OECD countries from the period between 1982 and 2011. To examine the linkage, this paper uses the autoregressive distributed lag (ARDL) bounds testing approach of cointegration test and vector error-correction models to test the causal relationship between variables. The co-integration and causal relationships are found in five countries-United States of America (USA), Japan, Germany, Italy, and United Kingdom (UK). The overall results indicate that (1) a short-run unidirectional causality runs from EG to RE in Italy and UK; (2) long-run unidirectional causalities run from RE to EG for Germany, Italy, and UK; (3) a long-run unidirectional causality runs from EG to RE in USA, and Japan; (4) both long-run and strong unidirectional causalities run from RE to EG for Germany and UK; and (5) Finally, both long-run and strong unidirectional causalities run from EG to RE in only USA. Further evidence reveals that policies for renewable energy conservation may have no impact on economic growth in France, Denmark, Portugal, and Spain.

  6. Renewable Energy Consumption and Economic Growth in Nine OECD Countries: Bounds Test Approach and Causality Analysis

    PubMed Central

    Hung-Pin, Lin

    2014-01-01

    The purpose of this paper is to investigate the short-run and long-run causality between renewable energy (RE) consumption and economic growth (EG) in nine OECD countries from the period between 1982 and 2011. To examine the linkage, this paper uses the autoregressive distributed lag (ARDL) bounds testing approach of cointegration test and vector error-correction models to test the causal relationship between variables. The co-integration and causal relationships are found in five countries—United States of America (USA), Japan, Germany, Italy, and United Kingdom (UK). The overall results indicate that (1) a short-run unidirectional causality runs from EG to RE in Italy and UK; (2) long-run unidirectional causalities run from RE to EG for Germany, Italy, and UK; (3) a long-run unidirectional causality runs from EG to RE in USA, and Japan; (4) both long-run and strong unidirectional causalities run from RE to EG for Germany and UK; and (5) Finally, both long-run and strong unidirectional causalities run from EG to RE in only USA. Further evidence reveals that policies for renewable energy conservation may have no impact on economic growth in France, Denmark, Portugal, and Spain. PMID:24558343

  7. Structure and Connectivity Analysis of Financial Complex System Based on G-Causality Network

    NASA Astrophysics Data System (ADS)

    Xu, Chuan-Ming; Yan, Yan; Zhu, Xiao-Wu; Li, Xiao-Teng; Chen, Xiao-Song

    2013-11-01

    The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance.

  8. Temporal Information of Directed Causal Connectivity in Multi-Trial ERP Data using Partial Granger Causality.

    PubMed

    Youssofzadeh, Vahab; Prasad, Girijesh; Naeem, Muhammad; Wong-Lin, KongFatt

    2016-01-01

    Partial Granger causality (PGC) has been applied to analyse causal functional neural connectivity after effectively mitigating confounding influences caused by endogenous latent variables and exogenous environmental inputs. However, it is not known how this connectivity obtained from PGC evolves over time. Furthermore, PGC has yet to be tested on realistic nonlinear neural circuit models and multi-trial event-related potentials (ERPs) data. In this work, we first applied a time-domain PGC technique to evaluate simulated neural circuit models, and demonstrated that the PGC measure is more accurate and robust in detecting connectivity patterns as compared to conditional Granger causality and partial directed coherence, especially when the circuit is intrinsically nonlinear. Moreover, the connectivity in PGC settles faster into a stable and correct configuration over time. After method verification, we applied PGC to reveal the causal connections of ERP trials of a mismatch negativity auditory oddball paradigm. The PGC analysis revealed a significant bilateral but asymmetrical localised activity in the temporal lobe close to the auditory cortex, and causal influences in the frontal, parietal and cingulate cortical areas, consistent with previous studies. Interestingly, the time to reach a stable connectivity configuration (~250–300 ms) coincides with the deviation of ensemble ERPs of oddball from standard tones. Finally, using a sliding time window, we showed higher resolution dynamics of causal connectivity within an ERP trial. In summary, time-domain PGC is promising in deciphering directed functional connectivity in nonlinear and ERP trials accurately, and at a sufficiently early stage. This data-driven approach can reduce computational time, and determine the key architecture for neural circuit modeling.

  9. Are Formative Indicators Superfluous? An Extension of Aguirre-Urreta, Rönkkö, and Marakas Analysis

    ERIC Educational Resources Information Center

    Guyon, Hervé; Tensaout, Mouloud

    2016-01-01

    In this article, the authors extend the results of Aguirre-Urreta, Rönkkö, and Marakas (2016) concerning the omission of a relevant causal indicator by testing the validity of the assumption that causal indicators are entirely superfluous to the measurement model and discuss the implications for measurement theory. Contrary to common wisdom…

  10. THE CAUSAL ANALYSIS / DIAGNOSIS DECISION ...

    EPA Pesticide Factsheets

    CADDIS is an on-line decision support system that helps investigators in the regions, states and tribes find, access, organize, use and share information to produce causal evaluations in aquatic systems. It is based on the US EPA's Stressor Identification process which is a formal method for identifying causes of impairments in aquatic systems. CADDIS 2007 increases access to relevant information useful for causal analysis and provides methods and tools that practitioners can use to analyze their own data. The new Candidate Cause section provides overviews of commonly encountered causes of impairments to aquatic systems: metals, sediments, nutrients, flow alteration, temperature, ionic strength, and low dissolved oxygen. CADDIS includes new Conceptual Models that illustrate the relationships from sources to stressors to biological effects. An Interactive Conceptual Model for phosphorus links the diagram with supporting literature citations. The new Analyzing Data section helps practitioners analyze their data sets and interpret and use those results as evidence within the USEPA causal assessment process. Downloadable tools include a graphical user interface statistical package (CADStat), and programs for use with the freeware R statistical package, and a Microsoft Excel template. These tools can be used to quantify associations between causes and biological impairments using innovative methods such as species-sensitivity distributions, biological inferenc

  11. Dynamical System Analysis of Reynolds Stress Closure Equations

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1997-01-01

    In this paper, we establish the causality between the model coefficients in the standard pressure-strain correlation model and the predicted equilibrium states for homogeneous turbulence. We accomplish this by performing a comprehensive fixed point analysis of the modeled Reynolds stress and dissipation rate equations. The results from this analysis will be very useful for developing improved pressure-strain correlation models to yield observed equilibrium behavior.

  12. Application of systems and control theory-based hazard analysis to radiation oncology.

    PubMed

    Pawlicki, Todd; Samost, Aubrey; Brown, Derek W; Manger, Ryan P; Kim, Gwe-Ya; Leveson, Nancy G

    2016-03-01

    Both humans and software are notoriously challenging to account for in traditional hazard analysis models. The purpose of this work is to investigate and demonstrate the application of a new, extended accident causality model, called systems theoretic accident model and processes (STAMP), to radiation oncology. Specifically, a hazard analysis technique based on STAMP, system-theoretic process analysis (STPA), is used to perform a hazard analysis. The STPA procedure starts with the definition of high-level accidents for radiation oncology at the medical center and the hazards leading to those accidents. From there, the hierarchical safety control structure of the radiation oncology clinic is modeled, i.e., the controls that are used to prevent accidents and provide effective treatment. Using STPA, unsafe control actions (behaviors) are identified that can lead to the hazards as well as causal scenarios that can lead to the identified unsafe control. This information can be used to eliminate or mitigate potential hazards. The STPA procedure is demonstrated on a new online adaptive cranial radiosurgery procedure that omits the CT simulation step and uses CBCT for localization, planning, and surface imaging system during treatment. The STPA procedure generated a comprehensive set of causal scenarios that are traced back to system hazards and accidents. Ten control loops were created for the new SRS procedure, which covered the areas of hospital and department management, treatment design and delivery, and vendor service. Eighty three unsafe control actions were identified as well as 472 causal scenarios that could lead to those unsafe control actions. STPA provides a method for understanding the role of management decisions and hospital operations on system safety and generating process design requirements to prevent hazards and accidents. The interaction of people, hardware, and software is highlighted. The method of STPA produces results that can be used to improve safety and prevent accidents and warrants further investigation.

  13. The co-integration analysis of relationship between urban infrastructure and urbanization - A case of Shanghai

    NASA Astrophysics Data System (ADS)

    Wang, Qianlu

    2017-10-01

    Urban infrastructure and urbanization influence each other, and quantitative analysis of the relationship between them will play a significant role in promoting the social development. The paper based on the data of infrastructure and the proportion of urban population in Shanghai from 1988 to 2013, use the econometric analysis of co-integration test, error correction model and Granger causality test method, and empirically analyze the relationship between Shanghai's infrastructure and urbanization. The results show that: 1) Shanghai Urban infrastructure has a positive effect for the development of urbanization and narrowing the population gap; 2) when the short-term fluctuations deviate from long-term equilibrium, the system will pull the non-equilibrium state back to equilibrium with an adjust intensity 0.342670. And hospital infrastructure is not only an important variable for urban development in short-term, but also a leading infrastructure in the process of urbanization in Shanghai; 3) there has Granger causality between road infrastructure and urbanization; and there is no Granger causality between water infrastructure and urbanization, hospital and school infrastructures of social infrastructure have unidirectional Granger causality with urbanization.

  14. The stochastic system approach for estimating dynamic treatments effect.

    PubMed

    Commenges, Daniel; Gégout-Petit, Anne

    2015-10-01

    The problem of assessing the effect of a treatment on a marker in observational studies raises the difficulty that attribution of the treatment may depend on the observed marker values. As an example, we focus on the analysis of the effect of a HAART on CD4 counts, where attribution of the treatment may depend on the observed marker values. This problem has been treated using marginal structural models relying on the counterfactual/potential response formalism. Another approach to causality is based on dynamical models, and causal influence has been formalized in the framework of the Doob-Meyer decomposition of stochastic processes. Causal inference however needs assumptions that we detail in this paper and we call this approach to causality the "stochastic system" approach. First we treat this problem in discrete time, then in continuous time. This approach allows incorporating biological knowledge naturally. When working in continuous time, the mechanistic approach involves distinguishing the model for the system and the model for the observations. Indeed, biological systems live in continuous time, and mechanisms can be expressed in the form of a system of differential equations, while observations are taken at discrete times. Inference in mechanistic models is challenging, particularly from a numerical point of view, but these models can yield much richer and reliable results.

  15. Distinguishing Mediational Models and Analyses in Clinical Psychology: Atemporal Associations Do Not Imply Causation.

    PubMed

    Winer, E Samuel; Cervone, Daniel; Bryant, Jessica; McKinney, Cliff; Liu, Richard T; Nadorff, Michael R

    2016-09-01

    A popular way to attempt to discern causality in clinical psychology is through mediation analysis. However, mediation analysis is sometimes applied to research questions in clinical psychology when inferring causality is impossible. This practice may soon increase with new, readily available, and easy-to-use statistical advances. Thus, we here provide a heuristic to remind clinical psychological scientists of the assumptions of mediation analyses. We describe recent statistical advances and unpack assumptions of causality in mediation, underscoring the importance of time in understanding mediational hypotheses and analyses in clinical psychology. Example analyses demonstrate that statistical mediation can occur despite theoretical mediation being improbable. We propose a delineation of mediational effects derived from cross-sectional designs into the terms temporal and atemporal associations to emphasize time in conceptualizing process models in clinical psychology. The general implications for mediational hypotheses and the temporal frameworks from within which they may be drawn are discussed. © 2016 Wiley Periodicals, Inc.

  16. A Causal and Mediation Analysis of the Comorbidity between Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD)

    ERIC Educational Resources Information Center

    Sokolova, Elena; Oerlemans, Anoek M.; Rommelse, Nanda N.; Groot, Perry; Hartman, Catharina A.; Glennon, Jeffrey C.; Claassen, Tom; Heskes, Tom; Buitelaar, Jan K.

    2017-01-01

    Autism spectrum disorder (ASD) and Attention-deficit/hyperactivity disorder (ADHD) are often comorbid. The purpose of this study is to explore the relationships between ASD and ADHD symptoms by applying causal modeling. We used a large phenotypic data set of 417 children with ASD and/or ADHD, 562 affected and unaffected siblings, and 414 controls,…

  17. CAUSAL ANALYSIS AND PROBABILITY DATA: EXAMPLES FOR IMPAIRED AQUATIC CONDITION

    EPA Science Inventory

    Causal analysis is plausible reasoning applied to diagnosing observed effect(s), for example, diagnosing

    cause of biological impairment in a stream. Sir Bradford Hill basically defined the application of causal

    analysis when he enumerated the elements of causality f...

  18. Granger causality network reconstruction of conductance-based integrate-and-fire neuronal systems.

    PubMed

    Zhou, Douglas; Xiao, Yanyang; Zhang, Yaoyu; Xu, Zhiqin; Cai, David

    2014-01-01

    Reconstruction of anatomical connectivity from measured dynamical activities of coupled neurons is one of the fundamental issues in the understanding of structure-function relationship of neuronal circuitry. Many approaches have been developed to address this issue based on either electrical or metabolic data observed in experiment. The Granger causality (GC) analysis remains one of the major approaches to explore the dynamical causal connectivity among individual neurons or neuronal populations. However, it is yet to be clarified how such causal connectivity, i.e., the GC connectivity, can be mapped to the underlying anatomical connectivity in neuronal networks. We perform the GC analysis on the conductance-based integrate-and-fire (I&F) neuronal networks to obtain their causal connectivity. Through numerical experiments, we find that the underlying synaptic connectivity amongst individual neurons or subnetworks, can be successfully reconstructed by the GC connectivity constructed from voltage time series. Furthermore, this reconstruction is insensitive to dynamical regimes and can be achieved without perturbing systems and prior knowledge of neuronal model parameters. Surprisingly, the synaptic connectivity can even be reconstructed by merely knowing the raster of systems, i.e., spike timing of neurons. Using spike-triggered correlation techniques, we establish a direct mapping between the causal connectivity and the synaptic connectivity for the conductance-based I&F neuronal networks, and show the GC is quadratically related to the coupling strength. The theoretical approach we develop here may provide a framework for examining the validity of the GC analysis in other settings.

  19. Granger Causality Network Reconstruction of Conductance-Based Integrate-and-Fire Neuronal Systems

    PubMed Central

    Zhou, Douglas; Xiao, Yanyang; Zhang, Yaoyu; Xu, Zhiqin; Cai, David

    2014-01-01

    Reconstruction of anatomical connectivity from measured dynamical activities of coupled neurons is one of the fundamental issues in the understanding of structure-function relationship of neuronal circuitry. Many approaches have been developed to address this issue based on either electrical or metabolic data observed in experiment. The Granger causality (GC) analysis remains one of the major approaches to explore the dynamical causal connectivity among individual neurons or neuronal populations. However, it is yet to be clarified how such causal connectivity, i.e., the GC connectivity, can be mapped to the underlying anatomical connectivity in neuronal networks. We perform the GC analysis on the conductance-based integrate-and-fire (IF) neuronal networks to obtain their causal connectivity. Through numerical experiments, we find that the underlying synaptic connectivity amongst individual neurons or subnetworks, can be successfully reconstructed by the GC connectivity constructed from voltage time series. Furthermore, this reconstruction is insensitive to dynamical regimes and can be achieved without perturbing systems and prior knowledge of neuronal model parameters. Surprisingly, the synaptic connectivity can even be reconstructed by merely knowing the raster of systems, i.e., spike timing of neurons. Using spike-triggered correlation techniques, we establish a direct mapping between the causal connectivity and the synaptic connectivity for the conductance-based IF neuronal networks, and show the GC is quadratically related to the coupling strength. The theoretical approach we develop here may provide a framework for examining the validity of the GC analysis in other settings. PMID:24586285

  20. The Specification of Causal Models with Tetrad IV: A Review

    ERIC Educational Resources Information Center

    Landsheer, J. A.

    2010-01-01

    Tetrad IV is a program designed for the specification of causal models. It is specifically designed to search for causal relations, but also offers the possibility to estimate the parameters of a structural equation model. It offers a remarkable graphical user interface, which facilitates building, evaluating, and searching for causal models. The…

  1. Influence of Resting Venous Blood Volume Fraction on Dynamic Causal Modeling and System Identifiability.

    PubMed

    Hu, Zhenghui; Ni, Pengyu; Wan, Qun; Zhang, Yan; Shi, Pengcheng; Lin, Qiang

    2016-07-08

    Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity.

  2. A Causal and Mediation Analysis of the Comorbidity Between Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD).

    PubMed

    Sokolova, Elena; Oerlemans, Anoek M; Rommelse, Nanda N; Groot, Perry; Hartman, Catharina A; Glennon, Jeffrey C; Claassen, Tom; Heskes, Tom; Buitelaar, Jan K

    2017-06-01

    Autism spectrum disorder (ASD) and Attention-deficit/hyperactivity disorder (ADHD) are often comorbid. The purpose of this study is to explore the relationships between ASD and ADHD symptoms by applying causal modeling. We used a large phenotypic data set of 417 children with ASD and/or ADHD, 562 affected and unaffected siblings, and 414 controls, to infer a structural equation model using a causal discovery algorithm. Three distinct pathways between ASD and ADHD were identified: (1) from impulsivity to difficulties with understanding social information, (2) from hyperactivity to stereotypic, repetitive behavior, (3) a pairwise pathway between inattention, difficulties with understanding social information, and verbal IQ. These findings may inform future studies on understanding the pathophysiological mechanisms behind the overlap between ASD and ADHD.

  3. Graphical modeling of gene expression in monocytes suggests molecular mechanisms explaining increased atherosclerosis in smokers.

    PubMed

    Verdugo, Ricardo A; Zeller, Tanja; Rotival, Maxime; Wild, Philipp S; Münzel, Thomas; Lackner, Karl J; Weidmann, Henri; Ninio, Ewa; Trégouët, David-Alexandre; Cambien, François; Blankenberg, Stefan; Tiret, Laurence

    2013-01-01

    Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells. We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed genes were identified by Independent Component Analysis (ICA) and network structure of the pattern-specific gene modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit models containing a path "smoking→gene expression→plaques". Robustness of the causal inference was assessed by bootstrapping. At a FDR ≤0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the "smoking→gene expression→plaques" causality model. Conversely, three modules had good support for causal effects and exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts. Inspection of correlation structure revealed candidates that would be missed by expression-phenotype association analysis alone.

  4. Graphical Modeling of Gene Expression in Monocytes Suggests Molecular Mechanisms Explaining Increased Atherosclerosis in Smokers

    PubMed Central

    Verdugo, Ricardo A.; Zeller, Tanja; Rotival, Maxime; Wild, Philipp S.; Münzel, Thomas; Lackner, Karl J.; Weidmann, Henri; Ninio, Ewa; Trégouët, David-Alexandre; Cambien, François; Blankenberg, Stefan; Tiret, Laurence

    2013-01-01

    Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells. We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed genes were identified by Independent Component Analysis (ICA) and network structure of the pattern-specific gene modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit models containing a path “smoking→gene expression→plaques”. Robustness of the causal inference was assessed by bootstrapping. At a FDR ≤0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the “smoking→gene expression→plaques” causality model. Conversely, three modules had good support for causal effects and exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts. Inspection of correlation structure revealed candidates that would be missed by expression-phenotype association analysis alone. PMID:23372645

  5. Hip fracture in the elderly: a re-analysis of the EPIDOS study with causal Bayesian networks.

    PubMed

    Caillet, Pascal; Klemm, Sarah; Ducher, Michel; Aussem, Alexandre; Schott, Anne-Marie

    2015-01-01

    Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach. EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences. Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density. Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people.

  6. Formulating and Answering High-Impact Causal Questions in Physiologic Childbirth Science: Concepts and Assumptions.

    PubMed

    Snowden, Jonathan M; Tilden, Ellen L; Odden, Michelle C

    2018-06-08

    In this article, we conclude our 3-part series by focusing on several concepts that have proven useful for formulating causal questions and inferring causal effects. The process of causal inference is of key importance for physiologic childbirth science, so each concept is grounded in content related to women at low risk for perinatal complications. A prerequisite to causal inference is determining that the question of interest is causal rather than descriptive or predictive. Another critical step in defining a high-impact causal question is assessing the state of existing research for evidence of causality. We introduce 2 causal frameworks that are useful for this undertaking, Hill's causal considerations and the sufficient-component cause model. We then provide 3 steps to aid perinatal researchers in inferring causal effects in a given study. First, the researcher should formulate a rigorous and clear causal question. We introduce an example of epidural analgesia and labor progression to demonstrate this process, including the central role of temporality. Next, the researcher should assess the suitability of the given data set to answer this causal question. In randomized controlled trials, data are collected with the express purpose of answering the causal question. Investigators using observational data should also ensure that their chosen causal question is answerable with the available data. Finally, investigators should design an analysis plan that targets the causal question of interest. Some data structures (eg, time-dependent confounding by labor progress when estimating the effect of epidural analgesia on postpartum hemorrhage) require specific analytical tools to control for bias and estimate causal effects. The assumptions of consistency, exchangeability, and positivity may be especially useful in carrying out these steps. Drawing on appropriate causal concepts and considering relevant assumptions strengthens our confidence that research has reduced the likelihood of alternative explanations (eg bias, chance) and estimated a causal effect. © 2018 by the American College of Nurse-Midwives.

  7. Causal inference and longitudinal data: a case study of religion and mental health.

    PubMed

    VanderWeele, Tyler J; Jackson, John W; Li, Shanshan

    2016-11-01

    We provide an introduction to causal inference with longitudinal data and discuss the complexities of analysis and interpretation when exposures can vary over time. We consider what types of causal questions can be addressed with the standard regression-based analyses and what types of covariate control and control for the prior values of outcome and exposure must be made to reason about causal effects. We also consider newer classes of causal models, including marginal structural models, that can assess questions of the joint effects of time-varying exposures and can take into account feedback between the exposure and outcome over time. Such feedback renders cross-sectional data ineffective for drawing inferences about causation. The challenges are illustrated by analyses concerning potential effects of religious service attendance on depression, in which there may in fact be effects in both directions with service attendance preventing the subsequent depression, but depression itself leading to lower levels of the subsequent religious service attendance. Longitudinal designs, with careful control for prior exposures, outcomes, and confounders, and suitable methodology, will strengthen research on mental health, religion and health, and in the biomedical and social sciences generally.

  8. Causal mapping of emotion networks in the human brain: Framework and initial findings.

    PubMed

    Dubois, Julien; Oya, Hiroyuki; Tyszka, J Michael; Howard, Matthew; Eberhardt, Frederick; Adolphs, Ralph

    2017-11-13

    Emotions involve many cortical and subcortical regions, prominently including the amygdala. It remains unknown how these multiple network components interact, and it remains unknown how they cause the behavioral, autonomic, and experiential effects of emotions. Here we describe a framework for combining a novel technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, inferring causal structure from fMRI data (causal discovery). We outline a research program for investigating human emotion with these new tools, and provide initial findings from two large resting-state datasets as well as case studies in neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use causal discovery methods on fMRI data to infer causal graphical models of how brain regions interact, and then to further constrain these models with direct stimulation of specific brain regions and concurrent fMRI. We conclude by discussing limitations and future extensions. The approach could yield anatomical hypotheses about brain connectivity, motivate rational strategies for treating mood disorders with deep brain stimulation, and could be extended to animal studies that use combined optogenetic fMRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Granger causal time-dependent source connectivity in the somatosensory network

    NASA Astrophysics Data System (ADS)

    Gao, Lin; Sommerlade, Linda; Coffman, Brian; Zhang, Tongsheng; Stephen, Julia M.; Li, Dichen; Wang, Jue; Grebogi, Celso; Schelter, Bjoern

    2015-05-01

    Exploration of transient Granger causal interactions in neural sources of electrophysiological activities provides deeper insights into brain information processing mechanisms. However, the underlying neural patterns are confounded by time-dependent dynamics, non-stationarity and observational noise contamination. Here we investigate transient Granger causal interactions using source time-series of somatosensory evoked magnetoencephalographic (MEG) elicited by air puff stimulation of right index finger and recorded using 306-channel MEG from 21 healthy subjects. A new time-varying connectivity approach, combining renormalised partial directed coherence with state space modelling, is employed to estimate fast changing information flow among the sources. Source analysis confirmed that somatosensory evoked MEG was mainly generated from the contralateral primary somatosensory cortex (SI) and bilateral secondary somatosensory cortices (SII). Transient Granger causality shows a serial processing of somatosensory information, 1) from contralateral SI to contralateral SII, 2) from contralateral SI to ipsilateral SII, 3) from contralateral SII to contralateral SI, and 4) from contralateral SII to ipsilateral SII. These results are consistent with established anatomical connectivity between somatosensory regions and previous source modeling results, thereby providing empirical validation of the time-varying connectivity analysis. We argue that the suggested approach provides novel information regarding transient cortical dynamic connectivity, which previous approaches could not assess.

  10. Multivariate co-integration analysis of the Kaya factors in Ghana.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-05-01

    The fundamental goal of the Government of Ghana's development agenda as enshrined in the Growth and Poverty Reduction Strategy to grow the economy to a middle income status of US$1000 per capita by the end of 2015 could be met by increasing the labour force, increasing energy supplies and expanding the energy infrastructure in order to achieve the sustainable development targets. In this study, a multivariate co-integration analysis of the Kaya factors namely carbon dioxide, total primary energy consumption, population and GDP was investigated in Ghana using vector error correction model with data spanning from 1980 to 2012. Our research results show an existence of long-run causality running from population, GDP and total primary energy consumption to carbon dioxide emissions. However, there is evidence of short-run causality running from population to carbon dioxide emissions. There was a bi-directional causality running from carbon dioxide emissions to energy consumption and vice versa. In other words, decreasing the primary energy consumption in Ghana will directly reduce carbon dioxide emissions. In addition, a bi-directional causality running from GDP to energy consumption and vice versa exists in the multivariate model. It is plausible that access to energy has a relationship with increasing economic growth and productivity in Ghana.

  11. Evaluating Alcoholics Anonymous's effect on drinking in Project MATCH using cross-lagged regression panel analysis.

    PubMed

    Magura, Stephen; Cleland, Charles M; Tonigan, J Scott

    2013-05-01

    The objective of the study is to determine whether Alcoholics Anonymous (AA) participation leads to reduced drinking and problems related to drinking within Project MATCH (Matching Alcoholism Treatments to Client Heterogeneity), an existing national alcoholism treatment data set. The method used is structural equation modeling of panel data with cross-lagged partial regression coefficients. The main advantage of this technique for the analysis of AA outcomes is that potential reciprocal causation between AA participation and drinking behavior can be explicitly modeled through the specification of finite causal lags. For the outpatient subsample (n = 952), the results strongly support the hypothesis that AA attendance leads to increases in alcohol abstinence and reduces drinking/ problems, whereas a causal effect in the reverse direction is unsupported. For the aftercare subsample (n = 774), the results are not as clear but also suggest that AA attendance leads to better outcomes. Although randomized controlled trials are the surest means of establishing causal relations between interventions and outcomes, such trials are rare in AA research for practical reasons. The current study successfully exploited the multiple data waves in Project MATCH to examine evidence of causality between AA participation and drinking outcomes. The study obtained unique statistical results supporting the effectiveness of AA primarily in the context of primary outpatient treatment for alcoholism.

  12. Reasoning with Causal Cycles

    ERIC Educational Resources Information Center

    Rehder, Bob

    2017-01-01

    This article assesses how people reason with categories whose features are related in causal cycles. Whereas models based on causal graphical models (CGMs) have enjoyed success modeling category-based judgments as well as a number of other cognitive phenomena, CGMs are only able to represent causal structures that are acyclic. A number of new…

  13. Normalizing the causality between time series.

    PubMed

    Liang, X San

    2015-08-01

    Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.

  14. Normalizing the causality between time series

    NASA Astrophysics Data System (ADS)

    Liang, X. San

    2015-08-01

    Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.

  15. Retrieving hydrological connectivity from empirical causality in karst systems

    NASA Astrophysics Data System (ADS)

    Delforge, Damien; Vanclooster, Marnik; Van Camp, Michel; Poulain, Amaël; Watlet, Arnaud; Hallet, Vincent; Kaufmann, Olivier; Francis, Olivier

    2017-04-01

    Because of their complexity, karst systems exhibit nonlinear dynamics. Moreover, if one attempts to model a karst, the hidden behavior complicates the choice of the most suitable model. Therefore, both intense investigation methods and nonlinear data analysis are needed to reveal the underlying hydrological connectivity as a prior for a consistent physically based modelling approach. Convergent Cross Mapping (CCM), a recent method, promises to identify causal relationships between time series belonging to the same dynamical systems. The method is based on phase space reconstruction and is suitable for nonlinear dynamics. As an empirical causation detection method, it could be used to highlight the hidden complexity of a karst system by revealing its inner hydrological and dynamical connectivity. Hence, if one can link causal relationships to physical processes, the method should show great potential to support physically based model structure selection. We present the results of numerical experiments using karst model blocks combined in different structures to generate time series from actual rainfall series. CCM is applied between the time series to investigate if the empirical causation detection is consistent with the hydrological connectivity suggested by the karst model.

  16. Optimal causal inference: estimating stored information and approximating causal architecture.

    PubMed

    Still, Susanne; Crutchfield, James P; Ellison, Christopher J

    2010-09-01

    We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding--a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.

  17. Prior knowledge driven Granger causality analysis on gene regulatory network discovery

    DOE PAGES

    Yao, Shun; Yoo, Shinjae; Yu, Dantong

    2015-08-28

    Our study focuses on discovering gene regulatory networks from time series gene expression data using the Granger causality (GC) model. However, the number of available time points (T) usually is much smaller than the number of target genes (n) in biological datasets. The widely applied pairwise GC model (PGC) and other regularization strategies can lead to a significant number of false identifications when n>>T. In this study, we proposed a new method, viz., CGC-2SPR (CGC using two-step prior Ridge regularization) to resolve the problem by incorporating prior biological knowledge about a target gene data set. In our simulation experiments, themore » propose new methodology CGC-2SPR showed significant performance improvement in terms of accuracy over other widely used GC modeling (PGC, Ridge and Lasso) and MI-based (MRNET and ARACNE) methods. In addition, we applied CGC-2SPR to a real biological dataset, i.e., the yeast metabolic cycle, and discovered more true positive edges with CGC-2SPR than with the other existing methods. In our research, we noticed a “ 1+1>2” effect when we combined prior knowledge and gene expression data to discover regulatory networks. Based on causality networks, we made a functional prediction that the Abm1 gene (its functions previously were unknown) might be related to the yeast’s responses to different levels of glucose. In conclusion, our research improves causality modeling by combining heterogeneous knowledge, which is well aligned with the future direction in system biology. Furthermore, we proposed a method of Monte Carlo significance estimation (MCSE) to calculate the edge significances which provide statistical meanings to the discovered causality networks. All of our data and source codes will be available under the link https://bitbucket.org/dtyu/granger-causality/wiki/Home.« less

  18. Uncertainty, Sensitivity Analysis, and Causal Identification in the Arctic using a Perturbed Parameter Ensemble of the HiLAT Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark

    Coupled climate models have a large number of input parameters that can affect output uncertainty. We conducted a sensitivity analysis of sea ice proper:es and Arc:c related climate variables to 5 parameters in the HiLAT climate model: air-ocean turbulent exchange parameter (C), conversion of water vapor to clouds (cldfrc_rhminl) and of ice crystals to snow (micro_mg_dcs), snow thermal conduc:vity (ksno), and maximum snow grain size (rsnw_mlt). We used an elementary effect (EE) approach to rank their importance for output uncertainty. EE is an extension of one-at-a-time sensitivity analyses, but it is more efficient in sampling multi-dimensional parameter spaces. We lookedmore » for emerging relationships among climate variables across the model ensemble, and used causal discovery algorithms to establish potential pathways for those relationships.« less

  19. The causal pie model: an epidemiological method applied to evolutionary biology and ecology

    PubMed Central

    Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette

    2014-01-01

    A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a “causal pie” of “component causes”. Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made. PMID:24963386

  20. The causal pie model: an epidemiological method applied to evolutionary biology and ecology.

    PubMed

    Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette

    2014-05-01

    A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a "causal pie" of "component causes". Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made.

  1. Disentangling the causal relationships between work-home interference and employee health.

    PubMed

    van Hooff, Madelon L M; Geurts, Sabine A E; Taris, Toon W; Kompier, Michiel A J; Dikkers, Josje S E; Houtman, Irene L D; van den Heuvel, Floor M M

    2005-02-01

    The present study was designed to investigate the causal relationships between (time- and strain-based) work-home interference and employee health. The effort-recovery theory provided the theoretical basis for this study. Two-phase longitudinal data (with a 1-year time lag) were gathered from 730 Dutch police officers to test the following hypotheses with structural equation modeling: (i) work-home interference predicts health deterioration, (ii) health complaints precede increased levels of such interference, and (iii) both processes operate. The relationship between stable and changed levels of work-home interference across time and their relationships with the course of health were tested with a group-by-time analysis of variance. Four subgroups were created that differed in starting point and the development of work-home interference across time. The normal causal model, in which strain-based (but not time-based) work-home interference was longitudinally related to increased health complaints 1 year later, fit the data well and significantly better than the reversed causal model. Although the reciprocal model also provided a good fit, it was less parsimonious than the normal causal model. In addition, both an increment in (strain-based) work-home interference across time and a long-lasting experience of high (strain-based) work-home interference were associated with a deterioration in health. It was concluded that (strain-based) work-home interference acts as a precursor of health impairment and that different patterns of (strain-based) work-home interference across time are related to different health courses. Particularly long-term experience of (strain-based) work-home interference seems responsible for an accumulation of health complaints.

  2. Evaluating WAIS-IV structure through a different psychometric lens: structural causal model discovery as an alternative to confirmatory factor analysis.

    PubMed

    van Dijk, Marjolein J A M; Claassen, Tom; Suwartono, Christiany; van der Veld, William M; van der Heijden, Paul T; Hendriks, Marc P H

    Since the publication of the WAIS-IV in the U.S. in 2008, efforts have been made to explore the structural validity by applying factor analysis to various samples. This study aims to achieve a more fine-grained understanding of the structure of the Dutch language version of the WAIS-IV (WAIS-IV-NL) by applying an alternative analysis based on causal modeling in addition to confirmatory factor analysis (CFA). The Bayesian Constraint-based Causal Discovery (BCCD) algorithm learns underlying network structures directly from data and assesses more complex structures than is possible with factor analysis. WAIS-IV-NL profiles of two clinical samples of 202 patients (i.e. patients with temporal lobe epilepsy and a mixed psychiatric outpatient group) were analyzed and contrasted with a matched control group (N = 202) selected from the Dutch standardization sample of the WAIS-IV-NL to investigate internal structure by means of CFA and BCCD. With CFA, the four-factor structure as proposed by Wechsler demonstrates acceptable fit in all three subsamples. However, BCCD revealed three consistent clusters (verbal comprehension, visual processing, and processing speed) in all three subsamples. The combination of Arithmetic and Digit Span as a coherent working memory factor could not be verified, and Matrix Reasoning appeared to be isolated. With BCCD, some discrepancies from the proposed four-factor structure are exemplified. Furthermore, these results fit CHC theory of intelligence more clearly. Consistent clustering patterns indicate these results are robust. The structural causal discovery approach may be helpful in better interpreting existing tests, the development of new tests, and aid in diagnostic instruments.

  3. An Analysis on the Unemployment Rate in the Philippines: A Time Series Data Approach

    NASA Astrophysics Data System (ADS)

    Urrutia, J. D.; Tampis, R. L.; E Atienza, JB

    2017-03-01

    This study aims to formulate a mathematical model for forecasting and estimating unemployment rate in the Philippines. Also, factors which can predict the unemployment is to be determined among the considered variables namely Labor Force Rate, Population, Inflation Rate, Gross Domestic Product, and Gross National Income. Granger-causal relationship and integration among the dependent and independent variables are also examined using Pairwise Granger-causality test and Johansen Cointegration Test. The data used were acquired from the Philippine Statistics Authority, National Statistics Office, and Bangko Sentral ng Pilipinas. Following the Box-Jenkins method, the formulated model for forecasting the unemployment rate is SARIMA (6, 1, 5) × (0, 1, 1)4 with a coefficient of determination of 0.79. The actual values are 99 percent identical to the predicted values obtained through the model, and are 72 percent closely relative to the forecasted ones. According to the results of the regression analysis, Labor Force Rate and Population are the significant factors of unemployment rate. Among the independent variables, Population, GDP, and GNI showed to have a granger-causal relationship with unemployment. It is also found that there are at least four cointegrating relations between the dependent and independent variables.

  4. Causal premise semantics.

    PubMed

    Kaufmann, Stefan

    2013-08-01

    The rise of causality and the attendant graph-theoretic modeling tools in the study of counterfactual reasoning has had resounding effects in many areas of cognitive science, but it has thus far not permeated the mainstream in linguistic theory to a comparable degree. In this study I show that a version of the predominant framework for the formal semantic analysis of conditionals, Kratzer-style premise semantics, allows for a straightforward implementation of the crucial ideas and insights of Pearl-style causal networks. I spell out the details of such an implementation, focusing especially on the notions of intervention on a network and backtracking interpretations of counterfactuals. Copyright © 2013 Cognitive Science Society, Inc.

  5. Characterization of autoregressive processes using entropic quantifiers

    NASA Astrophysics Data System (ADS)

    Traversaro, Francisco; Redelico, Francisco O.

    2018-01-01

    The aim of the contribution is to introduce a novel information plane, the causal-amplitude informational plane. As previous works seems to indicate, Bandt and Pompe methodology for estimating entropy does not allow to distinguish between probability distributions which could be fundamental for simulation or for probability analysis purposes. Once a time series is identified as stochastic by the causal complexity-entropy informational plane, the novel causal-amplitude gives a deeper understanding of the time series, quantifying both, the autocorrelation strength and the probability distribution of the data extracted from the generating processes. Two examples are presented, one from climate change model and the other from financial markets.

  6. Detecting dynamic causal inference in nonlinear two-phase fracture flow

    NASA Astrophysics Data System (ADS)

    Faybishenko, Boris

    2017-08-01

    Identifying dynamic causal inference involved in flow and transport processes in complex fractured-porous media is generally a challenging task, because nonlinear and chaotic variables may be positively coupled or correlated for some periods of time, but can then become spontaneously decoupled or non-correlated. In his 2002 paper (Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis of time-series data obtained from the fracture flow experiment conducted by Persoff and Pruess (1995), and, based on the visual examination of time series data, hypothesized that the observed pressure oscillations at both inlet and outlet edges of the fracture result from a superposition of both forward and return waves of pressure propagation through the fracture. In the current paper, the author explores an application of a combination of methods for detecting nonlinear chaotic dynamics behavior along with the multivariate Granger Causality (G-causality) time series test. Based on the G-causality test, the author infers that his hypothesis is correct, and presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and capillary pressures measured at the inlet and outlet of the fracture. The causal modeling approach can be used for the analysis of other hydrological processes, for example, infiltration and pumping tests in heterogeneous subsurface media, and climatic processes, for example, to find correlations between various meteorological parameters, such as temperature, solar radiation, barometric pressure, etc.

  7. Assessing the strength of cardiac and sympathetic baroreflex controls via transfer entropy during orthostatic challenge

    NASA Astrophysics Data System (ADS)

    Porta, Alberto; Marchi, Andrea; Bari, Vlasta; De Maria, Beatrice; Esler, Murray; Lambert, Elisabeth; Baumert, Mathias

    2017-05-01

    The study assesses the strength of the causal relation along baroreflex (BR) in humans during an incremental postural challenge soliciting the BR. Both cardiac BR (cBR) and sympathetic BR (sBR) were characterized via BR sequence approaches from spontaneous fluctuations of heart period (HP), systolic arterial pressure (SAP), diastolic arterial pressure (DAP) and muscle sympathetic nerve activity (MSNA). A model-based transfer entropy method was applied to quantify the strength of the coupling from SAP to HP and from DAP to MSNA. The confounding influences of respiration were accounted for. Twelve young healthy subjects (20-36 years, nine females) were sequentially tilted at 0°, 20°, 30° and 40°. We found that (i) the strength of the causal relation along the cBR increases with tilt table inclination, while that along the sBR is unrelated to it; (ii) the strength of the causal coupling is unrelated to the gain of the relation; (iii) transfer entropy indexes are significantly and positively associated with simplified causality indexes derived from BR sequence analysis. The study proves that causality indexes are complementary to traditional characterization of the BR and suggests that simple markers derived from BR sequence analysis might be fruitfully exploited to estimate causality along the BR. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  8. Transfer Entropy as a Log-Likelihood Ratio

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Bossomaier, Terry

    2012-09-01

    Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.

  9. Transfer entropy as a log-likelihood ratio.

    PubMed

    Barnett, Lionel; Bossomaier, Terry

    2012-09-28

    Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.

  10. Stochastic modeling of neurobiological time series: Power, coherence, Granger causality, and separation of evoked responses from ongoing activity

    NASA Astrophysics Data System (ADS)

    Chen, Yonghong; Bressler, Steven L.; Knuth, Kevin H.; Truccolo, Wilson A.; Ding, Mingzhou

    2006-06-01

    In this article we consider the stochastic modeling of neurobiological time series from cognitive experiments. Our starting point is the variable-signal-plus-ongoing-activity model. From this model a differentially variable component analysis strategy is developed from a Bayesian perspective to estimate event-related signals on a single trial basis. After subtracting out the event-related signal from recorded single trial time series, the residual ongoing activity is treated as a piecewise stationary stochastic process and analyzed by an adaptive multivariate autoregressive modeling strategy which yields power, coherence, and Granger causality spectra. Results from applying these methods to local field potential recordings from monkeys performing cognitive tasks are presented.

  11. Causal beliefs of the public and social acceptance of persons with mental illness: a comparative analysis of schizophrenia, depression and alcohol dependence.

    PubMed

    Schomerus, G; Matschinger, H; Angermeyer, M C

    2014-01-01

    There is an ongoing debate whether biological illness explanations improve tolerance towards persons with mental illness or not. Several theoretical models have been proposed to predict the relationship between causal beliefs and social acceptance. This study uses path models to compare different theoretical predictions regarding attitudes towards persons with schizophrenia, depression and alcohol dependence. In a representative population survey in Germany (n = 3642), we elicited agreement with belief in biogenetic causes, current stress and childhood adversities as causes of either disorder as described in an unlabelled case vignette. We further elicited potentially mediating attitudes related to different theories about the consequences of biogenetic causal beliefs (attribution theory: onset responsibility, offset responsibility; genetic essentialism: differentness, dangerousness; genetic optimism: treatability) and social acceptance. For each vignette condition, we calculated a multiple mediator path model containing all variables. Biogenetic beliefs were associated with lower social acceptance in schizophrenia and depression, and with higher acceptance in alcohol dependence. In schizophrenia and depression, perceived differentness and dangerousness mediated the largest indirect effects, the consequences of biogenetic causal explanations thus being in accordance with the predictions of genetic essentialism. Psychosocial causal beliefs had differential effects: belief in current stress as a cause was associated with higher acceptance in schizophrenia, while belief in childhood adversities resulted in lower acceptance of a person with depression. Biological causal explanations seem beneficial in alcohol dependence, but harmful in schizophrenia and depression. The negative correlates of believing in childhood adversities as a cause of depression merit further exploration.

  12. Introspective Reasoning Models for Multistrategy Case-Based and Explanation

    DTIC Science & Technology

    1997-03-10

    symptoms and diseases to causal 30 principles about diseases and first-principle analysis grounded in basic science. Based on research in process...the symptoms of the failure to conclusion that the process which posts learning goals a causal explanation of the failure. Secondl,,. the learner...the vernacular, a "jones" is a drug habit accompanied the faucet for water. Therefore, the story can end with by withdrawal symptoms . The verb "to jones

  13. New Insights into Signed Path Coefficient Granger Causality Analysis.

    PubMed

    Zhang, Jian; Li, Chong; Jiang, Tianzi

    2016-01-01

    Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of "signed path coefficient Granger causality," a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an "excitatory" or "inhibitory" influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation.

  14. Evaluating Social Causality and Responsibility Models: An Initial Report

    DTIC Science & Technology

    2005-01-01

    ICT Technical Report ICT-TR-03-2005 Evaluating Social Causality and Responsibility ... social intelligent agents. In this report, we present a general computational model of social causality and responsibility , and empirical results of...2005 to 00-00-2005 4. TITLE AND SUBTITLE Evaluating Social Causality and Responsibility Models: An Initial Report 5a. CONTRACT NUMBER 5b. GRANT

  15. Effective connectivity: Influence, causality and biophysical modeling

    PubMed Central

    Valdes-Sosa, Pedro A.; Roebroeck, Alard; Daunizeau, Jean; Friston, Karl

    2011-01-01

    This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering effective connectivity depends critically on state-space models with biophysically informed observation and state equations. These models have to be endowed with priors on unknown parameters and afford checks for model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger Causal Modeling and other approaches. We establish links between past and current statistical causal modeling, in terms of Bayesian dependency graphs and Wiener–Akaike–Granger–Schweder influence measures. We show that some of the challenges faced in this field have promising solutions and speculate on future developments. PMID:21477655

  16. Beyond Markov: Accounting for independence violations in causal reasoning.

    PubMed

    Rehder, Bob

    2018-06-01

    Although many theories of causal cognition are based on causal graphical models, a key property of such models-the independence relations stipulated by the Markov condition-is routinely violated by human reasoners. This article presents three new accounts of those independence violations, accounts that share the assumption that people's understanding of the correlational structure of data generated from a causal graph differs from that stipulated by causal graphical model framework. To distinguish these models, experiments assessed how people reason with causal graphs that are larger than those tested in previous studies. A traditional common cause network (Y 1 ←X→Y 2 ) was extended so that the effects themselves had effects (Z 1 ←Y 1 ←X→Y 2 →Z 2 ). A traditional common effect network (Y 1 →X←Y 2 ) was extended so that the causes themselves had causes (Z 1 →Y 1 →X←Y 2 ←Z 2 ). Subjects' inferences were most consistent with the beta-Q model in which consistent states of the world-those in which variables are either mostly all present or mostly all absent-are viewed as more probable than stipulated by the causal graphical model framework. Substantial variability in subjects' inferences was also observed, with the result that substantial minorities of subjects were best fit by one of the other models (the dual prototype or a leaky gate models). The discrepancy between normative and human causal cognition stipulated by these models is foundational in the sense that they locate the error not in people's causal reasoning but rather in their causal representations. As a result, they are applicable to any cognitive theory grounded in causal graphical models, including theories of analogy, learning, explanation, categorization, decision-making, and counterfactual reasoning. Preliminary evidence that independence violations indeed generalize to other judgment types is presented. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Burnout Study of Clinical Nurses in Vietnam: Development of Job Burnout Model Based on Leiter and Maslach's Theory.

    PubMed

    Nguyen, Huong Thi Thu; Kitaoka, Kazuyo; Sukigara, Masune; Thai, Anh Lan

    2018-03-01

    This study aimed to create a Vietnamese version of both the Maslach Burnout Inventory-General Survey (MBI-GS) and Areas of Worklife Scale (AWS) to assess the burnout state of Vietnamese clinical nurses and to develop a causal model of burnout of clinical nurses. We conducted a descriptive design using a cross-sectional survey. The questionnaire was hand divided directly by nursing departments to 500 clinical nurses in three hospitals. Vietnamese MBI-GS and AWS were then examined for reliability and validity. We used the revised exhaustion +1 burnout classification to access burnout state. We performed path analysis to develop a Vietnamese causal model based on the original model by Leiter and Maslach's theory. We found that both scales were reliable and valid for assessing burnout. Among nurse participants, the percentage of severe burnout was 0.7% and burnout was 15.8%, and 17.2% of nurses were exhausted. The best predictor of burnout was "on-duty work schedule" that clinical nurses have to work for 24 hours. In the causal model, we also found similarity and difference pathways in comparison with the original model. Vietnamese MBI-GS and AWS were applicable to research on occupational stress. Nearly one-fifth of Vietnamese clinical nurses were working in burnout state. The causal model suggested a range of factors resulting in burnout, and it is necessary to consider the specific solution to prevent burnout problem. Copyright © 2018. Published by Elsevier B.V.

  18. Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information

    NASA Astrophysics Data System (ADS)

    Li, Songting; Xiao, Yanyang; Zhou, Douglas; Cai, David

    2018-05-01

    The Granger causality (GC) analysis has been extensively applied to infer causal interactions in dynamical systems arising from economy and finance, physics, bioinformatics, neuroscience, social science, and many other fields. In the presence of potential nonlinearity in these systems, the validity of the GC analysis in general is questionable. To illustrate this, here we first construct minimal nonlinear systems and show that the GC analysis fails to infer causal relations in these systems—it gives rise to all types of incorrect causal directions. In contrast, we show that the time-delayed mutual information (TDMI) analysis is able to successfully identify the direction of interactions underlying these nonlinear systems. We then apply both methods to neuroscience data collected from experiments and demonstrate that the TDMI analysis but not the GC analysis can identify the direction of interactions among neuronal signals. Our work exemplifies inference hazards in the GC analysis in nonlinear systems and suggests that the TDMI analysis can be an appropriate tool in such a case.

  19. Making the most of sparse clinical data by using a predictive-model-based analysis, illustrated with a stavudine pharmacokinetic study.

    PubMed

    Zhang, L; Price, R; Aweeka, F; Bellibas, S E; Sheiner, L B

    2001-02-01

    A small-scale clinical investigation was done to quantify the penetration of stavudine (D4T) into cerebrospinal fluid (CSF). A model-based analysis estimates the steady-state ratio of AUCs of CSF and plasma concentrations (R(AUC)) to be 0.270, and the mean residence time of drug in the CSF to be 7.04 h. The analysis illustrates the advantages of a causal (scientific, predictive) model-based approach to analysis over a noncausal (empirical, descriptive) approach when the data, as here, demonstrate certain problematic features commonly encountered in clinical data, namely (i) few subjects, (ii) sparse sampling, (iii) repeated measures, (iv) imbalance, and (v) individual design variation. These features generally require special attention in data analysis. The causal-model-based analysis deals with features (i) and (ii), both of which reduce efficiency, by combining data from different studies and adding subject-matter prior information. It deals with features (iii)--(v), all of which prevent 'averaging' individual data points directly, first, by adjusting in the model for interindividual data differences due to design differences, secondly, by explicitly differentiating between interpatient, interoccasion, and measurement error variation, and lastly, by defining a scientifically meaningful estimand (R(AUC)) that is independent of design.

  20. Mechanisms and mediation in survival analysis: towards an integrated analytical framework.

    PubMed

    Pratschke, Jonathan; Haase, Trutz; Comber, Harry; Sharp, Linda; de Camargo Cancela, Marianna; Johnson, Howard

    2016-02-29

    A wide-ranging debate has taken place in recent years on mediation analysis and causal modelling, raising profound theoretical, philosophical and methodological questions. The authors build on the results of these discussions to work towards an integrated approach to the analysis of research questions that situate survival outcomes in relation to complex causal pathways with multiple mediators. The background to this contribution is the increasingly urgent need for policy-relevant research on the nature of inequalities in health and healthcare. The authors begin by summarising debates on causal inference, mediated effects and statistical models, showing that these three strands of research have powerful synergies. They review a range of approaches which seek to extend existing survival models to obtain valid estimates of mediation effects. They then argue for an alternative strategy, which involves integrating survival outcomes within Structural Equation Models via the discrete-time survival model. This approach can provide an integrated framework for studying mediation effects in relation to survival outcomes, an issue of great relevance in applied health research. The authors provide an example of how these techniques can be used to explore whether the social class position of patients has a significant indirect effect on the hazard of death from colon cancer. The results suggest that the indirect effects of social class on survival are substantial and negative (-0.23 overall). In addition to the substantial direct effect of this variable (-0.60), its indirect effects account for more than one quarter of the total effect. The two main pathways for this indirect effect, via emergency admission (-0.12), on the one hand, and hospital caseload, on the other, (-0.10) are of similar size. The discrete-time survival model provides an attractive way of integrating time-to-event data within the field of Structural Equation Modelling. The authors demonstrate the efficacy of this approach in identifying complex causal pathways that mediate the effects of a socio-economic baseline covariate on the hazard of death from colon cancer. The results show that this approach has the potential to shed light on a class of research questions which is of particular relevance in health research.

  1. Final Report for Dynamic Models for Causal Analysis of Panel Data. Models for Change in Quantitative Variables, Part II Scholastic Models. Part II, Chapter 4.

    ERIC Educational Resources Information Center

    Hannan, Michael T.

    This document is part of a series of chapters described in SO 011 759. Stochastic models for the sociological analysis of change and the change process in quantitative variables are presented. The author lays groundwork for the statistical treatment of simple stochastic differential equations (SDEs) and discusses some of the continuities of…

  2. Influence of Resting Venous Blood Volume Fraction on Dynamic Causal Modeling and System Identifiability

    PubMed Central

    Hu, Zhenghui; Ni, Pengyu; Wan, Qun; Zhang, Yan; Shi, Pengcheng; Lin, Qiang

    2016-01-01

    Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling (DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In this study we addressed this issue by using both synthetic and real experiments. The results show that the ability of DCM analysis to reveal information about brain causality depends critically on the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of system connections, but more importantly also affects the inferences about the network architecture. Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., by making V0 a free parameter); however, the conditional dependencies induced by a more complex model may create more problems than they solve. Obtaining more realistic V0 information in DCM can improve the identifiability of the system and would provide more reliable inferences about the properties of brain connectivity. PMID:27389074

  3. Functional linear models for association analysis of quantitative traits.

    PubMed

    Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao

    2013-11-01

    Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY PERIODICALS, INC.

  4. Model Ambiguities in Configurational Comparative Research

    ERIC Educational Resources Information Center

    Baumgartner, Michael; Thiem, Alrik

    2017-01-01

    For many years, sociologists, political scientists, and management scholars have readily relied on Qualitative Comparative Analysis (QCA) for the purpose of configurational causal modeling. However, this article reveals that a severe problem in the application of QCA has gone unnoticed so far: model ambiguities. These arise when multiple causal…

  5. A Causal Model of Faculty Research Productivity.

    ERIC Educational Resources Information Center

    Bean, John P.

    A causal model of faculty research productivity was developed through a survey of the literature. Models of organizational behavior, organizational effectiveness, and motivation were synthesized into a causal model of productivity. Two general types of variables were assumed to affect individual research productivity: institutional variables and…

  6. Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing.

    PubMed

    Garcia, Virginie; Bres, Cécile; Just, Daniel; Fernandez, Lucie; Tai, Fabienne Wong Jun; Mauxion, Jean-Philippe; Le Paslier, Marie-Christine; Bérard, Aurélie; Brunel, Dominique; Aoki, Koh; Alseekh, Saleh; Fernie, Alisdair R; Fraser, Paul D; Rothan, Christophe

    2016-12-01

    The tomato is the model species of choice for fleshy fruit development and for the Solanaceae family. Ethyl methanesulfonate (EMS) mutants of tomato have already proven their utility for analysis of gene function in plants, leading to improved breeding stocks and superior tomato varieties. However, until recently, the identification of causal mutations that underlie particular phenotypes has been a very lengthy task that many laboratories could not afford because of spatial and technical limitations. Here, we describe a simple protocol for identifying causal mutations in tomato using a mapping-by-sequencing strategy. Plants displaying phenotypes of interest are first isolated by screening an EMS mutant collection generated in the miniature cultivar Micro-Tom. A recombinant F 2 population is then produced by crossing the mutant with a wild-type (WT; non-mutagenized) genotype, and F 2 segregants displaying the same phenotype are subsequently pooled. Finally, whole-genome sequencing and analysis of allele distributions in the pools allow for the identification of the causal mutation. The whole process, from the isolation of the tomato mutant to the identification of the causal mutation, takes 6-12 months. This strategy overcomes many previous limitations, is simple to use and can be applied in most laboratories with limited facilities for plant culture and genotyping.

  7. A Kernel Embedding-Based Approach for Nonstationary Causal Model Inference.

    PubMed

    Hu, Shoubo; Chen, Zhitang; Chan, Laiwan

    2018-05-01

    Although nonstationary data are more common in the real world, most existing causal discovery methods do not take nonstationarity into consideration. In this letter, we propose a kernel embedding-based approach, ENCI, for nonstationary causal model inference where data are collected from multiple domains with varying distributions. In ENCI, we transform the complicated relation of a cause-effect pair into a linear model of variables of which observations correspond to the kernel embeddings of the cause-and-effect distributions in different domains. In this way, we are able to estimate the causal direction by exploiting the causal asymmetry of the transformed linear model. Furthermore, we extend ENCI to causal graph discovery for multiple variables by transforming the relations among them into a linear nongaussian acyclic model. We show that by exploiting the nonstationarity of distributions, both cause-effect pairs and two kinds of causal graphs are identifiable under mild conditions. Experiments on synthetic and real-world data are conducted to justify the efficacy of ENCI over major existing methods.

  8. Participatory Development and Analysis of a Fuzzy Cognitive Map of the Establishment of a Bio-Based Economy in the Humber Region

    PubMed Central

    Penn, Alexandra S.; Knight, Christopher J. K.; Lloyd, David J. B.; Avitabile, Daniele; Kok, Kasper; Schiller, Frank; Woodward, Amy; Druckman, Angela; Basson, Lauren

    2013-01-01

    Fuzzy Cognitive Mapping (FCM) is a widely used participatory modelling methodology in which stakeholders collaboratively develop a ‘cognitive map’ (a weighted, directed graph), representing the perceived causal structure of their system. This can be directly transformed by a workshop facilitator into simple mathematical models to be interrogated by participants by the end of the session. Such simple models provide thinking tools which can be used for discussion and exploration of complex issues, as well as sense checking the implications of suggested causal links. They increase stakeholder motivation and understanding of whole systems approaches, but cannot be separated from an intersubjective participatory context. Standard FCM methodologies make simplifying assumptions, which may strongly influence results, presenting particular challenges and opportunities. We report on a participatory process, involving local companies and organisations, focussing on the development of a bio-based economy in the Humber region. The initial cognitive map generated consisted of factors considered key for the development of the regional bio-based economy and their directional, weighted, causal interconnections. A verification and scenario generation procedure, to check the structure of the map and suggest modifications, was carried out with a second session. Participants agreed on updates to the original map and described two alternate potential causal structures. In a novel analysis all map structures were tested using two standard methodologies usually used independently: linear and sigmoidal FCMs, demonstrating some significantly different results alongside some broad similarities. We suggest a development of FCM methodology involving a sensitivity analysis with different mappings and discuss the use of this technique in the context of our case study. Using the results and analysis of our process, we discuss the limitations and benefits of the FCM methodology in this case and in general. We conclude by proposing an extended FCM methodology, including multiple functional mappings within one participant-constructed graph. PMID:24244303

  9. A State Space Modeling Approach to Mediation Analysis

    ERIC Educational Resources Information Center

    Gu, Fei; Preacher, Kristopher J.; Ferrer, Emilio

    2014-01-01

    Mediation is a causal process that evolves over time. Thus, a study of mediation requires data collected throughout the process. However, most applications of mediation analysis use cross-sectional rather than longitudinal data. Another implicit assumption commonly made in longitudinal designs for mediation analysis is that the same mediation…

  10. Quasi-Experimental Analysis: A Mixture of Methods and Judgment.

    ERIC Educational Resources Information Center

    Cordray, David S.

    1986-01-01

    The role of human judgment in the development and synthesis of evidence has not been adequately developed or acknowledged within quasi-experimental analysis. Corrective solutions need to confront the fact that causal analysis within complex environments will require a more active assessment that entails reasoning and statistical modeling.…

  11. New Insights into Signed Path Coefficient Granger Causality Analysis

    PubMed Central

    Zhang, Jian; Li, Chong; Jiang, Tianzi

    2016-01-01

    Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of “signed path coefficient Granger causality,” a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an “excitatory” or “inhibitory” influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation. PMID:27833547

  12. Multifactorial causal model of brain (dis)organization and therapeutic intervention: Application to Alzheimer's disease.

    PubMed

    Iturria-Medina, Yasser; Carbonell, Félix M; Sotero, Roberto C; Chouinard-Decorte, Francois; Evans, Alan C

    2017-05-15

    Generative models focused on multifactorial causal mechanisms in brain disorders are scarce and generally based on limited data. Despite the biological importance of the multiple interacting processes, their effects remain poorly characterized from an integrative analytic perspective. Here, we propose a spatiotemporal multifactorial causal model (MCM) of brain (dis)organization and therapeutic intervention that accounts for local causal interactions, effects propagation via physical brain networks, cognitive alterations, and identification of optimum therapeutic interventions. In this article, we focus on describing the model and applying it at the population-based level for studying late onset Alzheimer's disease (LOAD). By interrelating six different neuroimaging modalities and cognitive measurements, this model accurately predicts spatiotemporal alterations in brain amyloid-β (Aβ) burden, glucose metabolism, vascular flow, resting state functional activity, structural properties, and cognitive integrity. The results suggest that a vascular dysregulation may be the most-likely initial pathologic event leading to LOAD. Nevertheless, they also suggest that LOAD it is not caused by a unique dominant biological factor (e.g. vascular or Aβ) but by the complex interplay among multiple relevant direct interactions. Furthermore, using theoretical control analysis of the identified population-based multifactorial causal network, we show the crucial advantage of using combinatorial over single-target treatments, explain why one-target Aβ based therapies might fail to improve clinical outcomes, and propose an efficiency ranking of possible LOAD interventions. Although still requiring further validation at the individual level, this work presents the first analytic framework for dynamic multifactorial brain (dis)organization that may explain both the pathologic evolution of progressive neurological disorders and operationalize the influence of multiple interventional strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Genetic regulation of gene expression in the lung identifies CST3 and CD22 as potential causal genes for airflow obstruction.

    PubMed

    Lamontagne, Maxime; Timens, Wim; Hao, Ke; Bossé, Yohan; Laviolette, Michel; Steiling, Katrina; Campbell, Joshua D; Couture, Christian; Conti, Massimo; Sherwood, Karen; Hogg, James C; Brandsma, Corry-Anke; van den Berge, Maarten; Sandford, Andrew; Lam, Stephen; Lenburg, Marc E; Spira, Avrum; Paré, Peter D; Nickle, David; Sin, Don D; Postma, Dirkje S

    2014-11-01

    COPD is a complex chronic disease with poorly understood pathogenesis. Integrative genomic approaches have the potential to elucidate the biological networks underlying COPD and lung function. We recently combined genome-wide genotyping and gene expression in 1111 human lung specimens to map expression quantitative trait loci (eQTL). To determine causal associations between COPD and lung function-associated single nucleotide polymorphisms (SNPs) and lung tissue gene expression changes in our lung eQTL dataset. We evaluated causality between SNPs and gene expression for three COPD phenotypes: FEV(1)% predicted, FEV(1)/FVC and COPD as a categorical variable. Different models were assessed in the three cohorts independently and in a meta-analysis. SNPs associated with a COPD phenotype and gene expression were subjected to causal pathway modelling and manual curation. In silico analyses evaluated functional enrichment of biological pathways among newly identified causal genes. Biologically relevant causal genes were validated in two separate gene expression datasets of lung tissues and bronchial airway brushings. High reliability causal relations were found in SNP-mRNA-phenotype triplets for FEV(1)% predicted (n=169) and FEV(1)/FVC (n=80). Several genes of potential biological relevance for COPD were revealed. eQTL-SNPs upregulating cystatin C (CST3) and CD22 were associated with worse lung function. Signalling pathways enriched with causal genes included xenobiotic metabolism, apoptosis, protease-antiprotease and oxidant-antioxidant balance. By using integrative genomics and analysing the relationships of COPD phenotypes with SNPs and gene expression in lung tissue, we identified CST3 and CD22 as potential causal genes for airflow obstruction. This study also augmented the understanding of previously described COPD pathways. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Association between lipoprotein(a) level and type 2 diabetes: no evidence for a causal role of lipoprotein(a) and insulin.

    PubMed

    Buchmann, Nikolaus; Scholz, Markus; Lill, Christina M; Burkhardt, Ralph; Eckardt, Rahel; Norman, Kristina; Loeffler, Markus; Bertram, Lars; Thiery, Joachim; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja

    2017-11-01

    Inverse relationships have been described between the largely genetically determined levels of serum/plasma lipoprotein(a) [Lp(a)], type 2 diabetes (T2D) and fasting insulin. Here, we aimed to evaluate the nature of these relationships with respect to causality. We tested whether we could replicate the recent negative findings on causality between Lp(a) and T2D by employing the Mendelian randomization (MR) approach using cross-sectional data from three independent cohorts, Berlin Aging Study II (BASE-II; n = 2012), LIFE-Adult (n = 3281) and LIFE-Heart (n = 2816). Next, we explored another frequently discussed hypothesis in this context: Increasing insulin levels during the course of T2D disease development inhibits hepatic Lp(a) synthesis and thereby might explain the inverse Lp(a)-T2D association. We used two fasting insulin-associated variants, rs780094 and rs10195252, as instrumental variables in MR analysis of n = 4937 individuals from BASE-II and LIFE-Adult. We further investigated causality of the association between fasting insulin and Lp(a) by combined MR analysis of 12 additional SNPs in LIFE-Adult. While an Lp(a)-T2D association was observed in the combined analysis (meta-effect of OR [95% CI] = 0.91 [0.87-0.96] per quintile, p = 1.3x10 -4 ), we found no evidence of causality in the Lp(a)-T2D association (p = 0.29, fixed effect model) when using the variant rs10455872 as the instrumental variable in the MR analyses. Likewise, no evidence of a causal effect of insulin on Lp(a) levels was found. While these results await confirmation in larger cohorts, the nature of the inverse Lp(a)-T2D association remains to be elucidated.

  15. Causal modelling applied to the risk assessment of a wastewater discharge.

    PubMed

    Paul, Warren L; Rokahr, Pat A; Webb, Jeff M; Rees, Gavin N; Clune, Tim S

    2016-03-01

    Bayesian networks (BNs), or causal Bayesian networks, have become quite popular in ecological risk assessment and natural resource management because of their utility as a communication and decision-support tool. Since their development in the field of artificial intelligence in the 1980s, however, Bayesian networks have evolved and merged with structural equation modelling (SEM). Unlike BNs, which are constrained to encode causal knowledge in conditional probability tables, SEMs encode this knowledge in structural equations, which is thought to be a more natural language for expressing causal information. This merger has clarified the causal content of SEMs and generalised the method such that it can now be performed using standard statistical techniques. As it was with BNs, the utility of this new generation of SEM in ecological risk assessment will need to be demonstrated with examples to foster an understanding and acceptance of the method. Here, we applied SEM to the risk assessment of a wastewater discharge to a stream, with a particular focus on the process of translating a causal diagram (conceptual model) into a statistical model which might then be used in the decision-making and evaluation stages of the risk assessment. The process of building and testing a spatial causal model is demonstrated using data from a spatial sampling design, and the implications of the resulting model are discussed in terms of the risk assessment. It is argued that a spatiotemporal causal model would have greater external validity than the spatial model, enabling broader generalisations to be made regarding the impact of a discharge, and greater value as a tool for evaluating the effects of potential treatment plant upgrades. Suggestions are made on how the causal model could be augmented to include temporal as well as spatial information, including suggestions for appropriate statistical models and analyses.

  16. Path analysis of the genetic integration of traits in the sand cricket: a novel use of BLUPs.

    PubMed

    Roff, D A; Fairbairn, D J

    2011-09-01

    This study combines path analysis with quantitative genetics to analyse a key life history trade-off in the cricket, Gryllus firmus. We develop a path model connecting five traits associated with the trade-off between flight capability and reproduction and test this model using phenotypic data and estimates of breeding values (best linear unbiased predictors) from a half-sibling experiment. Strong support by both types of data validates our causal model and indicates concordance between the phenotypic and genetic expression of the trade-off. Comparisons of the trade-off between sexes and wing morphs reveal that these discrete phenotypes are not genetically independent and that the evolutionary trajectories of the two wing morphs are more tightly constrained to covary than those of the two sexes. Our results illustrate the benefits of combining a quantitative genetic analysis, which examines statistical correlations between traits, with a path model that focuses upon the causal components of variation. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  17. Interpretational confounding is due to misspecification, not to type of indicator: comment on Howell, Breivik, and Wilcox (2007).

    PubMed

    Bollen, Kenneth A

    2007-06-01

    R. D. Howell, E. Breivik, and J. B. Wilcox (2007) have argued that causal (formative) indicators are inherently subject to interpretational confounding. That is, they have argued that using causal (formative) indicators leads the empirical meaning of a latent variable to be other than that assigned to it by a researcher. Their critique of causal (formative) indicators rests on several claims: (a) A latent variable exists apart from the model when there are effect (reflective) indicators but not when there are causal (formative) indicators, (b) causal (formative) indicators need not have the same consequences, (c) causal (formative) indicators are inherently subject to interpretational confounding, and (d) a researcher cannot detect interpretational confounding when using causal (formative) indicators. This article shows that each claim is false. Rather, interpretational confounding is more a problem of structural misspecification of a model combined with an underidentified model that leaves these misspecifications undetected. Interpretational confounding does not occur if the model is correctly specified whether a researcher has causal (formative) or effect (reflective) indicators. It is the validity of a model not the type of indicator that determines the potential for interpretational confounding. Copyright 2007 APA, all rights reserved.

  18. 75 FR 35457 - Draft of the 2010 Causal Analysis/Diagnosis Decision Information System (CADDIS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... Causal Analysis/Diagnosis Decision Information System (CADDIS) AGENCY: Environmental Protection Agency... site, ``2010 release of the Causal Analysis/Diagnosis Decision Information System (CADDIS).'' The... analyses, downloadable software tools, and links to outside information sources. II. How to Submit Comments...

  19. Enhanced circulating transforming growth factor beta 1 is causally associated with an increased risk of hepatocellular carcinoma: a mendelian randomization meta-analysis.

    PubMed

    Lu, Wei-Qun; Qiu, Ji-Liang; Huang, Zhi-Liang; Liu, Hai-Ying

    2016-12-20

    The aim of this study was to test the causal association between circulating transforming growth factor beta 1 (protein: TGF-β1 and coding gene: TGFB1) and hepatocellular carcinoma by choosing TGFB1 gene C-509T polymorphism as an instrument in a Mendelian randomization (MR) meta-analysis. Ten English articles were identified for analysis. Two authors independently assessed each article and abstracted relevant data. Odds ratio (OR) and weighted mean difference (WMD) with 95% confidence interval (CI) were synthesized under a random-effects model. Overall, the association of C-509T polymorphism with hepatocellular carcinoma was negative, but its association with circulating TGF-β1 was statistically significant, with a higher concentration observed in carriers of the -509TT genotype (WMD, 95% CI, P: 1.72, 0.67-2.78, 0.001) and -509TT/-509TC genotypes (WMD, 95% CI, P: 0.98, 0.43-1.53, < 0.001). In subgroup analysis, C-509T polymorphism was significantly associated with hepatocellular carcinoma in population-based studies under homozygous-genotype (OR, 95% CI, P: 1.74, 1.08-2.80, 0.023) and dominant (OR, 95% CI, P: 1.48, 1.01-2.17, 0.047) models. Further MR analysis indicated that per unit increase in circulating TGF-β1 was significantly associated with a 38% (95% CI: 1.03-4.65) and 49% (95% CI: 1.01-6.06) increased risk of hepatocellular carcinoma under homozygous-genotype and dominant models, respectively. Conclusively, based on a MR meta-analysis, our findings suggest that enhanced circulating TGF-β1 is causally associated with an increased risk of hepatocellular carcinoma.

  20. A Simulation Study of Threats to Validity in Quasi-Experimental Designs: Interrelationship between Design, Measurement, and Analysis.

    PubMed

    Holgado-Tello, Fco P; Chacón-Moscoso, Salvador; Sanduvete-Chaves, Susana; Pérez-Gil, José A

    2016-01-01

    The Campbellian tradition provides a conceptual framework to assess threats to validity. On the other hand, different models of causal analysis have been developed to control estimation biases in different research designs. However, the link between design features, measurement issues, and concrete impact estimation analyses is weak. In order to provide an empirical solution to this problem, we use Structural Equation Modeling (SEM) as a first approximation to operationalize the analytical implications of threats to validity in quasi-experimental designs. Based on the analogies established between the Classical Test Theory (CTT) and causal analysis, we describe an empirical study based on SEM in which range restriction and statistical power have been simulated in two different models: (1) A multistate model in the control condition (pre-test); and (2) A single-trait-multistate model in the control condition (post-test), adding a new mediator latent exogenous (independent) variable that represents a threat to validity. Results show, empirically, how the differences between both the models could be partially or totally attributed to these threats. Therefore, SEM provides a useful tool to analyze the influence of potential threats to validity.

  1. A Simulation Study of Threats to Validity in Quasi-Experimental Designs: Interrelationship between Design, Measurement, and Analysis

    PubMed Central

    Holgado-Tello, Fco. P.; Chacón-Moscoso, Salvador; Sanduvete-Chaves, Susana; Pérez-Gil, José A.

    2016-01-01

    The Campbellian tradition provides a conceptual framework to assess threats to validity. On the other hand, different models of causal analysis have been developed to control estimation biases in different research designs. However, the link between design features, measurement issues, and concrete impact estimation analyses is weak. In order to provide an empirical solution to this problem, we use Structural Equation Modeling (SEM) as a first approximation to operationalize the analytical implications of threats to validity in quasi-experimental designs. Based on the analogies established between the Classical Test Theory (CTT) and causal analysis, we describe an empirical study based on SEM in which range restriction and statistical power have been simulated in two different models: (1) A multistate model in the control condition (pre-test); and (2) A single-trait-multistate model in the control condition (post-test), adding a new mediator latent exogenous (independent) variable that represents a threat to validity. Results show, empirically, how the differences between both the models could be partially or totally attributed to these threats. Therefore, SEM provides a useful tool to analyze the influence of potential threats to validity. PMID:27378991

  2. Classical Causal Models for Bell and Kochen-Specker Inequality Violations Require Fine-Tuning

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Eric G.

    2018-04-01

    Nonlocality and contextuality are at the root of conceptual puzzles in quantum mechanics, and they are key resources for quantum advantage in information-processing tasks. Bell nonlocality is best understood as the incompatibility between quantum correlations and the classical theory of causality, applied to relativistic causal structure. Contextuality, on the other hand, is on a more controversial foundation. In this work, I provide a common conceptual ground between nonlocality and contextuality as violations of classical causality. First, I show that Bell inequalities can be derived solely from the assumptions of no signaling and no fine-tuning of the causal model. This removes two extra assumptions from a recent result from Wood and Spekkens and, remarkably, does not require any assumption related to independence of measurement settings—unlike all other derivations of Bell inequalities. I then introduce a formalism to represent contextuality scenarios within causal models and show that all classical causal models for violations of a Kochen-Specker inequality require fine-tuning. Thus, the quantum violation of classical causality goes beyond the case of spacelike-separated systems and already manifests in scenarios involving single systems.

  3. Emergency department crowding in Singapore: Insights from a systems thinking approach.

    PubMed

    Schoenenberger, Lukas K; Bayer, Steffen; Ansah, John P; Matchar, David B; Mohanavalli, Rajagopal L; Lam, Sean Sw; Ong, Marcus Eh

    2016-01-01

    Emergency Department crowding is a serious and international health care problem that seems to be resistant to most well intended but often reductionist policy approaches. In this study, we examine Emergency Department crowding in Singapore from a systems thinking perspective using causal loop diagramming to visualize the systemic structure underlying this complex phenomenon. Furthermore, we evaluate the relative impact of three different policies in reducing Emergency Department crowding in Singapore: introduction of geriatric emergency medicine, expansion of emergency medicine training, and implementation of enhanced primary care. The construction of the qualitative causal loop diagram is based on consultations with Emergency Department experts, direct observation, and a thorough literature review. For the purpose of policy analysis, a novel approach, the path analysis, is applied. The path analysis revealed that both the introduction of geriatric emergency medicine and the expansion of emergency medicine training may be associated with undesirable consequences contributing to Emergency Department crowding. In contrast, enhancing primary care was found to be germane in reducing Emergency Department crowding; in addition, it has apparently no negative side effects, considering the boundary of the model created. Causal loop diagramming was a powerful tool for eliciting the systemic structure of Emergency Department crowding in Singapore. Additionally, the developed model was valuable in testing different policy options.

  4. Causal relationship between CO₂ emissions, real GDP, energy consumption, financial development, trade openness, and urbanization in Tunisia.

    PubMed

    Farhani, Sahbi; Ozturk, Ilhan

    2015-10-01

    The aim of this paper is to examine the causal relationship between CO2 emissions, real GDP, energy consumption, financial development, trade openness, and urbanization in Tunisia over the period of 1971-2012. The long-run relationship is investigated by the auto-regressive distributed lag (ARDL) bounds testing approach to cointegration and error correction method (ECM). The results of the analysis reveal a positive sign for the coefficient of financial development, suggesting that the financial development in Tunisia has taken place at the expense of environmental pollution. The Tunisian case also shows a positive monotonic relationship between real GDP and CO2 emissions. This means that the results do not support the validity of environmental Kuznets curve (EKC) hypothesis. In addition, the paper explores causal relationship between the variables by using Granger causality models and it concludes that financial development plays a vital role in the Tunisian economy.

  5. Final Report for Dynamic Models for Causal Analysis of Panel Data. Methodological Overview. Part II, Chapter 1.

    ERIC Educational Resources Information Center

    Hannan, Michael T.

    This technical document, part of a series of chapters described in SO 011 759, describes a basic model of panel analysis used in a study of the causes of institutional and structural change in nations. Panel analysis is defined as a record of state occupancy of a sample of units at two or more points in time; for example, voters disclose voting…

  6. Beyond a series of security nets: Applying STAMP & STPA to port security

    DOE PAGES

    Williams, Adam D.

    2015-11-17

    Port security is an increasing concern considering the significant role of ports in global commerce and today’s increasingly complex threat environment. Current approaches to port security mirror traditional models of accident causality -- ‘a series of security nets’ based on component reliability and probabilistic assumptions. Traditional port security frameworks result in isolated and inconsistent improvement strategies. Recent work in engineered safety combines the ideas of hierarchy, emergence, control and communication into a new paradigm for understanding port security as an emergent complex system property. The ‘System-Theoretic Accident Model and Process (STAMP)’ is a new model of causality based on systemsmore » and control theory. The associated analysis process -- System Theoretic Process Analysis (STPA) -- identifies specific technical or procedural security requirements designed to work in coordination with (and be traceable to) overall port objectives. This process yields port security design specifications that can mitigate (if not eliminate) port security vulnerabilities related to an emphasis on component reliability, lack of coordination between port security stakeholders or economic pressures endemic in the maritime industry. As a result, this article aims to demonstrate how STAMP’s broader view of causality and complexity can better address the dynamic and interactive behaviors of social, organizational and technical components of port security.« less

  7. Inverse odds ratio-weighted estimation for causal mediation analysis.

    PubMed

    Tchetgen Tchetgen, Eric J

    2013-11-20

    An important scientific goal of studies in the health and social sciences is increasingly to determine to what extent the total effect of a point exposure is mediated by an intermediate variable on the causal pathway between the exposure and the outcome. A causal framework has recently been proposed for mediation analysis, which gives rise to new definitions, formal identification results and novel estimators of direct and indirect effects. In the present paper, the author describes a new inverse odds ratio-weighted approach to estimate so-called natural direct and indirect effects. The approach, which uses as a weight the inverse of an estimate of the odds ratio function relating the exposure and the mediator, is universal in that it can be used to decompose total effects in a number of regression models commonly used in practice. Specifically, the approach may be used for effect decomposition in generalized linear models with a nonlinear link function, and in a number of other commonly used models such as the Cox proportional hazards regression for a survival outcome. The approach is simple and can be implemented in standard software provided a weight can be specified for each observation. An additional advantage of the method is that it easily incorporates multiple mediators of a categorical, discrete or continuous nature. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Beyond a series of security nets: Applying STAMP & STPA to port security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Adam D.

    Port security is an increasing concern considering the significant role of ports in global commerce and today’s increasingly complex threat environment. Current approaches to port security mirror traditional models of accident causality -- ‘a series of security nets’ based on component reliability and probabilistic assumptions. Traditional port security frameworks result in isolated and inconsistent improvement strategies. Recent work in engineered safety combines the ideas of hierarchy, emergence, control and communication into a new paradigm for understanding port security as an emergent complex system property. The ‘System-Theoretic Accident Model and Process (STAMP)’ is a new model of causality based on systemsmore » and control theory. The associated analysis process -- System Theoretic Process Analysis (STPA) -- identifies specific technical or procedural security requirements designed to work in coordination with (and be traceable to) overall port objectives. This process yields port security design specifications that can mitigate (if not eliminate) port security vulnerabilities related to an emphasis on component reliability, lack of coordination between port security stakeholders or economic pressures endemic in the maritime industry. As a result, this article aims to demonstrate how STAMP’s broader view of causality and complexity can better address the dynamic and interactive behaviors of social, organizational and technical components of port security.« less

  9. Upsampling to 400-ms Resolution for Assessing Effective Connectivity in Functional Magnetic Resonance Imaging Data with Granger Causality

    PubMed Central

    Kerr, Deborah L.; Nitschke, Jack B.

    2013-01-01

    Abstract Granger causality analysis of functional magnetic resonance imaging (fMRI) blood-oxygen-level-dependent signal data allows one to infer the direction and magnitude of influence that brain regions exert on one another. We employed a method for upsampling the time resolution of fMRI data that does not require additional interpolation beyond the interpolation that is regularly used for slice-timing correction. The mathematics for this new method are provided, and simulations demonstrate its viability. Using fMRI, 17 snake phobics and 19 healthy controls viewed snake, disgust, and neutral fish video clips preceded by anticipatory cues. Multivariate Granger causality models at the native 2-sec resolution and at the upsampled 400-ms resolution assessed directional associations of fMRI data among 13 anatomical regions of interest identified in prior research on anxiety and emotion. Superior sensitivity was observed for the 400-ms model, both for connectivity within each group and for group differences in connectivity. Context-dependent analyses for the 400-ms multivariate Granger causality model revealed the specific trial types showing group differences in connectivity. This is the first demonstration of effective connectivity of fMRI data using a method for achieving 400-ms resolution without sacrificing accuracy available at 2-sec resolution. PMID:23134194

  10. Systems and methods for modeling and analyzing networks

    DOEpatents

    Hill, Colin C; Church, Bruce W; McDonagh, Paul D; Khalil, Iya G; Neyarapally, Thomas A; Pitluk, Zachary W

    2013-10-29

    The systems and methods described herein utilize a probabilistic modeling framework for reverse engineering an ensemble of causal models, from data and then forward simulating the ensemble of models to analyze and predict the behavior of the network. In certain embodiments, the systems and methods described herein include data-driven techniques for developing causal models for biological networks. Causal network models include computational representations of the causal relationships between independent variables such as a compound of interest and dependent variables such as measured DNA alterations, changes in mRNA, protein, and metabolites to phenotypic readouts of efficacy and toxicity.

  11. Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools.

    PubMed

    Siettos, Constantinos; Starke, Jens

    2016-09-01

    The extreme complexity of the brain naturally requires mathematical modeling approaches on a large variety of scales; the spectrum ranges from single neuron dynamics over the behavior of groups of neurons to neuronal network activity. Thus, the connection between the microscopic scale (single neuron activity) to macroscopic behavior (emergent behavior of the collective dynamics) and vice versa is a key to understand the brain in its complexity. In this work, we attempt a review of a wide range of approaches, ranging from the modeling of single neuron dynamics to machine learning. The models include biophysical as well as data-driven phenomenological models. The discussed models include Hodgkin-Huxley, FitzHugh-Nagumo, coupled oscillators (Kuramoto oscillators, Rössler oscillators, and the Hindmarsh-Rose neuron), Integrate and Fire, networks of neurons, and neural field equations. In addition to the mathematical models, important mathematical methods in multiscale modeling and reconstruction of the causal connectivity are sketched. The methods include linear and nonlinear tools from statistics, data analysis, and time series analysis up to differential equations, dynamical systems, and bifurcation theory, including Granger causal connectivity analysis, phase synchronization connectivity analysis, principal component analysis (PCA), independent component analysis (ICA), and manifold learning algorithms such as ISOMAP, and diffusion maps and equation-free techniques. WIREs Syst Biol Med 2016, 8:438-458. doi: 10.1002/wsbm.1348 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  12. 75 FR 58374 - 2010 Release of CADDIS (Causal Analysis/Diagnosis Decision Information System)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... 2010 version of the Causal Analysis/Diagnosis Decision Information System (CADDIS). This Web site was... methods; information on basic and advanced data analyses; downloadable software tools; and an online... ENVIRONMENTAL PROTECTION AGENCY [FRL-9206-7] 2010 Release of CADDIS (Causal Analysis/Diagnosis...

  13. Using Propensity Score Analysis for Making Causal Claims in Research Articles

    ERIC Educational Resources Information Center

    Bai, Haiyan

    2011-01-01

    The central role of the propensity score analysis (PSA) in observational studies is for causal inference; as such, PSA is often used for making causal claims in research articles. However, there are still some issues for researchers to consider when making claims of causality using PSA results. This summary first briefly reviews PSA, followed by…

  14. Causal Analysis/Diagnosis Decision Information System (CADDIS)

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems to determine the cause of contamination.

  15. Analyzing brain networks with PCA and conditional Granger causality.

    PubMed

    Zhou, Zhenyu; Chen, Yonghong; Ding, Mingzhou; Wright, Paul; Lu, Zuhong; Liu, Yijun

    2009-07-01

    Identifying directional influences in anatomical and functional circuits presents one of the greatest challenges for understanding neural computations in the brain. Granger causality mapping (GCM) derived from vector autoregressive models of data has been employed for this purpose, revealing complex temporal and spatial dynamics underlying cognitive processes. However, the traditional GCM methods are computationally expensive, as signals from thousands of voxels within selected regions of interest (ROIs) are individually processed, and being based on pairwise Granger causality, they lack the ability to distinguish direct from indirect connectivity among brain regions. In this work a new algorithm called PCA based conditional GCM is proposed to overcome these problems. The algorithm implements the following two procedures: (i) dimensionality reduction in ROIs of interest with principle component analysis (PCA), and (ii) estimation of the direct causal influences in local brain networks, using conditional Granger causality. Our results show that the proposed method achieves greater accuracy in detecting network connectivity than the commonly used pairwise Granger causality method. Furthermore, the use of PCA components in conjunction with conditional GCM greatly reduces the computational cost relative to the use of individual voxel time series. Copyright 2009 Wiley-Liss, Inc

  16. Model Selection Approach Suggests Causal Association between 25-Hydroxyvitamin D and Colorectal Cancer

    PubMed Central

    Theodoratou, Evropi; Farrington, Susan M.; Tenesa, Albert; Dunlop, Malcolm G.; McKeigue, Paul; Campbell, Harry

    2013-01-01

    Introduction Vitamin D deficiency has been associated with increased risk of colorectal cancer (CRC), but causal relationship has not yet been confirmed. We investigate the direction of causation between vitamin D and CRC by extending the conventional approaches to allow pleiotropic relationships and by explicitly modelling unmeasured confounders. Methods Plasma 25-hydroxyvitamin D (25-OHD), genetic variants associated with 25-OHD and CRC, and other relevant information was available for 2645 individuals (1057 CRC cases and 1588 controls) and included in the model. We investigate whether 25-OHD is likely to be causally associated with CRC, or vice versa, by selecting the best modelling hypothesis according to Bayesian predictive scores. We examine consistency for a range of prior assumptions. Results Model comparison showed preference for the causal association between low 25-OHD and CRC over the reverse causal hypothesis. This was confirmed for posterior mean deviances obtained for both models (11.5 natural log units in favour of the causal model), and also for deviance information criteria (DIC) computed for a range of prior distributions. Overall, models ignoring hidden confounding or pleiotropy had significantly poorer DIC scores. Conclusion Results suggest causal association between 25-OHD and colorectal cancer, and support the need for randomised clinical trials for further confirmations. PMID:23717431

  17. Contours of a causal feedback mechanism between adaptive personality and psychosocial function in patients with personality disorders: a secondary analysis from a randomized clinical trial.

    PubMed

    Klungsøyr, Ole; Antonsen, Bjørnar; Wilberg, Theresa

    2017-06-05

    Patients with personality disorders commonly exhibit impairment in psychosocial function that persists over time even with diagnostic remission. Further causal knowledge may help to identify and assess factors with a potential to alleviate this impairment. Psychosocial function is associated with personality functioning which describes personality disorder severity in DSM-5 (section III) and which can reportedly be improved by therapy. The reciprocal association between personality functioning and psychosocial function was assessed, in 113 patients with different personality disorders, in a secondary longitudinal analysis of data from a randomized clinical trial, over six years. Personality functioning was represented by three domains of the Severity Indices of Personality Problems: Relational Capacity, Identity Integration, and Self-control. Psychosocial function was measured by Global Assessment of Functioning. The marginal structural model was used for estimation of causal effects of the three personality functioning domains on psychosocial function, and vice versa. The attractiveness of this model lies in the ability to assess an effect of a time - varying exposure on an outcome, while adjusting for time - varying confounding. Strong causal effects were found. A hypothetical intervention to increase Relational Capacity by one standard deviation, both at one and two time-points prior to assessment of psychosocial function, would increase psychosocial function by 3.5 standard deviations (95% CI: 2.0, 4.96). Significant effects of Identity Integration and Self-control on psychosocial function, and from psychosocial function on all three domains of personality functioning, although weaker, were also found. This study indicates that persistent impairment in psychosocial function can be addressed through a causal pathway of personality functioning, with interventions of at least 18 months duration.

  18. Identification and functional characterization of HIV-associated neurocognitive disorders with large-scale Granger causality analysis on resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    Chockanathan, Udaysankar; DSouza, Adora M.; Abidin, Anas Z.; Schifitto, Giovanni; Wismüller, Axel

    2018-02-01

    Resting-state functional MRI (rs-fMRI), coupled with advanced multivariate time-series analysis methods such as Granger causality, is a promising tool for the development of novel functional connectivity biomarkers of neurologic and psychiatric disease. Recently large-scale Granger causality (lsGC) has been proposed as an alternative to conventional Granger causality (cGC) that extends the scope of robust Granger causal analyses to high-dimensional systems such as the human brain. In this study, lsGC and cGC were comparatively evaluated on their ability to capture neurologic damage associated with HIV-associated neurocognitive disorders (HAND). Functional brain network models were constructed from rs-fMRI data collected from a cohort of HIV+ and HIV- subjects. Graph theoretic properties of the resulting networks were then used to train a support vector machine (SVM) model to predict clinically relevant parameters, such as HIV status and neuropsychometric (NP) scores. For the HIV+/- classification task, lsGC, which yielded a peak area under the receiver operating characteristic curve (AUC) of 0.83, significantly outperformed cGC, which yielded a peak AUC of 0.61, at all parameter settings tested. For the NP score regression task, lsGC, with a minimum mean squared error (MSE) of 0.75, significantly outperformed cGC, with a minimum MSE of 0.84 (p < 0.001, one-tailed paired t-test). These results show that, at optimal parameter settings, lsGC is better able to capture functional brain connectivity correlates of HAND than cGC. However, given the substantial variation in the performance of the two methods at different parameter settings, particularly for the regression task, improved parameter selection criteria are necessary and constitute an area for future research.

  19. A Tutorial in Bayesian Potential Outcomes Mediation Analysis.

    PubMed

    Miočević, Milica; Gonzalez, Oscar; Valente, Matthew J; MacKinnon, David P

    2018-01-01

    Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example.

  20. The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis

    PubMed Central

    Ploner, Alexander; Fischer, Krista; Horikoshi, Momoko; Sarin, Antti-Pekka; Thorleifsson, Gudmar; Ladenvall, Claes; Kals, Mart; Kuningas, Maris; Draisma, Harmen H. M.; Ried, Janina S.; van Zuydam, Natalie R.; Huikari, Ville; Mangino, Massimo; Sonestedt, Emily; Benyamin, Beben; Nelson, Christopher P.; Rivera, Natalia V.; Kristiansson, Kati; Shen, Huei-yi; Havulinna, Aki S.; Dehghan, Abbas; Donnelly, Louise A.; Kaakinen, Marika; Nuotio, Marja-Liisa; Robertson, Neil; de Bruijn, Renée F. A. G.; Ikram, M. Arfan; Amin, Najaf; Balmforth, Anthony J.; Braund, Peter S.; Doney, Alexander S. F.; Döring, Angela; Elliott, Paul; Esko, Tõnu; Franco, Oscar H.; Gretarsdottir, Solveig; Hartikainen, Anna-Liisa; Heikkilä, Kauko; Herzig, Karl-Heinz; Holm, Hilma; Hottenga, Jouke Jan; Hyppönen, Elina; Illig, Thomas; Isaacs, Aaron; Isomaa, Bo; Karssen, Lennart C.; Kettunen, Johannes; Koenig, Wolfgang; Kuulasmaa, Kari; Laatikainen, Tiina; Laitinen, Jaana; Lindgren, Cecilia; Lyssenko, Valeriya; Läärä, Esa; Rayner, Nigel W.; Männistö, Satu; Pouta, Anneli; Rathmann, Wolfgang; Rivadeneira, Fernando; Ruokonen, Aimo; Savolainen, Markku J.; Sijbrands, Eric J. G.; Small, Kerrin S.; Smit, Jan H.; Steinthorsdottir, Valgerdur; Syvänen, Ann-Christine; Taanila, Anja; Tobin, Martin D.; Uitterlinden, Andre G.; Willems, Sara M.; Willemsen, Gonneke; Witteman, Jacqueline; Perola, Markus; Evans, Alun; Ferrières, Jean; Virtamo, Jarmo; Kee, Frank; Tregouet, David-Alexandre; Arveiler, Dominique; Amouyel, Philippe; Ferrario, Marco M.; Brambilla, Paolo; Hall, Alistair S.; Heath, Andrew C.; Madden, Pamela A. F.; Martin, Nicholas G.; Montgomery, Grant W.; Whitfield, John B.; Jula, Antti; Knekt, Paul; Oostra, Ben; van Duijn, Cornelia M.; Penninx, Brenda W. J. H.; Davey Smith, George; Kaprio, Jaakko; Samani, Nilesh J.; Gieger, Christian; Peters, Annette; Wichmann, H.-Erich; Boomsma, Dorret I.; de Geus, Eco J. C.; Tuomi, TiinaMaija; Power, Chris; Hammond, Christopher J.; Spector, Tim D.; Lind, Lars; Orho-Melander, Marju; Palmer, Colin Neil Alexander; Morris, Andrew D.; Groop, Leif; Järvelin, Marjo-Riitta; Salomaa, Veikko; Vartiainen, Erkki; Hofman, Albert; Ripatti, Samuli; Metspalu, Andres; Thorsteinsdottir, Unnur; Stefansson, Kari; Pedersen, Nancy L.; McCarthy, Mark I.; Ingelsson, Erik; Prokopenko, Inga

    2013-01-01

    Background The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach. Methods and Findings We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses. Age- and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI–trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03–1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1–1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001). Conclusions We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes. Please see later in the article for the Editors' Summary PMID:23824655

  1. A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.

    PubMed

    Lu, Hongjing; Rojas, Randall R; Beckers, Tom; Yuille, Alan L

    2016-03-01

    Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge. Copyright © 2015 Cognitive Science Society, Inc.

  2. Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2005-01-01

    In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…

  3. Multivariate causal attribution and cost-effectiveness of a national mass media campaign in the Philippines.

    PubMed

    Kincaid, D Lawrence; Do, Mai Phuong

    2006-01-01

    Cost-effectiveness analysis is based on a simple formula. A dollar estimate of the total cost to conduct a program is divided by the number of people estimated to have been affected by it in terms of some intended outcome. The direct, total costs of most communication campaigns are usually available. Estimating the amount of effect that can be attributed to the communication alone, however is problematical in full-coverage, mass media campaigns where the randomized control group design is not feasible. Single-equation, multiple regression analysis controls for confounding variables but does not adequately address the issue of causal attribution. In this article, multivariate causal attribution (MCA) methods are applied to data from a sample survey of 1,516 married women in the Philippines to obtain a valid measure of the number of new adopters of modern contraceptives that can be causally attributed to a national mass media campaign and to calculate its cost-effectiveness. The MCA analysis uses structural equation modeling to test the causal pathways and to test for endogeneity, biprobit analysis to test for direct effects of the campaign and endogeneity, and propensity score matching to create a statistically equivalent, matched control group that approximates the results that would have been obtained from a randomized control group design. The MCA results support the conclusion that the observed, 6.4 percentage point increase in modern contraceptive use can be attributed to the national mass media campaign and to its indirect effects on attitudes toward contraceptives. This net increase represented 348,695 new adopters in the population of married women at a cost of U.S. $1.57 per new adopter.

  4. Study on localization of epileptic focus based on causality analysis

    NASA Astrophysics Data System (ADS)

    Shan, Shaojie; Li, Hanjun; Tang, Xiaoying

    2018-05-01

    In this paper, we considered that the ECoG signal contain abundant pathological information, which can be used for the localization of epileptic focus before epileptic seizures in 1-2 mins. In order to validate this hypothesis, cutting the ECoG into three stages: before seizure, seizure and after seizure, then through using Granger causality algorithm, PSI causality algorithm, Transfer Entropy causality algorithm at different stages of epilepsy ECoG, we were able to do the causality analysis of ECoG data. The results have shown that there is significant difference with the causality value of the epileptic focus area in before seizure, seizure and after seizure. An increase is in the causality value of each channel during epileptic seizure. After epileptic seizure, the causality between the channels showed a downward trend, but the difference was not obvious. The difference of the causality provides a reliable technical method to assist the clinical diagnosis of epileptic focus.

  5. Experimental test of nonlocal causality

    PubMed Central

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro

    2016-01-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045

  6. Experimental test of nonlocal causality.

    PubMed

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro

    2016-08-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.

  7. A Structural Model Decomposition Framework for Hybrid Systems Diagnosis

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2015-01-01

    Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.

  8. Spatial-Temporal Synchrophasor Data Characterization and Analytics in Smart Grid Fault Detection, Identification, and Impact Causal Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Dai, Xiaoxiao; Gao, David Wenzhong

    An approach of big data characterization for smart grids (SGs) and its applications in fault detection, identification, and causal impact analysis is proposed in this paper, which aims to provide substantial data volume reduction while keeping comprehensive information from synchrophasor measurements in spatial and temporal domains. Especially, based on secondary voltage control (SVC) and local SG observation algorithm, a two-layer dynamic optimal synchrophasor measurement devices selection algorithm (OSMDSA) is proposed to determine SVC zones, their corresponding pilot buses, and the optimal synchrophasor measurement devices. Combining the two-layer dynamic OSMDSA and matching pursuit decomposition, the synchrophasor data is completely characterized inmore » the spatial-temporal domain. To demonstrate the effectiveness of the proposed characterization approach, SG situational awareness is investigated based on hidden Markov model based fault detection and identification using the spatial-temporal characteristics generated from the reduced data. To identify the major impact buses, the weighted Granger causality for SGs is proposed to investigate the causal relationship of buses during system disturbance. The IEEE 39-bus system and IEEE 118-bus system are employed to validate and evaluate the proposed approach.« less

  9. A brain-region-based meta-analysis method utilizing the Apriori algorithm.

    PubMed

    Niu, Zhendong; Nie, Yaoxin; Zhou, Qian; Zhu, Linlin; Wei, Jieyao

    2016-05-18

    Brain network connectivity modeling is a crucial method for studying the brain's cognitive functions. Meta-analyses can unearth reliable results from individual studies. Meta-analytic connectivity modeling is a connectivity analysis method based on regions of interest (ROIs) which showed that meta-analyses could be used to discover brain network connectivity. In this paper, we propose a new meta-analysis method that can be used to find network connectivity models based on the Apriori algorithm, which has the potential to derive brain network connectivity models from activation information in the literature, without requiring ROIs. This method first extracts activation information from experimental studies that use cognitive tasks of the same category, and then maps the activation information to corresponding brain areas by using the automatic anatomical label atlas, after which the activation rate of these brain areas is calculated. Finally, using these brain areas, a potential brain network connectivity model is calculated based on the Apriori algorithm. The present study used this method to conduct a mining analysis on the citations in a language review article by Price (Neuroimage 62(2):816-847, 2012). The results showed that the obtained network connectivity model was consistent with that reported by Price. The proposed method is helpful to find brain network connectivity by mining the co-activation relationships among brain regions. Furthermore, results of the co-activation relationship analysis can be used as a priori knowledge for the corresponding dynamic causal modeling analysis, possibly achieving a significant dimension-reducing effect, thus increasing the efficiency of the dynamic causal modeling analysis.

  10. Natural selection. VII. History and interpretation of kin selection theory.

    PubMed

    Frank, S A

    2013-06-01

    Kin selection theory is a kind of causal analysis. The initial form of kin selection ascribed cause to costs, benefits and genetic relatedness. The theory then slowly developed a deeper and more sophisticated approach to partitioning the causes of social evolution. Controversy followed because causal analysis inevitably attracts opposing views. It is always possible to separate total effects into different component causes. Alternative causal schemes emphasize different aspects of a problem, reflecting the distinct goals, interests and biases of different perspectives. For example, group selection is a particular causal scheme with certain advantages and significant limitations. Ultimately, to use kin selection theory to analyse natural patterns and to understand the history of debates over different approaches, one must follow the underlying history of causal analysis. This article describes the history of kin selection theory, with emphasis on how the causal perspective improved through the study of key patterns of natural history, such as dispersal and sex ratio, and through a unified approach to demographic and social processes. Independent historical developments in the multivariate analysis of quantitative traits merged with the causal analysis of social evolution by kin selection. © 2013 The Author. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  11. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Cermak, Vladimir; Bodri, Louise

    2018-01-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, Δ T(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of Δ T(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  12. Evaluating a Computational Model of Social Causality and Responsibility

    DTIC Science & Technology

    2006-01-01

    Evaluating a Computational Model of Social Causality and Responsibility Wenji Mao University of Southern California Institute for Creative...empirically evaluate a computa- tional model of social causality and responsibility against human social judgments. Results from our experimental...developed a general computational model of social cau- sality and responsibility [10, 11] that formalizes the factors people use in reasoning about

  13. Calculating and Understanding: Formal Models and Causal Explanations in Science, Common Reasoning and Physics Teaching

    NASA Astrophysics Data System (ADS)

    Besson, Ugo

    2010-03-01

    This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought and daily life, it has long been the subject of debate and criticism among philosophers and scientists. In this paper, I begin by providing a description of some general tendencies of common reasoning that have been identified by didactic research. Thereafter, I briefly discuss the role of causality in science, as well as some different types of explanation employed in the field of physics. I then present some results of a study examining the causal reasoning used by students in solid and fluid mechanics. The differences found between the types of reasoning typical of common thought and those usually proposed during instruction can create learning difficulties and impede student motivation. Many students do not seem satisfied by the mere application of formal laws and functional relations. Instead, they express the need for a causal explanation, a mechanism that allows them to understand how a state of affairs has come about. I discuss few didactic strategies aimed at overcoming these problems, and describe, in general terms, two examples of mechanics teaching sequences which were developed and tested in different contexts. The paper ends with a reflection on the possible role to be played in physics learning by intuitive and imaginative thought, and the use of simple explanatory models based on physical analogies and causal mechanisms.

  14. A Causal Model of Sentence Recall: Effects of Familiarity, Concreteness, Comprehensibility, and Interestingness.

    ERIC Educational Resources Information Center

    Sadoski, Mark; And Others

    1993-01-01

    Presents and tests a theoretically derived causal model of the recall of sentences. Notes that the causal model identifies familiarity and concreteness as causes of comprehensibility; familiarity, concreteness, and comprehensibility as causes of interestingness; and all the identified variables as causes of both immediate and delayed recall.…

  15. Reconstructing Constructivism: Causal Models, Bayesian Learning Mechanisms, and the Theory Theory

    ERIC Educational Resources Information Center

    Gopnik, Alison; Wellman, Henry M.

    2012-01-01

    We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework…

  16. Manifest Variable Granger Causality Models for Developmental Research: A Taxonomy

    ERIC Educational Resources Information Center

    von Eye, Alexander; Wiedermann, Wolfgang

    2015-01-01

    Granger models are popular when it comes to testing hypotheses that relate series of measures causally to each other. In this article, we propose a taxonomy of Granger causality models. The taxonomy results from crossing the four variables Order of Lag, Type of (Contemporaneous) Effect, Direction of Effect, and Segment of Dependent Series…

  17. A Bifactor Approach to Model Multifaceted Constructs in Statistical Mediation Analysis

    ERIC Educational Resources Information Center

    Gonzalez, Oscar; MacKinnon, David P.

    2018-01-01

    Statistical mediation analysis allows researchers to identify the most important mediating constructs in the causal process studied. Identifying specific mediators is especially relevant when the hypothesized mediating construct consists of multiple related facets. The general definition of the construct and its facets might relate differently to…

  18. Causal relationship between the AHSG gene and BMD through fetuin-A and BMI: multiple mediation analysis.

    PubMed

    Sritara, C; Thakkinstian, A; Ongphiphadhanakul, B; Chailurkit, L; Chanprasertyothin, S; Ratanachaiwong, W; Vathesatogkit, P; Sritara, P

    2014-05-01

    Using mediation analysis, a causal relationship between the AHSG gene and bone mineral density (BMD) through fetuin-A and body mass index (BMI) mediators was suggested. Fetuin-A, a multifunctional protein of hepatic origin, is associated with bone mineral density. It is unclear if this association is causal. This study aimed at clarification of this issue. A cross-sectional study was conducted among 1,741 healthy workers from the Electricity Generating Authority of Thailand (EGAT) cohort. The alpha-2-Heremans-Schmid glycoprotein (AHSG) rs2248690 gene was genotyped. Three mediation models were constructed using seemingly unrelated regression analysis. First, the ln[fetuin-A] group was regressed on the AHSG gene. Second, the BMI group was regressed on the AHSG gene and the ln[fetuin-A] group. Finally, the BMD model was constructed by fitting BMD on two mediators (ln[fetuin-A] and BMI) and the independent AHSG variable. All three analyses were adjusted for confounders. The prevalence of the minor T allele for the AHSG locus was 15.2%. The AHSG locus was highly related to serum fetuin-A levels (P < 0.001). Multiple mediation analyses showed that AHSG was significantly associated with BMD through the ln[fetuin-A] and BMI pathway, with beta coefficients of 0.0060 (95% CI 0.0038, 0.0083) and 0.0030 (95% CI 0.0020, 0.0045) at the total hip and lumbar spine, respectively. About 27.3 and 26.0% of total genetic effects on hip and spine BMD, respectively, were explained by the mediation effects of fetuin-A and BMI. Our study suggested evidence of a causal relationship between the AHSG gene and BMD through fetuin-A and BMI mediators.

  19. Transcriptome analysis of Stagonospora nodorum: gene models, effectors, metabolism and pantothenate dispensability

    USDA-ARS?s Scientific Manuscript database

    The wheat pathogen Stagonospora nodorum, causal organism of the wheat disease Stagonospora nodorum blotch, has emerged as a model for the Dothideomycetes, a large fungal taxon that includes many important plant pathogens. The initial annotation of the genome assembly included 16 586 nuclear gene mod...

  20. Transcriptome analysis of Stagonospora nodorum; gene models, effectors, metabolism and pantothenate dispensability

    USDA-ARS?s Scientific Manuscript database

    The wheat pathogen Stagonospora nodorum, causal organism of the wheat disease Stagonospora nodorum blotch, has emerged as a model for the Dothideomycetes, a large fungal taxon that includes many important plant pathogens. The initial annotation of the genome assembly included 16 586 nuclear gene mod...

  1. Multivariate time series analysis of neuroscience data: some challenges and opportunities.

    PubMed

    Pourahmadi, Mohsen; Noorbaloochi, Siamak

    2016-04-01

    Neuroimaging data may be viewed as high-dimensional multivariate time series, and analyzed using techniques from regression analysis, time series analysis and spatiotemporal analysis. We discuss issues related to data quality, model specification, estimation, interpretation, dimensionality and causality. Some recent research areas addressing aspects of some recurring challenges are introduced. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Final Technical Report on Quantifying Dependability Attributes of Software Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smidts, Carol; Huang, Funqun; Li, Boyuan

    With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems’ characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be amore » significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory uncertainty -- measures and methods are needed to assess dependability attributes early on, as well as throughout the life-cycle process of software development. In this research, extensive expert opinion elicitation is used to identify the measures and methods for assessing software dependability. Semi-structured questionnaires were designed to elicit expert knowledge. A new notation system, Causal Mechanism Graphing, was developed to extract and represent such knowledge. The Causal Mechanism Graphs were merged, thus, obtaining the consensus knowledge shared by the domain experts. In this report, we focus on how software contributes to dependability. However, software dependability is not discussed separately from the context of systems or socio-technical systems. Specifically, this report focuses on software dependability, reliability, safety, security, availability, and maintainability. Our research was conducted in the sequence of stages found below. Each stage is further examined in its corresponding chapter. Stage 1 (Chapter 2): Elicitation of causal maps describing the dependencies between dependability attributes. These causal maps were constructed using expert opinion elicitation. This chapter describes the expert opinion elicitation process, the questionnaire design, the causal map construction method and the causal maps obtained. Stage 2 (Chapter 3): Elicitation of the causal map describing the occurrence of the event of interest for each dependability attribute. The causal mechanisms for the “event of interest” were extracted for each of the software dependability attributes. The “event of interest” for a dependability attribute is generally considered to be the “attribute failure”, e.g. security failure. The extraction was based on the analysis of expert elicitation results obtained in Stage 1. Stage 3 (Chapter 4): Identification of relevant measurements. Measures for the “events of interest” and their causal mechanisms were obtained from expert opinion elicitation for each of the software dependability attributes. The measures extracted are presented in this chapter. Stage 4 (Chapter 5): Assessment of the coverage of the causal maps via measures. Coverage was assessed to determine whether the measures obtained were sufficient to quantify software dependability, and what measures are further required. Stage 5 (Chapter 6): Identification of “missing” measures and measurement approaches for concepts not covered. New measures, for concepts that had not been covered sufficiently as determined in Stage 4, were identified using supplementary expert opinion elicitation as well as literature reviews. Stage 6 (Chapter 7): Building of a detailed quantification model based on the causal maps and measurements obtained. Ability to derive such a quantification model shows that the causal models and measurements derived from the previous stages (Stage 1 to Stage 5) can form the technical basis for developing dependability quantification models. Scope restrictions have led us to prioritize this demonstration effort. The demonstration was focused on a critical system, i.e. the reactor protection system. For this system, a ranking of the software dependability attributes by nuclear stakeholders was developed. As expected for this application, the stakeholder ranking identified safety as the most critical attribute to be quantified. A safety quantification model limited to the requirements phase of development was built. Two case studies were conducted for verification. A preliminary control gate for software safety for the requirements stage was proposed and applied to the first case study. The control gate allows a cost effective selection of the duration of the requirements phase.« less

  3. Medical Disease or Moral Defect? Stigma Attribution and Cultural Models of Addiction Causality in a University Population.

    PubMed

    Henderson, Nicole L; Dressler, William W

    2017-12-01

    This study examines the knowledge individuals use to make judgments about persons with substance use disorder. First, we show that there is a cultural model of addiction causality that is both shared and contested. Second, we examine how individuals' understanding of that model is associated with stigma attribution. Research was conducted among undergraduate students at the University of Alabama. College students in the 18-25 age range are especially at risk for developing substance use disorder, and they are, perhaps more than any other population group, intensely targeted by drug education. The elicited cultural model includes different types of causes distributed across five distinct themes: Biological, Self-Medication, Familial, Social, and Hedonistic. Though there was cultural consensus among respondents overall, residual agreement analysis showed that the cultural model of addiction causality is a multicentric domain. Two centers of the model, the moral and the medical, were discovered. Differing adherence to these centers is associated with the level of stigma attributed towards individuals with substance use disorder. The results suggest that current approaches to substance use education could contribute to stigma attribution, which may or may not be inadvertent. The significance of these results for both theory and the treatment of addiction are discussed.

  4. Generalized functional linear models for gene-based case-control association studies.

    PubMed

    Fan, Ruzong; Wang, Yifan; Mills, James L; Carter, Tonia C; Lobach, Iryna; Wilson, Alexander F; Bailey-Wilson, Joan E; Weeks, Daniel E; Xiong, Momiao

    2014-11-01

    By using functional data analysis techniques, we developed generalized functional linear models for testing association between a dichotomous trait and multiple genetic variants in a genetic region while adjusting for covariates. Both fixed and mixed effect models are developed and compared. Extensive simulations show that Rao's efficient score tests of the fixed effect models are very conservative since they generate lower type I errors than nominal levels, and global tests of the mixed effect models generate accurate type I errors. Furthermore, we found that the Rao's efficient score test statistics of the fixed effect models have higher power than the sequence kernel association test (SKAT) and its optimal unified version (SKAT-O) in most cases when the causal variants are both rare and common. When the causal variants are all rare (i.e., minor allele frequencies less than 0.03), the Rao's efficient score test statistics and the global tests have similar or slightly lower power than SKAT and SKAT-O. In practice, it is not known whether rare variants or common variants in a gene region are disease related. All we can assume is that a combination of rare and common variants influences disease susceptibility. Thus, the improved performance of our models when the causal variants are both rare and common shows that the proposed models can be very useful in dissecting complex traits. We compare the performance of our methods with SKAT and SKAT-O on real neural tube defects and Hirschsprung's disease datasets. The Rao's efficient score test statistics and the global tests are more sensitive than SKAT and SKAT-O in the real data analysis. Our methods can be used in either gene-disease genome-wide/exome-wide association studies or candidate gene analyses. © 2014 WILEY PERIODICALS, INC.

  5. Generalized Functional Linear Models for Gene-based Case-Control Association Studies

    PubMed Central

    Mills, James L.; Carter, Tonia C.; Lobach, Iryna; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Weeks, Daniel E.; Xiong, Momiao

    2014-01-01

    By using functional data analysis techniques, we developed generalized functional linear models for testing association between a dichotomous trait and multiple genetic variants in a genetic region while adjusting for covariates. Both fixed and mixed effect models are developed and compared. Extensive simulations show that Rao's efficient score tests of the fixed effect models are very conservative since they generate lower type I errors than nominal levels, and global tests of the mixed effect models generate accurate type I errors. Furthermore, we found that the Rao's efficient score test statistics of the fixed effect models have higher power than the sequence kernel association test (SKAT) and its optimal unified version (SKAT-O) in most cases when the causal variants are both rare and common. When the causal variants are all rare (i.e., minor allele frequencies less than 0.03), the Rao's efficient score test statistics and the global tests have similar or slightly lower power than SKAT and SKAT-O. In practice, it is not known whether rare variants or common variants in a gene are disease-related. All we can assume is that a combination of rare and common variants influences disease susceptibility. Thus, the improved performance of our models when the causal variants are both rare and common shows that the proposed models can be very useful in dissecting complex traits. We compare the performance of our methods with SKAT and SKAT-O on real neural tube defects and Hirschsprung's disease data sets. The Rao's efficient score test statistics and the global tests are more sensitive than SKAT and SKAT-O in the real data analysis. Our methods can be used in either gene-disease genome-wide/exome-wide association studies or candidate gene analyses. PMID:25203683

  6. Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan

    2005-01-01

    In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…

  7. A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure.

    PubMed

    Balzer, Laura B; Zheng, Wenjing; van der Laan, Mark J; Petersen, Maya L

    2018-01-01

    We often seek to estimate the impact of an exposure naturally occurring or randomly assigned at the cluster-level. For example, the literature on neighborhood determinants of health continues to grow. Likewise, community randomized trials are applied to learn about real-world implementation, sustainability, and population effects of interventions with proven individual-level efficacy. In these settings, individual-level outcomes are correlated due to shared cluster-level factors, including the exposure, as well as social or biological interactions between individuals. To flexibly and efficiently estimate the effect of a cluster-level exposure, we present two targeted maximum likelihood estimators (TMLEs). The first TMLE is developed under a non-parametric causal model, which allows for arbitrary interactions between individuals within a cluster. These interactions include direct transmission of the outcome (i.e. contagion) and influence of one individual's covariates on another's outcome (i.e. covariate interference). The second TMLE is developed under a causal sub-model assuming the cluster-level and individual-specific covariates are sufficient to control for confounding. Simulations compare the alternative estimators and illustrate the potential gains from pairing individual-level risk factors and outcomes during estimation, while avoiding unwarranted assumptions. Our results suggest that estimation under the sub-model can result in bias and misleading inference in an observational setting. Incorporating working assumptions during estimation is more robust than assuming they hold in the underlying causal model. We illustrate our approach with an application to HIV prevention and treatment.

  8. Time-varying coefficient vector autoregressions model based on dynamic correlation with an application to crude oil and stock markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fengbin, E-mail: fblu@amss.ac.cn

    This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relationsmore » evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.« less

  9. Time-varying coefficient vector autoregressions model based on dynamic correlation with an application to crude oil and stock markets.

    PubMed

    Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze

    2017-01-01

    This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor's 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Conceptual Tools for Understanding Nature - Proceedings of the 3rd International Symposium

    NASA Astrophysics Data System (ADS)

    Costa, G.; Calucci, M.

    1997-04-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Some Limits of Science and Scientists * Three Limits of Scientific Knowledge * On Features and Meaning of Scientific Knowledge * How Science Approaches the World: Risky Truths versus Misleading Certitudes * On Discovery and Justification * Thought Experiments: A Philosophical Analysis * Causality: Epistemological Questions and Cognitive Answers * Scientific Inquiry via Rational Hypothesis Revision * Probabilistic Epistemology * The Transferable Belief Model for Uncertainty Representation * Chemistry and Complexity * The Difficult Epistemology of Medicine * Epidemiology, Causality and Medical Anthropology * Conceptual Tools for Transdisciplinary Unified Theory * Evolution and Learning in Economic Organizations * The Possible Role of Symmetry in Physics and Cosmology * Observational Cosmology and/or other Imaginable Models of the Universe

  11. Nonlinear Modeling of Causal Interrelationships in Neuronal Ensembles

    PubMed Central

    Zanos, Theodoros P.; Courellis, Spiros H.; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.; Marmarelis, Vasilis Z.

    2009-01-01

    The increasing availability of multiunit recordings gives new urgency to the need for effective analysis of “multidimensional” time-series data that are derived from the recorded activity of neuronal ensembles in the form of multiple sequences of action potentials—treated mathematically as point-processes and computationally as spike-trains. Whether in conditions of spontaneous activity or under conditions of external stimulation, the objective is the identification and quantification of possible causal links among the neurons generating the observed binary signals. A multiple-input/multiple-output (MIMO) modeling methodology is presented that can be used to quantify the neuronal dynamics of causal interrelationships in neuronal ensembles using spike-train data recorded from individual neurons. These causal interrelationships are modeled as transformations of spike-trains recorded from a set of neurons designated as the “inputs” into spike-trains recorded from another set of neurons designated as the “outputs.” The MIMO model is composed of a set of multiinput/single-output (MISO) modules, one for each output. Each module is the cascade of a MISO Volterra model and a threshold operator generating the output spikes. The Laguerre expansion approach is used to estimate the Volterra kernels of each MISO module from the respective input–output data using the least-squares method. The predictive performance of the model is evaluated with the use of the receiver operating characteristic (ROC) curve, from which the optimum threshold is also selected. The Mann–Whitney statistic is used to select the significant inputs for each output by examining the statistical significance of improvements in the predictive accuracy of the model when the respective inputs is included. Illustrative examples are presented for a simulated system and for an actual application using multiunit data recordings from the hippocampus of a behaving rat. PMID:18701382

  12. Tests of causal links between alcohol abuse or dependence and major depression.

    PubMed

    Fergusson, David M; Boden, Joseph M; Horwood, L John

    2009-03-01

    There has been a great deal of research on the comorbidity between alcohol abuse or dependence (AAD) and major depression (MD). However, it is unclear whether AAD increases the risk of MD or vice versa. To examine the associations between AAD and MD using fixed-effects modeling to control for confounding and using structural equation models to ascertain the direction of causality. Data were gathered during the course of the Christchurch Health and Development Study, a 25-year longitudinal study of a birth cohort of children from New Zealand (635 boys, 630 girls). General community sample. The analysis was based on a sample of 1055 participants with available data on AAD and MD at ages 17 to 18, 20 to 21, and 24 to 25 years. Symptom criteria for AAD and MD from the DSM-IV at ages 17 to 18, 20 to 21, and 24 to 25 years as well as measures of life stress, cannabis use, other illicit drug use, affiliation with deviant peers, unemployment, partner substance use, and partner criminality at ages 17 to 18, 20 to 21, and 24 to 25 years. There were significant (P < .001) pooled associations between AAD and MD. Controlling for confounding factors using conditional fixed-effects models and time-dynamic covariate factors reduced the magnitude of these associations, but they remained statistically significant. Structural equation modeling suggested that the best-fitting causal model was one in which AAD led to increased risk of MD. The findings suggest that the associations between AAD and MD were best explained by a causal model in which problems with alcohol led to increased risk of MD as opposed to a self-medication model in which MD led to increased risk of AAD.

  13. Alcohol Use Predicts Sexual Decision-Making: A Systematic Review and Meta-Analysis of the Experimental Literature

    PubMed Central

    Scott-Sheldon, Lori A. J.; Carey, Kate B.; Cunningham, Karlene; Johnson, Blair T.; Carey, Michael P.

    2015-01-01

    Alcohol is associated with HIV and other sexually transmitted infections through increased sexual risk-taking behavior. Establishing a causal link between alcohol and sexual behavior has been challenging due to methodological limitations (e.g., reliance on cross-sectional designs). Experimental methods can be used to establish causality. The purpose of this meta-analysis was to evaluate the effects of alcohol consumption on unprotected sex intentions. We searched electronic bibliographic databases for records with relevant keywords; 26 manuscripts (k = 30 studies) met inclusion criteria. Results indicate that alcohol consumption is associated with greater intentions to engage in unprotected sex (d+s = 0.24, 0.35). The effect of alcohol on unprotected sex intentions was greater when sexual arousal was heightened. Alcohol consumption is causally linked to theoretical antecedents of sexual risk behavior, consistent with the alcohol myopia model. Addressing alcohol consumption as a determinant of unprotected sex intentions may lead to more effective HIV interventions. PMID:26080689

  14. Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare

    2017-07-01

    The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.

  15. Effective connectivities of cortical regions for top-down face processing: A Dynamic Causal Modeling study

    PubMed Central

    Li, Jun; Liu, Jiangang; Liang, Jimin; Zhang, Hongchuan; Zhao, Jizheng; Rieth, Cory A.; Huber, David E.; Li, Wu; Shi, Guangming; Ai, Lin; Tian, Jie; Lee, Kang

    2013-01-01

    To study top-down face processing, the present study used an experimental paradigm in which participants detected non-existent faces in pure noise images. Conventional BOLD signal analysis identified three regions involved in this illusory face detection. These regions included the left orbitofrontal cortex (OFC) in addition to the right fusiform face area (FFA) and right occipital face area (OFA), both of which were previously known to be involved in both top-down and bottom-up processing of faces. We used Dynamic Causal Modeling (DCM) and Bayesian model selection to further analyze the data, revealing both intrinsic and modulatory effective connectivities among these three cortical regions. Specifically, our results support the claim that the orbitofrontal cortex plays a crucial role in the top-down processing of faces by regulating the activities of the occipital face area, and the occipital face area in turn detects the illusory face features in the visual stimuli and then provides this information to the fusiform face area for further analysis. PMID:20423709

  16. Bayesian model reduction and empirical Bayes for group (DCM) studies

    PubMed Central

    Friston, Karl J.; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E.; van Wijk, Bernadette C.M.; Ziegler, Gabriel; Zeidman, Peter

    2016-01-01

    This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level – e.g., dynamic causal models – and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. PMID:26569570

  17. Situation models and memory: the effects of temporal and causal information on recall sequence.

    PubMed

    Brownstein, Aaron L; Read, Stephen J

    2007-10-01

    Participants watched an episode of the television show Cheers on video and then reported free recall. Recall sequence followed the sequence of events in the story; if one concept was observed immediately after another, it was recalled immediately after it. We also made a causal network of the show's story and found that recall sequence followed causal links; effects were recalled immediately after their causes. Recall sequence was more likely to follow causal links than temporal sequence, and most likely to follow causal links that were temporally sequential. Results were similar at 10-minute and 1-week delayed recall. This is the most direct and detailed evidence reported on sequential effects in recall. The causal network also predicted probability of recall; concepts with more links and concepts on the main causal chain were most likely to be recalled. This extends the causal network model to more complex materials than previous research.

  18. Formalizing the Role of Agent-Based Modeling in Causal Inference and Epidemiology

    PubMed Central

    Marshall, Brandon D. L.; Galea, Sandro

    2015-01-01

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. PMID:25480821

  19. Effects of Increased Psychiatric Treatment Contact and Acculturation on the Causal Beliefs of Chinese Immigrant Relatives of Individuals with Psychosis

    PubMed Central

    Lo, Graciete; Tu, Ming; Wu, Olivia; Anglin, Deidre; Saw, Anne; Chen, Fang-pei

    2016-01-01

    Encounters with Western psychiatric treatment and acculturation may influence causal beliefs of psychiatric illness endorsed by Chinese immigrant relatives, thus affecting help-seeking. We examined causal beliefs held by forty-six Chinese immigrant relatives and found that greater acculturation was associated with an increased number of causal beliefs. Further, as Western psychiatric treatment and acculturation increased, causal models expanded to incorporate biological/physical causes. However, frequency of Chinese immigrant relatives' endorsing spiritual beliefs did not appear to change with acculturation. Clinicians might thus account for spiritual beliefs in treatment even after acculturation increases and biological causal models proliferate. PMID:27127454

  20. Causal learning and inference as a rational process: the new synthesis.

    PubMed

    Holyoak, Keith J; Cheng, Patricia W

    2011-01-01

    Over the past decade, an active line of research within the field of human causal learning and inference has converged on a general representational framework: causal models integrated with bayesian probabilistic inference. We describe this new synthesis, which views causal learning and inference as a fundamentally rational process, and review a sample of the empirical findings that support the causal framework over associative alternatives. Causal events, like all events in the distal world as opposed to our proximal perceptual input, are inherently unobservable. A central assumption of the causal approach is that humans (and potentially nonhuman animals) have been designed in such a way as to infer the most invariant causal relations for achieving their goals based on observed events. In contrast, the associative approach assumes that learners only acquire associations among important observed events, omitting the representation of the distal relations. By incorporating bayesian inference over distributions of causal strength and causal structures, along with noisy-logical (i.e., causal) functions for integrating the influences of multiple causes on a single effect, human judgments about causal strength and structure can be predicted accurately for relatively simple causal structures. Dynamic models of learning based on the causal framework can explain patterns of acquisition observed with serial presentation of contingency data and are consistent with available neuroimaging data. The approach has been extended to a diverse range of inductive tasks, including category-based and analogical inferences.

  1. Causal reasoning with mental models

    PubMed Central

    Khemlani, Sangeet S.; Barbey, Aron K.; Johnson-Laird, Philip N.

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex. PMID:25389398

  2. Causal reasoning with mental models.

    PubMed

    Khemlani, Sangeet S; Barbey, Aron K; Johnson-Laird, Philip N

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.

  3. Causal Mediation Analysis: Warning! Assumptions Ahead

    ERIC Educational Resources Information Center

    Keele, Luke

    2015-01-01

    In policy evaluations, interest may focus on why a particular treatment works. One tool for understanding why treatments work is causal mediation analysis. In this essay, I focus on the assumptions needed to estimate mediation effects. I show that there is no "gold standard" method for the identification of causal mediation effects. In…

  4. Income and obesity: what is the direction of the relationship? A systematic review and meta-analysis

    PubMed Central

    Kim, Tae Jun; von dem Knesebeck, Olaf

    2018-01-01

    Objective It was repeatedly shown that lower income is associated with higher risks for subsequent obesity. However, the perspective of a potential reverse causality is often neglected, in which obesity is considered a cause for lower income, when obese people drift into lower-income jobs due to labour–market discrimination and public stigmatisation. This review was performed to explore the direction of the relation between income and obesity by specifically assessing the importance of social causation and reverse causality. Design Systematic review and meta-analysis. Methods A systematic literature search was conducted in January 2017. The databases Medline, PsycINFO, Sociological Abstracts, International Bibliography of Social Sciences and Sociological Index were screened to identify prospective cohort studies with quantitative data on the relation between income and obesity. Meta-analytic methods were applied using random-effect models, and the quality of studies assessed with the Newcastle-Ottawa Scale. Results In total, 21 studies were eligible for meta-analysis. All included studies originated from either the USA (n=16), the UK (n=3) or Canada (n=2). From these, 14 studies on causation and 7 studies on reverse causality were found. Meta-analyses revealed that lower income is associated with subsequent obesity (OR 1.27, 95% CI 1.10 to 1.47; risk ratio 1.52, 95% CI 1.08 to 2.13), though the statistical significance vanished once adjusted for publication bias. Studies on reverse causality indicated a more consistent relation between obesity and subsequent income, even after taking publication bias into account (standardised mean difference −0.15, 95% CI −0.30 to 0.01). Sensitivity analyses implied that the association is influenced by obesity measurement, gender, length of observation and study quality. Conclusions Findings suggest that there is more consistent evidence for reverse causality. Therefore, there is a need to examine reverse causality processes in more detail to understand the relation between income and obesity. PROSPERO registration number 42016041296. PMID:29306894

  5. Causal Analysis of Self-tracked Time Series Data Using a Counterfactual Framework for N-of-1 Trials.

    PubMed

    Daza, Eric J

    2018-02-01

    Many of an individual's historically recorded personal measurements vary over time, thereby forming a time series (e.g., wearable-device data, self-tracked fitness or nutrition measurements, regularly monitored clinical events or chronic conditions). Statistical analyses of such n-of-1 (i.e., single-subject) observational studies (N1OSs) can be used to discover possible cause-effect relationships to then self-test in an n-of-1 randomized trial (N1RT). However, a principled way of determining how and when to interpret an N1OS association as a causal effect (e.g., as if randomization had occurred) is needed.Our goal in this paper is to help bridge the methodological gap between risk-factor discovery and N1RT testing by introducing a basic counterfactual framework for N1OS design and personalized causal analysis.We introduce and characterize what we call the average period treatment effect (APTE), i.e., the estimand of interest in an N1RT, and build an analytical framework around it that can accommodate autocorrelation and time trends in the outcome, effect carryover from previous treatment periods, and slow onset or decay of the effect. The APTE is loosely defined as a contrast (e.g., difference, ratio) of averages of potential outcomes the individual can theoretically experience under different treatment levels during a given treatment period. To illustrate the utility of our framework for APTE discovery and estimation, two common causal inference methods are specified within the N1OS context. We then apply the framework and methods to search for estimable and interpretable APTEs using six years of the author's self-tracked weight and exercise data, and report both the preliminary findings and the challenges we faced in conducting N1OS causal discovery.Causal analysis of an individual's time series data can be facilitated by an N1RT counterfactual framework. However, for inference to be valid, the veracity of certain key assumptions must be assessed critically, and the hypothesized causal models must be interpretable and meaningful. Schattauer GmbH.

  6. Causal Mediation Analysis of Survival Outcome with Multiple Mediators.

    PubMed

    Huang, Yen-Tsung; Yang, Hwai-I

    2017-05-01

    Mediation analyses have been a popular approach to investigate the effect of an exposure on an outcome through a mediator. Mediation models with multiple mediators have been proposed for continuous and dichotomous outcomes. However, development of multimediator models for survival outcomes is still limited. We present methods for multimediator analyses using three survival models: Aalen additive hazard models, Cox proportional hazard models, and semiparametric probit models. Effects through mediators can be characterized by path-specific effects, for which definitions and identifiability assumptions are provided. We derive closed-form expressions for path-specific effects for the three models, which are intuitively interpreted using a causal diagram. Mediation analyses using Cox models under the rare-outcome assumption and Aalen additive hazard models consider effects on log hazard ratio and hazard difference, respectively; analyses using semiparametric probit models consider effects on difference in transformed survival time and survival probability. The three models were applied to a hepatitis study where we investigated effects of hepatitis C on liver cancer incidence mediated through baseline and/or follow-up hepatitis B viral load. The three methods show consistent results on respective effect scales, which suggest an adverse estimated effect of hepatitis C on liver cancer not mediated through hepatitis B, and a protective estimated effect mediated through the baseline (and possibly follow-up) of hepatitis B viral load. Causal mediation analyses of survival outcome with multiple mediators are developed for additive hazard and proportional hazard and probit models with utility demonstrated in a hepatitis study.

  7. Final Report for Dynamic Models for Causal Analysis of Panel Data. Methods for Temporal Analysis. Part I, Chapter 1.

    ERIC Educational Resources Information Center

    Hannan, Michael T.; Tuma, Nancy Brandon

    This document is part of a series of chapters described in SO 011 759. Working from the premise that temporal analysis is indispensable for the study of change, the document examines major alternatives in research design of this nature. Five sections focus on the features, advantages, and limitations of temporal analysis. Four designs which…

  8. Naturalistic Model of Causal Reasoning: Developing an Experiential User Guide (EUG) to Understand Fusion Algorithms and Simulation Models

    DTIC Science & Technology

    2010-09-01

    achieved; the causal reasoning involved in understanding diseases such as AIDS, yellow fever, and cholera , and the causal reasoning in understanding a...and malaria, we could start to implement prevention strategies. Once we determined that contaminated water led to cholera , we could impose...sanitation measures to prevent further outbreaks . However, when dealing with indeterminate, multi-causal situations, the picture is not so easy. We may

  9. Transnational Corporations and Strategic Challenges: An Analysis of Knowledge Flows and Competitive Advantage

    ERIC Educational Resources Information Center

    de Pablos, Patricia Ordonez

    2006-01-01

    Purpose: The purpose of this paper is to analyse knowledge transfers in transnational corporations. Design/methodology/approach: The paper develops a conceptual framework for the analysis of knowledge flow transfers in transnationals. Based on this theoretical framework, the paper propose's research hypotheses and builds a causal model that links…

  10. Video event classification and image segmentation based on noncausal multidimensional hidden Markov models.

    PubMed

    Ma, Xiang; Schonfeld, Dan; Khokhar, Ashfaq A

    2009-06-01

    In this paper, we propose a novel solution to an arbitrary noncausal, multidimensional hidden Markov model (HMM) for image and video classification. First, we show that the noncausal model can be solved by splitting it into multiple causal HMMs and simultaneously solving each causal HMM using a fully synchronous distributed computing framework, therefore referred to as distributed HMMs. Next we present an approximate solution to the multiple causal HMMs that is based on an alternating updating scheme and assumes a realistic sequential computing framework. The parameters of the distributed causal HMMs are estimated by extending the classical 1-D training and classification algorithms to multiple dimensions. The proposed extension to arbitrary causal, multidimensional HMMs allows state transitions that are dependent on all causal neighbors. We, thus, extend three fundamental algorithms to multidimensional causal systems, i.e., 1) expectation-maximization (EM), 2) general forward-backward (GFB), and 3) Viterbi algorithms. In the simulations, we choose to limit ourselves to a noncausal 2-D model whose noncausality is along a single dimension, in order to significantly reduce the computational complexity. Simulation results demonstrate the superior performance, higher accuracy rate, and applicability of the proposed noncausal HMM framework to image and video classification.

  11. A structural equation model of soil metal bioavailability to earthworms: confronting causal theory and observations using a laboratory exposure to field-contaminated soils.

    PubMed

    Beaumelle, Léa; Vile, Denis; Lamy, Isabelle; Vandenbulcke, Franck; Gimbert, Frédéric; Hedde, Mickaël

    2016-11-01

    Structural equation models (SEM) are increasingly used in ecology as multivariate analysis that can represent theoretical variables and address complex sets of hypotheses. Here we demonstrate the interest of SEM in ecotoxicology, more precisely to test the three-step concept of metal bioavailability to earthworms. The SEM modeled the three-step causal chain between environmental availability, environmental bioavailability and toxicological bioavailability. In the model, each step is an unmeasured (latent) variable reflected by several observed variables. In an exposure experiment designed specifically to test this SEM for Cd, Pb and Zn, Aporrectodea caliginosa was exposed to 31 agricultural field-contaminated soils. Chemical and biological measurements used included CaC12-extractable metal concentrations in soils, free ion concentration in soil solution as predicted by a geochemical model, dissolved metal concentration as predicted by a semi-mechanistic model, internal metal concentrations in total earthworms and in subcellular fractions, and several biomarkers. The observations verified the causal definition of Cd and Pb bioavailability in the SEM, but not for Zn. Several indicators consistently reflected the hypothetical causal definition and could thus be pertinent measurements of Cd and Pb bioavailability to earthworm in field-contaminated soils. SEM highlights that the metals present in the soil solution and easily extractable are not the main source of available metals for earthworms. This study further highlights SEM as a powerful tool that can handle natural ecosystem complexity, thus participating to the paradigm change in ecotoxicology from a bottom-up to a top-down approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A Proposed Model of Jazz Theory Knowledge Acquisition

    ERIC Educational Resources Information Center

    Ciorba, Charles R.; Russell, Brian E.

    2014-01-01

    The purpose of this study was to test a hypothesized model that proposes a causal relationship between motivation and academic achievement on the acquisition of jazz theory knowledge. A reliability analysis of the latent variables ranged from 0.92 to 0.94. Confirmatory factor analyses of the motivation (standardized root mean square residual…

  13. The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation

    DTIC Science & Technology

    2014-08-20

    many different synthetic series can be generated at once. If the series already exists in the dataset, it is updated to reflect the new values. The...Testing for causality: a personal viewpoint. Journal of Economic Dynamics and Control, 2, 329-352. Manning, C., Raghavan, R., and Schutze , H. (2008

  14. Assessing Mediation Using Marginal Structural Models in the Presence of Confounding and Moderation

    ERIC Educational Resources Information Center

    Coffman, Donna L.; Zhong, Wei

    2012-01-01

    This article presents marginal structural models with inverse propensity weighting (IPW) for assessing mediation. Generally, individuals are not randomly assigned to levels of the mediator. Therefore, confounders of the mediator and outcome may exist that limit causal inferences, a goal of mediation analysis. Either regression adjustment or IPW…

  15. Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs.

    PubMed

    Ricaño-Ponce, Isis; Zhernakova, Daria V; Deelen, Patrick; Luo, Oscar; Li, Xingwang; Isaacs, Aaron; Karjalainen, Juha; Di Tommaso, Jennifer; Borek, Zuzanna Agnieszka; Zorro, Maria M; Gutierrez-Achury, Javier; Uitterlinden, Andre G; Hofman, Albert; van Meurs, Joyce; Netea, Mihai G; Jonkers, Iris H; Withoff, Sebo; van Duijn, Cornelia M; Li, Yang; Ruan, Yijun; Franke, Lude; Wijmenga, Cisca; Kumar, Vinod

    2016-04-01

    Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Estimation of effective connectivity using multi-layer perceptron artificial neural network.

    PubMed

    Talebi, Nasibeh; Nasrabadi, Ali Motie; Mohammad-Rezazadeh, Iman

    2018-02-01

    Studies on interactions between brain regions estimate effective connectivity, (usually) based on the causality inferences made on the basis of temporal precedence. In this study, the causal relationship is modeled by a multi-layer perceptron feed-forward artificial neural network, because of the ANN's ability to generate appropriate input-output mapping and to learn from training examples without the need of detailed knowledge of the underlying system. At any time instant, the past samples of data are placed in the network input, and the subsequent values are predicted at its output. To estimate the strength of interactions, the measure of " Causality coefficient " is defined based on the network structure, the connecting weights and the parameters of hidden layer activation function. Simulation analysis demonstrates that the method, called "CREANN" (Causal Relationship Estimation by Artificial Neural Network), can estimate time-invariant and time-varying effective connectivity in terms of MVAR coefficients. The method shows robustness with respect to noise level of data. Furthermore, the estimations are not significantly influenced by the model order (considered time-lag), and the different initial conditions (initial random weights and parameters of the network). CREANN is also applied to EEG data collected during a memory recognition task. The results implicate that it can show changes in the information flow between brain regions, involving in the episodic memory retrieval process. These convincing results emphasize that CREANN can be used as an appropriate method to estimate the causal relationship among brain signals.

  17. Causal Agency Theory: Reconceptualizing a Functional Model of Self-Determination

    ERIC Educational Resources Information Center

    Shogren, Karrie A.; Wehmeyer, Michael L.; Palmer, Susan B.; Forber-Pratt, Anjali J.; Little, Todd J.; Lopez, Shane

    2015-01-01

    This paper introduces Causal Agency Theory, an extension of the functional model of self-determination. Causal Agency Theory addresses the need for interventions and assessments pertaining to selfdetermination for all students and incorporates the significant advances in understanding of disability and in the field of positive psychology since the…

  18. Inductive reasoning about causally transmitted properties.

    PubMed

    Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D; Tenenbaum, Joshua B

    2008-11-01

    Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates' context-sensitive use of taxonomic and food web knowledge to guide reasoning about causal transmission and shows good qualitative agreement between model predictions and human inferences. A second experiment demonstrates strong quantitative and qualitative fits to inferences about a more complex artificial food web. A third experiment investigates human reasoning about complex novel food webs where species have known taxonomic relations. Results demonstrate a double-dissociation between the predictions of our causal model and a related taxonomic model [Kemp, C., & Tenenbaum, J. B. (2003). Learning domain structures. In Proceedings of the 25th annual conference of the cognitive science society]: the causal model predicts human inferences about diseases but not genes, while the taxonomic model predicts human inferences about genes but not diseases. We contrast our framework with previous models of category-based induction and previous formal instantiations of intuitive theories, and outline challenges in developing a complete model of context-sensitive reasoning.

  19. Nonlinear parametric model for Granger causality of time series

    NASA Astrophysics Data System (ADS)

    Marinazzo, Daniele; Pellicoro, Mario; Stramaglia, Sebastiano

    2006-06-01

    The notion of Granger causality between two time series examines if the prediction of one series could be improved by incorporating information of the other. In particular, if the prediction error of the first time series is reduced by including measurements from the second time series, then the second time series is said to have a causal influence on the first one. We propose a radial basis function approach to nonlinear Granger causality. The proposed model is not constrained to be additive in variables from the two time series and can approximate any function of these variables, still being suitable to evaluate causality. Usefulness of this measure of causality is shown in two applications. In the first application, a physiological one, we consider time series of heart rate and blood pressure in congestive heart failure patients and patients affected by sepsis: we find that sepsis patients, unlike congestive heart failure patients, show symmetric causal relationships between the two time series. In the second application, we consider the feedback loop in a model of excitatory and inhibitory neurons: we find that in this system causality measures the combined influence of couplings and membrane time constants.

  20. Accounting for respiration is necessary to reliably infer Granger causality from cardiovascular variability series.

    PubMed

    Porta, Alberto; Bassani, Tito; Bari, Vlasta; Pinna, Gian D; Maestri, Roberto; Guzzetti, Stefano

    2012-03-01

    This study was designed to demonstrate the need of accounting for respiration (R) when causality between heart period (HP) and systolic arterial pressure (SAP) is under scrutiny. Simulations generated according to a bivariate autoregressive closed-loop model were utilized to assess how causality changes as a function of the model parameters. An exogenous (X) signal was added to the bivariate autoregressive closed-loop model to evaluate the bias on causality induced when the X source was disregarded. Causality was assessed in the time domain according to a predictability improvement approach (i.e., Granger causality). HP and SAP variability series were recorded with R in 19 healthy subjects during spontaneous and controlled breathing at 10, 15, and 20 breaths/min. Simulations proved the importance of accounting for X signals. During spontaneous breathing, assessing causality without taking into consideration R leads to a significantly larger percentage of closed-loop interactions and a smaller fraction of unidirectional causality from HP to SAP. This finding was confirmed during paced breathing and it was independent of the breathing rate. These results suggest that the role of baroreflex cannot be correctly assessed without accounting for R.

  1. Examining the Relationship between Middle School Students' Critical Reading Skills, Science Literacy Skills and Attitudes: A Structural Equation Modeling

    ERIC Educational Resources Information Center

    Karademir, Ersin; Ulucinar, Ufuk

    2017-01-01

    The purpose of this study is to verify the causal relationship between middle school students' critical reading skills, science literacy skills and attitudes towards science literacy with research data according to the default model. Through the structural equation modeling, path analysis has been applied in the study which was designed in…

  2. Observations of land-atmosphere interactions using satellite data

    NASA Astrophysics Data System (ADS)

    Green, Julia; Gentine, Pierre; Konings, Alexandra; Alemohammad, Hamed; Kolassa, Jana

    2016-04-01

    Observations of land-atmosphere interactions using satellite data Julia Green (1), Pierre Gentine (1), Alexandra Konings (1,2), Seyed Hamed Alemohammad (3), Jana Kolassa (4) (1) Columbia University, Earth and Environmental Engineering, NY, NY, USA, (2) Stanford University, Environmental Earth System Science, Stanford, CA, USA, (3) Massachusetts Institute of Technology, Civil and Environmental Engineering, Cambridge, MA, USA, (4) National Aeronautics and Space Administration/Goddard Space Flight Center, Greenbelt, MD, USA. Previous studies of global land-atmosphere hotspots have often relied solely on data from global models with the consequence that they are sensitive to model error. On the other hand, by only analyzing observations, it can be difficult to distinguish causality from mere correlation. In this study, we present a general framework for investigating land-atmosphere interactions using Granger Causality analysis applied to remote sensing data. Based on the near linear relationship between chlorophyll sun induced fluorescence (SIF) and photosynthesis (and thus its relationship with transpiration), we use the GOME-2 fluorescence direct measurements to quantify the surface fluxes between the land and atmosphere. By using SIF data to represent the flux, we bypass the need to use soil moisture data from FLUXNET (limited spatially and temporally) or remote sensing (limited by spatial resolution, canopy interference, measurement depth, and radio frequency interference) thus eliminating additional uncertainty. The Granger Causality analysis allows for the determination of the strength of the two-way causal relationship between SIF and several climatic variables: precipitation, radiation and temperature. We determine that warm regions transitioning from water to energy limitation exhibit strong feedbacks between the land surface and atmosphere due to their high sensitivity to climate and weather variability. Tropical rainforest regions show low magnitudes of causal feedback likely due to other factors influencing the land surface such as phenological controls (e.g. leaf area index), nutrient limitations or soil texture. These results were then compared to CMIP5 GCM results using GPP in place of SIF. GCM results varied greatly between models as well as with the observational data analysis indicating deficiencies in the representation of certain modeled phenomena such as low level clouds and boundary layer development. This study highlights the need for GCM improvement to more accurately capture the feedbacks between the land and atmosphere. These results have the potential to improve our understanding of the underlying mechanisms between land and atmosphere coupling, which could ultimately be used to improve weather and climate predictions.

  3. CADDIS Volume 4. Data Analysis: Getting Started

    EPA Pesticide Factsheets

    Assembling data for an ecological causal analysis, matching biological and environmental samples in time and space, organizing data along conceptual causal pathways, data quality and quantity requirements, Data Analysis references.

  4. Weighting-Based Sensitivity Analysis in Causal Mediation Studies

    ERIC Educational Resources Information Center

    Hong, Guanglei; Qin, Xu; Yang, Fan

    2018-01-01

    Through a sensitivity analysis, the analyst attempts to determine whether a conclusion of causal inference could be easily reversed by a plausible violation of an identification assumption. Analytic conclusions that are harder to alter by such a violation are expected to add a higher value to scientific knowledge about causality. This article…

  5. Using causal loop diagrams for the initialization of stakeholder engagement in soil salinity management in agricultural watersheds in developing countries: a case study in the Rechna Doab watershed, Pakistan.

    PubMed

    Inam, Azhar; Adamowski, Jan; Halbe, Johannes; Prasher, Shiv

    2015-04-01

    Over the course of the last twenty years, participatory modeling has increasingly been advocated as an integral component of integrated, adaptive, and collaborative water resources management. However, issues of high cost, time, and expertise are significant hurdles to the widespread adoption of participatory modeling in many developing countries. In this study, a step-wise method to initialize the involvement of key stakeholders in the development of qualitative system dynamics models (i.e. causal loop diagrams) is presented. The proposed approach is designed to overcome the challenges of low expertise, time and financial resources that have hampered previous participatory modeling efforts in developing countries. The methodological framework was applied in a case study of soil salinity management in the Rechna Doab region of Pakistan, with a focus on the application of qualitative modeling through stakeholder-built causal loop diagrams to address soil salinity problems in the basin. Individual causal loop diagrams were developed by key stakeholder groups, following which an overall group causal loop diagram of the entire system was built based on the individual causal loop diagrams to form a holistic qualitative model of the whole system. The case study demonstrates the usefulness of the proposed approach, based on using causal loop diagrams in initiating stakeholder involvement in the participatory model building process. In addition, the results point to social-economic aspects of soil salinity that have not been considered by other modeling studies to date. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Knowledge Representation Standards and Interchange Formats for Causal Graphs

    NASA Technical Reports Server (NTRS)

    Throop, David R.; Malin, Jane T.; Fleming, Land

    2005-01-01

    In many domains, automated reasoning tools must represent graphs of causally linked events. These include fault-tree analysis, probabilistic risk assessment (PRA), planning, procedures, medical reasoning about disease progression, and functional architectures. Each of these fields has its own requirements for the representation of causation, events, actors and conditions. The representations include ontologies of function and cause, data dictionaries for causal dependency, failure and hazard, and interchange formats between some existing tools. In none of the domains has a generally accepted interchange format emerged. The paper makes progress towards interoperability across the wide range of causal analysis methodologies. We survey existing practice and emerging interchange formats in each of these fields. Setting forth a set of terms and concepts that are broadly shared across the domains, we examine the several ways in which current practice represents them. Some phenomena are difficult to represent or to analyze in several domains. These include mode transitions, reachability analysis, positive and negative feedback loops, conditions correlated but not causally linked and bimodal probability distributions. We work through examples and contrast the differing methods for addressing them. We detail recent work in knowledge interchange formats for causal trees in aerospace analysis applications in early design, safety and reliability. Several examples are discussed, with a particular focus on reachability analysis and mode transitions. We generalize the aerospace analysis work across the several other domains. We also recommend features and capabilities for the next generation of causal knowledge representation standards.

  7. Causal Discovery of Dynamic Systems

    ERIC Educational Resources Information Center

    Voortman, Mark

    2010-01-01

    Recently, several philosophical and computational approaches to causality have used an interventionist framework to clarify the concept of causality [Spirtes et al., 2000, Pearl, 2000, Woodward, 2005]. The characteristic feature of the interventionist approach is that causal models are potentially useful in predicting the effects of manipulations.…

  8. Investigating the multi-causal and complex nature of the accident causal influence of construction project features.

    PubMed

    Manu, Patrick A; Ankrah, Nii A; Proverbs, David G; Suresh, Subashini

    2012-09-01

    Construction project features (CPFs) are organisational, physical and operational attributes that characterise construction projects. Although previous studies have examined the accident causal influence of CPFs, the multi-causal attribute of this causal phenomenon still remain elusive and thus requires further investigation. Aiming to shed light on this facet of the accident causal phenomenon of CPFs, this study examines relevant literature and crystallises the attained insight of the multi-causal attribute by a graphical model which is subsequently operationalised by a derived mathematical risk expression that offers a systematic approach for evaluating the potential of CPFs to cause harm and consequently their health and safety (H&S) risk implications. The graphical model and the risk expression put forth by the study thus advance current understanding of the accident causal phenomenon of CPFs and they present an opportunity for project participants to manage the H&S risk associated with CPFs from the early stages of project procurement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Vector Autoregressive Models and Granger Causality in Time Series Analysis in Nursing Research: Dynamic Changes Among Vital Signs Prior to Cardiorespiratory Instability Events as an Example.

    PubMed

    Bose, Eliezer; Hravnak, Marilyn; Sereika, Susan M

    Patients undergoing continuous vital sign monitoring (heart rate [HR], respiratory rate [RR], pulse oximetry [SpO2]) in real time display interrelated vital sign changes during situations of physiological stress. Patterns in this physiological cross-talk could portend impending cardiorespiratory instability (CRI). Vector autoregressive (VAR) modeling with Granger causality tests is one of the most flexible ways to elucidate underlying causal mechanisms in time series data. The purpose of this article is to illustrate the development of patient-specific VAR models using vital sign time series data in a sample of acutely ill, monitored, step-down unit patients and determine their Granger causal dynamics prior to onset of an incident CRI. CRI was defined as vital signs beyond stipulated normality thresholds (HR = 40-140/minute, RR = 8-36/minute, SpO2 < 85%) and persisting for 3 minutes within a 5-minute moving window (60% of the duration of the window). A 6-hour time segment prior to onset of first CRI was chosen for time series modeling in 20 patients using a six-step procedure: (a) the uniform time series for each vital sign was assessed for stationarity, (b) appropriate lag was determined using a lag-length selection criteria, (c) the VAR model was constructed, (d) residual autocorrelation was assessed with the Lagrange Multiplier test, (e) stability of the VAR system was checked, and (f) Granger causality was evaluated in the final stable model. The primary cause of incident CRI was low SpO2 (60% of cases), followed by out-of-range RR (30%) and HR (10%). Granger causality testing revealed that change in RR caused change in HR (21%; i.e., RR changed before HR changed) more often than change in HR causing change in RR (15%). Similarly, changes in RR caused changes in SpO2 (15%) more often than changes in SpO2 caused changes in RR (9%). For HR and SpO2, changes in HR causing changes in SpO2 and changes in SpO2 causing changes in HR occurred with equal frequency (18%). Within this sample of acutely ill patients who experienced a CRI event, VAR modeling indicated that RR changes tend to occur before changes in HR and SpO2. These findings suggest that contextual assessment of RR changes as the earliest sign of CRI is warranted. Use of VAR modeling may be helpful in other nursing research applications based on time series data.

  10. On the factorial and construct validity of the Intrinsic Motivation Inventory: conceptual and operational concerns.

    PubMed

    Markland, D; Hardy, L

    1997-03-01

    The Intrinsic Motivation Inventory (IMI) has been gaining acceptance in the sport and exercise domain since the publication of research by McAuley, Duncan, and Tammen (1989) and McAuley, Wraith, and Duncan (1991), which reported confirmatory support for the factorial validity of a hierarchical model of intrinsic motivation. Authors of the present study argue that the results of these studies did not conclusively support the hierarchical model and that the model did not accurately reflect the tenets of cognitive evaluation theory (Deci & Ryan, 1985) from which the IMI is drawn. It is also argued that a measure of perceived locus of causality is required to model intrinsic motivation properly. The development of a perceived locus of causality for exercise scale is described, and alternative models, in which perceived competence and perceived locus of causality are held to have causal influences on intrinsic motivation, are compared with an oblique confirmatory factor analytic model in which the constructs are held at the same conceptual level. Structural equation modeling showed support for a causal model in which perceived locus of causality mediates the effects of perceived competence on pressure-tension, interest-enjoyment, and effort-importance. It is argued that conceptual and operational problems with the IMI, as currently used, should be addressed before it becomes established as the instrument of choice for assessing levels of intrinsic motivation.

  11. Estimators for Clustered Education RCTs Using the Neyman Model for Causal Inference

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2013-01-01

    This article examines the estimation of two-stage clustered designs for education randomized control trials (RCTs) using the nonparametric Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for…

  12. Compact Representations of Extended Causal Models

    ERIC Educational Resources Information Center

    Halpern, Joseph Y.; Hitchcock, Christopher

    2013-01-01

    Judea Pearl (2000) was the first to propose a definition of actual causation using causal models. A number of authors have suggested that an adequate account of actual causation must appeal not only to causal structure but also to considerations of "normality." In Halpern and Hitchcock (2011), we offer a definition of actual causation…

  13. What Do Patients Think about the Cause of Their Mental Disorder? A Qualitative and Quantitative Analysis of Causal Beliefs of Mental Disorder in Inpatients in Psychosomatic Rehabilitation.

    PubMed

    Magaard, Julia Luise; Schulz, Holger; Brütt, Anna Levke

    2017-01-01

    Patients' causal beliefs about their mental disorders are important for treatment because they affect illness-related behaviours. However, there are few studies exploring patients' causal beliefs about their mental disorder. (a) To qualitatively explore patients' causal beliefs of their mental disorder, (b) to explore frequencies of patients stating causal beliefs, and (c) to investigate differences of causal beliefs according to patients' primary diagnoses. Inpatients in psychosomatic rehabilitation were asked an open-ended question about their three most important causal beliefs about their mental illness. Answers were obtained from 678 patients, with primary diagnoses of depression (N = 341), adjustment disorder (N = 75), reaction to severe stress (N = 57) and anxiety disorders (N = 40). Two researchers developed a category system inductively and categorised the reported causal beliefs. Qualitative analysis has been supplemented by logistic regression analyses. The causal beliefs were organized into twelve content-related categories. Causal beliefs referring to "problems at work" (47%) and "problems in social environment" (46%) were most frequently mentioned by patients with mental disorders. 35% of patients indicate causal beliefs related to "self/internal states". Patients with depression and patients with anxiety disorders stated similar causal beliefs, whereas patients with reactions to severe stress and adjustment disorders stated different causal beliefs in comparison to patients with depression. There was no opportunity for further exploration, because we analysed written documents. These results add a detailed insight to mentally ill patients' causal beliefs to illness perception literature. Additionally, evidence about differences in frequencies of causal beliefs between different illness groups complement previous findings. For future research it is important to clarify the relation between patients' causal beliefs and the chosen treatment.

  14. What Do Patients Think about the Cause of Their Mental Disorder? A Qualitative and Quantitative Analysis of Causal Beliefs of Mental Disorder in Inpatients in Psychosomatic Rehabilitation

    PubMed Central

    Magaard, Julia Luise; Schulz, Holger; Brütt, Anna Levke

    2017-01-01

    Background Patients’ causal beliefs about their mental disorders are important for treatment because they affect illness-related behaviours. However, there are few studies exploring patients’ causal beliefs about their mental disorder. Objectives (a) To qualitatively explore patients’ causal beliefs of their mental disorder, (b) to explore frequencies of patients stating causal beliefs, and (c) to investigate differences of causal beliefs according to patients’ primary diagnoses. Method Inpatients in psychosomatic rehabilitation were asked an open-ended question about their three most important causal beliefs about their mental illness. Answers were obtained from 678 patients, with primary diagnoses of depression (N = 341), adjustment disorder (N = 75), reaction to severe stress (N = 57) and anxiety disorders (N = 40). Two researchers developed a category system inductively and categorised the reported causal beliefs. Qualitative analysis has been supplemented by logistic regression analyses. Results The causal beliefs were organized into twelve content-related categories. Causal beliefs referring to “problems at work” (47%) and “problems in social environment” (46%) were most frequently mentioned by patients with mental disorders. 35% of patients indicate causal beliefs related to “self/internal states”. Patients with depression and patients with anxiety disorders stated similar causal beliefs, whereas patients with reactions to severe stress and adjustment disorders stated different causal beliefs in comparison to patients with depression. Limitations There was no opportunity for further exploration, because we analysed written documents. Conclusions These results add a detailed insight to mentally ill patients’ causal beliefs to illness perception literature. Additionally, evidence about differences in frequencies of causal beliefs between different illness groups complement previous findings. For future research it is important to clarify the relation between patients’ causal beliefs and the chosen treatment. PMID:28056066

  15. Large-scale Granger causality analysis on resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    D'Souza, Adora M.; Abidin, Anas Zainul; Leistritz, Lutz; Wismüller, Axel

    2016-03-01

    We demonstrate an approach to measure the information flow between each pair of time series in resting-state functional MRI (fMRI) data of the human brain and subsequently recover its underlying network structure. By integrating dimensionality reduction into predictive time series modeling, large-scale Granger Causality (lsGC) analysis method can reveal directed information flow suggestive of causal influence at an individual voxel level, unlike other multivariate approaches. This method quantifies the influence each voxel time series has on every other voxel time series in a multivariate sense and hence contains information about the underlying dynamics of the whole system, which can be used to reveal functionally connected networks within the brain. To identify such networks, we perform non-metric network clustering, such as accomplished by the Louvain method. We demonstrate the effectiveness of our approach to recover the motor and visual cortex from resting state human brain fMRI data and compare it with the network recovered from a visuomotor stimulation experiment, where the similarity is measured by the Dice Coefficient (DC). The best DC obtained was 0.59 implying a strong agreement between the two networks. In addition, we thoroughly study the effect of dimensionality reduction in lsGC analysis on network recovery. We conclude that our approach is capable of detecting causal influence between time series in a multivariate sense, which can be used to segment functionally connected networks in the resting-state fMRI.

  16. Moving from Descriptive to Causal Analytics: Case Study of the Health Indicators Warehouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, Jack C.; Shankar, Mallikarjun; Xu, Songhua

    The KDD community has described a multitude of methods for knowledge discovery on large datasets. We consider some of these methods and integrate them into an analyst s workflow that proceeds from the data-centric descriptive level to the model-centric causal level. Examples of the workflow are shown for the Health Indicators Warehouse, which is a public database for community health information that is a potent resource for conducting data science on a medium scale. We demonstrate the potential of HIW as a source of serious visual analytics efforts by showing correlation matrix visualizations, multivariate outlier analysis, multiple linear regression ofmore » Medicare costs, and scatterplot matrices for a broad set of health indicators. We conclude by sketching the first steps toward a causal dependence hypothesis.« less

  17. Visceral fat estimation method by bioelectrical impedance analysis and causal analysis

    NASA Astrophysics Data System (ADS)

    Nakajima, Hiroshi; Tasaki, Hiroshi; Tsuchiya, Naoki; Hamaguchi, Takehiro; Shiga, Toshikazu

    2011-06-01

    It has been clarified that abdominal visceral fat accumulation is closely associated to the lifestyle disease and metabolic syndrome. The gold standard in medical fields is visceral fat area measured by an X-ray computer tomography (CT) scan or magnetic resonance imaging. However, their measurements are high invasive and high cost; especially a CT scan causes X-ray exposure. They are the reasons why medical fields need an instrument for viscera fat measurement with low invasive, ease of use, and low cost. The article proposes a simple and practical method of visceral fat estimation by employing bioelectrical impedance analysis and causal analysis. In the method, abdominal shape and dual impedances of abdominal surface and body total are measured to estimate a visceral fat area based on the cause-effect structure. The structure is designed according to the nature of abdominal body composition to be fine-tuned by statistical analysis. The experiments were conducted to investigate the proposed model. 180 subjects were hired to be measured by both a CT scan and the proposed method. The acquired model explained the measurement principle well and the correlation coefficient is 0.88 with the CT scan measurements.

  18. Articles Published in Four School Psychology Journals from 2000 to 2005: An Analysis of Experimental/Intervention Research

    ERIC Educational Resources Information Center

    Bliss, Stacy L.; Skinner, Christopher H.; Hautau, Briana; Carroll, Erin E.

    2008-01-01

    Using an experimenter-developed system, articles from four school psychology journals for the years 2000-2005 (n = 929) were classified. Results showed that 40% of the articles were narrative, 29% correlational, 16% descriptive, 8% causal-experimental, 4% causal-comparative, and 2% were meta-analytic. Further analysis of the causal-experimental…

  19. Three essays on price dynamics and causations among energy markets and macroeconomic information

    NASA Astrophysics Data System (ADS)

    Hong, Sung Wook

    This dissertation examines three important issues in energy markets: price dynamics, information flow, and structural change. We discuss each issue in detail, building empirical time series models, analyzing the results, and interpreting the findings. First, we examine the contemporaneous interdependencies and information flows among crude oil, natural gas, and electricity prices in the United States (US) through the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) model, Directed Acyclic Graph (DAG) for contemporaneous causal structures and Bernanke factorization for price dynamic processes. Test results show that the DAG from residuals of out-of-sample-forecast is consistent with the DAG from residuals of within-sample-fit. The result supports innovation accounting analysis based on DAGs using residuals of out-of-sample-forecast. Second, we look at the effects of the federal fund rate and/or WTI crude oil price shock on US macroeconomic and financial indicators by using a Factor Augmented Vector Autoregression (FAVAR) model and a graphical model without any deductive assumption. The results show that, in contemporaneous time, the federal fund rate shock is exogenous as the identifying assumption in the Vector Autoregression (VAR) framework of the monetary shock transmission mechanism, whereas the WTI crude oil price return is not exogenous. Third, we examine price dynamics and contemporaneous causality among the price returns of WTI crude oil, gasoline, corn, and the S&P 500. We look for structural break points and then build an econometric model to find the consistent sub-periods having stable parameters in a given VAR framework and to explain recent movements and interdependency among returns. We found strong evidence of two structural breaks and contemporaneous causal relationships among the residuals, but also significant differences between contemporaneous causal structures for each sub-period.

  20. Structural Equations and Causal Explanations: Some Challenges for Causal SEM

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2010-01-01

    One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…

  1. Interactions of information transfer along separable causal paths

    NASA Astrophysics Data System (ADS)

    Jiang, Peishi; Kumar, Praveen

    2018-04-01

    Complex systems arise as a result of interdependences between multiple variables, whose causal interactions can be visualized in a time-series graph. Transfer entropy and information partitioning approaches have been used to characterize such dependences. However, these approaches capture net information transfer occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within a subgraph of interest through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [Phys. Rev. E 92, 062829 (2015), 10.1103/PhysRevE.92.062829] to develop a framework for quantifying information partitioning along separable causal paths. Momentary information transfer along causal paths captures the amount of information transfer between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique, and redundant information transfer through separable causal paths. Through a graphical model, we analyze the impact of the separable and nonseparable causal paths and the causality structure embedded in the graph as well as the noise effect on information partitioning by using synthetic data generated from two coupled logistic equation models. Our approach can provide a valuable reference for an autonomous information partitioning along separable causal paths which form a causal subgraph influencing a target.

  2. Globally conditioned Granger causality in brain–brain and brain–heart interactions: a combined heart rate variability/ultra-high-field (7 T) functional magnetic resonance imaging study

    PubMed Central

    Passamonti, Luca; Wald, Lawrence L.; Barbieri, Riccardo

    2016-01-01

    The causal, directed interactions between brain regions at rest (brain–brain networks) and between resting-state brain activity and autonomic nervous system (ANS) outflow (brain–heart links) have not been completely elucidated. We collected 7 T resting-state functional magnetic resonance imaging (fMRI) data with simultaneous respiration and heartbeat recordings in nine healthy volunteers to investigate (i) the causal interactions between cortical and subcortical brain regions at rest and (ii) the causal interactions between resting-state brain activity and the ANS as quantified through a probabilistic, point-process-based heartbeat model which generates dynamical estimates for sympathetic and parasympathetic activity as well as sympathovagal balance. Given the high amount of information shared between brain-derived signals, we compared the results of traditional bivariate Granger causality (GC) with a globally conditioned approach which evaluated the additional influence of each brain region on the causal target while factoring out effects concomitantly mediated by other brain regions. The bivariate approach resulted in a large number of possibly spurious causal brain–brain links, while, using the globally conditioned approach, we demonstrated the existence of significant selective causal links between cortical/subcortical brain regions and sympathetic and parasympathetic modulation as well as sympathovagal balance. In particular, we demonstrated a causal role of the amygdala, hypothalamus, brainstem and, among others, medial, middle and superior frontal gyri, superior temporal pole, paracentral lobule and cerebellar regions in modulating the so-called central autonomic network (CAN). In summary, we show that, provided proper conditioning is employed to eliminate spurious causalities, ultra-high-field functional imaging coupled with physiological signal acquisition and GC analysis is able to quantify directed brain–brain and brain–heart interactions reflecting central modulation of ANS outflow. PMID:27044985

  3. Establishing a Causal Model for Bloom's Taxonomy through Path Analysis.

    ERIC Educational Resources Information Center

    O'Hara, Takeshi; And Others

    Path analysis was used to reanalyze Kropp and Stoker's data from tests designed to evaluate Bloom's taxonomy of educational objectives in the cognitive domain. Scores for 1,128 students in grades nine through twelve were analyzed separately by grade level for four content areas on six taxonomic levels. A measure of general ability was also…

  4. Compact stars in the braneworld: A new branch of stellar configurations with arbitrarily large mass

    NASA Astrophysics Data System (ADS)

    Lugones, Germán; Arbañil, José D. V.

    2017-03-01

    We study the properties of compact stars in the Randall-Sundrum type-II braneworld (BW) model. To this end, we solve the braneworld generalization of the stellar structure equations for a static fluid distribution with spherical symmetry considering that the spacetime outside the star is described by a Schwarzschild metric. First, the stellar structure equations are integrated employing the so-called causal limit equation of state (EOS), which is constructed using a well-established EOS at densities below a fiducial density, and the causal EOS P =ρ above it. It is a standard procedure in general relativistic stellar structure calculations to use such EOSs for obtaining a limit in the mass radius diagram, known as the causal limit, above which no stellar configurations are possible if the EOS fulfills the condition that the sound velocity is smaller than the speed of light. We find that the equilibrium solutions in the braneworld model can violate the general relativistic causal limit, and for sufficiently large mass they approach asymptotically to the Schwarzschild limit M =2 R . Then, we investigate the properties of hadronic and strange quark stars using two typical EOSs: a nonlinear relativistic mean-field model for hadronic matter and the Massachusetts Institute of Technology (MIT) bag model for quark matter. For masses below ˜1.5 M⊙- 2 M⊙ , the mass versus radius curves show the typical behavior found within the frame of general relativity. However, we also find a new branch of stellar configurations that can violate the general relativistic causal limit and that, in principle, may have an arbitrarily large mass. The stars belonging to this new branch are supported against collapse by the nonlocal effects of the bulk on the brane. We also show that these stars are always stable under small radial perturbations. These results support the idea that traces of extra dimensions might be found in astrophysics, specifically through the analysis of masses and radii of compact objects.

  5. Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults

    PubMed Central

    Chen, Fang; He, Jing; Zhang, Jianqi; Chen, Gary K.; Thomas, Venetta; Ambrosone, Christine B.; Bandera, Elisa V.; Berndt, Sonja I.; Bernstein, Leslie; Blot, William J.; Cai, Qiuyin; Carpten, John; Casey, Graham; Chanock, Stephen J.; Cheng, Iona; Chu, Lisa; Deming, Sandra L.; Driver, W. Ryan; Goodman, Phyllis; Hayes, Richard B.; Hennis, Anselm J. M.; Hsing, Ann W.; Hu, Jennifer J.; Ingles, Sue A.; John, Esther M.; Kittles, Rick A.; Kolb, Suzanne; Leske, M. Cristina; Monroe, Kristine R.; Murphy, Adam; Nemesure, Barbara; Neslund-Dudas, Christine; Nyante, Sarah; Ostrander, Elaine A; Press, Michael F.; Rodriguez-Gil, Jorge L.; Rybicki, Ben A.; Schumacher, Fredrick; Stanford, Janet L.; Signorello, Lisa B.; Strom, Sara S.; Stevens, Victoria; Van Den Berg, David; Wang, Zhaoming; Witte, John S.; Wu, Suh-Yuh; Yamamura, Yuko; Zheng, Wei; Ziegler, Regina G.; Stram, Alexander H.; Kolonel, Laurence N.; Marchand, Loïc Le; Henderson, Brian E.; Haiman, Christopher A.; Stram, Daniel O.

    2015-01-01

    Height has an extremely polygenic pattern of inheritance. Genome-wide association studies (GWAS) have revealed hundreds of common variants that are associated with human height at genome-wide levels of significance. However, only a small fraction of phenotypic variation can be explained by the aggregate of these common variants. In a large study of African-American men and women (n = 14,419), we genotyped and analyzed 966,578 autosomal SNPs across the entire genome using a linear mixed model variance components approach implemented in the program GCTA (Yang et al Nat Genet 2010), and estimated an additive heritability of 44.7% (se: 3.7%) for this phenotype in a sample of evidently unrelated individuals. While this estimated value is similar to that given by Yang et al in their analyses, we remain concerned about two related issues: (1) whether in the complete absence of hidden relatedness, variance components methods have adequate power to estimate heritability when a very large number of SNPs are used in the analysis; and (2) whether estimation of heritability may be biased, in real studies, by low levels of residual hidden relatedness. We addressed the first question in a semi-analytic fashion by directly simulating the distribution of the score statistic for a test of zero heritability with and without low levels of relatedness. The second question was addressed by a very careful comparison of the behavior of estimated heritability for both observed (self-reported) height and simulated phenotypes compared to imputation R2 as a function of the number of SNPs used in the analysis. These simulations help to address the important question about whether today's GWAS SNPs will remain useful for imputing causal variants that are discovered using very large sample sizes in future studies of height, or whether the causal variants themselves will need to be genotyped de novo in order to build a prediction model that ultimately captures a large fraction of the variability of height, and by implication other complex phenotypes. Our overall conclusions are that when study sizes are quite large (5,000 or so) the additive heritability estimate for height is not apparently biased upwards using the linear mixed model; however there is evidence in our simulation that a very large number of causal variants (many thousands) each with very small effect on phenotypic variance will need to be discovered to fill the gap between the heritability explained by known versus unknown causal variants. We conclude that today's GWAS data will remain useful in the future for causal variant prediction, but that finding the causal variants that need to be predicted may be extremely laborious. PMID:26125186

  6. Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults.

    PubMed

    Chen, Fang; He, Jing; Zhang, Jianqi; Chen, Gary K; Thomas, Venetta; Ambrosone, Christine B; Bandera, Elisa V; Berndt, Sonja I; Bernstein, Leslie; Blot, William J; Cai, Qiuyin; Carpten, John; Casey, Graham; Chanock, Stephen J; Cheng, Iona; Chu, Lisa; Deming, Sandra L; Driver, W Ryan; Goodman, Phyllis; Hayes, Richard B; Hennis, Anselm J M; Hsing, Ann W; Hu, Jennifer J; Ingles, Sue A; John, Esther M; Kittles, Rick A; Kolb, Suzanne; Leske, M Cristina; Millikan, Robert C; Monroe, Kristine R; Murphy, Adam; Nemesure, Barbara; Neslund-Dudas, Christine; Nyante, Sarah; Ostrander, Elaine A; Press, Michael F; Rodriguez-Gil, Jorge L; Rybicki, Ben A; Schumacher, Fredrick; Stanford, Janet L; Signorello, Lisa B; Strom, Sara S; Stevens, Victoria; Van Den Berg, David; Wang, Zhaoming; Witte, John S; Wu, Suh-Yuh; Yamamura, Yuko; Zheng, Wei; Ziegler, Regina G; Stram, Alexander H; Kolonel, Laurence N; Le Marchand, Loïc; Henderson, Brian E; Haiman, Christopher A; Stram, Daniel O

    2015-01-01

    Height has an extremely polygenic pattern of inheritance. Genome-wide association studies (GWAS) have revealed hundreds of common variants that are associated with human height at genome-wide levels of significance. However, only a small fraction of phenotypic variation can be explained by the aggregate of these common variants. In a large study of African-American men and women (n = 14,419), we genotyped and analyzed 966,578 autosomal SNPs across the entire genome using a linear mixed model variance components approach implemented in the program GCTA (Yang et al Nat Genet 2010), and estimated an additive heritability of 44.7% (se: 3.7%) for this phenotype in a sample of evidently unrelated individuals. While this estimated value is similar to that given by Yang et al in their analyses, we remain concerned about two related issues: (1) whether in the complete absence of hidden relatedness, variance components methods have adequate power to estimate heritability when a very large number of SNPs are used in the analysis; and (2) whether estimation of heritability may be biased, in real studies, by low levels of residual hidden relatedness. We addressed the first question in a semi-analytic fashion by directly simulating the distribution of the score statistic for a test of zero heritability with and without low levels of relatedness. The second question was addressed by a very careful comparison of the behavior of estimated heritability for both observed (self-reported) height and simulated phenotypes compared to imputation R2 as a function of the number of SNPs used in the analysis. These simulations help to address the important question about whether today's GWAS SNPs will remain useful for imputing causal variants that are discovered using very large sample sizes in future studies of height, or whether the causal variants themselves will need to be genotyped de novo in order to build a prediction model that ultimately captures a large fraction of the variability of height, and by implication other complex phenotypes. Our overall conclusions are that when study sizes are quite large (5,000 or so) the additive heritability estimate for height is not apparently biased upwards using the linear mixed model; however there is evidence in our simulation that a very large number of causal variants (many thousands) each with very small effect on phenotypic variance will need to be discovered to fill the gap between the heritability explained by known versus unknown causal variants. We conclude that today's GWAS data will remain useful in the future for causal variant prediction, but that finding the causal variants that need to be predicted may be extremely laborious.

  7. Estimation of Causal Mediation Effects for a Dichotomous Outcome in Multiple-Mediator Models using the Mediation Formula

    PubMed Central

    Nelson, Suchitra; Albert, Jeffrey M.

    2013-01-01

    Mediators are intermediate variables in the causal pathway between an exposure and an outcome. Mediation analysis investigates the extent to which exposure effects occur through these variables, thus revealing causal mechanisms. In this paper, we consider the estimation of the mediation effect when the outcome is binary and multiple mediators of different types exist. We give a precise definition of the total mediation effect as well as decomposed mediation effects through individual or sets of mediators using the potential outcomes framework. We formulate a model of joint distribution (probit-normal) using continuous latent variables for any binary mediators to account for correlations among multiple mediators. A mediation formula approach is proposed to estimate the total mediation effect and decomposed mediation effects based on this parametric model. Estimation of mediation effects through individual or subsets of mediators requires an assumption involving the joint distribution of multiple counterfactuals. We conduct a simulation study that demonstrates low bias of mediation effect estimators for two-mediator models with various combinations of mediator types. The results also show that the power to detect a non-zero total mediation effect increases as the correlation coefficient between two mediators increases, while power for individual mediation effects reaches a maximum when the mediators are uncorrelated. We illustrate our approach by applying it to a retrospective cohort study of dental caries in adolescents with low and high socioeconomic status. Sensitivity analysis is performed to assess the robustness of conclusions regarding mediation effects when the assumption of no unmeasured mediator-outcome confounders is violated. PMID:23650048

  8. Estimation of causal mediation effects for a dichotomous outcome in multiple-mediator models using the mediation formula.

    PubMed

    Wang, Wei; Nelson, Suchitra; Albert, Jeffrey M

    2013-10-30

    Mediators are intermediate variables in the causal pathway between an exposure and an outcome. Mediation analysis investigates the extent to which exposure effects occur through these variables, thus revealing causal mechanisms. In this paper, we consider the estimation of the mediation effect when the outcome is binary and multiple mediators of different types exist. We give a precise definition of the total mediation effect as well as decomposed mediation effects through individual or sets of mediators using the potential outcomes framework. We formulate a model of joint distribution (probit-normal) using continuous latent variables for any binary mediators to account for correlations among multiple mediators. A mediation formula approach is proposed to estimate the total mediation effect and decomposed mediation effects based on this parametric model. Estimation of mediation effects through individual or subsets of mediators requires an assumption involving the joint distribution of multiple counterfactuals. We conduct a simulation study that demonstrates low bias of mediation effect estimators for two-mediator models with various combinations of mediator types. The results also show that the power to detect a nonzero total mediation effect increases as the correlation coefficient between two mediators increases, whereas power for individual mediation effects reaches a maximum when the mediators are uncorrelated. We illustrate our approach by applying it to a retrospective cohort study of dental caries in adolescents with low and high socioeconomic status. Sensitivity analysis is performed to assess the robustness of conclusions regarding mediation effects when the assumption of no unmeasured mediator-outcome confounders is violated. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Non-parametric causality detection: An application to social media and financial data

    NASA Astrophysics Data System (ADS)

    Tsapeli, Fani; Musolesi, Mirco; Tino, Peter

    2017-10-01

    According to behavioral finance, stock market returns are influenced by emotional, social and psychological factors. Several recent works support this theory by providing evidence of correlation between stock market prices and collective sentiment indexes measured using social media data. However, a pure correlation analysis is not sufficient to prove that stock market returns are influenced by such emotional factors since both stock market prices and collective sentiment may be driven by a third unmeasured factor. Controlling for factors that could influence the study by applying multivariate regression models is challenging given the complexity of stock market data. False assumptions about the linearity or non-linearity of the model and inaccuracies on model specification may result in misleading conclusions. In this work, we propose a novel framework for causal inference that does not require any assumption about a particular parametric form of the model expressing statistical relationships among the variables of the study and can effectively control a large number of observed factors. We apply our method in order to estimate the causal impact that information posted in social media may have on stock market returns of four big companies. Our results indicate that social media data not only correlate with stock market returns but also influence them.

  10. A Causal-Comparative Analysis of the Effects of a Student Support Team (SST) Intervention Model at a Secondary School

    ERIC Educational Resources Information Center

    Johnson, Mid D.

    2010-01-01

    The purpose of this research was to identify and examine the effectiveness of a "Student Support Team" (SST) intervention model designed to increase the performance of struggling secondary students and to help them achieve prescribed state standards on the mathematics "Texas Assessment of Knowledge and Skills (TAKS)"…

  11. Diagnostik von Kontingenzerfahrungen in der fruehen Kindheit. Forschungsbericht Rapport Scientifique. Nr. 68. (Methods of Social Contingency Analysis. FB Nr. 68).

    ERIC Educational Resources Information Center

    Perrez, Meinrad

    Written in German, this article demonstrates the influence of different types of contingency information on the development of infant's locus of control and causal attribution, and discusses empirical models for calculating contingency parameters of the microsocial environment of infants, toddlers, and preschool children. Models discussed include:…

  12. A Causal Inference Analysis of the Effect of Wildland Fire Smoke on Ambient Air Pollution Levels and Health Burden

    EPA Science Inventory

    Wildfire smoke is a major contributor to ambient air pollution levels. In this talk, we develop a spatio-temporal model to estimate the contribution of fire smoke to overall air pollution in different regions of the country. We combine numerical model output with observational da...

  13. Final Report for Dynamic Models for Causal Analysis of Panel Data. Models for Change in Quantitative Variables, Part I Deterministic Models. Part II, Chapter 3.

    ERIC Educational Resources Information Center

    Hannan, Michael T.

    This document is part of a series of chapters described in SO 011 759. Addressing the question of effective models to measure change and the change process, the author suggests that linear structural equation systems may be viewed as steady state outcomes of continuous-change models and have rich sociological grounding. Two interpretations of the…

  14. CADDIS Volume 5. Causal Databases: Home page (Duplicate?)

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.

  15. Health and Wealth of Elderly Couples: Causality Tests Using Dynamic Panel Data Models*

    PubMed Central

    Michaud, Pierre-Carl; van Soest, Arthur

    2010-01-01

    A positive relationship between socio-economic status (SES) and health, the “health-wealth gradient”, is repeatedly found in many industrialized countries. This study analyzes competing explanations for this gradient: causal effects from health to wealth (health causation) and causal effects from wealth to health (wealth or social causation). Using six biennial waves of couples aged 51–61 in 1992 from the U.S. Health and Retirement Study, we test for causality in panel data models incorporating unobserved heterogeneity and a lag structure supported by specification tests. In contrast to tests relying on models with only first order lags or without unobserved heterogeneity, these tests provide no evidence of causal wealth health effects. On the other hand, we find strong evidence of causal effects from both spouses’ health on household wealth. We also find an effect of the husband’s health on the wife’s mental health, but no other effects from one spouse’s health to health of the other spouse. PMID:18513809

  16. Adaptive Non-Interventional Heuristics for Covariation Detection in Causal Induction: Model Comparison and Rational Analysis

    ERIC Educational Resources Information Center

    Hattori, Masasi; Oaksford, Mike

    2007-01-01

    In this article, 41 models of covariation detection from 2 x 2 contingency tables were evaluated against past data in the literature and against data from new experiments. A new model was also included based on a limiting case of the normative phi-coefficient under an extreme rarity assumption, which has been shown to be an important factor in…

  17. A conditional Granger causality model approach for group analysis in functional MRI

    PubMed Central

    Zhou, Zhenyu; Wang, Xunheng; Klahr, Nelson J.; Liu, Wei; Arias, Diana; Liu, Hongzhi; von Deneen, Karen M.; Wen, Ying; Lu, Zuhong; Xu, Dongrong; Liu, Yijun

    2011-01-01

    Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed for identifying effective connectivity in the human brain with functional MR imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pairwise GCM has commonly been applied based on single voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of an fMRI data with GCM. To compare the effectiveness of our approach with traditional pairwise GCM models, we applied a well-established conditional GCM to pre-selected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis (ICA) of an fMRI dataset in the temporal domain. Datasets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM detected brain activation regions in the emotion related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state dataset, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network (DMN) that can be characterized as both afferent and efferent influences on the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive (MVAR) model can achieve greater accuracy in detecting network connectivity than the widely used pairwise GCM, and this group analysis methodology can be quite useful to extend the information obtainable in fMRI. PMID:21232892

  18. Conditional spectrum computation incorporating multiple causal earthquakes and ground-motion prediction models

    USGS Publications Warehouse

    Lin, Ting; Harmsen, Stephen C.; Baker, Jack W.; Luco, Nicolas

    2013-01-01

    The conditional spectrum (CS) is a target spectrum (with conditional mean and conditional standard deviation) that links seismic hazard information with ground-motion selection for nonlinear dynamic analysis. Probabilistic seismic hazard analysis (PSHA) estimates the ground-motion hazard by incorporating the aleatory uncertainties in all earthquake scenarios and resulting ground motions, as well as the epistemic uncertainties in ground-motion prediction models (GMPMs) and seismic source models. Typical CS calculations to date are produced for a single earthquake scenario using a single GMPM, but more precise use requires consideration of at least multiple causal earthquakes and multiple GMPMs that are often considered in a PSHA computation. This paper presents the mathematics underlying these more precise CS calculations. Despite requiring more effort to compute than approximate calculations using a single causal earthquake and GMPM, the proposed approach produces an exact output that has a theoretical basis. To demonstrate the results of this approach and compare the exact and approximate calculations, several example calculations are performed for real sites in the western United States. The results also provide some insights regarding the circumstances under which approximate results are likely to closely match more exact results. To facilitate these more precise calculations for real applications, the exact CS calculations can now be performed for real sites in the United States using new deaggregation features in the U.S. Geological Survey hazard mapping tools. Details regarding this implementation are discussed in this paper.

  19. Expectations and Interpretations during Causal Learning

    ERIC Educational Resources Information Center

    Luhmann, Christian C.; Ahn, Woo-kyoung

    2011-01-01

    In existing models of causal induction, 4 types of covariation information (i.e., presence/absence of an event followed by presence/absence of another event) always exert identical influences on causal strength judgments (e.g., joint presence of events always suggests a generative causal relationship). In contrast, we suggest that, due to…

  20. Representing Personal Determinants in Causal Structures.

    ERIC Educational Resources Information Center

    Bandura, Albert

    1984-01-01

    Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…

  1. Structural equation modeling: building and evaluating causal models: Chapter 8

    USGS Publications Warehouse

    Grace, James B.; Scheiner, Samuel M.; Schoolmaster, Donald R.

    2015-01-01

    Scientists frequently wish to study hypotheses about causal relationships, rather than just statistical associations. This chapter addresses the question of how scientists might approach this ambitious task. Here we describe structural equation modeling (SEM), a general modeling framework for the study of causal hypotheses. Our goals are to (a) concisely describe the methodology, (b) illustrate its utility for investigating ecological systems, and (c) provide guidance for its application. Throughout our presentation, we rely on a study of the effects of human activities on wetland ecosystems to make our description of methodology more tangible. We begin by presenting the fundamental principles of SEM, including both its distinguishing characteristics and the requirements for modeling hypotheses about causal networks. We then illustrate SEM procedures and offer guidelines for conducting SEM analyses. Our focus in this presentation is on basic modeling objectives and core techniques. Pointers to additional modeling options are also given.

  2. Empirical evaluation of the conceptual model underpinning a regional aquatic long-term monitoring program using causal modelling

    USGS Publications Warehouse

    Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.

    2015-01-01

    Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of adaptive monitoring. We suspect our situation is not unique and many programs may suffer from the same inferential disconnect. Commonly, the survey design is optimized for robust estimates of regional status and trend detection and not necessarily to provide statistical inferences on the causal mechanisms outlined in the conceptual model, even though these relationships are typically used to justify and promote the long-term monitoring of a chosen ecological indicator. Our application demonstrates a process for empirical evaluation of conceptual models and exemplifies the need for such interim assessments in order for programs to evolve and persist.

  3. Statistical Analysis of the Impacts of Regional Transportation on the Air Quality in Beijing

    NASA Astrophysics Data System (ADS)

    Huang, Zhongwen; Zhang, Huiling; Tong, Lei; Xiao, Hang

    2016-04-01

    From October to December 2015, Beijing-Tianjin-Hebei (BTH) region had experienced several severe haze events. In order to assess the effects of the regional transportation on the air quality in Beijing, the air monitoring data (PM2.5, SO2, NO2 and CO) from that period published by Chinese National Environmental Monitoring Center (CNEMC) was collected and analyzed with various statistical models. The cities within BTH area were clustered into three groups according to the geographical conditions, while the air pollutant concentrations of cities within a group sharing similar variation trends. The Granger causality test results indicate that significant causal relationships exist between the air pollutant data of Beijing and its surrounding cities (Baoding, Chengde, Tianjin and Zhangjiakou) for the reference period. Then, linear regression models were constructed to capture the interdependency among the multiple time series. It shows that the observed air pollutant concentrations in Beijing were well consistent with the model-fitted results. More importantly, further analysis suggests that the air pollutants in Beijing were strongly affected by regional transportation, as the local sources only contributed 17.88%, 27.12%, 14.63% and 31.36% of PM2.5, SO2, NO2 and CO concentrations, respectively. And the major foreign source for Beijing was from Southwest (Baoding) direction, account for more than 42% of all these air pollutants. Thus, by combining various statistical models, it may not only be able to quickly predict the air qualities of any cities on a regional scale, but also to evaluate the local and regional source contributions for a particular city. Key words: regional transportation, air pollution, Granger causality test, statistical models

  4. CADDIS Volume 5. Causal Databases: Interactive Conceptual Diagrams (ICDs) User Guide

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.

  5. Impacts of agricultural land use on biological integrity: A causal analysis

    USGS Publications Warehouse

    Riseng, C.M.; Wiley, M.J.; Black, R.W.; Munn, M.D.

    2011-01-01

    Agricultural land use has often been linked to nutrient enrichment, habitat degradation, hydrologic alteration, and loss of biotic integrity in streams. The U.S. Geological Survey's National Water Quality Assessment Program sampled 226 stream sites located in eight agriculture-dominated study units across the United States to investigate the geographic variability and causes of agricultural impacts on stream biotic integrity. In this analysis we used structural equation modeling (SEM) to develop a national and set of regional causal models linking agricultural land use to measured instream conditions. We then examined the direct, indirect, and total effects of agriculture on biotic integrity as it acted through multiple water quality and habitat pathways. In our nation-wide model, cropland affected benthic communities by both altering structural habitats and by imposing water quality-related stresses. Regionspecific modeling demonstrated that geographic context altered the relative importance of causal pathways through which agricultural activities affected stream biotic integrity. Cropland had strong negative total effects on the invertebrate community in the national, Midwest, and Western models, but a very weak effect in the Eastern Coastal Plain model. In theWestern Arid and Eastern Coastal Plain study regions, cropland impacts were transmitted primarily through dissolved water quality contaminants, but in the Midwestern region, they were transmitted primarily through particulate components of water quality. Habitat effects were important in the Western Arid model, but negligible in the Midwest and Eastern Coastal Plain models. The relative effects of riparian forested wetlands also varied regionally, having positive effects on biotic integrity in the Eastern Coastal Plain andWestern Arid region models, but no statistically significant effect in the Midwest. These differences in response to cropland and riparian cover suggest that best management practices and planning for the mitigation of agricultural land use impacts on stream ecosystems should be regionally focused. ?? 2011 by the Ecological Society of America.

  6. A Causality Analysis of the Link between Higher Education and Economic Development.

    ERIC Educational Resources Information Center

    De Meulemeester, Jean-Luc; Rochat, Denis

    1995-01-01

    Summarizes a study exploring the relationship between higher education and economic development, using cointegration and Granger-causality tests. Results show a significant causality from higher education efforts in Sweden, United Kingdom, Japan, and France. However, a similar causality link has not been found for Italy or Australia. (68…

  7. Pathway Analysis and the Search for Causal Mechanisms

    ERIC Educational Resources Information Center

    Weller, Nicholas; Barnes, Jeb

    2016-01-01

    The study of causal mechanisms interests scholars across the social sciences. Case studies can be a valuable tool in developing knowledge and hypotheses about how causal mechanisms function. The usefulness of case studies in the search for causal mechanisms depends on effective case selection, and there are few existing guidelines for selecting…

  8. Causal assessment of surrogacy in a meta-analysis of colorectal cancer trials

    PubMed Central

    Li, Yun; Taylor, Jeremy M.G.; Elliott, Michael R.; Sargent, Daniel J.

    2011-01-01

    When the true end points (T) are difficult or costly to measure, surrogate markers (S) are often collected in clinical trials to help predict the effect of the treatment (Z). There is great interest in understanding the relationship among S, T, and Z. A principal stratification (PS) framework has been proposed by Frangakis and Rubin (2002) to study their causal associations. In this paper, we extend the framework to a multiple trial setting and propose a Bayesian hierarchical PS model to assess surrogacy. We apply the method to data from a large collection of colon cancer trials in which S and T are binary. We obtain the trial-specific causal measures among S, T, and Z, as well as their overall population-level counterparts that are invariant across trials. The method allows for information sharing across trials and reduces the nonidentifiability problem. We examine the frequentist properties of our model estimates and the impact of the monotonicity assumption using simulations. We also illustrate the challenges in evaluating surrogacy in the counterfactual framework that result from nonidentifiability. PMID:21252079

  9. Inflation without inflaton: A model for dark energy

    NASA Astrophysics Data System (ADS)

    Falomir, H.; Gamboa, J.; Méndez, F.; Gondolo, P.

    2017-10-01

    The interaction between two initially causally disconnected regions of the Universe is studied using analogies of noncommutative quantum mechanics and the deformation of Poisson manifolds. These causally disconnect regions are governed by two independent Friedmann-Lemaître-Robertson-Walker (FLRW) metrics with scale factors a and b and cosmological constants Λa and Λb, respectively. The causality is turned on by positing a nontrivial Poisson bracket [Pα,Pβ]=ɛα βκ/G , where G is Newton's gravitational constant and κ is a dimensionless parameter. The posited deformed Poisson bracket has an interpretation in terms of 3-cocycles, anomalies, and Poissonian manifolds. The modified FLRW equations acquire an energy-momentum tensor from which we explicitly obtain the equation of state parameter. The modified FLRW equations are solved numerically and the solutions are inflationary or oscillating depending on the values of κ . In this model, the accelerating and decelerating regime may be periodic. The analysis of the equation of state clearly shows the presence of dark energy. By completeness, the perturbative solution for κ ≪1 is also studied.

  10. Bayesian model reduction and empirical Bayes for group (DCM) studies.

    PubMed

    Friston, Karl J; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E; van Wijk, Bernadette C M; Ziegler, Gabriel; Zeidman, Peter

    2016-03-01

    This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level - e.g., dynamic causal models - and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Diagram-based Analysis of Causal Systems (DACS): elucidating inter-relationships between determinants of acute lower respiratory infections among children in sub-Saharan Africa.

    PubMed

    Rehfuess, Eva A; Best, Nicky; Briggs, David J; Joffe, Mike

    2013-12-06

    Effective interventions require evidence on how individual causal pathways jointly determine disease. Based on the concept of systems epidemiology, this paper develops Diagram-based Analysis of Causal Systems (DACS) as an approach to analyze complex systems, and applies it by examining the contributions of proximal and distal determinants of childhood acute lower respiratory infections (ALRI) in sub-Saharan Africa. Diagram-based Analysis of Causal Systems combines the use of causal diagrams with multiple routinely available data sources, using a variety of statistical techniques. In a step-by-step process, the causal diagram evolves from conceptual based on a priori knowledge and assumptions, through operational informed by data availability which then undergoes empirical testing, to integrated which synthesizes information from multiple datasets. In our application, we apply different regression techniques to Demographic and Health Survey (DHS) datasets for Benin, Ethiopia, Kenya and Namibia and a pooled World Health Survey (WHS) dataset for sixteen African countries. Explicit strategies are employed to make decisions transparent about the inclusion/omission of arrows, the sign and strength of the relationships and homogeneity/heterogeneity across settings.Findings about the current state of evidence on the complex web of socio-economic, environmental, behavioral and healthcare factors influencing childhood ALRI, based on DHS and WHS data, are summarized in an integrated causal diagram. Notably, solid fuel use is structured by socio-economic factors and increases the risk of childhood ALRI mortality. Diagram-based Analysis of Causal Systems is a means of organizing the current state of knowledge about a specific area of research, and a framework for integrating statistical analyses across a whole system. This partly a priori approach is explicit about causal assumptions guiding the analysis and about researcher judgment, and wrong assumptions can be reversed following empirical testing. This approach is well-suited to dealing with complex systems, in particular where data are scarce.

  12. Diagram-based Analysis of Causal Systems (DACS): elucidating inter-relationships between determinants of acute lower respiratory infections among children in sub-Saharan Africa

    PubMed Central

    2013-01-01

    Background Effective interventions require evidence on how individual causal pathways jointly determine disease. Based on the concept of systems epidemiology, this paper develops Diagram-based Analysis of Causal Systems (DACS) as an approach to analyze complex systems, and applies it by examining the contributions of proximal and distal determinants of childhood acute lower respiratory infections (ALRI) in sub-Saharan Africa. Results Diagram-based Analysis of Causal Systems combines the use of causal diagrams with multiple routinely available data sources, using a variety of statistical techniques. In a step-by-step process, the causal diagram evolves from conceptual based on a priori knowledge and assumptions, through operational informed by data availability which then undergoes empirical testing, to integrated which synthesizes information from multiple datasets. In our application, we apply different regression techniques to Demographic and Health Survey (DHS) datasets for Benin, Ethiopia, Kenya and Namibia and a pooled World Health Survey (WHS) dataset for sixteen African countries. Explicit strategies are employed to make decisions transparent about the inclusion/omission of arrows, the sign and strength of the relationships and homogeneity/heterogeneity across settings. Findings about the current state of evidence on the complex web of socio-economic, environmental, behavioral and healthcare factors influencing childhood ALRI, based on DHS and WHS data, are summarized in an integrated causal diagram. Notably, solid fuel use is structured by socio-economic factors and increases the risk of childhood ALRI mortality. Conclusions Diagram-based Analysis of Causal Systems is a means of organizing the current state of knowledge about a specific area of research, and a framework for integrating statistical analyses across a whole system. This partly a priori approach is explicit about causal assumptions guiding the analysis and about researcher judgment, and wrong assumptions can be reversed following empirical testing. This approach is well-suited to dealing with complex systems, in particular where data are scarce. PMID:24314302

  13. Accounting for occurrences: an explanation for some novel tendencies in causal judgment from contingency information.

    PubMed

    White, Peter A

    2009-06-01

    Contingency information is information about empirical associations between possible causes and outcomes. In the present research, it is shown that, under some circumstances, there is a tendency for negative contingencies to lead to positive causal judgments and for positive contingencies to lead to negative causal judgments. If there is a high proportion of instances in which a candidate cause (CC) being judged is present, these tendencies are predicted by weighted averaging models of causal judgment. If the proportion of such instances is low, the predictions of weighted averaging models break down. It is argued that one of the main aims of causal judgment is to account for occurrences of the outcome. Thus, a CC is not given a high causal judgment if there are few or no occurrences of it, regardless of the objective contingency. This argument predicts that, if there is a low proportion of instances in which a CC is present, causal judgments are determined mainly by the number of Cell A instances (i.e., CC present, outcome occurs), and that this explains why weighted averaging models fail to predict judgmental tendencies under these circumstances. Experimental results support this argument.

  14. Tutorial in Biostatistics: Instrumental Variable Methods for Causal Inference*

    PubMed Central

    Baiocchi, Michael; Cheng, Jing; Small, Dylan S.

    2014-01-01

    A goal of many health studies is to determine the causal effect of a treatment or intervention on health outcomes. Often, it is not ethically or practically possible to conduct a perfectly randomized experiment and instead an observational study must be used. A major challenge to the validity of observational studies is the possibility of unmeasured confounding (i.e., unmeasured ways in which the treatment and control groups differ before treatment administration which also affect the outcome). Instrumental variables analysis is a method for controlling for unmeasured confounding. This type of analysis requires the measurement of a valid instrumental variable, which is a variable that (i) is independent of the unmeasured confounding; (ii) affects the treatment; and (iii) affects the outcome only indirectly through its effect on the treatment. This tutorial discusses the types of causal effects that can be estimated by instrumental variables analysis; the assumptions needed for instrumental variables analysis to provide valid estimates of causal effects and sensitivity analysis for those assumptions; methods of estimation of causal effects using instrumental variables; and sources of instrumental variables in health studies. PMID:24599889

  15. Key organizational commitment antecedents for nurses, paramedical professionals and non-clinical staff.

    PubMed

    Caykoylu, Sinan; Egri, Carolyn P; Havlovic, Stephen; Bradley, Christine

    2011-01-01

    The purpose of this paper is to develop a causal model that explains the antecedents and mediating factors predicting the organizational commitment of healthcare employees in different work roles. This study tests an integrative causal model that consists of a number of direct and indirect relationships for antecedents of organizational commitment. It is proposed that the relationship between job satisfaction and organizational commitment is best understood by focusing on the three interrelated facets of job satisfaction, i.e. satisfaction with career advancement, satisfaction with supervisor, and satisfaction with co-workers. However, the model also advances that these job satisfaction facets have different mediating effects for other antecedents of organizational commitment. The Structural Equation Modeling (SEM) path analysis showed that the job satisfaction facets of career advancement and satisfaction with supervisor had a direct impact on organizational commitment. Employee empowerment, job-motivating potential, effective leadership, acceptance by co-workers, role ambiguity and role conflict were also important determinants of organizational commitment. Interestingly, post hoc analyses showed that satisfaction with co-workers only had an indirect impact on organizational commitment. While there has been extensive research on organizational commitment and its antecedents in healthcare organizations, most previous studies have been limited either to a single employee group or to a single time frame. This study proposes a practical causal model of antecedents of organizational commitment that tests relationships across time and across different healthcare employee groups.

  16. Synchrony dynamics underlying effective connectivity reconstruction of neuronal circuits

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Guo, Xinmeng; Qin, Qing; Deng, Yun; Wang, Jiang; Liu, Jing; Cao, Yibin

    2017-04-01

    Reconstruction of effective connectivity between neurons is essential for neural systems with function-related significance, characterizing directionally causal influences among neurons. In this work, causal interactions between neurons in spinal dorsal root ganglion, activated by manual acupuncture at Zusanli acupoint of experimental rats, are estimated using Granger causality (GC) method. Different patterns of effective connectivity are obtained for different frequencies and types of acupuncture. Combined with synchrony analysis between neurons, we show a dependence of effective connection on the synchronization dynamics. Based on the experimental findings, a neuronal circuit model with synaptic connections is constructed. The variation of neuronal effective connectivity with respect to its structural connectivity and synchronization dynamics is further explored. Simulation results show that reciprocally causal interactions with statistically significant are formed between well-synchronized neurons. The effective connectivity may be not necessarily equivalent to synaptic connections, but rather depend on the synchrony relationship. Furthermore, transitions of effective interaction between neurons are observed following the synchronization transitions induced by conduction delay and synaptic conductance. These findings are helpful to further investigate the dynamical mechanisms underlying the reconstruction of effective connectivity of neuronal population.

  17. Formalizing the role of agent-based modeling in causal inference and epidemiology.

    PubMed

    Marshall, Brandon D L; Galea, Sandro

    2015-01-15

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Normative and descriptive accounts of the influence of power and contingency on causal judgement.

    PubMed

    Perales, José C; Shanks, David R

    2003-08-01

    The power PC theory (Cheng, 1997) is a normative account of causal inference, which predicts that causal judgements are based on the power p of a potential cause, where p is the cause-effect contingency normalized by the base rate of the effect. In three experiments we demonstrate that both cause-effect contingency and effect base-rate independently affect estimates in causal learning tasks. In Experiment 1, causal strength judgements were directly related to power p in a task in which the effect base-rate was manipulated across two positive and two negative contingency conditions. In Experiments 2 and 3 contingency manipulations affected causal estimates in several situations in which power p was held constant, contrary to the power PC theory's predictions. This latter effect cannot be explained by participants' conflation of reliability and causal strength, as Experiment 3 demonstrated independence of causal judgements and confidence. From a descriptive point of view, the data are compatible with Pearce's (1987) model, as well as with several other judgement rules, but not with the Rescorla-Wagner (Rescorla & Wagner, 1972) or power PC models.

  19. CADDIS Volume 5. Causal Databases: Interactive Conceptual Diagrams (ICDs) Quick Start Instructions

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.

  20. Causal Indicators Can Help to Interpret Factors

    ERIC Educational Resources Information Center

    Bentler, Peter M.

    2016-01-01

    The latent factor in a causal indicator model is no more than the latent factor of the factor part of the model. However, if the causal indicator variables are well-understood and help to improve the prediction of individuals' factor scores, they can help to interpret the meaning of the latent factor. Aguirre-Urreta, Rönkkö, and Marakas (2016)…

  1. Right external globus pallidus changes are associated with altered causal awareness in youth with depression

    PubMed Central

    Griffiths, K R; Lagopoulos, J; Hermens, D F; Hickie, I B; Balleine, B W

    2015-01-01

    Cognitive impairment is a functionally disabling feature of depression contributing to maladaptive decision-making, a loss of behavioral control and an increased disease burden. The ability to calculate the causal efficacy of ones actions in achieving specific goals is critical to normal decision-making and, in this study, we combined voxel-based morphometry (VBM), shape analysis and diffusion tensor tractography to investigate the relationship between cortical–basal ganglia structural integrity and such causal awareness in 43 young subjects with depression and 21 demographically similar healthy controls. Volumetric analysis determined a relationship between right pallidal size and sensitivity to the causal status of specific actions. More specifically, shape analysis identified dorsolateral surface vertices where an inward location was correlated with reduced levels of causal awareness. Probabilistic tractography revealed that affected parts of the pallidum were primarily connected with the striatum, dorsal thalamus and hippocampus. VBM did not reveal any whole-brain gray matter regions that correlated with causal awareness. We conclude that volumetric reduction within the indirect pathway involving the right dorsolateral pallidum is associated with reduced awareness of the causal efficacy of goal-directed actions in young depressed individuals. This causal awareness task allows for the identification of a functionally and biologically relevant subgroup to which more targeted cognitive interventions could be applied, potentially enhancing the long-term outcomes for these individuals. PMID:26440541

  2. Estimating Causal Effects with Ancestral Graph Markov Models

    PubMed Central

    Malinsky, Daniel; Spirtes, Peter

    2017-01-01

    We present an algorithm for estimating bounds on causal effects from observational data which combines graphical model search with simple linear regression. We assume that the underlying system can be represented by a linear structural equation model with no feedback, and we allow for the possibility of latent variables. Under assumptions standard in the causal search literature, we use conditional independence constraints to search for an equivalence class of ancestral graphs. Then, for each model in the equivalence class, we perform the appropriate regression (using causal structure information to determine which covariates to include in the regression) to estimate a set of possible causal effects. Our approach is based on the “IDA” procedure of Maathuis et al. (2009), which assumes that all relevant variables have been measured (i.e., no unmeasured confounders). We generalize their work by relaxing this assumption, which is often violated in applied contexts. We validate the performance of our algorithm on simulated data and demonstrate improved precision over IDA when latent variables are present. PMID:28217244

  3. Spatial-temporal causal modeling: a data centric approach to climate change attribution (Invited)

    NASA Astrophysics Data System (ADS)

    Lozano, A. C.

    2010-12-01

    Attribution of climate change has been predominantly based on simulations using physical climate models. These approaches rely heavily on the employed models and are thus subject to their shortcomings. Given the physical models’ limitations in describing the complex system of climate, we propose an alternative approach to climate change attribution that is data centric in the sense that it relies on actual measurements of climate variables and human and natural forcing factors. We present a novel class of methods to infer causality from spatial-temporal data, as well as a procedure to incorporate extreme value modeling into our methodology in order to address the attribution of extreme climate events. We develop a collection of causal modeling methods using spatio-temporal data that combine graphical modeling techniques with the notion of Granger causality. “Granger causality” is an operational definition of causality from econometrics, which is based on the premise that if a variable causally affects another, then the past values of the former should be helpful in predicting the future values of the latter. In its basic version, our methodology makes use of the spatial relationship between the various data points, but treats each location as being identically distributed and builds a unique causal graph that is common to all locations. A more flexible framework is then proposed that is less restrictive than having a single causal graph common to all locations, while avoiding the brittleness due to data scarcity that might arise if one were to independently learn a different graph for each location. The solution we propose can be viewed as finding a middle ground by partitioning the locations into subsets that share the same causal structures and pooling the observations from all the time series belonging to the same subset in order to learn more robust causal graphs. More precisely, we make use of relationships between locations (e.g. neighboring relationship) by defining a relational graph in which related locations are connected (note that this relational graph, which represents relationships among the different locations, is distinct from the causal graph, which represents causal relationships among the individual variables - e.g. temperature, pressure- within a multivariate time series). We then define a hidden Markov Random Field (hMRF), assigning a hidden state to each node (location), with the state assignment guided by the prior information encoded in the relational graph. Nodes that share the same state in the hMRF model will have the same causal graph. State assignment can thus shed light on unknown relations among locations (e.g. teleconnection). While the model has been described in terms of hard location partitioning to facilitate its exposition, in fact a soft partitioning is maintained throughout learning. This leads to a form of transfer learning, which makes our model applicable even in situations where partitioning the locations might not seem appropriate. We first validate the effectiveness of our methodology on synthetic datasets, and then apply it to actual climate measurement data. The experimental results show that our approach offers a useful alternative to the simulation-based approach for climate modeling and attribution, and has the capability to provide valuable scientific insights from a new perspective.

  4. Group Influences on Young Adult Warfighters’ Risk-Taking

    DTIC Science & Technology

    2014-10-01

    Characteristics, Heterosocial Relations, and Body Fat as Risk Factors for Eating Disorder Symptoms in Early Adolescence: A Causal Modeling Analysis...Reimer (1997). “The Development of Shame in Early Adolescence.” Department of Psychology, Temple University. (Winner of the 1997 Page Award for Research

  5. Characteristics of voxel prediction power in full-brain Granger causality analysis of fMRI data

    NASA Astrophysics Data System (ADS)

    Garg, Rahul; Cecchi, Guillermo A.; Rao, A. Ravishankar

    2011-03-01

    Functional neuroimaging research is moving from the study of "activations" to the study of "interactions" among brain regions. Granger causality analysis provides a powerful technique to model spatio-temporal interactions among brain regions. We apply this technique to full-brain fMRI data without aggregating any voxel data into regions of interest (ROIs). We circumvent the problem of dimensionality using sparse regression from machine learning. On a simple finger-tapping experiment we found that (1) a small number of voxels in the brain have very high prediction power, explaining the future time course of other voxels in the brain; (2) these voxels occur in small sized clusters (of size 1-4 voxels) distributed throughout the brain; (3) albeit small, these clusters overlap with most of the clusters identified with the non-temporal General Linear Model (GLM); and (4) the method identifies clusters which, while not determined by the task and not detectable by GLM, still influence brain activity.

  6. Mediation Analysis: A Practitioner's Guide.

    PubMed

    VanderWeele, Tyler J

    2016-01-01

    This article provides an overview of recent developments in mediation analysis, that is, analyses used to assess the relative magnitude of different pathways and mechanisms by which an exposure may affect an outcome. Traditional approaches to mediation in the biomedical and social sciences are described. Attention is given to the confounding assumptions required for a causal interpretation of direct and indirect effect estimates. Methods from the causal inference literature to conduct mediation in the presence of exposure-mediator interactions, binary outcomes, binary mediators, and case-control study designs are presented. Sensitivity analysis techniques for unmeasured confounding and measurement error are introduced. Discussion is given to extensions to time-to-event outcomes and multiple mediators. Further flexible modeling strategies arising from the precise counterfactual definitions of direct and indirect effects are also described. The focus throughout is on methodology that is easily implementable in practice across a broad range of potential applications.

  7. Behavioral and Neural Correlates of Executive Function: Interplay between Inhibition and Updating Processes.

    PubMed

    Kim, Na Young; Wittenberg, Ellen; Nam, Chang S

    2017-01-01

    This study investigated the interaction between two executive function processes, inhibition and updating, through analyses of behavioral, neurophysiological, and effective connectivity metrics. Although, many studies have focused on behavioral effects of executive function processes individually, few studies have examined the dynamic causal interactions between these two functions. A total of twenty participants from a local university performed a dual task combing flanker and n-back experimental paradigms, and completed the Operation Span Task designed to measure working memory capacity. We found that both behavioral (accuracy and reaction time) and neurophysiological (P300 amplitude and alpha band power) metrics on the inhibition task (i.e., flanker task) were influenced by the updating load (n-back level) and modulated by working memory capacity. Using independent component analysis, source localization (DIPFIT), and Granger Causality analysis of the EEG time-series data, the present study demonstrated that manipulation of cognitive demand in a dual executive function task influenced the causal neural network. We compared connectivity across three updating loads (n-back levels) and found that experimental manipulation of working memory load enhanced causal connectivity of a large-scale neurocognitive network. This network contains the prefrontal and parietal cortices, which are associated with inhibition and updating executive function processes. This study has potential applications in human performance modeling and assessment of mental workload, such as the design of training materials and interfaces for those performing complex multitasking under stress.

  8. Carbon dioxide emissions, GDP, energy use, and population growth: a multivariate and causality analysis for Ghana, 1971-2013.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-07-01

    In this study, the relationship between carbon dioxide emissions, GDP, energy use, and population growth in Ghana was investigated from 1971 to 2013 by comparing the vector error correction model (VECM) and the autoregressive distributed lag (ARDL). Prior to testing for Granger causality based on VECM, the study tested for unit roots, Johansen's multivariate co-integration and performed a variance decomposition analysis using Cholesky's technique. Evidence from the variance decomposition shows that 21 % of future shocks in carbon dioxide emissions are due to fluctuations in energy use, 8 % of future shocks are due to fluctuations in GDP, and 6 % of future shocks are due to fluctuations in population. There was evidence of bidirectional causality running from energy use to GDP and a unidirectional causality running from carbon dioxide emissions to energy use, carbon dioxide emissions to GDP, carbon dioxide emissions to population, and population to energy use. Evidence from the long-run elasticities shows that a 1 % increase in population in Ghana will increase carbon dioxide emissions by 1.72 %. There was evidence of short-run equilibrium relationship running from energy use to carbon dioxide emissions and GDP to carbon dioxide emissions. As a policy implication, the addition of renewable energy and clean energy technologies into Ghana's energy mix can help mitigate climate change and its impact in the future.

  9. The Construct Validity of Higher Order Structure-of-Intellect Abilities in a Battery of Tests Emphasizing the Product of Transformations: A Confirmatory Maximum Likelihood Factor Analysis.

    ERIC Educational Resources Information Center

    Khattab, Ali-Maher; And Others

    1982-01-01

    A causal modeling system, using confirmatory maximum likelihood factor analysis with the LISREL IV computer program, evaluated the construct validity underlying the higher order factor structure of a given correlation matrix of 46 structure-of-intellect tests emphasizing the product of transformations. (Author/PN)

  10. Causal inference and the data-fusion problem

    PubMed Central

    Bareinboim, Elias; Pearl, Judea

    2016-01-01

    We review concepts, principles, and tools that unify current approaches to causal analysis and attend to new challenges presented by big data. In particular, we address the problem of data fusion—piecing together multiple datasets collected under heterogeneous conditions (i.e., different populations, regimes, and sampling methods) to obtain valid answers to queries of interest. The availability of multiple heterogeneous datasets presents new opportunities to big data analysts, because the knowledge that can be acquired from combined data would not be possible from any individual source alone. However, the biases that emerge in heterogeneous environments require new analytical tools. Some of these biases, including confounding, sampling selection, and cross-population biases, have been addressed in isolation, largely in restricted parametric models. We here present a general, nonparametric framework for handling these biases and, ultimately, a theoretical solution to the problem of data fusion in causal inference tasks. PMID:27382148

  11. The Global Drivers of Photosynthesis and Light Use Efficiency Seasonality: A Granger Frequency Causality Analysis

    NASA Technical Reports Server (NTRS)

    Nemani, Ramakrishna R.

    2016-01-01

    Photosynthesis and light use efficiency (LUE) are major factors in the evolution of the continental carbon cycle due to their contribution to gross primary production (GPP). However, while the drivers of photosynthesis and LUE on a plant or canopy scale can often be identified, significant uncertainties exist when modeling these on a global scale. This is due to sparse observations in regions such as the tropics and the lack of a direct global observation dataset. Although others have attempted to address this issue using correlations (Beer, 2010) or calculating GPP from vegetation indices (Running, 2004), in this study we take a new approach. We combine the statistical method of Granger frequency causality and partial Granger frequency causality with remote sensing data products (including sun-induced fluorescence used as a proxy for GPP) to determine the main environmental drivers of GPP across the globe.

  12. Temporal Causality Analysis of Sentiment Change in a Cancer Survivor Network.

    PubMed

    Bui, Ngot; Yen, John; Honavar, Vasant

    2016-06-01

    Online health communities constitute a useful source of information and social support for patients. American Cancer Society's Cancer Survivor Network (CSN), a 173,000-member community, is the largest online network for cancer patients, survivors, and caregivers. A discussion thread in CSN is often initiated by a cancer survivor seeking support from other members of CSN. Discussion threads are multi-party conversations that often provide a source of social support e.g., by bringing about a change of sentiment from negative to positive on the part of the thread originator. While previous studies regarding cancer survivors have shown that members of an online health community derive benefits from their participation in such communities, causal accounts of the factors that contribute to the observed benefits have been lacking. We introduce a novel framework to examine the temporal causality of sentiment dynamics in the CSN. We construct a Probabilistic Computation Tree Logic representation and a corresponding probabilistic Kripke structure to represent and reason about the changes in sentiments of posts in a thread over time. We use a sentiment classifier trained using machine learning on a set of posts manually tagged with sentiment labels to classify posts as expressing either positive or negative sentiment. We analyze the probabilistic Kripke structure to identify the prima facie causes of sentiment change on the part of the thread originators in the CSN forum and their significance. We find that the sentiment of replies appears to causally influence the sentiment of the thread originator. Our experiments also show that the conclusions are robust with respect to the choice of the (i) classification threshold of the sentiment classifier; (ii) and the choice of the specific sentiment classifier used. We also extend the basic framework for temporal causality analysis to incorporate the uncertainty in the states of the probabilistic Kripke structure resulting from the use of an imperfect state transducer (in our case, the sentiment classifier). Our analysis of temporal causality of CSN sentiment dynamics offers new insights that the designers, managers and moderators of an online community such as CSN can utilize to facilitate and enhance the interactions so as to better meet the social support needs of the CSN participants. The proposed methodology for analysis of temporal causality has broad applicability in a variety of settings where the dynamics of the underlying system can be modeled in terms of state variables that change in response to internal or external inputs.

  13. Temporal Causality Analysis of Sentiment Change in a Cancer Survivor Network

    PubMed Central

    Bui, Ngot; Yen, John; Honavar, Vasant

    2017-01-01

    Online health communities constitute a useful source of information and social support for patients. American Cancer Society’s Cancer Survivor Network (CSN), a 173,000-member community, is the largest online network for cancer patients, survivors, and caregivers. A discussion thread in CSN is often initiated by a cancer survivor seeking support from other members of CSN. Discussion threads are multi-party conversations that often provide a source of social support e.g., by bringing about a change of sentiment from negative to positive on the part of the thread originator. While previous studies regarding cancer survivors have shown that members of an online health community derive benefits from their participation in such communities, causal accounts of the factors that contribute to the observed benefits have been lacking. We introduce a novel framework to examine the temporal causality of sentiment dynamics in the CSN. We construct a Probabilistic Computation Tree Logic representation and a corresponding probabilistic Kripke structure to represent and reason about the changes in sentiments of posts in a thread over time. We use a sentiment classifier trained using machine learning on a set of posts manually tagged with sentiment labels to classify posts as expressing either positive or negative sentiment. We analyze the probabilistic Kripke structure to identify the prima facie causes of sentiment change on the part of the thread originators in the CSN forum and their significance. We find that the sentiment of replies appears to causally influence the sentiment of the thread originator. Our experiments also show that the conclusions are robust with respect to the choice of the (i) classification threshold of the sentiment classifier; (ii) and the choice of the specific sentiment classifier used. We also extend the basic framework for temporal causality analysis to incorporate the uncertainty in the states of the probabilistic Kripke structure resulting from the use of an imperfect state transducer (in our case, the sentiment classifier). Our analysis of temporal causality of CSN sentiment dynamics offers new insights that the designers, managers and moderators of an online community such as CSN can utilize to facilitate and enhance the interactions so as to better meet the social support needs of the CSN participants. The proposed methodology for analysis of temporal causality has broad applicability in a variety of settings where the dynamics of the underlying system can be modeled in terms of state variables that change in response to internal or external inputs. PMID:29399599

  14. The famous five factors in teamwork: a case study of fratricide.

    PubMed

    Rafferty, Laura A; Stanton, Neville A; Walker, Guy H

    2010-10-01

    The purpose of this paper is to propose foundations for a theory of errors in teamwork based upon analysis of a case study of fratricide alongside a review of the existing literature. This approach may help to promote a better understanding of interactions within complex systems and help in the formulation of hypotheses and predictions concerning errors in teamwork, particularly incidents of fratricide. It is proposed that a fusion of concepts drawn from error models, with common causal categories taken from teamwork models, could allow for an in-depth exploration of incidents of fratricide. It is argued that such a model has the potential to explore the core causal categories identified as present in an incident of fratricide. This view marks fratricide as a process of errors occurring throughout the military system as a whole, particularly due to problems in teamwork within this complex system. Implications of this viewpoint for the development of a new theory of fratricide are offered. STATEMENT OF RELEVANCE: This article provides an insight into the fusion of existing error and teamwork models for the analysis of an incident of fratricide. Within this paper, a number of commonalities among models of teamwork have been identified allowing for the development of a model.

  15. A classical regression framework for mediation analysis: fitting one model to estimate mediation effects.

    PubMed

    Saunders, Christina T; Blume, Jeffrey D

    2017-10-26

    Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.

  16. Southeast regional fatal study : a causal chain analysis in North Carolina

    DOT National Transportation Integrated Search

    2002-01-01

    This project completed the North Carolina portion of the pooled fund Southeast Fatal Analysis Project. In addition : to completing this portion of the causal chain analysis for NC Crashes, the project developed a ranked : comprehensive list of candid...

  17. Omission of Causal Indicators: Consequences and Implications for Measurement

    ERIC Educational Resources Information Center

    Aguirre-Urreta, Miguel I.; Rönkkö, Mikko; Marakas, George M.

    2016-01-01

    One of the central assumptions of the causal-indicator literature is that all causal indicators must be included in the research model and that the exclusion of one or more relevant causal indicators would have severe negative consequences by altering the meaning of the latent variable. In this research we show that the omission of a relevant…

  18. How to Be Causal: Time, Spacetime and Spectra

    ERIC Educational Resources Information Center

    Kinsler, Paul

    2011-01-01

    I explain a simple definition of causality in widespread use, and indicate how it links to the Kramers-Kronig relations. The specification of causality in terms of temporal differential equations then shows us the way to write down dynamical models so that their causal nature "in the sense used here" should be obvious to all. To extend existing…

  19. A Quantum Probability Model of Causal Reasoning

    PubMed Central

    Trueblood, Jennifer S.; Busemeyer, Jerome R.

    2012-01-01

    People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause) with diagnostic judgments (i.e., the conditional probability of a cause given an effect). The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment. PMID:22593747

  20. Modeling motor connectivity using TMS/PET and structural equation modeling

    PubMed Central

    Laird, Angela R.; Robbins, Jacob M.; Li, Karl; Price, Larry R.; Cykowski, Matthew D.; Narayana, Shalini; Laird, Robert W.; Franklin, Crystal; Fox, Peter T.

    2010-01-01

    Structural equation modeling (SEM) was applied to positron emission tomographic (PET) images acquired during transcranial magnetic stimulation (TMS) of the primary motor cortex (M1hand). TMS was applied across a range of intensities, and responses both at the stimulation site and remotely connected brain regions covaried with stimulus intensity. Regions of interest (ROIs) were identified through an activation likelihood estimation (ALE) meta-analysis of TMS studies. That these ROIs represented the network engaged by motor planning and execution was confirmed by an ALE meta-analysis of finger movement studies. Rather than postulate connections in the form of an a priori model (confirmatory approach), effective connectivity models were developed using a model-generating strategy based on improving tentatively specified models. This strategy exploited the experimentally-imposed causal relations: (1) that response variations were caused by stimulation variations, (2) that stimulation was unidirectionally applied to the M1hand region, and (3) that remote effects must be caused, either directly or indirectly, by the M1hand excitation. The path model thus derived exhibited an exceptional level of goodness (χ2=22.150, df = 38, P = 0.981, TLI=1.0). The regions and connections derived were in good agreement with the known anatomy of the human and primate motor system. The model-generating SEM strategy thus proved highly effective and successfully identified a complex set of causal relationships of motor connectivity. PMID:18387823

  1. The development of causal reasoning.

    PubMed

    Kuhn, Deanna

    2012-05-01

    How do inference rules for causal learning themselves change developmentally? A model of the development of causal reasoning must address this question, as well as specify the inference rules. Here, the evidence for developmental changes in processes of causal reasoning is reviewed, with the distinction made between diagnostic causal inference and causal prediction. Also addressed is the paradox of a causal reasoning literature that highlights the competencies of young children and the proneness to error among adults. WIREs Cogn Sci 2012, 3:327-335. doi: 10.1002/wcs.1160 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Granger-causality maps of diffusion processes.

    PubMed

    Wahl, Benjamin; Feudel, Ulrike; Hlinka, Jaroslav; Wächter, Matthias; Peinke, Joachim; Freund, Jan A

    2016-02-01

    Granger causality is a statistical concept devised to reconstruct and quantify predictive information flow between stochastic processes. Although the general concept can be formulated model-free it is often considered in the framework of linear stochastic processes. Here we show how local linear model descriptions can be employed to extend Granger causality into the realm of nonlinear systems. This novel treatment results in maps that resolve Granger causality in regions of state space. Through examples we provide a proof of concept and illustrate the utility of these maps. Moreover, by integration we convert the local Granger causality into a global measure that yields a consistent picture for a global Ornstein-Uhlenbeck process. Finally, we recover invariance transformations known from the theory of autoregressive processes.

  3. Causal inference in survival analysis using pseudo-observations.

    PubMed

    Andersen, Per K; Syriopoulou, Elisavet; Parner, Erik T

    2017-07-30

    Causal inference for non-censored response variables, such as binary or quantitative outcomes, is often based on either (1) direct standardization ('G-formula') or (2) inverse probability of treatment assignment weights ('propensity score'). To do causal inference in survival analysis, one needs to address right-censoring, and often, special techniques are required for that purpose. We will show how censoring can be dealt with 'once and for all' by means of so-called pseudo-observations when doing causal inference in survival analysis. The pseudo-observations can be used as a replacement of the outcomes without censoring when applying 'standard' causal inference methods, such as (1) or (2) earlier. We study this idea for estimating the average causal effect of a binary treatment on the survival probability, the restricted mean lifetime, and the cumulative incidence in a competing risks situation. The methods will be illustrated in a small simulation study and via a study of patients with acute myeloid leukemia who received either myeloablative or non-myeloablative conditioning before allogeneic hematopoetic cell transplantation. We will estimate the average causal effect of the conditioning regime on outcomes such as the 3-year overall survival probability and the 3-year risk of chronic graft-versus-host disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Tumor Secreted Autocrine Motility Factor (AMF): Causal Role in an Animal Model of Cachexia

    DTIC Science & Technology

    2005-08-01

    AD Award Number: DAMD17-02-1-0586 TITLE: Tumor Secreted Autocrine Motility Factor ( AMF ): Causal Role in an Animal Model of Cachexia PRINCIPAL...5a. CONTRACT NUMBER Tumor Secreted Autocrine Motility Factor ( AMF ): Causal Role in an Animal Model of Cachexia 5b. GRANT NUMBER DAM D1 7-02-1-0586 5c...quality of life and postpone mortality. We proposed that autocrine motility factor ( AMF ) is released into the bloodstream from cancer sites and

  5. Understanding how pain education causes changes in pain and disability: protocol for a causal mediation analysis of the PREVENT trial.

    PubMed

    Lee, Hopin; Moseley, G Lorimer; Hübscher, Markus; Kamper, Steven J; Traeger, Adrian C; Skinner, Ian W; McAuley, James H

    2015-07-01

    Pain education is a complex intervention developed to help clinicians manage low back pain. Although complex interventions are usually evaluated by their effects on outcomes, such as pain or disability, most do not directly target these outcomes; instead, they target intermediate factors that are presumed to be associated with the outcomes. The mechanisms underlying treatment effects, or the effect of an intervention on an intermediate factor and its subsequent effect on outcome, are rarely investigated in clinical trials. This leaves a gap in the evidence for understanding how treatments exert their effects on outcomes. Mediation analysis provides a method for identifying and quantifying the mechanisms that underlie interventions. To determine whether the effect of pain education on pain and disability is mediated by changes in self-efficacy, catastrophisation and back pain beliefs. Causal mediation analysis of the PREVENT randomised controlled trial. Two hundred and two participants with acute low back pain from primary care clinics in the Sydney metropolitan area. Participants will be randomised to receive either 'pain education' (intervention group) or 'sham education' (control group). All outcome measures (including patient characteristics), primary outcome measures (pain and disability), and putative mediating variables (self-efficacy, catastrophisation and back pain beliefs) will be measured prior to randomisation. Putative mediators and primary outcome measures will be measured 1 week after the intervention, and primary outcome measures will be measured 3 months after the onset of low back pain. Causal mediation analysis under the potential outcomes framework will be used to test single and multiple mediator models. A sensitivity analysis will be conducted to evaluate the robustness of the estimated mediation effects on the influence of violating sequential ignorability--a critical assumption for causal inference. Mediation analysis of clinical trials can estimate how much the total effect of the treatment on the outcome is carried through an indirect path. Using mediation analysis to understand these mechanisms can generate evidence that can be used to tailor treatments and optimise treatment effects. In this study, the causal mediation effects of a pain education intervention for acute non-specific low back pain will be estimated. This knowledge is critical for further development and refinement of interventions for conditions such as low back pain. Copyright © 2015 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  6. Causal inference in economics and marketing.

    PubMed

    Varian, Hal R

    2016-07-05

    This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual-a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.

  7. Causal inference in economics and marketing

    PubMed Central

    Varian, Hal R.

    2016-01-01

    This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference. PMID:27382144

  8. New Evidence on Causal Relationship between Approximate Number System (ANS) Acuity and Arithmetic Ability in Elementary-School Students: A Longitudinal Cross-Lagged Analysis.

    PubMed

    He, Yunfeng; Zhou, Xinlin; Shi, Dexin; Song, Hairong; Zhang, Hui; Shi, Jiannong

    2016-01-01

    Approximate number system (ANS) acuity and mathematical ability have been found to be closely associated in recent studies. However, whether and how these two measures are causally related still remain less addressed. There are two hypotheses about the possible causal relationship: ANS acuity influences mathematical performances, or access to math education sharpens ANS acuity. Evidences in support of both hypotheses have been reported, but these two hypotheses have never been tested simultaneously. Therefore, questions still remain whether only one-direction or reciprocal causal relationships existed in the association. In this work, we provided a new evidence on the causal relationship between ANS acuity and arithmetic ability. ANS acuity and mathematical ability of elementary-school students were measured sequentially at three time points within one year, and all possible causal directions were evaluated simultaneously using cross-lagged regression analysis. The results show that ANS acuity influences later arithmetic ability while the reverse causal direction was not supported. Our finding adds a strong evidence to the causal association between ANS acuity and mathematical ability, and also has important implications for educational intervention designed to train ANS acuity and thereby promote mathematical ability.

  9. New Evidence on Causal Relationship between Approximate Number System (ANS) Acuity and Arithmetic Ability in Elementary-School Students: A Longitudinal Cross-Lagged Analysis

    PubMed Central

    He, Yunfeng; Zhou, Xinlin; Shi, Dexin; Song, Hairong; Zhang, Hui; Shi, Jiannong

    2016-01-01

    Approximate number system (ANS) acuity and mathematical ability have been found to be closely associated in recent studies. However, whether and how these two measures are causally related still remain less addressed. There are two hypotheses about the possible causal relationship: ANS acuity influences mathematical performances, or access to math education sharpens ANS acuity. Evidences in support of both hypotheses have been reported, but these two hypotheses have never been tested simultaneously. Therefore, questions still remain whether only one-direction or reciprocal causal relationships existed in the association. In this work, we provided a new evidence on the causal relationship between ANS acuity and arithmetic ability. ANS acuity and mathematical ability of elementary-school students were measured sequentially at three time points within one year, and all possible causal directions were evaluated simultaneously using cross-lagged regression analysis. The results show that ANS acuity influences later arithmetic ability while the reverse causal direction was not supported. Our finding adds a strong evidence to the causal association between ANS acuity and mathematical ability, and also has important implications for educational intervention designed to train ANS acuity and thereby promote mathematical ability. PMID:27462291

  10. A Framework for Estimating Causal Effects in Latent Class Analysis: Is There a Causal Link Between Early Sex and Subsequent Profiles of Delinquency?

    PubMed Central

    Lanza, Stephanie T.; Coffman, Donna L.

    2013-01-01

    Prevention scientists use latent class analysis (LCA) with increasing frequency to characterize complex behavior patterns and profiles of risk. Often, the most important research questions in these studies involve establishing characteristics that predict membership in the latent classes, thus describing the composition of the subgroups and suggesting possible points of intervention. More recently, prevention scientists have begun to adopt modern methods for drawing causal inference from observational data because of the bias that can be introduced by confounders. This same issue of confounding exists in any analysis of observational data, including prediction of latent class membership. This study demonstrates a straightforward approach to causal inference in LCA that builds on propensity score methods. We demonstrate this approach by examining the causal effect of early sex on subsequent delinquency latent classes using data from 1,890 adolescents in 11th and 12th grade from wave I of the National Longitudinal Study of Adolescent Health. Prior to the statistical adjustment for potential confounders, early sex was significantly associated with delinquency latent class membership for both genders (p=0.02). However, the propensity score adjusted analysis indicated no evidence for a causal effect of early sex on delinquency class membership (p=0.76) for either gender. Sample R and SAS code is included in an Appendix in the ESM so that prevention scientists may adopt this approach to causal inference in LCA in their own work. PMID:23839479

  11. A framework for estimating causal effects in latent class analysis: is there a causal link between early sex and subsequent profiles of delinquency?

    PubMed

    Butera, Nicole M; Lanza, Stephanie T; Coffman, Donna L

    2014-06-01

    Prevention scientists use latent class analysis (LCA) with increasing frequency to characterize complex behavior patterns and profiles of risk. Often, the most important research questions in these studies involve establishing characteristics that predict membership in the latent classes, thus describing the composition of the subgroups and suggesting possible points of intervention. More recently, prevention scientists have begun to adopt modern methods for drawing causal inference from observational data because of the bias that can be introduced by confounders. This same issue of confounding exists in any analysis of observational data, including prediction of latent class membership. This study demonstrates a straightforward approach to causal inference in LCA that builds on propensity score methods. We demonstrate this approach by examining the causal effect of early sex on subsequent delinquency latent classes using data from 1,890 adolescents in 11th and 12th grade from wave I of the National Longitudinal Study of Adolescent Health. Prior to the statistical adjustment for potential confounders, early sex was significantly associated with delinquency latent class membership for both genders (p = 0.02). However, the propensity score adjusted analysis indicated no evidence for a causal effect of early sex on delinquency class membership (p = 0.76) for either gender. Sample R and SAS code is included in an Appendix in the ESM so that prevention scientists may adopt this approach to causal inference in LCA in their own work.

  12. Vector Autoregressive (VAR) Models and Granger Causality in Time Series Analysis in Nursing Research: Dynamic Changes Among Vital Signs Prior to Cardiorespiratory Instability Events as an Example

    PubMed Central

    Bose, Eliezer; Hravnak, Marilyn; Sereika, Susan M.

    2016-01-01

    Background Patients undergoing continuous vital sign monitoring (heart rate [HR], respiratory rate [RR], pulse oximetry [SpO2]) in real time display inter-related vital sign changes during situations of physiologic stress. Patterns in this physiological cross-talk could portend impending cardiorespiratory instability (CRI). Vector autoregressive (VAR) modeling with Granger causality tests is one of the most flexible ways to elucidate underlying causal mechanisms in time series data. Purpose The purpose of this article is to illustrate development of patient-specific VAR models using vital sign time series (VSTS) data in a sample of acutely ill, monitored, step-down unit (SDU) patients, and determine their Granger causal dynamics prior to onset of an incident CRI. Approach CRI was defined as vital signs beyond stipulated normality thresholds (HR = 40–140/minute, RR = 8–36/minute, SpO2 < 85%) and persisting for 3 minutes within a 5-minute moving window (60% of the duration of the window). A 6-hour time segment prior to onset of first CRI was chosen for time series modeling in 20 patients using a six-step procedure: (a) the uniform time series for each vital sign was assessed for stationarity; (b) appropriate lag was determined using a lag-length selection criteria; (c) the VAR model was constructed; (d) residual autocorrelation was assessed with the Lagrange Multiplier test; (e) stability of the VAR system was checked; and (f) Granger causality was evaluated in the final stable model. Results The primary cause of incident CRI was low SpO2 (60% of cases), followed by out-of-range RR (30%) and HR (10%). Granger causality testing revealed that change in RR caused change in HR (21%) (i.e., RR changed before HR changed) more often than change in HR causing change in RR (15%). Similarly, changes in RR caused changes in SpO2 (15%) more often than changes in SpO2 caused changes in RR (9%). For HR and SpO2, changes in HR causing changes in SpO2 and changes in SpO2 causing changes in HR occurred with equal frequency (18%). Discussion Within this sample of acutely ill patients who experienced a CRI event, VAR modeling indicated that RR changes tend to occur before changes in HR and SpO2. These findings suggest that contextual assessment of RR changes as the earliest sign of CRI is warranted. Use of VAR modeling may be helpful in other nursing research applications based on time series data. PMID:27977564

  13. Inferring causal relationships between phenotypes using summary statistics from genome-wide association studies.

    PubMed

    Meng, Xiang-He; Shen, Hui; Chen, Xiang-Ding; Xiao, Hong-Mei; Deng, Hong-Wen

    2018-03-01

    Genome-wide association studies (GWAS) have successfully identified numerous genetic variants associated with diverse complex phenotypes and diseases, and provided tremendous opportunities for further analyses using summary association statistics. Recently, Pickrell et al. developed a robust method for causal inference using independent putative causal SNPs. However, this method may fail to infer the causal relationship between two phenotypes when only a limited number of independent putative causal SNPs identified. Here, we extended Pickrell's method to make it more applicable for the general situations. We extended the causal inference method by replacing the putative causal SNPs with the lead SNPs (the set of the most significant SNPs in each independent locus) and tested the performance of our extended method using both simulation and empirical data. Simulations suggested that when the same number of genetic variants is used, our extended method had similar distribution of test statistic under the null model as well as comparable power under the causal model compared with the original method by Pickrell et al. But in practice, our extended method would generally be more powerful because the number of independent lead SNPs was often larger than the number of independent putative causal SNPs. And including more SNPs, on the other hand, would not cause more false positives. By applying our extended method to summary statistics from GWAS for blood metabolites and femoral neck bone mineral density (FN-BMD), we successfully identified ten blood metabolites that may causally influence FN-BMD. We extended a causal inference method for inferring putative causal relationship between two phenotypes using summary statistics from GWAS, and identified a number of potential causal metabolites for FN-BMD, which may provide novel insights into the pathophysiological mechanisms underlying osteoporosis.

  14. Stability analysis for the background equations for inflation with dissipation and in a viscous radiation bath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastero-Gil, Mar; Cerezo, Rafael; Berera, Arjun

    2012-11-01

    The effects of bulk viscosity are examined for inflationary dynamics in which dissipation and thermalization are present. A complete stability analysis is done for the background inflaton evolution equations, which includes both inflaton dissipation and radiation bulk viscous effects. Three representative approaches of bulk viscous irreversible thermodynamics are analyzed: the Eckart noncausal theory, the linear and causal theory of Israel-Stewart and a more recent nonlinear and causal bulk viscous theory. It is found that the causal theories allow for larger bulk viscosities before encountering an instability in comparison to the noncausal Eckart theory. It is also shown that the causalmore » theories tend to suppress the radiation production due to bulk viscous pressure, because of the presence of relaxation effects implicit in these theories. Bulk viscosity coefficients derived from quantum field theory are applied to warm inflation model building and an analysis is made of the effects to the duration of inflation. The treatment of bulk pressure would also be relevant to the reheating phase after inflation in cold inflation dynamics and during the radiation dominated regime, although very little work in both areas has been done; the methodology developed in this paper could be extended to apply to these other problems.« less

  15. Causal network analysis of head and neck keloid tissue identifies potential master regulators.

    PubMed

    Garcia-Rodriguez, Laura; Jones, Lamont; Chen, Kang Mei; Datta, Indrani; Divine, George; Worsham, Maria J

    2016-10-01

    To generate novel insights and hypotheses in keloid development from potential master regulators. Prospective cohort. Six fresh keloid and six normal skin samples from 12 anonymous donors were used in a prospective cohort study. Genome-wide profiling was done previously on the cohort using the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA). The 190 statistically significant CpG islands between keloid and normal tissue mapped to 152 genes (P < .05). The top 10 statistically significant genes (VAMP5, ACTR3C, GALNT3, KCNAB2, LRRC61, SCML4, SYNGR1, TNS1, PLEKHG5, PPP1R13-α, false discovery rate <.015) were uploaded into the Ingenuity Pathway Analysis software's Causal Network Analysis (QIAGEN, Redwood City, CA). To reflect expected gene expression direction in the context of methylation changes, the inverse of the methylation ratio from keloid versus normal tissue was used for the analysis. Causal Network Analysis identified disease-specific master regulator molecules based on downstream differentially expressed keloid-specific genes and expected directionality of expression (hypermethylated vs. hypomethylated). Causal Network Analysis software identified four hierarchical networks that included four master regulators (pyroxamide, tributyrin, PRKG2, and PENK) and 19 intermediate regulators. Causal Network Analysis of differentiated methylated gene data of keloid versus normal skin demonstrated four causal networks with four master regulators. These hierarchical networks suggest potential driver roles for their downstream keloid gene targets in the pathogenesis of the keloid phenotype, likely triggered due to perturbation/injury to normal tissue. NA Laryngoscope, 126:E319-E324, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Bayesian propensity scores for high-dimensional causal inference: A comparison of drug-eluting to bare-metal coronary stents.

    PubMed

    Spertus, Jacob V; Normand, Sharon-Lise T

    2018-04-23

    High-dimensional data provide many potential confounders that may bolster the plausibility of the ignorability assumption in causal inference problems. Propensity score methods are powerful causal inference tools, which are popular in health care research and are particularly useful for high-dimensional data. Recent interest has surrounded a Bayesian treatment of propensity scores in order to flexibly model the treatment assignment mechanism and summarize posterior quantities while incorporating variance from the treatment model. We discuss methods for Bayesian propensity score analysis of binary treatments, focusing on modern methods for high-dimensional Bayesian regression and the propagation of uncertainty. We introduce a novel and simple estimator for the average treatment effect that capitalizes on conjugacy of the beta and binomial distributions. Through simulations, we show the utility of horseshoe priors and Bayesian additive regression trees paired with our new estimator, while demonstrating the importance of including variance from the treatment regression model. An application to cardiac stent data with almost 500 confounders and 9000 patients illustrates approaches and facilitates comparison with existing alternatives. As measured by a falsifiability endpoint, we improved confounder adjustment compared with past observational research of the same problem. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Learning about causes from people and about people as causes: probabilistic models and social causal reasoning.

    PubMed

    Buchsbaum, Daphna; Seiver, Elizabeth; Bridgers, Sophie; Gopnik, Alison

    2012-01-01

    A major challenge children face is uncovering the causal structure of the world around them. Previous research on children's causal inference has demonstrated their ability to learn about causal relationships in the physical environment using probabilistic evidence. However, children must also learn about causal relationships in the social environment, including discovering the causes of other people's behavior, and understanding the causal relationships between others' goal-directed actions and the outcomes of those actions. In this chapter, we argue that social reasoning and causal reasoning are deeply linked, both in the real world and in children's minds. Children use both types of information together and in fact reason about both physical and social causation in fundamentally similar ways. We suggest that children jointly construct and update causal theories about their social and physical environment and that this process is best captured by probabilistic models of cognition. We first present studies showing that adults are able to jointly infer causal structure and human action structure from videos of unsegmented human motion. Next, we describe how children use social information to make inferences about physical causes. We show that the pedagogical nature of a demonstrator influences children's choices of which actions to imitate from within a causal sequence and that this social information interacts with statistical causal evidence. We then discuss how children combine evidence from an informant's testimony and expressed confidence with evidence from their own causal observations to infer the efficacy of different potential causes. We also discuss how children use these same causal observations to make inferences about the knowledge state of the social informant. Finally, we suggest that psychological causation and attribution are part of the same causal system as physical causation. We present evidence that just as children use covariation between physical causes and their effects to learn physical causal relationships, they also use covaration between people's actions and the environment to make inferences about the causes of human behavior.

  18. Modeling Piezoelectric Stack Actuators for Control of Micromanipulation

    NASA Technical Reports Server (NTRS)

    Goldfarb, Michael; Celanovic, Nikola

    1997-01-01

    A nonlinear lumped-parameter model of a piezoelectric stack actuator has been developed to describe actuator behavior for purposes of control system analysis and design, and, in particular, for microrobotic applications requiring accurate position and/or force control. In formulating this model, the authors propose a generalized Maxwell resistive capacitor as a lumped-parameter causal representation of rate-independent hysteresis. Model formulation is validated by comparing results of numerical simulations to experimental data. Validation is followed by a discussion of model implications for purposes of actuator control.

  19. Causal Model of Stress and Coping: Women in Management.

    ERIC Educational Resources Information Center

    Long, Bonita C.; And Others

    1992-01-01

    Tested model of managerial women's (n=249) stress. Model was developed from Lazarus's theoretical framework of stress/coping and incorporated causal antecedent constructs (demographics, sex role attitudes, agentic traits), mediating constructs (environment, appraisals, engagement coping, disengagement coping), and outcomes (work performance,…

  20. Fertility and Female Employment: Problems of Causal Direction.

    ERIC Educational Resources Information Center

    Cramer, James C.

    1980-01-01

    Considers multicollinearity in nonrecursive models, misspecification of models, discrepancies between attitudes and behavior, and differences between static and dynamic models as explanations for contradictory information on the causal relationship between fertility and female employment. Finds that initially fertility affects employment but that,…

  1. The mediating role of organizational subcultures in health care organizations.

    PubMed

    Lok, Peter; Rhodes, Jo; Westwood, Bob

    2011-01-01

    This study aims to investigate the mediating role of organizational subculture between job satisfaction, organizational commitment (dependent variables) and leadership, culture (independent variables) in health care organizations. A survey on nurses from 26 wards from various types of hospital was used. A total of 251 usable returns were collected for the analysis (i.e. response rate of 63 per cent). Structural equation analysis was conducted to obtain the best fit model and to determine the direction of the causal effect between job satisfaction and commitment, and the role of subculture as a mediating variable, between commitment of its other antecedents. Comparisons with alternative models confirmed satisfaction as an antecedent of commitment and the role of subculture as a mediating variable. The results of this study contribute to the clarification of the causal relations of the antecedents of commitment, and highlight the important role of local leadership and subculture in determining employees' job satisfaction and commitment. The results of this study should not be generalized to other industries and other national cultural context. Furthermore, a longitudinal study may be necessary to determine the causal relationship of variables used in this study. The findings could provide managers with valuable insight to focus their limited resources on improving the level of organizational commitment via the mediating role of organizational culture. The research findings provide managers with a new lens to examine organizational culture using the three perspectives of: bureaucratic, supportive, and innovative. Furthermore, the results could renew interest in developing other organizational subculture models that determine the relationship between organizational subculture and commitment

  2. Final Report for Dynamic Models for Causal Analysis of Panel Data. Models for Change in Quantitative Variables, Part III: Estimation from Panel Data. Part II, Chapter 5.

    ERIC Educational Resources Information Center

    Hannan, Michael T.

    This document is part of a series of chapters described in SO 011 759. Addressing the problems of studying change and the change process, the report argues that sociologists should study coupled changes in qualitative and quantitative outcomes (e.g., marital status and earnings). The author presents a model for sociological studies of change in…

  3. The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation

    DTIC Science & Technology

    2014-05-20

    but there can still be many recommendations generated. Therefore, the recommender results are displayed in a sortable table where each row is a...reporting period. Since the synthesis graph can be complex and have many dependencies, the system must determine the order of evaluation of nodes, and...validation failure, if any. 3.1. Automatic Feature Extraction In many domains, causal models can often be more readily described as patterns of

  4. Beliefs of people taking antidepressants about causes of depression and reasons for increased prescribing rates.

    PubMed

    Read, John; Cartwright, Claire; Gibson, Kerry; Shiels, Christopher; Haslam, Nicholas

    2014-10-01

    Public beliefs about the causes of mental health problems are related to desire for distance and pessimism about recovery, and are therefore frequently studied. The beliefs of people receiving treatment are researched less often. An online survey on causal beliefs about depression and experiences with antidepressants was completed by 1829 New Zealand adults prescribed anti-depressants in the preceding five years, 97.4% of whom proceeded to take antidepressants. The most frequently endorsed of 17 causal beliefs were family stress, relationship problems, loss of loved one, financial problems, isolation, and abuse or neglect in childhood. Factor analysis produced three factors: 'bio-genetic', 'adulthood stress' and 'childhood adversity'. The most strongly endorsed explanations for increases in antidepressant prescribing invoked improved identification, reduced stigma and drug company marketing. The least strongly endorsed was 'Anti-depressants are the best treatment'. Regression analyses revealed that self-reported efficacy of the antidepressants was positively associated with bio-genetic causal beliefs, negatively associated with childhood adversity beliefs and unrelated to adulthood stress beliefs. The belief that 'People cannot׳ get better by themselves even if they try' was positively associated with bio-genetic beliefs. The convenience sample may have been biased towards a favourable view of bio-genetic explanations, since 83% reported that the medication reduced their depression. Clinicians׳ should consider exploring patients׳ causal beliefs. The public, even when taking antidepressants, continues to hold a multi-factorial causal model of depression with a primary emphasis on psycho-social causes. A three factor model of those beliefs may lead to more sophisticated understandings of relationships with stigma variables. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Confounding factors in determining causal soil moisture-precipitation feedback

    NASA Astrophysics Data System (ADS)

    Tuttle, Samuel E.; Salvucci, Guido D.

    2017-07-01

    Identification of causal links in the land-atmosphere system is important for construction and testing of land surface and general circulation models. However, the land and atmosphere are highly coupled and linked by a vast number of complex, interdependent processes. Statistical methods, such as Granger causality, can help to identify feedbacks from observational data, independent of the different parameterizations of physical processes and spatiotemporal resolution effects that influence feedbacks in models. However, statistical causal identification methods can easily be misapplied, leading to erroneous conclusions about feedback strength and sign. Here, we discuss three factors that must be accounted for in determination of causal soil moisture-precipitation feedback in observations and model output: seasonal and interannual variability, precipitation persistence, and endogeneity. The effect of neglecting these factors is demonstrated in simulated and observational data. The results show that long-timescale variability and precipitation persistence can have a substantial effect on detected soil moisture-precipitation feedback strength, while endogeneity has a smaller effect that is often masked by measurement error and thus is more likely to be an issue when analyzing model data or highly accurate observational data.

  6. Extended causal modeling to assess Partial Directed Coherence in multiple time series with significant instantaneous interactions.

    PubMed

    Faes, Luca; Nollo, Giandomenico

    2010-11-01

    The Partial Directed Coherence (PDC) and its generalized formulation (gPDC) are popular tools for investigating, in the frequency domain, the concept of Granger causality among multivariate (MV) time series. PDC and gPDC are formalized in terms of the coefficients of an MV autoregressive (MVAR) model which describes only the lagged effects among the time series and forsakes instantaneous effects. However, instantaneous effects are known to affect linear parametric modeling, and are likely to occur in experimental time series. In this study, we investigate the impact on the assessment of frequency domain causality of excluding instantaneous effects from the model underlying PDC evaluation. Moreover, we propose the utilization of an extended MVAR model including both instantaneous and lagged effects. This model is used to assess PDC either in accordance with the definition of Granger causality when considering only lagged effects (iPDC), or with an extended form of causality, when we consider both instantaneous and lagged effects (ePDC). The approach is first evaluated on three theoretical examples of MVAR processes, which show that the presence of instantaneous correlations may produce misleading profiles of PDC and gPDC, while ePDC and iPDC derived from the extended model provide here a correct interpretation of extended and lagged causality. It is then applied to representative examples of cardiorespiratory and EEG MV time series. They suggest that ePDC and iPDC are better interpretable than PDC and gPDC in terms of the known cardiovascular and neural physiologies.

  7. Counterfactual Graphical Models for Longitudinal Mediation Analysis with Unobserved Confounding

    ERIC Educational Resources Information Center

    Shpitser, Ilya

    2013-01-01

    Questions concerning mediated causal effects are of great interest in psychology, cognitive science, medicine, social science, public health, and many other disciplines. For instance, about 60% of recent papers published in leading journals in social psychology contain at least one mediation test (Rucker, Preacher, Tormala, & Petty, 2011).…

  8. Welfare Reform in California: Early Results from the Impact Analysis.

    ERIC Educational Resources Information Center

    Klerman, Jacob Alex; Hotz, V. Joseph; Reardon, Elaine; Cox, Amy G.; Farley, Donna O.; Haider, Steven J.; Imbens, Guido; Schoeni, Robert

    The impact of California Work Opportunity and Responsibility to Kids (CalWORKS), which was passed to increase California welfare recipients' participation in welfare-to-work (WTW) activities, was examined. The impact study consisted of a nonexperimental program evaluation that used statistical models to estimate causal effects and a simulation…

  9. Development toward School Readiness: A Holistic Model

    ERIC Educational Resources Information Center

    Gaynor, Alan Kibbe

    2015-01-01

    A systemic analysis of early childhood development factors explains the variance in school readiness among representative U.S. 5-year-olds. The underlying theory incorporates a set of causally interactive endogenous variables that are hypothesized to be driven by the effects of three exogenous variables: parental education, immigrant status and…

  10. Estimating Causal Effects in Mediation Analysis Using Propensity Scores

    ERIC Educational Resources Information Center

    Coffman, Donna L.

    2011-01-01

    Mediation is usually assessed by a regression-based or structural equation modeling (SEM) approach that we refer to as the classical approach. This approach relies on the assumption that there are no confounders that influence both the mediator, "M", and the outcome, "Y". This assumption holds if individuals are randomly…

  11. A Latent-Variable Causal Model of Faculty Reputational Ratings.

    ERIC Educational Resources Information Center

    King, Suzanne; Wolfle, Lee M.

    A reanalysis was conducted of Saunier's research (1985) on sources of variation in the National Research Council (NRC) reputational ratings of university faculty. Saunier conducted a stepwise regression analysis using 12 predictor variables. Due to problems with multicollinearity and because of the atheoretical nature of stepwise regression,…

  12. [Social determinants of odontalgia in epidemiological studies: theoretical review and proposed conceptual model].

    PubMed

    Bastos, João Luiz Dornelles; Gigante, Denise Petrucci; Peres, Karen Glazer; Nedel, Fúlvio Borges

    2007-01-01

    The epidemiological literature has been limited by the absence of a theoretical framework reflecting the complexity of causal mechanisms for the occurrence of health phenomena / disease conditions. In the field of oral epidemiology, such lack of theory also prevails, since dental caries the leading topic in oral research has been often studied through a biological and reductionist viewpoint. One of the most important consequences of dental caries is dental pain (odontalgia), which has received little attention in studies with sophisticated theoretical models and powerful designs to establish causal relationships. The purpose of this study is to review the scientific literature on the determinants of odontalgia and to discuss theories proposed for the explanation of the phenomenon. Conceptual models and emerging theories on the social determinants of oral health are revised, in an attempt to build up links with the bio-psychosocial pain model, proposing a more elaborate causal model for odontalgia. The framework suggests causal pathways between social structure and oral health through material, psychosocial and behavioral pathways. Aspects of the social structure are highlighted in order to relate them to odontalgia, stressing their importance in discussions of causal relationships in oral health research.

  13. Depression and Distortion in the Attribution of Causality

    ERIC Educational Resources Information Center

    Rizley, Ross

    1978-01-01

    Two cognitive models of depression have attracted considerable attention recently: Seligman's (1975) learned helplessness model and Beck's (1967) cognitive schema approach. Describes each model and, in two studies, evaluates the assumption that depression is associated with systematic distortion in cognition regarding causal and controlling…

  14. Investigating College and Graduate Students' Multivariable Reasoning in Computational Modeling

    ERIC Educational Resources Information Center

    Wu, Hsin-Kai; Wu, Pai-Hsing; Zhang, Wen-Xin; Hsu, Ying-Shao

    2013-01-01

    Drawing upon the literature in computational modeling, multivariable reasoning, and causal attribution, this study aims at characterizing multivariable reasoning practices in computational modeling and revealing the nature of understanding about multivariable causality. We recruited two freshmen, two sophomores, two juniors, two seniors, four…

  15. Analysis of complex neural circuits with nonlinear multidimensional hidden state models

    PubMed Central

    Friedman, Alexander; Slocum, Joshua F.; Tyulmankov, Danil; Gibb, Leif G.; Altshuler, Alex; Ruangwises, Suthee; Shi, Qinru; Toro Arana, Sebastian E.; Beck, Dirk W.; Sholes, Jacquelyn E. C.; Graybiel, Ann M.

    2016-01-01

    A universal need in understanding complex networks is the identification of individual information channels and their mutual interactions under different conditions. In neuroscience, our premier example, networks made up of billions of nodes dynamically interact to bring about thought and action. Granger causality is a powerful tool for identifying linear interactions, but handling nonlinear interactions remains an unmet challenge. We present a nonlinear multidimensional hidden state (NMHS) approach that achieves interaction strength analysis and decoding of networks with nonlinear interactions by including latent state variables for each node in the network. We compare NMHS to Granger causality in analyzing neural circuit recordings and simulations, improvised music, and sociodemographic data. We conclude that NMHS significantly extends the scope of analyses of multidimensional, nonlinear networks, notably in coping with the complexity of the brain. PMID:27222584

  16. Tracking time-varying causality and directionality of information flow using an error reduction ratio test with applications to electroencephalography data.

    PubMed

    Zhao, Yifan; Billings, Steve A; Wei, Hualiang; Sarrigiannis, Ptolemaios G

    2012-11-01

    This paper introduces an error reduction ratio-causality (ERR-causality) test that can be used to detect and track causal relationships between two signals. In comparison to the traditional Granger method, one significant advantage of the new ERR-causality test is that it can effectively detect the time-varying direction of linear or nonlinear causality between two signals without fitting a complete model. Another important advantage is that the ERR-causality test can detect both the direction of interactions and estimate the relative time shift between the two signals. Numerical examples are provided to illustrate the effectiveness of the new method together with the determination of the causality between electroencephalograph signals from different cortical sites for patients during an epileptic seizure.

  17. Guidelines for a graph-theoretic implementation of structural equation modeling

    USGS Publications Warehouse

    Grace, James B.; Schoolmaster, Donald R.; Guntenspergen, Glenn R.; Little, Amanda M.; Mitchell, Brian R.; Miller, Kathryn M.; Schweiger, E. William

    2012-01-01

    Structural equation modeling (SEM) is increasingly being chosen by researchers as a framework for gaining scientific insights from the quantitative analyses of data. New ideas and methods emerging from the study of causality, influences from the field of graphical modeling, and advances in statistics are expanding the rigor, capability, and even purpose of SEM. Guidelines for implementing the expanded capabilities of SEM are currently lacking. In this paper we describe new developments in SEM that we believe constitute a third-generation of the methodology. Most characteristic of this new approach is the generalization of the structural equation model as a causal graph. In this generalization, analyses are based on graph theoretic principles rather than analyses of matrices. Also, new devices such as metamodels and causal diagrams, as well as an increased emphasis on queries and probabilistic reasoning, are now included. Estimation under a graph theory framework permits the use of Bayesian or likelihood methods. The guidelines presented start from a declaration of the goals of the analysis. We then discuss how theory frames the modeling process, requirements for causal interpretation, model specification choices, selection of estimation method, model evaluation options, and use of queries, both to summarize retrospective results and for prospective analyses. The illustrative example presented involves monitoring data from wetlands on Mount Desert Island, home of Acadia National Park. Our presentation walks through the decision process involved in developing and evaluating models, as well as drawing inferences from the resulting prediction equations. In addition to evaluating hypotheses about the connections between human activities and biotic responses, we illustrate how the structural equation (SE) model can be queried to understand how interventions might take advantage of an environmental threshold to limit Typha invasions. The guidelines presented provide for an updated definition of the SEM process that subsumes the historical matrix approach under a graph-theory implementation. The implementation is also designed to permit complex specifications and to be compatible with various estimation methods. Finally, they are meant to foster the use of probabilistic reasoning in both retrospective and prospective considerations of the quantitative implications of the results.

  18. What Can Causal Networks Tell Us about Metabolic Pathways?

    PubMed Central

    Blair, Rachael Hageman; Kliebenstein, Daniel J.; Churchill, Gary A.

    2012-01-01

    Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic networks with known stoichiometry to address the fundamental question: “What can causal networks tell us about metabolic pathways?”. Using data from an Arabidopsis BaySha population and simulated data from dynamic models of pathway motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be used in the design of intervention strategies. PMID:22496633

  19. Commentary: Using Potential Outcomes to Understand Causal Mediation Analysis

    ERIC Educational Resources Information Center

    Imai, Kosuke; Jo, Booil; Stuart, Elizabeth A.

    2011-01-01

    In this commentary, we demonstrate how the potential outcomes framework can help understand the key identification assumptions underlying causal mediation analysis. We show that this framework can lead to the development of alternative research design and statistical analysis strategies applicable to the longitudinal data settings considered by…

  20. Quantification of causal couplings via dynamical effects: A unifying perspective

    NASA Astrophysics Data System (ADS)

    Smirnov, Dmitry A.

    2014-12-01

    Quantitative characterization of causal couplings from time series is crucial in studies of complex systems of different origin. Various statistical tools for that exist and new ones are still being developed with a tendency to creating a single, universal, model-free quantifier of coupling strength. However, a clear and generally applicable way of interpreting such universal characteristics is lacking. This work suggests a general conceptual framework for causal coupling quantification, which is based on state space models and extends the concepts of virtual interventions and dynamical causal effects. Namely, two basic kinds of interventions (state space and parametric) and effects (orbital or transient and stationary or limit) are introduced, giving four families of coupling characteristics. The framework provides a unifying view of apparently different well-established measures and allows us to introduce new characteristics, always with a definite "intervention-effect" interpretation. It is shown that diverse characteristics cannot be reduced to any single coupling strength quantifier and their interpretation is inevitably model based. The proposed set of dynamical causal effect measures quantifies different aspects of "how the coupling manifests itself in the dynamics," reformulating the very question about the "causal coupling strength."

  1. Failures of explaining away and screening off in described versus experienced causal learning scenarios.

    PubMed

    Rehder, Bob; Waldmann, Michael R

    2017-02-01

    Causal Bayes nets capture many aspects of causal thinking that set them apart from purely associative reasoning. However, some central properties of this normative theory routinely violated. In tasks requiring an understanding of explaining away and screening off, subjects often deviate from these principles and manifest the operation of an associative bias that we refer to as the rich-get-richer principle. This research focuses on these two failures comparing tasks in which causal scenarios are merely described (via verbal statements of the causal relations) versus experienced (via samples of data that manifest the intervariable correlations implied by the causal relations). Our key finding is that we obtained stronger deviations from normative predictions in the described conditions that highlight the instructed causal model compared to those that presented data. This counterintuitive finding indicate that a theory of causal reasoning and learning needs to integrate normative principles with biases people hold about causal relations.

  2. Exploring Causal Models of Educational Achievement.

    ERIC Educational Resources Information Center

    Parkerson, Jo Ann; And Others

    1984-01-01

    This article evaluates five causal model of educational productivity applied to learning science in a sample of 882 fifth through eighth graders. Each model explores the relationship between achievement and a combination of eight constructs: home environment, peer group, media, ability, social environment, time on task, motivation, and…

  3. Renewable energy, carbon emissions, and economic growth in 24 Asian countries: evidence from panel cointegration analysis.

    PubMed

    Lu, Wen-Cheng

    2017-11-01

    This article aims to investigate the relationship among renewable energy consumption, carbon dioxide (CO 2 ) emissions, and GDP using panel data for 24 Asian countries between 1990 and 2012. Panel cross-sectional dependence tests and unit root test, which considers cross-sectional dependence across countries, are used to ensure that the empirical results are correct. Using the panel cointegration model, the vector error correction model, and the Granger causality test, this paper finds that a long-run equilibrium exists among renewable energy consumption, carbon emission, and GDP. CO 2 emissions have a positive effect on renewable energy consumption in the Philippines, Pakistan, China, Iraq, Yemen, and Saudi Arabia. A 1% increase in GDP will increase renewable energy by 0.64%. Renewable energy is significantly determined by GDP in India, Sri Lanka, the Philippines, Thailand, Turkey, Malaysia, Jordan, United Arab Emirates, Saudi Arabia, and Mongolia. A unidirectional causality runs from GDP to CO 2 emissions, and two bidirectional causal relationships were found between CO 2 emissions and renewable energy consumption and between renewable energy consumption and GDP. The findings can assist governments in curbing pollution from air pollutants, execute energy conservation policy, and reduce unnecessary wastage of energy.

  4. Interactions among poverty, gender, and health systems affect women's participation in services to prevent HIV transmission from mother to child: A causal loop analysis.

    PubMed

    Yourkavitch, Jennifer; Hassmiller Lich, Kristen; Flax, Valerie L; Okello, Elialilia S; Kadzandira, John; Katahoire, Anne Ruhweza; Munthali, Alister C; Thomas, James C

    2018-01-01

    Retention in care remains an important issue for prevention of mother-to-child transmission (PMTCT) programs according to WHO guidelines, formerly called the "Option B+" approach. The objective of this study was to examine how poverty, gender, and health system factors interact to influence women's participation in PMTCT services. We used qualitative research, literature, and hypothesized variable connections to diagram causes and effects in causal loop models. We found that many factors, including antiretroviral therapy (ART) use, service design and quality, stigma, disclosure, spouse/partner influence, decision-making autonomy, and knowledge about PMTCT, influence psychosocial health, which in turn affects women's participation in PMTCT services. Thus, interventions to improve psychosocial health need to address many factors to be successful. We also found that the design of PMTCT services, a modifiable factor, is important because it affects several other factors. We identified 66 feedback loops that may contribute to policy resistance-that is, a policy's failure to have its intended effect. Our findings point to the need for a multipronged intervention to encourage women's continued participation in PMTCT services and for longitudinal research to quantify and test our causal loop model.

  5. The social determinants of oral health: new approaches to conceptualizing and researching complex causal networks.

    PubMed

    Newton, J Timothy; Bower, Elizabeth J

    2005-02-01

    Oral epidemiological research into the social determinants of oral health has been limited by the absence of a theoretical framework which reflects the complexity of real life social processes and the network of causal pathways between social structure and oral health and disease. In the absence of such a framework, social determinants are treated as isolated risk factors, attributable to the individual, having a direct impact on oral health. There is little sense of how such factors interrelate over time and place and the pathways between the factors and oral health. Features of social life which impact on individuals' oral health but are not reducible to the individual remain under-researched. A conceptual framework informing mainstream epidemiological research into the social determinants of health is applied to oral epidemiology. The framework suggests complex causal pathways between social structure and health via interlinking material, psychosocial and behavioural pathways. Methodological implications for oral epidemiological research informed by the framework, such as the use of multilevel modelling, path analysis and structural equation modelling, combining qualitative and quantitative research methods, and collaborative research, are discussed. Copyright Blackwell Munksgaard, 2005.

  6. Global drivers of the stratospheric polar vortex via nonlinear causal discovery

    NASA Astrophysics Data System (ADS)

    Kretschmer, M.; Runge, J.; Coumou, D.

    2016-12-01

    The stratospheric polar vortex plays a major role in the Northern Hemisphere midlatitudes, especially in driving extreme weather conditions. Many different global drivers, from Arctic sea ice to tropical climate patterns, are hypothesized to influence its stability, including linear and nonlinear mechanisms. Here a novel causal discovery approach, extending previous work [1], that is adapted to the particular challenges posed by such a high-dimensional dataset comprised of multiple, possibly nonlinearly coupled time series is demonstrated. While links in the reconstructed network can be called causal only with respect to the set of analyzed variables, the absence of causal links allows to assess where physical mechanisms are unlikely.The present work confirms recent results obtained with a similar, but linear, approach [2], regarding the impact of Barents and Kara sea ice concentrations, and extends the analysis also to tropical drivers to cover more proposed mechanisms. [1] Jakob Runge, Vladimir Petoukhov, and Jürgen Kurths, 2014: Quantifying the Strength and Delay of Climatic Interactions: The Ambiguities of Cross Correlation and a Novel Measure Based on Graphical Models. J. Climate 27, 720-739, doi: 10.1175/JCLI-D-13-00159.1.[2] Marlene Kretschmer, Dim Coumou, Jonathan F. Donges, and Jakob Runge, 2016: Using Causal Effect Networks to Analyze Different Arctic Drivers of Midlatitude Winter Circulation. J. Climate 29, 4069-4081, doi: 10.1175/JCLI-D-15-0654.1.

  7. Non-linear Interactions between Niño region 3 and the Southern Amazon

    NASA Astrophysics Data System (ADS)

    Ramos, A. M. D. T.; Builes-Jaramillo, L. A.; Poveda, G.; Goswami, B.; Macau, E. E. N.; Kurths, J.; Marwan, N.

    2016-12-01

    Identifying causal relations from the observational dataset has posed great challenges in data-driven inference study. However, complex system framework offers promising approaches to tackle such problems. Here we propose a new data-driven causality inference method using the framework of recurrence plots. We present the Recurrence Measure of Conditional Dependence (RMCD) and its applications. The RMCD incorporates the recurrence behavior into the transfer entropy theory. Therefore, it quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the potential driver and present on the potential driven, except for any contribution that has already been in the past of the driven. We apply this methodology to some paradigmatic models and to investigate the possible influence of the Pacific Ocean temperatures on the South West Amazon for the 2010 and 2005 droughts. The results reveal that for the 2005 drought there is not a significant signal of dependence from the Pacific Ocean and that for 2010 there is a signal of dependence of around 200 days. These outcomes are confirmed by the traditional climatological analysis of these episodes available in the literature and show the accuracy of RMCD inferring causal relations in climate systems.

  8. Causal Inference in Retrospective Studies.

    ERIC Educational Resources Information Center

    Holland, Paul W.; Rubin, Donald B.

    1988-01-01

    The problem of drawing causal inferences from retrospective case-controlled studies is considered. A model for causal inference in prospective studies is applied to retrospective studies. Limitations of case-controlled studies are formulated concerning relevant parameters that can be estimated in such studies. A coffee-drinking/myocardial…

  9. Model-Based Fault Diagnosis: Performing Root Cause and Impact Analyses in Real Time

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge F.; Walker, Mark G.; Kapadia, Ravi; Morris, Jonathan

    2012-01-01

    Generic, object-oriented fault models, built according to causal-directed graph theory, have been integrated into an overall software architecture dedicated to monitoring and predicting the health of mission- critical systems. Processing over the generic fault models is triggered by event detection logic that is defined according to the specific functional requirements of the system and its components. Once triggered, the fault models provide an automated way for performing both upstream root cause analysis (RCA), and for predicting downstream effects or impact analysis. The methodology has been applied to integrated system health management (ISHM) implementations at NASA SSC's Rocket Engine Test Stands (RETS).

  10. A dynamic analysis of S&P 500, FTSE 100 and EURO STOXX 50 indices under different exchange rates.

    PubMed

    Chen, Yanhua; Mantegna, Rosario N; Pantelous, Athanasios A; Zuev, Konstantin M

    2018-01-01

    In this study, we assess the dynamic evolution of short-term correlation, long-term cointegration and Error Correction Model (hereafter referred to as ECM)-based long-term Granger causality between each pair of US, UK, and Eurozone stock markets from 1980 to 2015 using the rolling-window technique. A comparative analysis of pairwise dynamic integration and causality of stock markets, measured in common and domestic currency terms, is conducted to evaluate comprehensively how exchange rate fluctuations affect the time-varying integration among the S&P 500, FTSE 100 and EURO STOXX 50 indices. The results obtained show that the dynamic correlation, cointegration and ECM-based long-run Granger causality vary significantly over the whole sample period. The degree of dynamic correlation and cointegration between pairs of stock markets rises in periods of high volatility and uncertainty, especially under the influence of economic, financial and political shocks. Meanwhile, we observe the weaker and decreasing correlation and cointegration among the three developed stock markets during the recovery periods. Interestingly, the most persistent and significant cointegration among the three developed stock markets exists during the 2007-09 global financial crisis. Finally, the exchange rate fluctuations, also influence the dynamic integration and causality between all pairs of stock indices, with that influence increasing under the local currency terms. Our results suggest that the potential for diversifying risk by investing in the US, UK and Eurozone stock markets is limited during the periods of economic, financial and political shocks.

  11. The temporal stability and predictive validity of pupils' causal attributions for difficult classroom behaviour.

    PubMed

    Lambert, Nathan; Miller, Andy

    2010-12-01

    Recent studies have investigated the causal attributions for difficult pupil behaviour made by teachers, pupils, and parents but none have investigated the temporal stability or predictive validity of these attributions. This study examines the causal attributions made for difficult classroom behaviour by students on two occasions 30 months apart. The longitudinal stability of these attributions is considered as is the predictive validity of the first set of attributions in relation to teachers' later judgments about individual students' behaviour. Two hundred and seventeen secondary school age pupils (114 males, 103 females) provided data on the two occasions. Teachers also rated each student's behaviour at the two times. A questionnaire listing 63 possible causes of classroom misbehaviour was delivered to pupils firstly when they were in Year 7 (aged 11-12) and then again, 30 months later. Responses were analysed through exploratory factor analysis (EFA). Additionally, teachers were asked to rate the standard of behaviour of each of the students on the two occasions. EFA of the Years 7 and 10 data indicated that pupils' attributions yielded broadly similar five-factor models with the perceived relative importance of these factors remaining the same. Analysis also revealed a predictive relationship between pupils' attributions regarding the factor named culture of misbehaviour in Year 7, and teachers' judgments of their standard of behaviour in Year 10. The present study suggests that young adolescents' causal attributions for difficult classroom behaviour remain stable over time and are predictive of teachers' later judgments about their behaviour.

  12. Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data.

    PubMed

    Deshpande, Gopikrishna; Santhanam, Priya; Hu, Xiaoping

    2011-01-15

    Most neuroimaging studies of resting state networks have concentrated on functional connectivity (FC) based on instantaneous correlation in a single network. In this study we investigated both FC and effective connectivity (EC) based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data - default mode network (DMN), hippocampal cortical memory network (HCMN), dorsal attention network (DAN) and fronto-parietal control network (FPCN). A method called correlation-purged Granger causality analysis was used, not only enabling the simultaneous evaluation of FC and EC of all networks using a single multivariate model, but also accounting for the interaction between them resulting from the smoothing of neuronal activity by hemodynamics. FC was visualized using a force-directed layout upon which causal interactions were overlaid. FC results revealed that DAN is very tightly coupled compared to the other networks while the DMN forms the backbone around which the other networks amalgamate. The pattern of bidirectional causal interactions indicates that posterior cingulate and posterior inferior parietal lobule of DMN act as major hubs. The pattern of unidirectional causal paths revealed that hippocampus and anterior prefrontal cortex (aPFC) receive major inputs, likely reflecting memory encoding/retrieval and cognitive integration, respectively. Major outputs emanating from anterior insula and middle temporal area, which are directed at aPFC, may carry information about interoceptive awareness and external environment, respectively, into aPFC for integration, supporting the hypothesis that aPFC-seeded FPCN acts as a control network. Our findings indicate the following. First, regions whose activities are not synchronized interact via time-delayed causal influences. Second, the causal interactions are organized such that cingulo-parietal regions act as hubs. Finally, segregation of different resting state networks is not clear cut but only by soft boundaries. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Mediation analysis with time varying exposures and mediators

    PubMed Central

    VanderWeele, Tyler J.; Tchetgen Tchetgen, Eric J.

    2016-01-01

    Summary In this paper we consider causal mediation analysis when exposures and mediators vary over time. We give non-parametric identification results, discuss parametric implementation, and also provide a weighting approach to direct and indirect effects based on combining the results of two marginal structural models. We also discuss how our results give rise to a causal interpretation of the effect estimates produced from longitudinal structural equation models. When there are time-varying confounders affected by prior exposure and mediator, natural direct and indirect effects are not identified. However, we define a randomized interventional analogue of natural direct and indirect effects that are identified in this setting. The formula that identifies these effects we refer to as the “mediational g-formula.” When there is no mediation, the mediational g-formula reduces to Robins’ regular g-formula for longitudinal data. When there are no time-varying confounders affected by prior exposure and mediator values, then the mediational g-formula reduces to a longitudinal version of Pearl’s mediation formula. However, the mediational g-formula itself can accommodate both mediation and time-varying confounders and constitutes a general approach to mediation analysis with time-varying exposures and mediators. PMID:28824285

  14. Mediation analysis with time varying exposures and mediators.

    PubMed

    VanderWeele, Tyler J; Tchetgen Tchetgen, Eric J

    2017-06-01

    In this paper we consider causal mediation analysis when exposures and mediators vary over time. We give non-parametric identification results, discuss parametric implementation, and also provide a weighting approach to direct and indirect effects based on combining the results of two marginal structural models. We also discuss how our results give rise to a causal interpretation of the effect estimates produced from longitudinal structural equation models. When there are time-varying confounders affected by prior exposure and mediator, natural direct and indirect effects are not identified. However, we define a randomized interventional analogue of natural direct and indirect effects that are identified in this setting. The formula that identifies these effects we refer to as the "mediational g-formula." When there is no mediation, the mediational g-formula reduces to Robins' regular g-formula for longitudinal data. When there are no time-varying confounders affected by prior exposure and mediator values, then the mediational g-formula reduces to a longitudinal version of Pearl's mediation formula. However, the mediational g-formula itself can accommodate both mediation and time-varying confounders and constitutes a general approach to mediation analysis with time-varying exposures and mediators.

  15. Causal relations and feature similarity in children's inductive reasoning.

    PubMed

    Hayes, Brett K; Thompson, Susan P

    2007-08-01

    Four experiments examined the development of property induction on the basis of causal relations. In the first 2 studies, 5-year-olds, 8-year-olds, and adults were presented with triads in which a target instance was equally similar to 2 inductive bases but shared a causal antecedent feature with 1 of them. All 3 age groups used causal relations as a basis for property induction, although the proportion of causal inferences increased with age. Subsequent experiments pitted causal relations against featural similarity in induction. It was found that adults and 8-year-olds, but not 5-year-olds, preferred shared causal relations over strong featural similarity as a basis for induction. The implications for models of inductive reasoning and development are discussed.

  16. Causal mediation analysis with a latent mediator.

    PubMed

    Albert, Jeffrey M; Geng, Cuiyu; Nelson, Suchitra

    2016-05-01

    Health researchers are often interested in assessing the direct effect of a treatment or exposure on an outcome variable, as well as its indirect (or mediation) effect through an intermediate variable (or mediator). For an outcome following a nonlinear model, the mediation formula may be used to estimate causally interpretable mediation effects. This method, like others, assumes that the mediator is observed. However, as is common in structural equations modeling, we may wish to consider a latent (unobserved) mediator. We follow a potential outcomes framework and assume a generalized structural equations model (GSEM). We provide maximum-likelihood estimation of GSEM parameters using an approximate Monte Carlo EM algorithm, coupled with a mediation formula approach to estimate natural direct and indirect effects. The method relies on an untestable sequential ignorability assumption; we assess robustness to this assumption by adapting a recently proposed method for sensitivity analysis. Simulation studies show good properties of the proposed estimators in plausible scenarios. Our method is applied to a study of the effect of mother education on occurrence of adolescent dental caries, in which we examine possible mediation through latent oral health behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Causal Effect of Self-esteem on Cigarette Smoking Stages in Adolescents: Coarsened Exact Matching in a Longitudinal Study.

    PubMed

    Khosravi, Ahmad; Mohammadpoorasl, Asghar; Holakouie-Naieni, Kourosh; Mahmoodi, Mahmood; Pouyan, Ali Akbar; Mansournia, Mohammad Ali

    2016-12-01

    Identification of the causal impact of self-esteem on smoking stages faces seemingly insurmountable problems in observational data, where self-esteem is not manipulable by the researcher and cannot be assigned randomly. The aim of this study was to find out if weaker self-esteem in adolescence is a risk factor of cigarette smoking in a longitudinal study in Iran. In this longitudinal study, 4,853 students (14-18 years) completed a self-administered multiple-choice anonym questionnaire. The students were evaluated twice, 12 months apart. Students were matched based on coarsened exact matching on pretreatment variables, including age, gender, smoking stages at the first wave of study, socioeconomic status, general risk-taking behavior, having a smoker in the family, having a smoker friend, attitude toward smoking, and self-injury, to ensure statistically equivalent comparison groups. Self-esteem was measured using the Rosenberg 10-item questionnaire and were classified using a latent class analysis. After matching, the effect of self-esteem was evaluated using a multinomial logistic model. In the causal fitted model, for adolescents with weaker self-esteem relative to those with stronger self-esteem, the relative risk for experimenters and regular smokers relative to nonsmokers would be expected to increase by a factor of 2.2 (1.9-2.6) and 2.0 (1.5-2.6), respectively. Using a causal approach, our study indicates that low self-esteem is consistently associated with progression in cigarette smoking stages.

  18. Overcoming confirmation bias in causal attribution: a case study of antibiotic resistance risks.

    PubMed

    Cox, Louis Anthony Tony; Popken, Douglas A

    2008-10-01

    When they do not use formal quantitative risk assessment methods, many scientists (like other people) make mistakes and exhibit biases in reasoning about causation, if-then relations, and evidence. Decision-related conclusions or causal explanations are reached prematurely based on narrative plausibility rather than adequate factual evidence. Then, confirming evidence is sought and emphasized, but disconfirming evidence is ignored or discounted. This tendency has serious implications for health-related public policy discussions and decisions. We provide examples occurring in antimicrobial health risk assessments, including a case study of a recently reported positive relation between virginiamycin (VM) use in poultry and risk of resistance to VM-like (streptogramin) antibiotics in humans. This finding has been used to argue that poultry consumption causes increased resistance risks, that serious health impacts may result, and therefore use of VM in poultry should be restricted. However, the original study compared healthy vegetarians to hospitalized poultry consumers. Our examination of the same data using conditional independence tests for potential causality reveals that poultry consumption acted as a surrogate for hospitalization in this study. After accounting for current hospitalization status, no evidence remains supporting a causal relationship between poultry consumption and increased streptogramin resistance. This example emphasizes both the importance and the practical possibility of analyzing and presenting quantitative risk information using data analysis techniques (such as Bayesian model averaging (BMA) and conditional independence tests) that are as free as possible from potential selection, confirmation, and modeling biases.

  19. What Is the Latent Variable in Causal Indicator Models?

    ERIC Educational Resources Information Center

    Howell, Roy D.

    2014-01-01

    Building on the work of Bollen (2007) and Bollen & Bauldry (2011), Bainter and Bollen (this issue) clarifies several points of confusion in the literature regarding causal indicator models. This author would certainly agree that the effect indicator (reflective) measurement model is inappropriate for some indicators (such as the social…

  20. Causal learning with local computations.

    PubMed

    Fernbach, Philip M; Sloman, Steven A

    2009-05-01

    The authors proposed and tested a psychological theory of causal structure learning based on local computations. Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require relatively small amounts of data, and need not respect normative prescriptions as inferences that are principled locally may violate those principles when combined. Over a series of 3 experiments, the authors found (a) systematic inferences from small amounts of data; (b) systematic inference of extraneous causal links; (c) influence of data presentation order on inferences; and (d) error reduction through pretraining. Without pretraining, a model based on local computations fitted data better than a Bayesian structural inference model. The data suggest that local computations serve as a heuristic for learning causal structure. Copyright 2009 APA, all rights reserved.

  1. Final Report for Dynamic Models for Causal Analysis of Panel Data. Approaches to the Censoring Problem in Analysis of Event Histories. Part III, Chapter 2.

    ERIC Educational Resources Information Center

    Tuma, Nancy Brandon; Hannan, Michael T.

    The document, part of a series of chapters described in SO 011 759, considers the problem of censoring in the analysis of event-histories (data on dated events, including dates of change from one qualitative state to another). Censoring refers to the lack of information on events that occur before or after the period for which data are available.…

  2. How multiple causes combine: independence constraints on causal inference.

    PubMed

    Liljeholm, Mimi

    2015-01-01

    According to the causal power view, two core constraints-that causes occur independently (i.e., no confounding) and influence their effects independently-serve as boundary conditions for causal induction. This study investigated how violations of these constraints modulate uncertainty about the existence and strength of a causal relationship. Participants were presented with pairs of candidate causes that were either confounded or not, and that either interacted or exerted their influences independently. Consistent with the causal power view, uncertainty about the existence and strength of causal relationships was greater when causes were confounded or interacted than when unconfounded and acting independently. An elemental Bayesian causal model captured differences in uncertainty due to confounding but not those due to an interaction. Implications of distinct sources of uncertainty for the selection of contingency information and causal generalization are discussed.

  3. Modeling drivers of phosphorus loads in Chesapeake Bay tributaries and inferences about long-term change

    USGS Publications Warehouse

    Ryberg, Karen R.; Blomquist, Joel; Sprague, Lori A.; Sekellick, Andrew J.; Keisman, Jennifer

    2018-01-01

    Causal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads. Climate (in the form of annual total precipitation and the Palmer Hydrologic Drought Index) and anthropogenic inputs are the major drivers of total phosphorus load in the Chesapeake Bay watershed. Increasing runoff due to natural climate variability is offsetting purposeful management actions that are otherwise decreasing phosphorus loading; consequently, management actions may need to be reexamined to achieve target reductions in the face of climate variability.

  4. Gene-Based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions.

    PubMed

    Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y; Chen, Wei

    2016-02-01

    Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, here we develop Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT), which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. © 2016 WILEY PERIODICALS, INC.

  5. Gene-based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions

    PubMed Central

    Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E.; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y.; Chen, Wei

    2015-01-01

    Summary Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, we develop here Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT) which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. PMID:26782979

  6. Intelligence, birth order, and family size.

    PubMed

    Kanazawa, Satoshi

    2012-09-01

    The analysis of the National Child Development Study in the United Kingdom (n = 17,419) replicates some earlier findings and shows that genuine within-family data are not necessary to make the apparent birth-order effect on intelligence disappear. Birth order is not associated with intelligence in between-family data once the number of siblings is statistically controlled. The analyses support the admixture hypothesis, which avers that the apparent birth-order effect on intelligence is an artifact of family size, and cast doubt on the confluence and resource dilution models, both of which claim that birth order has a causal influence on children's cognitive development. The analyses suggest that birth order has no genuine causal effect on general intelligence.

  7. Dissociations among judgments do not reflect cognitive priority: an associative explanation of memory for frequency information in contingency learning.

    PubMed

    Vadillo, Miguel A; Luque, David

    2013-03-01

    Previous research on causal learning has usually made strong claims about the relative complexity and temporal priority of some processes over others based on evidence about dissociations between several types of judgments. In particular, it has been argued that the dissociation between causal judgments and trial-type frequency information is incompatible with the general cognitive architecture proposed by associative models. In contrast with this view, we conduct an associative analysis of this process showing that this need not be the case. We conclude that any attempt to gain a better insight on the cognitive architecture involved in contingency learning cannot rely solely on data about these dissociations.

  8. The causal role of fatigue in the stress-perceived health relationship: a MetroNet study.

    PubMed

    Maghout-Juratli, Sham; Janisse, James; Schwartz, Kendra; Arnetz, Bengt B

    2010-01-01

    We conducted a cross-sectional survey of 4 primary care MetroNet centers in metropolitan Detroit. Our objective was to describe the causal role of fatigue in the relationship among stress, stress resiliency, and perceived health in primary care. Fatigue is a public health problem that has been linked to stress and poor health. The causal role of fatigue between stress and perceived health is unknown. Four hundred surveys were distributed to adult patients in 4 primary care centers in metropolitan Detroit between 2006 and 2007. Internal consistency reliabilities and principal factor analyses were calculated for the key psychological scales. Perceived health is the primary outcome. Path models were used to study the relationship among stress, fatigue, and perceived health. We also modeled the impact of select stress resiliency factors including sleep, recovery, and social support. Of the 400 distributed surveys, 315 (78.7%) had a response rate of 70% or more and were included in the analysis. Respondents were predominantly middle aged (median age, 43 years); female (58.7%); and African American (52.0%). The majority worked full time (56.5%); did not have a college degree (77.7%); and were not married (55.2%). Fatigue was reported by 59% of respondents, 42.7% of which was unexplained. The path model supported the causal role of fatigue between stress and perceived health. The positive effects of sleep, recovery, and social support on fatigue, stress, and perceived health were validated. Fatigue was common in this metropolitan primary care environment and completely mediated the relationship between stress and poor perceived health. Therefore, stress, when significant enough to cause fatigue, may lead to poor health.

  9. Redundant variables and Granger causality

    NASA Astrophysics Data System (ADS)

    Angelini, L.; de Tommaso, M.; Marinazzo, D.; Nitti, L.; Pellicoro, M.; Stramaglia, S.

    2010-03-01

    We discuss the use of multivariate Granger causality in presence of redundant variables: the application of the standard analysis, in this case, leads to under estimation of causalities. Using the un-normalized version of the causality index, we quantitatively develop the notions of redundancy and synergy in the frame of causality and propose two approaches to group redundant variables: (i) for a given target, the remaining variables are grouped so as to maximize the total causality and (ii) the whole set of variables is partitioned to maximize the sum of the causalities between subsets. We show the application to a real neurological experiment, aiming to a deeper understanding of the physiological basis of abnormal neuronal oscillations in the migraine brain. The outcome by our approach reveals the change in the informational pattern due to repetitive transcranial magnetic stimulations.

  10. Foundational perspectives on causality in large-scale brain networks

    NASA Astrophysics Data System (ADS)

    Mannino, Michael; Bressler, Steven L.

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical likelihood that a change in the activity of one neuronal population affects the activity in another. We argue that these measures access the inherently probabilistic nature of causal influences in the brain, and are thus better suited for large-scale brain network analysis than are DC-based measures. Our work is consistent with recent advances in the philosophical study of probabilistic causality, which originated from inherent conceptual problems with deterministic regularity theories. It also resonates with concepts of stochasticity that were involved in establishing modern physics. In summary, we argue that probabilistic causality is a conceptually appropriate foundation for describing neural causality in the brain.

  11. Foundational perspectives on causality in large-scale brain networks.

    PubMed

    Mannino, Michael; Bressler, Steven L

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical likelihood that a change in the activity of one neuronal population affects the activity in another. We argue that these measures access the inherently probabilistic nature of causal influences in the brain, and are thus better suited for large-scale brain network analysis than are DC-based measures. Our work is consistent with recent advances in the philosophical study of probabilistic causality, which originated from inherent conceptual problems with deterministic regularity theories. It also resonates with concepts of stochasticity that were involved in establishing modern physics. In summary, we argue that probabilistic causality is a conceptually appropriate foundation for describing neural causality in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Morphological Awareness in Literacy Acquisition of Chinese Second Graders: A Path Analysis

    ERIC Educational Resources Information Center

    Zhang, Haomin

    2016-01-01

    The present study tested a path diagram regarding the contribution of morphological awareness (MA) to early literacy acquisition among Chinese-speaking second graders (N = 123). Three facets of MA were addressed, namely derivational awareness, compound awareness and compound structure awareness. The model aimed to test a theory of causal order…

  13. Knowledge Monitoring, Goal Orientations, Self-Efficacy, and Academic Performance: A Path Analysis

    ERIC Educational Resources Information Center

    Al-Harthy, Ibrahim S.; Was, Christopher A.

    2013-01-01

    The purpose of this study was to examine the relationship between knowledge monitoring and motivation as defined by self-efficacy and goal orientations. A path model was proposed to hypothesize the causal relations among predictors of the students' total score in the Educational Psychology course. The sample consisted of undergraduate students…

  14. The Potential for Differential Findings among Invariance Testing Strategies for Multisample Measured Variable Path Models

    ERIC Educational Resources Information Center

    Mann, Heather M.; Rutstein, Daisy W.; Hancock, Gregory R.

    2009-01-01

    Multisample measured variable path analysis is used to test whether causal/structural relations among measured variables differ across populations. Several invariance testing approaches are available for assessing cross-group equality of such relations, but the associated test statistics may vary considerably across methods. This study is a…

  15. [Clinical research. XIII. Research design contribution in the structured revision of an article].

    PubMed

    Talavera, Juan O; Rivas-Ruiz, Rodolfo

    2013-01-01

    The quality of information obtained in accordance to research design is integrated to the revision structured in relation to the causality model, used in the article "Reduction in the Incidence of Nosocomial Pneumonia Poststroke by Using the 'Turn-mob' Program", which corresponds to a clinical trial design. Points to identify and analyze are ethical issues in order to safeguard the security and respect for patients, randomization that seek to create basal homogeneous groups, subjects with the same probability of receiving any of the maneuvers in comparison, with the same pre maneuver probability of adherence, and which facilitate the blinding of outcome measurement and the distribution between groups of subjects with the same probability of leaving the study for reasons beyond the maneuvers. Other aspects are the relativity of comparison, the blinding of the maneuver, the parallel application of comparative maneuver, early stopping, and analysis according to the degree of adherence. The analysis in accordance with the design is complementary, since it is done based on the architectural model of causality, and the statistical and clinical relevance consideration.

  16. Causal Superlearning Arising from Interactions Among Cues

    PubMed Central

    Urushihara, Kouji; Miller, Ralph R.

    2017-01-01

    Superconditioning refers to supernormal responding to a conditioned stimulus (CS) that sometimes occurs in classical conditioning when the CS is paired with an unconditioned stimulus (US) in the presence of a conditioned inhibitor for that US. In the present research, we conducted four experiments to investigate causal superlearning, a phenomenon in human causal learning analogous to superconditioning. Experiment 1 demonstrated superlearning relative to appropriate control conditions. Experiment 2 showed that superlearning wanes when the number of cues used in an experiment is relatively large. Experiment 3 determined that even when relatively many cues are used, superlearning can be observed provided testing is conducted immediately after training, which is problematic for explanations by most contemporary learning theories. Experiment 4 found that ratings of a superlearning cue are weaker than those to the training excitor which gives basis to the conditioned inhibitor-like causal preventor used during causal superlearning training. This is inconsistent with the prediction by propositional reasoning accounts of causal cue competition, but is readily explained by associative learning models. In sum, the current experiments revealed some weaknesses of both the associative and propositional reasoning models with respect to causal superlearning. PMID:28383940

  17. Econometric testing on linear and nonlinear dynamic relation between stock prices and macroeconomy in China

    NASA Astrophysics Data System (ADS)

    Borjigin, Sumuya; Yang, Yating; Yang, Xiaoguang; Sun, Leilei

    2018-03-01

    Many researchers have realized that there is a strong correlation between stock prices and macroeconomy. In order to make this relationship clear, a lot of studies have been done. However, the causal relationship between stock prices and macroeconomy has still not been well explained. A key point is that, most of the existing research adopts linear and stable models to investigate the correlation of stock prices and macroeconomy, while the real causality of that may be nonlinear and dynamic. To fill this research gap, we investigate the nonlinear and dynamic causal relationships between stock prices and macroeconomy. Based on the case of China's stock prices and acroeconomy measures from January 1992 to March 2017, we compare the linear Granger causality test models with nonlinear ones. Results demonstrate that the nonlinear dynamic Granger causality is much stronger than linear Granger causality. From the perspective of nonlinear dynamic Granger causality, China's stock prices can be viewed as "national economic barometer". On the one hand, this study will encourage researchers to take nonlinearity and dynamics into account when they investigate the correlation of stock prices and macroeconomy; on the other hand, our research can guide regulators and investors to make better decisions.

  18. Causal Relations Drive Young Children's Induction, Naming, and Categorization

    ERIC Educational Resources Information Center

    Opfer, John E.; Bulloch, Megan J.

    2007-01-01

    A number of recent models and experiments have suggested that evidence of early category-based induction is an artifact of perceptual cues provided by experimenters. We tested these accounts against the prediction that different relations (causal versus non-causal) determine the types of perceptual similarity by which children generalize. Young…

  19. The Development of Causal Structure without a Language Model

    ERIC Educational Resources Information Center

    Rissman, Lilia; Goldin-Meadow, Susan

    2017-01-01

    Across a diverse range of languages, children proceed through similar stages in their production of causal language: their initial verbs lack internal causal structure, followed by a period during which they produce causative overgeneralizations, indicating knowledge of a productive causative rule. We asked in this study whether a child not…

  20. Contemporary Quantitative Methods and "Slow" Causal Inference: Response to Palinkas

    ERIC Educational Resources Information Center

    Stone, Susan

    2014-01-01

    This response considers together simultaneously occurring discussions about causal inference in social work and allied health and social science disciplines. It places emphasis on scholarship that integrates the potential outcomes model with directed acyclic graphing techniques to extract core steps in causal inference. Although this scholarship…

  1. Young Children's Understanding of Teaching and Learning and Their Theory of Mind Development: A Causal Analysis from a Cross-Cultural Perspective

    PubMed Central

    Wang, Zhenlin; Wang, X. Christine; Chui, Wai Yip

    2017-01-01

    Children's understanding of the concepts of teaching and learning is closely associated with their theory of mind (ToM) ability and vital for school readiness. This study aimed to develop and validate a Preschool Teaching and Learning Comprehension Index (PTLCI) across cultures and examine the causal relationship between children's comprehension of teaching and learning and their mental state understanding. Two hundred and twelve children from 3 to 6 years of age from Hong Kong and the United States participated in study. The results suggested strong construct validity of the PTLCI, and its measurement and structural equivalence within and across cultures. ToM and PTLCI were significantly correlated with a medium effect size, even after controlling for age, and language ability. Hong Kong children outperformed their American counterparts in both ToM and PTLCI. Competing structural equation models suggested that children's performance on the PTLCI causally predicted their ToM across countries. PMID:28559863

  2. Lexical mediation of phonotactic frequency effects on spoken word recognition: A Granger causality analysis of MRI-constrained MEG/EEG data.

    PubMed

    Gow, David W; Olson, Bruna B

    2015-07-01

    Phonotactic frequency effects play a crucial role in a number of debates over language processing and representation. It is unclear however, whether these effects reflect prelexical sensitivity to phonotactic frequency, or lexical "gang effects" in speech perception. In this paper, we use Granger causality analysis of MR-constrained MEG/EEG data to understand how phonotactic frequency influences neural processing dynamics during auditory lexical decision. Effective connectivity analysis showed weaker feedforward influence from brain regions involved in acoustic-phonetic processing (superior temporal gyrus) to lexical areas (supramarginal gyrus) for high phonotactic frequency words, but stronger top-down lexical influence for the same items. Low entropy nonwords (nonwords judged to closely resemble real words) showed a similar pattern of interactions between brain regions involved in lexical and acoustic-phonetic processing. These results contradict the predictions of a feedforward model of phonotactic frequency facilitation, but support the predictions of a lexically mediated account.

  3. Lexical mediation of phonotactic frequency effects on spoken word recognition: A Granger causality analysis of MRI-constrained MEG/EEG data

    PubMed Central

    Gow, David W.; Olson, Bruna B.

    2015-01-01

    Phonotactic frequency effects play a crucial role in a number of debates over language processing and representation. It is unclear however, whether these effects reflect prelexical sensitivity to phonotactic frequency, or lexical “gang effects” in speech perception. In this paper, we use Granger causality analysis of MR-constrained MEG/EEG data to understand how phonotactic frequency influences neural processing dynamics during auditory lexical decision. Effective connectivity analysis showed weaker feedforward influence from brain regions involved in acoustic-phonetic processing (superior temporal gyrus) to lexical areas (supramarginal gyrus) for high phonotactic frequency words, but stronger top-down lexical influence for the same items. Low entropy nonwords (nonwords judged to closely resemble real words) showed a similar pattern of interactions between brain regions involved in lexical and acoustic-phonetic processing. These results contradict the predictions of a feedforward model of phonotactic frequency facilitation, but support the predictions of a lexically mediated account. PMID:25883413

  4. Effective connectivity of facial expression network by using Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Xiaoting

    2013-10-01

    Functional magnetic resonance imaging (fMRI) is an advanced non-invasive data acquisition technique to investigate the neural activity in human brain. In addition to localize the functional brain regions that is activated by specific cognitive task, fMRI can also be utilized to measure the task-related functional interactions among the active regions of interest (ROI) in the brain. Among the variety of analysis tools proposed for modeling the connectivity of brain regions, Granger causality analysis (GCA) measure the directions of information interactions by looking for the lagged effect among the brain regions. In this study, we use fMRI and Granger Causality analysis to investigate the effective connectivity of brain network induced by viewing several kinds of expressional faces. We focus on four kinds of facial expression stimuli: fearful, angry, happy and neutral faces. Five face selective regions of interest are localized and the effective connectivity within these regions is measured for the expressional faces. Our result based on 8 subjects showed that there is significant effective connectivity from STS to amygdala, from amygdala to OFA, aFFA and pFFA, from STS to aFFA and from pFFA to aFFA. This result suggested that there is an information flow from the STS to the amygdala when perusing expressional faces. This emotional expressional information flow that is conveyed by STS and amygdala, flow back to the face selective regions in occipital-temporal lobes, which constructed a emotional face processing network.

  5. Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Dong, Qunxi; Hao, Yanrong; Zhao, Qinglin; Shen, Jian; Zheng, Fang

    2017-08-01

    Objective. Neuro-electrophysiological tools have been widely used in heroin addiction studies. Previous studies indicated that chronic heroin abuse would result in abnormal functional organization of the brain, while few heroin addiction studies have applied the effective connectivity tool to analyze the brain functional system (BFS) alterations induced by heroin abuse. The present study aims to identify the abnormality of resting-state heroin abstinent BFS using source decomposition and effective connectivity tools. Approach. The resting-state electroencephalograph (EEG) signals were acquired from 15 male heroin abstinent (HA) subjects and 14 male non-addicted (NA) controls. Multivariate autoregressive models combined independent component analysis (MVARICA) was applied for blind source decomposition. Generalized partial directed coherence (GPDC) was applied for effective brain connectivity analysis. Effective brain networks of both HA and NA groups were constructed. The two groups of effective cortical networks were compared by the bootstrap method. Abnormal causal interactions between decomposed source regions were estimated in the 1-45 Hz frequency domain. Main results. This work suggested: (a) there were clear effective network alterations in heroin abstinent subject groups; (b) the parietal region was a dominant hub of the abnormally weaker causal pathways, and the left occipital region was a dominant hub of the abnormally stronger causal pathways. Significance. These findings provide direct evidence that chronic heroin abuse induces brain functional abnormalities. The potential value of combining effective connectivity analysis and brain source decomposition methods in exploring brain alterations of heroin addicts is also implied.

  6. Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects.

    PubMed

    Hu, Bin; Dong, Qunxi; Hao, Yanrong; Zhao, Qinglin; Shen, Jian; Zheng, Fang

    2017-08-01

    Neuro-electrophysiological tools have been widely used in heroin addiction studies. Previous studies indicated that chronic heroin abuse would result in abnormal functional organization of the brain, while few heroin addiction studies have applied the effective connectivity tool to analyze the brain functional system (BFS) alterations induced by heroin abuse. The present study aims to identify the abnormality of resting-state heroin abstinent BFS using source decomposition and effective connectivity tools. The resting-state electroencephalograph (EEG) signals were acquired from 15 male heroin abstinent (HA) subjects and 14 male non-addicted (NA) controls. Multivariate autoregressive models combined independent component analysis (MVARICA) was applied for blind source decomposition. Generalized partial directed coherence (GPDC) was applied for effective brain connectivity analysis. Effective brain networks of both HA and NA groups were constructed. The two groups of effective cortical networks were compared by the bootstrap method. Abnormal causal interactions between decomposed source regions were estimated in the 1-45 Hz frequency domain. This work suggested: (a) there were clear effective network alterations in heroin abstinent subject groups; (b) the parietal region was a dominant hub of the abnormally weaker causal pathways, and the left occipital region was a dominant hub of the abnormally stronger causal pathways. These findings provide direct evidence that chronic heroin abuse induces brain functional abnormalities. The potential value of combining effective connectivity analysis and brain source decomposition methods in exploring brain alterations of heroin addicts is also implied.

  7. Neural correlates of depressive realism – An fMRI study on causal attribution in depression

    PubMed Central

    Seidel, Eva-Maria; Satterthwaite, Theodore D.; Eickhoff, Simon B.; Schneider, Frank; Gur, Ruben C.; Wolf, Daniel H.; Habel, Ute; Derntl, Birgit

    2013-01-01

    Background Biased causal attribution is a critical factor in the cognitive model of depression. Whereas depressed patients interpret events negatively, healthy people show a self-serving bias (internal attribution of positive events and external attribution of negative events). Methods Using fMRI, depressed patients (n=15) and healthy controls (n=15) were confronted with positive and negative social events and made causal attributions (internal vs. external). Functional data were analyzed using a mixed effects model. Results Behaviourally, controls showed a self-serving bias, whereas patients demonstrated a balanced attributional pattern. Analysis of functional data revealed a significant group difference in a fronto-temporal network. Higher activation of this network was associated with non self-serving attributions in controls but self-serving attributions in patients. Applying a psycho-physiological interaction analysis, we observed reduced coupling between a dorsomedial PFC seed region and limbic areas during self-serving attributions in patients compared to controls. Limitations Results of the PPI analysis are preliminary given the liberal statistical threshold. Conclusions The association of the behaviourally less frequent attributional pattern with activation in a fronto-temporal network suggests that non self-serving responses may produce a self-related response conflict in controls, while self-serving responses produce this conflict in patients. Moreover, attribution-modulated coupling between the dorsomedial PFC and limbic regions was weaker in patients than controls. This preliminary finding suggests that depression may be associated with disturbances in fronto-limbic coupling during attributional decisions. Our results implicate that treatment of major depression may benefit from approaches that facilitate reinterpretation of emotional events in a more positive, more self-serving way. PMID:22377511

  8. Causal Indicator Models: Unresolved Issues of Construction and Evaluation

    ERIC Educational Resources Information Center

    West, Stephen G.; Grimm, Kevin J.

    2014-01-01

    These authors agree with Bainter and Bollen that causal effects represents a useful measurement structure in some applications. The structure of the science of the measurement problem should determine the model; the measurement model should not determine the science. They also applaud Bainter and Bollen's important reminder that the full…

  9. A Causal Model of Teacher Acceptance of Technology

    ERIC Educational Resources Information Center

    Chang, Jui-Ling; Lieu, Pang-Tien; Liang, Jung-Hui; Liu, Hsiang-Te; Wong, Seng-lee

    2012-01-01

    This study proposes a causal model for investigating teacher acceptance of technology. We received 258 effective replies from teachers at public and private universities in Taiwan. A questionnaire survey was utilized to test the proposed model. The Lisrel was applied to test the proposed hypotheses. The result shows that computer self-efficacy has…

  10. A Note on the Usefulness of the Behavioural Rasch Selection Model for Causal Inference in the Social Sciences

    NASA Astrophysics Data System (ADS)

    Rabbitt, Matthew P.

    2016-11-01

    Social scientists are often interested in examining causal relationships where the outcome of interest is represented by an intangible concept, such as an individual's well-being or ability. Estimating causal relationships in this scenario is particularly challenging because the social scientist must rely on measurement models to measure individual's properties or attributes and then address issues related to survey data, such as omitted variables. In this paper, the usefulness of the recently proposed behavioural Rasch selection model is explored using a series of Monte Carlo experiments. The behavioural Rasch selection model is particularly useful for these types of applications because it is capable of estimating the causal effect of a binary treatment effect on an outcome that is represented by an intangible concept using cross-sectional data. Other methodology typically relies of summary measures from measurement models that require additional assumptions, some of which make these approaches less efficient. Recommendations for application of the behavioural Rasch selection model are made based on results from the Monte Carlo experiments.

  11. Marginal Structural Models with Counterfactual Effect Modifiers.

    PubMed

    Zheng, Wenjing; Luo, Zhehui; van der Laan, Mark J

    2018-06-08

    In health and social sciences, research questions often involve systematic assessment of the modification of treatment causal effect by patient characteristics. In longitudinal settings, time-varying or post-intervention effect modifiers are also of interest. In this work, we investigate the robust and efficient estimation of the Counterfactual-History-Adjusted Marginal Structural Model (van der Laan MJ, Petersen M. Statistical learning of origin-specific statically optimal individualized treatment rules. Int J Biostat. 2007;3), which models the conditional intervention-specific mean outcome given a counterfactual modifier history in an ideal experiment. We establish the semiparametric efficiency theory for these models, and present a substitution-based, semiparametric efficient and doubly robust estimator using the targeted maximum likelihood estimation methodology (TMLE, e.g. van der Laan MJ, Rubin DB. Targeted maximum likelihood learning. Int J Biostat. 2006;2, van der Laan MJ, Rose S. Targeted learning: causal inference for observational and experimental data, 1st ed. Springer Series in Statistics. Springer, 2011). To facilitate implementation in applications where the effect modifier is high dimensional, our third contribution is a projected influence function (and the corresponding projected TMLE estimator), which retains most of the robustness of its efficient peer and can be easily implemented in applications where the use of the efficient influence function becomes taxing. We compare the projected TMLE estimator with an Inverse Probability of Treatment Weighted estimator (e.g. Robins JM. Marginal structural models. In: Proceedings of the American Statistical Association. Section on Bayesian Statistical Science, 1-10. 1997a, Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. 2000;11:561-570), and a non-targeted G-computation estimator (Robins JM. A new approach to causal inference in mortality studies with sustained exposure periods - application to control of the healthy worker survivor effect. Math Modell. 1986;7:1393-1512.). The comparative performance of these estimators is assessed in a simulation study. The use of the projected TMLE estimator is illustrated in a secondary data analysis for the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial where effect modifiers are subject to missing at random.

  12. Analysis of longitudinal marginal structural models.

    PubMed

    Bryan, Jenny; Yu, Zhuo; Van Der Laan, Mark J

    2004-07-01

    In this article we construct and study estimators of the causal effect of a time-dependent treatment on survival in longitudinal studies. We employ a particular marginal structural model (MSM), proposed by Robins (2000), and follow a general methodology for constructing estimating functions in censored data models. The inverse probability of treatment weighted (IPTW) estimator of Robins et al. (2000) is used as an initial estimator and forms the basis for an improved, one-step estimator that is consistent and asymptotically linear when the treatment mechanism is consistently estimated. We extend these methods to handle informative censoring. The proposed methodology is employed to estimate the causal effect of exercise on mortality in a longitudinal study of seniors in Sonoma County. A simulation study demonstrates the bias of naive estimators in the presence of time-dependent confounders and also shows the efficiency gain of the IPTW estimator, even in the absence such confounding. The efficiency gain of the improved, one-step estimator is demonstrated through simulation.

  13. Italian regional health system structure and expected cancer survival.

    PubMed

    Vercelli, Marina; Lillini, Roberto; Quaglia, Alberto; Capocaccia, Riccardo

    2014-01-01

    Few studies deal with the association of socioeconomic and health system resource variables with cancer survival at the Italian regional level, where the greatest number of decisions about social and health policies and resource allocations are taken. The present study aimed to describe the causal relationships between socioeconomic and health system resource factors and regional cancer survival and to compute the expected cancer survival at provincial, regional and area levels. Age-standardized relative survival at 5 years from diagnosis of cases incident in 1995-1998 and followed up to 2004 were derived by gender for 11 sites from the Italian Association of Cancer Registries data bank. The socioeconomic and health system resource variables, describing at a regional level the macro-economy, demography, labor market, and health resources for 1995-2005, came from the Health for All database. A principal components factor analysis was applied to the socioeconomic and health system resource variables. For every site, linear regression models were computed considering the relative survival at 5 years as a dependent variable and the principal components factor analysis factors as independent variables. The factors described the socioeconomic and health-related features of the regional systems and were causally related to the characteristics of the patient taken in charge. The models built by the factors allowed computation of the expected relative survival at 5 years with very good concordance with those observed at regional, macro-regional and national levels. In the regions without any cancer registry, survival was coherent with that of neighboring regions with similar socioeconomic and health system resources characteristics. The models highlighted the causal correlations between socioeconomic and health system resources and cancer survival, suggesting that they could be good evaluation tools for the efficiency of the resources allocation and use.

  14. Of arrows and flows. Causality, determination, and specificity in the Central Dogma of molecular biology.

    PubMed

    Fantini, Bernardino

    2006-01-01

    From its first proposal, the Central Dogma had a graphical form, complete with arrows of different types, and this form quickly became its standard presentation. In different scientific contexts, arrows have different meanings and in this particular case the arrows indicated the flow of information among different macromolecules. A deeper analysis illustrates that the arrows also imply a causal statement, directly connected to the causal role of genetic information. The author suggests a distinction between two different kinds of causal links, defined as 'physical causality' and 'biological determination', both implied in the production of biological specificity.

  15. Inhibitory Behavioral Control: A Stochastic Dynamic Causal Modeling Study Using Network Discovery Analysis

    PubMed Central

    Steinberg, Joel L.; Cunningham, Kathryn A.; Lane, Scott D.; Kramer, Larry A.; Narayana, Ponnada A.; Kosten, Thomas R.; Bechara, Antoine; Moeller, F. Gerard

    2015-01-01

    Abstract This study employed functional magnetic resonance imaging (fMRI)-based dynamic causal modeling (DCM) to study the effective (directional) neuronal connectivity underlying inhibitory behavioral control. fMRI data were acquired from 15 healthy subjects while they performed a Go/NoGo task with two levels of NoGo difficulty (Easy and Hard NoGo conditions) in distinguishing spatial patterns of lines. Based on the previous inhibitory control literature and the present fMRI activation results, 10 brain regions were postulated as nodes in the effective connectivity model. Due to the large number of potential interconnections among these nodes, the number of models for final analysis was reduced to a manageable level for the whole group by conducting DCM Network Discovery, which is a recently developed option within the Statistical Parametric Mapping software package. Given the optimum network model, the DCM Network Discovery analysis found that the locations of the driving input into the model from all the experimental stimuli in the Go/NoGo task were the amygdala and the hippocampus. The strengths of several cortico-subcortical connections were modulated (influenced) by the two NoGo conditions. Specifically, connectivity from the middle frontal gyrus (MFG) to hippocampus was enhanced by the Easy condition and further enhanced by the Hard NoGo condition, possibly suggesting that compared with the Easy NoGo condition, stronger control from MFG was needed for the hippocampus to discriminate/learn the spatial pattern in order to respond correctly (inhibit), during the Hard NoGo condition. PMID:25336321

  16. Inferring interventional predictions from observational learning data.

    PubMed

    Meder, Bjorn; Hagmayer, York; Waldmann, Michael R

    2008-02-01

    Previous research has shown that people are capable of deriving correct predictions for previously unseen actions from passive observations of causal systems (Waldmann & Hagmayer, 2005). However, these studies were limited, since learning data were presented as tabulated data only, which may have turned the task more into a reasoning rather than a learning task. In two experiments, we therefore presented learners with trial-by-trial observational learning input referring to a complex causal model consisting of four events. To test the robustness of the capacity to derive correct observational and interventional inferences, we pitted causal order against the temporal order of learning events. The results show that people are, in principle, capable of deriving correct predictions after purely observational trial-by-trial learning, even with relatively complex causal models. However, conflicting temporal information can impair performance, particularly when the inferences require taking alternative causal pathways into account.

  17. Three Cs in measurement models: causal indicators, composite indicators, and covariates.

    PubMed

    Bollen, Kenneth A; Bauldry, Shawn

    2011-09-01

    In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the "Three Cs"). Causal indicators have conceptual unity, and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variables. Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects, and composites are a matter of convenience. The failure to distinguish the Three Cs has led to confusion and questions, such as, Are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points.

  18. Frequency distribution of causal connectivity in rat sensorimotor network: resting-state fMRI analyses.

    PubMed

    Shim, Woo H; Baek, Kwangyeol; Kim, Jeong Kon; Chae, Yongwook; Suh, Ji-Yeon; Rosen, Bruce R; Jeong, Jaeseung; Kim, Young R

    2013-01-01

    Resting-state functional MRI (fMRI) has emerged as an important method for assessing neural networks, enabling extensive connectivity analyses between multiple brain regions. Among the analysis techniques proposed, partial directed coherence (PDC) provides a promising tool to unveil causal connectivity networks in the frequency domain. Using the MRI time series obtained from the rat sensorimotor system, we applied PDC analysis to determine the frequency-dependent causality networks. In particular, we compared in vivo and postmortem conditions to establish the statistical significance of directional PDC values. Our results demonstrate that two distinctive frequency populations drive the causality networks in rat; significant, high-frequency causal connections clustered in the range of 0.2-0.4 Hz, and the frequently documented low-frequency connections <0.15 Hz. Frequency-dependence and directionality of the causal connection are characteristic between sensorimotor regions, implying the functional role of frequency bands to transport specific resting-state signals. In particular, whereas both intra- and interhemispheric causal connections between heterologous sensorimotor regions are robust over all frequency levels, the bilaterally homologous regions are interhemispherically linked mostly via low-frequency components. We also discovered a significant, frequency-independent, unidirectional connection from motor cortex to thalamus, indicating dominant cortical inputs to the thalamus in the absence of external stimuli. Additionally, to address factors underlying the measurement error, we performed signal simulations and revealed that the interactive MRI system noise alone is a likely source of the inaccurate PDC values. This work demonstrates technical basis for the PDC analysis of resting-state fMRI time series and the presence of frequency-dependent causality networks in the sensorimotor system.

  19. Model robustness as a confirmatory virtue: The case of climate science.

    PubMed

    Lloyd, Elisabeth A

    2015-02-01

    I propose a distinct type of robustness, which I suggest can support a confirmatory role in scientific reasoning, contrary to the usual philosophical claims. In model robustness, repeated production of the empirically successful model prediction or retrodiction against a background of independently-supported and varying model constructions, within a group of models containing a shared causal factor, may suggest how confident we can be in the causal factor and predictions/retrodictions, especially once supported by a variety of evidence framework. I present climate models of greenhouse gas global warming of the 20th Century as an example, and emphasize climate scientists' discussions of robust models and causal aspects. The account is intended as applicable to a broad array of sciences that use complex modeling techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Quantum Common Causes and Quantum Causal Models

    NASA Astrophysics Data System (ADS)

    Allen, John-Mark A.; Barrett, Jonathan; Horsman, Dominic C.; Lee, Ciarán M.; Spekkens, Robert W.

    2017-07-01

    Reichenbach's principle asserts that if two observed variables are found to be correlated, then there should be a causal explanation of these correlations. Furthermore, if the explanation is in terms of a common cause, then the conditional probability distribution over the variables given the complete common cause should factorize. The principle is generalized by the formalism of causal models, in which the causal relationships among variables constrain the form of their joint probability distribution. In the quantum case, however, the observed correlations in Bell experiments cannot be explained in the manner Reichenbach's principle would seem to demand. Motivated by this, we introduce a quantum counterpart to the principle. We demonstrate that under the assumption that quantum dynamics is fundamentally unitary, if a quantum channel with input A and outputs B and C is compatible with A being a complete common cause of B and C , then it must factorize in a particular way. Finally, we show how to generalize our quantum version of Reichenbach's principle to a formalism for quantum causal models and provide examples of how the formalism works.

  1. Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory.

    PubMed

    Gopnik, Alison; Wellman, Henry M

    2012-11-01

    We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and nontechnical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and the psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists.

  2. Conservative forgetful scholars: How people learn causal structure through sequences of interventions.

    PubMed

    Bramley, Neil R; Lagnado, David A; Speekenbrink, Maarten

    2015-05-01

    Interacting with a system is key to uncovering its causal structure. A computational framework for interventional causal learning has been developed over the last decade, but how real causal learners might achieve or approximate the computations entailed by this framework is still poorly understood. Here we describe an interactive computer task in which participants were incentivized to learn the structure of probabilistic causal systems through free selection of multiple interventions. We develop models of participants' intervention choices and online structure judgments, using expected utility gain, probability gain, and information gain and introducing plausible memory and processing constraints. We find that successful participants are best described by a model that acts to maximize information (rather than expected score or probability of being correct); that forgets much of the evidence received in earlier trials; but that mitigates this by being conservative, preferring structures consistent with earlier stated beliefs. We explore 2 heuristics that partly explain how participants might be approximating these models without explicitly representing or updating a hypothesis space. (c) 2015 APA, all rights reserved).

  3. Modeling the Citation Network by Network Cosmology

    PubMed Central

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing

    2015-01-01

    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well. PMID:25807397

  4. Modeling the citation network by network cosmology.

    PubMed

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing

    2015-01-01

    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.

  5. Discrete event simulation for exploring strategies: an urban water management case.

    PubMed

    Huang, Dong-Bin; Scholz, Roland W; Gujer, Willi; Chitwood, Derek E; Loukopoulos, Peter; Schertenleib, Roland; Siegrist, Hansruedi

    2007-02-01

    This paper presents a model structure aimed at offering an overview of the various elements of a strategy and exploring their multidimensional effects through time in an efficient way. It treats a strategy as a set of discrete events planned to achieve a certain strategic goal and develops a new form of causal networks as an interfacing component between decision makers and environment models, e.g., life cycle inventory and material flow models. The causal network receives a strategic plan as input in a discrete manner and then outputs the updated parameter sets to the subsequent environmental models. Accordingly, the potential dynamic evolution of environmental systems caused by various strategies can be stepwise simulated. It enables a way to incorporate discontinuous change in models for environmental strategy analysis, and enhances the interpretability and extendibility of a complex model by its cellular constructs. It is exemplified using an urban water management case in Kunming, a major city in Southwest China. By utilizing the presented method, the case study modeled the cross-scale interdependencies of the urban drainage system and regional water balance systems, and evaluated the effectiveness of various strategies for improving the situation of Dianchi Lake.

  6. An Efficient Reachability Analysis Algorithm

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh; Fijany, Amir

    2008-01-01

    A document discusses a new algorithm for generating higher-order dependencies for diagnostic and sensor placement analysis when a system is described with a causal modeling framework. This innovation will be used in diagnostic and sensor optimization and analysis tools. Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in-situ platforms. This algorithm will serve as a power tool for technologies that satisfy a key requirement of autonomous spacecraft, including science instruments and in-situ missions.

  7. Do causal concentration-response functions exist? A critical review of associational and causal relations between fine particulate matter and mortality.

    PubMed

    Cox, Louis Anthony Tony

    2017-08-01

    Concentration-response (C-R) functions relating concentrations of pollutants in ambient air to mortality risks or other adverse health effects provide the basis for many public health risk assessments, benefits estimates for clean air regulations, and recommendations for revisions to existing air quality standards. The assumption that C-R functions relating levels of exposure and levels of response estimated from historical data usefully predict how future changes in concentrations would change risks has seldom been carefully tested. This paper critically reviews literature on C-R functions for fine particulate matter (PM2.5) and mortality risks. We find that most of them describe historical associations rather than valid causal models for predicting effects of interventions that change concentrations. The few papers that explicitly attempt to model causality rely on unverified modeling assumptions, casting doubt on their predictions about effects of interventions. A large literature on modern causal inference algorithms for observational data has been little used in C-R modeling. Applying these methods to publicly available data from Boston and the South Coast Air Quality Management District around Los Angeles shows that C-R functions estimated for one do not hold for the other. Changes in month-specific PM2.5 concentrations from one year to the next do not help to predict corresponding changes in average elderly mortality rates in either location. Thus, the assumption that estimated C-R relations predict effects of pollution-reducing interventions may not be true. Better causal modeling methods are needed to better predict how reducing air pollution would affect public health.

  8. Evaluating a Multivariate Directional Connectivity Measure for Use in Electroencephalogram (EEG) Network Analysis Using a Conductance-Based Neuron Network Model

    DTIC Science & Technology

    2015-03-01

    of 7 information -theoretic criteria plotted against the model order used . The legend is labeled according to the figures in which the power spectra...spectrum (Brovelli et al. 2004). 6 Fig. 2 Values of 7 information -theoretic criteria plotted against the model order used . The legend is labeled...Identification of directed influence: Granger causality, Kullback - Leibler divergence, and complexity. Neural Computation. 2012;24(7):1722–1739. doi:10.1162

  9. CADDIS Publications

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.

  10. Causality and headache triggers

    PubMed Central

    Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.

    2013-01-01

    Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872

  11. The Feasibility of Using Causal Indicators in Educational Measurement

    ERIC Educational Resources Information Center

    Wang, Jue; Engelhard, George, Jr.

    2016-01-01

    The authors of the focus article describe an important issue related to the use and interpretation of causal indicators within the context of structural equation modeling (SEM). In the focus article, the authors illustrate with simulated data the effects of omitting a causal indicator. Since SEMs are used extensively in the social and behavioral…

  12. Cause and Event: Supporting Causal Claims through Logistic Models

    ERIC Educational Resources Information Center

    O'Connell, Ann A.; Gray, DeLeon L.

    2011-01-01

    Efforts to identify and support credible causal claims have received intense interest in the research community, particularly over the past few decades. In this paper, we focus on the use of statistical procedures designed to support causal claims for a treatment or intervention when the response variable of interest is dichotomous. We identify…

  13. Programs as Causal Models: Speculations on Mental Programs and Mental Representation

    ERIC Educational Resources Information Center

    Chater, Nick; Oaksford, Mike

    2013-01-01

    Judea Pearl has argued that counterfactuals and causality are central to intelligence, whether natural or artificial, and has helped create a rich mathematical and computational framework for formally analyzing causality. Here, we draw out connections between these notions and various current issues in cognitive science, including the nature of…

  14. Campbell's and Rubin's Perspectives on Causal Inference

    ERIC Educational Resources Information Center

    West, Stephen G.; Thoemmes, Felix

    2010-01-01

    Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on…

  15. From Blickets to Synapses: Inferring Temporal Causal Networks by Observation

    ERIC Educational Resources Information Center

    Fernando, Chrisantha

    2013-01-01

    How do human infants learn the causal dependencies between events? Evidence suggests that this remarkable feat can be achieved by observation of only a handful of examples. Many computational models have been produced to explain how infants perform causal inference without explicit teaching about statistics or the scientific method. Here, we…

  16. Links between causal effects and causal association for surrogacy evaluation in a gaussian setting.

    PubMed

    Conlon, Anna; Taylor, Jeremy; Li, Yun; Diaz-Ordaz, Karla; Elliott, Michael

    2017-11-30

    Two paradigms for the evaluation of surrogate markers in randomized clinical trials have been proposed: the causal effects paradigm and the causal association paradigm. Each of these paradigms rely on assumptions that must be made to proceed with estimation and to validate a candidate surrogate marker (S) for the true outcome of interest (T). We consider the setting in which S and T are Gaussian and are generated from structural models that include an unobserved confounder. Under the assumed structural models, we relate the quantities used to evaluate surrogacy within both the causal effects and causal association frameworks. We review some of the common assumptions made to aid in estimating these quantities and show that assumptions made within one framework can imply strong assumptions within the alternative framework. We demonstrate that there is a similarity, but not exact correspondence between the quantities used to evaluate surrogacy within each framework, and show that the conditions for identifiability of the surrogacy parameters are different from the conditions, which lead to a correspondence of these quantities. Copyright © 2017 John Wiley & Sons, Ltd.

  17. A causal model for longitudinal randomised trials with time-dependent non-compliance

    PubMed Central

    Becque, Taeko; White, Ian R; Haggard, Mark

    2015-01-01

    In the presence of non-compliance, conventional analysis by intention-to-treat provides an unbiased comparison of treatment policies but typically under-estimates treatment efficacy. With all-or-nothing compliance, efficacy may be specified as the complier-average causal effect (CACE), where compliers are those who receive intervention if and only if randomised to it. We extend the CACE approach to model longitudinal data with time-dependent non-compliance, focusing on the situation in which those randomised to control may receive treatment and allowing treatment effects to vary arbitrarily over time. Defining compliance type to be the time of surgical intervention if randomised to control, so that compliers are patients who would not have received treatment at all if they had been randomised to control, we construct a causal model for the multivariate outcome conditional on compliance type and randomised arm. This model is applied to the trial of alternative regimens for glue ear treatment evaluating surgical interventions in childhood ear disease, where outcomes are measured over five time points, and receipt of surgical intervention in the control arm may occur at any time. We fit the models using Markov chain Monte Carlo methods to obtain estimates of the CACE at successive times after receiving the intervention. In this trial, over a half of those randomised to control eventually receive intervention. We find that surgery is more beneficial than control at 6months, with a small but non-significant beneficial effect at 12months. © 2015 The Authors. Statistics in Medicine Published by JohnWiley & Sons Ltd. PMID:25778798

  18. Causal Reasoning with Mental Models

    DTIC Science & Technology

    2014-08-08

    The initial rubric is equivalent to an exclusive disjunction between the two causal assertions. It 488 yields the following two mental models: 489...are 575 important, whereas the functions of artifacts are important (Ahn, 1998). A genetic code is 576 accordingly more critical to being a goat than

  19. DEVELOPMENT PLAN FOR THE CAUSAL ANALYSIS / DIAGNOSIS DECISION INFORMATION SYSTEM (CADDIS) 2001-2004

    EPA Science Inventory

    The Causal Analysis/Diagnosis Decision Information System (CADDIS) is a web-based system that provides technical support for states, tribes and other users of the Office of Water's Stressor Identification Guidance. The Stressor Identific...

  20. Repeated causal decision making.

    PubMed

    Hagmayer, York; Meder, Björn

    2013-01-01

    Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in such situations and how they use their knowledge to adapt to changes in the decision context. Our studies show that decision makers' behavior is strongly contingent on their causal beliefs and that people exploit their causal knowledge to assess the consequences of changes in the decision problem. A high consistency between hypotheses about causal structure, causally expected values, and actual choices was observed. The experiments show that (a) existing causal hypotheses guide the interpretation of decision feedback, (b) consequences of decisions are used to revise existing causal beliefs, and (c) decision makers use the experienced feedback to induce a causal model of the choice situation even when they have no initial causal hypotheses, which (d) enables them to adapt their choices to changes of the decision problem. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  1. Causality in cancer research: a journey through models in molecular epidemiology and their philosophical interpretation.

    PubMed

    Vineis, Paolo; Illari, Phyllis; Russo, Federica

    2017-01-01

    In the last decades, Systems Biology (including cancer research) has been driven by technology, statistical modelling and bioinformatics. In this paper we try to bring biological and philosophical thinking back. We thus aim at making different traditions of thought compatible: (a) causality in epidemiology and in philosophical theorizing-notably, the "sufficient-component-cause framework" and the "mark transmission" approach; (b) new acquisitions about disease pathogenesis, e.g. the "branched model" in cancer, and the role of biomarkers in this process; (c) the burgeoning of omics research, with a large number of "signals" and of associations that need to be interpreted. In the paper we summarize first the current views on carcinogenesis, and then explore the relevance of current philosophical interpretations of "cancer causes". We try to offer a unifying framework to incorporate biomarkers and omic data into causal models, referring to a position called "evidential pluralism". According to this view, causal reasoning is based on both "evidence of difference-making" (e.g. associations) and on "evidence of underlying biological mechanisms". We conceptualize the way scientists detect and trace signals in terms of information transmission , which is a generalization of the mark transmission theory developed by philosopher Wesley Salmon. Our approach is capable of helping us conceptualize how heterogeneous factors such as micro and macro-biological and psycho-social-are causally linked. This is important not only to understand cancer etiology, but also to design public health policies that target the right causal factors at the macro-level.

  2. HIA, the next step: Defining models and roles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putters, Kim

    If HIA is to be an effective instrument for optimising health interests in the policy making process it has to recognise the different contests in which policy is made and the relevance of both technical rationality and political rationality. Policy making may adopt a rational perspective in which there is a systematic and orderly progression from problem formulation to solution or a network perspective in which there are multiple interdependencies, extensive negotiation and compromise, and the steps from problem to formulation are not followed sequentially or in any particular order. Policy problems may be simple with clear causal pathways andmore » responsibilities or complex with unclear causal pathways and disputed responsibilities. Network analysis is required to show which stakeholders are involved, their support for health issues and the degree of consensus. From this analysis three models of HIA emerge. The first is the phases model which is fitted to simple problems and a rational perspective of policymaking. This model involves following structured steps. The second model is the rounds (Echternach) model that is fitted to complex problems and a network perspective of policymaking. This model is dynamic and concentrates on network solutions taking these steps in no particular order. The final model is the 'garbage can' model fitted to contexts which combine simple and complex problems. In this model HIA functions as a problem solver and signpost keeping all possible solutions and stakeholders in play and allowing solutions to emerge over time. HIA models should be the beginning rather than the conclusion of discussion the worlds of HIA and policymaking.« less

  3. A Proposed Probabilistic Extension of the Halpern and Pearl Definition of ‘Actual Cause’

    PubMed Central

    2017-01-01

    ABSTRACT Joseph Halpern and Judea Pearl ([2005]) draw upon structural equation models to develop an attractive analysis of ‘actual cause’. Their analysis is designed for the case of deterministic causation. I show that their account can be naturally extended to provide an elegant treatment of probabilistic causation. 1Introduction2Preemption3Structural Equation Models4The Halpern and Pearl Definition of ‘Actual Cause’5Preemption Again6The Probabilistic Case7Probabilistic Causal Models8A Proposed Probabilistic Extension of Halpern and Pearl’s Definition9Twardy and Korb’s Account10Probabilistic Fizzling11Conclusion PMID:29593362

  4. CADDIS Authors & Contributors

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.

  5. CADDIS Site Map

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.

  6. CADDIS Frequent Questions

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.

  7. CADDIS Related Links

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.

  8. CADDIS Recent Additions

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.

  9. CADDIS Basic Information

    EPA Pesticide Factsheets

    The Causal Analysis/Diagnosis Decision Information System, or CADDIS, is a website developed to help scientists and engineers in the Regions, States, and Tribes conduct causal assessments in aquatic systems.

  10. Air Force Research Laboratory Warfighter Readiness Research Division Participation in the 2008 IITSEC

    DTIC Science & Technology

    2008-12-15

    of the underlying behaviors that led to each element being cited. The AFSC Human Factors Database listed all human factors cited in the Life...situations of increased pressure. Through an understanding of the causal factors of human behavior , and by analysis of one’s own behavioral patterns...JTAC training and overall lessons learned from modeling and simulation of the JTAC environment to include behavior scripting, artillery models

  11. The Ising model coupled to 2d orders

    NASA Astrophysics Data System (ADS)

    Glaser, Lisa

    2018-04-01

    In this article we make first steps in coupling matter to causal set theory in the path integral. We explore the case of the Ising model coupled to the 2d discrete Einstein Hilbert action, restricted to the 2d orders. We probe the phase diagram in terms of the Wick rotation parameter β and the Ising coupling j and find that the matter and the causal sets together give rise to an interesting phase structure. The couplings give rise to five different phases. The causal sets take on random or crystalline characteristics as described in Surya (2012 Class. Quantum Grav. 29 132001) and the Ising model can be correlated or uncorrelated on the random orders and correlated, uncorrelated or anti-correlated on the crystalline orders. We find that at least one new phase transition arises, in which the Ising spins push the causal set into the crystalline phase.

  12. Causality links among renewable energy consumption, CO2 emissions, and economic growth in Africa: evidence from a panel ARDL-PMG approach.

    PubMed

    Attiaoui, Imed; Toumi, Hassen; Ammouri, Bilel; Gargouri, Ilhem

    2017-05-01

    This research examines the causality (For the remainder of the paper, the notion of causality refers to Granger causality.) links among renewable energy consumption (REC), CO 2 emissions (CE), non-renewable energy consumption (NREC), and economic growth (GDP) using an autoregressive distributed lag model based on the pooled mean group estimation (ARDL-PMG) and applying Granger causality tests for a panel consisting of 22 African countries for the period between 1990 and 2011. There is unidirectional and irreversible short-run causality from CE to GDP. The causal direction between CE and REC is unobservable over the short-term. Moreover, we find unidirectional, short-run causality from REC to GDP. When testing per pair of variables, there are short-run bidirectional causalities among REC, CE, and GDP. However, if we add CE to the variables REC and NREC, the causality to GDP is observable, and causality from the pair REC and NREC to economic growth is neutral. Likewise, if we add NREC to the variables GDP and REC, there is causality. There are bidirectional long-run causalities among REC, CE, and GDP, which supports the feedback assumption. Causality from GDP to REC is not strong for the panel. If we test per pair of variables, the strong causality from GDP and CE to REC is neutral. The long-run PMG estimates show that NREC and gross domestic product increase CE, whereas REC decreases CE.

  13. Soil Moisture Controls on Rainfall and Temperature Variability: A Modeler Searches Through Observational Data

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    2010-01-01

    The degree to which atmospheric processes respond to variations in soil moisture - a potentially important but largely untapped element of subseasonal to seasonal prediction - can be determined easily and directly for an atmospheric model but cannot be determined directly for nature through an analysis of observations. In atmospheric models) directions of causality can be artificially manipulated; we can avoid difficulties associated with the fact that atmospheric variations have a much larger impact on land state variations than vice-versa. In nature) on the other hand) the dominant direction of causality (the atmosphere forcing the ground) cannot be artificially "turned off") and the statistics associated with this dominant direction overwhelm those of the feedback signal. Observational data) however) do allow a number of indirect measures of landatmosphere feedback. This seminar reports on a series of joint analyses of observational and model data designed to illuminate the degree of land-atmosphere feedback present in the real world. The indirect measures do in fact suggest that feedback in nature, though small) is significant - enough to warrant the development of realistic land initialization strategies for subseasonal and seasonal forecasts.

  14. Stratified exact tests for the weak causal null hypothesis in randomized trials with a binary outcome.

    PubMed

    Chiba, Yasutaka

    2017-09-01

    Fisher's exact test is commonly used to compare two groups when the outcome is binary in randomized trials. In the context of causal inference, this test explores the sharp causal null hypothesis (i.e. the causal effect of treatment is the same for all subjects), but not the weak causal null hypothesis (i.e. the causal risks are the same in the two groups). Therefore, in general, rejection of the null hypothesis by Fisher's exact test does not mean that the causal risk difference is not zero. Recently, Chiba (Journal of Biometrics and Biostatistics 2015; 6: 244) developed a new exact test for the weak causal null hypothesis when the outcome is binary in randomized trials; the new test is not based on any large sample theory and does not require any assumption. In this paper, we extend the new test; we create a version of the test applicable to a stratified analysis. The stratified exact test that we propose is general in nature and can be used in several approaches toward the estimation of treatment effects after adjusting for stratification factors. The stratified Fisher's exact test of Jung (Biometrical Journal 2014; 56: 129-140) tests the sharp causal null hypothesis. This test applies a crude estimator of the treatment effect and can be regarded as a special case of our proposed exact test. Our proposed stratified exact test can be straightforwardly extended to analysis of noninferiority trials and to construct the associated confidence interval. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Causal Responsibility and Counterfactuals

    PubMed Central

    Lagnado, David A; Gerstenberg, Tobias; Zultan, Ro'i

    2013-01-01

    How do people attribute responsibility in situations where the contributions of multiple agents combine to produce a joint outcome? The prevalence of over-determination in such cases makes this a difficult problem for counterfactual theories of causal responsibility. In this article, we explore a general framework for assigning responsibility in multiple agent contexts. We draw on the structural model account of actual causation (e.g., Halpern & Pearl, 2005) and its extension to responsibility judgments (Chockler & Halpern, 2004). We review the main theoretical and empirical issues that arise from this literature and propose a novel model of intuitive judgments of responsibility. This model is a function of both pivotality (whether an agent made a difference to the outcome) and criticality (how important the agent is perceived to be for the outcome, before any actions are taken). The model explains empirical results from previous studies and is supported by a new experiment that manipulates both pivotality and criticality. We also discuss possible extensions of this model to deal with a broader range of causal situations. Overall, our approach emphasizes the close interrelations between causality, counterfactuals, and responsibility attributions. PMID:23855451

  16. Aristotelian Causality and the Teaching of Literary Theory.

    ERIC Educational Resources Information Center

    Finnegan, John D.

    1982-01-01

    Describes how the Aristotelian model of causality can be used to help college students systematically analyze the components, point of view, organization, and purpose of a literary theory. The literary theories of Plato, Aristotle, Longinus, Sidney, Pope, Wordsworth, Coleridge, and Shelley are analyzed, using this model. (AM)

  17. Fostering Deeper Critical Inquiry with Causal Layered Analysis

    ERIC Educational Resources Information Center

    Haigh, Martin

    2016-01-01

    Causal layered analysis (CLA) is a technique that enables deeper critical inquiry through a structured exploration of four layers of causation. CLA's layers reach down from the surface litany of media understanding, through the layer of systemic causes identified by conventional research, to underpinning worldviews, ideologies and philosophies,…

  18. Socioeconomic inequality in health in the British household panel: Tests of the social causation, health selection and the indirect selection hypothesis using dynamic fixed effects panel models.

    PubMed

    Foverskov, Else; Holm, Anders

    2016-02-01

    Despite social inequality in health being well documented, it is still debated which causal mechanism best explains the negative association between socioeconomic position (SEP) and health. This paper is concerned with testing the explanatory power of three widely proposed causal explanations for social inequality in health in adulthood: the social causation hypothesis (SEP determines health), the health selection hypothesis (health determines SEP) and the indirect selection hypothesis (no causal relationship). We employ dynamic data of respondents aged 30 to 60 from the last nine waves of the British Household Panel Survey. Household income and location on the Cambridge Scale is included as measures of different dimensions of SEP and health is measured as a latent factor score. The causal hypotheses are tested using a time-based Granger approach by estimating dynamic fixed effects panel regression models following the method suggested by Anderson and Hsiao. We propose using this method to estimate the associations over time since it allows one to control for all unobserved time-invariant factors and hence lower the chances of biased estimates due to unobserved heterogeneity. The results showed no proof of the social causation hypothesis over a one to five year period and limited support for the health selection hypothesis was seen only for men in relation to HH income. These findings were robust in multiple sensitivity analysis. We conclude that the indirect selection hypothesis may be the most important in explaining social inequality in health in adulthood, indicating that the well-known cross-sectional correlations between health and SEP in adulthood seem not to be driven by a causal relationship, but instead by dynamics and influences in place before the respondents turn 30 years old that affect both their health and SEP onwards. The conclusion is limited in that we do not consider the effect of specific diseases and causal relationships in adulthood may be present over a longer timespan than 5 years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Estimating Causal Effects of Local Air Pollution on Daily Deaths: Effect of Low Levels.

    PubMed

    Schwartz, Joel; Bind, Marie-Abele; Koutrakis, Petros

    2017-01-01

    Although many time-series studies have established associations of daily pollution variations with daily deaths, there are fewer at low concentrations, or focused on locally generated pollution, which is becoming more important as regulations reduce regional transport. Causal modeling approaches are also lacking. We used causal modeling to estimate the impact of local air pollution on mortality at low concentrations. Using an instrumental variable approach, we developed an instrument for variations in local pollution concentrations that is unlikely to be correlated with other causes of death, and examined its association with daily deaths in the Boston, Massachusetts, area. We combined height of the planetary boundary layer and wind speed, which affect concentrations of local emissions, to develop the instrument for particulate matter ≤ 2.5 μm (PM2.5), black carbon (BC), or nitrogen dioxide (NO2) variations that were independent of year, month, and temperature. We also used Granger causality to assess whether omitted variable confounding existed. We estimated that an interquartile range increase in the instrument for local PM2.5 was associated with a 0.90% increase in daily deaths (95% CI: 0.25, 1.56). A similar result was found for BC, and a weaker association with NO2. The Granger test found no evidence of omitted variable confounding for the instrument. A separate test confirmed the instrument was not associated with mortality independent of pollution. Furthermore, the association remained when all days with PM2.5 concentrations > 30 μg/m3 were excluded from the analysis (0.84% increase in daily deaths; 95% CI: 0.19, 1.50). We conclude that there is a causal association of local air pollution with daily deaths at concentrations below U.S. EPA standards. The estimated attributable risk in Boston exceeded 1,800 deaths during the study period, indicating that important public health benefits can follow from further control efforts. Citation: Schwartz J, Bind MA, Koutrakis P. 2017. Estimating causal effects of local air pollution on daily deaths: effect of low levels. Environ Health Perspect 125:23-29; http://dx.doi.org/10.1289/EHP232.

  20. A dynamic analysis of S&P 500, FTSE 100 and EURO STOXX 50 indices under different exchange rates

    PubMed Central

    Chen, Yanhua; Mantegna, Rosario N.; Zuev, Konstantin M.

    2018-01-01

    In this study, we assess the dynamic evolution of short-term correlation, long-term cointegration and Error Correction Model (hereafter referred to as ECM)-based long-term Granger causality between each pair of US, UK, and Eurozone stock markets from 1980 to 2015 using the rolling-window technique. A comparative analysis of pairwise dynamic integration and causality of stock markets, measured in common and domestic currency terms, is conducted to evaluate comprehensively how exchange rate fluctuations affect the time-varying integration among the S&P 500, FTSE 100 and EURO STOXX 50 indices. The results obtained show that the dynamic correlation, cointegration and ECM-based long-run Granger causality vary significantly over the whole sample period. The degree of dynamic correlation and cointegration between pairs of stock markets rises in periods of high volatility and uncertainty, especially under the influence of economic, financial and political shocks. Meanwhile, we observe the weaker and decreasing correlation and cointegration among the three developed stock markets during the recovery periods. Interestingly, the most persistent and significant cointegration among the three developed stock markets exists during the 2007–09 global financial crisis. Finally, the exchange rate fluctuations, also influence the dynamic integration and causality between all pairs of stock indices, with that influence increasing under the local currency terms. Our results suggest that the potential for diversifying risk by investing in the US, UK and Eurozone stock markets is limited during the periods of economic, financial and political shocks. PMID:29529092

  1. Direction-Dependence Analysis: A Confirmatory Approach for Testing Directional Theories

    ERIC Educational Resources Information Center

    Wiedermann, Wolfgang; von Eye, Alexander

    2015-01-01

    The concept of direction dependence has attracted growing attention due to its potential to help decide which of two competing linear regression models (X ? Y or Y ? X) is more likely to reflect the correct causal flow. Several tests have been proposed to evaluate hypotheses compatible with direction dependence. In this issue, Thoemmes (2015)…

  2. Effect Size Measures for Mediation Models: Quantitative Strategies for Communicating Indirect Effects

    ERIC Educational Resources Information Center

    Preacher, Kristopher J.; Kelley, Ken

    2011-01-01

    The statistical analysis of mediation effects has become an indispensable tool for helping scientists investigate processes thought to be causal. Yet, in spite of many recent advances in the estimation and testing of mediation effects, little attention has been given to methods for communicating effect size and the practical importance of those…

  3. Assessing Command and Control System Vulnerabilities in Underdeveloped, Degraded and Denied Operational Environments

    DTIC Science & Technology

    2013-06-01

    simulation of complex systems (Sterman 2000, Meadows 2008): a) Causal Loop Diagrams. A Causal Loop Diagram ( CLD ) is used to represent the feedback...structure of the dynamic system. CLDs consist of variables in the system being connected by arrows to show their causal influences and relationships. It is...distribution of orders will be included in the model. 6.4.2 Causal Loop Diagrams The CLD , as seen in Figure 5, is derived from the WDA constructs for the

  4. Porque me tocó a mi? Mexican American diabetes patients' causal stories and their relationship to treatment behaviors.

    PubMed

    Hunt, L M; Valenzuela, M A; Pugh, J A

    1998-04-01

    This paper reports findings from an ethnographic study of self-care behaviors and illness concepts among Mexican-American non-insulin dependent diabetes mellitus (NIDDM) patients. Open-ended interviews were conducted with 49 NIDDM patients from two public hospital outpatient clinics in South Texas. They are self-identified Mexican-Americans who have had NIDDM for at least 1 yr, and have no major impairment due to NIDDM. Interviews focused on their concepts and experiences in managing their illness and their self-care behaviors. Clinical assessment of their glucose control was also extracted from their medical records. The texts of patient interviews were content analyzed through building and refining thematic matrixes focusing on their causal explanations and treatment behaviors. We found patients' causal explanations of their illness often are driven by an effort to connect the illness in a direct and specific way to their personal history and their past experience with treatments. While most cite biomedically accepted causes such as heredity and diet, they elaborate these concepts into personally relevant constructs by citing Provoking Factors, such as behaviors or events. Their causal models are thus both specific to their personal history and consistent with their experiences with treatment success or failure. Based on these findings, we raise a critique of the Locus of Control Model of treatment behavior prevalent in the diabetes education literature. Our analysis suggests that a sense that one's own behavior is important to the disease onset may reflect patients' evaluation of their experience with treatment outcomes, rather than determining their level of activity in treatment.

  5. Interdependence of stroke survivors' recovery and their relatives' attitudes and health: a contribution to investigating the causal effects.

    PubMed

    Barskova, Tatjana; Wilz, Gabriele

    2007-10-15

    One goal of the study was to test specific hypotheses concerning the interdependence of the stroke survivors' recovery and their caregiving partners' attitudes and health. The other aim was to find an applicable method for investigating causal effects on the rehabilitation of chronically sick persons in longitudinal studies with medium-sized samples. The recovery of 81 stroke survivors regarding the physical and mental functioning in everyday life and their caregiving partners' health and attitudes were assessed twice, once after the patients left the hospital and again one year later. We applied the structure equation modeling and the cross-lagged partial correlation analysis (CLPC) for testing causal effects. Particularly stroke victims' cognitive and emotional recovery seems to be influenced by psychosocial factors such as the caregiving partners' acceptance of a post-stroke life-situation. In contrast to this, the research suggests that the patients' recovery regarding physical functioning is not substantially affected by the partners, rather the patients' difficulties with motor functioning influence their partners' health. Caregivers merit attention as part of rehabilitation interventions. We recommend the CLPC for investigating causal effects in the complex interdependence of chronically sick persons' convalescence and their family members' health and state of mind in medium-sized samples.

  6. Assessing natural direct and indirect effects through multiple pathways.

    PubMed

    Lange, Theis; Rasmussen, Mette; Thygesen, Lau Caspar

    2014-02-15

    Within the fields of epidemiology, interventions research and social sciences researchers are often faced with the challenge of decomposing the effect of an exposure into different causal pathways working through defined mediator variables. The goal of such analyses is often to understand the mechanisms of the system or to suggest possible interventions. The case of a single mediator, thus implying only 2 causal pathways (direct and indirect) from exposure to outcome, has been extensively studied. By using the framework of counterfactual variables, researchers have established theoretical properties and developed powerful tools. However, in practical problems, it is not uncommon to have several distinct causal pathways from exposure to outcome operating through different mediators. In this article, we suggest a widely applicable approach to quantifying and ranking different causal pathways. The approach is an extension of the natural effect models proposed by Lange et al. (Am J Epidemiol. 2012;176(3):190-195). By allowing the analysis of distinct multiple pathways, the suggested approach adds to the capabilities of modern mediation techniques. Furthermore, the approach can be implemented using standard software, and we have included with this article implementation examples using R (R Foundation for Statistical Computing, Vienna, Austria) and Stata software (StataCorp LP, College Station, Texas).

  7. Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates

    PubMed Central

    Bollen, Kenneth A.; Bauldry, Shawn

    2013-01-01

    In the last two decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that we can classify indicators into two categories, effect (reflective) indicators and causal (formative) indicators. This paper argues that the dichotomous view is too simple. Instead, there are effect indicators and three types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the “three Cs”). Causal indicators have conceptual unity and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variable(s). Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects and composites are a matter of convenience. The failure to distinguish the “three Cs” has led to confusion and questions such as: are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points. PMID:21767021

  8. Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.; Bauldry, Shawn

    2011-01-01

    In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of…

  9. Teaching towards Historical Expertise. Developing a Pedagogy for Fostering Causal Reasoning in History

    ERIC Educational Resources Information Center

    Stoel, G. L.; van Drie, J. P.; van Boxtel, C. A. M.

    2015-01-01

    The present study seeks to develop a pedagogy aimed at fostering a student's ability to reason causally about history. The Model of Domain Learning was used as a framework to align domain-specific content with pedagogical principles. Developing causal historical reasoning was conceptualized as a multidimensional process, in which knowledge of…

  10. Counterfactuals and Causal Models: Introduction to the Special Issue

    ERIC Educational Resources Information Center

    Sloman, Steven A.

    2013-01-01

    Judea Pearl won the 2010 Rumelhart Prize in computational cognitive science due to his seminal contributions to the development of Bayes nets and causal Bayes nets, frameworks that are central to multiple domains of the computational study of mind. At the heart of the causal Bayes nets formalism is the notion of a counterfactual, a representation…

  11. Elaborations for the Validation of Causal Bridging Inferences in Text Comprehension

    ERIC Educational Resources Information Center

    Morishima, Yasunori

    2016-01-01

    The validation model of causal bridging inferences proposed by Singer and colleagues (e.g., Singer in "Can J Exp Psychol," 47(2):340-359, 1993) claims that before a causal bridging inference is accepted, it must be validated by existing knowledge. For example, to understand "Dorothy took the aspirins. Her pain went away," one…

  12. Effects of risk factors for and components of metabolic syndrome on the quality of life of patients with systemic lupus erythematosus: a structural equation modeling approach.

    PubMed

    Lee, Jeong-Won; Kang, Ji-Hyoun; Lee, Kyung-Eun; Park, Dong-Jin; Kang, Seong Wook; Kwok, Seung-Ki; Kim, Seong-Kyu; Choe, Jung-Yoon; Kim, Hyoun-Ah; Sung, Yoon-Kyoung; Shin, Kichul; Lee, Sang-Il; Lee, Chang Hoon; Choi, Sung Jae; Lee, Shin-Seok

    2018-01-01

    This study assessed the relationships among the risk factors for and components of metabolic syndrome (MetS) and health-related quality of life (HRQOL) in a hypothesized causal model using structural equation modeling (SEM) in patients with systemic lupus erythematosus (SLE). Of the 505 SLE patients enrolled in the Korean Lupus Network (KORNET registry), 244 had sufficient data to assess the components of MetS at enrollment. Education level, monthly income, corticosteroid dose, Systemic Lupus Erythematosus Disease Activity Index, Physicians' Global Assessment, Beck Depression Inventory, MetS components, and the Short Form-36 at the time of cohort entry were determined. SEM was used to test the causal relationship based on the Analysis of Moment Structure. The average age of the 244 patients was 40.7 ± 11.8 years. The SEM results supported the good fit of the model (χ 2  = 71.629, p = 0.078, RMSEA 0.034, CFI 0.972). The final model showed a direct negative effect of higher socioeconomic status and a positive indirect effect of higher disease activity on MetS, the latter through corticosteroid dose. MetS did not directly impact HRQOL but had an indirect negative impact on it, through depression. In our causal model, MetS risk factors were related to MetS components. The latter had a negative indirect impact on HRQOL, through depression. Clinicians should consider socioeconomic status and medication and seek to modify disease activity, MetS, and depression to improve the HRQOL of SLE patients.

  13. Establishing causal coherence across sentences: an ERP study

    PubMed Central

    Kuperberg, Gina R.; Paczynski, Martin; Ditman, Tali

    2011-01-01

    This study examined neural activity associated with establishing causal relationships across sentences during online comprehension. ERPs were measured while participants read and judged the relatedness of three-sentence scenarios in which the final sentence was highly causally related, intermediately related and causally unrelated to its context. Lexico-semantic co-occurrence was matched across the three conditions using a Latent Semantic Analysis. Critical words in causally unrelated scenarios evoked a larger N400 than words in both highly causally related and intermediately related scenarios, regardless of whether they appeared before or at the sentence-final position. At midline sites, the N400 to intermediately related sentence-final words was attenuated to the same degree as to highly causally related words, but otherwise the N400 to intermediately related words fell in between that evoked by highly causally related and intermediately related words. No modulation of the Late Positivity/P600 component was observed across conditions. These results indicate that both simple and complex causal inferences can influence the earliest stages of semantically processing an incoming word. Further, they suggest that causal coherence, at the situation level, can influence incremental word-by-word discourse comprehension, even when semantic relationships between individual words are matched. PMID:20175676

  14. Explaining quantum correlations through evolution of causal models

    NASA Astrophysics Data System (ADS)

    Harper, Robin; Chapman, Robert J.; Ferrie, Christopher; Granade, Christopher; Kueng, Richard; Naoumenko, Daniel; Flammia, Steven T.; Peruzzo, Alberto

    2017-04-01

    We propose a framework for the systematic and quantitative generalization of Bell's theorem using causal networks. We first consider the multiobjective optimization problem of matching observed data while minimizing the causal effect of nonlocal variables and prove an inequality for the optimal region that both strengthens and generalizes Bell's theorem. To solve the optimization problem (rather than simply bound it), we develop a genetic algorithm treating as individuals causal networks. By applying our algorithm to a photonic Bell experiment, we demonstrate the trade-off between the quantitative relaxation of one or more local causality assumptions and the ability of data to match quantum correlations.

  15. Causal Measurement Models: Can Criticism Stimulate Clarification?

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2016-01-01

    In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…

  16. Explanatory Models of Illness: A Study of Within-Culture Variation

    ERIC Educational Resources Information Center

    Lynch, Elizabeth; Medin, Douglas

    2006-01-01

    The current studies explore causal models of heart attack and depression generated from American healers whom use distinct explanatory frameworks. Causal chains leading to two illnesses, heart attack and depression, were elicited from participant groups: registered nurses (RNs), energy healers, RN energy healers, and undergraduates. The…

  17. Resources, Instruction, and Research

    ERIC Educational Resources Information Center

    Cohen, David K.; Raudenbush, Stephen W.; Ball, Deborah Loewenberg

    2003-01-01

    Many researchers who study the relations between school resources and student achievement have worked from a causal model, which typically is implicit. In this model, some resource or set of resources is the causal variable and student achievement is the outcome. In a few recent, more nuanced versions, resource effects depend on intervening…

  18. Distinguishing Valid from Invalid Causal Indicator Models

    ERIC Educational Resources Information Center

    Cadogan, John W.; Lee, Nick

    2016-01-01

    In this commentary from Issue 14, n3, authors John Cadogan and Nick Lee applaud the paper by Aguirre-Urreta, Rönkkö, and Marakas "Measurement: Interdisciplinary Research and Perspectives", 14(3), 75-97 (2016), since their explanations and simulations work toward demystifying causal indicator models, which are often used by scholars…

  19. Causal inference in biology networks with integrated belief propagation.

    PubMed

    Chang, Rui; Karr, Jonathan R; Schadt, Eric E

    2015-01-01

    Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses of perturbation events on molecular traits given a hypothesized graph structure. A distance measure between the inferred response distribution and the observed data is defined to assess the 'fitness' of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within equivalence classes of gene networks in which the form of the functional interactions that are possible are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply our method to infer causality in real metabolic network with v-structure and feedback loop. We show that our method can recapitulate the causal structure and recover the feedback loop only from steady-state data which conventional method cannot.

  20. Dangers and uses of cross-correlation in analyzing time series in perception, performance, movement, and neuroscience: The importance of constructing transfer function autoregressive models.

    PubMed

    Dean, Roger T; Dunsmuir, William T M

    2016-06-01

    Many articles on perception, performance, psychophysiology, and neuroscience seek to relate pairs of time series through assessments of their cross-correlations. Most such series are individually autocorrelated: they do not comprise independent values. Given this situation, an unfounded reliance is often placed on cross-correlation as an indicator of relationships (e.g., referent vs. response, leading vs. following). Such cross-correlations can indicate spurious relationships, because of autocorrelation. Given these dangers, we here simulated how and why such spurious conclusions can arise, to provide an approach to resolving them. We show that when multiple pairs of series are aggregated in several different ways for a cross-correlation analysis, problems remain. Finally, even a genuine cross-correlation function does not answer key motivating questions, such as whether there are likely causal relationships between the series. Thus, we illustrate how to obtain a transfer function describing such relationships, informed by any genuine cross-correlations. We illustrate the confounds and the meaningful transfer functions by two concrete examples, one each in perception and performance, together with key elements of the R software code needed. The approach involves autocorrelation functions, the establishment of stationarity, prewhitening, the determination of cross-correlation functions, the assessment of Granger causality, and autoregressive model development. Autocorrelation also limits the interpretability of other measures of possible relationships between pairs of time series, such as mutual information. We emphasize that further complexity may be required as the appropriate analysis is pursued fully, and that causal intervention experiments will likely also be needed.

Top