Sample records for caused dose-dependent increases

  1. Hepatic glutathione metabolism and lipid peroxidation in response to excess dietary selenomethionine and selenite in mallard ducklings

    USGS Publications Warehouse

    Hoffman, D.J.; Heinz, G.H.; Krynitsky, A.J.

    1989-01-01

    Selenium from selenomethionine accumulated in a dose-dependent manner in the liver, resulting in a decrease in hepatic-reduced glutathione with a corresponding decrease in total hepatic thiols. There was a dose-dependent increase in the oxidized to reduced glutathione ratio, and an increase in lipid peroxidation. These findings indicate that Se in the diet at 10 ppm and higher causes significant sublethal alterations in mallard ducklings, and 20-40 ppm causes significant hepatotoxicity.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, J.E.; Klaine, S.J.

    The field cricket, Acheta domesticus, was used as a test organism to determine the effects of heavy metal exposure on cellular immunity. Insects were separated by sex and exposed to cadmium chloride or mercuric chloride at concentrations of 0, 2.5, and 5.0 ug/g. Exposures consisted of injecting the chemicals into the hemocoel of each insect on days 0, 2, and 4. Hemolymph was collected on day 7 of the study to determine total hemocyte counts, protein levels, and phenoloxidase activity in individual insects. Cadmium chloride decreased the total number of hemocytes in male crickets at 2.5 and 5.0 ug/g andmore » in female crickets at 5.0 ug/g. Protein levels increased in a dose dependent manner in the males but only slightly increased in the females. Mercuric chloride caused a dose-dependent increase in total hemocytes in both male and female crickets. In addition, mercuric chloride caused a dose-dependent increase in protein levels in males but not females.« less

  3. Low doses of glyphosate enhance growth, CO2 assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus.

    PubMed

    Nascentes, Renan F; Carbonari, Caio A; Simões, Plinio S; Brunelli, Marcela C; Velini, Edivaldo D; Duke, Stephen O

    2018-05-01

    Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage and environmental parameters. Glyphosate hormesis is well established, but relatively little is known of the mechanism of this phenomenon. The objective of this study was to determine if low doses of glyphosate that cause growth stimulation in sugarcane and eucalyptus concomitantly stimulate CO 2 assimilation. Shoot dry weight in both species increased at both 40 and 60 days after application of 6.2 to 20.2 g a.e. ha -1 glyphosate. The level of enhanced shoot dry weight was 11 to 37%, depending on the time after treatment and the species. Concomitantly, CO 2 assimilation, stomatal conductance and transpiration were increased by glyphosate doses similar to those that caused growth increases. Glyphosate applied at low doses increased the dry weight of sugarcane and eucalyptus plants in all experiments. This hormetic effect was related to low dose effects on CO 2 assimilation rate, stomatal conductance and transpiration rate, indicating that low glyphosate doses enhance photosynthesis of plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Atrazine Does Not Induce Pica Behavior at Doses that Increase Hypothalamic-Pituitary-Adrenal Axis Activation and Cause Conditioned Taste Avoidance.

    EPA Science Inventory

    Previous work has shown that a single oral administration of atrazine (ATR), a chlorotriazine herbicide, induces dose-dependent increases in plasma adrenocorticotropic hormone (ACTH), serum corticosterone (CORT) and progesterone. The mechanism for these effects is unknown. To tes...

  5. ATRAZINE DOES NOT INDUCE GASTROINTESTINAL DISCOMFORT (PICA) IN RATS AT DOSES THAT INCREASE HPA-AXIS ACTIVATION AND CAUSE CONDITIONED TASTE AVERSION.

    EPA Science Inventory

    Previous work has shown that a single oral administration of atrazine (ATR), a chlorotriazine herbicide, induces dose-dependent increases in plasma adrenocorticotropic hormone (ACTH) and serum corticosterone (CORT), with a NOEL equal to 5mg/kg. The mechanism for these effects ...

  6. Dependence of pentobarbital kinetics upon the dose of the drug and its pharmacodynamic effects.

    PubMed

    Kozlowski, K H; Szaykowski, A; Danysz, A

    1977-01-01

    Pentobarbital (PB), at dose range of 20--50 mg/kg, displays in rabbits non-linear, dose-dependent kinetics. Pharmacokinetics parameters of drug elimination depend largely upon the dose, while the distribution phase is dose-independent. The rate of disappearance of PB from the central compartment (plasma) decreases with the increase of the dose. The analysis of pharmacodynamic parameters has shown that this dose-dependent retardation of PB elimination is probably caused by an impairment of metabolic processes, resulting from disturbance of the circulatory system. A close correlation has been found between the hypotensive effect of PB and the elimination constant, k13, and also between the hypotensive effect and beta.Vd(extrap), a coefficient proportional to the rate of metabolism of PB [23, 29]. The results indicate the necessity of considering the changes in the functional state of the organism, related to the action of a drug, in pharmacokinetic studies.

  7. ATRAZINE DOES NOT INDUCE GASTROINTESTINAL DISCOMFORT (PICA) IN RATS AT DOSES THAT INCREASE ACTH ANDCORTICOSTERONE RELEASE AND CAUSE CONDITIONED TASTE AVERSION.

    EPA Science Inventory

    Previous work has shown that a single oral administration of atrazine (ATR), a chlorotriazine herbicide, induces dose-dependent increases in plasma adrenocorticotropic hormone (ACTH) and serum corticosterone (CORT), with a LOEL of 12.5mg/kg. The mechanism for these effects is unk...

  8. Fasiglifam (TAK-875) Alters Bile Acid Homeostasis in Rats and Dogs: A Potential Cause of Drug Induced Liver Injury

    PubMed Central

    Zhu, Andy Z. X.; Johnson, Mike; Yu, Shaoxia; Moriya, Yuu; Ebihara, Takuya; Csizmadia, Vilmos; Grieves, Jessica; Paton, Martin; Liao, Mingxiang; Gemski, Christopher; Pan, Liping; Vakilynejad, Majid; Dragan, Yvonne P.; Chowdhury, Swapan K.; Kirby, Patrick J.

    2017-01-01

    Abstract Fasiglifam (TAK-875), a Free Fatty Acid Receptor 1 (FFAR1) agonist in development for the treatment of type 2 diabetes, was voluntarily terminated in phase 3 due to adverse liver effects. A mechanistic investigation described in this manuscript focused on the inhibition of bile acid (BA) transporters as a driver of the liver findings. TAK-875 was an in vitro inhibitor of multiple influx (NTCP and OATPs) and efflux (BSEP and MRPs) hepatobiliary BA transporters at micromolar concentrations. Repeat dose studies determined that TAK-875 caused a dose-dependent increase in serum total BA in rats and dogs. Additionally, there were dose-dependent increases in both unconjugated and conjugated individual BAs in both species. Rats had an increase in serum markers of liver injury without correlative microscopic signs of tissue damage. Two of 6 dogs that received the highest dose of TAK-875 developed liver injury with clinical pathology changes, and by microscopic analysis had portal granulomatous inflammation with neutrophils around a crystalline deposition. The BA composition of dog bile also significantly changed in a dose-dependent manner following TAK-875 administration. At the highest dose, levels of taurocholic acid were 50% greater than in controls with a corresponding 50% decrease in taurochenodeoxycholic acid. Transporter inhibition by TAK-875 may cause liver injury in dogs through altered bile BA composition characteristics, as evidenced by crystalline deposition, likely composed of test article, in the bile duct. In conclusion, a combination of in vitro and in vivo evidence suggests that BA transporter inhibition could contribute to TAK-875-mediated liver injury in dogs. PMID:28108665

  9. [Cytogenetic effects of low dose radiation with different LET in human peripheral blood lymphocytes and possible mechanisms of their realization].

    PubMed

    Nasonova, E A; Shmakova, N L; Komova, O V; Mel'nikova, L A; Fadeeva, T A; Krasavin, E A

    2006-01-01

    The induction of chromosome damage by the exposure to low doses of gamma-(60)Co and accelerated carbon ions 12C in peripheral blood lymphocytes of different donors was investigated. The complex nonlinear dose-effect dependence at the range from 1 to 50-70 cGy was observed. At the doses of 1-5 cGy the cells show the highest radiosensitivity (hypersensitivity), mainly due to the chromatid-type aberration, which is typical to those spontaneously generated in the cell and believed not to be induced by the irradiation of unstimulated lymphocytes according to the classical theory of aberration formation. With the increasing dose the frequency of the aberrations decreases significantly, in some cases up to the control level. At the doses over 50-70 cGy the dose-effect curve becomes linear. The possible role of the oxidative stress, caused by radiation-induced increase in mitochondrial reactive oxigen species (ROS) release in the phenomenon of hypersensitivity (HS) at low doses is discussed as well as cytoprotective mechanisms causing the increased radioresistance at higher doses.

  10. [Pharmacological study of nicergoline. (III). Effects on cerebral and peripheral circulation in animals].

    PubMed

    Shintomi, K; Ogawa, Y; Yoshimoto, K; Narita, H

    1986-05-01

    Effects of nicergoline on the cerebral and peripheral circulation were compared with those of dihydroergotoxine (DHE) and papaverine (PAP) in anesthetized and/or immobilized cats. The i.a. injection of nicergoline (0.032 approximately 32 micrograms/kg), similarly to PAP, caused dose-dependent increases in intramaxillary artery (as the human intracarotid artery) blood flow (IMBF) and femoral artery blood flow, but the injection of DHE had no effect on these blood flows. The i.v. injection of nicergoline (32 approximately 128 micrograms/kg) caused a dose-dependent fall in blood pressure (BP) and a transient slight decrease in cerebral vascular resistance, but did not affect IMBF, regional cerebral blood flow (r-CBF), intracranial pressure (ICP) and heart rate (HR). The i.v. injection of DHE produced a slight fall in BP and a marked long-lasting decrease in HR, without affecting other parameters. The i.v. injection of PAP (4 mg/kg) induced marked increases in IMBF, r-CBF, ICP and HR and caused a transient fall followed by a marked elevation in BP. The p.o. administration of nicergoline (0.06 approximately 4 mg/kg) caused a dose-dependent fall in BP and selective inhibition of pressure response to adrenaline (ID50: 0.25 mg/kg). The administration of DHE produced marked inhibition of pressure responses to both adrenaline and noradrenaline, accompanied with a slight fall in BP. Furthermore, the administration of nicergoline (3 approximately 100 mg/kg) induced a dose-dependent fall in BP in SHR. These results suggest that the cerebral and peripheral circulatory effects of nicergoline may be due to direct vasodilating action and alpha-blocking action in the animals.

  11. Sex hormone-binding globulin and antithrombin III activity in women with oral ultra-low-dose estradiol.

    PubMed

    Matsui, Sumika; Yasui, Toshiyuki; Kasai, Kana; Keyama, Kaoru; Yoshida, Kanako; Kato, Takeshi; Uemura, Hirokazu; Kuwahara, Akira; Matsuzaki, Toshiya; Irahara, Minoru

    2017-07-01

    Oral oestrogen increases the risk of venous thromboembolism (VTE) and increases production of sex hormone-binding globulin (SHBG) in a dose-dependent manner. SHBG has been suggested to be involved in venous thromboembolism. We examined the effects of oral ultra-low-dose oestradiol on circulating levels of SHBG and coagulation parameters, and we compared the effects to those of transdermal oestradiol. Twenty women received oral oestradiol (500 μg) every day (oral ultra-low-dose group) and 20 women received a transdermal patch (50 μg) as a transdermal group. In addition, the women received dydrogesterone continuously (5 mg) except for women who underwent hysterectomy. Circulating SHBG, antithrombin III (ATIII) activity, d-dimer, thrombin-antithrombin complex and plasmin-α2 plasmin inhibitor complex were measured before and 3 months after the start of treatment. SHBG was significantly increased at 3 months in the oral ultra-low-dose group, but not in the transdermal group. However, percent changes in SHBG were not significantly different between the two groups. In both groups, ATIII was significantly decreased at 3 months. In conclusion, even ultra-low-dose oestradiol orally increases circulating SHBG level. However, the magnitude of change in SHBG caused by oral ultra-low-dose oestradiol is small and is comparable to that caused by transdermal oestradiol. Impact statement Oral oestrogen replacement therapy increases production of SHBG which may be related to increase in VTE risk. However, the effect of oral ultra-low-dose oestradiol on SHBG has not been clarified. Even ultra-low-dose oestradiol orally increases circulating SHBG levels, but the magnitude of change in SHBG caused by oral ultra-low-dose oestradiol is small and is comparable to that caused by transdermal oestradiol. VTE risk in women receiving oral ultra-low-dose oestradiol may be comparable to that in women receiving transdermal oestradiol.

  12. Acute haemodynamic effects of felodipine and verapamil in man, singly and with metoprolol.

    PubMed

    Rönn, O; Bengtsson, B; Edgar, B; Raner, S

    1985-01-01

    In a single-blind randomised study in 9 healthy men we compared the acute haemodynamic effects of the calcium antagonists felodipine and verapamil, singly and in combination with metoprolol. Three different cumulative intravenous doses of 0.25, 0.75 and 1.5 mg felodipine and of 2.0, 4.0 and 8.0 mg verapamil or placebo were given as constant infusions over 5 minutes on 3 occasions and were followed by intravenous metoprolol (15 mg). Felodipine caused a significant and dose-dependent decrease in the total peripheral resistance, and an increase in the forearm blood flow by 8, 48 and 163% with progressively increasing doses showing that the drug is a potent arteriolar vasodilator. A significant and dose-dependent increase in heart rate and a decrease in the pre-ejection period/left ventricular ejection time (PEP/LVET) ratio of up to 15% was also recorded, mainly reflecting a reflexogenic increase in the sympathetic tone. Total peripheral resistance, forearm blood flow, heart rate and the systolic time intervals were mainly unchanged after verapamil, whereas the PQ interval was prolonged. Metoprolol given after the 2 calcium antagonists caused a decrease in heart rate and blood flow and an increase in the total peripheral resistance and PEP/LVET ratio. The tolerability was good to all infusions.

  13. Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single ventricle physiology

    PubMed Central

    Buckley, Erin M.; Naim, Maryam Y.; Lynch, Jennifer M.; Goff, Donna A.; Schwab, Peter J.; Diaz, Laura K.; Nicolson, Susan C.; Montenegro, Lisa M.; Lavin, Natasha A.; Durduran, Turgut; Spray, Thomas L.; Gaynor, J. William; Putt, Mary E.; Yodh, A.G.; Fogel, Mark A.; Licht, Daniel J.

    2013-01-01

    Background Sodium bicarbonate (NaHCO3) is a common treatment for metabolic acidemia, however little definitive information exists regarding its treatment efficacy and cerebral hemodynamic effects. This pilot observational study quantifies relative changes in cerebral blood flow (rCBF) and oxy and deoxy-hemoglobin concentrations (ΔHbO2 and ΔHb) due to bolus administration of NaHCO3 in patients with mild base deficits. Methods Infants and children with hypoplastic left heart syndrome (HLHS) were recruited prior to cardiac surgery. NaHCO3 was given as needed for treatment of base deficit. Diffuse optical spectroscopies were employed for 15 minutes post-injection to non-invasively monitor ΔHb, ΔHbO2 and rCBF relative to baseline prior to NaHCO3 administration. Results Twenty-two anesthetized and mechanically ventilated HLHS patients (1 day to 4 years old) received a median (interquartile range) dose of 1.1 (0.8, 1.8) mEq/kg NaHCO3 administered intravenously over 10–20 seconds to treat a base deficit of −4 (−6, −3) mEq/l. NaHCO3 caused significant dose-dependent increases in rCBF, however population averaged ΔHb or Δ4HbO2 compared to controls were not significant. Conclusions Dose-dependent increases in cerebral blood flow (CBF) caused by bolus NaHCO3 are an important consideration in vulnerable populations wherein risk of rapid CBF fluctuations does not outweigh the benefit of treating a base deficit. PMID:23403802

  14. Density Dependence and Growth Rate: Evolutionary Effects on Resistance Development to Bt (Bacillus thuringiensis).

    PubMed

    Martinez, Jeannette C; Caprio, Michael A; Friedenberg, Nicholas A

    2018-02-09

    It has long been recognized that pest population dynamics can affect the durability of a pesticide, but dose remains the primary component of insect resistance management (IRM). For transgenic pesticidal traits such as Bt (Bacillus thuringiensis Berliner (Bacillales: Bacillaceae)), dose (measured as the mortality of susceptibles caused by a toxin) is a relatively fixed characteristic and often falls below the standard definition of high dose. Hence, it is important to understand how pest population dynamics modify durability and what targets they present for IRM. We used a deterministic model of a generic arthropod pest to examine how timing and strength of density dependence interacted with population growth rate and Bt mortality to affect time to resistance. As in previous studies, durability typically reached a minimum at intermediate doses. However, high population growth rates could eliminate benefits of high dose. The timing of density dependence had a more subtle effect. If density dependence operated simultaneously with Bt mortality, durability was insensitive to its strengths. However, if density dependence was driven by postselection densities, decreasing its strength could increase durability. The strength of density dependence could affect durability of both single traits and pyramids, but its influence depended on the timing of density dependence and size of the refuge. Our findings suggest the utility of a broader definition of high dose, one that incorporates population-dynamic context. That maximum growth rates and timing and strength of interactions causing density dependent mortality can all affect durability, also highlights the need for ecologically integrated approaches to IRM research. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. The thermoregulatory mechanism of melatonin-induced hypothermia in chicken.

    PubMed

    Rozenboim, I; Miara, L; Wolfenson, D

    1998-01-01

    The involvement of melatonin (Mel) in body temperature (Tb) regulation was studied in White Leghorn layers. In experiment 1, 35 hens were injected intraperitoneally with seven doses of Mel (0, 5, 10, 20, 40, 80, or 160 mg Mel/kg body wt) dissolved in ethanol. Within 1 h, Mel had caused a dose-dependent reduction in Tb. To eliminate a possible vehicle effect, 0, 80, and 160 mg/kg body wt Mel dissolved in N-methyl-2-pyrrolidone (NMP) was injected. NMP had no effect on Tb, with Mel again causing a dose-dependent hypothermia. In experiment 2 (n = 30), Mel injected before exposure of layers to heat reduced Tb and prevented heat-induced hyperthermia. Injection after heat stress had begun did not prevent hyperthermia. Under cold stress, Mel induced hypothermia, which was not observed in controls. In experiment 3 (n = 12), Mel injection reduced Tb and increased metatarsal and comb temperatures (but not feathered-skin temperature), respiratory rate, and evaporative water loss. Heart rate rose and then declined, and blood pressure increased 1 h after Mel injection. Heat production rose slightly during the first hour, then decreased in parallel to the Tb decline. We conclude that pharmacological doses of Mel induce hypothermia in hens by increasing nonevaporative skin heat losses and slightly increasing respiratory evaporation.

  16. Observations on personnel dosimetry for radiotherapy personnel operating high-energy LINACs.

    PubMed

    Glasgow, G P; Eichling, J; Yoder, R C

    1986-06-01

    A series of measurements were conducted to determine the cause of a sudden increase in personnel radiation exposures. One objective of the measurements was to determine if the increases were related to changing from film dosimeters exchanged monthly to TLD-100 dosimeters exchanged quarterly. While small increases were observed in the dose equivalents of most employees, the dose equivalents of personnel operating medical electron linear accelerators with energies greater than 20 MV doubled coincidentally with the change in the personnel dosimeter program. The measurements indicated a small thermal neutron radiation component around the accelerators operated by these personnel. This component caused the doses measured with the TLD-100 dosimeters to be overstated. Therefore, the increase in these personnel dose equivalents was not due to changes in work habits or radiation environments. Either film or TLD-700 dosimeters would be suitable for personnel monitoring around high-energy linear accelerators. The final choice would depend on economics and personal preference.

  17. Dose- and time-dependent increase of lysosomal enzymes in embryonic cartilage in vitro after ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornelissen, M.; de Ridder, L.

    Radiation doses of 20, 50 or 100 Gy caused the same time related decrease for RNA and proteoglycan (PG) synthesis in embryonic cartilage in vitro (4 days culture). In this paper, participation of lysosomes in this radiation response is investigated. Therefore, we employ a cytochemical method using beta-glycerophosphate as substrate for acid phosphatase (AP) detection. Increase of AP was found 2 days after irradiation and increased during the whole culture period. The increase was more pronounced with a higher radiation dose. Stimulation of AP activity explains the observed radiation response of RNA and PG synthesis.

  18. Fourth-ventricle leptin infusions dose-dependently activate hypothalamic signal transducer and activator of transcription 3.

    PubMed

    Harris, Ruth B S; Desai, Bhavna N

    2016-12-01

    Previous studies have shown that very low-dose infusions of leptin into the third or the fourth ventricle alone have little effect on energy balance, but simultaneous low-dose infusions cause rapid weight loss and increased phosphorylation of STAT3 (p-STAT3) in hypothalamic sites that express leptin receptors. Other studies show that injecting high doses of leptin into the fourth ventricle inhibits food intake and weight gain. Therefore, we tested whether fourth-ventricle leptin infusions that cause weight loss are associated with increased leptin signaling in the hypothalamus. In a dose response study 14-day infusions of increasing doses of leptin showed significant hypophagia, weight loss, and increased hypothalamic p-STAT3 in rats receiving at least 0.9 μg leptin/day. In a second study 0.6 μg leptin/day transiently inhibited food intake and reduced carcass fat, but had no significant effect on energy expenditure. In a final study, we identified the localization of STAT3 activation in the hypothalamus of rats receiving 0, 0.3, or 1.2 μg leptin/day. The high dose of leptin, which caused weight loss in the first experiment, increased p-STAT3 in the ventromedial, dorsomedial, and arcuate nuclei of the hypothalamus. The low dose that increased brown fat UCP1 but did not affect body composition in the first experiment had little effect on hypothalamic p-STAT3. We propose that hindbrain leptin increases the precision of control of energy balance by lowering the threshold for leptin signaling in the forebrain. Further studies are needed to directly test this hypothesis. Copyright © 2016 the American Physiological Society.

  19. Increased Requirement of Replacement Doses of Levothyroxine Caused by Liver Cirrhosis.

    PubMed

    Benvenga, Salvatore; Capodicasa, Giovanni; Perelli, Sarah; Ferrari, Silvia Martina; Fallahi, Poupak; Antonelli, Alessandro

    2018-01-01

    Since hypothyroidism is a fairly common dysfunction, levothyroxine (L-T4) is one of the most prescribed medications. Approximately 70% of the administered L-T4 dose is absorbed. The absorption process takes place in the small intestine. Some disorders of the digestive system and some medicines, supplements, and drinks cause L-T4 malabsorption, resulting in failure of serum TSH to be normal. Only rarely liver cirrhosis is mentioned as causing L-T4 malabsorption. In this study, we report increased requirement of daily doses of l-thyroxine in two patients with the atrophic variant of Hashimoto's thyroiditis and liver cirrhosis. In one patient, this increased requirement could have been contributed by the increased serum levels of the estrogen-dependent thyroxine-binding globulin (TBG), which is the major plasma carrier of thyroid hormones. In the other patient, we switched from tablet L-T4 to liquid L-T4 at the same daily dose. Normalization of TSH levels was achieved, but TSH increased again when she returned to tablet L-T4. Liver cirrhosis can cause increased L-T4 requirements. In addition to impaired bile secretion, the mechanism could be increased serum TBG. A similar increased requirement of L-T4 is observed in other situations characterized by elevation of serum TBG. Because of better intestinal absorption, L-T4 oral liquid formulation is able to circumvent the increased need of L-T4 in these patients.

  20. [Pharmacological analysis of anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation].

    PubMed

    Gapeev, A B; Lushnikov, K V; Shumilina, Iu V; Chemeris, N K

    2006-01-01

    The anti-inflammatory effect of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR, 42.0 GHz, 0.1 mW/cm2) was compared with the action of the known anti-inflammatory drug sodium diclofenac and the antihistamine clemastine on acute inflammatory reaction in NMRI mice. The local inflammatory reaction was induced by intraplantar injection of zymosan into the left hind paw. Sodium diclofenac in doses of 2, 3, 5, 10, and 20 mg/kg or clemastine in doses of 0.02, 0.1, 0.2, 0.4, and 0.6 mg/kg were injected intraperitoneally 30 min after the initiation of inflammation. The animals were whole-body exposed to EHF EMR for 20 min at 1 h after the initiation of inflammation. The inflammatory reaction was assessed over 3 - 8 h after the initiation by measuring the footpad edema and hyperthermia of the inflamed paw. Sodium diclofenac in doses of 5 - 20 mg/kg reduced the exudative edema on the average by 26% as compared to the control. Hyperthermia of the inflamed paw decreased to 60% as the dose of was increased diclofenac up to 20 mg/kg. EHF EMR reduced both the footpad edema and hyperthermia by about 20%, which was comparable with the effect of a single therapeutic dose of diclofenac (3 - 5 mg/kg). The combined action of diclofenac and the exposure to the EHF EMR caused a partial additive effect. Clemastine in doses of 0.02-0.4 mg/kg it did not cause any significant effects on the exudative edema, but in a dose of 0.6 mg/kg it reduced edema by 14 - 22% by 5 - 8 h after zymosan injection. Clemastine caused a dose-dependent increase in hyperthermia of inflamed paw at doses of 0.02-0.2 mg/kg and did not affect the hyperthermia at doses of 0.4 and 0.6 mg/kg. The combined action of clemastine and EHF EMR exposure caused a dose-dependent abolishment of the anti-inflammatory effect of EHF EMR. The results obtained suggest that both arachidonic acid metabolites and histamine are involved in the realization of anti-inflammatory effects of low-intensity

  1. Ozone Inhalation Leads to a Dose-Dependent Increase of Cytogenetic Damage in Human Lymphocytes

    PubMed Central

    Holland, Nina; Davé, Veronica; Venkat, Subha; Wong, Hofer; Donde, Aneesh; Balmes, John R; Arjomandi, Mehrdad

    2014-01-01

    Ozone is an important constituent of ambient air pollution and represents a major public health concern. Oxidative injury due to ozone inhalation causes the generation of reactive oxygen species and can be genotoxic. To determine whether ozone exposure causes genetic damage in peripheral blood lymphocytes, we employed a well-validated cytokinesis-block micronucleus Cytome assay. Frequencies of micronuclei (MN) and nucleoplasmic bridges (NB) were used as indicators of cytogenetic damage. Samples were obtained from 22 non-smoking healthy subjects immediately before and 24-hr after controlled 4-hr exposures to filtered air, 100 ppb, and 200 ppb ozone while exercising in a repeated-measure study design. Inhalation of ozone at different exposure levels was associated with a significant dose-dependent increase in MN frequency (P < 0.0001) and in the number of cells with more than 1 MN per cell (P < 0.0005). Inhalation of ozone also caused an increase in the number of apoptotic cells (P = 0.002). Airway neutrophilia was associated with an increase in MN frequency (P = 0.033) independent of the direct effects of ozone exposure (P < 0.0001). We also observed significant increases in both MN and NB frequencies after exercise in filtered air, suggesting that physical activity is also an important inducer of oxidative stress. These results corroborate our previous findings that cytogenetic damage is associated with ozone exposure, and show that damage is dose-dependent. Further study of ozone-induced cytogenetic damage in airway epithelial cells could provide evidence for the role of oxidative injury in lung carcinogenesis, and help to address the potential public health implications of exposures to oxidant environments. PMID:25451016

  2. Evaluation of acute tacrine treatment on passive-avoidance response, open-field behavior, and toxicity in 17- and 30-day-old mice.

    PubMed

    Pan, S Y; Han, Y F; Yu, Z L; Yang, R; Dong, H; Ko, K M

    2006-09-01

    The potential of tacrine in altering cognitive/behavioral function as well as in causing toxicity was evaluated in mice of 17 and 30 days of age. Cognitive and behavioral studies were performed using a step-through passive avoidance task and a habituation open-field test with a 24-h retention interval. Tacrine was subcutaneously injected (1.25-80 micro mol/kg) 30 min prior to the first session of both tests. During the training session in step-through task, tacrine treatment dose-dependently decreased the number of footshocks, with IC(50) values being 7.8 and 23.3 micro mol/kg in 17- and 30-day-old mice, respectively. Treatment with tacrine at a low dose (5 micro mol/kg) significantly prolonged the retention latency in 17-day-old mice only, but it shortened the retention latency at high doses of 20 and 40 micro mol/kg in 17- and 30-day-old, respectively. During the acquisition session in the open-field test, tacrine treatment dose-dependently decreased the locomotor activity in 17- and 30-day-old mice, with IC(50) values being 15.1 and 24.7 micro mol/kg, respectively. High doses of tacrine invariably increased the locomotor activity during the recall session. Tacrine treatment at a dose of 40 micro mol/kg caused a significant increase in serum alanine aminotransferase activity in 17- and 30-day-old mice at 6 h post-dosing, with the extent of stimulation in 30-day-old mice being more prominent. In conclusion, tacrine was more potent in enhancing/disrupting the cognitive function, inhibiting locomotor activity as well as in causing hepatotoxicity in 17-day-old than in 30-day-old mice.

  3. The Effects of Cocaine and Stress on Lymphocyte Proliferation in Rats

    DTIC Science & Technology

    1993-02-22

    indices of immune function while decreasing others. Bagarasa and Forman (1989) found that intraperitoneal cocaine (1 . 25, 2.5 mg/kg-10 days) at low ... doses caused an 3 increase in PFC response in male Fisher rats, but at higher doses (5 rng/kg-lO days) PFC response was suppressed. Analysis of...found that cocaine combined with Con A in vitro suppressed lymphocyte proliferation in a dose ~ dependent fashion for mice splenocytes and human

  4. Investigation of genotoxic effect of taxol plus radiation on mice bone marrow cells.

    PubMed

    Ozkan, Lütfi; Egeli, Unal; Tunca, Berrin; Aydemir, Nilüfer; Ceçener, Gülşah; Akpinar, Gürler; Ergül, Emel; Cimen, Ciğdem; Ozuysal, Sema; Kahraman-Cetintaş, Sibel; Engin, Kayihan; Ahmed, Mansoor M

    2002-01-01

    In this study, we investigated the genotoxic effect of taxol, radiation, or taxol plus radiation on highly proliferative normal tissue-bone marrow cells of Swiss albino mice. Swiss-albino mice, 3-4 months old, were used in this study. Taxol was administered bolus intravenously through the tail vein. Radiation was given by using a linear accelerator. There were four treatment categories, which had a total of 34 groups. Each group consisted of five animals. The first was the control category that had one group (n = 5). The second treatment category was taxol alone, which had three groups as per taxol dose alone (n = 15). The third treatment category was radiation alone, which had three groups as per the radiation dose (n = 15). The fourth treatment category was taxol plus radiation, which had 27 groups as per combined radiation dose plus taxol dose concentration and as per pre-treatment timing sequence of taxol before radiation (n = 135). Mice were sacrificed 24 h after taxol or radiation or combined administration using ether anesthesia. The cells were then dropped on two labeled slides, flamed, air dried, and stained in 7% Giemsa; 20-30 well-spread mitotic metaphases were analyzed for each animal; the cells with chromosome breaks, acentric fragments, and rearrangements were evaluated on x1,000 magnification with light microscope (Zeiss axioplan). The mitotic index was determined by counting the number of mitotic cells among 1,000 cells per animal. Differences between groups were evaluated with Student's t-test statistically. Taxol caused a dose-dependent increase in chromosomal aberrations (P = 0.027). Similarly, radiation caused a dose-dependent increase in chromosomal aberrations (P = 0.003) and decreased mitotic index (P = 0.002). In combination, there were a small enhancements at the 40 mg/kg taxol dose level and at 0.25 and 0.5 Gy radiation doses in the 48 h group. However, an increase in chromosomal aberrations was observed after 48 hours of taxol exposure when compared 12 or 24 h of taxol exposure (P = 0.001 and P = 0.019). These findings suggest that taxol at the high doses with low dose radiation caused radiosensitizing effect in bone marrow cells. Forty-eight-hour pretreatment of taxol exposure followed by radiation caused significant induction of chromosomal aberrations and a reduction of mitotic index when compared to other taxol timing sequence. Copyright 2002 Wiley-Liss, Inc.

  5. Neutron equivalent doses and associated lifetime cancer incidence risks for head & neck and spinal proton therapy

    NASA Astrophysics Data System (ADS)

    Athar, Basit S.; Paganetti, Harald

    2009-08-01

    In this work we have simulated the absorbed equivalent doses to various organs distant to the field edge assuming proton therapy treatments of brain or spine lesions. We have used computational whole-body (gender-specific and age-dependent) voxel phantoms and considered six treatment fields with varying treatment volumes and depths. The maximum neutron equivalent dose to organs near the field edge was found to be approximately 8 mSv Gy-1. We were able to clearly demonstrate that organ-specific neutron equivalent doses are age (stature) dependent. For example, assuming an 8-year-old patient, the dose to brain from the spinal fields ranged from 0.04 to 0.10 mSv Gy-1, whereas the dose to the brain assuming a 9-month-old patient ranged from 0.5 to 1.0 mSv Gy-1. Further, as the field aperture opening increases, the secondary neutron equivalent dose caused by the treatment head decreases, while the secondary neutron equivalent dose caused by the patient itself increases. To interpret the dosimetric data, we analyzed second cancer incidence risks for various organs as a function of patient age and field size based on two risk models. The results show that, for example, in an 8-year-old female patient treated with a spinal proton therapy field, breasts, lungs and rectum have the highest radiation-induced lifetime cancer incidence risks. These are estimated to be 0.71%, 1.05% and 0.60%, respectively. For an 11-year-old male patient treated with a spinal field, bronchi and rectum show the highest risks of 0.32% and 0.43%, respectively. Risks for male and female patients increase as their age at treatment time decreases.

  6. Effects of the food additive, citric acid, on kidney cells of mice.

    PubMed

    Chen, Xg; Lv, Qx; Liu, Ym; Deng, W

    2015-01-01

    Citric acid is a food additive that is widely used in the food and drink industry. We investigated the effects of citric acid injection on mouse kidney. Forty healthy mice were divided into four groups of 10 including one control group and three citric acid-treated groups. Low dose, middle dose and high dose groups were given doses of 120, 240 and 480 mg/kg of citric acid, respectively. On day 7, kidney tissues were collected for histological, biochemical and molecular biological examination. We observed shrinkage of glomeruli, widened urinary spaces and capillary congestion, narrowing of the tubule lumen, edema and cytoplasmic vacuolated tubule cells, and appearance of pyknotic nuclei. The relation between histopathological changes and citric acid was dose dependent. Compared to the control, T-SOD and GSH-Px activities in the treated groups decreased with increasing doses of citric acid, NOS activity tended to increase, and H2O2 and MDA contents gradually decreased, but the differences between any treated group and the control were not statistically significant. The apoptosis assay showed a dose-dependent increase of caspase-3 activity after administering citrate that was statistically significant. DNA ladder formation occurred after treatment with any dose of citric acid. We concluded that administration of citric acid may cause renal toxicity in mice.

  7. Desensitization of atriopeptin stimulated accumulation and extrusion of cyclic GMP from a kidney epithelial cell line (MDCK).

    PubMed

    Woods, M; Houslay, M D

    1991-02-01

    Atriopeptin caused dose- (EC50 ca. 2 x 10(-8) M) and time-dependent increases in the intracellular concentration of cyclic GMP in the MDCK kidney epithelial cell line; an effect potentiated by the phosphodiesterase inhibitor, IBMX. The atriopeptin-catalysed increase in cyclic GMP was transient and reached a maximum some 10-20 min after challenge of cells with atriopeptin. The basis for the transience of this increase was shown to be due to the desensitization of guanylate cyclase coupled with extrusion of cyclic GMP from the cells and the degradation of cyclic GMP by phosphodiesterase activity. Atriopeptin-catalysed extrusion of cyclic GMP was time- and dose-(EC50 ca. 1.5 x 10(-8) M) dependent and was inhibited by probenecid but not by high external cyclic GMP concentrations. The extrusion process underwent apparent desensitization as did guanylate cyclase with similar half lives (T1/2 of ca. 20 min). Desensitization was dose-dependent upon atriopeptin and did not appear to be mediated by elevated cyclic GMP concentrations as pre-incubation with 8-bromo cyclic GMP did not cause desensitization and the half-times for desensitization were similar whether or not IBMX was present. The majority of the cyclic nucleotide phosphodiesterase activity was found in the cytosol fraction of the cells and could be separated into two cyclic AMP specific forms and two cyclic GMP preferring forms.

  8. Intrathecal Huperzine A Increases Thermal Escape Latency and Decreases Flinching Behavior in the Formalin Test in Rats

    PubMed Central

    Park, Paula; Schachter, Steven; Yaksh, Tony

    2010-01-01

    Huperzine A (HupA) is an alkaloid isolated from the Chinese club moss Huperzia serrata and has been used for improving memory, cognitive and behavioral function in patients with Alzheimer's disease in China. It has NMDA antagonist and anticholinesterase activity and has shown anticonvulsant and antinociceptive effects in preliminary studies when administered intraperitoneally to mice. To better characterize the antinociceptive effects of HupA at the spinal level, Holtzman rats were implanted with intrathecal catheters to measure thermal escape latency using Hargreaves thermal escape testing system and flinching behavior using the formalin test. Intrathecal (IT) administration of HupA showed a dose-dependent increase in thermal escape latency with an ED50 of 0.57 μg. Atropine reversed the increase in thermal escape latency produced by 10 μg HupA, indicating an antinociceptive mechanism through muscarinic cholinergic receptors. The formalin test showed that HupA decreased flinching behavior in a dose-dependent manner. Atropine also reversed the decrease in flinching behavior caused by 10 μg HupA. A dose-dependent increase of side effects including scratching, biting, and chewing tails was observed, although antinociceptive effects were observed in doses that did not produce any adverse effects. PMID:20026382

  9. Intrathecal huperzine A increases thermal escape latency and decreases flinching behavior in the formalin test in rats.

    PubMed

    Park, Paula; Schachter, Steven; Yaksh, Tony

    2010-02-05

    Huperzine A (HupA) is an alkaloid isolated from the Chinese club moss Huperzia serrata and has been used for improving memory, cognitive and behavioral function in patients with Alzheimer's disease in China. It has NMDA antagonist and anticholinesterase activity and has shown anticonvulsant and antinociceptive effects in preliminary studies when administered intraperitoneally to mice. To better characterize the antinociceptive effects of HupA at the spinal level, Holtzman rats were implanted with intrathecal catheters to measure thermal escape latency using Hargreaves thermal escape testing system and flinching behavior using the formalin test. Intrathecal (IT) administration of HupA showed a dose-dependent increase in thermal escape latency with an ED50 of 0.57 microg. Atropine reversed the increase in thermal escape latency produced by 10 microg HupA, indicating an antinociceptive mechanism through muscarinic cholinergic receptors. The formalin test showed that HupA decreased flinching behavior in a dose-dependent manner. Atropine also reversed the decrease in flinching behavior caused by 10 microg HupA. A dose-dependent increase of side effects including scratching, biting, and chewing tails was observed, although antinociceptive effects were observed in doses that did not produce any adverse effects. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  10. Histamine-induced vasodilatation in the human forearm vasculature

    PubMed Central

    Sandilands, Euan A; Crowe, Jane; Cuthbert, Hayley; Jenkins, Paul J; Johnston, Neil R; Eddleston, Michael; Bateman, D Nicholas; Webb, David J

    2013-01-01

    Aim To investigate the mechanism of action of intra-arterial histamine in the human forearm vasculature. Methods Three studies were conducted to assess changes in forearm blood flow (FBF) using venous occlusion plethysmography in response to intra-brachial histamine. First, the dose–response was investigated by assessing FBF throughout a dose-escalating histamine infusion. Next, histamine was infused at a constant dose to assess acute tolerance. Finally, a four way, double-blind, randomized, placebo-controlled crossover study was conducted to assess FBF response to histamine in the presence of H1- and H2-receptor antagonists. Flare and itch were assessed in all studies. Results Histamine caused a dose-dependent increase in FBF, greatest with the highest dose (30 nmol min−1) infused [mean (SEM) infused arm vs. control: 26.8 (5.3) vs. 2.6 ml min−1 100 ml−1; P < 0.0001]. Dose-dependent flare and itch were demonstrated. Acute tolerance was not observed, with an increased FBF persisting throughout the infusion period. H2-receptor antagonism significantly reduced FBF (mean (95% CI) difference from placebo at 30 nmol min−1 histamine: −11.9 ml min−1 100 ml−1 (−4.0, −19.8), P < 0.0001) and flare (mean (95% CI) difference from placebo: −403.7 cm2 (−231.4, 576.0), P < 0.0001). No reduction in FBF or flare was observed in response to the H1-receptor antagonist. Itch was unaffected by the treatments. Histamine did not stimulate vascular release of tissue plasminogen activator or von Willebrand factor. Conclusion Histamine causes dose-dependent vasodilatation, flare and itch in the human forearm. H2-receptors are important in this process. Our results support further exploration of combined H1- and H2-receptor antagonist therapy in acute allergic syndromes. PMID:23488545

  11. Dose-dependent effects and reversibility of the injuries caused by nandrolone decanoate in uterine tissue and fertility of rats.

    PubMed

    Belardin, Larissa Berloffa; Simão, Vinícius Augusto; Leite, Gabriel Adan Araújo; Chuffa, Luiz Gustavo de Almeida; Camargo, Isabel Cristina Cherici

    2014-04-01

    This study is the first to investigate the effects of different doses of nandrolone decanoate (ND) upon uterine tissue and fertility, and if the reproductive alterations can be restored after cessation of the treatment. Wistar female rats were treated with ND at doses of 1.87, 3.75, 7.5, and 15 mg/kg body weight, diluted in vehicle (n = 30/group), or received only mineral oil (control group, n = 45). The animals were divided into three periods of study: ND-treated receiving a daily subcutaneous injection for 15 consecutive days (1), and treatment with ND followed by 30-day recovery (2), and 60-day recovery (3). At the end of each period, five females per group were induced to death to histopathological analysis and the others were allowed to fertility evaluation (at 19th gestational day). Animals that received ND followed by 30-day recovery exhibited persistent diestrous and marked suppression of reproductive capacity. Conversely, after 60-day recovery, only lowest doses females (1.87 and 3.75 mg/kg) exhibited restoration of normal estrous cyclicity. Uterine weights were increased after ND treatment similarly to that of the controls after 60-day recovery. The ND-treated groups showed histopathological changes in the endometrium, myometrium, and perimetrium, and an increase in the thickness of both muscular and serous layers. Notably, the recovery of uterine tissue after ND treatment was dose- and period-dependent. We reported that administration of ND promoted damage in uterine tissue and fertility of rats, and the recovery periods were insufficient to restore all of the side effects caused by ND under a dose-dependent response. © 2014 Wiley Periodicals, Inc.

  12. Ketamine induces toxicity in human neurons differentiated from embryonic stem cells via mitochondrial apoptosis pathway

    PubMed Central

    Bosnjak, Zeljko J.; Yan, Yasheng; Canfield, Scott; Muravyeva, Maria Y.; Kikuchi, Chika; Wells, Clive; Corbett, John; Bai, Xiaowen

    2013-01-01

    Ketamine is widely used for anesthesia in pediatric patients. Growing evidence indicates that ketamine causes neurotoxicity in a variety of developing animal models. Our understanding of anesthesia neurotoxicity in humans is currently limited by difficulties in obtaining neurons and performing developmental toxicity studies in fetal and pediatric populations. It may be possible to overcome these challenges by obtaining neurons from human embryonic stem cells (hESCs) in vitro. hESCs are able to replicate indefinitely and differentiate into every cell type. In this study, we investigated the toxic effect of ketamine on neurons differentiated from hESCs. Two-week-old neurons were treated with different doses and durations of ketamine with or without the reactive oxygen species (ROS) scavenger, Trolox. Cell viability, ultrastructure, mitochondrial membrane potential (ΔΨm), cytochrome c distribution within cells, apoptosis, and ROS production were evaluated. Here we show that ketamine induced ultrastructural abnormalities and dose- and time-dependently caused cell death. In addition, ketamine decreased ΔΨm and increased cytochrome c release from mitochondria. Ketamine also increased ROS production and induced differential expression of oxidative stress-related genes. Specifically, abnormal ultrastructural and ΔΨm changes occurred earlier than cell death in the ketamine-induced toxicity process. Furthermore, Trolox significantly decreased ROS generation and attenuated cell death caused by ketamine in a dose-dependent manner. In conclusion, this study illustrates that ketamine time- and dose-dependently induces human neurotoxicity via ROS-mediated mitochondrial apoptosis pathway and that these side effects can be prevented by the antioxidant agent Trolox. Thus, hESC-derived neurons might provide a promising tool for studying anesthetic-induced developmental neurotoxicity and prevention strategies. PMID:22873495

  13. Inflammatory effects of the toxic cyanobacterium Geitlerinema amphibium.

    PubMed

    Dogo, Camila Ranzatto; Bruni, Fernanda Miriane; Elias, Fabiana; Rangel, Marisa; Pantoja, Patricia Araujo; Sant'anna, Célia Leite; Lima, Carla; Lopes-Ferreira, Monica; de Carvalho, Luciana Retz

    2011-11-01

    Toxic cyanobacteria in public water reservoirs may cause severe health issues for livestock and human beings. Geitlerinema amphibium, which is frequently found in São Paulo City's drinking water supplies, showed toxicity in the standard mouse bioassay, while displaying signs of intoxication and post-mortem findings different from those showed by animals intoxicated by known cyanotoxins. We report here the alterations caused by G. amphibium methanolic extract on mouse microcirculatory network, as seen by in vivo intravital microscopy, besides observations on leukocyte migration, cytokine quantitation, and results of toxicological essays. Our data showed that G. amphibium methanolic extract displayed time- and dose-dependent pro-inflammatory activity, and that at lower doses [125 and 250 mg/kg body weight (b.w.)] increased the leukocyte rolling, caused partial venular stasis, as well as induced an increase in leukocyte counts in the peripheral blood and peritoneal washings. At higher doses (500 and 1000 mg/kg b.w.), the extract caused ischemic injury leading to animal death. As confirmed by mass spectrometric studies and polymyxin B test, the G. amphibium methanolic extract did not contain lipopolysaccharides. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. 3,3′,4,4′,5-Pentachlorobiphenyl (PCB 126) Decreases Hepatic and Systemic Ratios of Epoxide to Diol Metabolites of Unsaturated Fatty Acids in Male Rats

    PubMed Central

    Wu, Xianai; Yang, Jun; Morisseau, Christophe; Robertson, Larry W.; Hammock, Bruce; Lehmler, Hans-Joachim

    2016-01-01

    Disruption of the homeostasis of oxygenated regulatory lipid mediators (oxylipins), potential markers of exposure to aryl hydrocarbon receptor (AhR) agonists, such as 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126), is associated with a range of diseases, including nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Here we test the hypothesis that PCB 126 exposure alters the levels of oxylipins in rats. Male Sprague-Dawley rats (5-weeks old) were treated over a 3-month period every 2 weeks with intraperitoneal injections of PCB 126 in corn oil (cumulative doses of 0, 19.8, 97.8, and 390 µg/kg b.w.; 6 injections total). PCB 126 treatment caused a reduction in growth rates at the highest dose investigated, a dose-dependent decrease in thymus weights, and a dose-dependent increase in liver weights. Liver PCB 126 levels increased in a dose-dependent manner, while levels in plasma were below or close to the detection limit. The ratios of several epoxides to diol metabolites formed via the cytochrome P450 (P450) monooxygenase/soluble epoxide hydrolase (sEH) pathway from polyunsaturated fatty acids displayed a dose-dependent decrease in the liver and plasma, whereas levels of oxylipins formed by other metabolic pathways were generally not altered by PCB 126 treatment. The effects of PCB 126 on epoxide-to-diol ratios were associated with an increased CYP1A activity in liver microsomes and an increased sEH activity in liver cytosol and peroxisomes. These results suggest that oxylipins are potential biomarkers of exposure to PCB 126 and that the P450/sEH pathway is a therapeutic target for PCB 126-mediated hepatotoxicity that warrants further attention. PMID:27208083

  15. [Nephrotoxicity of Aristolochia manshuriensis and aristolochic acids in mice].

    PubMed

    Ding, Xiao-shuang; Liang, Ai-hua; Wang, Jin-hua; Xiao, Yong-qing; Wu, Zi-lun; Li, Chun-ying; Li, Li; He, Rong; Hui, Lian-qiang; Liu, Bao-yan

    2005-07-01

    The acute toxic effects of Aristolochia manshuriensis (GMT) and the total aristolochic acids (TA) were compared in mice with aristolochic acid A (AA) as the dose standard. The dose relationship of the renal toxicity induced by Aristolochia manshuriensis was determined. A single dose of GMT extract or TA was given intragastrically to mice at different doses. LD50 values, the blood levels of BUN, Cr and ALT were measured. A histomorphological study was also performed in livers and kidneys of mice. LD50 value of GMT extract was 4.4 g x kg(-1) which was equivalent to 40 mg x kg(-1) as calculated by the content of AA in GMT extract, and this value was comparable with LD50 obtained from TA given intragastrically in mice (equivalent to 33 mg x kg(-1) of AA for male and 37 mg x kg(-1) for female). GMT extract caused a significant increase in blood BUN and Cr and an obvious morphological change in kidney in a dose-dependent manner at doses of AA 4.5 mg x kg(-1) and above. Liver damage, characterized by both an increase in blood level of AST and histomorphological change, was observed at doses of AA 25 mg x kg(-1) and above. All changes were in proportion to the doses of AA. GMT causes both renal and liver toxicity. The dose leading to nephrotoxicity is much lower than that inducing hepatatoxicity. Aristolochic acids existed in GMT are the main toxic components to cause renal toxicity which is a crucial cause to result in death. The lethality and nephrotoxicity of GMT is in proportion to the doses of AA.

  16. Pharmaco-EEG-based assessment of the interaction between ethanol and oxcarbazepine.

    PubMed

    Pietrzak, Bogusława; Czarnecka, Elzbieta

    2010-01-01

    Oxcarbazepine is a representative molecule for a new class of anticonvulsant drugs that can treat alcohol dependence in addition to other disorders. Interestingly, the central mechanism of action in oxcarbazepine is very similar to ethanol, suggesting that these two agents may interact and cause enhanced effects in the central nervous system. In this study, we used a pharmaco-EEG method to examine the influence of oxcarbazepine on the effect of ethanol on the EEG of rabbits (midbrain reticular formation, hippocampus, frontal cortex). Oxcarbazepine was administered po as a single dose (20 mg/kg or 80 mg/kg) or repeatedly at a dose of 40 mg/kg/day for 14 days. Ethanol was injected iv at a dose of 0.8 g/kg 60 min after the administration of oxcarbazepine. Ethanol caused an increase in the low frequencies (0.5-4 Hz) in the recordings, and it caused a marked decrease in higher frequencies (13-30 Hz and 30-45 Hz). Oxcarbazepine altered the EEG pattern in rabbits; this interaction was dependent on the dose of the drug and whether it was administered as a single dose or as multiple doses. Oxcarbazepine administered at a lower dose had a synergistic effect with ethanol in the frontal cortex and midbrain reticular formation, and a similar effect was observed in the hippocampus at a higher dose. Changes in EEG recordings after the administration of oxcarbazepine alone were more pronounced after multiple administrations. The drug decreased the sensitivity of the hippocampus to ethanol, an observation that may be important for the treatment of alcohol addiction.

  17. Effects of systemic carbidopa on dopamine synthesis in rat hypothalamus and striatum

    NASA Technical Reports Server (NTRS)

    Kaakkola, S.; Tuomainen, P.; Wurtman, R. J.; Maennistoe, P. T.

    1991-01-01

    Significant concentrations of carbidopa (CD) were found in rat hypothalamus, striatum, and in striatal microdialysis efflux after intraperitoneal administration of the drug. Efflux levels peaked one hour after administration of 100 mg/kg at 0.37 microg/kg or about 2 percent of serum levels. Concurrent CD levels in hypothalamus and striatum were about 2.5 percent and 1.5 percent, respectively, of corresponding serum levels. Levels of dopamine and its principal metabolites in striatal efflux were unaffected. The removal of the brain blood by saline perfusion decreased the striatal and hypothalamic CD concentrations only by 33 percent and 16 percent, respectively. In other rats receiving both CD and levodopa (LD), brain L-dopa, dopamine, and 3,4-dihydroxyphenvlacetic acid (DOPAC) levels after one hour tended to be proportionate to LD dose. When the LD dose remained constant, increasing the CD dose dose-dependently enhanced L-dopa levels in the hypothalamus and striatum. However, dopamine levels did not increase but, in contrast, decreased dose-dependently (although significantly only in the hypothalamus). CD also caused dose-dependent decrease in striatal 3-O-methyldopa (3-OMD) and in striatal and hypothalamic homovanillic acid (HVA), when the LD dose was 50 mg/kg. We conclude that, at doses exceedimg 50 mg/kg, sufficient quantities of CD enter the brain to inhibit dopamine formation, especially in the hypothalamus. Moreover, high doses of LD/CD, both of which are themselves catechols, can inhibit the O-methylation of brain catecholamines formed from the LD.

  18. Effects of systemic carbidopa on dopamine synthesis in rat hypothalamus and striatum

    NASA Technical Reports Server (NTRS)

    Kaakkola, S.; Tuomainen, P.; Wurtman, R. J.; Mannisto, P. T.

    1992-01-01

    Significant concentrations of carbidopa (CD) were found in rat hypothalamus, striatum, and in striatal microdialysis efflux after intraperitoneal administration of the drug. Efflux levels peaked one hour after administration of 100 mg/kg at 0.37 micrograms/ml, or about 2% of serum levels. Concurrent CD levels in hypothalamus and striatum were about 2.5% and 1.5%, respectively, of corresponding serum levels. Levels of dopamine and its principal metabolites in striatal efflux were unaffected. The removal of the brain blood by saline perfusion decreased the striatal and hypothalamic CD concentrations only by 33% and 16%, respectively. In other rats receiving both CD and levodopa (LD), brain L-dopa, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels after one hour tended to be proportionate to LD dose. When the LD dose remained constant, increasing the CD dose dose-dependently enhanced L-dopa levels in the hypothalamus and striatum. However dopamine levels did not increase but, in contrast, decreased dose-dependently (although significantly only in the hypothalamus). CD also caused dose-dependent decrease in striatal 3-O-methyldopa (3-OMD) and in striatal and hypothalamic homovanillic acid (HVA), when the LD dose was 50 mg/kg. We conclude that, at doses exceeding 50 mg/kg, sufficient quantities of CD enter the brain to inhibit dopamine formation, especially in the hypothalamus. Moreover, high doses of LD/CD, both of which are themselves catechols, can inhibit the O-methylation of brain catecholamines formed from the LD.

  19. Exposure to medium and high ambient levels of ozone causes adverse systemic inflammatory and cardiac autonomic effects

    PubMed Central

    Wong, Hofer; Donde, Aneesh; Frelinger, Jessica; Dalton, Sarah; Ching, Wendy; Power, Karron; Balmes, John R.

    2015-01-01

    Epidemiological evidence suggests that exposure to ozone increases cardiovascular morbidity. However, the specific biological mechanisms mediating ozone-associated cardiovascular effects are unknown. To determine whether short-term exposure to ambient levels of ozone causes changes in biomarkers of cardiovascular disease including heart rate variability (HRV), systemic inflammation, and coagulability, 26 subjects were exposed to 0, 100, and 200 ppb ozone in random order for 4 h with intermittent exercise. HRV was measured and blood samples were obtained immediately before (0 h), immediately after (4 h), and 20 h after (24 h) each exposure. Bronchoscopy with bronchoalveolar lavage (BAL) was performed 20 h after exposure. Regression modeling was used to examine dose-response trends between the endpoints and ozone exposure. Inhalation of ozone induced dose-dependent adverse changes in the frequency domains of HRV across exposures consistent with increased sympathetic tone [increase of (parameter estimate ± SE) 0.4 ± 0.2 and 0.3 ± 0.1 in low- to high-frequency domain HRV ratio per 100 ppb increase in ozone at 4 h and 24 h, respectively (P = 0.02 and P = 0.01)] and a dose-dependent increase in serum C-reactive protein (CRP) across exposures at 24 h [increase of 0.61 ± 0.24 mg/l in CRP per 100 ppb increase in ozone (P = 0.01)]. Changes in HRV and CRP did not correlate with ozone-induced local lung inflammatory responses (BAL granulocytes, IL-6, or IL-8), but changes in HRV and CRP were associated with each other after adjustment for age and ozone level. Inhalation of ozone causes adverse systemic inflammatory and cardiac autonomic effects that may contribute to the cardiovascular mortality associated with short-term exposure. PMID:25862833

  20. Activation of neuronal Kv7/KCNQ/M-channels by the opener QO58-lysine and its anti-nociceptive effects on inflammatory pain in rodents.

    PubMed

    Teng, Bo-Chuan; Song, Yan; Zhang, Fan; Ma, Tian-Yang; Qi, Jin-Long; Zhang, Hai-Lin; Li, Gang; Wang, KeWei

    2016-08-01

    The aim of this study was to examine the activation of neuronal Kv7/KCNQ channels by a novel modified Kv7 opener QO58-lysine and to test the anti-nociceptive effects of QO58-lysine on inflammatory pain in rodent models. Assays including whole-cell patch clamp recordings, HPLC, and in vivo pain behavioral evaluations were employed. QO58-lysine caused instant activation of Kv7.2/7.3 currents, and increasing the dose of QO58-lysine resulted in a dose-dependent activation of Kv7.2/Kv7.3 currents with an EC50 of 1.2±0.2 μmol/L. QO58-lysine caused a leftward shift of the voltage-dependent activation of Kv7.2/Kv7.3 to a hyperpolarized potential at V1/2=-54.4±2.5 mV from V1/2=-26.0±0.6 mV. The half-life in plasma (t1/2) was derived as 2.9, 2.7, and 3.0 h for doses of 12.5, 25, and 50 mg/kg, respectively. The absolute bioavailabilities for the three doses (12.5, 25, and 50 mg/kg) of QO58-lysine (po) were determined as 13.7%, 24.3%, and 39.3%, respectively. QO58-lysine caused a concentration-dependent reduction in the licking times during phase II pain induced by the injection of formalin into the mouse hindpaw. In the Complete Freund's adjuvant (CFA)-induced inflammatory pain model in rats, oral or intraperitoneal administration of QO58-lysine resulted in a dose-dependent increase in the paw withdrawal threshold, and the anti-nociceptive effect on mechanical allodynia could be reversed by the channel-specific blocker XE991 (3 mg/kg). Taken together, our findings show that a modified QO58 compound (QO58-lysine) can specifically activate Kv7.2/7.3/M-channels. Oral or intraperitoneal administration of QO58-lysine, which has improved bioavailability and a half-life of approximately 3 h in plasma, can reverse inflammatory pain in rodent animal models.

  1. The role of salsolinol in alcohol intake and withdrawal.

    PubMed

    Clow, A; Topham, A; Saunders, J B; Murray, R; Sandler, M

    1985-01-01

    We studied the urinary excretion of the tetrahydroisoquinoline (TIQ) salsolinol, formed from acetaldehyde and dopamine, in both severely and moderately dependent alcoholics during withdrawal from alcohol and subsequent challenge with an acute dose of alcohol and L-dopa, and compared these results with controls. Plasma acetaldehyde and alcohol levels in a sub-population of severely dependent withdrawn alcoholic and control subjects following an acute dose of alcohol were also determined. Salsolinol excretion during the first 4 days of alcohol withdrawal was variable but 10 out of 14 alcoholics showed an increasing trend from day 1 to day 3 and 4 of alcohol withdrawal. L-dopa administration raised salsolinol excretion in controls and withdrawn alcoholics to a uniform extent. Loading of the withdrawn alcoholics with an acute dose of alcohol did not cause an increase in urinary salsolinol concentration (despite increased plasma acetaldehyde). Indeed, 24 h following acute alcohol administration, salsolinol excretion rates were depressed in the alcoholics but not in the controls.

  2. Dietary Selenium as a Modulator of PCB 126–Induced Hepatotoxicity in Male Sprague-Dawley Rats

    PubMed Central

    Lai, Ian K.; Chai, Yingtao; Simmons, Donald; Watson, Walter H.; Tan, Rommel; Haschek, Wanda M.; Wang, Kai; Wang, Bingxuan; Ludewig, Gabriele; Robertson, Larry W.

    2011-01-01

    Homeostasis of selenium (Se), a critical antioxidant incorporated into amino acids and enzymes, is disrupted by exposure to aryl hydrocarbon receptor (AhR) agonists. Here we examined the importance of dietary Se in preventing the toxicity of the most toxic polychlorinated biphenyl congener, 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126), a potent AhR agonist. Male Sprague-Dawley rats were fed a modified AIN-93 diet with differing dietary Se levels (0.02, 0.2, and 2 ppm). Following 3 weeks of acclimatization, rats from each dietary group were given a single ip injection of corn oil (vehicle), 0.2, 1, or 5 μmol/kg body weight PCB 126, followed 2 weeks later by euthanasia. PCB exposure caused dose-dependent increases in liver weight and at the highest PCB 126 dose decreases in whole body weight gains. Hepatic cytochrome P-450 (CYP1A1) activity was significantly increased even at the lowest dose of PCB 126, indicating potent AhR activation. PCB exposure diminished hepatic Se levels in a dose-dependent manner, and this was accompanied by diminished Se-dependent glutathione peroxidase activity. Both these effects were partially mitigated by Se supplementation. Conversely, thioredoxin (Trx) reductase activity and Trx oxidation state, although significantly diminished in the lowest dietary Se groups, were not affected by PCB exposure. In addition, PCB 126–induced changes in hepatic copper, iron, manganese, and zinc were observed. These results demonstrate that supplemental dietary Se was not able to completely prevent the toxicity caused by PCB 126 but was able to increase moderately the levels of several key antioxidants, thereby maintaining them roughly at normal levels. PMID:21865291

  3. Functional and histological bladder damage in mice after photodynamic therapy: the influence of sensitiser dose and time of administration.

    PubMed Central

    Stewart, F. A.; Oussoren, Y.

    1993-01-01

    The bladders of anaesthetised mice were illuminated with red laser light (630 nm) at intervals of 1 day to 4 weeks after i.p. administration of Photofrin. Light was delivered intravesically by inserting a fibre optic, with a diffusing bulb tip, into the centre of fluid filled bladders. A single light dose of 11.3 J cm-2 applies 1 day after 10 mg kg-1 Photofrin caused a severe acute response, with increased urination frequency (five to seven times control) and hematuria. Recovery was good, however, and by 10 weeks only a mild (approximately two-fold) increase in frequency remained. There was no reduction in the amount of acute bladder damage or in the rate of healing when the interval between Photofrin and light was increased from 1 to 7 days but a 2 to 3 week interval lead to a significant reduction in damage. For an interval of 4 weeks there was only a mild (less than two-fold) increase in urination frequency during the first week. A drug dose of 2.5 mg kg-1 given 1 day before illumination caused transient haematuria but no increase in urination frequency. Doses of 5, 7.5 or 10 mg kg-1 all caused photosensitisation and the amount of bladder damage was drug dose dependent. The bladder seems to be well able to recover from severe acute damage induced by PDT. Occasional incidences of pyelonephritis were seen, however, suggesting that urinary tract infection during the acute period may lead to permanent renal damage. Images Figure 5 PMID:8398691

  4. Naloxone reversal of buprenorphine-induced respiratory depression.

    PubMed

    van Dorp, Eveline; Yassen, Ashraf; Sarton, Elise; Romberg, Raymonda; Olofsen, Erik; Teppema, Luc; Danhof, Meindert; Dahan, Albert

    2006-07-01

    The objective of this investigation was to examine the ability of the opioid antagonist naloxone to reverse respiratory depression produced by the mu-opioid analgesic, buprenorphine, in healthy volunteers. The studies were designed in light of the claims that buprenorphine is relatively resistant to the effects of naloxone. In a first attempt, the effect of an intravenous bolus dose of 0.8 mg naloxone was assessed on 0.2 mg buprenorphine-induced respiratory depression. Next, the effect of increasing naloxone doses (0.5-7 mg, given over 30 min) on 0.2 mg buprenorphine-induced respiratory depression was tested. Subsequently, continuous naloxone infusions were applied to reverse respiratory depression from 0.2 and 0.4 mg buprenorphine. All doses are per 70 kg. Respiration was measured against a background of constant increased end-tidal carbon dioxide concentration. An intravenous naloxone dose of 0.8 mg had no effect on respiratory depression from buprenorphine. Increasing doses of naloxone given over 30 min produced full reversal of buprenorphine effect in the dose range of 2-4 mg naloxone. Further increasing the naloxone dose (doses of 5 mg or greater) caused a decline in reversal activity. Naloxone bolus doses of 2-3 mg, followed by a continuous infusion of 4 mg/h, caused full reversal within 40-60 min of both 0.2 and 0.4 mg buprenorphine-induced respiratory depression. Reversal of buprenorphine effect is possible but depends on the buprenorphine dose and the correct naloxone dose window. Because respiratory depression from buprenorphine may outlast the effects of naloxone boluses or short infusions, a continuous infusion of naloxone may be required to maintain reversal of respiratory depression.

  5. [Effect of the nonspecific biogenic stimulators pentoxyl and mumie on metabolic processes].

    PubMed

    Shvetskiĭ, A G; Vorob'eva, L M

    1978-01-01

    Unspecific biogenic stimulants (pentoxyl and mummie) accelerated metabolism of nucleic acids and protein in rat liver tissue. After the treatment with the stimulants the rate of lipolysis exceeded that of lipogenesis. Increase in content of lactate was similar if glycogen and glucose-6-phosphate were used as substrates of glycolysis, but it was stimulated 2-3-fold, when glucose was used; the phenomenon appears to be due to activation of hexokinase. As shown by polarographic measurements mitochondrial respiration was increased in all the metabolic states, but increased doses caused an inhibition of phosphorylation apparently due to functional overstrain of mitochondria. Increased doses of the stimulants accelerated also some other metabolic processes studied, but the effects were not dose-dependent. Pentoxyl and mummie apparently increased processes of protein and nuclei acid metabolism and stimulated the energy-providing reactions.

  6. Dose-dependent cytotoxicity evaluation of graphite nanoparticles for diamond-like carbon film application on artificial joints.

    PubMed

    Liao, T T; Deng, Q Y; Wu, B J; Li, S S; Li, X; Wu, J; Leng, Y X; Guo, Y B; Huang, N

    2017-01-24

    While a diamond-like carbon (DLC)-coated joint prosthesis represents the implant of choice for total hip replacement in patients, it also leads to concern due to the cytotoxicity of wear debris in the form of graphite nanoparticles (GNs), ultimately limiting its clinical use. In this study, the cytotoxicity of various GN doses was evaluated. Mouse macrophages and osteoblasts were incubated with GNs (<30 nm diameter), followed by evaluation of cytotoxicity by means of assessing inflammatory cytokines, results of alkaline phosphatase assays, and related signaling protein expression. Cytotoxicity evaluation showed that cell viability decreased in a dose-dependent manner (10-100 μg ml -1 ), and steeply declined at GNs concentrations greater than 30 μg ml -1 . Noticeable cytotoxicity was observed as the GN dose exceeded this threshold due to upregulated receptor of activator of nuclear factor kB-ligand expression and downregulated osteoprotegerin expression. Meanwhile, activated macrophage morphology was observed as a result of the intense inflammatory response caused by the high doses of GNs (>30 μg ml -1 ), as observed by the increased release of TNF-α and IL-6. The results suggest that GNs had a significant dose-dependent cytotoxicity in vitro, with a lethal dose of 30 μg ml -1 leading to dramatic increases in cytotoxicity. Our GN cytotoxicity evaluation indicates a safe level for wear debris-related arthropathy and could propel the clinical application of DLC-coated total hip prostheses.

  7. Age-related respiratory responses to substance P in normal sheep.

    PubMed

    Corcoran, B M; Haigh, A L

    1993-01-01

    The in vivo effects of substance P (SP) on respiratory parameters in four different age groups of sheep were examined. Intravenous SP (10(-8) to 5 x 10(-6) mol kg-1 bodyweight) caused a dose-dependent reduction in dynamic compliance and increase in respiratory resistance in all four groups. The bronchoconstrictor response was age-related, with the greatest response occurring in the youngest age group (four to six months). In the oldest group (over four years) there was minimal bronchomotor response to SP, but a dose-dependent apnoea was present. These findings indicate that there is an age-related alteration in the respiratory response to SP in sheep.

  8. The Effect of Ingested Glucose Dose on the Suppression of Endogenous Glucose Production in Humans.

    PubMed

    Kowalski, Greg M; Moore, Samantha M; Hamley, Steven; Selathurai, Ahrathy; Bruce, Clinton R

    2017-09-01

    Insulin clamp studies have shown that the suppressive actions of insulin on endogenous glucose production (EGP) are markedly more sensitive than for stimulating glucose disposal ( R d ). However, clamp conditions do not adequately mimic postprandial physiological responses. Here, using the variable infusion dual-tracer approach, we used a threefold range of ingested glucose doses (25, 50, and 75 g) to investigate how physiological changes in plasma insulin influence EGP in healthy subjects. Remarkably, the glucose responses were similar for all doses tested, yet there was a dose-dependent increase in insulin secretion and plasma insulin levels. Nonetheless, EGP was suppressed with the same rapidity and magnitude (∼55%) across all doses. The progressive hyperinsulinemia, however, caused a dose-dependent increase in the estimated rates of R d , which likely accounts for the lack of a dose effect on plasma glucose excursions. This suggests that after glucose ingestion, the body preferentially permits a transient and optimal degree of postprandial hyperglycemia to efficiently enhance insulin-induced changes in glucose fluxes, thereby minimizing the demand for insulin secretion. This may represent an evolutionarily conserved mechanism that not only reduces the secretory burden on β-cells but also avoids the potential negative consequences of excessive insulin release into the systemic arterial circulation. © 2017 by the American Diabetes Association.

  9. Different dose-dependent effects of ebselen in sciatic nerve ischemia-reperfusion injury in rats.

    PubMed

    Ozyigit, Filiz; Kucuk, Aysegul; Akcer, Sezer; Tosun, Murat; Kocak, Fatma Emel; Kocak, Cengiz; Kocak, Ahmet; Metineren, Hasan; Genc, Osman

    2015-08-26

    Ebselen is an organoselenium compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of ebselen pretreatment in rats with experimental sciatic nerve ischemia-reperfusion (I/R) injury. Adult male Sprague Dawley rats were divided into four groups (N = 7 in each group). Before sciatic nerve I/R was induced, ebselen was injected intraperitoneally at doses of 15 and 30 mg/kg. After a 2 h ischemia and a 3 h reperfusion period, sciatic nerve tissues were excised. Tissue levels of malondialdehyde (MDA) and nitric oxide (NO), and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were measured. Sciatic nerve tissues were also examined histopathologically. The 15 mg/kg dose of ebselen reduced sciatic nerve damage and apoptosis (p<0.01), levels of MDA, NO, and inducible nitric oxide synthase (iNOS) positive cells (p<0.01, p<0.05, respectively), and increased SOD, GPx, and CAT activities (p<0.001, p<0.01, p<0.05, respectively) compared with the I/R group that did not receive ebselen. Conversely, the 30 mg/kg dose of ebselen increased sciatic nerve damage, apoptosis, iNOS positive cells (p<0.01, p<0.05, p<0.001) and MDA and NO levels (p<0.05, p<0.01) and decreased SOD, GPx, and CAT activities (p<0.05) compared with the sham group. The results of this study suggest that ebselen may cause different effects depending on the dose employed. Ebselen may be protective against sciatic nerve I/R injury via antioxidant and antiapoptotic activities at a 15 mg/kg dose, conversely higher doses may cause detrimental effects.

  10. Hormonal regulation of phosphatidylcholine synthesis by reversible modulation of cytidylyltransferase.

    PubMed Central

    Kelly, K L; Gutierrez, G; Martin, A

    1988-01-01

    The effect of both lipolytic and antilipolytic hormones on the turnover of phosphatidylcholine in freshly isolated rat adipocytes was investigated. Treatment of adipocytes with agonists such as glucagon or isoprenaline that stimulate lipolysis through a cyclic AMP-dependent mechanism caused an increase in the incorporation of [Me-3H]choline into phosphatidylcholine. Pulse-chase studies indicated that the stimulation was due to an increase in the conversion of choline into phosphatidylcholine, which was both time- and dose-dependent. The stimulatory effect of isoprenaline was inhibited in a dose-dependent manner by oxytocin or insulin. Oxytocin inhibited the incorporation of [Me-3H]choline into phosphatidylcholine in both the presence and the absence of isoprenaline, whereas in the absence of isoprenaline insulin increased the incorporation of [Me-3H]choline into phosphatidylcholine. The effects of isoprenaline, oxytocin and insulin on the incorporation of [3H]choline into phosphatidylcholine were paralleled by changes in the activity of CTP:phosphocholine cytidylyltransferase. PMID:2849424

  11. Serum biomarkers for acute hepatotoxicity of Echis pyramidum snake venom in rats.

    PubMed

    Asmari, Abdulrahman K Al; Khan, Haseeb A; Banah, Faisal A; Buraidi, Ahmed A Al; Manthiri, Rajamohammed A

    2015-01-01

    Echis pyramidum is a venomous viper responsible for most cases of envenomation in Arabian Peninsula. We determined the acute phase (3-6 h) changes in serum markers of liver function including alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) and bilirubin in adult male Sprague Dawley rats injected with Echis pyramidum venom (EPV) in the doses of 0.00 (control), 0.25, 0.50 and 1.00 mg/kg bodyweight. We also analyzed markers of oxidative stress including superoxide dismutase (SOD), catalase (CAT), total thiols (T-SH) and thiobarbituric acids reactive substances (TBARS) in liver. The results showed significant and dose- and time-dependent increases in serum ALT, ALP and GGT activities after a single injection of EPV. Serum bilirubin was significantly increased by medium and high doses of EVP after 3 h post-injection and then decreased at 6 h. The low dose of EPV neither affected the activity of SOD nor altered the levels of liver T-SH and TBARS, however, it significantly decreased the activity of CAT at 6 h post-injection of EPV. The medium dose of EPV significantly reduced liver SOD activity after 6 h whereas the high dose significantly reduced the SOD activity at 3 h and 6 h post-dosing. Both medium and high doses of EPV caused significant as well as dose- and time-dependent reductions in liver CAT activities. The high dose significantly reduced T-SH and increased TBARS in rat liver. Further studies are warranted to test the pharmacological potential of early phase antioxidant therapy for neutralizing the toxic effects of EPV.

  12. Inflammatory biomarkers of sulfur mustard analog 2-chloroethyl ethyl sulfide-induced skin injury in SKH-1 hairless mice.

    PubMed

    Tewari-Singh, Neera; Rana, Sumeet; Gu, Mallikarjuna; Pal, Arttatrana; Orlicky, David J; White, Carl W; Agarwal, Rajesh

    2009-03-01

    Sulfur mustard (HD) is an alkylating and cytotoxic chemical warfare agent, which inflicts severe skin toxicity and an inflammatory response. Effective medical countermeasures against HD-caused skin toxicity are lacking due to limited knowledge of related mechanisms, which is mainly attributed to the requirement of more applicable and efficient animal skin toxicity models. Using a less toxic analog of HD, chloroethyl ethyl sulfide (CEES), we identified quantifiable inflammatory biomarkers of CEES-induced skin injury in dose- (0.05-2 mg) and time- (3-168 h) response experiments, and developed a CEES-induced skin toxicity SKH-1 hairless mouse model. Topical CEES treatment at high doses caused a significant dose-dependent increase in skin bi-fold thickness indicating edema. Histopathological evaluation of CEES-treated skin sections revealed increases in epidermal and dermal thickness, number of pyknotic basal keratinocytes, dermal capillaries, neutrophils, macrophages, mast cells, and desquamation of epidermis. CEES-induced dose-dependent increases in epidermal cell apoptosis and basal cell proliferation were demonstrated by the terminal deoxynucleotidyl transferase (tdt)-mediated dUTP-biotin nick end labeling and proliferative cell nuclear antigen stainings, respectively. Following an increase in the mast cells, myeloperoxidase activity in the inflamed skin peaked at 24 h after CEES exposure coinciding with neutrophil infiltration. F4/80 staining of skin integuments revealed an increase in the number of macrophages after 24 h of CEES exposure. In conclusion, these results establish CEES-induced quantifiable inflammatory biomarkers in a more applicable and efficient SKH-1 hairless mouse model, which could be valuable for agent efficacy studies to develop potential prophylactic and therapeutic interventions for HD-induced skin toxicity.

  13. Production of reactive oxygen species by withaferin A causes loss of type collagen expression and COX-2 expression through the PI3K/Akt, p38, and JNK pathways in rabbit articular chondrocytes.

    PubMed

    Yu, Seon-Mi; Kim, Song-Ja

    2013-11-01

    Withaferin A (WFA) is a major chemical constituent of Withania somnifera, also known as Indian ginseng. Many recent reports have provided evidence of its anti-tumor, anti-inflammation, anti-oxidant, and immune modulatory activities. Although the compound appears to have a large number of effects, its defined mechanisms of action have not yet been determined. We investigated the effects of WFA on loss of type collagen expression and inflammation in rabbit articular chondrocytes. WFA increased the production of reactive oxygen species, suggesting the induction of oxidative stress, in a dose-dependent manner. Also, we confirmed that WFA causes loss of type collagen expression and inflammation as determined by a decrease of type II collagen expression and an increase of cyclooxygenase-2 (COX-2) expression via western blot analysis in a dose- and time- dependent manner. WFA also reduced the synthesis of sulfated proteoglycan via Alcian blue staining and caused the synthesis of prostaglandin E2 (PGE2) via assay kit in dose- and time-dependent manners. Treatment with N-acetyl-L-cysteine (NAC), an antioxidant, inhibited WFA-induced loss of type II collagen expression and increase in COX-2 expression, accompanied by inhibition of reactive oxygen species production. WFA increased phosphorylation of both Akt and p38. Inhibition of PI3K/Akt, p38, and JNK with LY294002 (LY), SB203580 (SB), or SP600125 (SP) in WFA-treated cells rescued the expression of type II collagen and suppressed the expression of COX-2. These results demonstrate that WFA induces loss of type collagen expression and inflammation via PI3K/Akt, p38, and JNK by generating reactive oxygen species in rabbit articular chondrocytes. © 2013 Published by Elsevier Inc.

  14. Antiadrenergic and hemodynamic effects of ranolazine in conscious dogs.

    PubMed

    Zhao, Gong; Walsh, Erin; Shryock, John C; Messina, Eric; Wu, Yuzhi; Zeng, Dewan; Xu, Xiaobin; Ochoa, Manuel; Baker, Stephen P; Hintze, Thomas H; Belardinelli, Luiz

    2011-06-01

    Effects of ranolazine alone and in the presence of phenylephrine (PE) or isoproterenol (ISO) on hemodynamics, coronary blood flow and heart rate (HR) in the absence and presence of hexamethonium (a ganglionic blocker) were studied in conscious dogs. Ranolazine (0.4, 1.2, 3.6, and 6 mg/kg, intravenous) alone caused transient (<1 minute) and reversible hemodynamic changes. PE (0.3-10 μg/kg) caused a dose-dependent increase in blood pressure and decrease in HR. ISO (0.01-0.3 μg/kg) caused a dose-dependent decrease in blood pressure and an increase in HR. Ranolazine at high (11-13 mM), but not at moderate (4-5 mM) concentrations partially attenuated changes in mean arterial blood pressure and HR caused by either PE or ISO in normal conscious dogs. However, in dogs treated with hexamethonium (20 mg/kg) to cause autonomic blockade, ranolazine (both 4-5 and 11-13 μM) significantly attenuated both the PE- and ISO-induced changes in mean arterial blood pressure. The results suggest that a potential antiadrenergic effect of ranolazine was masked by autonomic control mechanisms in conscious dogs but could be observed when these mechanisms were inhibited (eg, in the hexamethonium-treated dog). Ranolazine, at plasma concentrations <10 μM and in conscious dogs with intact autonomic regulation, had minimal antiadrenergic (α and β) effects.

  15. Anti-Adrenergic and Hemodynamic Effects of Ranolazine in Conscious Dogs Zhao, Anti-Adrenergic Effect of Ranolazine

    PubMed Central

    Zhao, Gong; Walsh, Erin; Shryock, John; Messina, Eric; Wu, Yuzhi; Zeng, Dewan; Xu, Xiaobin; Ochoa, Manuel; Baker, Stephen; Hintze, Thomas; Belardinelli, Luiz

    2012-01-01

    Effects of ranolazine alone and in the presence of phenylephrine (PE) or isoproterenol (ISO) on hemodynamics, coronary blood flow (CBF) and heart rate (HR) in the absence and presence of hexamethonium (a ganglionic blocker) were studied in conscious dogs. Ranolazine (0.4, 1.2, 3.6 and 6 mg/kg, IV) alone caused transient (<1 min) and reversible hemodynamic changes. PE (0.3 to 10 μg/kg) caused a dose-dependent increase in BP and decrease in HR. ISO (0.01 to 0.3 μg/kg) caused a dose-dependent decrease in BP and increase in HR. Ranolazine at moderate (4-5 μM) and high (11-13 μM) concentrations did not affect the changes in MAP and HR caused by either PE or ISO, or partially attenuated these effects, respectively. However, in dogs treated with hexamethonium (20 mg/kg) to cause autonomic blockade, ranolazine (both 4-5 and 11-13 μM) significantly attenuated both the PE- and ISO-induced changes in MAP. The results suggest that a potential anti-adrenergic effect of ranolazine was masked by autonomic control mechanisms in conscious dogs, but could be observed when these mechanisms were inhibited (e.g., in the hexamethonium-treated dog). Ranolazine, at plasma concentrations below 10 μM and in conscious dogs with intact autonomic regulation, had minimal anti-adrenergic (α and β) effects. PMID:21633249

  16. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    PubMed

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-05

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Stimulatory effect of insulin on 5alpha-reductase type 1 (SRD5A1) expression through an Akt-dependent pathway in ovarian granulosa cells.

    PubMed

    Kayampilly, Pradeep P; Wanamaker, Brett L; Stewart, James A; Wagner, Carrie L; Menon, K M J

    2010-10-01

    Elevated levels of 5α-reduced androgens have been shown to be associated with hyperandrogenism and hyperinsulinemia, the leading causes of ovulatory dysfunction in women. 5α-Dihydrotestosterone reduces ovarian granulosa cell proliferation by inhibiting FSH-mediated mitogenic signaling pathways. The present study examined the effect of insulin on 5α-reductase, the enzyme that catalyses the conversion of androgens to their 5α-derivatives. Granulosa cells isolated from immature rat ovaries were cultured in serum-free, phenol red-free DMEM-F12 media and treated with different doses of insulin (0, 0.1, 1.0, and 10.0 μg/ml) for different time intervals up to 12 h. The expression of 5α-reductase type 1 mRNA, the predominant isoform found in granulosa cells, showed a significant (P<0.05) increase in response to the insulin treatment up to 12 h compared with control. The catalytic activity of 5α-reductase enzyme was also stimulated in a dose-depended manner (P<0.05). Inhibiting the Akt-dependent signaling pathway abolished the insulin-mediated increase in 5α-reductase mRNA expression, whereas inhibition of the ERK-dependent pathway had no effect. The dose-dependent increase in 5α-reductase mRNA expression as well as catalytic activity seen in response to insulin treatment was also demonstrated in the human granulosa cell line (KGN). In addition to increased mRNA expression, a dose-dependent increase in 5α-reductase protein expression in response to insulin was also seen in KGN cells, which corroborated well with that of mRNA expression. These results suggest that elevated levels of 5α-reduced androgens seen in hyperinsulinemic conditions might be explained on the basis of a stimulatory effect of insulin on 5α-reductase in granulosa cells. The elevated levels of these metabolites, in turn, might adversely affect growth and proliferation of granulosa cells, thereby impairing follicle growth and ovulation.

  18. 3,3',4,4',5-Pentachlorobiphenyl (PCB 126) Decreases Hepatic and Systemic Ratios of Epoxide to Diol Metabolites of Unsaturated Fatty Acids in Male Rats.

    PubMed

    Wu, Xianai; Yang, Jun; Morisseau, Christophe; Robertson, Larry W; Hammock, Bruce; Lehmler, Hans-Joachim

    2016-08-01

    Disruption of the homeostasis of oxygenated regulatory lipid mediators (oxylipins), potential markers of exposure to aryl hydrocarbon receptor (AhR) agonists, such as 3,3',4,4',5-pentachlorobiphenyl (PCB 126), is associated with a range of diseases, including nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Here we test the hypothesis that PCB 126 exposure alters the levels of oxylipins in rats. Male Sprague-Dawley rats (5-weeks old) were treated over a 3-month period every 2 weeks with intraperitoneal injections of PCB 126 in corn oil (cumulative doses of 0, 19.8, 97.8, and 390 µg/kg b.w.; 6 injections total). PCB 126 treatment caused a reduction in growth rates at the highest dose investigated, a dose-dependent decrease in thymus weights, and a dose-dependent increase in liver weights. Liver PCB 126 levels increased in a dose-dependent manner, while levels in plasma were below or close to the detection limit. The ratios of several epoxides to diol metabolites formed via the cytochrome P450 (P450) monooxygenase/soluble epoxide hydrolase (sEH) pathway from polyunsaturated fatty acids displayed a dose-dependent decrease in the liver and plasma, whereas levels of oxylipins formed by other metabolic pathways were generally not altered by PCB 126 treatment. The effects of PCB 126 on epoxide-to-diol ratios were associated with an increased CYP1A activity in liver microsomes and an increased sEH activity in liver cytosol and peroxisomes. These results suggest that oxylipins are potential biomarkers of exposure to PCB 126 and that the P450/sEH pathway is a therapeutic target for PCB 126-mediated hepatotoxicity that warrants further attention. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. for Permissions, please e-mail: journals.permissions@oup.com.

  19. First-in-man-proof of concept study with molidustat: a novel selective oral HIF-prolyl hydroxylase inhibitor for the treatment of renal anaemia.

    PubMed

    Böttcher, M; Lentini, S; Arens, E R; Kaiser, A; van der Mey, D; Thuss, U; Kubitza, D; Wensing, G

    2018-07-01

    Insufficient erythropoietin (EPO) synthesis is a relevant cause of renal anaemia in patients with chronic kidney disease. Molidustat, a selective hypoxia-inducible factor prolyl hydroxylase (HIF-PH) inhibitor, increases endogenous EPO levels dose dependently in preclinical models. We examined the pharmacokinetics, safety, tolerability and effect on EPO levels of single oral doses of molidustat in healthy male volunteers. This was a single-centre, randomized, single-blind, placebo-controlled, group-comparison, dose-escalation study. Molidustat was administered at doses of 5, 12.5, 25, 37.5 or 50 mg as a polyethylene glycol-based solution. In total, 45 volunteers received molidustat and 14 received placebo. Molidustat was absorbed rapidly, and the mean maximum plasma concentration and area under the concentration-time curve increased dose dependently. The mean terminal half-life was 4.64-10.40 h. A significant increase in endogenous EPO was observed following single oral doses of molidustat of 12.5 mg and above. Geometric mean peak EPO levels were 14.8 IU l -1 (90% confidence interval 13.0, 16.9) for volunteers who received placebo and 39.8 IU l -1 (90% confidence interval: 29.4, 53.8) for those who received molidustat 50 mg. The time course of EPO levels resembled the normal diurnal variation in EPO. Maximum EPO levels were observed approximately 12 h postdose and returned to baseline after approximately 24-48 h. All doses of molidustat were well tolerated and there were no significant changes in vital signs or laboratory safety parameters. Oral administration of molidustat to healthy volunteers elicited a dose-dependent increase in endogenous EPO. These results support the ongoing development of molidustat as a potential new treatment for patients with renal anaemia. © 2018 The British Pharmacological Society.

  20. Implication of cyclin-dependent kinase 5 in the development of psychological dependence on and behavioral sensitization to morphine.

    PubMed

    Narita, Minoru; Shibasaki, Masahiro; Nagumo, Yasuyuki; Narita, Michiko; Yajima, Yoshinori; Suzuki, Tsutomu

    2005-06-01

    In the present study, we investigated the role of cyclin-dependent kinase 5 (cdk5) in the brain dynamics changed by repeated in vivo treatment with morphine. The level of phosphorylated-cdk5 was significantly increased in the cingulate cortex of mice showing the morphine-induced rewarding effect. Under these conditions, roscovitine, a cdk5 inhibitor, given intracerebroventricularly (i.c.v.) caused a dose-dependent and significant inhibition of the morphine-induced rewarding effect. In addition, the dose-response effect of the morphine-induced rewarding effect was dramatically attenuated in cdk5 heterozygous (+/-) knockout mice. Furthermore, the development of behavioral sensitization by intermittent administration of morphine was virtually abolished in cdk5 (+/-) mice. These findings suggest that the induction and/or activation of cdk5 are implicated in the development of psychological dependence on morphine.

  1. Blockade of hyperpolarizing currents produces a dose-dependent effect on heart rate.

    PubMed

    Ziyatdinova, N I; Giniatullin, R A; Svyatova, N V; Zefirov, T L

    2001-03-01

    Intravenous injection of ZD 7288, a new specific hyperpolarizing current blocker, dose-dependently reduces heart rate in adult rats. The autonomic nervous system modulates changes in heart rate caused by hyperpolarizing currents.

  2. Effects of Taxol plus radiation on the apoptotic and mitotic indices of mouse intestinal crypt cells.

    PubMed

    Ozkan, L; Ozuysal, S; Egeli, U; Adim, S B; Tunca, B; Aydemir, N; Ceçener, G; Ergül, E; Akpinar, G; Cimen, C; Engin, K; Ahmed, M M

    2001-07-01

    In this study we investigated the effect of Taxol, radiation, or Taxol plus radiation on highly proliferative normal tissue--the intestinal crypt cells of Swiss albino mice. Swiss-albino mice, 3-4 months old, were used in this study. Taxol was administered by bolus intravenously through the tail vein. Radiation was given using a linear accelerator. There were four treatment categories, which comprised a total of 34 groups. Each group consisted of five animals. The first category was a control category which comprised one group (n = 5). The second treatment category was Taxol alone which comprised three groups (n = 15). The third treatment category was radiation alone which comprised three groups (n = 15). The fourth treatment category was Taxol plus radiation which comprised 27 groups (n = 135). Mice were killed 24 h after Taxol or radiation or combined administration using ether anesthesia. Using a light microscope, apoptotic and mitotic indices were counted on jejunal crypt cells of mice that were stained with hematoxylin-eosin. Differences between groups were statistically evaluated with Student's t-test. Taxol caused a dose-dependent increase in apoptosis (P = 0.045) and decreased the mitotic index (P = 0.006) at high doses. Similarly, radiation caused a dose-dependent increase in apoptosis (P = 0.046) and decreased the mitotic index (P = 0.299) at higher radiation doses. Compared to radiation alone, Taxol caused a significant induction of apoptosis (P = 0.010). In combination, no significant radiosensitizing effect of Taxol was observed (enhancement ratio < 1), when compared to radiation alone. However, an increase in apoptosis was observed after 24 h of Taxol exposure when compared to 12 or 48 h of Taxol exposure (P = 0.0001 and P = 0.0001). These findings suggest that Taxol did not cause a radiosensitizing effect in intestinal crypt cells. However, a 24-hour pretreatment of Taxol exposure followed by radiation caused significant induction of apoptosis and reduction of the mitotic index when compared to other Taxol timing sequences. Thus, the lack of a radiosensitizing effect of Taxol in these proliferative cells may be due to enhanced mitotic death rather than apoptotic death.

  3. Acute respiratory toxicity following inhalation exposure to soman in guinea pigs.

    PubMed

    Perkins, Michael W; Pierre, Zdenka; Rezk, Peter; Sabnekar, Praveena; Kabra, Kareem; Chanda, Soma; Oguntayo, Samuel; Sciuto, Alfred M; Doctor, Bhupendra P; Nambiar, Madhusoodana P

    2010-06-01

    Respiratory toxicity and lung injury following inhalation exposure to chemical warfare nerve agent soman was examined in guinea pigs without therapeutics to improve survival. A microinstillation inhalation exposure technique that aerosolizes the agent in the trachea was used to administer soman to anesthetized age and weight matched male guinea pigs. Animals were exposed to 280, 561, 841, and 1121 mg/m(3) concentrations of soman for 4 min. Survival data showed that all saline controls and animals exposed to 280 and 561 mg/m(3) soman survived, while animals exposed to 841, and 1121 mg/m(3) resulted in 38% and 13% survival, respectively. The microinstillation inhalation exposure LCt(50) for soman determined by probit analysis was 827.2mg/m(3). A majority of the animals that died at 1121 mg/m(3) developed seizures and died within 15-30 min post-exposure. There was a dose-dependent decrease in pulse rate and blood oxygen saturation of animals exposed to soman at 5-6.5 min post-exposure. Body weight loss increased with the dose of soman exposure. Bronchoalveolar lavage (BAL) fluid and blood acetylcholinesterase and butyrylcholinesterase activity was inhibited dose-dependently in soman treated groups at 24h. BAL cells showed a dose-dependent increase in cell death and total cell counts following soman exposure. Edema by wet/dry weight ratio of the accessory lung lobe and trachea was increased slightly in soman exposed animals. An increase in total bronchoalveolar lavage fluid protein was observed in soman exposed animals at all doses. Differential cell counts of BAL and blood showed an increase in total lymphocyte counts and percentage of neutrophils. These results indicate that microinstillation inhalation exposure to soman causes respiratory toxicity and acute lung injury in guinea pigs. (c) 2010 Elsevier Inc. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, Michael W.; Pierre, Zdenka; Rezk, Peter

    Respiratory toxicity and lung injury following inhalation exposure to chemical warfare nerve agent soman was examined in guinea pigs without therapeutics to improve survival. A microinstillation inhalation exposure technique that aerosolizes the agent in the trachea was used to administer soman to anesthetized age and weight matched male guinea pigs. Animals were exposed to 280, 561, 841, and 1121 mg/m{sup 3} concentrations of soman for 4 min. Survival data showed that all saline controls and animals exposed to 280 and 561 mg/m{sup 3} soman survived, while animals exposed to 841, and 1121 mg/m{sup 3} resulted in 38% and 13% survival,more » respectively. The microinstillation inhalation exposure LCt{sub 50} for soman determined by probit analysis was 827.2 mg/m{sup 3}. A majority of the animals that died at 1121 mg/m{sup 3} developed seizures and died within 15-30 min post-exposure. There was a dose-dependent decrease in pulse rate and blood oxygen saturation of animals exposed to soman at 5-6.5 min post-exposure. Body weight loss increased with the dose of soman exposure. Bronchoalveolar lavage (BAL) fluid and blood acetylcholinesterase and butyrylcholinesterase activity was inhibited dose-dependently in soman treated groups at 24 h. BAL cells showed a dose-dependent increase in cell death and total cell counts following soman exposure. Edema by wet/dry weight ratio of the accessory lung lobe and trachea was increased slightly in soman exposed animals. An increase in total bronchoalveolar lavage fluid protein was observed in soman exposed animals at all doses. Differential cell counts of BAL and blood showed an increase in total lymphocyte counts and percentage of neutrophils. These results indicate that microinstillation inhalation exposure to soman causes respiratory toxicity and acute lung injury in guinea pigs.« less

  5. Psilocybin dose-dependently causes delayed, transient headaches in healthy volunteers

    PubMed Central

    Johnson, Matthew W.; Sewell, R. Andrew; Griffiths, Roland R.

    2011-01-01

    Background Psilocybin is a well-characterized classic hallucinogen (psychedelic) with a long history of religious use by indigenous cultures, and nonmedical use in modern societies. Although psilocybin is structurally related to migraine medications, and case studies suggest that psilocybin may be efficacious in treatment of cluster headache, little is known about the relationship between psilocybin and headache. Methods This double-blind study examined a broad range of psilocybin doses (0, 5, 10, 20, and 30 mg/70 kg) on headache in 18 healthy participants. Results Psilocybin frequently caused headache, the incidence, duration, and severity of which increased in a dose-dependent manner. All headaches had delayed onset, were transient, and lasted no more than a day after psilocybin administration. Conclusions Possible mechanisms for these observations are discussed, and include induction of delayed headache through nitric oxide release. These data suggest that headache is an adverse event to be expected with the nonmedical use of psilocybin-containing mushrooms as well as the administration of psilocybin in human research. Headaches were neither severe nor disabling, and should not present a barrier to future psilocybin research. PMID:22129843

  6. Psilocybin dose-dependently causes delayed, transient headaches in healthy volunteers.

    PubMed

    Johnson, Matthew W; Sewell, R Andrew; Griffiths, Roland R

    2012-06-01

    Psilocybin is a well-characterized classic hallucinogen (psychedelic) with a long history of religious use by indigenous cultures, and nonmedical use in modern societies. Although psilocybin is structurally related to migraine medications, and case studies suggest that psilocybin may be efficacious in treatment of cluster headache, little is known about the relationship between psilocybin and headache. This double-blind study examined a broad range of psilocybin doses (0, 5, 10, 20, and 30 mg/70 kg) on headache in 18 healthy participants. Psilocybin frequently caused headache, the incidence, duration, and severity of which increased in a dose-dependent manner. All headaches had delayed onset, were transient, and lasted no more than a day after psilocybin administration. Possible mechanisms for these observations are discussed, and include induction of delayed headache through nitric oxide release. These data suggest that headache is an adverse event to be expected with the nonmedical use of psilocybin-containing mushrooms as well as the administration of psilocybin in human research. Headaches were neither severe nor disabling, and should not present a barrier to future psilocybin research. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro.

    PubMed

    Lindberg, Hanna K; Falck, Ghita C-M; Suhonen, Satu; Vippola, Minnamari; Vanhala, Esa; Catalán, Julia; Savolainen, Kai; Norppa, Hannu

    2009-05-08

    Despite the increasing industrial use of different nanomaterials, data on their genotoxicity are scant. In the present study, we examined the potential genotoxic effects of carbon nanotubes (CNTs; >50% single-walled, approximately 40% other CNTs; 1.1 nm x 0.5-100 microm; Sigma-Aldrich) and graphite nanofibres (GNFs; 95%; outer diameter 80-200 nm, inner diameter 30-50 nm, length 5-20 microm; Sigma-Aldrich) in vitro. Genotoxicity was assessed by the single cell gel electrophoresis (comet) assay and the micronucleus assay (cytokinesis-block method) in human bronchial epithelial BEAS 2B cells cultured for 24h, 48h, or 72h with various doses (1-100 microg/cm(2), corresponding to 3.8-380 microg/ml) of the carbon nanomaterials. In the comet assay, CNTs induced a dose-dependent increase in DNA damage at all treatment times, with a statistically significant effect starting at the lowest dose tested. GNFs increased DNA damage at all doses in the 24-h treatment, at two doses (40 and 100 microg/cm(2)) in the 48-h treatment (dose-dependent effect) and at four doses (lowest 10 microg/cm(2)) in the 72-h treatment. In the micronucleus assay, no increase in micronucleated cells was observed with either of the nanomaterials after the 24-h treatment or with CNTs after the 72-h treatment. The 48-h treatment caused a significant increase in micronucleated cells at three doses (lowest 10 microg/cm(2)) of CNTs and at two doses (5 and 10 microg/cm(2)) of GNFs. The 72-h treatment with GNFs increased micronucleated cells at four doses (lowest 10 microg/cm(2)). No dose-dependent effects were seen in the micronucleus assay. The presence of carbon nanomaterial on the microscopic slides disturbed the micronucleus analysis and made it impossible at levels higher than 20 microg/cm(2) of GNFs in the 24-h and 48-h treatments. In conclusion, our results suggest that both CNTs and GNFs are genotoxic in human bronchial epithelial BEAS 2B cells in vitro. This activity may be due to the fibrous nature of these carbon nanomaterials with a possible contribution by catalyst metals present in the materials-Co and Mo in CNTs (<5wt.%) and Fe (<3wt.%) in GNFs.

  8. Exposure to sorbitol during lactation causes metabolic alterations and genotoxic effects in rat offspring.

    PubMed

    Cardoso, Felipe S; Araujo-Lima, Carlos F; Aiub, Claudia A F; Felzenszwalb, Israel

    2016-10-17

    Sorbitol is a polyol used by the food industry as a sweetener. Women are consuming diet and light products containing sorbitol during pregnancy and in the postnatal period to prevent themselves from excessive weight gain and maintain a slim body. Although there is no evidence for the genotoxicity of sorbitol in the perinatal period, this study focused on evaluating the effects of the maternal intake of sorbitol on the biochemical and toxicological parameters of lactating Wistar rat offspring after 14days of mother-to-offspring exposure. A dose-dependent reduction of offspring length was observed. An increase in sorbitol levels determined in the milk was also observed. However, we detected an inverse relationship between the exposition dose in milk fructose and triacylglycerols concentrations. There was an increase in the plasmatic levels of ALT, AST and LDLc and a decrease in proteins, cholesterol and glucose levels in the offspring. Sorbitol exposure caused hepatocyte genotoxicity, including micronuclei induction. Maternal sorbitol intake induced myelotoxicity and myelosuppression in their offspring. The Comet assay of the blood cells detected a dose-dependent genotoxic response within the sorbitol-exposed offspring. According to our results, sorbitol is able to induce important metabolic alterations and genotoxic responses in the exposed offspring. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Delayed adverse effects of neonatal exposure to diethylstilbestrol and their dose dependency in female rats.

    PubMed

    Yoshida, Midori; Takahashi, Miwa; Inoue, Kaoru; Hayashi, Seigo; Maekawa, Akihiko; Nishikawa, Akiyoshi

    2011-08-01

    Neonatal exposure to estrogenic chemicals causes irreversible complex damage to the hypothalamus-pituitary-gonadal axis and reproductive system in females. Some lesions are noted after maturation as delayed adverse effects. We investigated the characteristics and dose dependence of delayed effects using female rats neonatally exposed to diethylstilbestrol (DES). Female Donryu rats were subcutaneously injected with a single dose of DES of 0 (control), 0.15, 1.5, 15, 150, or 1,500 µg/kg bw after birth. All except the lowest dose had estrogenic activity in a uterotrophic assay. All rats at 1500 µg/kg and some at 150 µg/kg showed abnormal morphologies in the genital tract, indicating they were androgenized before maturation. Although no morphological abnormalities were noted at 15 µg/kg or lower, onset of persistent estrus was significantly accelerated in the 1.5, 15, and 150 µg/kg groups with dose dependency, and the latest onset was from seventeen to twenty-one weeks of age at 1.5 µg/kg. The neonatal exposure to DES increased uterine adenocarcinoma development only at 150 µg/kg, although uterine anomalies were detected at 1,500 µg/kg. These results indicate that neonatal exposure to DES, which exerts estrogenic activity in vivo, induces delayed adverse effects in female rats in a dose-dependent manner. Early onset of persistent estrus appears to be the most sensitive parameter.

  10. Dose-dependent effects of alpha-naphthylisothiocyanate disconnect biliary fibrosis from hepatocellular necrosis.

    PubMed

    Joshi, Nikita; Ray, Jessica L; Kopec, Anna K; Luyendyk, James P

    2017-01-01

    Exposure of rodents to the xenobiotic α-naphthylisothiocyanate (ANIT) is an established model of experimental intrahepatic bile duct injury. Administration of ANIT to mice causes neutrophil-mediated hepatocellular necrosis. Prolonged exposure of mice to ANIT also produces bile duct hyperplasia and liver fibrosis. However, the mechanistic connection between ANIT-induced hepatocellular necrosis and bile duct hyperplasia and fibrosis is not well characterized. We examined impact of two different doses of ANIT, by feeding chow containing ANIT (0.05%, 0.1%), on the severity of various liver pathologies in a model of chronic ANIT exposure. ANIT-elicited increases in liver inflammation and hepatocellular necrosis increased with dose. Remarkably, there was no connection between increased hepatocellular necrosis and bile duct hyperplasia and peribiliary fibrosis, as these pathologies increased similarly in mice exposed to either dose of ANIT. The results indicate that the severity of hepatocellular necrosis does not dictate the extent of bile duct hyperplasia/fibrosis in ANIT-exposed mice. © 2016 Wiley Periodicals, Inc.

  11. Dose-Dependent Effects of Alpha-Naphthylisothiocyanate Disconnect Biliary Fibrosis from Hepatocellular Necrosis

    PubMed Central

    Joshi, Nikita; Ray, Jessica L.; Kopec, Anna K.; Luyendyk, James P.

    2017-01-01

    Exposure of rodents to the xenobiotic α-naphthylisothiocyanate (ANIT) is an established model of experimental intrahepatic bile duct injury. Administration of ANIT to mice causes neutrophil-mediated hepatocellular necrosis. Prolonged exposure of mice to ANIT also produces bile duct hyperplasia and liver fibrosis. However, the mechanistic connection between ANIT-induced hepatocellular necrosis and bile duct hyperplasia and fibrosis is not well-characterized. We examined impact of two different doses of ANIT, by feeding chow containing ANIT (0.05%, 0.1%), on the severity of various liver pathologies in a model of chronic ANIT exposure. ANIT-elicited increases in liver inflammation and hepatocellular necrosis increased with dose. Remarkably, there was no connection between increased hepatocellular necrosis and bile duct hyperplasia and peribiliary fibrosis, as these pathologies increased similarly in mice exposed to either dose of ANIT. The results indicate that the severity of hepatocellular necrosis does not dictate the extent of bile duct hyperplasia/fibrosis in ANIT-exposed mice. PMID:27605088

  12. Necroptosis contributes to methamphetamine-induced cytotoxicity in rat cortical neurons.

    PubMed

    Xiong, Kun; Liao, Huidan; Long, Lingling; Ding, Yanjun; Huang, Jufang; Yan, Jie

    2016-09-01

    Necroptosis, a programmed necrosis, is involved in various types of neurodegenerative diseases. In this study, we investigated whether necroptosis contributed to neuronal damage in a methamphetamine injury model. Primary cultures of embryonic cortical neurons from Sprague-Dawley rats were subjected to different doses of methamphetamine with/without pre-treatment with a specific necroptosis inhibitor, Necrostatin-1. Necrosis was assessed by determining lactate dehydrogenase release and by Annexin V/propidium iodide double staining, while the neuronal ultra-structure was examined by electron microscopy. Tumor necrosis factor-α protein levels were determined by enzyme-linked immunosorbent assay. At early stages (12h) of post-treatment with methamphetamine, significant necrosis occurred and the viability of neurons decreased in a dose- and time-dependent manner in this model of acute neuronal injury. Pretreatment with Necrostatin-1 led to significant neuronal preservation compared with the methamphetamine-treated groups. Furthermore, tumor necrosis factor-α expression increased in a dose-dependent manner following methamphetamine exposure. Methamphetamine induced necrosis in rat cortical neurons in vitro, both time and dose dependently, and necroptosis may be an important newly identified mode of cortical neuronal death caused by single high-dose methamphetamine administration. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Leuco-crystal-violet micelle gel dosimeters: Component effects on dose-rate dependence

    NASA Astrophysics Data System (ADS)

    Xie, J. C.; Katz, E. A. B.; Alexander, K. M.; Schreiner, L. J.; McAuley, K. B.

    2017-05-01

    Designed experiments were performed to produce empirical models for the dose sensitivity, initial absorbance, and dose-rate dependence respectively for leucocrystal violet (LCV) micelle gel dosimeters containing cetyltrimethylammonium bromide (CTAB) and 2,2,2-trichloroethanol (TCE). Previous gels of this type showed dose-rate dependent behaviour, producing an ˜18% increase in dose sensitivity between dose rates of 100 and 600 cGy min-1. Our models predict that the dose rate dependence can be reduced by increasing the concentration of TCE, CTAB and LCV. Increasing concentrations of LCV and CTAB produces a significant increase in dose sensitivity with a corresponding increase in initial absorbance. An optimization procedure was used to determine a nearly dose-rate independent gel which maintained high sensitivity and low initial absorbance. This gel which contains 33 mM CTAB, 1.25 mM LCV, and 96 mM TCE in 25 mM trichloroacetic acid and 4 wt% gelatin showed an increase in dose sensitivity of only 4% between dose rates of 100 and 600 cGy min-1, and provides an 80% greater dose sensitivity compared to Jordan’s standard gels with similar initial absorbance.

  14. Redox Signaling and Bioenergetics Influence Lung Cancer Cell Line Sensitivity to the Isoflavone ME-344

    PubMed Central

    Manevich, Yefim; Reyes, Leticia; Britten, Carolyn D.; Townsend, Danyelle M.

    2016-01-01

    ME-344 [(3R,4S)-3,4-bis(4-hydroxyphenyl)-8-methyl-3,4-dihydro-2H-chromen-7-ol] is a second-generation derivative natural product isoflavone presently under clinical development. ME-344 effects were compared in lung cancer cell lines that are either intrinsically sensitive or resistant to the drug and in primary immortalized human lung embryonic fibroblasts (IHLEF). Cytotoxicity at low micromolar concentrations occurred only in sensitive cell lines, causing redox stress, decreased mitochondrial ATP production, and subsequent disruption of mitochondrial function. In a dose-dependent manner the drug caused instantaneous and pronounced inhibition of oxygen consumption rates (OCR) in drug-sensitive cells (quantitatively significantly less in drug-resistant cells). This was consistent with targeting of mitochondria by ME-344, with specific effects on the respiratory chain (resistance correlated with higher glycolytic indexes). OCR inhibition did not occur in primary IHLEF. ME-344 increased extracellular acidification rates in drug-resistant cells (significantly less in drug-sensitive cells), implying that ME-344 targets mitochondrial proton pumps. Only in drug-sensitive cells did ME-344 dose-dependently increase the intracellular generation of reactive oxygen species and cause oxidation of total (mainly glutathione) and protein thiols and the concomitant immediate increases in NADPH levels. We conclude that ME-344 causes complex, redox-specific, and mitochondria-targeted effects in lung cancer cells, which differ in extent from normal cells, correlate with drug sensitivity, and provide indications of a beneficial in vitro therapeutic index. PMID:27255112

  15. Effect of lithium chloride and antineoplastic drugs on survival and cell cycle of androgen-dependent prostate cancer LNCap cells

    PubMed Central

    Azimian-Zavareh, Vajihe; Hossein, Ghamartaj; Janzamin, Ehsan

    2012-01-01

    Objective: Glycogen synthase kinase-3β (GSK-3β) has been reported to be required for androgen receptor (AR) activity. This study sought to determine the usefulness of lithium chloride (LiCl) as a highly selective inhibitor of GSK-3β to increase the sensitivity of LNCap cells to doxorubicin (Dox), etoposide (Eto), and vinblastine (Vin) drugs. Materials and Methods: Thiazolyl Blue Tetrazolium Blue (MTT) assay was used to determine the cytotoxic effect to LiCl alone or in combination with low dose and IC50 doses of drugs. Subsequently, cell cycle analysis was performed by using flow cytometry. Results: LiCl showed cytotoxic effect in a dose- and time-dependent manner (P<0.001). Both Dox (100 or 280 nM) and Vin IC50 (5 nM) doses caused G2/M-phase arrest (P<0.001) compared with control. However, low dose (10 μM) or IC50 (70 μM) Eto doses showed G2/M or S-phase arrests, respectively (P<0.001). Combination of low dose or IC50 dose of Eto with LiCl showed increased apoptosis as revealed by high percent of cells in SubG1 (P<0.05, P<0.01, respectively). Moreover, Eto (10 μM) led to decreased percent of cells in G2/M phase when combined with LiCl (P<0.05). Conclusion: This study showed that LiCl increases apoptosis of (LNCap) Lymph Node Carcinoma of the Prostate cells in the presence of Eto, which is S- and G2-phase-specific drug. PMID:23248400

  16. Geometrical correction of the e-beam proximity effect for raster scan systems

    NASA Astrophysics Data System (ADS)

    Belic, Nikola; Eisenmann, Hans; Hartmann, Hans; Waas, Thomas

    1999-06-01

    Increasing demands on pattern fidelity and CD accuracy in e- beam lithography require a correction of the e-beam proximity effect. The new needs are mainly coming from OPC at mask level and x-ray lithography. The e-beam proximity limits the achievable resolution and affects neighboring structures causing under- or over-exposion depending on the local pattern densities and process settings. Methods to compensate for this unequilibrated does distribution usually use a dose modulation or multiple passes. In general raster scan systems are not able to apply variable doses in order to compensate for the proximity effect. For system of this kind a geometrical modulation of the original pattern offers a solution for compensation of line edge deviations due to the proximity effect. In this paper a new method for the fast correction of the e-beam proximity effect via geometrical pattern optimization is described. The method consists of two steps. In a first step the pattern dependent dose distribution caused by back scattering is calculated by convolution of the pattern with the long range part of the proximity function. The restriction to the long range part result in a quadratic sped gain in computing time for the transformation. The influence of the short range part coming from forward scattering is not pattern dependent and can therefore be determined separately in a second step. The second calculation yields the dose curve at the border of a written structure. The finite gradient of this curve leads to an edge displacement depending on the amount of underground dosage at the observed position which was previously determined in the pattern dependent step. This unintended edge displacement is corrected by splitting the line into segments and shifting them by multiples of the writers address grid to the opposite direction.

  17. Evaluation of the RBC Pig-a and PIGRET assays using single doses of hydroxyurea and melphalan in rats.

    PubMed

    Adachi, Hideki; Uematsu, Yasuaki; Yamada, Toru

    2016-11-15

    To evaluate the suitability of the rat Pig-a assay on reticulocytes (PIGRET assay) as a short-term test, red blood cell (RBC) Pig-a and PIGRET assays after single doses with hydroxyurea (HU) and melphalan (L-PAM) were conducted and the results of both assays were compared. HU was administered once orally to male SD rats at 250, 500 and 1000mg/kg, and both assays were conducted using peripheral blood withdrawn from the jugular vein at 1, 2 and 4 weeks after dosing. L-PAM was administered at 1.25, 2.5 and 5mg/kg in the same manner. L-PAM produced significant dose-dependent increases in mutant frequencies in the PIGRET assay after single oral doses, but did not produce dose-dependent increases in mutant frequencies in the RBC Pig-a assay. These results suggest that the PIGRET assay is more sensitive for the evaluation of the mutagenic potential of L-PAM than the RBC Pig-a assay. In contrast, HU, a clastogenic but not DNA-reactive compound, gave negative results in both assays. The results with these 2 chemicals indicate that the single-dose PIGRET assay in rats has the potential to properly detect DNA-reactive compounds that directly cause DNA damage in a short-term assay. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. ¹H NMR-based metabolic profiling of naproxen-induced toxicity in rats.

    PubMed

    Jung, Jeeyoun; Park, Minhwa; Park, Hye Jin; Shim, Sun Bo; Cho, Yang Ha; Kim, Jinho; Lee, Ho-Sub; Ryu, Do Hyun; Choi, Donwoong; Hwang, Geum-Sook

    2011-01-15

    The dose-dependent perturbations in urinary metabolite concentrations caused by naproxen toxicity were investigated using ¹H NMR spectroscopy coupled with multivariate statistical analysis. Histopathologic evaluation of naproxen-induced acute gastrointestinal damage in rats demonstrated a significant dose-dependent effect. Furthermore, principal component analysis (PCA) of ¹H NMR from rat urine revealed a dose-dependent metabolic shift between the vehicle-treated control rats and rats treated with low-dose (10 mg/kg body weight), moderate-dose (50 mg/kg), and high-dose (100 mg/kg) naproxen, coinciding with their gastric damage scores after naproxen administration. The resultant metabolic profiles demonstrate that the naproxen-induced gastric damage exhibited energy metabolism perturbations that elevated their urinary levels of citrate, cis-aconitate, creatine, and creatine phosphate. In addition, naproxen administration decreased choline level and increased betaine level, indicating that it depleted the main protective constituent of the gastric mucosa. Moreover, naproxen stimulated the decomposition of tryptophan into kynurenate, which inhibits fibroblast growth factor-1 and delays ulcer healing. These findings demonstrate that ¹H NMR-based urinary metabolic profiling can facilitate noninvasive and rapid diagnosis of drug side effects and is suitable for elucidating possible biological pathways perturbed by drug toxicity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Multichannel film dosimetry with nonuniformity correction.

    PubMed

    Micke, Andre; Lewis, David F; Yu, Xiang

    2011-05-01

    A new method to evaluate radiochromic film dosimetry data scanned in multiple color channels is presented. This work was undertaken to demonstrate that the multichannel method is fundamentally superior to the traditional single channel method. The multichannel method allows for the separation and removal of the nondose-dependent portions of a film image leaving a residual image that is dependent only on absorbed dose. Radiochromic films were exposed to 10 x 10 cm radiation fields (Co-60 and 6 MV) at doses up to about 300 cGy. The films were scanned in red-blue-green (RGB) format on a flatbed color scanner and measured to build calibration tables relating the absorbed dose to the response of the film in each of the color channels. Film images were converted to dose maps using two methods. The first method used the response from a single color channel and the second method used the response from all three color channels. The multichannel method allows for the separation of the scanned signal into one part that is dose-dependent and another part that is dose-independent and enables the correction of a variety of disturbances in the digitized image including nonuniformities in the active coating on the radiochromic film as well as scanner related artifacts. The fundamental mathematics of the two methods is described and the dose maps calculated from film images using the two methods are compared and analyzed. The multichannel dosimetry method was shown to be an effective way to separate out non-dose-dependent abnormalities from radiochromic dosimetry film images. The process was shown to remove disturbances in the scanned images caused by nonhomogeneity of the radiochromic film and artifacts caused by the scanner and to improve the integrity of the dose information. Multichannel dosimetry also reduces random noise in the dose images and mitigates scanner-related artifacts such as lateral position dependence. In providing an ability to calculate dose maps from data in all the color channels the multichannel method provides the ability to examine the agreement between the color channels. Furthermore, when using calibration data to convert RGB film images to dose using the new method, poor correspondence between the dose calculations for the three color channels provides an important indication that the this new technique enables easy indication in case the dose and calibration films are curve mismatched. The method permit compensation for thickness nonuniformities in the film, increases the signal to noise level, mitigates the lateral dose-dependency of flatbed scanners effect of the calculated dose map and extends the evaluable dose range to 10 cGy-100 Gy. Multichannel dosimetry with radiochromic film like Gafchromic EBT2 is shown to have significant advantages over single channel dosimetry. It is recommended that the dosimetry protocols described be implemented when using this radiochromic film to ensure the best data integrity and dosimetric accuracy.

  20. Lubiprostone Increases Small Intestinal Smooth Muscle Contractions Through a Prostaglandin E Receptor 1 (EP1)-mediated Pathway.

    PubMed

    Chan, Walter W; Mashimo, Hiroshi

    2013-07-01

    Lubiprostone, a chloride channel type 2 (ClC-2) activator, was thought to treat constipation by enhancing intestinal secretion. It has been associated with increased intestinal transit and delayed gastric emptying. Structurally similar to prostones with up to 54% prostaglandin E2 activity on prostaglandin E receptor 1 (EP1), lubiprostone may also exert EP1-mediated procontractile effect on intestinal smooth muscles. We investigated lubiprostone's effects on intestinal smooth muscle contractions and pyloric sphincter tone. Isolated murine small intestinal (longitudinal and circular) and pyloric tissues were mounted in organ baths with modified Krebs solution for isometric recording. Basal muscle tension and response to electrical field stimulation (EFS; 2 ms pulses/10 V/6 Hz/30 sec train) were measured with lubiprostone (10(-10)-10(-5) M) ± EP1 antagonist. Significance was established using Student t test and P < 0.05. Lubiprostone had no effect on the basal tension or EFS-induced contractions of longitudinal muscles. With circular muscles, lubiprostone caused a dose-dependent increase in EFS-induced contractions (2.11 ± 0.88 to 4.43 ± 1.38 N/g, P = 0.020) that was inhibited by pretreatment with EP1 antagonist (1.69 ± 0.70 vs. 4.43 ± 1.38 N/g, P = 0.030). Lubiprostone had no effect on circular muscle basal tension, but it induced a dose-dependent increase in pyloric basal tone (1.07 ± 0.01 to 1.97 ± 0.86 fold increase, P < 0.05) that was inhibited by EP1 antagonist. In mice, lubiprostone caused a dose-dependent and EP1-mediated increase in contractility of circular but not longitudinal small intestinal smooth muscles, and in basal tone of the pylorus. These findings suggest another mechanism for lubiprostone's observed clinical effects on gastrointestinal motility.

  1. Astaxanthin Inhibits Proliferation of Human Gastric Cancer Cell Lines by Interrupting Cell Cycle Progression.

    PubMed

    Kim, Jung Ha; Park, Jong-Jae; Lee, Beom Jae; Joo, Moon Kyung; Chun, Hoon Jai; Lee, Sang Woo; Bak, Young-Tae

    2016-05-23

    Astaxanthin is a carotenoid pigment that has antioxidant, antitumoral, and anti-inflammatory properties. In this in vitro study, we investigated the mechanism of anticancer effects of astaxanthin in gastric carcinoma cell lines. The human gastric adenocarcinoma cell lines AGS, KATO-III, MKN-45, and SNU-1 were treated with various concentrations of astaxanthin. A cell viability test, cell cycle analysis, and immunoblotting were performed. The viability of each cancer cell line was suppressed by astaxanthin in a dose-dependent manner with significantly decreased proliferation in KATO-III and SNU-1 cells. Astaxanthin increased the number of cells in the G0/G1 phase but reduced the proportion of S phase KATO-III and SNU-1 cells. Phosphorylated extracellular signal-regulated kinase (ERK) was decreased in an inverse dose-dependent correlation with astaxanthin concentration, and the expression of p27(kip-1) increased the KATO-III and SNU-1 cell lines in an astaxanthin dose-dependent manner. Astaxanthin inhibits proliferation by interrupting cell cycle progression in KATO-III and SNU-1 gastric cancer cells. This may be caused by the inhibition of the phosphorylation of ERK and the enhanced expression of p27(kip-1).

  2. Sedum mexicanum Britt. Induces Apoptosis of Primary Rat Activated Hepatic Stellate Cells.

    PubMed

    Lee, Shou-Lun; Chin, Ting-Yu; Lai, Ching-Long; Wang, Wen-Han

    2015-01-01

    Background. Liver fibrosis is a significant liver disease in Asian countries. Sedum mexicanum Britt. (SM) has been claimed to have antihepatitis efficacy. In traditional folk medicine, a solution of boiling water-extracted SM (SME) is consumed to prevent and treat hepatitis. However, its efficacy has not yet been verified. The purpose of this study was to investigate the in vitro effect of SME on hepatoprotection. Methods. Hepatic stellate cells (HSCs) and hepatocytes (HCs) were isolated from the livers of the rats by enzymatic digestion and density gradient centrifugation. Results. Treating the HCs and aHSCs with SME caused a dose-dependent decrease in the viability of aHSCs but not that of HCs. In addition, treatment with SME resulted in apoptosis of aHSCs, as determined by DAPI analysis and flow cytometry. SME also increased the amount of cleaved caspase-3, cleaved caspase-9, and cleaved poly ADP-ribose polymerase (PARP) in aHSCs. Furthermore, SME treatment induced a dose-dependent reduction in Bcl-2 expression and increased the expression of Bax in aHSCs. Conclusions. SME did not cause cytotoxicity in HCs, but it induced apoptosis in aHSCs through the mitochondria-dependent caspase-3 pathway. Therefore, SME may possess therapeutic potential for liver fibrosis.

  3. Sedum mexicanum Britt. Induces Apoptosis of Primary Rat Activated Hepatic Stellate Cells

    PubMed Central

    Lee, Shou-Lun; Chin, Ting-Yu; Lai, Ching-Long; Wang, Wen-Han

    2015-01-01

    Background. Liver fibrosis is a significant liver disease in Asian countries. Sedum mexicanum Britt. (SM) has been claimed to have antihepatitis efficacy. In traditional folk medicine, a solution of boiling water-extracted SM (SME) is consumed to prevent and treat hepatitis. However, its efficacy has not yet been verified. The purpose of this study was to investigate the in vitro effect of SME on hepatoprotection. Methods. Hepatic stellate cells (HSCs) and hepatocytes (HCs) were isolated from the livers of the rats by enzymatic digestion and density gradient centrifugation. Results. Treating the HCs and aHSCs with SME caused a dose-dependent decrease in the viability of aHSCs but not that of HCs. In addition, treatment with SME resulted in apoptosis of aHSCs, as determined by DAPI analysis and flow cytometry. SME also increased the amount of cleaved caspase-3, cleaved caspase-9, and cleaved poly ADP-ribose polymerase (PARP) in aHSCs. Furthermore, SME treatment induced a dose-dependent reduction in Bcl-2 expression and increased the expression of Bax in aHSCs. Conclusions. SME did not cause cytotoxicity in HCs, but it induced apoptosis in aHSCs through the mitochondria-dependent caspase-3 pathway. Therefore, SME may possess therapeutic potential for liver fibrosis. PMID:26078767

  4. [Radiation load on the skin using a silicone-coated polyamide wound dressing during photon and electron radiotherapy].

    PubMed

    Thilmann, C; Adamietz, I A; Ramm, U; Mose, S; Saran, F; Böttcher, H D

    1996-05-01

    Silicone-coated polyamide wound dressing is frequently used for the supportive treatment in patients with radiation induced skin lesions. The use of this kind of dressing during radiotherapy with high energy beams shifts the dose built-up effect towards the skin surface. Thus the dose delivered to the skin increases. The present work quantifies changes of the skin dose by a commercial silicon-coated polyamide wound dressing. The dependence on the beam quality and on different treatment techniques is investigated. Measurements were performed with photon (60Co, 6 MV, 42 MV) and electron (7 MeV, 20 MeV, 40 MeV) beams using thin LiF thermoluminescence dosimeters (TLD) in a perspex phantom. The beams were directed perpendicularly to the phantom surface. For 60Co and 6 MV photon beams the skin dose was evaluated in vivo at different beam arrangements and at a given reference dose. For 60Co, 6 MV and 42 MV photon beams wound dressing caused a dose increase on the surface of the perspex phantom by a factor of 1.65, 1.39 and 1.33 respectively. Using oblique or rotational techniques for 60Co and 6 MV photon irradiation the wound dressing increased the skin dose but less compared to perpendicular beam direction. For electron beams the skin dose is relatively high (from 84% to 92%) and an increase by a dressing has no clinical relevance (factor 1.03 to 1.05). The silicone-coated polyamide wound dressing causes no relevant skin dose increase during radiation treatment with electron beams and can be left on the skin during irradiation. During radiation treatment with photon beams like 60Co and 6 MV the protective procedure should be adapted to skin changes, in case of strong skin reactions a removal during the time of irradiation should be considered.

  5. GABAergic control of food intake in the meat-type chickens.

    PubMed

    Jonaidi, H; Babapour, V; Denbow, D M

    2002-08-01

    This study examined the effects of intracerebroventricular injections of gamma-aminobutyric acid (GABA) agonists on short-term food intake in meat-type cockerels. In Experiment 1, birds were injected with various doses of muscimol, a GABA(A) agonist. In Experiment 2, the birds received bicuculline, a GABA(A) antagonist, prior to injection of muscimol. In Experiment 3, the effect of varying doses of baclofen, a GABA(B) agonist, on food intake was determined. The intracerebroventricular injection of muscimol caused a dose-dependent increase in food intake. This effect was significantly attenuated by pretreatment with bicuculline. Food intake was not affected by the intracerebroventricular injection of baclofen. These results suggest that GABA acts within the brain of broilers at a GABA(A), but not GABA(B), receptor to increase voluntary food intake.

  6. An evaluation of some pertinent parameters that influence the dosimetric performance of synthetic diamond detectors

    NASA Astrophysics Data System (ADS)

    Ade, N.; Nam, T. L.; Mhlanga, S. H.

    2013-05-01

    Although the near-tissue equivalence of diamond allows the direct measurement of dose for clinical applications without the need for energy-corrections, it is often cited that diamond detectors require pre-irradiation, a procedure necessary to stabilize the response or sensitivity of a diamond detector before dose measurements. In addition it has been pointed out that the relative dose measured with a diamond detector requires dose rate dependence correction and that the angular dependence of a detector could be due to its mechanical design or to the intrinsic angular sensitivity of the detection process. While the cause of instability of response has not been meticulously investigated, the issue of dose rate dependence correction is uncertain as some studies ignored it but reported good results. The aims of this study were therefore to investigate, in particular (1) the major cause of the unstable response of diamond detectors requiring pre-irradiation; (2) the influence of dose rate dependence correction in relative dose measurements; and (3) the angular dependence of the diamond detectors. The study was conducted with low-energy X-rays and electron therapy beams on HPHT and CVD synthesized diamonds. Ionization chambers were used for comparative measurements. Through systematic investigations, the major cause of the unstable response of diamond detectors requiring the recommended pre-irradiation step was isolated and attributed to the presence and effects of ambient light. The variation in detector's response between measurements in light and dark conditions could be as high as 63% for a CVD diamond. Dose rate dependence parameters (Δ values) of 0.950 and 1.035 were found for the HPHT and CVD diamond detectors, respectively. Without corrections based on dose rate dependence, the relative differences between depth-doses measured with the diamond detectors and a Markus chamber for exposures to 7 and 14 MeV electron beams were within 2.5%. A dose rate dependence correction using the Δ values obtained seemed to worsen the performance of the HPHT sample (up to about 3.3%) but it had a marginal effect on the performance of the CVD sample. In addition, the angular response of the CVD diamond detector was shown to be comparable with that of a cylindrical chamber. This study concludes that once the responses of the diamond detectors have been stabilised and they are properly shielded from ambient light, pre-irradiation prior to each measurement is not required. Also, the relative dose measured with the diamond detectors do not require dose rate dependence corrections as the required correction is only marginal and could have no dosimetric significance.

  7. 2,2",4,4"-TETRABROMODIPHENYL (PBDE 47) ALTERS THYROID FUNCTION IN THE RAT.

    EPA Science Inventory

    Two commercial PBDE mixtures, DE-71 and DE-79, cause dose-dependent depletion of serum T4 via induction of UGTs and increased CYP1A1 activity. This work characterized the effect of a major congener, PBDE-47, in DE-71 for effects on hepatic enzymes and thyroid hormones. Female 27...

  8. In vitro comparison of the antiproliferative effects of rhenium-186 and rhenium-188 on human aortic endothelial cells.

    PubMed

    Sauter, Alexander; Arthasana, Daniel; Dittmann, Helmut; Pritzkow, Maren; Wiesinger, Benjamin; Schmehl, Joerg; Brechtel, Klaus; Bantleon, Rüdiger; Claussen, Claus; Kehlbach, Rainer

    2011-08-01

    Rhenium-186 ((186)Re) and rhenium-188 ((188)Re) are promising radionuclides for the inhibition of restenosis after percutaneous transluminal angioplasty or other vascular interventions. Until now the maximal dose tolerance of endothelial cells has not been clearly known. To characterize the effects of local irradiation treatment, human aortic endothelial cells (ECs) were incubated with different doses of (186)Re and (188)Re. Two days after plating, ECs received treatment for a period of 5 days. The total radiation doses applied were 1, 4, 8, 16, and 32 Gy. On days 1, 3, 5, 7, and 12 after initial rhenium incubation, cell growth, clonogenic activity, cell-cycle distribution, and cytoskeletal architecture were evaluated. From the first day on, a dose-dependent growth inhibition was observed. Cumulative doses of ≥32 Gy caused a weak colony formation and significant alterations in the cytoskeletal architecture. An increased fraction of cells in G2/M phase was seen for cumulative radiation doses of ≥16 Gy. Interestingly, there were no significant differences between (186)Re and (188)Re. Even for low dose rates of β particles a dose-dependent proliferation inhibition of ECs is seen. Doses beyond 32 Gy alter the cytoskeletal architecture with possibly endothelial dysfunction and late thrombosis.

  9. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Javed; Ahamed, Maqusood, E-mail: maqusood@gmail.com; Akhtar, Mohd Javed

    Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion ofmore » glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.« less

  10. Chronic exposure to low levels of inorganic arsenic causes alterations in locomotor activity and in the expression of dopaminergic and antioxidant systems in the albino rat.

    PubMed

    Rodríguez, Verónica Mireya; Limón-Pacheco, Jorge Humberto; Carrizales, Leticia; Mendoza-Trejo, María Soledad; Giordano, Magda

    2010-01-01

    Several studies have associated chronic arsenicism with decreases in IQ and sensory and motor alterations in humans. Likewise, studies of rodents exposed to inorganic arsenic ((i)As) have found changes in locomotor activity, brain neurochemistry, behavioral tasks, oxidative stress, and in sensory and motor nerves. In the current study, male Sprague-Dawley rats were exposed to environmentally relevant doses of (i)As (0.05, 0.5 mg (i)As/L) and to a high dose (50 mg (i)As/L) in drinking water for one year. Hypoactivity and increases in the striatal dopamine content were found in the group treated with 50 mg (i)As/L. Exposure to 0.5 and 50 mg (i)As/L increased the total brain content of As. Furthermore, (i)As exposure produced a dose-dependent up-regulation of mRNA for Mn-SOD and Trx-1 and a down-regulation of DAR-D₂ mRNA levels in the nucleus accumbens. DAR-D₁ and Nrf2 mRNA expression were down-regulated in nucleus accumbens in the group exposed to 50 mg (i)As/L. Trx-1 mRNA levels were up-regulated in the cortex in an (i)As dose-dependent manner, while DAR-D₁ mRNA expression was increased in striatum in the 0.5 mg (i)As/L group. These results show that chronic exposure to low levels of arsenic causes subtle but region-specific changes in the nervous system, especially in antioxidant systems and dopaminergic elements. These changes became behaviorally evident only in the group exposed to 50 mg (i)As/L. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. The effects of oxytocin and atosiban on the modulation of heart rate in pregnant women.

    PubMed

    Weissman, Amir; Tobia, Rana Swed; Burke, Yechiel Z; Maxymovski, Olga; Drugan, Arie

    2017-02-01

    To evaluate autonomic modulation of heart rate in pregnant women treated with oxytocin to induce labor and with atosiban (an oxytocin antagonist) to arrest preterm labor. A prospective study with two cohorts: 14 pregnant women treated with atosiban for premature uterine contractions, and 28 women undergoing induction of labor with oxytocin. Computerized analyses of the electrocardiogram were performed with spectral and nonlinear dynamic analyses. Atosiban did not alter any of the variables associated with heart rate variability, whereas oxytocin showed a dose-dependent decrease in heart rate (p < 0.05) and a significant increase in all spectral variables studied (p < 0.01). Atosiban has no adverse effects on the cardiovascular system or the modulation of heart rate. Oxytocin, on the other hand, can cause a dose-dependent bradycardic effect and an increase in the spectral power, thus should be used with caution in certain pregnant women.

  12. Modeling Population-Level Consequences of Polychlorinated Biphenyl Exposure in East Greenland Polar Bears.

    PubMed

    Pavlova, Viola; Grimm, Volker; Dietz, Rune; Sonne, Christian; Vorkamp, Katrin; Rigét, Frank F; Letcher, Robert J; Gustavson, Kim; Desforges, Jean-Pierre; Nabe-Nielsen, Jacob

    2016-01-01

    Polychlorinated biphenyls (PCBs) can cause endocrine disruption, cancer, immunosuppression, or reproductive failure in animals. We used an individual-based model to explore whether and how PCB-associated reproductive failure could affect the dynamics of a hypothetical polar bear (Ursus maritimus) population exposed to PCBs to the same degree as the East Greenland subpopulation. Dose-response data from experimental studies on a surrogate species, the mink (Mustela vision), were used in the absence of similar data for polar bears. Two alternative types of reproductive failure in relation to maternal sum-PCB concentrations were considered: increased abortion rate and increased cub mortality. We found that the quantitative impact of PCB-induced reproductive failure on population growth rate depended largely on the actual type of reproductive failure involved. Critical potencies of the dose-response relationship for decreasing the population growth rate were established for both modeled types of reproductive failure. Comparing the model predictions of the age-dependent trend of sum-PCBs concentrations in females with actual field measurements from East Greenland indicated that it was unlikely that PCB exposure caused a high incidence of abortions in the subpopulation. However, on the basis of this analysis, it could not be excluded that PCB exposure contributes to higher cub mortality. Our results highlight the necessity for further research on the possible influence of PCBs on polar bear reproduction regarding their physiological pathway. This includes determining the exact cause of reproductive failure, i.e., in utero exposure versus lactational exposure of offspring; the timing of offspring death; and establishing the most relevant reference metrics for the dose-response relationship.

  13. Effects of phencyclidine (PCP) and MK 801 on the EEGq in the prefrontal cortex of conscious rats; antagonism by clozapine, and antagonists of AMPA-, alpha(1)- and 5-HT(2A)-receptors.

    PubMed

    Sebban, Claude; Tesolin-Decros, Brigitte; Ciprian-Ollivier, Jorge; Perret, Laurent; Spedding, Michael

    2002-01-01

    1. The electroencephalographic (EEG) effects of the propsychotic agent phencyclidine (PCP), were studied in conscious rats using power spectra (0 - 30 Hz), from the prefrontal cortex or sensorimotor cortex. PCP (0.1 - 3 mg kg(-1) s.c.) caused a marked dose-dependent increase in EEG power in the frontal cortex at 1 - 3 Hz with decreases in power at higher frequencies (9 - 30 Hz). At high doses (3 mg kg(-1) s.c.) the entire spectrum shifted to more positive values, indicating an increase in cortical synchronization. MK 801 (0.05 - 0.1 mg kg(-1) i.p.) caused similar effects but with lesser changes in power. 2. In contrast, the non-competitive AMPA antagonists GYKI 52466 and GYKI 53655 increased EEG power over the whole power spectrum (1 - 10 mg kg(-1) i.p.). The atypical antipsychotic clozapine (0.2 mg kg(-1) s.c.) synchronized the EEG (peak 8 Hz). The 5-HT(2A)-antagonist, M100907, specifically increased EEG power at 2 - 3 Hz at low doses (10 and 50 microg kg(-1) s.c.), whereas at higher doses (0.1 mg kg(-1) s.c.) the profile resembled that of clozapine. 3. Clozapine (0.2 mg kg(-1) s.c. ), GYKI 53655 (5 mg kg(-1) i.p.), prazosin (0.05 and 0.1 mg kg(-1) i.p.), and M100907 (0.01 and 0.05 mg kg(-1) s.c.) antagonized the decrease in power between 5 and 30 Hz caused by PCP (1 mg kg(-1) s.c.), but not the increase in power at 1 - 3 Hz in prefrontal cortex.

  14. Meat Intake and the Dose of Vitamin B3 – Nicotinamide: Cause of the Causes of Disease Transitions, Health Divides, and Health Futures?

    PubMed Central

    Hill, Lisa J; Williams, Adrian C

    2017-01-01

    Meat and vitamin B3 – nicotinamide – intake was high during hunter-gatherer times. Intake then fell and variances increased during and after the Neolithic agricultural revolution. Health, height, and IQ deteriorated. Low dietary doses are buffered by ‘welcoming’ gut symbionts and tuberculosis that can supply nicotinamide, but this co-evolved homeostatic metagenomic strategy risks dysbioses and impaired resistance to pathogens. Vitamin B3 deficiency may now be common among the poor billions on a low-meat diet. Disease transitions to non-communicable inflammatory disorders (but longer lives) may be driven by positive ‘meat transitions’. High doses of nicotinamide lead to reduced regulatory T cells and immune intolerance. Loss of no longer needed symbiotic ‘old friends’ compounds immunological over-reactivity to cause allergic and auto-immune diseases. Inhibition of nicotinamide adenine dinucleotide consumers and loss of methyl groups or production of toxins may cause cancers, metabolic toxicity, or neurodegeneration. An optimal dosage of vitamin B3 could lead to better health, but such a preventive approach needs more equitable meat distribution. Some people may require personalised doses depending on genetic make-up or, temporarily, when under stress. PMID:28579801

  15. Green Tea Potentially Ameliorates Bisphenol A-Induced Oxidative Stress: An In Vitro and In Silico Study

    PubMed Central

    Suthar, Hiral; Verma, R. J.; Patel, Saumya; Jasrai, Y. T.

    2014-01-01

    The present investigation was an attempt to elucidate oxidative stress induced by bisphenol A on erythrocytes and its amelioration by green tea extract. For this, venous blood samples from healthy human adults were collected in EDTA vials and used for preparation of erythrocytes suspension. When erythrocyte suspensions were treated with different concentrations of BPA/H2O2, a dose-dependent increase in hemolysis occurred. Similarly, when erythrocytes suspensions were treated with either different concentrations of H2O2 (0.05–0.25 mM) along with BPA (50 μg/mL) or 0.05 mM H2O2 along with different concentrations of BPA (50–250 μg/mL), dose-dependent significant increase in hemolysis occurred. The effect of BPA and H2O2 was found to be additive. For the confirmation, binding capacity of bisphenol A with erythrocyte proteins (hemoglobin, catalase, and glutathione peroxidase) was inspected using molecular docking tool, which showed presence of various hydrogen bonds of BPA with the proteins. The present data clearly indicates that BPA causes oxidative stress in a similar way as H2O2 . Concurrent addition of different concentrations (10–50 μg/mL) of green tea extract to reaction mixture containing high dose of bisphenol A (250 μg/mL) caused concentration-dependent amelioration in bisphenol A-induced hemolysis. The effect was significant (P < 0.05). It is concluded that BPA-induced oxidative stress could be significantly mitigated by green tea extract. PMID:25180096

  16. Stimulatory Effect of Insulin on 5α-Reductase Type 1 (SRD5A1) Expression through an Akt-Dependent Pathway in Ovarian Granulosa Cells

    PubMed Central

    Kayampilly, Pradeep P.; Wanamaker, Brett L.; Stewart, James A.; Wagner, Carrie L.; Menon, K. M. J.

    2010-01-01

    Elevated levels of 5α-reduced androgens have been shown to be associated with hyperandrogenism and hyperinsulinemia, the leading causes of ovulatory dysfunction in women. 5α-Dihydrotestosterone reduces ovarian granulosa cell proliferation by inhibiting FSH-mediated mitogenic signaling pathways. The present study examined the effect of insulin on 5α-reductase, the enzyme that catalyses the conversion of androgens to their 5α-derivatives. Granulosa cells isolated from immature rat ovaries were cultured in serum-free, phenol red-free DMEM-F12 media and treated with different doses of insulin (0, 0.1, 1.0, and 10.0 μg/ml) for different time intervals up to 12 h. The expression of 5α-reductase type 1 mRNA, the predominant isoform found in granulosa cells, showed a significant (P < 0.05) increase in response to the insulin treatment up to 12 h compared with control. The catalytic activity of 5α-reductase enzyme was also stimulated in a dose-depended manner (P < 0.05). Inhibiting the Akt-dependent signaling pathway abolished the insulin-mediated increase in 5α-reductase mRNA expression, whereas inhibition of the ERK-dependent pathway had no effect. The dose-dependent increase in 5α-reductase mRNA expression as well as catalytic activity seen in response to insulin treatment was also demonstrated in the human granulosa cell line (KGN). In addition to increased mRNA expression, a dose-dependent increase in 5α-reductase protein expression in response to insulin was also seen in KGN cells, which corroborated well with that of mRNA expression. These results suggest that elevated levels of 5α-reduced androgens seen in hyperinsulinemic conditions might be explained on the basis of a stimulatory effect of insulin on 5α-reductase in granulosa cells. The elevated levels of these metabolites, in turn, might adversely affect growth and proliferation of granulosa cells, thereby impairing follicle growth and ovulation. PMID:20810561

  17. Influence of increased mechanical loading by hypergravity on the microtubule cytoskeleton and prostaglandin E2 release in primary osteoblasts

    NASA Technical Reports Server (NTRS)

    Searby, Nancy D.; Steele, Charles R.; Globus, Ruth K.

    2005-01-01

    Cells respond to a wide range of mechanical stimuli such as fluid shear and strain, although the contribution of gravity to cell structure and function is not understood. We hypothesized that bone-forming osteoblasts are sensitive to increased mechanical loading by hypergravity. A centrifuge suitable for cell culture was developed and validated, and then primary cultures of fetal rat calvarial osteoblasts at various stages of differentiation were mechanically loaded using hypergravity. We measured microtubule network morphology as well as release of the paracrine factor prostaglandin E2 (PGE2). In immature osteoblasts, a stimulus of 10x gravity (10 g) for 3 h increased PGE2 2.5-fold and decreased microtubule network height 1.12-fold without affecting cell viability. Hypergravity (3 h) caused dose-dependent (5-50 g) increases in PGE2 (5.3-fold at 50 g) and decreases (1.26-fold at 50 g) in microtubule network height. PGE2 release depended on duration but not orientation of the hypergravity load. As osteoblasts differentiated, sensitivity to hypergravity declined. We conclude that primary osteoblasts demonstrate dose- and duration-dependent sensitivity to gravitational loading, which appears to be blunted in mature osteoblasts.

  18. Diuretic effects of KW-3902 (8-(noradamantan-3-yl)-1,3-dipropylxanthine), a novel adenosine A1 receptor antagonist, in conscious dogs.

    PubMed

    Kobayashi, T; Mizumoto, H; Karasawa, A

    1993-12-01

    The diuretic effects of KW-3902 (8-(noradamantan-3-yl)-1,3-dipropylxanthine), a novel adenosine A1 receptor antagonist, were determined and compared with those of trichlormethiazide (TCM) and furosemide in saline-loaded conscious dogs. KW-3902, at doses higher than 0.1 mg/kg (p.o.), produced dose-dependent increases of urine volume and sodium excretion and these effects were statistically significant at doses of 1-100 mg/kg. The increase in potassium excretion was lower than that of sodium, and the ratio of sodium to potassium excretion (Na/K) tended to be elevated. TCM (0.3 mg/kg) and furosemide (3 mg/kg) also induced increases in urine volume and sodium excretion. The diuretic effects of KW-3902 lasted for 4 h after administration, whereas TCM and furosemide caused significant natriuresis for 2 h after administration. Thus, KW-3902 exhibited a longer lasting natriuresis than TCM and furosemide. These results indicate that adenosine A1 receptor blockade by KW-3902 causes consistent diuresis and natriuresis in dogs and suggest that adenosine A1 receptor blockade is a promising approach to diuretic therapy.

  19. 2-Phenylethylamine, a constituent of chocolate and wine, causes mitochondrial complex-I inhibition, generation of hydroxyl radicals and depletion of striatal biogenic amines leading to psycho-motor dysfunctions in Balb/c mice.

    PubMed

    Sengupta, T; Mohanakumar, K P

    2010-11-01

    Behavioral and neurochemical effects of chronic administration of high doses of 2-phenylethylamine (PEA; 25-75 mg/kg, i.p. for up to 7 days) have been investigated in Balb/c mice. Depression and anxiety, as demonstrated respectively by increased floating time in forced swim test, and reduction in number of entries and the time spent in the open arms in an elevated plus maze were observed in these animals. General motor disabilities in terms of akinesia, catalepsy and decreased swimming ability were also observed in these animals. Acute and sub-acute administration of PEA caused significant, dose-dependent depletion of striatal dopamine, and its metabolites levels. PEA caused dose-dependent generation of hydroxyl radicals in vitro in Fenton's reaction in test tubes, in isolated mitochondrial fraction, and in vivo in the striatum of mice. A significant inhibition of NADH-ubiquinone oxidoreductase (complex-I; EC: 1.6.5.3) activity suggests the inhibition in oxidative phosphorylation in the mitochondria resulting in hydroxyl radical generation. Nissl staining and TH immnunohistochemistry in brain sections failed to show any morphological aberrations in dopaminergic neurons or nerve terminals. Long-term over-consumption of PEA containing food items could be a neurological risk factor having significant pathological relevance to disease conditions such as depression or motor dysfunction. However, per-oral administration of higher doses of PEA (75-125 mg/kg; 7 days) failed to cause such overt neurochemical effects in rats, which suggested safe consumption of food items rich in this trace amine by normal population. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Redox Signaling and Bioenergetics Influence Lung Cancer Cell Line Sensitivity to the Isoflavone ME-344.

    PubMed

    Manevich, Yefim; Reyes, Leticia; Britten, Carolyn D; Townsend, Danyelle M; Tew, Kenneth D

    2016-08-01

    ME-344 [(3R,4S)-3,4-bis(4-hydroxyphenyl)-8-methyl-3,4-dihydro-2H-chromen-7-ol] is a second-generation derivative natural product isoflavone presently under clinical development. ME-344 effects were compared in lung cancer cell lines that are either intrinsically sensitive or resistant to the drug and in primary immortalized human lung embryonic fibroblasts (IHLEF). Cytotoxicity at low micromolar concentrations occurred only in sensitive cell lines, causing redox stress, decreased mitochondrial ATP production, and subsequent disruption of mitochondrial function. In a dose-dependent manner the drug caused instantaneous and pronounced inhibition of oxygen consumption rates (OCR) in drug-sensitive cells (quantitatively significantly less in drug-resistant cells). This was consistent with targeting of mitochondria by ME-344, with specific effects on the respiratory chain (resistance correlated with higher glycolytic indexes). OCR inhibition did not occur in primary IHLEF. ME-344 increased extracellular acidification rates in drug-resistant cells (significantly less in drug-sensitive cells), implying that ME-344 targets mitochondrial proton pumps. Only in drug-sensitive cells did ME-344 dose-dependently increase the intracellular generation of reactive oxygen species and cause oxidation of total (mainly glutathione) and protein thiols and the concomitant immediate increases in NADPH levels. We conclude that ME-344 causes complex, redox-specific, and mitochondria-targeted effects in lung cancer cells, which differ in extent from normal cells, correlate with drug sensitivity, and provide indications of a beneficial in vitro therapeutic index. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope.

    PubMed

    Johnston-Peck, Aaron C; DuChene, Joseph S; Roberts, Alan D; Wei, Wei David; Herzing, Andrew A

    2016-11-01

    Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO 2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. Published by Elsevier B.V.

  2. Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope

    PubMed Central

    Johnston-Peck, Aaron C.; DuChene, Joseph S.; Roberts, Alan D.; Wei, Wei David; Herzing, Andrew A.

    2016-01-01

    Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300 keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. PMID:27469265

  3. Comparison of two dosing schedules for subcutaneous injections of low-dose anti-CD20 veltuzumab in relapsed immune thrombocytopenia

    PubMed Central

    Liebman, Howard A.; Saleh, Mansoor N.; Bussel, James B.; Negrea, O. George; Horne, Heather; Wegener, William A.; Goldenberg, David M.

    2016-01-01

    We compared two dosing schedules for subcutaneous injections of a low-dose humanized anti-CD20 antibody, veltuzumab, in immune thrombocytopenia. Fifty adults with primary immune thrombocytopenia, in whom one or more lines of standard therapy had failed and who had a platelet count <30×109/L but no major bleeding, initially received escalating 80, 160, or 320 mg doses of subcutaneous veltuzumab administered twice, 2 weeks apart; the last group received once-weekly doses of 320 mg for 4 weeks. In all dose groups, injection reactions were transient and mild to moderate; there were no other safety issues. Forty-seven response-evaluable patients had 23 (49%) objective responses (platelet counts ≥30×109/L and ≥2 × baseline) including 15 (32%) complete responses (platelets ≥100×109/L). Responses (including complete responses) and bleeding reduction occurred in all dose groups and were not dose-dependent. In contrast, response duration increased progressively with total dose, reaching a median of 2.7 years with the four once-weekly 320-mg doses. Among nine responders retreated at relapse, three at higher dose levels responded again, including one patient who was retreated four times. In all dose groups, B-cell depletion occurred after the first dose until recovery starting 12 to 16 weeks after treatment. Veltuzumab serum levels increased with dose group according to total dose administered, but terminal half-life and clearance were comparable. Human anti-veltuzumab antibody titers developed without apparent dose dependence in nine patients, of whom six responded including five who had complete responses. Subcutaneous veltuzumab was convenient, well-tolerated, and active, without causing significant safety concerns. Platelet responses and bleeding reduction occurred in all dose groups, and response durability appeared to improve with higher doses. Clinicaltrials.gov identifier: NCT00547066 PMID:27515248

  4. Nandrolone and stanozolol induce Leydig cell tumor proliferation through an estrogen-dependent mechanism involving IGF-I system.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Zolea, Fabiana; De Luca, Arianna; Lanzino, Marilena; Catalano, Stefania; Andò, Sebastiano; Pezzi, Vincenzo

    2012-05-01

    Several substances such as anabolic androgenic steroids (AAS), peptide hormones like insulin-like growth factor-I (IGF-I), aromatase inhibitors and estrogen antagonists are offered via the Internet, and are assumed without considering the potential deleterious effects that can be caused by their administration. In this study we aimed to determine if nandrolone and stanozolol, two commonly used AAS, could have an effect on Leydig cell tumor proliferation and if their effects could be potentiated by the concomitant use of IGF-I. Using a rat Leydig tumor cell line, R2C cells, as experimental model we found that nandrolone and stanozolol caused a dose-dependent induction of aromatase expression and estradiol (E2) production. When used in combination with IGF-I they were more effective than single molecules in inducing aromatase expression. AAS exhibited estrogenic activity and induced rapid estrogen receptor (ER)-dependent pathways involving IGF1R, AKT, and ERK1/2 phosphorylation. Inhibitors for these kinases decreased AAS-dependent aromatase expression. Up-regulated aromatase levels and related E2 production increased cell proliferation as a consequence of increased cyclin E expression. The observation that ER antagonist ICI182,780 was also able to significantly reduce ASS- and AAS + IGF-induced cell proliferation, confirmed a role for estrogens in AAS-dependent proliferative effects. Taken together these data clearly indicate that the use of high doses of AAS, as it occurs in doping practice, enhances Leydig cell proliferation, increasing the risk of tumor development. This risk is higher when AAS are used in association with IGF-I. To our knowledge this is the first report directly associating AAS and testicular cancer. Copyright © 2011 Wiley Periodicals, Inc.

  5. Immunomodulatory effect of Moringa peregrina leaves, ex vivo and in vivo study

    PubMed Central

    Al-Oran, Sawsan Atallah; Hassuneh, Mona Rushdie; Al-Qaralleh, Haitham Naief; Rayyan, Walid Abu; Al-Thunibat, Osama Yosef; Mallah, Eyad; Abu-Rayyan, Ahmed; Salem, Shadi

    2017-01-01

    This study was conducted to assess the in vivo and ex vivo immunomodulatory effect of the ethanol leaves extract of Moringa peregrina in Balb/c mice. For this study, five groups of 5 Balb/c mice were given a single acute subtoxic oral dose of the ethanolic extract at 1.13, 11.30, 23.40 and 113.4 mg/kg and the immunomodulatory effect was assessed on the 6th day following the ingestion. In the (non-functional) assessment, the effect of the extract on the body weight, relative lymphoid organ weight, splenic cellularity and peripheral blood hematologic parameters were evaluated. While in the immunomodulation assessment (functional), we investigated the effect of the extract on the proliferative capacity of splenic lymphocytes and peripheral T and B lymphocytes using mitogen blastogenesis, mixed allogeneic MLR and IgM-Plaque forming cells assays. The ingestion of M. peregrina extract caused a significant increase in the body weight, weight and number of cells of spleen and lymph nodes of the treated mice. Furthermore, the count of RBCs, WBCs, platelets, hemoglobin concentration and PCV % were increased by the extract treatment in a dose-dependent manner. M. peregrina enhanced the proliferative responses of splenic lymphocytes for both T cell and B-cell mitogens. Likewise, the mixed lymphocyte reaction MLR assay has revealed a T-cell dependent proliferation enhancement in the extract treated mice. Moreover, the oral administration of M. peregrina leaves extracts significantly increased PFCs/106 splenocytes in a dose-dependent manner. In conclusion, subtoxic acute doses of M. peregrina extract demonstrated significant potential as an immunomodulatory agent even at the lowest dose of 1.13 mg/kg. PMID:29204086

  6. Chronic exposure to zinc oxide nanoparticles increases ischemic-reperfusion injuries in isolated rat hearts

    NASA Astrophysics Data System (ADS)

    Milivojević, Tamara; Drobne, Damjana; Romih, Tea; Mali, Lilijana Bizjak; Marin, Irena; Lunder, Mojca; Drevenšek, Gorazd

    2016-10-01

    The use of zinc oxide nanoparticles (ZnO NPs) in numerous products is increasing, although possible negative implications of their long-term consumption are not known yet. Our aim was to evaluate the chronic, 6-week oral exposure to two different concentrations of ZnO NPs on isolated rat hearts exposed to ischemic-reperfusion injury and on small intestine morphology. Wistar rats of both sexes ( n = 18) were randomly divided into three groups: (1) 4 mg/kg ZnO NPs, (2) 40 mg/kg ZnO NPs, and (3) control. After 6 weeks of treatment, the hearts were isolated, the left ventricular pressure (LVP), the coronary flow (CF), the duration of arrhythmias and the lactate dehydrogenase release rate (LDH) were measured. A histological investigation of the small intestine was performed. Chronic exposure to ZnO NPs acted cardiotoxic dose-dependently. ZnO NPs in dosage 40 mg/kg maximally decreased LVP (3.3-fold) and CF (2.5-fold) and increased the duration of ventricular tachycardia (all P < 0.01) compared to control, whereas ZnO NPs in dosage 4 mg/kg acted less cardiotoxic. Goblet cells in the small intestine epithelium of rats, treated with 40 mg ZnO NPs/kg, were enlarged, swollen and numerous, the intestinal epithelium width was increased. Unexpectedly, ZnO NPs in both dosages significantly decreased LDH. A 6-week oral exposure to ZnO NPs dose-dependently increased heart injuries and caused irritation of the intestinal mucosa. A prolonged exposure to ZnO NPs might cause functional damage to the heart even with exposures to the recommended daily doses, which should be tested in future studies.

  7. Pharmacological inhibition of Polo Like Kinase 2 (PLK2) does not cause chromosomal damage or result in the formation of micronuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, Kent, E-mail: Kent.fitzgerald@elan.com; Bergeron, Marcelle, E-mail: Marcelle.bergeron@elan.com; Willits, Christopher, E-mail: Chris.willits@elan.com

    2013-05-15

    Polo Like Kinase 2 (PLK2) phosphorylates α-synuclein and is considered a putative therapeutic target for Parkinson's disease. Several lines of evidence indicate that PLK2 is involved with proper centriole duplication and cell cycle regulation, inhibition of which could impact chromosomal integrity during mitosis. The objectives of the series of experiments presented herein were to assess whether specific inhibition of PLK2 is genotoxic and determine if PLK2 could be considered a tractable pharmacological target for Parkinson's disease. Several selective PLK2 inhibitors, ELN 582175 and ELN 582646, and their inactive enantiomers, ELN 582176 and ELN 582647, did not significantly increase the numbermore » of micronuclei in the in vitro micronucleus assay. ELN 582646 was administered to male Sprague Dawley rats in an exploratory 14-day study where flow cytometric analysis of peripheral blood identified a dose-dependent increase in the number of micronucleated reticulocytes. A follow-up investigative study demonstrated that ELN 582646 administered to PLK2 deficient and wildtype mice significantly increased the number of peripheral micronucleated reticulocytes in both genotypes, suggesting that ELN 582646-induced genotoxicity is not through the inhibition of PLK2. Furthermore, significant reduction of retinal phosphorylated α-synuclein levels was observed at three non-genotoxic doses, additional data to suggest that pharmacological inhibition of PLK2 is not the cause of the observed genotoxicity. These data, in aggregate, indicate that PLK2 inhibition is a tractable CNS pharmacological target that does not cause genotoxicity at doses and exposures that engage the target in the sensory retina. - Highlights: • Active and inactive enantiomers test negative in the in vitro micronucleus test. • ELN 582646 significantly increased micronuclei at 100 and 300 mg/kg/day doses. • ELN 582646 significantly increased micronuclei in PLK2 knockout mice. • ELN 582646 decreased phosphorylation of alpha-synuclein at non-genotoxic doses.« less

  8. Tumour-promoting phorbol esters increase basal and inhibit insulin-stimulated lipogenesis in rat adipocytes without decreasing insulin binding.

    PubMed Central

    van de Werve, G; Proietto, J; Jeanrenaud, B

    1985-01-01

    In isolated rat adipocytes, tumour-promoting phorbol esters caused (1) dose-dependent stimulation of lipogenesis in the absence of insulin and (2) inhibition of the lipogenic effect of submaximal concentrations of insulin, but without affecting insulin binding. The possible involvement of protein kinase C in insulin action is discussed. PMID:3883992

  9. Short-Term Effects of gamma-Irradiation on 1-Aminocyclopropane-1-Carboxylic Acid Metabolism in Early Climacteric Cherry Tomatoes : Comparison with Wounding.

    PubMed

    Larrigaudière, C; Latché, A; Pech, J C; Triantaphylidès, C

    1990-03-01

    gamma-Irradiation of early climacteric (breaker) cherry tomatoes (Lycopersicon pimpinellifollium L.) caused a sharp burst in ethylene production during the first hour. The extent of ethylene production was dose dependent and was maximum at about 3 kilograys. The content of 1-aminocyclopropane-1-carboxylic acid (ACC), followed the same evolution as ethylene production, while malonyl ACC increased steadily with time in irradiated fruits. The burst in ethylene production was accompanied by a sharp stimulation of ACC synthase activity which began 15 minutes after irradiation. The stimulation was completely prevented by cycloheximide, but not by actinomycin d or cordycepin. In contrast with irradiation, mechanical wounding continuously stimulated ethylene production over several hours. gamma-Irradiation and cordycepin applied to wounded tissues both caused the cessation of this continuous increase, but the initial burst was still persisting. These data suggest that gamma-irradiation, like wounding, stimulates the translation of preexisting mRNAs. It also reduces, at least temporarily, the subsequent transcription-dependent stimulation of ethylene production. gamma-Irradiation greatly inhibited the activity of ethylene-forming enzyme at doses higher than 1 kilogray. Such sensitivity is in accordance with a highly integrated membranebound enzyme.

  10. Chlorinated river and lake water extract caused oxidative damage, DNA migration and cytotoxicity in human cells.

    PubMed

    Yuan, Jing; Wu, Xin-Jiang; Lu, Wen-Qing; Cheng, Xiao-Li; Chen, Dan; Li, Xiao-Yan; Liu, Ai-Lin; Wu, Jian-Jun; Xie, Hong; Stahl, Thorsten; Mersch-Sundermann, Volker

    2005-01-01

    Consumption of chlorinated drinking water is suspected to be associated with adverse health effects, including mutations and cancer. In the present study, the genotoxic potential of water from Donghu lake, Yangtze river and Hanjiang river in Wuhan, an 8-million metropolis in China, was investigated using HepG2 cells and the alkaline version of the comet assay. It could be shown that all water extracts caused dose-dependent DNA migration in concentrations corresponding to dried extracts of 0.167-167 ml chlorinated drinking water per ml medium. To explore whether the intracellular redox status is regulated by chlorinated drinking water, we determined lipid peroxidation (LPO) and depletion of reduced glutathione (GSH). The malondialdehyde (thiobarbituric acid (TBA)-reactive aldehydes) concentration increased after chlorinated drinking water treatment of HepG2 cells in a dose-dependent manner, the GSH content decreased. The activity of lactate dehydrogenase (LDH) increased in chlorinated drinking water treated HepG2 cells indicating cytotoxicity. In accordance with former studies which dealt with in vivo and in vitro micronucleus induction the present study shows that chlorinated drinking water from polluted raw water may entail genetic risks.

  11. Short-Term Effects of γ-Irradiation on 1-Aminocyclopropane-1-Carboxylic Acid Metabolism in Early Climacteric Cherry Tomatoes 1

    PubMed Central

    Larrigaudière, Christian; Latché, Alain; Pech, Jean Claude; Triantaphylidès, Christian

    1990-01-01

    γ-Irradiation of early climacteric (breaker) cherry tomatoes (Lycopersicon pimpinellifollium L.) caused a sharp burst in ethylene production during the first hour. The extent of ethylene production was dose dependent and was maximum at about 3 kilograys. The content of 1-aminocyclopropane-1-carboxylic acid (ACC), followed the same evolution as ethylene production, while malonyl ACC increased steadily with time in irradiated fruits. The burst in ethylene production was accompanied by a sharp stimulation of ACC synthase activity which began 15 minutes after irradiation. The stimulation was completely prevented by cycloheximide, but not by actinomycin d or cordycepin. In contrast with irradiation, mechanical wounding continuously stimulated ethylene production over several hours. γ-Irradiation and cordycepin applied to wounded tissues both caused the cessation of this continuous increase, but the initial burst was still persisting. These data suggest that γ-irradiation, like wounding, stimulates the translation of preexisting mRNAs. It also reduces, at least temporarily, the subsequent transcription-dependent stimulation of ethylene production. γ-Irradiation greatly inhibited the activity of ethylene-forming enzyme at doses higher than 1 kilogray. Such sensitivity is in accordance with a highly integrated membranebound enzyme. PMID:16667318

  12. Psychosis induced by the interaction between disulfiram and methylphenidate may be dose dependent.

    PubMed

    Grau-López, Lara; Roncero, Carlos; Navarro, Maria C; Casas, Miquel

    2012-01-01

    There are few studies describing psychiatric symptoms occurring when methylphenidate and disulfiram are used together. The authors report a case of disulfiram and methylphenidate interaction in which psychotic symptoms could be dose dependent. The patient, diagnosed of alcohol and cocaine dependence and attention deficit hyperactivity disorder (ADHD), started treatment with methylphenidate increasing doses and disulfiram 250 mg/day over 4 weeks. During the first 2 weeks at doses of 36 mg/day of methylphenidate and maintaining disulfiram, side effects were not observed. However, by increasing to 54 mg/day, psychotic symptoms were detected. The authors reported that the effects are dose dependent. This is the first report about dose-dependent side effects in substance use disorder with ADHD.

  13. Myeloid-Derived Suppressor Cells Ameliorate Cyclosporine A-Induced Hypertension in Mice.

    PubMed

    Chiasson, Valorie L; Bounds, Kelsey R; Chatterjee, Piyali; Manandhar, Lochana; Pakanati, Abhinandan R; Hernandez, Marcos; Aziz, Bilal; Mitchell, Brett M

    2018-01-01

    The calcineurin inhibitor cyclosporine A (CsA) suppresses the immune system but promotes hypertension, vascular dysfunction, and renal damage. CsA decreases regulatory T cells and this contributes to the development of hypertension. However, CsA's effects on another important regulatory immune cell subset, myeloid-derived suppressor cells (MDSCs), is unknown. We hypothesized that augmenting MDSCs would ameliorate the CsA-induced hypertension and vascular and renal injury and dysfunction and that CsA reduces MDSCs in mice. Daily interleukin-33 treatment, which increased MDSC levels, completely prevented CsA-induced hypertension and vascular and renal toxicity. Adoptive transfer of MDSCs from control mice into CsA-treated mice after hypertension was established dose-dependently reduced blood pressure and vascular and glomerular injury. CsA treatment of aortas and kidneys isolated from control mice for 24 hours decreased relaxation responses and increased inflammation, respectively, and these effects were prevented by the presence of MDSCs. MDSCs also prevented the CsA-induced increase in fibronectin in microvascular and glomerular endothelial cells. Last, CsA dose-dependently reduced the number of MDSCs by inhibiting calcineurin and preventing cell proliferation, as other direct calcineurin signaling pathway inhibitors had the same dose-dependent effect. These data suggest that augmenting MDSCs can reduce the cardiovascular and renal toxicity and hypertension caused by CsA. © 2017 American Heart Association, Inc.

  14. Symptom relief in Parkinson disease by safinamide: Biochemical and clinical evidence of efficacy beyond MAO-B inhibition.

    PubMed

    Stocchi, F; Vacca, L; Grassini, P; De Pandis, M F; Battaglia, G; Cattaneo, C; Fariello, R G

    2006-10-10

    In an open pilot study, doses of safinamide (100, 150, and 200 mg once a day, higher than previously tested) were administered to 13 parkinsonian patients along with a stable dose of dopamine (DA) agonist, causing a significant progressive improvement in motor performance as evaluated by the Unified Parkinson Disease Rating Scale (UPDRS) part III over an 8-week period (4.2 points; P < 0.001). In association with levodopa, the same doses of safinamide in another group of patients (N = 11) induced a significant decrease in motor fluctuations (UPDRS part IV, 2.1 points; P < 0.001), accompanied by a dose-proportional increase of the levodopa AUC, up to 77% from baseline. Because MAO-B was fully inhibited (95%) at all doses tested, we suggest that these biochemical and symptomatic dose-dependent effects must be related to additional mechanisms of action, such as inhibition of glutamate release, increased dopamine release, or inhibition of dopamine re-uptake. These hypotheses are under investigation and will pursue confirmation in controlled clinical trials.

  15. Treatment of Narcolepsy with Methamphetamine

    PubMed Central

    Miller, Merrill M.; Hajdukovic, Roza; Erman, Milton K.

    2008-01-01

    Summary Eight pairs of subjects (each consisting of a narcoleptic and a control matched on the basis of age, sex, educational background and job) were evaluated under the following double-blind, randomized treatment conditions: baseline, placebo, low dose and high dose methamphetamine. Subjects were drug-free for 2 weeks prior to beginning the protocol. Methamphetamine was the only drug taken during the protocol and was given in a single morning dose of 0, 20 or 40–60 mg to narcoleptics and 0, 5 or 10 mg to controls. The protocol was 28 days long, with each of the four treatment conditions lasting 4 days followed by 3 days of washout. Nighttime polysomnography and daytime testing were done during the last 24 hours of each treatment condition. Daytime sleep tendency was assessed with the multiple sleep latency test (MSLT). Daytime performance was assessed with performance tests including a simple, computer-based driving task. Narcoleptics’ mean MSLT sleep latency increased from 4.3 minutes on placebo to 9.3 minutes on high dose, compared with an increase from 10.4 to 17.1 minutes for controls. Narcoleptics’ error rate on the driving task decreased from 2.53% on placebo to 0.33% on high dose, compared with a decrease from 0.22% to 0.16% for controls. The effects of methamphetamine on nocturnal sleep were generally dose-dependent and affected sleep continuity and rapid eye movement (REM) sleep. Elimination half life was estimated to be between 15.9 and 22.0 hours. Mild side effects emerged in a dose-dependent fashion and most often involved the central nervous system and gastrointestinal tract. We concluded that methamphetamine caused a dose-dependent decrease in daytime sleep tendency and improvement in performance in both narcoleptics and controls. Methamphetamine at doses of 40–60 mg allowed narcoleptics to function at levels comparable to those of unmedicated controls. PMID:8341891

  16. Dose-dependent induction of cytochrome P450 (CYP) 3A4 and activation of pregnane X receptor by topiramate.

    PubMed

    Nallani, Srikanth C; Glauser, Tracy A; Hariparsad, Niresh; Setchell, Kenneth; Buckley, Donna J; Buckley, Arthur R; Desai, Pankaj B

    2003-12-01

    In clinical studies, topiramate (TPM) was shown to cause a dose-dependent increase in the clearance of ethinyl estradiol. We hypothesized that this interaction results from induction of hepatic cytochrome P450 (CYP) 3A4 by TPM. Accordingly, we investigated whether TPM induces CYP3A4 in primary human hepatocytes and activates the human pregnane X receptor (hPXR), a nuclear receptor that serves as a regulator of CYP3A4 transcription. Human hepatocytes were treated for 72 h with TPM (10, 25, 50, 100, 250, and 500 microM) and known inducers, phenobarbital (PB; 2 mM), and rifampicin (10 microM). The rate of testosterone 6beta-hydroxylation by hepatocytes served as a marker for CYP3A4 activity. The CYP3A4-specific protein and mRNA levels were determined by using Western and Northern blot analyses, respectively. The hPXR activation was assessed with cell-based reporter gene assay. Compared with controls, TPM (50-500 microM)-treated hepatocytes exhibited a considerable increase in the CYP3A4 activity (1. 6- to 8.2-fold), protein levels (4.6- to 17.3-fold), and mRNA levels (1.9- to 13.3-fold). Comparatively, rifampicin (10 microM) effected 14.5-, 25.3-, and a 20.3-fold increase in CYP3A4 activity, immunoreactive protein levels, and mRNA levels, respectively. TPM (50-500 microM) caused 1.3- to 3-fold activation of the hPXR, whereas rifampicin (10 microM) caused a 6-fold activation. The observed induction of CYP3A4 by TPM, especially at the higher concentrations, provides a potential mechanistic explanation of the reported increase in the ethinyl estradiol clearance by TPM. It also is suggestive of other potential interactions when high-dose TPM therapy is used.

  17. Dose-dependent effects of vitamin 1,25(OH)2D3 on oxidative stress and apoptosis.

    PubMed

    Cakici, Cagri; Yigitbasi, Turkan; Ayla, Sule; Karimkhani, Hadi; Bayramoglu, Feyza; Yigit, Pakize; Kilic, Ertugrul; Emekli, Nesrin

    2018-02-08

    Background The purpose of this study is to examine the dose-dependent effects of vitamin 1,25(OH)2D3 on apoptosis and oxidative stress. Methods In this study, 50 male Balb/c mice were used as control and experiment groups. The mice were divided into 5 groups each consisting of 10 mice. Calcitriol was intraperitoneally administered as low dose, medium dose, medium-high dose and high dose vitamin D groups (at 0.5, 1, 5 and 10 μg/kg, respectively), for three times a week during 14 days. At the end of the study, annexin V was measured by enzyme-linked immunosorbent assay method, and total antioxidant capacity and total oxidant status values were measured by colorimetric method in serum. Hematoxylin eosin staining was performed in liver tissues and periodic acid schiff staining was performed in kidney tissues. Results While comparing the results of medium-high dose (5 μg/kg) and high dose (10 μg/kg) vitamin D administration to that of the control group, it was observed that serum antioxidant status and annexin V levels decreased and glomerular mesenchial matrix ratio increased in kidney (p<0.05). In addition to these findings, in the group receiving high dose vitamin D (10 μg/kg), it was observed that the damage to the liver increased together with the the oxidative stress index values (p<0.05). Conclusions As a result, this study was the first in the literature to report that use of high-dose vitamin D (10 μg/kg) results in oxidant effect, rather than being an antioxidant, and causes severe histopathological toxicity in the liver and kidney.

  18. Effects of ultrafine diesel exhaust particles on oxidative stress generation and dopamine metabolism in PC-12 cells.

    PubMed

    Kim, Yong-Dae; Lantz-McPeak, Susan M; Ali, Syed F; Kleinman, Michael T; Choi, Young-Sook; Kim, Heon

    2014-05-01

    A major constituent of urban air pollution is diesel exhaust, a complex mixture of gases, chemicals, and particles. Recent evidence suggests that exposure to air pollution can increase the risk of a fatal stroke, cause cerebrovascular damage, and induce neuroinflammation and oxidative stress that may trigger neurodegenerative diseases, such as Parkinson's disease. The specific aim of this study was to determine whether ultrafine diesel exhaust particles (DEPs), the particle component of exhaust from diesel engines, can induce oxidative stress and effect dopamine metabolism in PC-12 cells. After 24 h exposure to DEPs of 200 nm or smaller, cell viability, ROS and nitric oxide (NO(2)) generation, and levels of dopamine (DA) and its metabolites, (dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)), were evaluated. Results indicated cell viability was not significantly changed by DEP exposure. However, ROS showed dramatic dose-dependent changes after DEP exposure (2.4 fold increase compared to control at 200 μg/mL). NO(2) levels were also dose-dependently increased after DEP exposure. Although not in a dose-dependent manner, upon DEP exposure, intracellular DA levels were increased while DOPAC and HVA levels decreased when compared to control. Results suggest that ultrafine DEPs lead to dopamine accumulation in the cytoplasm of PC-12 cells, possibly contributing to ROS formation. Further studies are warranted to elucidate this mechanism. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Stage-dependent teratogenic and lethal effects exerted by ultraviolet B radiation on Rhinella (Bufo) arenarum embryos.

    PubMed

    Castañaga, Luis A; Asorey, Cynthia M; Sandoval, María T; Pérez-Coll, Cristina S; Argibay, Teresa I; Herkovits, Jorge

    2009-02-01

    The adverse effects of ultraviolet B radiation from 547.2 to 30,096 J/m2 on morphogenesis, cell differentiation, and lethality of amphibian embryos at six developmental stages were evaluated from 24 up to 168 h postexposure. The ultraviolet B radiation lethal dose 10, 50, and 90 values were obtained for all developmental stages evaluated. The lethal dose 50 values, considered as the dose causing lethality in the 50% of the organisms exposed, in J/m2 at 168 h postexposure, ranged from 2,307 to 18,930; gill circulation and blastula were the most susceptible and resistant stages, respectively. Ultraviolet B radiation caused malformations in all developmental stages but was significantly more teratogenic at the gill circulation and complete operculum stages. Moreover, at the gill circulation stage, even the lowest dose (547.2 J/m2) resulted in malformations to 100% of embryos. The most common malformations were persistent yolk plug, bifid spine, reduced body size, delayed development, asymmetry, microcephaly and anencephaly, tail and body flexures toward the irradiated side, agenesia or partial gill development, abnormal pigment distribution, and hypermotility. The stage-dependent susceptibility to ultraviolet B radiation during amphibian embryogenesis could be explained in the framework of evoecotoxicology, considering ontogenic features as biomarkers of environmental signatures of living forms ancestors during the evolutionary process. The stage-dependent susceptibility to ultraviolet B radiation on Rhinella (Bufo) arenarum embryos for both lethal and teratogenic effects could contribute to a better understanding of the role of the increased ultraviolet B radiation on worldwide amphibian populations decline.

  20. Astaxanthin Inhibits Proliferation of Human Gastric Cancer Cell Lines by Interrupting Cell Cycle Progression

    PubMed Central

    Kim, Jung Ha; Park, Jong-Jae; Lee, Beom Jae; Joo, Moon Kyung; Chun, Hoon Jai; Lee, Sang Woo; Bak, Young-Tae

    2016-01-01

    Background/Aims Astaxanthin is a carotenoid pigment that has antioxidant, antitumoral, and anti-inflammatory properties. In this in vitro study, we investigated the mechanism of anticancer effects of astaxanthin in gastric carcinoma cell lines. Methods The human gastric adenocarcinoma cell lines AGS, KATO-III, MKN-45, and SNU-1 were treated with various concentrations of astaxanthin. A cell viability test, cell cycle analysis, and immunoblotting were performed. Results The viability of each cancer cell line was suppressed by astaxanthin in a dose-dependent manner with significantly decreased proliferation in KATO-III and SNU-1 cells. Astaxanthin increased the number of cells in the G0/G1 phase but reduced the proportion of S phase KATO-III and SNU-1 cells. Phosphorylated extracellular signal-regulated kinase (ERK) was decreased in an inverse dose-dependent correlation with astaxanthin concentration, and the expression of p27kip-1 increased the KATO-III and SNU-1 cell lines in an astaxanthin dose-dependent manner. Conclusions Astaxanthin inhibits proliferation by interrupting cell cycle progression in KATO-III and SNU-1 gastric cancer cells. This may be caused by the inhibition of the phosphorylation of ERK and the enhanced expression of p27kip-1. PMID:26470770

  1. Gemfibrozil is a strong inactivator of CYP2C8 in very small multiple doses.

    PubMed

    Honkalammi, J; Niemi, M; Neuvonen, P J; Backman, J T

    2012-05-01

    Therapeutic doses of gemfibrozil cause mechanism-based inactivation of CYP2C8 via formation of gemfibrozil 1-O-β-glucuronide. We investigated the extent of CYP2C8 inactivation caused by three different doses of gemfibrozil twice dailyfor 5 days, using repaglinide as a probe drug, in 10 healthy volunteers. At the end of this 5-day regimen, there were dose-dependent increases in the area under the plasma concentration–time curve from 0 to infinity (AUC0–∞) of repaglinide by3.4-, 5.5-, and 7.0-fold corresponding to 30, 100, and 600 mg of gemfibrozil, respectively, as compared with the control phase (P < 0.001). On the basis of a mechanism-based inactivation model involving gemfibrozil 1-O-β-glucuronide, a gemfibrozil dose of 30 mg twice daily was estimated to inhibit CYP2C8 by >70% and 100 mg twice daily was estimated to inhibit it by >90%. Hence, gemfibrozil is a strong inactivator of CYP2C8 even in very small, subtherapeutic, multiple doses. Administration of small gemfibrozil doses may be useful in optimizing the pharmacokinetics of CYP2C8 substrate drugs and in reducing the formation of their potentially toxic metabolites via CYP2C8.

  2. Increased prandial insulin secretion after administration of a single preprandial oral dose of repaglinide in patients with type 2 diabetes.

    PubMed

    Owens, D R; Luzio, S D; Ismail, I; Bayer, T

    2000-04-01

    To examine the dose-related pharmacodynamics and pharmacokinetics of a single preprandial oral dose of repaglinide in patients with type 2 diabetes. A total of 16 Caucasian men with type 2 diabetes participated in two placebo-controlled double-blind randomized cross-over studies. Patients were randomized to receive a single oral dose of repaglinide (0.5, 1.0, and 2.0 mg in study 1 and 4.0 mg in study 2) or placebo (both studies) administered 15 min before the first of two sequential identical standard meals (breakfast and lunch) that were 4 h apart. During each of the study days, which were 1 week apart, blood samples were taken at frequent intervals over a period of approximately 8 h for measurement of plasma glucose, insulin, C-peptide, and repaglinide concentrations. During the first meal period (0-240 min), administration of repaglinide reduced significantly the area under the curve (AUC) for glucose concentration and significantly increased the AUC for insulin levels, C-peptide levels, and the insulin secretion rate. These results, compared with those of administering placebo, were dose dependent and log linear. The effect of repaglinide administration on insulin secretion was most pronounced in the early prandial period. Within 30 min, it caused a relative increase in insulin secretion of up to 150%. During the second meal period (240-480 min), there was no difference between repaglinide and placebo administration in the AUC for glucose concentration, C-peptide concentration, and the estimated insulin secretion rate. A single dose of repaglinide (0.5-4.0 mg) before breakfast improves insulin secretion and reduces prandial hyperglycemia dose-dependently Administration of repaglinide had no effect on insulin secretion with the second meal, which was consumed 4 h after breakfast.

  3. Effect of murine exposure to gamma rays on the interplay between Th1 and Th2 lymphocytes

    PubMed Central

    Ghazy, Amany A.; Abu El-Nazar, Salma Y.; Ghoneim, Hossam E.; Taha, Abdul-Rahman M.; Abouelella, Amira M.

    2015-01-01

    Gamma radiation radiotherapy is one of the widely used treatments for cancer. There is an accumulating evidence that adaptive immunity is significantly contributes to the efficacy of radiotherapy. This study is carried out to investigate the effect of gamma rays on the interplay between Th1/Th2 response, splenocyte lymphoproliferative response to polyclonal mitogenic activators and lymphocytic capacity to produce IL-12 and IL-10 in mice. Results showed that exposure of intact spleens to different doses of γ-rays (5, 10, 20 Gy) caused spontaneous and dose-dependent immune stimulation manifested by enhanced cell proliferation and elevated IL-12 production with decreased IL-10 release (i.e., Th1 bias). While exposure of splenocytes suspension to different doses of γ-rays (5, 10, 20 Gy) showed activation in splenocytes stimulated by PWM at 5 Gy then a state of conventional immune suppression that is characterized by being dose-dependent and is manifested by decreased cell proliferation and IL-12 release accompanied by increase in IL-10 production (i.e., Th2 bias). In addition, we investigated the exposure of whole murine bodies to different doses of γ-rays and found that the exposure to low dose γ-rays (0.2 Gy) caused a state of immune stimulation terminated by a remarkable tendency for immune suppression. Exposure to 5 or 10 Gy of γ-rays resulted in a state of immune stimulation (Th1 bias), but exposure to 20 Gy showed a standard state of immune suppression (Th2 bias). The results indicated that apparently we can control the immune response by controlling the dose of γ-rays. PMID:25914644

  4. Amelioration of cisplatin-induced nephrotoxicity by ethanolic extract of Bauhinia purpurea: An in vivo study in rats.

    PubMed

    Rana, Md Azmat; Khan, Rahat Ali; Nasiruddin, Mohammad; Khan, Aijaz Ahmed

    2016-01-01

    Our objective is to study the nephroprotective activity and antioxidant potential of Bauhinia purpurea unripe pods and bark against cisplatin-induced nephrotoxicity. Healthy adult albino rats of either sex (150-200 g) were randomly divided into six groups of six animals each Group I (vehicle control) and Group II (negative control). Group III (BBE200) and Group IV (BBE400) were administered the ethanolic extract of Bauhinia purpurea bark in doses of 200 and 400 mg/kg/day p.o., respectively, and Group V (BPE200) and Group VI (BPE400) were administered the ethanolic extract of Bauhinia purpurea unripe pods at doses of 200 and 400 mg/kg/day p.o., respectively. All the treatments were given for nine days. Cisplatin in a single dose of 6 mg/kg i.p. was given on the 4 th day to all groups, except the vehicle control group. On the 10 th day, blood and urine were collected for biochemical tests and the rats were sacrificed. The kidney was removed for histology and lipid peroxidation-antioxidant test. Cisplatin caused nephrotoxicity as evidenced by elevated blood urea, serum creatinine and urine glucose, and there was decreased creatinine clearance in Group II as compared with Group I. Administration of BBE and BPE at doses of 200 and 400 mg/kg in Group III and Group VI caused a dose-dependant reduction in the rise of blood urea, serum creatinine and urine glucose, and there was a dose-dependant increase in creatinine clearance compared with Group II. There was increased catalase and glutathione and decreased malondialdehyde levels in Group II, while BBE 400 (Group IV) and BPE 400 (Group VI) treatments significantly reversed the changes toward normal values. Histological examination of the kidney revealed protection in Group IV and Group VI compared with Group II. The ethanolic extract of Bauhinia purpurea unripe pods and bark has a nephroprotective activity against cisplatin-induced nephrotoxicity in rats.

  5. Millimeter wave treatment induces apoptosis via activation of the mitochondrial-dependent pathway in human osteosarcoma cells.

    PubMed

    Wu, Guangwen; Chen, Xuzheng; Peng, Jun; Cai, Qiaoyan; Ye, Jinxia; Xu, Huifeng; Zheng, Chunsong; Li, Xihai; Ye, Hongzhi; Liu, Xianxiang

    2012-05-01

    Millimeter wave (MW) is an electromagnetic wave with a wavelength between 1 and 10 mm and a frequency of 30-300 GHz that causes multiple biological effects and has been used as a major component in physiotherapies for the clinical treatment of various types of diseases including cancers. However, the precise molecular mechanism of the anticancer activity of millimeter wave remains to be elucidated. In the present study, we investigated the cellular effects of the MW in the U-2OS human osteosarcoma cell line. Our results showed that MW induced cell morphological changes and reduced cell viability in a dose- and time-dependent manner suggesting that MW inhibited the growth of U-2OS cells as demonstrated. Hoechst 33258 staining and Annexin V/propidium iodide double staining exhibited the typical nuclear features of apoptosis and increased the proportion of apoptotic Annexin V-positive cells in a dose-dependent manner, respectively. In addition, MW treatment caused loss of plasma membrane asymmetry, release of cytochrome c, collapse of mitochondrial membrane potential, activation of caspase-9 and -3, and increase of the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2. Taken together, the results indicate that the U-2OS cell growth inhibitory activity of MW was due to mitochondrial-mediated apoptosis, which may partly explain the anticancer activity of millimeter wave treatment.

  6. Peripubertal exposure to the neonicotinoid pesticide dinotefuran affects dopaminergic neurons and causes hyperactivity in male mice.

    PubMed

    Yoneda, Naoki; Takada, Tadashi; Hirano, Tetsushi; Yanai, Shogo; Yamamoto, Anzu; Mantani, Youhei; Yokoyama, Toshifumi; Kitagawa, Hiroshi; Tabuchi, Yoshiaki; Hoshi, Nobuhiko

    2018-04-18

    Although neonicotinoid pesticides are expected to have harmful influence on mammals, there is little animal experimental data to support the effect and mechanisms. Since acetylcholine causes the release of dopamine, neonicotinoids may confer a risk of developmental disorders via a disturbance in the monoamine systems. Male mice were peripubertally administered dinotefuran (DIN) referring to no observed effect level (NOEL) and performed behavioral and immunohistological analyses. In an open field test, the total locomotor activity was increased in a dose-dependent manner. The immunoreactivity of tyrosine hydroxylase in the substantia nigra was increased in DIN-exposed mice. These results suggest that exposure to DIN in peripubertal male mice causes hyperactivity and a disturbance of dopaminergic signaling.

  7. Paradoxical effects of gastrin releasing peptide on gastrin release and gastric secretion in the rat.

    PubMed

    Takagi, A; Moriga, M; Narusawa, H; Uchino, H; Aono, M

    1986-12-01

    The effects of gastrin releasing peptide (GRP) on gastrin release and gastric secretion were studied in anesthetized rats. Intravenous infusion of GRP (1-16 micrograms/kg/hr) caused a dose-dependent increase in serum gastrin level, however, it had no effect on basal gastric secretion in the lumen-perfused stomach preparation. Furthermore, GRP inhibited gastric secretion stimulated by pentagastrin or histamine dose-dependently, but not by carbachol. Simultaneous infusion of GRP and a beta adrenergic blocking agent, propranolol, an inhibitor of somatostatin release, did not alter the inhibitory effect of GRP on pentagastrin-stimulated gastric secretion. These results suggest that the inhibitory effect of GRP on gastric secretion in a stimulated condition is mediated via peptide hormones coreleased by GRP, and not via beta-adrenergic pathways.

  8. Skunk musk causes methemoglobin and Heinz body formation in vitro.

    PubMed

    Fierro, Brittney R; Agnew, Dalen W; Duncan, Ann E; Lehner, Andreas F; Scott, Michael A

    2013-09-01

    A captive Red Panda developed a regenerative anemia with Heinz bodies after being sprayed by a skunk. A definite cause-and-effect relationship between skunk musk and oxidative erythrocyte damage has not been reported, but it was suspected in one reported case of a dog with Heinz body hemolytic anemia. The objective was to determine whether skunk musk induces oxidative HGB damage in vitro. Plasma and RBC were harvested from heparinized blood of 3 dogs, 3 cats, and a Red Panda. Skunk musk was solubilized in ethanol and mixed with plasma from each species to make stock solutions of 4% musk and 4% ethanol. Aliquots of RBC were resuspended in autologous stock solutions and solvent controls to yield musk concentrations of 0%, 0.04%, and 0.4% (by volume). Aliquots were incubated at 37°C for 4-72 hours and assessed for oxidative damage by visual inspection, optical absorbance spectroscopy, transmission electron microscopy, and light microscopy after Wright and vital New Methylene Blue staining. Dose-dependent brown color and absorption changes characteristic of methemoglobin were present by 4 hours and increased over 24 hours (Red Panda) and 72 hours (dog and cat). Similarly, there were time-dependent (all species) and dose-dependent (dog and cat) increases in the number of Heinz bodies, which were present by 4 hours and numerous by 24 hours. In vitro, skunk musk causes Heinz body and methemoglobin formation in canine, feline, and Red Panda RBC, supporting the clinical association between Heinz body hemolytic anemia and skunk spray exposure. © 2013 American Society for Veterinary Clinical Pathology.

  9. ON THE EFFECT OF SMALL DOSE X RADIATION ON SEPTICEMIA CAUSED BY PNEUMONIAE FRIEDLANDER. PART II. THE EFFECT OF SMALL TOTAL DOSE X RADIATION ON A SUBCUTANEOUS INFECTION (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkner, R.; Meyer, R.; Trautmann, J.

    1957-01-01

    ABS>The effect of small doses of whole-body x radiation on the septicemia caused by Klebsiella pneumoniac Friedlander in white mice depends on the moment of the irradiation, the dose, the temporal dose distribution, the age and the sex of the animals, as well as on the quantity of germs applied. Animals die more rapidly if irradiations have been applied previous to the infection, while irradiations after infections lead to longer life. (auth)

  10. Testosterone influences spatial strategy preferences among adult male rats

    PubMed Central

    Spritzer, Mark D.; Fox, Elliott C.; Larsen, Gregory D.; Batson, Christopher G.; Wagner, Benjamin A.; Maher, Jack

    2013-01-01

    Males outperform females on some spatial tasks, and this may be partially due to the effects of sex steroids on spatial strategy preferences. Previous work with rodents indicates that low estradiol levels bias females toward a striatum-dependent response strategy, whereas high estradiol levels bias them toward a hippocampus-dependent place strategy. We tested whether testosterone influenced the strategy preferences in male rats. All subjects were castrated and assigned to one of three daily injection doses of testosterone (0.125, 0.250, or 0.500 mg/rat) or a control group that received daily injections of the drug vehicle. Three different maze protocols were used to determine rats’ strategy preferences. A low dose of testosterone (0.125 mg) biased males toward a motor-response strategy on a T-maze task. In a water maze task in which the platform itself could be used intermittently as a visual cue, a low testosterone dose (0.125 mg) caused a significant increase in the use of a cued-response strategy relative to control males. Results from this second experiment also indicated that males receiving a high dose of testosterone (0.500 mg) were biased toward a place strategy. A third experiment indicated that testosterone dose did not have a strong influence on the ability of rats to use a nearby visual cue (floating ball) in the water maze. For this experiment, all groups seemed to use a combination of place and cued-response strategies. Overall, the results indicate that the effects of testosterone on spatial strategy preference are dose dependent and task dependent. PMID:23597827

  11. Testosterone influences spatial strategy preferences among adult male rats.

    PubMed

    Spritzer, Mark D; Fox, Elliott C; Larsen, Gregory D; Batson, Christopher G; Wagner, Benjamin A; Maher, Jack

    2013-05-01

    Males outperform females on some spatial tasks, and this may be partially due to the effects of sex steroids on spatial strategy preferences. Previous work with rodents indicates that low estradiol levels bias females toward a striatum-dependent response strategy, whereas high estradiol levels bias them toward a hippocampus-dependent place strategy. We tested whether testosterone influenced the strategy preferences in male rats. All subjects were castrated and assigned to one of three daily injection doses of testosterone (0.125, 0.250, or 0.500 mg/rat) or a control group that received daily injections of the drug vehicle. Three different maze protocols were used to determine rats' strategy preferences. A low dose of testosterone (0.125 mg) biased males toward a motor-response strategy on a T-maze task. In a water maze task in which the platform itself could be used intermittently as a visual cue, a low testosterone dose (0.125 mg) caused a significant increase in the use of a cued-response strategy relative to control males. Results from this second experiment also indicated that males receiving a high dose of testosterone (0.500 mg) were biased toward a place strategy. A third experiment indicated that testosterone dose did not have a strong influence on the ability of rats to use a nearby visual cue (floating ball) in the water maze. For this experiment, all groups seemed to use a combination of place and cued-response strategies. Overall, the results indicate that the effects of testosterone on spatial strategy preference are dose dependent and task dependent. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A comparison of linaclotide and lubiprostone dosing regimens on ion transport responses in human colonic mucosa

    PubMed Central

    Kang, Sang Bum; Marchelletta, Ronald R; Penrose, Harrison; Docherty, Michael J; McCole, Declan F

    2015-01-01

    Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (Isc). Subsequent Isc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. Isc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation. PMID:26038704

  13. A comparison of linaclotide and lubiprostone dosing regimens on ion transport responses in human colonic mucosa.

    PubMed

    Kang, Sang Bum; Marchelletta, Ronald R; Penrose, Harrison; Docherty, Michael J; McCole, Declan F

    2015-03-01

    Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (I sc). Subsequent I sc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. I sc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation.

  14. Proarrhythmic potential of halofantrine, terfenadine and clofilium in a modified in vivo model of torsade de pointes

    PubMed Central

    Batey, Andrew J; Coker, Susan J

    2002-01-01

    This study was designed to compare the proarrhythmic activity of the antimalarial drug, halofantrine and the antihistamine, terfenadine, with that of clofilium a K+ channel blocking drug that can induce torsade de pointes. Experiments were performed in pentobarbitone-anaesthetized, open-chest rabbits. Each rabbit received intermittent, rising dose i.v. infusions of the α-adrenoceptor agonist phenylephrine. During these infusions rabbits also received increasing i.v. doses of clofilium (20, 60 and 200 nmol kg−1 min−1), terfenadine (75, 250 and 750 nmol kg−1 min−1), halofantrine (6, 20 and 60 μmol kg−1) or vehicle. Clofilium and halofantrine caused dose-dependent increases in the rate-corrected QT interval (QTc), whereas terfenadine prolonged PR and QRS intervals rather than prolonging cardiac repolarization. Progressive bradycardia occurred in all groups. After administration of the highest dose of each drug halofantrine caused a modest decrease in blood pressure, but terfenadine had profound hypotensive effects resulting in death of most rabbits. The total number of ventricular premature beats was highest in the clofilium group. Torsade de pointes occurred in 6 out of 8 clofilium-treated rabbits and 4 out of 6 of those which received halofantrine, but was not seen in any of the seven terfenadine-treated rabbits. These results show that, like clofilium, halofantrine can cause torsade de pointes in a modified anaesthetized rabbit model whereas the primary adverse effect of terfenadine was cardiac contractile failure. PMID:11861329

  15. Differential effects of phosphoramidon on neurokinin A- and substance P-induced airflow obstruction and airway microvascular leakage in guinea-pig.

    PubMed Central

    Lötvall, J. O.; Elwood, W.; Tokuyama, K.; Barnes, P. J.; Chung, K. F.

    1991-01-01

    1. The effects of the inhaled neuropeptides, neurokinin A (NKA) and substance P (SP) on lung resistance (RL) and airway microvascular permeability were studied in anaesthetized guinea-pigs. 2. Single doses of inhaled NKA (3 x 10(-5), 1 x 10(-4), 3 x 10(-4) M; 45 breaths) and SP (1 x 10(-4), 3 x 10(-4), 1 x 10(-3); 45 breaths) caused a dose-dependent increase in both RL and airway microvascular leakage, assessed as extravasation of the albumin marker, Evans blue dye. 3. NKA at 1 x 10(-4) and 3 x 10(-4) M resulted in a significantly higher increase in RL than SP at the same doses. 4. Inhaled SP (3 x 10(-4) M; 45 breaths) caused significantly higher Evans blue dye extravasation in main bronchi and proximal intrapulmonary airways compared to the same dose of NKA. 5. Pretreatment with the specific inhibitor of neural endopeptidase (NEP24.11), phosphoramidon, caused an approximately 100 fold leftward shift of the RL responses to inhaled NKA and SP. 6. Phosphoramidon significantly potentiated both NKA- and SP-induced airway microvascular leakage at proximal intrapulmonary airways, but not at any other airway level. 7. Inhibition of NEP24.11 potentiate both the SP- or NKA-induced airflow obstruction to a larger extent than the induced airway microvascular leakage, suggesting that NEP24.11 is more important in the modulation of the airflow obstruction observed after these mediators. PMID:1725766

  16. Differential effects of phosphoramidon on neurokinin A- and substance P-induced airflow obstruction and airway microvascular leakage in guinea-pig.

    PubMed

    Lötvall, J O; Elwood, W; Tokuyama, K; Barnes, P J; Chung, K F

    1991-12-01

    1. The effects of the inhaled neuropeptides, neurokinin A (NKA) and substance P (SP) on lung resistance (RL) and airway microvascular permeability were studied in anaesthetized guinea-pigs. 2. Single doses of inhaled NKA (3 x 10(-5), 1 x 10(-4), 3 x 10(-4) M; 45 breaths) and SP (1 x 10(-4), 3 x 10(-4), 1 x 10(-3); 45 breaths) caused a dose-dependent increase in both RL and airway microvascular leakage, assessed as extravasation of the albumin marker, Evans blue dye. 3. NKA at 1 x 10(-4) and 3 x 10(-4) M resulted in a significantly higher increase in RL than SP at the same doses. 4. Inhaled SP (3 x 10(-4) M; 45 breaths) caused significantly higher Evans blue dye extravasation in main bronchi and proximal intrapulmonary airways compared to the same dose of NKA. 5. Pretreatment with the specific inhibitor of neural endopeptidase (NEP24.11), phosphoramidon, caused an approximately 100 fold leftward shift of the RL responses to inhaled NKA and SP. 6. Phosphoramidon significantly potentiated both NKA- and SP-induced airway microvascular leakage at proximal intrapulmonary airways, but not at any other airway level. 7. Inhibition of NEP24.11 potentiate both the SP- or NKA-induced airflow obstruction to a larger extent than the induced airway microvascular leakage, suggesting that NEP24.11 is more important in the modulation of the airflow obstruction observed after these mediators.

  17. Comparison of Data on Mutation Frequencies of Mice Caused by Radiation with Low Dose Model

    NASA Astrophysics Data System (ADS)

    Manabe, Yuichiro; Bando, Masako

    2013-09-01

    We propose low dose (LD) model, the extension of LDM model which was proposed in the previous paper [Y. Manabe et al.: J. Phys. Soc. Jpn. 81 (2012) 104004] to estimate biological damage caused by irradiation. LD model takes account of cell death effect in addition to the proliferation, apoptosis, repair which were included in LDM model. As a typical example of estimation, we apply LD model to the experiment of mutation frequency on the responses induced by the exposure to low levels of ionizing radiation. The most famous and extensive experiments are those summarized by Russell and Kelly [Proc. Natl. Acad. Sci. U.S.A. 79 (1982) 539], which are known as ``mega-mouse project''. This provides us with important information of the frequencies of transmitted specific-locus mutations induced in mouse spermatogonia stem-cells. It is found that the numerical results of the mutation frequency of mice are in reasonable agreement with the experimental data: the LD model reproduces the total dose and dose rate dependence of data reasonably. In order to see such dose-rate dependence more explicitly, we introduce the dose-rate effectiveness factor (DREF). This represents a sort of dose rate dependent effect, which are to be competitive with proliferation effect of broken cells induced by irradiation.

  18. Behavioral effects of ketamine and toxic interactions with psychostimulants

    PubMed Central

    Hayase, Tamaki; Yamamoto, Yoshiko; Yamamoto, Keiichi

    2006-01-01

    Background The anesthetic drug ketamine (KT) has been reported to be an abused drug and fatal cases have been observed in polydrug users. In the present study, considering the possibility of KT-enhanced toxic effects of other drugs, and KT-induced promotion of an overdose without making the subject aware of the danger due to the attenuation of several painful subjective symptoms, the intraperitoneal (i.p.) KT-induced alterations in behaviors and toxic interactions with popular co-abused drugs, the psychostimulants cocaine (COC) and methamphetamine (MA), were examined in ICR mice. Results A single dose of KT caused hyperlocomotion in a low (30 mg/kg, i.p.) dose group, and hypolocomotion followed by hyperlocomotion in a high (100 mg/kg, i.p.) dose group. However, no behavioral alterations derived from enhanced stress-related depression or anxiety were observed in the forced swimming or the elevated plus-maze test. A single non-fatal dose of COC (30 mg/kg, i.p.) or MA (4 mg/kg, i.p.) caused hyperlocomotion, stress-related depression in swimming behaviors in the forced swimming test, and anxiety-related behavioral changes (preference for closed arms) in the elevated plus-maze test. For the COC (30 mg/kg) or MA (4 mg/kg) groups of mice simultaneously co-treated with KT, the psychostimulant-induced hyperlocomotion was suppressed by the high dose KT, and the psychostimulant-induced behavioral alterations in the above tests were reversed by both low and high doses of KT. For the toxic dose COC (70 mg/kg, i.p.)- or MA (15 mg/kg, i.p.)-only group, mortality and severe seizures were observed in some animals. In the toxic dose psychostimulant-KT groups, KT attenuated the severity of seizures dose-dependently. Nevertheless, the mortality rate was significantly increased by co-treatment with the high dose KT. Conclusion Our results demonstrated that, in spite of the absence of stress-related depressive and anxiety-related behavioral alterations following a single dose of KT treatment, and in spite of the KT-induced anticonvulsant effects and attenuation of stress- and anxiety-related behaviors caused by COC or MA, the lethal effects of these psychostimulants were increased by KT. PMID:16542420

  19. Substance P-induced skin inflammation is not modulated by a single dose of sitagliptin in human volunteers.

    PubMed

    Grouzmann, Eric; Bigliardi, Paul; Appenzeller, Monique; Pannatier, André; Buclin, Thierry

    2011-03-01

    Substance P (SP), an undecapeptide belonging to the tachykinin family, is released during the activation of sensory nerves, and causes vasodilation, edema and pain through activation of tissular Neurokinin 1 receptors. SP proinflammatory effects are terminated by angiotensin converting enzyme (ACE) and neutral endopeptidase (NEP), while the aminopeptidase dipeptidylpeptidase IV (DPPIV) can also play a role. The aim of this randomized, crossover, double-blind study was to assess the cutaneous vasoreactivity (flare and wheal reaction, burning pain sensation) to intradermal injection of ascending doses of SP in six volunteers receiving a single therapeutic dose of the DPPIV inhibitor sitagliptin or a matching placebo. Cutaneous SP challenges produced the expected, dose-dependent flare and wheal response, while eliciting mild to moderate local pain sensation with little dose dependency. However, no differences were shown in the responses observed under sitagliptin compared with placebo, while the study would have been sufficiently powered to detect a clinically relevant increase in sensitivity to SP. The results of this pilot study are in line with proteolytic cleavage of SP by ACE and NEP compensating the blockade of DPPIV to prevent an augmentation of its proinflammatory action.

  20. Performance traits and metabolic responses in goats (Capra hircus) supplemented with inorganic trivalent chromium.

    PubMed

    Haldar, Sudipto; Mondal, Souvik; Samanta, Saikat; Ghosh, Tapan Kumar

    2009-11-01

    The effects of supplemental chromium (Cr) as chromic chloride hexahydrate in incremental dose levels (0, 0.5, 1.0, and 1.5 mg/day for 240 days) on metabolism of nutrients and trace elements were determined in dwarf Bengal goats (Capra hircus, castrated males, average age 3 months, n = 24, initial mean body weight 6.4 +/- 0.22 kg). Live weight increased linearly (p < 0.05) with the level of supplemental Cr. Organic matter and crude protein digestibility, intake of total digestible nutrients, and retention of N (g/g N intake) increased (p < 0.05) in a dose-dependent linear manner. Serum cholesterol and tryacylglycerol concentrations changed inversely with the dose of supplemental Cr (p < 0.01). Supplemental Cr positively influenced retention of copper and iron (p < 0.05) causing linear increase (p < 0.01) in their serum concentrations. It was concluded that Cr supplementation may improve utilization of nutrients including the trace elements and may also elicit a hypolidemic effect in goats. However, further study with regards to optimization of dose is warranted.

  1. Procyanidin-rich extract of natural cocoa powder causes ROS-mediated caspase-3 dependent apoptosis and reduction of pro-MMP-2 in epithelial ovarian carcinoma cell lines.

    PubMed

    Taparia, Shruti Sanjay; Khanna, Aparna

    2016-10-01

    Over the last four centuries, cocoa and chocolate have been described as having potential medicinal value. As of today, Theobroma cacao L. (Sterculiaceae) and its products are consumed worldwide. They are of great research interest because of the concentration dependent antioxidant as well as pro-oxidant properties of some of their polyphenolic constituents, specially procyanidins and flavan-3-ols such as catechin. This study was aimed at investigating the cellular and molecular changes associated with cytotoxicity, caused due pro-oxidant activity of cocoa catechins and procyanidins, in ovarian cancer cell lines. Extract of non-alkalized cocoa powder enriched with catechins and procyanidins was used to treat human epithelial ovarian cancer cell lines OAW42 and OVCAR3 at various concentrations ≤1000μg/mL. The effect of treatment on intracellular reactive oxygen species (ROS) levels was determined. Apoptotic cell death, post treatment, was evaluated microscopically and using flow cytometry by means of annexin-propidium iodide (PI) dual staining. Levels of active caspase-3 as a pro-apoptotic marker and matrix metalloproteinase 2 (MMP2) as an invasive potential marker were detected using Western blotting and gelatin zymography. Treatment with extract caused an increase in intracellular ROS levels in OAW42 and OVCAR3 cell lines. Bright field and fluorescence microscopy of treated cells revealed apoptotic morphology and DNA damage. Increase in annexin positive cell population and dose dependent upregulation of caspase-3 confirmed apoptotic cell death. pro-MMP2 was found to be downregulated in a dose dependent manner in cells treated with the extract. Treated cells also showed a reduction in MMP2 activity. Our data suggests that cocoa catechins and procyanidins are cytotoxic to epithelial ovarian cancer, inducing apoptotic morphological changes, DNA damage and caspase-3 mediated cell death. Downregulation of pro-MMP2 and reduction in active MMP2 levels imply a decrease in invasive potential of the cells. Apoptosis and MMP2 downregulation appear to be linked to the increase in intracellular ROS levels, caused due to the prooxidant effect of cocoa procyanidin extract. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Effects of magnesium sulfate on airway smooth muscle contraction in rats.

    PubMed

    Betul Altinisik, Hatice; Kirdemir, Pakize; Altinisik, Ugur; Gokalp, Osman

    2016-08-01

    Aim To investigate the effect of magnesium sulfate (MgSO4) at different doses on isolated tracheal smooth muscle contraction in rats induced by different mechanisms. Methods Twelve rats' tracheas were placed into organ bath. Consecutively, acetylcholine (10-6,10-5,10-4 M), histamine(10-8,10-5,10-3 M) and KCl (30,60 mM) solutions was administered for contractions. MgSO4 from 10-4 to 10-1 M concentrations were subsequently administered after each constrictive agent and relaxation degrees were recorded. Results In the acetylcholine and KCl groups, dose dependent strong contractions were observed, but not in the histamine group and that group was excluded. Significant relaxation occurred with gradually increasing doses of MgSO4. In the high dose KCl group, a slight increase in contractions after the administration of 10-4 and 10-3 M MgSO4 was recorded. Conclusion We suggest that MgSO4 is effective in relaxing airway smooth muscle contractions caused by different factors; however, it must be considered that low doses of MgSO4 may only lead to a slight increase in contractions. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  3. Rhizome extracts of Curcuma zedoaria Rosc induce caspase dependant apoptosis via generation of reactive oxygen species in filarial parasite Setaria digitata in vitro.

    PubMed

    Senathilake, K S; Karunanayake, E H; Samarakoon, S R; Tennekoon, K H; de Silva, E D

    2016-08-01

    Human lymphatic filariasis (LF) is mainly caused by filarial parasite Wuchereria bancrofti and is the second leading cause of long term and permanent disability in tropical countries. To date, incapability to eliminate long lived adult parasites by current drugs remains the major challenge in the elimination of LF. Hence, in the current study, the efficacy of rhizome extracts of Curcuma zedoaria (a plant traditionally used in Sri Lanka in the management of LF) was evaluated as an effective filaricide in vitro. Sequential solvent extracts of C. zedoaria rhizomes were screened for in vitro antifilarial activity at 0.01-1 mg/mL concentrations by motility inhibition assay and 3-(4, 5 dimethylthiazol-2-yl)-2, 5 diphenyl tetrazolium bromide (MTT) reduction assay using cattle parasite Setaria digitata as a model organism. Exposure of parasites to hexane and chloroform extracts of C. zedoaria caused a dose dependant reduction in motility and viability of microfilariae (IC50 = 72.42 μg/mL for hexane extract, 191.14 μg/mL for chloroform extract) and adult parasites (IC50 = 77.07 μg/mL for hexane extract, 259.87 μg/mL for chloroform extract). Both extracts were less toxic to human peripheral blood mononuclear cells when compared to filariae. A dose dependant increase in caspase 3/CED 3 and a decrease in total protein content, cyclooxygenase (COX) and protein tyrosine phosphatase (PTP) activities were observed in adult parasites treated with hexane or chloroform extract. A significant degree of chromatin condensation and apoptotic body formation were also observed in these worms by Hoechst 33342 and terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling (TUNEL) staining respectively. Dose dependant chromosomal DNA laddering was observed in treated adult worms but not in microfilariae in response to both extracts. Oxidative stress parameters such as reduction in reduced glutathione (GSH) levels and increase in glutathione s transferase (GST), superoxide dismutase (SOD) and catalase activities, increased reactive oxygen levels (ROS) and lipid peroxidation were also observed indicating that an apoptotic event is induced by reactive oxygen species. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Basis of behavioral influence of chlorpromazine.

    NASA Technical Reports Server (NTRS)

    Emley, G. S.; Hutchinson, R. R.

    1972-01-01

    Squirrel monkeys, studied during response-independent, periodic presentation of electric shock, engaged in biting attack behavior after shock and anticipatory manual and locomotor behavior prior to shock. For all subjects, administration of chlorpromazine caused a dose-dependent decrease in biting attack reactions and a simultaneous increase in anticipatory manual responses. Administration of d-Amphetamine increased while morphine decreased both responses. The results suggest that the tranquilizer, chlorpromazine, produces a shift in an organism's response tendency from post-event aggressivity toward pre-event anticipatory responding.

  5. Radioprotection of mice by a single subcutaneous injection of heat-killed Lactobacillus casei after irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomoto, K.; Yokokura, T.; Tsuneoka, K.

    1991-03-01

    Treatment of whole-body gamma-irradiated mice with a preparation of Lactobacillus casei (LC 9018) immediately after irradiation caused a sustained increase in serum colony-stimulating activity which was followed by an enhanced repopulation of granulocyte-macrophage colony-forming cells in the femoral marrow and spleen. Numbers of blood leukocytes, erythrocytes, and platelets were increased earlier in the treated mice than in the controls, and the survival rate was elevated significantly. The radioprotective effect was dependent on the dose of LC 9018 as well as on the dose of radiation. These results demonstrate the value of LC 9018 for the treatment of myelosuppression after radiotherapymore » or radiation accidents.« less

  6. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR-4 signal transduction pathway activation of FAK and MyD88

    PubMed Central

    Guo, Shuhong; Nighot, Meghali; Al-Sadi, Rana; Alhmoud, Tarik; Nighot, Prashant; Ma, Thomas Y.

    2015-01-01

    Gut-derived bacterial lipopolysaccharides (LPS) play an essential role in inducing intestinal and systemic inflammatory responses and have been implicated as a pathogenic factor of necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD). The defective intestinal tight junction (TJ) barrier has been shown to be an important factor contributing to the development of intestinal inflammation. LPS, at physiological concentrations, cause an increase in intestinal tight junction permeability (TJP) via a TLR-4 dependent process; however the intracellular mechanisms that mediate LPS regulation of intestinal TJP remain unclear. The aim of this study was to investigate the adaptor proteins and the signaling interactions that mediate LPS modulation of intestinal TJ barrier using an in-vitro and in-vivo model system. LPS caused a TLR-4 dependent activation of membrane-associated adaptor protein FAK in Caco-2 monolayers. LPS caused an activation of both MyD88-dependent and –independent pathways. SiRNA silencing of MyD88 prevented LPS-induced increase in TJP. LPS caused a MyD88-dependent activation of IRAK4. TLR-4, FAK and MyD88 were co-localized. SiRNA silencing of TLR-4 inhibited TLR-4 associated FAK activation; and FAK knockdown prevented MyD88 activation. In-vivo studies also confirmed that LPS-induced increase in mouse intestinal permeability was associated with FAK and MyD88 activation; knockdown of intestinal epithelial FAK prevented LPS-induced increase in intestinal permeability. Additionally, high dose LPS-induced intestinal inflammation was also dependent on TLR-4/FAK/MyD88 signal-transduction axis. Our data show for the first time that LPS-induced increase in intestinal TJP and intestinal inflammation was regulated by TLR-4 dependent activation of FAK-MyD88-IRAK4 signaling pathway. PMID:26466961

  7. Object location and object recognition memory impairments, motivation deficits and depression in a model of Gulf War illness.

    PubMed

    Hattiangady, Bharathi; Mishra, Vikas; Kodali, Maheedhar; Shuai, Bing; Rao, Xiolan; Shetty, Ashok K

    2014-01-01

    Memory and mood deficits are the enduring brain-related symptoms in Gulf War illness (GWI). Both animal model and epidemiological investigations have indicated that these impairments in a majority of GW veterans are linked to exposures to chemicals such as pyridostigmine bromide (PB, an antinerve gas drug), permethrin (PM, an insecticide) and DEET (a mosquito repellant) encountered during the Persian Gulf War-1. Our previous study in a rat model has shown that combined exposures to low doses of GWI-related (GWIR) chemicals PB, PM, and DEET with or without 5-min of restraint stress (a mild stress paradigm) causes hippocampus-dependent spatial memory dysfunction in a water maze test (WMT) and increased depressive-like behavior in a forced swim test (FST). In this study, using a larger cohort of rats exposed to GWIR-chemicals and stress, we investigated whether the memory deficiency identified earlier in a WMT is reproducible with an alternative and stress free hippocampus-dependent memory test such as the object location test (OLT). We also ascertained the possible co-existence of hippocampus-independent memory dysfunction using a novel object recognition test (NORT), and alterations in mood function with additional tests for motivation and depression. Our results provide new evidence that exposure to low doses of GWIR-chemicals and mild stress for 4 weeks causes deficits in hippocampus-dependent object location memory and perirhinal cortex-dependent novel object recognition memory. An open field test performed prior to other behavioral analyses revealed that memory impairments were not associated with increased anxiety or deficits in general motor ability. However, behavioral tests for mood function such as a voluntary physical exercise paradigm and a novelty suppressed feeding test (NSFT) demonstrated decreased motivation levels and depression. Thus, exposure to GWIR-chemicals and stress causes both hippocampus-dependent and hippocampus-independent memory impairments as well as mood dysfunction in a rat model.

  8. High-dose buprenorphine: perioperative precautions and management strategies.

    PubMed

    Roberts, D M; Meyer-Witting, M

    2005-02-01

    Buprenorphine has been in clinical use in anaesthesia for several decades. Recently, the high-dose sublingual formulation (Subutex, Reckitt Benckiser, Slough, U.K.) has been increasingly used as maintenance therapy in opioid dependence, as an alternative to methadone and other pharmacological therapies. Buprenorphine has unique pharmacological properties making it well suited for use as a maintenance therapy in opioid dependence. However, these same properties may cause difficulty in the perioperative management of pain. Buprenorphine is a partial opioid agonist, attenuating the effects of supplemental illicit or therapeutic opioid agonists. As a result of its high receptor affinity, supplemental opioids do not readily displace buprenorphine from the opioid receptor in standard doses. High-dose buprenorphine has an extended duration of action that prolongs both of these effects. The perioperative management of patients stabilized on high-dose buprenorphine and undergoing surgery requires consideration of the likely analgesic requirements. Where possible the buprenorphine should be continued. Pain management should focus on maximizing non-opioid analgesia, local anaesthesia and non-pharmacological techniques. Where pain may not be adequately relieved by these methods, the addition of a full opioid agonist such as fentanyl or morphine at appropriate doses should be considered, accompanied by close monitoring in a high dependency unit. In situations where this regimen is unlikely to be effective, preoperative conversion to morphine or methadone may be an option. Where available, liaison with a hospital-based alcohol and drug service should always be considered.

  9. Phosphoprotein profiles of candidate markers for early cellular responses to low-dose γ-radiation in normal human fibroblast cells

    PubMed Central

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Lee, In Kyung; Nam, Seon Young

    2017-01-01

    Abstract Ionizing radiation causes biological damage that leads to severe health effects. However, the effects and subsequent health implications caused by exposure to low-dose radiation are unclear. The objective of this study was to determine phosphoprotein profiles in normal human fibroblast cell lines in response to low-dose and high-dose γ-radiation. We examined the cellular response in MRC-5 cells 0.5 h after exposure to 0.05 or 2 Gy. Using 1318 antibodies by antibody array, we observed ≥1.3-fold increases in a number of identified phosphoproteins in cells subjected to low-dose (0.05 Gy) and high-dose (2 Gy) radiation, suggesting that both radiation levels stimulate distinct signaling pathways. Low-dose radiation induced nucleic acid–binding transcription factor activity, developmental processes, and multicellular organismal processes. By contrast, high-dose radiation stimulated apoptotic processes, cell adhesion and regulation, and cellular organization and biogenesis. We found that phospho-BTK (Tyr550) and phospho-Gab2 (Tyr643) protein levels at 0.5 h after treatment were higher in cells subjected to low-dose radiation than in cells treated with high-dose radiation. We also determined that the phosphorylation of BTK and Gab2 in response to ionizing radiation was regulated in a dose-dependent manner in MRC-5 and NHDF cells. Our study provides new insights into the biological responses to low-dose γ-radiation and identifies potential candidate markers for monitoring exposure to low-dose ionizing radiation. PMID:28122968

  10. The effect of nimodipine on memory impairment during spontaneous morphine withdrawal in mice: Corticosterone interaction.

    PubMed

    Vaseghi, Golnaz; Rabbani, Mohammed; Hajhashemi, Valiollah

    2012-11-15

    Effects of the nimodipine, L-type calcium channel antagonist, has been studied on memory loss caused by spontaneous morphine withdrawal in mice. Mice were made dependent by increasing doses of morphine over three days. Memory was evaluated using object recognition task, which is based on tendency of rodents to exploration of new objects. The test was comprised of three sections: 15 min habitation, 12 min first trial and 5 min test trial. Recognition index was evaluated 4h after the last dose of morphine. Nimodipine was administrated either in chronic form (1, 5 and 10mg/kg) with daily doses of morphine or it was given as a single injection (5 and 10mg/kg) on the last day. Nimodipine in both treatment forms prevented the memory impairment following spontaneous morphine withdrawal. Corticosterone concentration was increased in brain and blood of mice during abstinence phase and pretreatment with nimodipine prevented the increase in brain and blood corticosterone concentration. The results show that blockade of L-type calcium channels improves memory deficits caused by morphine withdrawal. This indicates that some kind of treatments, such as nimodipine, administrated over the acute withdrawal phase, can prevent memory deficit during withdrawal. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Short-term exposure to nonylphenol induces pancreatic oxidative stress and alters liver glucose metabolism in adult female rats.

    PubMed

    Jubendradass, R; D'Cruz, Shereen Cynthia; Mathur, P P

    2011-01-01

    Nonylphenol is known to have estrogenic properties and has been reported to cause health hazards to animals and humans. The effects of nonylphenol on pancreas are not clearly elucidated. In this study, we sought to evaluate the effects of nonylphenol on the oxidative status of pancreas and consequential effects of nonylphenol on some of the end points of carbohydrate metabolism in the female rats. Rats were administered nonylphenol orally at the doses of 1.5, 15, and 150 mg/kg of body weight per day for 7 days. After 24 h of last dosing, the animals were sacrificed by cervical dislocation. The activities of pancreatic superoxide dismutase and catalase were significantly decreased with a concomitant increase in the levels of H2O2 and lipid peroxidation. Nonylphenol increased plasma insulin levels with a concomitant decrease in the levels of plasma glucose as compared to the control groups of rats. A dose-dependent increase in the activities of liver hexokinase and phosphofructokinase was recorded along with decreased activity of glycogen phosphorylase in liver. Western blot analysis revealed a significant decrease in the levels of GLUT-2. These results show that nonylphenol causes oxidative stress in pancreas and impairs liver glucose homeostasis. Copyright © 2010 Wiley Periodicals, Inc.

  12. Acute administration of tramadol and tapentadol at effective analgesic and maximum tolerated doses causes hepato- and nephrotoxic effects in Wistar rats.

    PubMed

    Barbosa, Joana; Faria, Juliana; Leal, Sandra; Afonso, Luís Pedro; Lobo, João; Queirós, Odília; Moreira, Roxana; Carvalho, Félix; Dinis-Oliveira, Ricardo Jorge

    2017-08-15

    Tramadol and tapentadol are two atypical synthetic opioid analgesics, with monoamine reuptake inhibition properties. Mainly aimed at the treatment of moderate to severe pain, these drugs are extensively prescribed for multiple clinical applications. Along with the increase in their use, there has been an increment in their abuse, and consequently in the reported number of adverse reactions and intoxications. However, little is known about their mechanisms of toxicity. In this study, we have analyzed the in vivo toxicological effects in liver and kidney resulting from an acute exposure of a rodent animal model to both opioids. Male Wistar rats were intraperitoneally administered with 10, 25 and 50mg/kg tramadol and tapentadol, corresponding to a low, effective analgesic dose, an intermediate dose and the maximum recommended daily dose, respectively, for 24h. Toxicological effects were assessed in terms of oxidative stress, biochemical and metabolic parameters and histopathology, using serum and urine samples, liver and kidney homogenates and tissue specimens. The acute exposure to tapentadol caused a dose-dependent increase in protein oxidation in liver and kidney. Additionally, exposure to both opioids led to hepatic commitment, as shown by increased serum lipid levels, decreased urea concentration, increased alanine aminotransferase and decreased butyrylcholinesterase activities. It also led to renal impairment, as reflected by proteinuria and decreased glomerular filtration rate. Histopathological findings included sinusoidal dilatation, microsteatosis, vacuolization, cell infiltrates and cell degeneration, indicating metabolic changes, inflammation and cell damage. In conclusion, a single effective analgesic dose or the maximum recommended daily dose of both opioids leads to hepatotoxicity and nephrotoxicity, with tapentadol inducing comparatively more toxicity. Whether these effects reflect risks during the therapeutic use or human overdoses requires focused attention by the medical community. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Influence of experimental hyperthyroidism on skeletal muscle metabolism in the rat.

    PubMed

    van Hardeveld, C; Kassenaar, A A

    1977-05-01

    In this study hind-limb perfusion was used to investigate the influence of thyroid hormones on some metabolic parameters in the skeletal muscle of the rat. Daily injection of 20 microng L-thyroxine (T4) per 100 g b. w. for a week caused a 25% increase in oxygen consumption. Further enlargement of the T4 dose had little additive effect. In the dose range 20--80 microng T4/100g b.w., no important changes occurred in lactate production or glucose consumption. Only at the highest T4 dose did the glucose consumption increase significantly. The most profound effect of T4 was on lipolysis. A daily dose of 20 microng T4/100 g b. w. gave a doubling of glycerol production rate, the maximum occuring at a dose of 40 microng T4/100 g b. w. Inactivation of the nervous system was without influence on the T4-induced increase in oxygen consumption. However, the T4-induced elevation of lipolysis disappeared after abolition of the nervous activity. This raises the possibility that the T4 effect on lipolysis in skeletal muscle is a potentiation of catecholamine effects. The T4-induced oxygen consumption increase might be dependent not on the lipolytic process but rather on other energy-consuming cell processes.

  14. The role of hypoxia inducible factor-1α in the increased MMP-2 and MMP-9 production by human monocytes exposed to nickel nanoparticles.

    PubMed

    Wan, Rong; Mo, Yiqun; Chien, Sufan; Li, Yihua; Li, Yixin; Tollerud, David J; Zhang, Qunwei

    2011-12-01

    Nickel is an important economic commodity, but it can cause skin sensitization and may cause lung diseases such as lung fibrosis, pneumonitis, bronchial asthma and lung cancer. With development of nanotechnology, nano-sized nickel (Nano-Ni) and nano-sized titanium dioxide (Nano-TiO₂) particles have been developed and produced for many years with new formulations and surface properties to meet novel demands. Our previous studies have shown that Nano-Ni instilled into rat lungs caused a greater inflammatory response as compared with standard-sized nickel (5 μm) at equivalent mass concentrations. Nano-Ni caused a persistent high level of inflammation in lungs even at low doses. Recently, several studies have shown that nanoparticles can translocate from the lungs to the circulatory system. To evaluate the potential systemic effects of metal nanoparticles, we compared the effects of Nano-Ni and Nano-TiO₂ on matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) gene expression and activity. Our results showed that exposure of human monocyte U937 to Nano-Ni caused dose- and time- dependent increase in MMP-2 and MMP-9 mRNA expression and pro-MMP-2 and pro-MMP-9 activity, but Nano-TiO₂ did not. Nano-Ni also caused dose- and time- related increase in tissue inhibitor of metalloproteinases 1 (TIMP-1), but Nano-TiO₂ did not. To determine the potential mechanisms involved, we measured the expression of hypoxia inducible factor 1α (HIF-1α) in U937 cells exposed to Nano-Ni and Nano-TiO₂. Our results showed that exposure to Nano-Ni caused HIF-1α accumulation in the nucleus. Furthermore, pre-treatment of U937 cells with heat shock protein 90 (Hsp90) inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG), prior to exposure to Nano-Ni significantly abolished Nano-Ni-induced MMP-2 and MMP-9 mRNA upregulation and increased pro-MMP-2 and pro-MMP-9 activity. Our results suggest that HIF-1α accumulation may be involved in the increased MMP-2 and MMP-9 production in U937 cells exposed to Nano-Ni.

  15. Developmental toxicity of CdTe QDs in zebrafish embryos and larvae

    NASA Astrophysics Data System (ADS)

    Duan, Junchao; Yu, Yongbo; Li, Yang; Yu, Yang; Li, Yanbo; Huang, Peili; Zhou, Xianqing; Peng, Shuangqing; Sun, Zhiwei

    2013-07-01

    Quantum dots (QDs) have widely been used in biomedical and biotechnological applications. However, few studies focus on the assessing toxicity of QDs exposure in vivo. In this study, zebrafish embryos were treated with CdTe QDs (4 nm) during 4-96 h post-fertilization (hpf). Mortality, hatching rate, malformation, heart rate, and QDs uptake were detected. We also measured the larval behavior to analyze whether QDs had persistent effects on larvae locomotor activity at 144 hpf. The results showed that as the exposure dosages increased, the hatching rate and heart rate of zebrafish embryos were decreased, while the mortality increased. Exposure to QDs caused embryonic malformations, including head malformation, pericardial edema, yolk sac edema, bent spine, and yolk not depleted. QDs fluorescence was mainly localized in the intestines region. The larval behavior testing showed that the total swimming distance was decreased in a dose-dependent manner. The lowest dose (2.5 nM QDs) produced substantial hyperactivity while the higher doses groups (5, 10, and 20 nM QDs) elicited remarkably hypoactivity in dark periods. In summary, the data of this article indicated that QDs caused embryonic developmental toxicity, resulted in persistent effects on larval behavior.

  16. In vitro effects of diethylstilbestrol, genistein, 4-tert-butylphenol, and 4-tert-octylphenol on steroidogenic activity of isolated immature rat ovarian follicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myllymaeki, Sari; Haavisto, Tapio; Vainio, Minna

    2005-04-01

    Isolated rat ovarian follicles grow and produce steroid hormones in vitro and so provide a good model for studying the effects of hormonally active compounds on follicular steroidogenesis. We have evaluated the effects of diethylstilbestrol (DES), genistein (GEN) and two alkylphenols, 4-tert-butylphenol (BP) and 4-tert-octylphenol (OP) on the growth, survival, and steroid hormone and cAMP production by isolated 14-day-old rat (Sprague-Dawley) ovarian follicles. During a 5-day culture, FSH was obligatory for follicle growth and increased estradiol and testosterone secretion in a dose-dependent manner. DES (10{sup -6} M) caused the strongest decline in estradiol and testosterone levels but did not havemore » detectable effects on either cAMP production or aromatase enzyme activity. GEN caused a prominent decrease in cAMP and testosterone levels without significant changes in secreted estradiol. The latter, apparently, was due to a dose-dependent stimulation of aromatase enzyme activity in the presence of genistein. Both BP and OP decreased estradiol and testosterone secretion in a dose-dependent manner while no effect on aromatase activity was observed. OP, unlike BP, decreased forskolin-induced cAMP levels. Xenoestrogens at the used concentrations did not interfere with the growth and survival of the follicles. The results indicate that isolated ovarian follicles representing intact morphological and functional units offer a sensitive model system for elucidating the female-specific reproductive effects of environmental chemicals.« less

  17. Studies on the bronchodilator, tremorogenic, cardiovascular and hypokalaemic effects of fenoterol dry powder in asthma.

    PubMed Central

    Bauer, K G; Kaik, B; Sertl, K; Kaik, G A

    1993-01-01

    1. The airway and tremor response and cardiovascular and hypokalaemic effects of single and cumulative doses of fenoterol given by dry powder capsules (DPC) and by metered dose inhaler (MDI) were studied in asthmatics in two randomized, crossover trials. 2. Single doses of fenoterol DPC and MDI (0.2 mg, 0.4 mg), investigated in 24 subjects, produced similar, dose-dependent increases in FEV1. Fenoterol DPC caused less tremor response and less hypokalaemic effects than fenoterol MDI. 3. Cumulative doses of fenoterol DPC and MDI (0.2, 0.6, 1.4, 3.0, 6.2 mg), investigated in 12 subjects, produced a comparable bronchodilatation (mean maximum increase in FEV1 was 0.53 +/- 0.06/0.52 +/- 0.081 for DPC/MDI) and a similar, dose-dependent rise in heart rate (35 +/- 3.81/41 +/- 2.25 beats min(-1)). The rise in tremor and the fall in plasma potassium were smaller after DPC than after MDI. The mean maximum changes were 51.58 +/- 6.41/95.83 +/- 6.75 cm s(-2) for tremor and -0.68 +/- 0.09/-0.96 +/- 0.10 mmol l(-1) for potassium. 4. Our findings may result from a difference in the pharmacokinetics of the dry powder and the aerosol formulation, particularly differences in distribution and absorption. 5. In conclusion, fenoterol DPC used in low therapeutic doses (0.2,0.4 mg), is preferable to the MDI. Fenoterol DPC used as rescue medication in high cumulative doses, do not suggest a greater safety margin than the MDI and the same restrictions should be considered for the fenoterol dry powder formulation as suggested for the MDI. PMID:12959305

  18. Thermogenic effects of sibutramine and its metabolites

    PubMed Central

    Connoley, Ian P; Liu, Yong-Ling; Frost, Ian; Reckless, Ian P; Heal, David J; Stock, Michael J

    1999-01-01

    The thermogenic activity of the serotonin and noradrenaline reuptake inhibitor sibutramine (BTS 54524; Reductil) was investigated by measuring oxygen consumption (VO2) in rats treated with sibutramine or its two pharmacologically-active metabolites. Sibutramine caused a dose-dependent rise in VO2, with a dose of 10 mg kg−1 of sibutramine or its metabolites producing increases of up to 30% that were sustained for at least 6 h, and accompanied by significant increases (0.5–1.0°C) in body temperature. Based on the accumulation in vivo of radiolabelled 2-deoxy-[3H]-glucose, sibutramine had little or no effect on glucose utilization in most tissues, but caused an 18 fold increase in brown adipose tissue (BAT). Combined high, non-selective doses (20 mg kg−1) of the β-adrenoceptor antagonists, atenolol and ICI 118551, inhibited completely the VO2 response to sibutramine, but the response was unaffected by low, β1-adrenoceptor-selective (atenolol) or β2-adrenoceptor-selective (ICI 118551) doses (1 mg kg−1). The ganglionic blocking agent, chlorisondamine (15 mg kg−1), inhibited completely the VO2 response to the metabolites of sibutramine, but had no effect on the thermogenic response to the β3-adrenoceptor-selective agonist BRL 35135. Similar thermogenic responses were produced by simultaneous injection of nisoxetine and fluoxetine at doses (30 mg kg−1) that had no effect on VO2 when injected individually. It is concluded that stimulation of thermogenesis by sibutramine requires central reuptake inhibition of both serotonin and noradrenaline, resulting in increased efferent sympathetic activation of BAT thermogenesis via β3-adrenoceptor, and that this contributes to the compound's activity as an anti-obesity agent. PMID:10217544

  19. Stimulation of colonic motility by oral PEG electrolyte bowel preparation assessed by MRI: comparison of split vs single dose

    PubMed Central

    Marciani, L; Garsed, K C; Hoad, C L; Fields, A; Fordham, I; Pritchard, S E; Placidi, E; Murray, K; Chaddock, G; Costigan, C; Lam, C; Jalanka-Tuovinen, J; De Vos, W M; Gowland, P A; Spiller, R C

    2014-01-01

    Background Most methods of assessing colonic motility are poorly acceptable to patients. Magnetic resonance imaging (MRI) can monitor gastrointestinal motility and fluid distributions. We predicted that a dose of oral polyethylene glycol (PEG) and electrolyte solution would increase ileo-colonic inflow and stimulate colonic motility. We aimed to investigate the colonic response to distension by oral PEG electrolyte in healthy volunteers (HVs) and to evaluate the effect of single 2 L vs split (2 × 1 L) dosing. Methods Twelve HVs received a split dose (1 L the evening before and 1 L on the study day) and another 12 HVs a single dose (2 L on the main study day) of PEG electrolyte. They underwent MRI scans, completed symptom questionnaires, and provided stool samples. Outcomes included small bowel water content, ascending colon motility index, and regional colonic volumes. Key Results Small bowel water content increased fourfold from baseline after ingesting both split (p = 0.0010) and single dose (p = 0.0005). The total colonic volume increase from baseline was smaller for the split dose at 35 ± 8% than for the single dose at 102 ± 27%, p = 0.0332. The ascending colon motility index after treatment was twofold higher for the single dose group (p = 0.0103). Conclusions & Inferences Ingestion of 1 and 2 L PEG electrolyte solution caused a rapid increase in the small bowel and colonic volumes and a robust rise in colonic motility. The increase in both volumes and motility was dose dependent. Such a challenge, being well-tolerated, could be a useful way of assessing colonic motility in future studies. PMID:25060551

  20. Damaging Effects of Bisphenol A on the Kidney and the Protection by Melatonin: Emerging Evidences from In Vivo and In Vitro Studies

    PubMed Central

    Peerapanyasut, Wachirasek

    2018-01-01

    This study investigates the effects of bisphenol A (BPA) contamination on the kidney and the possible protection by melatonin in experimental rats and isolated mitochondrial models. Rats exposed to BPA (50, 100, and 150 mg/kg, i.p.) for 5 weeks demonstrated renal damages as evident by increased serum urea and creatinine and decreased creatinine clearance, together with the presence of proteinuria and glomerular injuries in a dose-dependent manner. These changes were associated with increased lipid peroxidation and decreased antioxidant glutathione and superoxide dismutase. Mitochondrial dysfunction was also evident as indicated by increased reactive oxygen species production, decreased membrane potential change, and mitochondrial swelling. Coadministration of melatonin resulted in the reversal of all the changes caused by BPA. Studies using isolated mitochondria showed that BPA incubation produced dose-dependent impairment in mitochondrial function. Preincubation with melatonin was able to sustain mitochondrial function and architecture and decreases oxidative stress upon exposure to BPA. The findings indicated that BPA is capable of acting directly on the kidney mitochondria, causing mitochondrial oxidative stress, dysfunction, and subsequently, leading to whole organ damage. Emerging evidence further suggests the protective benefits of melatonin against BPA nephrotoxicity, which may be mediated, in part, by its ability to diminish oxidative stress and maintain redox equilibrium within the mitochondria. PMID:29670679

  1. Alda-1 Protects Against Acrolein-Induced Acute Lung Injury and Endothelial Barrier Dysfunction.

    PubMed

    Lu, Qing; Mundy, Miles; Chambers, Eboni; Lange, Thilo; Newton, Julie; Borgas, Diana; Yao, Hongwei; Choudhary, Gaurav; Basak, Rajshekhar; Oldham, Mahogany; Rounds, Sharon

    2017-12-01

    Inhalation of acrolein, a highly reactive aldehyde, causes lung edema. The underlying mechanism is poorly understood and there is no effective treatment. In this study, we demonstrated that acrolein not only dose-dependently induced lung edema but also promoted LPS-induced acute lung injury. Importantly, acrolein-induced lung injury was prevented and rescued by Alda-1, an activator of mitochondrial aldehyde dehydrogenase 2. Acrolein also dose-dependently increased monolayer permeability, disrupted adherens junctions and focal adhesion complexes, and caused intercellular gap formation in primary cultured lung microvascular endothelial cells (LMVECs). These effects were attenuated by Alda-1 and the antioxidant N-acetylcysteine, but not by the NADPH inhibitor apocynin. Furthermore, acrolein inhibited AMP-activated protein kinase (AMPK) and increased mitochondrial reactive oxygen species levels in LMVECs-effects that were associated with impaired mitochondrial respiration. AMPK total protein levels were also reduced in lung tissue of mice and LMVECs exposed to acrolein. Activation of AMPK with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside blunted an acrolein-induced increase in endothelial monolayer permeability, but not mitochondrial oxidative stress or inhibition of mitochondrial respiration. Our results suggest that acrolein-induced mitochondrial dysfunction may not contribute to endothelial barrier dysfunction. We speculate that detoxification of acrolein by Alda-1 and activation of AMPK may be novel approaches to prevent and treat acrolein-associated acute lung injury, which may occur after smoke inhalation.

  2. Inhibitory actions of methionine-enkephalin and morphine on the cat carotid chemoreceptors.

    PubMed

    McQueen, D S; Ribeiro, J A

    1980-01-01

    1 The effects of intracarotid injections of methionine-enkephalin (Met-enkephalin) and morphine on chemoreceptor activity recorded from the peripheral end of a sectioned carotid sinus nerve have been studied in cats anaesthetized with pentobarbitone. 2 Met-enkephalin caused a rapid, powerful, inhibition of spontaneous chemoreceptor discharge, the intensity and duration of which was dose-dependent. 3 Morphine was a less potent inhibitor of spontaneous chemoreceptor discharge, and the inhibition it evoked was rather variable and tended to be biphasic. Low doses of morphine caused a slight increase in discharge. 4 Naloxone (0.2 mg i.c.) slightly increased spontaneous discharge, greatly reduced the chemo-inhibition caused by morphine, and reduced the inhibitory effect of Met-enkephalin. A higher dose of naloxone (0.8 mg) caused a substantial reduction of the Met-enkephalin effect. 5 Chemo-excitation evoked by intracarotid injections of acetylcholine, CO2-saturated Locke solution, and sodium cyanide were only slightly and somewhat variably reduced following injections of Met-enkephalin, whereas the inhibitory effect of dopamine was potentiated. Following morphine administration, response to acetylcholine and sodium cyanide were reduced slightly, whereas those to CO2 and dopamine were potentiated. 6 Responses to acetylcholine and CO2 were slightly potentiated during infusion of Met-enkephalin (50 micrograms/min, i.c.) and the response to sodium cyanide was slightly reduced. 7 It is concluded that naloxone-sensitive opiate receptors are present in the cat carotid body; when activated they cause inhibition of spontaneous chemoreceptor discharge. The physiological role of these receptors and the identity of any endogenous ligand remains to be established.

  3. The effects of small field dosimetry on the biological models used in evaluating IMRT dose distributions

    NASA Astrophysics Data System (ADS)

    Cardarelli, Gene A.

    The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.

  4. Radiation-induced alterations in synaptic neurotransmission of dentate granule cells depend on the dose and species of charged particles.

    PubMed

    Marty, V N; Vlkolinsky, R; Minassian, N; Cohen, T; Nelson, G A; Spigelman, I

    2014-12-01

    The evaluation of potential health risks associated with neuronal exposure to space radiation is critical for future long duration space travel. The purpose of this study was to evaluate and compare the effects of low-dose proton and high-energy charged particle (HZE) radiation on electrophysiological parameters of the granule cells in the dentate gyrus (DG) of the hippocampus and its associated functional consequences. We examined excitatory and inhibitory neurotransmission in DG granule cells (DGCs) in dorsal hippocampal slices from male C57BL/6 mice at 3 months after whole body irradiation with accelerated proton, silicon or iron particles. Multielectrode arrays were used to investigate evoked field synaptic potentials, an extracellular measurement of synaptic excitability in the perforant path to DG synaptic pathway. Whole-cell patch clamp recordings were used to measure miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) in DGCs. Exposure to proton radiation increased synaptic excitability and produced dose-dependent decreases in amplitude and charge transfer of mIPSCs, without affecting the expression of γ-aminobutyric acid type A receptor α2, β3 and γ2 subunits determined by Western blotting. Exposure to silicon radiation had no significant effects on synaptic excitability, mEPSCs or mIPSCs of DGCs. Exposure to iron radiation had no effect on synaptic excitability and mIPSCs, but significantly increased mEPSC frequency at 1 Gy, without changes in mEPSC kinetics, suggesting a presynaptic mechanism. Overall, the data suggest that proton and HZE exposure results in radiation dose- and species-dependent long-lasting alterations in synaptic neurotransmission, which could cause radiation-induced impairment of hippocampal-dependent cognitive functions.

  5. Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in Chinook salmon (CHSE-214) cells.

    PubMed

    Srikanth, Koigoora; Mahajan, Amit; Pereira, Eduarda; Duarte, Armando Costa; Venkateswara Rao, Janapala

    2015-10-01

    Aluminium oxide nanoparticles (Al2 O3 NPs) are increasingly used in diverse applications that has raised concern about their safety. Recent studies suggested that Al2 O3 NPs induced oxidative stress may be the cause of toxicity in algae, Ceriodaphnia dubia, Caenorhabditis elegans and Danio rerio. However, there is paucity on the toxicity of Al2 O3 NPs on fish cell lines. The current study was aimed to investigate Al2 O3 NPs induced cytotoxicity, oxidative stress and morphological abnormality of Chinnok salmon cells (CHSE-214). A dose-dependent decline in cell viability was observed in CHSE-214 cells exposed to Al2 O3 NPs. Oxidative stress induced by Al2 O3 NPs in CHSE-214 cells has resulted in the significant reduction of superoxide dismutase, catalase and glutathione in a dose-dependent manner. However, a significant increase in glutathione sulfo-transferase and lipid peroxidation was observed in CHSE-214 cells exposed to Al2 O3 NPs in a dose-dependent manner. Significant morphological changes in CHSE-214 cells were observed when exposed to Al2 O3 NPs at 6, 12 and 24 h. The cells started to detach and appear spherical at 6 h followed by loss of cellular contents resulting in the shrinking of the cells. At 24 h, the cells started to disintegrate and resulted in cell death. Our data demonstrate that Al2 O3 NPs induce cytotoxicity and oxidative stress in a dose-dependent manner in CHSE-214 cells. Thus, our current work may serve as a base-line study for future evaluation of toxicity studies using CHSE-214 cells. Copyright © 2015 John Wiley & Sons, Ltd.

  6. The effects of angiotensin II on blood perfusion in the rat renal papilla

    PubMed Central

    Walker, L L; Rajaratne, A A J; Blair-West, J R; Harris, P J

    1999-01-01

    Systemic infusion of angiotensin II (AII) increased papillary blood perfusion (PBP) measured by laser-Doppler flowmetry in rats, aged about 5 weeks. The mechanisms involved in this response were determined by infusion of AII in the presence of systemic doses of losartan (a type 1 AII receptor antagonist), HOE-140 (a bradykinin B2 receptor antagonist), and an inhibitor of NO production - Nω -nitro-L-arginine (NOLA). Mean arterial blood pressure (MAP) and PBP increased in a dose-dependent manner in response to intravenous infusions of AII. Infusion of losartan abolished these responses to AII but HOE-140 was without effect. Infusion of NOLA abolished the increase in PBP but did not affect the pressor response to AII. Systemic infusion of sodium nitroprusside restored the response to AII in experiments with NOLA infusion. The results indicate that the increase in PBP caused by AII is mediated via angiotensin AT1 receptors and does not involve bradykinin B2 receptors. The AII-induced increase in PBP is dependent upon the presence of NO, thus providing a mechanism for maintenance of papillary perfusion in the face of generalized renal vasoconstriction due to AII. PMID:10432357

  7. Mangiferin induces cell death against rhabdomyosarcoma through sustained oxidative stress.

    PubMed

    Padma, Vishwanadha Vijaya; Kalaiselvi, Palanisamy; Yuvaraj, Rangasamy; Rabeeth, M

    2015-06-01

    Embryonic rhabdomyosarcoma (RD) is the most prevalent type of cancer among children. The present study aimed to investigate cell death induced by mangiferin in RD cells. The Inhibitory concentration (IC 50 ) value of mangiferin was determined by an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Cell death induced by mangiferin against RD cells was determined through lactate dehydrogenase and nitric oxide release, intracellular calcium levels, reactive oxygen species generation, antioxidant status, mitochondrial calcium level, and mitochondrial membrane potential. Furthermore, acridine orange/ethidium bromide staining was performed to determine early/late apoptotic event. Mangiferin induced cell death in RD cells with an IC 50 value of 70 μM. The cytotoxic effect was reflected in a dose-dependent increase in lactate dehydrogenase leakage and nitric oxide release during mangiferin treatment. Mangiferin caused dose dependent increase in reactive oxygen species generation, intracellular calcium levels with subsequent decrease in antioxidant status (catalase, superoxide dismutase, glutathione-S-transferase, and glutathione) and loss of mitochondrial membrane potential in RD cells. Further data from fluorescence microscopy suggest that mangiferin caused cell shrinkage and nuclear condensation along with the occurrence of a late event of apoptosis. Results of the present study shows that mangiferin can act as a promising chemopreventive agent against RD by inducing sustained oxidative stress.

  8. Inflammatory and Repair Pathways Induced in Human Bronchoalveolar Lavage Cells with Ozone Inhalation

    PubMed Central

    Wong, Hofer; Tenney, Rachel; Chen, Chun; Stiner, Rachel; Balmes, John R.; Paquet, Agnès C.; Arjomandi, Mehrdad

    2015-01-01

    Background Inhalation of ambient levels of ozone causes airway inflammation and epithelial injury. Methods To examine the responses of airway cells to ozone-induced oxidative injury, 19 subjects (7 with asthma) were exposed to clean air (0ppb), medium (100ppb), and high (200ppb) ambient levels of ozone for 4h on three separate occasions in a climate-controlled chamber followed by bronchoscopy with bronchoalveolar lavage (BAL) 24h later. BAL cell mRNA expression was examined using Affymetrix GeneChip Microarray. The role of a differentially expressed gene (DEG) in epithelial injury was evaluated in an in vitro model of injury [16HBE14o- cell line scratch assay]. Results Ozone exposure caused a dose-dependent up-regulation of several biologic pathways involved in inflammation and repair including chemokine and cytokine secretion, activity, and receptor binding; metalloproteinase and endopeptidase activity; adhesion, locomotion, and migration; and cell growth and tumorigenesis regulation. Asthmatic subjects had 1.7- to 3.8-fold higher expression of many DEGs suggestive of increased proinflammatory and matrix degradation and remodeling signals. The most highly up-regulated gene was osteopontin, the protein level of which in BAL fluid increased in a dose-dependent manner after ozone exposure. Asthmatic subjects had a disproportionate increase in non-polymerized osteopontin with increasing exposure to ozone. Treatment with polymeric, but not monomeric, osteopontin enhanced the migration of epithelial cells and wound closure in an α9β1 integrin-dependent manner. Conclusions Expression profiling of BAL cells after ozone exposure reveals potential regulatory genes and pathways activated by oxidative stress. One DEG, osteopontin, promotes epithelial wound healing in an in vitro model of injury. PMID:26035830

  9. Tamoxifen mutagenesis and carcinogenesis in livers of lambda/lacI transgenic rats: selective influence of phenobarbital promotion.

    PubMed

    Styles, J A; Davies, R; Fenwick, S; Walker, J; White, I N; Smith, L L

    2001-01-10

    Administration of tamoxifen (TAM) (20 mg/kg per day p.o.) for 6 weeks to female lambda/lacI transgenic rats caused a 4-fold increase in mutation frequency (MF) at the lacI gene locus in the livers of dosed animals compared with controls. After cessation of dosing, the MF showed a further increase with time at 2, 12 and 24 weeks, respectively. Phenobarbital promotion of similarly treated animals resulted in no increase in mutation frequency compared with TAM alone. Treatment with phenobarbital or TAM+phenobarbital resulted in time-dependent increases in liver weight compared with the corresponding controls. There was an increase in cell proliferation in the phenobarbital and TAM+phenobarbital groups, and at 24 weeks in the TAM dosed animals compared with controls. There was also a progressive increase in the number of GST-P expressing foci in the livers of TAM and TAM + phenobarbital rats compared with controls. The induction of cell proliferation and GSTP foci in the rat liver by phenobarbital is consistent with its ability to promote tamoxifen-initiated liver tumours in the rat. If the lacI gene is regarded as being representative of the rat genome in general (albeit that the gene is bacterial) the above observations suggest that promotion by tamoxifen confers selective advantage on mutated genes at loci that contribute to the tumour phenotype and that promotion of rat liver tumours by tamoxifen is not dependent simply upon the enhancement of cellular proliferation.

  10. Molindone: higher doses needed to block pergolide-induced elevation of serum corticosterone than to elevate dopamine metabolites in brain.

    PubMed

    Fuller, R W; Snoddy, H D

    1983-12-05

    Molindone at a dose of 3 mg/kg i.p. in rats prevented pergolide-induced decreases in brain DOPAC (3,4-dihydroxyphenylacetic acid) and HVA (homovanillic acid), causing instead significant increases in these dopamine metabolites when given in combination with pergolide. Molindone alone at 3 mg/kg caused two-fold or greater increases in DOPAC and HVA and at doses as low as 0.3 mg/kg caused significant increases in these metabolites. However, molindone at 3 mg/kg and lower doses was without effect on pergolide-induced elevation of serum corticosterone, though a higher dose of molindone, 10 mg/kg, significantly antagonized this increase in corticosterone. These data support earlier findings with molindone, suggesting it has greater affinity for presynaptic dopamine autoreceptors than for postsynaptic dopamine receptors.

  11. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  12. Antioxidant, analgesic and anti-inflammatory activities of the methanolic extract of Piper betle leaves.

    PubMed

    Alam, Badrul; Akter, Fahima; Parvin, Nahida; Sharmin Pia, Rashna; Akter, Sharmin; Chowdhury, Jesmin; Sifath-E-Jahan, Kazi; Haque, Ekramul

    2013-01-01

    The present study was designed to evaluate the antioxidant, analgesic, and anti-inflammatory activities of the methanolic extract of Piper betle leaves (MPBL). MPBL was evaluated for anti-inflammatory activity using carrageenan-induced hind paw edema model. Analgesic activity of MPBL was evaluated by hot plate, writhing, and formalin tests. Total phenolic and flavonoids content, total antioxidant activity, scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, peroxynitrate (ONOO) as well as inhibition of total ROS generation, and assessment of reducing power were used to evaluate antioxidant potential of MPBL. The extract of MPBL, at the dose of 100 and 200 mg/kg, produced a significant (p<0.05) increase in pain threshold in hot plate method whereas significantly (p<0.05) reduced the writhing caused by acetic acid and the number of licks induced by formalin in a dose-dependent manner. The same ranges of doses of MPBL caused significant (p<0.05) inhibition of carrageenan-induced paw edema after 4 h in a dose-dependent manner. In DPPH, ONOO(-), and total ROS scavenging method, MPBL showed good antioxidant potentiality with the IC50 value of 16.33±1.02, 25.16±0.61 , and 41.72±0.48 µg/ml, respectively with a significant (p<0.05) good reducing power. The findings of the study suggested that MPBL has strong analgesic, anti-inflammatory, and antioxidant effects, conforming the traditional use of this plant for inflammatory pain alleviation to its antioxidant potentiality.

  13. Genotoxicity testing of peptides: Folate deprivation as a marker of exaggerated pharmacology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guérard, Melanie, E-mail: melanie.guerard@roche.com; Zeller, Andreas; Festag, Matthias

    2014-09-15

    The incidence of micronucleated-cells is considered to be a marker of a genotoxic event and can be caused by direct- or indirect-DNA reactive mechanisms. In particular, small increases in the incidence of micronuclei, which are not associated with toxicity in the target tissue or any structurally altering properties of the compound, trigger the suspicion that an indirect mechanism could be at play. In a bone marrow micronucleus test of a synthetic peptide (a dual agonist of the GLP-1 and GIP receptors) that had been integrated into a regulatory 13-week repeat-dose toxicity study in the rat, small increases in the incidencemore » of micronuclei had been observed, together with pronounced reductions in food intake and body weight gain. Because it is well established that folate plays a crucial role in maintaining genomic integrity and pronounced reductions in food intake and body weight gain were observed, folate levels were determined from plasma samples initially collected for toxicokinetic analytics. A dose-dependent decrease in plasma folate levels was evident after 4 weeks of treatment at the mid and high dose levels, persisted until the end of the treatment duration of 13-weeks and returned to baseline levels during the recovery period of 4 weeks. Based on these properties, and the fact that the compound tested (peptide) per se is not expected to reach the nucleus and cause DNA damage, the rationale is supported that the elevated incidence of micronucleated polychromatic erythrocytes is directly linked to the exaggerated pharmacology of the compound resulting in a decreased folate level. - Highlights: • A synthetic peptide has been evaluated for potential genotoxicity • Small increases in an integrated (13-weeks) micronucleus test were observed • Further, animals had a pronounced reductions in food intake and body weight gain • A dose-dependent decrease in plasma folate levels was evident from week 4 onwards • Elevated micronuclei-incidence due to the exaggerated pharmacology.« less

  14. Hyperthyroidism due to thyroid-stimulating hormone secretion after surgery for Cushing's syndrome: a novel cause of the syndrome of inappropriate secretion of thyroid-stimulating hormone.

    PubMed

    Tamada, Daisuke; Onodera, Toshiharu; Kitamura, Tetsuhiro; Yamamoto, Yuichi; Hayashi, Yoshitaka; Murata, Yoshiharu; Otsuki, Michio; Shimomura, Iichiro

    2013-07-01

    Hyperthyroidism with the syndrome of inappropriate secretion of TSH (SITSH) occurred by a decrease in hydrocortisone dose after surgery for Cushing's syndrome. This is a novel cause of SITSH. The aim of this study was to describe and discuss 2 cases of SITSH patients that were found after surgery for Cushing's syndrome. We also checked whether SITSH occurred in 7 consecutive patients with Cushing's syndrome after surgery. A 45-year-old Japanese woman with ACTH-independent Cushing's syndrome and a 37-year-old Japanese man with ACTH-dependent Cushing's syndrome presented SITSH caused by insufficient replacement of hydrocortisone for postoperative adrenal insufficiency. When the dose of hydrocortisone was reduced to less than 20 mg/d within 18 days after surgery, SITSH occurred in both cases. We examined whether the change of the hydrocortisone dose induced the secretion of TSH. Free T₃ and TSH were normalized by the hydrocortisone dose increase of 30 mg/d, and these were elevated by the dose decrease of 10 mg/d. We also checked TSH and thyroid hormone levels of the 7 consecutive patients with Cushing's syndrome after surgery. Six (66.6 %) of 9 patients showed SITSH. This is the first report that insufficient replacement of hydrocortisone after surgery for Cushing's syndrome caused SITSH. Hyperthyroidism by SITSH as well as adrenal insufficiency can contribute to withdrawal symptoms of hydrocortisone replacement. We need to consider the possibility of SITSH for the pathological evaluation of withdrawal syndrome of hydrocortisone replacement.

  15. Neutral lipid trafficking regulates alveolar type II cell surfactant phospholipid and surfactant protein expression.

    PubMed

    Torday, John; Rehan, Virender

    2011-08-01

    Adipocyte differentiation-related protein (ADRP) is a critically important protein that mediates lipid uptake, and is highly expressed in lung lipofibroblasts (LIFs). Triacylglycerol secreted from the pulmonary circulation and stored in lipid storage droplets is a robust hormonal-, growth factor-, and stretch-regulated precursor for surfactant phospholipid synthesis by alveolar type II epithelial (ATII) cells. A549 lung epithelial cells rapidly take up green fluorescent protein (GFP)-ADRP fusion protein-associated lipid droplets (LDs) in a dose-dependent manner. The LDs initially localize to the perinuclear region of the cell, followed by localization in the cytoplasm. Uptake of ADRP-LDs causes a time- and dose-dependent increase in surfactant protein-B (SP-B) expression. This mechanism can be inhibited by either actinomycin D or cycloheximide, indicating that ADRP-LDs induce newly synthesized SP-B. ADRP-LDs concomitantly stimulate saturated phosphatidylcholine (satPC) synthesis by A549 cells, which is inhibited by ADRP antibody, indicating that this is a receptor-mediated mechanism. Intravenous administration of GFP-ADRP LDs to adult rats results in dose-dependent increases in lung ADRP and SP-B expression. These data indicate that lipofibroblast-derived ADRP coordinates ATII cells' synthesis of the surfactant phospholipid-protein complex by stimulating both satPC and SP-B. The authors propose, therefore, that ADRP is the physiologic determinant for the elusive coordinated, stoichiometric synthesis of surfactant phospholipid and protein by pulmonary ATII cells.

  16. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stringari, James; Nunes, Adriana K.C.; Franco, Jeferson L.

    2008-02-15

    During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/l, diluted in drinkingmore » water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PND) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F{sub 2}-isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F{sub 2}-isoprostanes levels at all time points. Significant negative correlations were found between F{sub 2}-isoprostanes and GSH, as well as between F{sub 2}-isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral levels of mercury at birth. Even though the cerebral mercury concentration decreased to nearly basal levels at postnatal day 21, GSH levels, GPx and GR activities remained decreased in MeHg-exposed mice, indicating that prenatal exposure to MeHg affects the cerebral GSH antioxidant systems by inducing biochemical alterations that endure even when mercury tissue levels decrease and become indistinguishable from those noted in pups born to control dams. This study is the first to show that prenatal exposure to MeHg disrupts the postnatal development of the glutathione antioxidant system in the mouse brain, pointing to an additional molecular mechanism by which MeHg induces pro-oxidative damage in the developing CNS. Moreover, our experimental observation corroborates previous reports on the permanent functional deficits observed after prenatal MeHg exposure.« less

  17. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain

    PubMed Central

    Stringari, James; Nunes, Adriana KC; Franco, Jeferson L; Bohrer, Denise; Garcia, Solange C; Dafre, Alcir L; Milatovic, Dejan; Souza, Diogo O; Rocha, João BT; Aschner, Michael; Farina, Marcelo

    2010-01-01

    During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/L, diluted in drinking water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PNDs) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F2-isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F2-isoprostanes levels at all time points. Significant negative correlations were found between F2-isoprostanes and GSH, as well as between F2-isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral levels of mercury at birth. Even though the cerebral mercury concentration decreased to nearly basal levels at postnatal day 21, GSH levels, GPx and GR activities remained decreased in MeHg-exposed mice, indicating that prenatal exposure to MeHg affects the cerebral GSH antioxidant systems by inducing biochemical alterations that endure even when mercury tissue levels decrease and become indistinguishable from those noted in pups born to control dams. This study is the first to show that prenatal exposure to MeHg disrupts the postnatal development of the glutathione antioxidant system in the mouse brain, pointing to an additional molecular mechanism by which MeHg induces pro-oxidative damage in the developing CNS. Moreover, our experimental observation corroborates previous reports on the permanent functional deficits observed after prenatal MeHg exposure. PMID:18023834

  18. Cocaine administration dose-dependently increases sexual desire and decreases condom use likelihood: The role of delay and probability discounting in connecting cocaine with HIV.

    PubMed

    Johnson, Matthew W; Herrmann, Evan S; Sweeney, Mary M; LeComte, Robert S; Johnson, Patrick S

    2017-02-01

    Although cocaine use has been linked to sexual HIV risk behavior for decades, the direct effects of cocaine on sexual desire and sexual decision-making are unexamined. Research suggests delay discounting (devaluation of future outcomes) and probability discounting (devaluation of uncertain outcomes) play roles in condom use decisions. This study examined the effect of cocaine administration on sexual desire, hypothetical condom use, and discounting tasks. This double-blind, within-subjects study compared the effects of 0, 125, and 250 mg/70 kg oral cocaine HCl in 12 cocaine users. Measures included sexual desire and other subjective ratings, the Sexual Delay Discounting Task, the Sexual Probability Discounting Task, and monetary delay and probability discounting tasks. Cocaine caused dose-related increases in sexual desire and prototypical stimulant abuse-liability ratings. Relative to placebo, cocaine did not significantly alter condom use likelihood when condoms were immediately available or when sex was associated with 100% certainty of sexually transmitted infection (STI). In contrast, cocaine dose-dependently strengthened the effect of delay (sexual delay discounting) and STI uncertainty (sexual probability discounting) in decreasing condom use likelihood. Cocaine caused no significant change in monetary delay and probability discounting. This is the first study showing that cocaine administration increases sexual desire. Detrimental effects of cocaine on sexual risk were only observed when safer sex required delay, or STI risk was uncertain (representative of many real-world scenarios), suggesting a critical role of discounting processes. Lack of monetary effects highlights the importance of studying clinically relevant outcomes when examining drug effects on behavioral processes.

  19. Cisplatin and photodynamic therapy exert synergistic inhibitory effects on small-cell lung cancer cell viability and xenograft tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, You-Shuang; Peng, Yin-Bo; Yao, Min

    Lung cancer is the leading cause of cancer death worldwide. Small-cell lung cancer (SCLC) is an aggressive type of lung cancer that shows an overall 5-year survival rate below 10%. Although chemotherapy using cisplatin has been proven effective in SCLC treatment, conventional dose of cisplatin causes adverse side effects. Photodynamic therapy, a form of non-ionizing radiation therapy, is increasingly used alone or in combination with other therapeutics in cancer treatment. Herein, we aimed to address whether low dose cisplatin combination with PDT can effectively induce SCLC cell death by using in vitro cultured human SCLC NCI-H446 cells and in vivo tumor xenograft model.more » We found that both cisplatin and PDT showed dose-dependent cytotoxic effects in NCI-H446 cells. Importantly, co-treatment with low dose cisplatin (1 μM) and PDT (1.25 J/cm{sup 2}) synergistically inhibited cell viability and cell migration. We further showed that the combined therapy induced a higher level of intracellular ROS in cultured NCI-H446 cells. Moreover, the synergistic effect by cisplatin and PDT was recapitulated in tumor xenograft as revealed by a more robust increase in the staining of TUNEL (a marker of cell death) and decrease in tumor volume. Taken together, our findings suggest that low dose cisplatin combination with PDT can be an effective therapeutic modality in the treatment of SCLC patients.« less

  20. Peripheral organ doses from radiotherapy for heterotopic ossification of non-hip joints: is there a risk for radiation-induced malignancies?

    PubMed

    Berris, Theocharis; Mazonakis, Michalis; Kachris, Stefanos; Damilakis, John

    2014-05-01

    Radiotherapy, used for heterotopic ossification (HO) management, may increase radiation risk to patients. This study aimed to determine the peripheral dose to radiosensitive organs and the associated cancer risks due to radiotherapy of HO in common non-hip joints. A Monte Carlo model of a medical linear accelerator combined with a mathematical phantom representing an average adult patient were employed to simulate radiotherapy for HO with standard AP and PA fields in the regions of shoulder, elbow and knee. Radiation dose to all out-of-field radiosensitive organs defined by the International Commission on Radiological Protection was calculated. Cancer induction risk was estimated using organ-specific risk coefficients. Organ dose change with increased field dimensions was also evaluated. Radiation therapy for HO with a 7 Gy target dose in the sites of shoulder, elbow and knee, resulted in the following equivalent organ dose ranges of 0.85-62 mSv, 0.28-1.6 mSv and 0.04-1.6 mSv, respectively. Respective ranges for cancer risk were 0-5.1, 0-0.6 and 0-1.3 cases per 10(4) persons. Increasing the field size caused an average increase of peripheral doses by 15-20%. Individual organ dose increase depends upon the primary treatment site and the distance between organ of interest and treatment volume. Relatively increased risks of more than 1 case per 10,000 patients were found for skin, breast and thyroid malignancies after treatment in the region of shoulder and for skin cancer following elbow irradiation. The estimated risk for inducing any other malignant disease ranges from negligible to low. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. High-Dose Fluoride Impairs the Properties of Human Embryonic Stem Cells via JNK Signaling.

    PubMed

    Fu, Xin; Xie, Fang-Nan; Dong, Ping; Li, Qiu-Chen; Yu, Guang-Yan; Xiao, Ran

    2016-01-01

    Fluoride is a ubiquitous natural substance that is often used in dental products to prevent dental caries. The biphasic actions of fluoride imply that excessive systemic exposure to fluoride can cause harmful effects on embryonic development in both animal models and humans. However, insufficient information is available on the effects of fluoride on human embryonic stem cells (hESCs), which is a novel in vitro humanized model for analyzing the embryotoxicities of chemical compounds. Therefore, we investigated the effects of sodium fluoride (NaF) on the proliferation, differentiation and viability of H9 hESCs. For the first time, we showed that 1 mM NaF did not significantly affect the proliferation of hESCs but did disturb the gene expression patterns of hESCs during embryoid body (EB) differentiation. Higher doses of NaF (2 mM and above) markedly decreased the viability and proliferation of hESCs. The mode and underlying mechanism of high-dose NaF-induced cell death were further investigated by assessing the sub-cellular morphology, mitochondrial membrane potential (MMP), caspase activities, cellular reactive oxygen species (ROS) levels and activation of mitogen-activated protein kinases (MAPKs). High-dose NaF caused the death of hESCs via apoptosis in a caspase-mediated but ROS-independent pathway, coupled with an increase in the phospho-c-Jun N-terminal kinase (p-JNK) levels. Pretreatment with a p-JNK-specific inhibitor (SP600125) could effectively protect hESCs from NaF-induced cell death in a concentration- and time-dependent manner. These findings suggest that NaF might interfere with early human embryogenesis by disturbing the specification of the three germ layers as well as osteogenic lineage commitment and that high-dose NaF could cause apoptosis through a JNK-dependent pathway in hESCs.

  2. Low-dose aspirin use and survival in breast cancer patients: A nationwide cohort study.

    PubMed

    Mc Menamin, Úna C; Cardwell, Chris R; Hughes, Carmel M; Murray, Liam J

    2017-04-01

    Preclinical evidence from breast cancer cell lines and animal models suggest that aspirin could have anti-cancer properties. In a large breast cancer patient cohort, we investigated whether post-diagnostic low-dose aspirin use was associated with a reduction in the risk of breast cancer-specific mortality. We identified 15,140 newly diagnosed breast cancer patients within the Scottish Cancer Registry. Linkages to the Scottish Prescribing Information System provided data on dispensed medications and breast cancer-specific deaths were identified from National Records of Scotland Death Records. Time-dependent Cox regression models were used to calculate hazard ratios (HR) and 95% CIs for breast cancer-specific and all-cause mortality by post-diagnostic low-dose aspirin use. HRs were adjusted for a range of potential confounders including age at diagnosis, year of diagnosis, cancer stage, grade, cancer treatments received, comorbidities, socioeconomic status and use of statins. Secondary analysis investigated the association between pre-diagnostic low-dose aspirin use and breast cancer-specific and all-cause mortality. Post-diagnostic users of low-dose aspirin appeared to have increased breast cancer-specific mortality compared with non-users (HR 1.44, 95% CI 1.26, 1.65) but this association was entirely attenuated after adjustment for potential confounders (adjusted HR 0.92, 95% CI 0.75, 1.14). Findings were similar in analysis by increasing duration of use and in analysis of pre-diagnostic low-dose aspirin use. In this large nationwide study of breast cancer patients, we found little evidence of an association between post-diagnostic low-dose aspirin use and cancer-specific mortality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Characterization and prediction of monomer-based dose rate effects in electron-beam polymerization

    NASA Astrophysics Data System (ADS)

    Schissel, Sage M.; Lapin, Stephen C.; Jessop, Julie L. P.

    2017-12-01

    Properties of some materials produced by electron-beam (EB) induced polymerization appear dependent upon the rate at which the initiating dose was delivered. However, the magnitude of these dose rate effects (DREs) can vary greatly with different monomer formulations, suggesting DREs are dependent on chemical structure. The relationship among dose, dose rate, conversion, and the glass transition temperature (Tg) of the cured material was explored for an acrylate monomer series. A strong correlation was determined between the DRE magnitude and monomer size, and this correlation may be attributed to chain transfer. Using the Tg shift caused by changes in dose, a preliminary predictive relationship was developed to estimate the magnitude of the Tg DRE, enabling scale-up of process variables for polymers prone to dose rate effects.

  4. Pulmonary Cerium Dioxide Nanoparticles Exposure Differentially Impairs Coronary and Mesenteric Arteriolar Reactivity

    PubMed Central

    Minarchick, Valerie C; Stapleton, Phoebe A; Porter, Dale W; Wolfarth, Michael G; Çiftyürek, Engin; Barger, Mark; Sabolsky, Edward M.; Nurkiewicz, Timothy R

    2013-01-01

    Cerium dioxide nanoparticles (CeO2 NPs) are an engineered nanomaterial that possesses unique catalytic, oxidative and reductive properties. Currently, CeO2 NPs are being used as a fuel catalyst but these properties are also utilized in the development of potential drug treatments for radiation and stroke protection. These uses of CeO2 NPs present a risk for human exposure; however, to date no studies have investigated the effects of CeO2 NPs on the microcirculation following pulmonary exposure. Previous studies in our laboratory with other nanomaterials have shown impairments in normal microvascular function after pulmonary exposures. Therefore, we predicted that CeO2 NP exposure would cause microvascular dysfunction that is dependent on the tissue bed and dose. Twenty-four hour post exposure to CeO2 NPs (0–400 μg), mesenteric and coronary arterioles were isolated and microvascular function was assessed. Our results provided evidence that pulmonary CeO2 NP exposure impairs endothelium-dependent and -independent arteriolar dilation in a dose-dependent manner. The CeO2 NP exposure dose which causes a 50% impairment in arteriolar function (EC50) was calculated and ranged from 15 – 100 μg depending on the chemical agonist and microvascular bed. Microvascular assessments with acetylcholine revealed a 33–75% reduction in function following exposure. Additionally, there was a greater sensitivity to CeO2 NP exposure in the mesenteric microvasculature due to the 40% decrease in the calculated EC50 compared to the coronary microvasculature EC50. CeO2 NP exposure increased mean arterial pressure in some groups. Taken together these observed microvascular changes may likely have detrimental effects on local blood flow regulation and contribute to cardiovascular dysfunction associated with particle exposure. PMID:23645470

  5. The role of macrophages in the regulation of erythroid colony growth in vitro.

    PubMed

    Wang, C Q; Udupa, K B; Lipschitz, D A

    1992-10-01

    Depletion of macrophages from murine marrow by the use of a monoclonal anti-macrophage antibody resulted in a significant increase in the number of erythroid burst forming units (BFU-E). This increase could be neutralized by the addition back to culture of macrophages or macrophage conditioned medium indicating that the suppression was mediated by soluble factors. To further characterize this effect, the addition to culture, either alone or in combination, of interleukin-1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF alpha), and granulocyte-macrophage colony-stimulating factor (GM-CSF) on the growth of BFU-E and the colony-forming unit granulocyte-macrophage (CFU-GM) was examined in macrophage-containing and macrophage-depleted cultures. The addition of IL-1 alpha to culture stimulated the release of both TNF alpha and GM-CSF and acted synergistically with both cytokines, resulting in a dose-dependent suppression of BFU-E and stimulation of CFU-GM growth. The increase in CFU-GM caused by the addition of IL-1 alpha was mediated by GM-CSF but not by TNF alpha as the increase was prevented by the addition of a monoclonal anti-GM-CSF antibody but not by anti-TNF alpha. When either TNF alpha or GM-CSF was neutralized by monoclonal antibodies the addition of IL-1 alpha resulted in a significant increase in BFU-E growth. The addition of GM-CSF to culture caused a dose-dependent suppression of BFU-E that was mediated by TNF alpha, as colony number was not reduced when GM-CSF and a monoclonal anti-TNF alpha antibody were simultaneously added to culture. TNF alpha-induced suppression of BFU-E only occurred in the presence of macrophages. In macrophage-depleted cultures, a dose-dependent suppression of BFU-E could be induced if subinhibitory concentrations of IL-1 alpha or GM-CSF were simultaneously added with increasing concentrations of TNF alpha. The effects of IL-1 alpha or GM-CSF and TNF alpha were markedly synergistic so that the doses required to induce suppression when added simultaneously was only 10% of that required when either were added to culture alone. Suppression of BFU-E by GM-CSF or the combined addition of GM-CSF and TNF alpha did not require IL-1 alpha because inhibition was not neutralized by the addition of anti-IL-1 alpha antibody.(ABSTRACT TRUNCATED AT 400 WORDS)

  6. Dose-dependent analysis of acute medical effects of mixed neutron-gamma radiation from selected severe 235U or 239Pu criticality accidents in USSR, United States, and Argentina.

    PubMed

    Barabanova, Tatyana; Wiley, Albert L; Bushmanov, Andrey

    2012-04-01

    Eight of the most severe cases of acute radiation disease (ARS) known to have occurred in humans (as the result of criticality accidents) had survival times less than 120 h (herein defined as "early death"). These accidents were analyzed and are discussed with respect to the specific accident scenarios and the resulting accident-specific, mixed neutron-gamma radiation clinical dose distributions. This analysis concludes that the cardiovascular system appears to be the most critical organ system failure for causing "early death" following approximate total body, mixed gamma-neutron radiation doses greater than 40-50 Gy. The clinical data also suggest that there was definite chest dose dependence in the resulting survival times for these eight workers, who unfortunately suffered profound radiation injury and unusual clinical effects from such high dose radiation exposures. In addition, "toxemic syndrome" is correlated with the irradiation of large volumes of soft tissues. Doses to the hands or legs greater than 80-100 Gy or radiation lung injury also play significant but secondary roles in causing "early death" in accidents delivering chest doses greater than 50 Gy.

  7. Protection against endotoxin-induced foetal resorption in mice by desferrioxamine and ebselen.

    PubMed Central

    Gower, J. D.; Baldock, R. J.; O'Sullivan, A. M.; Doré, C. J.; Coid, C. R.; Green, C. J.

    1990-01-01

    Endotoxin was administered to mice on their 13th day of pregnancy at doses which caused the resorption of approximately 50% of the implanted foetuses. The iron chelator desferrioxamine was found to significantly inhibit the percentage of resorptions induced by endotoxin in a dose-dependent manner. The highest dose of desferrioxamine (5 mg) given intravenously 30 min prior to, immediately after, and 4 and 24 h after endotoxin inoculation, reduced the percentage of resorptions from 56.9 to 17.9%. Administration of the novel selenium-containing compound ebselen, which is both an antioxidant and an inhibitor of leukotriene synthesis, was also found to significantly protect against endotoxin-induced foetal resorptions, reducing the percentage of resorbed foetuses from 52.9 to 26.0% when given at a dose of 50 mg/kg (s.c.) at the time of endotoxin inoculation and 24 and 48 h following. Both these compounds also significantly reduced the increase in spleen weights observed when the mice were given endotoxin. These results provide evidence that the iron-catalysed production of hydroxyl radicals from other oxygen-derived species and the formation of leukotrienes play an important role in the mechanism by which endotoxin causes foetal resorptions in the mouse. PMID:2205283

  8. Impact of fipronil on the mushroom bodies of the stingless bee Scaptotrigona postica.

    PubMed

    Jacob, Cynthia R O; Soares, Hellen M; Nocelli, Roberta C F; Malaspina, Osmar

    2015-01-01

    Studies on stingless bees are scarce, and little is known about these insects, especially regarding the effects of contamination by neurotoxic insecticides, which can cause damage to important structures of the insect brain. This study evaluated the morphological changes in the intrinsic neurons of the protocerebral mushroom bodies (Kenyon cells) of the stingless bee Scaptotrigona postica after exposure to different doses of fipronil, using light microscopy and transmission electron microscopy. This region of the brain was selected for analysis because of its importance as a sensory integration centre. In both oral and topical treatments, Kenyon cells presented pyknotic profiles, suggesting cell death. Statistical analysis showed significant differences among doses and exposure times. Transmission electron microscopy revealed changes in the nucleus and cellular organelles. Depending on the dose, the characteristics observed suggested apoptotosis or necrosis. This study demonstrates the toxic effects of fipronil. An increase in the number of pyknotic profiles of Kenyon cells of mushroom bodies was observed even at the sublethal doses of 0.27 ng AI bee(-1) and 0.24 ng AI µL(-1) in the topical and oral treatments respectively. Also, differences in the number of pyknotic profiles were dose and time dependent. © 2014 Society of Chemical Industry.

  9. Influence of the Ar-ion irradiation on the giant magnetoresistance in Fe/Cr multilayers

    NASA Astrophysics Data System (ADS)

    Kopcewicz, M.; Stobiecki, F.; Jagielski, J.; Szymański, B.; Schmidt, M.; Dubowik, J.; Kalinowska, J.

    2003-05-01

    The influence of 200 keV Ar-ion irradiation on the interlayer coupling in Fe/Cr multilayers exhibiting the giant magnetoresistance (GMR) effect is studied by the conversion electron Mössbauer spectroscopy (CEMS), vibrating sample magnetometer hysteresis loops, magnetoresistivity, and electric resistivity measurements and supplemented by the small-angle x-ray diffraction. The increase of Ar-ion dose causes an increase of interface roughness, as evidenced by the increase of the Fe step sites detected by CEMS. The modification of microstructure induces changes in magnetization reversal indicating a gradual loss of antiferromagnetic (AF) coupling correlated with the degradation of the GMR effect. Distinctly weaker degradation of AF coupling and the GMR effect observed for irradiated samples with a thicker Cr layer thickness suggest that observed effects are caused by pinholes creation. The measurements of temperature dependence of remanence magnetization confirm increase of pinhole density and sizes during implantation. Other effects which can influence spin dependent contribution to the resistance, such as interface roughness as well as shortening of mean-free path of conduction electrons, are also discussed.

  10. Synthetic detergents induced-biochemical and histological changes in skin of guinea pigs.

    PubMed

    Agarwal, C; Mathur, A K; Gupta, B N; Singh, A; Shanker, R

    1990-06-01

    The linear alkylbenzene sulphonate (LAS) based synthetic detergents-induced decrease in lipid peroxydation and increase in histamine content in exposed skin of guinea pigs in a dose-dependent manner. Histopathological alterations of exposed skin included moderate degree of hyperkeratinization at lower concentration but necrosis, scarring, sloughing as well as discontinuity of epidermis at higher concentrations. The results shows that the contact of skin with detergents causes dermal toxicity.

  11. [Changes in gastric function in rats after intragastric introduction of corvitin at high doses].

    PubMed

    Vovkun, T V; Ianchuk, P I; Shtanova, L Ia; Vesel'skyĭ, S P; Baranovs'kyĭ, V A

    2014-01-01

    Intragastric administration of corvitin at doses of 10, 20 and 40 mg/kg dose-dependently increased the volume of gastric juice and the total production of hydrochloric acid (HA). Amplification of hexosamines and cysteine production was observed only when the study drug was administered at a dose of 10 mg/kg. When corvitin was used at 20 and 40 mg/kg, these parameters were at the level of control values. Protein production increased in response to 10 and 20 mg/kg corvitin, but fell below the control values after administration of 40 mg/kg of the drug. The level of blood flow in the gastric mucosa increased following administration of 10 mg/kg corvitin, was not different from the baseline after 20 mg/kg of the drug and significantly decreased in response to 40 mg/kg of flavonoid. Our results indicate that a single intragastric application of corvitin at dose of 10 mg/kg activates gastric defense mechanisms. At 20 and 40 mg/kg, corvitin does not affect them but gradually reduces blood flow in gastric mucosa, causes a disturbance of protein synthesis and hypersecretion of HA into the cavity of the stomach, which can lead to disruption of the digestive process and the integrity of gastric mucosa.

  12. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jane Y., E-mail: jym1@cdc.gov; Mercer, Robert R.; Barger, Mark

    2012-08-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO{sub 2}) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO{sub 2}-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO{sub 2} in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO{sub 2} by a single intratracheal instillation. Alveolar macrophagesmore » (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO{sub 2} exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO{sub 2} induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO{sub 2} and euthanized at 28 days post-exposure. Collectively, our studies show that CeO{sub 2} induced fibrotic lung injury in rats, suggesting it may cause potential health effects. -- Highlights: ► Cerium oxide exposure significantly affected the following parameters in the lung. ► Induced fibrotic cytokine OPN and TGF-β1 production and phospholipidosis. ► Caused imbalance of the MMP-9/ TIMP-1 ratio that favors fibrosis. ► Cerium oxide particles were detected in lung tissue and AM. ► Cerium oxide caused lung fibrosis in a dose- and time-dependent manner.« less

  13. TU-G-BRA-04: Changes in Regional Lung Function Measured by 4D-CT Ventilation Imaging for Thoracic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Y; Kadoya, N; Kabus, S

    Purpose: To test the hypothesis: 4D-CT ventilation imaging can show the known effects of radiotherapy on lung function: (1) radiation-induced ventilation reductions, and (2) ventilation increases caused by tumor regression. Methods: Repeat 4D-CT scans (pre-, mid- and/or post-treatment) were acquired prospectively for 11 thoracic cancer patients in an IRB-approved clinical trial. A ventilation image for each time point was created using deformable image registration and the Hounsfield unit (HU)-based or Jacobian-based metric. The 11 patients were divided into two subgroups based on tumor volume reduction using a threshold of 5 cm{sup 3}. To quantify radiation-induced ventilation reduction, six patients whomore » showed a small tumor volume reduction (<5 cm{sup 3}) were analyzed for dose-response relationships. To investigate ventilation increase caused by tumor regression, two of the other five patients were analyzed to compare ventilation changes in the lung lobes affected and unaffected by the tumor. The remaining three patients were excluded because there were no unaffected lobes. Results: Dose-dependent reductions of HU-based ventilation were observed in a majority of the patient-specific dose-response curves and in the population-based dose-response curve, whereas no clear relationship was seen for Jacobian-based ventilation. The post-treatment population-based dose-response curve of HU-based ventilation demonstrated the average ventilation reductions of 20.9±7.0% at 35–40 Gy (equivalent dose in 2-Gy fractions, EQD2), and 40.6±22.9% at 75–80 Gy EQD2. Remarkable ventilation increases in the affected lobes were observed for the two patients who showed an average tumor volume reduction of 37.1 cm{sup 3} and re-opening airways. The mid-treatment increase in HU-based ventilation of patient 3 was 100.4% in the affected lobes, which was considerably greater than 7.8% in the unaffected lobes. Conclusion: This study has demonstrated that 4D-CT ventilation imaging shows the known effects of radiotherapy on lung function: radiation-induced ventilation reduction and ventilation increase caused by tumor regression, providing validation for 4D-CT ventilation imaging. This study was supported in part by a National Lung Cancer Partnership Young Investigator Research grant.« less

  14. Trimer procyanidin oligomers contribute to the protective effects of cinnamon extracts on pancreatic β-cells in vitro

    PubMed Central

    Sun, Peng; Wang, Ting; Chen, Lu; Yu, Bang-wei; Jia, Qi; Chen, Kai-xian; Fan, Hui-min; Li, Yi-ming; Wang, He-yao

    2016-01-01

    Aim: Cinnamon extracts rich in procyanidin oligomers have shown to improve pancreatic β-cell function in diabetic db/db mice. The aim of this study was to identify the active compounds in extracts from two species of cinnamon responsible for the pancreatic β-cell protection in vitro. Methods: Cinnamon extracts were prepared from Cinnamomum tamala (CT-E) and Cinnamomum cassia (CC-E). Six compounds procyanidin B2 (cpd1), (−)-epicatechin (cpd2), cinnamtannin B1 (cpd3), procyanidin C1 (cpd4), parameritannin A1 (cpd5) and cinnamtannin D1 (cpd6) were isolated from the extracts. INS-1 pancreatic β-cells were exposed to palmitic acid (PA) or H2O2 to induce lipotoxicity and oxidative stress. Cell viability and apoptosis as well as ROS levels were assessed. Glucose-stimulated insulin secretion was examined in PA-treated β-cells and murine islets. Results: CT-E, CC-E as well as the compounds, except cpd5, did not cause cytotoxicity in the β-cells up to the maximum dosage using in this experiment. CT-E and CC-E (12.5–50 μg/mL) dose-dependently increased cell viability in both PA- and H2O2-treated β-cells, and decreased ROS accumulation in H2O2-treated β-cells. CT-E caused more prominent β-cell protection than CC-E. Furthermore, CT-E (25 and 50 μg/mL) dose-dependently increased glucose-stimulated insulin secretion in PA-treated β-cells and murine islets, but CC-E had little effect. Among the 6 compounds, trimer procyanidins cpd3, cpd4 and cpd6 (12.5–50 μmol/L) dose-dependently increased the cell viability and decreased ROS accumulation in H2O2-treated β-cells. The trimer procyanidins also increased glucose-stimulated insulin secretion in PA-treated β-cells. Conclusion: Trimer procyanidins in the cinnamon extracts contribute to the pancreatic β-cell protection, thus to the anti-diabetic activity. PMID:27238208

  15. Soya Saponins Induce Enteritis in Atlantic Salmon (Salmo salar L.).

    PubMed

    Krogdahl, Åshild; Gajardo, Karina; Kortner, Trond M; Penn, Michael; Gu, Min; Berge, Gerd Marit; Bakke, Anne Marie

    2015-04-22

    Soybean meal-induced enteritis (SBMIE) is a well-described condition in the distal intestine of salmonids, and saponins have been implicated as the causal agent. However, the question remains whether saponins alone cause SBMIE. Moreover, the dose-response relationship has not been described. In a 10 week feeding trial with Atlantic salmon, a highly purified (95%) soya saponin preparation was supplemented (0, 2, 4, 6, or 10 g/kg) to two basal diets, one containing fishmeal as the major protein source (FM) and the other 25% lupin meal (LP). Saponins caused dose-dependent increases in the severity of inflammation independent of the basal diet, with concomitant alterations in digestive functions and immunological marker expression. Thus, saponins induced inflammation whether the diet contained other legume components or not. However, responses were often the same or stronger in fish fed the corresponding saponin-supplemented LP diets despite lower saponin exposure, suggesting potentiation by other legume component(s).

  16. Effects of sub-acute methanol extract treatment of Calliandra portoricensis root bark on antioxidant defence capacity in an experimental rat model.

    PubMed

    Siemuri, Ese O; Akintunde, Jacob K; Salemcity, Anuoluwapo J

    2015-07-01

    The attendant side effects associated with some synthetic drugs used in the management of diseases have led to the search for safer alternative therapies that are relatively cheaper with minimal side effects. The methanol extract of Calliandra portoricensis root bark (CPRB) was orally administered at the doses of 5, 10, 20, and 25 mg/kg body weight for 14 consecutive days of 5 rats in each group. The control rats were given distilled water. The 95% methanol extract of CPRB significantly (p<0.05) scavenged NO• and OH• radicals compared to vitamin C. The level of lipid peroxidative products (malondialdehyde, MDA) was significantly (p<0.05) attenuated in a dose-dependent manner. Antioxidant enzymes including superoxide dismutase and catalase were significantly (p<0.05) exercabated in both liver and kidney in a dose-dependent manner. Furthermore, serum AST, alanine aminotransaminase and γ-glutamyltransferase (GGT) activity depicted non-significant (p>0.05) increase in the treated animals. The histological examination showed mild vacuolar, portal congestion and cell infiltration by mononuclear of the hepatic tissues. The study then concluded that a therapeutic dose of the methanol extract of CPRB triggered the antioxidant defence systems in male rats. It is, therefore, recommended that the doses should be carefully and clinically chosen because higher doses may cause some health risks.

  17. Homocysteine-Lowering and Cardiovascular Disease Outcomes in Kidney Transplant Recipients: Primary Results from the Folic Acid for Vascular Outcome Reduction in Transplantation (FAVORIT) Trial

    PubMed Central

    Bostom, Andrew G.; Carpenter, Myra A.; Kusek, John W.; Levey, Andrew S.; Hunsicker, Lawrence; Pfeffer, Marc A.; Selhub, Jacob; Jacques, Paul F.; Cole, Edward; Gravens-Mueller, Lisa; House, Andrew A.; Kew, Clifton; McKenney, Joyce L.; Pacheco-Silva, Alvaro; Pesavento, Todd; Pirsch, John; Smith, Stephen; Solomon, Scott; Weir, Matthew

    2015-01-01

    Background Kidney transplant recipients, like other patients with chronic kidney disease (CKD), experience excess risk of cardiovascular disease (CVD) and elevated total homocysteine (tHcy) concentrations. Observational studies of patients with CKD suggest increased homocysteine is a risk factor for CVD. The impact of lowering total homocysteine (tHcy) levels in kidney transplant recipients is unknown. Methods and Results In a double-blind controlled trial, we randomized 4110 stable kidney transplant recipients to a multivitamin that included either a high dose (n=2056) or low dose (n=2054) of folic acid, vitamin B6, and vitamin B12 to determine whether decreasing tHcy concentrations reduced the rate of the primary composite arteriosclerotic CVD outcome (myocardial infarction, stroke, CVD death, resuscitated sudden death, coronary artery or renal artery revascularization, lower extremity arterial disease, carotid endarterectomy or angioplasty, or abdominal aortic aneurysm repair). Mean follow-up was 4.0 years. Treatment with the high dose multivitamin reduced homocysteine but did not reduce the rates of the primary outcome (n= 547 total events; hazards ratio [95% confidence interval] = 0.99 [0.84–1.17]), or secondary outcomes of all-cause mortality (n=431 deaths; 1.04 [0.86–1.26]) or dialysis-dependent kidney failure (n=343 events; 1.15 [0.93–1.43]) compared to the low dose multivitamin. Conclusions Treatment with a high dose folic acid, B6, and B12 multivitamin in kidney transplant recipients did not reduce a composite cardiovascular disease outcome, all-cause mortality, or dialysis-dependent kidney failure despite significant reduction in homocysteine level. PMID:21482964

  18. Dose-Dependent Effects of Theta Burst rTMS on Cortical Excitability and Resting-State Connectivity of the Human Motor System

    PubMed Central

    Nettekoven, Charlotte; Volz, Lukas J.; Kutscha, Martha; Pool, Eva-Maria; Rehme, Anne K.; Eickhoff, Simon B.; Fink, Gereon R.

    2014-01-01

    Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity. PMID:24828639

  19. Plasma growth hormone (GH), insulin and amino acid responses to arginine with or without aspartic acid in pigs. Effect of the dose.

    PubMed

    Cochard, A; Guilhermet, R; Bonneau, M

    1998-01-01

    The aim of the present study was to examine, for the first time in pigs, the dose-dependent effect of arginine (ARG) on growth hormone (GH) and insulin release and the effect of the combined ARG and aspartic acid (ASP) treatment on GH and insulin release. ARG (0.5 or 1 g/kg body weight) with or without an equimolar supplement of ASP (0.38 or 0.76 g/kg, respectively) was administered in piglets via the duodenum. ARG increased plasma arginine, ornithine, urea, proline and branched chain amino acid concentrations. ASP increased specifically plasma aspartic acid, glutamic acid, alanine and citrulline concentrations. Plasma insulin increased with no apparent difference between treatments. Maximum GH level and the area under the GH curve (AUC) were increased in a dose-dependent manner in response to ARG treatment. GH response to the combined ARG and ASP treatment (ARGASP) was delayed compared to ARG alone and was not dose-dependent. AUC for GH after ARGASP treatments were intermediate between those observed after the two ARG doses. Our data suggest that high ASP doses transiently inhibit and delay ARG-induced GH release in pigs and that an equimolar supplement of ASP stimulates or inhibits ARG-induced GH release depending on the dose used.

  20. Toxic C17-Sphinganine Analogue Mycotoxin, Contaminating Tunisian Mussels, Causes Flaccid Paralysis in Rodents

    PubMed Central

    Marrouchi, Riadh; Benoit, Evelyne; Le Caer, Jean-Pierre; Belayouni, Nawel; Belghith, Hafedh; Molgó, Jordi; Kharrat, Riadh

    2013-01-01

    Severe toxicity was detected in mussels from Bizerte Lagoon (Northern Tunisia) using routine mouse bioassays for detecting diarrheic and paralytic toxins not associated to classical phytoplankton blooming. The atypical toxicity was characterized by rapid mouse death. The aim of the present work was to understand the basis of such toxicity. Bioassay-guided chromatographic separation and mass spectrometry were used to detect and characterize the fraction responsible for mussels’ toxicity. Only a C17-sphinganine analog mycotoxin (C17-SAMT), with a molecular mass of 287.289 Da, was found in contaminated shellfish. The doses of C17-SAMT that were lethal to 50% of mice were 750 and 150 μg/kg following intraperitoneal and intracerebroventricular injections, respectively, and 900 μg/kg following oral administration. The macroscopic general aspect of cultures and the morphological characteristics of the strains isolated from mussels revealed that the toxicity episodes were associated to the presence of marine microfungi (Fusarium sp., Aspergillus sp. and Trichoderma sp.) in contaminated samples. The major in vivo effect of C17-SAMT on the mouse neuromuscular system was a dose- and time-dependent decrease of compound muscle action potential amplitude and an increased excitability threshold. In vitro, C17-SAMT caused a dose- and time-dependent block of directly- and indirectly-elicited isometric contraction of isolated mouse hemidiaphragms. PMID:24287956

  1. Effect of whole-body irradiation of mice on the number of background plaque-forming cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.E.; Lefkovits, I.; Soeederberg, A.

    1983-08-01

    Mice were exposed in whole-body fashion to several doses of radiation and killed at various times thereafter for a determination of the number of background plaque-forming cells (PFCs) as assayed on either sheep erythrocytes or bromelain-treated autologous mouse erythrocytes. Increased numbers of both types of PFC were found in the irradiated groups. These increases were dependent on radiation dose and time after exposure. They did not appear to be caused by a disruption of normal lymphocyte traffic or a switch in immunoglobulin isotype. An increased number of PFCs on bromelain-treated mouse RBCs but not on sheep RBCs were found inmore » irradiated congenitally athymic nude mice. On the basis of this and related observations, background PFCs on bromelain-treated mouse RBCs and on sheep RBCs appear to fall under different forms of homeostatic control.« less

  2. Dose rate effects in radiation degradation of polymer-based cable materials

    NASA Astrophysics Data System (ADS)

    Plaček, V.; Bartoníček, B.; Hnát, V.; Otáhal, B.

    2003-08-01

    Cable ageing under the nuclear power plant (NPP) conditions must be effectively managed to ensure that the required plant safety and reliability are maintained throughout the plant service life. Ionizing radiation is one of the main stressors causing age-related degradation of polymer-based cable materials in air. For a given absorbed dose, radiation-induced damage to a polymer in air environment usually depends on the dose rate of the exposure. In this work, the effect of dose rate on the degradation rate has been studied. Three types of NPP cables (with jacket/insulation combinations PVC/PVC, PVC/PE, XPE/XPE) were irradiated at room temperature using 60Co gamma ray source at average dose rates of 7, 30 and 100 Gy/h with the doses up to 590 kGy. The irradiated samples have been tested for their mechanical properties, thermo-oxidative stability (using differential scanning calorimetry, DSC), and density. In the case of PVC and PE samples, the tested properties have shown evident dose rate effects, while the XPE material has shown no noticeable ones. The values of elongation at break and the thermo-oxidative stability decrease with the advanced degradation, density tends to increase with the absorbed dose. For XPE samples this effect can be partially explained by the increase of crystallinity. It was tested by the DSC determination of the crystalline phase amount.

  3. Ibogaine for treating drug dependence. What is a safe dose?

    PubMed

    Schep, L J; Slaughter, R J; Galea, S; Newcombe, D

    2016-09-01

    The indole alkaloid ibogaine, present in the root bark of the West African rain forest shrub Tabernanthe iboga, has been adopted in the West as a treatment for drug dependence. Treatment of patients requires large doses of the alkaloid to cause hallucinations, an alleged integral part of the patient's treatment regime. However, case reports and case series continue to describe evidences of ataxia, gastrointestinal distress, ventricular arrhythmias and sudden and unexplained deaths of patients undergoing treatment for drug dependence. High doses of ibogaine act on several classes of neurological receptors and transporters to achieve pharmacological responses associated with drug aversion; limited toxicology research suggests that intraperitoneal doses used to successfully treat rodents, for example, have also been shown to cause neuronal injury (purkinje cells) in the rat cerebellum. Limited research suggests lethality in rodents by the oral route can be achieved at approximately 263mg/kg body weight. To consider an appropriate and safe initial dose for humans, necessary safety factors need to be applied to the animal data; these would include factors such as intra- and inter-species variability and for susceptible people in a population (such as drug users). A calculated initial dose to treat patients could be approximated at 0.87mg/kg body weight, substantially lower than those presently being administered to treat drug users. Morbidities and mortalities will continue to occur unless practitioners reconsider doses being administered to their susceptible patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Controlled progressive innate immune stimulation regimen prevents the induction of sickness behavior in the open field test

    PubMed Central

    Chen, Qun; Tarr, Andrew J; Liu, Xiaoyu; Wang, Yufen; Reed, Nathaniel S; DeMarsh, Cameron P; Sheridan, John F; Quan, Ning

    2013-01-01

    Peripheral immune activation by bacterial mimics or live replicating pathogens is well known to induce central nervous system activation. Sickness behavior alterations are often associated with inflammation-induced increases in peripheral proinflammatory cytokines (eg, interleukin [IL]-1β and IL-6). However, most researchers have used acute high dose endotoxin/bacterial challenges to observe these outcomes. Using this methodology may pose inherent risks in the translational interpretation of the experimental data in these studies. Studies using Escherichia coli have yet to establish the full kinetics of repeated E. coli peripheral injections. Therefore, we sought to examine the effects of repeated low dose E. coli on sickness behavior and local peripheral inflammation in the open field test. Results from the current experiments showed a behavioral dose response, where increased amounts of E. coli resulted in correspondingly increased sickness behavior. Furthermore, animals that received a subthreshold dose (ie, one that did not cause sickness behavior) of E. coli 24 hours prior were able to withstand a larger dose of E. coli on the second day (a dose that would normally cause sickness behavior in mice without prior exposure) without inducing sickness behavior. In addition, animals that received escalating subthreshold doses of E. coli on days 1 and 2 behaviorally tolerated a dose of E. coli 25 times higher than what would normally cause sickness behavior if given acutely. Lastly, increased levels of E. coli caused increased IL-6 and IL-1β protein expression in the peritoneal cavity, and this increase was blocked by administering a subthreshold dose of E. coli 24 hours prior. These data show that progressive challenges with subthreshold levels of E. coli may obviate the induction of sickness behavior and proinflammatory cytokine expression. PMID:23950656

  5. Controlled progressive innate immune stimulation regimen prevents the induction of sickness behavior in the open field test.

    PubMed

    Chen, Qun; Tarr, Andrew J; Liu, Xiaoyu; Wang, Yufen; Reed, Nathaniel S; Demarsh, Cameron P; Sheridan, John F; Quan, Ning

    2013-01-01

    Peripheral immune activation by bacterial mimics or live replicating pathogens is well known to induce central nervous system activation. Sickness behavior alterations are often associated with inflammation-induced increases in peripheral proinflammatory cytokines (eg, interleukin [IL]-1β and IL-6). However, most researchers have used acute high dose endotoxin/bacterial challenges to observe these outcomes. Using this methodology may pose inherent risks in the translational interpretation of the experimental data in these studies. Studies using Escherichia coli have yet to establish the full kinetics of repeated E. coli peripheral injections. Therefore, we sought to examine the effects of repeated low dose E. coli on sickness behavior and local peripheral inflammation in the open field test. Results from the current experiments showed a behavioral dose response, where increased amounts of E. coli resulted in correspondingly increased sickness behavior. Furthermore, animals that received a subthreshold dose (ie, one that did not cause sickness behavior) of E. coli 24 hours prior were able to withstand a larger dose of E. coli on the second day (a dose that would normally cause sickness behavior in mice without prior exposure) without inducing sickness behavior. In addition, animals that received escalating subthreshold doses of E. coli on days 1 and 2 behaviorally tolerated a dose of E. coli 25 times higher than what would normally cause sickness behavior if given acutely. Lastly, increased levels of E. coli caused increased IL-6 and IL-1β protein expression in the peritoneal cavity, and this increase was blocked by administering a subthreshold dose of E. coli 24 hours prior. These data show that progressive challenges with subthreshold levels of E. coli may obviate the induction of sickness behavior and proinflammatory cytokine expression.

  6. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures.

    PubMed

    Schweitzer, Kelly S; Chen, Steven X; Law, Sarah; Van Demark, Mary; Poirier, Christophe; Justice, Matthew J; Hubbard, Walter C; Kim, Elena S; Lai, Xianyin; Wang, Mu; Kranz, William D; Carroll, Clinton J; Ray, Bruce D; Bittman, Robert; Goodpaster, John; Petrache, Irina

    2015-07-15

    The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1-20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10-20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation.

  7. The dose-dependent effects of chronic iron overload on the production of oxygen free radicals and vitamin E concentrations in the liver of a murine model.

    PubMed

    McCullough, Karey D; Bartfay, Wally J

    2007-04-01

    Genetic disorders of iron metabolism such as primary and secondary hemochromatosis affect thousands of individuals worldwide and are major causes of liver dysfunction, morbidity, and mortality. Although the exact mechanism of hepatic injury associated with these genetic disorders is not fully understood, the propagation of excess concentrations of iron-catalyzed oxygen free radicals (OFRs) may play a role. The authors hypothesized that chronic iron burden would result in dose-dependent (a) increases in hepatic iron stores, (b) increases in hepatic OFR-mediated hepatic cellular injury as quantified by the cytotoxic aldehydes malondialdehyde (MDA) and hexanal, and (c) decreases in protective antioxidant reserve status as quantified by plasma vitamin E (alpha-tocopherol) levels in a murine model. Twenty B(6)D(2)F1 male mice were randomized to the (a) saline control (0.05 mL intraperiotoneal [i.p.]/mouse/day, n = 5), (b) 100 mg total iron burden (n = 5), (c) 200 mg total iron burden (n = 5), or (d) 400 mg total iron burden (n = 5) group. Iron burden was achieved by daily injections of iron dextran (Imferon, 0.05 mL i.p./mouse/day). In comparison to control mice and in support of the hypothesis, the authors observed significant dose-dependent increases in total hepatic iron burden (p < .001) with corresponding increases in MDA and hexanal concentrations (p < .001) and decreases in the protective plasma antioxidant vitamin E (p < .001). These findings suggest that iron-catalyzed OFR-mediated damage may play a role in damaging the liver in chronic states of iron burden.

  8. Assessment of phosphamidon-induced apoptosis in human peripheral blood mononuclear cells: protective effects of N-acetylcysteine and curcumin.

    PubMed

    Ahmed, Tanzeel; Tripathi, Ashok K; Ahmed, Rafat S; Banerjee, Basu Dev

    2010-01-01

    The molecular mechanism for noncholinergic toxicity of phosphamidon, an extensively used organophosphate pesticide, is still not clear. The aim of the present study is to find the possible molecular mechanism of this pesticide to induce apoptosis and the role of different drugs for attenuation of such effects. Human peripheral blood mononuclear cells (PBMC) were incubated with increasing concentrations of phosphamidon (0-20 μM) for 6-24 h. The MTT assay reveals that phosphamidon induces cytotoxicity in a dose-dependent manner. Cellular glutathione (GSH) is depleted in a dose-dependent manner from 55% to 70% at concentrations between 10 and 20 μM. The percentage of cells that bind to Annexin-V, which is a representative of cells either undergoing apoptosis or necrosis during 24 h incubation, increases in a dose-dependent manner. Above 5 μM, significant necrosis of cells was observed. DNA fragmentation assay revealed that at low concentration of phosphamidon (1 μM), no appreciable change in DNA fragmentation was seen; however, distinct fragmentation was observed beyond 2.5 μM. Phosphamidon was found to cause significant depletion of GSH, which correlates well with the percentage of cells undergoing apoptosis. An increasing trend in levels of cytochrome c was observed with increasing concentration of phosphamidon, indicating that the apoptotic effect of phosphamidon is mediated through cytochrome c release. Coadministration of the antioxidants N-acetylcysteine and curcumin attenuated phosphamidon-induced apoptosis. This further supports our hypothesis that oxidative stress, as indicated by GSH depletion, results in the induction of apoptosis by release of cytochrome c. Copyright 2010 Wiley Periodicals, Inc.

  9. Effect of fatty acids on endothelium-dependent relaxation in the rabbit aorta.

    PubMed

    Edirisinghe, Indika; McCormick Hallam, Kellie; Kappagoda, C Tissa

    2006-08-01

    The metabolic syndrome, Type II (non-insulin-dependent) diabetes and obesity are associated with endothelial dysfunction and increased plasma concentrations of NEFAs (non-esterified fatty acids; free fatty acids). The present study was undertaken to define the inhibitory effects of saturated NEFAs on EDR (endothelium-dependent relaxation). Experiments were performed in rings of rabbit aorta to establish (i) dose-response relationships, (ii) the effect of chain length, (iii) the effect of the presence of double bonds, (iv) reversibility and time course of inhibition, and (v) the effect on nitric oxide production. Aortic rings were incubated (1 h) with NEFA-albumin complexes derived from lauric (C(12:0)), myristic (C(14:0)), palmitic (C(16:0)), stearic (C(18:0)) and linolenic (C(18:3)) acids. EDR induced by acetylcholine (0.1-10 mumol/l) was measured after pre-contraction with noradrenaline. Inhibition of EDR was dose-dependent (0.5-2 mmol/l NEFA), and the greatest inhibition (51%) was observed with stearic acid (2 mmol/l). Lauric acid had the smallest inhibitory effect. The inhibitory effects were always reversible and were evident after 15 min of incubation. Linolenic acid caused a significantly lower inhibition of EDR than stearic acid. SOD (superoxide dismutase) restored the inhibitory effect caused by NEFAs, suggesting the involvement of ROS (reactive oxygen species) in removing nitric oxide. The nitric oxide concentration measured after exposure of the rings to acetylcholine was lower after incubation with NEFAs than with Krebs buffer alone. This finding is consistent with removal of nitric oxide by ROS. This claim was supported by the demonstration of increased concentrations of nitrated tyrosine in the rings incubated with NEFAs.

  10. Effect of Ion Flux (Dose Rate) in Source-Drain Extension Ion Implantation for 10-nm Node FinFET and Beyond on 300/450mm Platforms

    NASA Astrophysics Data System (ADS)

    Shen, Ming-Yi

    The improvement of wafer equipment productivity has been a continuous effort of the semiconductor industry. Higher productivity implies lower product price, which economically drives more demand from the market. This is desired by the semiconductor manufacturing industry. By raising the ion beam current of the ion implanter for 300/450mm platforms, it is possible to increase the throughput of the ion implanter. The resulting dose rate can be comparable to the performance of conventional ion implanters or higher, depending on beam current and beam size. Thus, effects caused by higher dose rate must be investigated further. One of the major applications of ion implantation (I/I) is source-drain extension (SDE) I/I for the silicon FinFET device. This study investigated the dose rate effects on the material properties and device performance of the 10-nm node silicon FinFET. In order to gain better understanding of the dose rate effects, the dose rate study is based on Synopsys Technology CAD (TCAD) process and device simulations that are calibrated and validated using available structural silicon fin samples. We have successfully shown that the kinetic monte carlo (KMC) I/I simulation can precisely model both the silicon amorphization and the arsenic distribution in the fin by comparing the KMC simulation results with TEM images. The results of the KMC I/I simulation show that at high dose rate more activated arsenic dopants were in the source-drain extension (SDE) region. This finding matches with the increased silicon amorphization caused by the high dose-rate I/I, given that the arsenic atoms could be more easily activated by the solid phase epitaxial regrowth process. This increased silicon amorphization led to not only higher arsenic activation near the spacer edge, but also less arsenic atoms straggling into the channel. Hence, it is possible to improve the throughput of the ion implanter when the dopants are implanted at high dose rate if the same doping level with a lower wafer dose can be achieved. In addition, the leakage current might also be reduced due to less undesired dopants in the channel. However, the twin defects from the problematic Si{111} recrystallization is well-known to cause excessive leakage current to the FinFET. This drawback can offset the benefits of the high dose rate I/I mentioned above. This work produced the first attempt at simulating the electrical impact of twin defects on advanced-node (10 nm) FinFET device performance. It was found that the high dose-rate I/I causes more twin defects in the silicon fin, and the physical locations of these defects were close to the channel. The defects undesirably induced trap-assisted band-to-band tunneling near the drain, which increased the leakage current. This issue could be mitigated by using asymmetrical gate overlap/underlap design or thicker spacer for SDE I/I so that the twin defects are not located in the depletion region near the drain.

  11. Energy crop (Sida hermaphrodita) fertilization using digestate under marginal soil conditions: A dose-response experiment

    NASA Astrophysics Data System (ADS)

    Nabel, Moritz; Bueno Piaz Barbosa, Daniela; Horsch, David; Jablonowski, Nicolai David

    2014-05-01

    The global demand for energy security and the mitigation of climate change are the main drivers pushing energy-plant production in Germany. However, the cultivation of these plants can cause land use conflicts since agricultural soil is mostly used for plant production. A sustainable alternative to the conventional cultivation of food-based energy-crops is the cultivation of special adopted energy-plants on marginal lands. To further increase the sustainability of energy-plant cultivation systems the dependency on synthetic fertilizers needs to be reduced via closed nutrient loops. In the presented study the energy-plant Sida hermaphrodita (Malvaceae) will be used to evaluate the potential to grow this high potential energy-crop on a marginal sandy soil in combination with fertilization via digestate from biogas production. With this dose-response experiment we will further identify an optimum dose, which will be compared to equivalent doses of NPK-fertilizer. Further, lethal doses and deficiency doses will be observed. Two weeks old Sida seedlings were transplanted to 1L pots and fertilized with six doses of digestate (equivalent to a field application of 5, 10, 20, 40, 80, 160t/ha) and three equivalent doses of NPK-fertilizer. Control plants were left untreated. Sida plants will grow for 45 days under greenhouse conditions. We hypothesize that the nutrient status of the marginal soil can be increased and maintained by defined digestate applications, compared to control plants suffering of nutrient deficiency due to the low nutrient status in the marginal substrate. The dose of 40t/ha is expected to give a maximum biomass yield without causing toxicity symptoms. Results shall be used as basis for further experiments on the field scale in a field trial that was set up to investigate sustainable production systems for energy crop production under marginal soil conditions.

  12. Neutral endopeptidase (NEP) and its role in pathological pulmonary change with inhalation exposure to JP-8 jet fuel.

    PubMed

    Pfaff, J K; Tollinger, B J; Lantz, R C; Chen, H; Hays, A M; Witten, M L

    1996-01-01

    Through a simulated flightline exposure protocol, Fischer 344 rats (F344) were subjected to an aerosol/vapor mix of the military jet fuel, JP-8. Previous studies with this model of lung injury have revealed significant increases in pulmonary resistance, increased alveolar clearance of 99mTcDTPA, and a decrease in bronchoalveolar lavage fluid (BALF) concentration of the neuropeptide substance P (SP). Exposures to JP-8 were nose-only and for one hour daily. Six groups of Fischer 344 rats were exposed for 7, 28, or 56 days at two JP-8 concentrations (low dose = 469-520 mg/m3/hr, high dose = 814-1263 mg/m3/hr). Exposed groups were matched with longitudinal controls. In response to JP-8 inhalation, exposure animals demonstrated a dose-dependent as well as duration-determined reduction in BALF SP concentration. Both JP-8 concentrations caused significant pathological changes in lower pulmonary structures.

  13. Tracheal smooth muscle responses to substance P and neurokinin A in the piglet.

    PubMed

    Haxhiu-Poskurica, B; Haxhiu, M A; Kumar, G K; Miller, M J; Martin, R J

    1992-03-01

    The tachykinins substance P (SP) and neurokinin A (NKA) have been shown to induce airway smooth muscle contraction in mature animals, and the enzyme neutral endopeptidase (NEP) modulates this effect. We evaluated maturation of SP- and NKA-induced tracheal smooth muscle contraction and modulation of their effects by NEP in anesthetized, paralyzed, and artificially ventilated piglets less than 4 days, 2-3 wk, and 10 wk of age. Tracheal smooth muscle tension was measured in vivo from an open tracheal segment by use of a force transducer. Intravenous SP caused a dose-dependent increase in tracheal tension in all three age groups; however, the response in less than 4-day-old piglets was significantly weaker than in 2- to 3- and 10-wk-old piglets. NKA caused a dose-dependent increase in tracheal tension only in 2- to 3- and 10-wk-old piglets. The response of tracheal tension to NKA was weaker than the response to SP in all age groups. Atropine (2 mg/kg) significantly diminished the responses of tracheal tension to SP and NKA, indicating a cholinergic contribution to these responses at all ages. Intravenous thiorphan, a known NEP inhibitor, potentiated the effects of SP only in 2- to 3- and 10-wk-old piglets and did not affect the response of tracheal tension to NKA at any age. Biochemical analyses demonstrated a significant increase in tracheal NEP activity in comparably aged piglets over the first 10 wk of life.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Recombination in liquid-filled ionization chambers beyond the Boag limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brualla-González, L.; Roselló, J.

    Purpose: The high mass density and low mobilities of charge carriers can cause important recombination in liquid-filled ionization chambers (LICs). Saturation correction methods have been proposed for LICs. Correction methods for pulsed irradiation are based on Boag equation. However, Boag equation assumes that the charge ionized by one pulse is fully collected before the arrival of the next pulse. This condition does not hold in many clinical beams where the pulse repetition period may be shorter than the charge collection time, causing overlapping between charge carriers ionized by different pulses, and Boag equation is not applicable there. In this work,more » the authors present an experimental and numerical characterization of collection efficiencies in LICs beyond the Boag limit, with overlapping between charge carriers ionized by different pulses. Methods: The authors have studied recombination in a LIC array for different dose-per-pulse, pulse repetition frequency, and polarization voltage values. Measurements were performed in a Truebeam Linac using FF and FFF modalities. Dose-per-pulse and pulse repetition frequency have been obtained by monitoring the target current with an oscilloscope. Experimental collection efficiencies have been obtained by using a combination of the two-dose-rate method and ratios to the readout of a reference chamber (CC13, IBA). The authors have also used numerical simulation to complement the experimental data. Results: The authors have found that overlap significantly increases recombination in LICs, as expected. However, the functional dependence of collection efficiencies on the dose-per-pulse does not change (a linear dependence has been observed in the near-saturation region for different degrees of overlapping, the same dependence observed in the nonoverlapping scenario). On the other hand, the dependence of collection efficiencies on the polarization voltage changes in the overlapping scenario and does not follow that of Boag equation, the reason being that changing the polarization voltage also affects the charge collection time, thus changing the amount of overlapping. Conclusions: These results have important consequences for saturation correction methods for LICs. On one hand, the two-dose-rate method, which relies on the functional dependence of the collection efficiencies on dose-per-pulse, can also be used in the overlapping situation, provided that the two measurements needed to feed the method are performed at the same pulse repetition frequency (monitor unit rate). This result opens the door to computing collection efficiencies in LICs in many clinical setups where charge overlap in the LIC exists. On the other hand, correction methods based on the voltage-dependence of Boag equation like the three-voltage method or the modified two-voltage method will not work in the overlapping scenario due to the different functional dependence of collection efficiencies on the polarization voltage.« less

  15. Toxic Effects of Silica Nanoparticles on Zebrafish Embryos and Larvae

    PubMed Central

    Shi, Huiqin; Tian, Linwei; Guo, Caixia; Huang, Peili; Zhou, Xianqing; Peng, Shuangqing; Sun, Zhiwei

    2013-01-01

    Silica nanoparticles (SiNPs) have been widely used in biomedical and biotechnological applications. Environmental exposure to nanomaterials is inevitable as they become part of our daily life. Therefore, it is necessary to investigate the possible toxic effects of SiNPs exposure. In this study, zebrafish embryos were treated with SiNPs (25, 50, 100, 200 µg/mL) during 4–96 hours post fertilization (hpf). Mortality, hatching rate, malformation and whole-embryo cellular death were detected. We also measured the larval behavior to analyze whether SiNPs had adverse effects on larvae locomotor activity. The results showed that as the exposure dosages increasing, the hatching rate of zebrafish embryos was decreased while the mortality and cell death were increased. Exposure to SiNPs caused embryonic malformations, including pericardial edema, yolk sac edema, tail and head malformation. The larval behavior testing showed that the total swimming distance was decreased in a dose-dependent manner. The lower dose (25 and 50 µg/mL SiNPs) produced substantial hyperactivity while the higher doses (100 and 200 µg/mL SiNPs) elicited remarkably hypoactivity in dark periods. In summary, our data indicated that SiNPs caused embryonic developmental toxicity, resulted in persistent effects on larval behavior. PMID:24058598

  16. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Azusa; Department of Medical Biophysics, University of Toronto, Toronto, Ontario; Chen, Yonghong

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularitymore » for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.« less

  17. A methodology to investigate the impact of image distortions on the radiation dose when using magnetic resonance images for planning

    NASA Astrophysics Data System (ADS)

    Yan, Yue; Yang, Jinzhong; Beddar, Sam; Ibbott, Geoffrey; Wen, Zhifei; Court, Laurence E.; Hwang, Ken-Pin; Kadbi, Mo; Krishnan, Sunil; Fuller, Clifton D.; Frank, Steven J.; Yang, James; Balter, Peter; Kudchadker, Rajat J.; Wang, Jihong

    2018-04-01

    We developed a novel technique to study the impact of geometric distortion of magnetic resonance imaging (MRI) on intensity-modulated radiation therapy treatment planning. The measured 3D datasets of residual geometric distortion (a 1.5 T MRI component of an MRI linear accelerator system) was fitted with a second-order polynomial model to map the spatial dependence of geometric distortions. Then the geometric distortion model was applied to computed tomography (CT) image and structure data to simulate the distortion of MRI data and structures. Fourteen CT-based treatment plans were selected from patients treated for gastrointestinal, genitourinary, thoracic, head and neck, or spinal tumors. Plans based on the distorted CT and structure data were generated (as the distorted plans). Dose deviations of the distorted plans were calculated and compared with the original plans to study the dosimetric impact of MRI distortion. The MRI geometric distortion led to notable dose deviations in five of the 14 patients, causing loss of target coverage of up to 3.68% and dose deviations to organs at risk in three patients, increasing the mean dose to the chest wall by up to 6.19 Gy in a gastrointestinal patient, and increases the maximum dose to the lung by 5.17 Gy in a thoracic patient.

  18. Rational design of an improved tissue-engineered vascular graft: determining the optimal cell dose and incubation time.

    PubMed

    Lee, Yong-Ung; Mahler, Nathan; Best, Cameron A; Tara, Shuhei; Sugiura, Tadahisa; Lee, Avione Y; Yi, Tai; Hibino, Narutoshi; Shinoka, Toshiharu; Breuer, Christopher

    2016-03-01

    We investigated the effect of cell seeding dose and incubation time on tissue-engineered vascular graft (TEVG) patency. Various doses of bone marrow-derived mononuclear cells (BM-MNCs) were seeded onto TEVGs, incubated for 0 or 12 h, and implanted in C57BL/6 mice. Different doses of human BM-MNCs were seeded onto TEVGs and measured for cell attachment. The incubation time showed no significant effect on TEVG patency. However, TEVG patency was significantly increased in a dose-dependent manner. In the human graft, more bone marrow used for seeding resulted in increased cell attachment in a dose-dependent manner. Increasing the BM-MNC dose and reducing incubation time is a viable strategy for improving the performance and utility of the graft.

  19. Antioxidant, analgesic and anti-inflammatory activities of the methanolic extract of Piper betle leaves

    PubMed Central

    Alam, Badrul; Akter, Fahima; Parvin, Nahida; Sharmin Pia, Rashna; Akter, Sharmin; Chowdhury, Jesmin; Sifath-E-Jahan, Kazi; Haque, Ekramul

    2013-01-01

    Objective: The present study was designed to evaluate the antioxidant, analgesic, and anti-inflammatory activities of the methanolic extract of Piper betle leaves (MPBL). Materials and Methods: MPBL was evaluated for anti-inflammatory activity using carrageenan-induced hind paw edema model. Analgesic activity of MPBL was evaluated by hot plate, writhing, and formalin tests. Total phenolic and flavonoids content, total antioxidant activity, scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, peroxynitrate (ONOO) as well as inhibition of total ROS generation, and assessment of reducing power were used to evaluate antioxidant potential of MPBL. Results: The extract of MPBL, at the dose of 100 and 200 mg/kg, produced a significant (p<0.05) increase in pain threshold in hot plate method whereas significantly (p<0.05) reduced the writhing caused by acetic acid and the number of licks induced by formalin in a dose-dependent manner. The same ranges of doses of MPBL caused significant (p<0.05) inhibition of carrageenan-induced paw edema after 4 h in a dose-dependent manner. In DPPH, ONOO-, and total ROS scavenging method, MPBL showed good antioxidant potentiality with the IC50 value of 16.33±1.02, 25.16±0.61 , and 41.72±0.48 µg/ml, respectively with a significant (p<0.05) good reducing power. Conclusion: The findings of the study suggested that MPBL has strong analgesic, anti-inflammatory, and antioxidant effects, conforming the traditional use of this plant for inflammatory pain alleviation to its antioxidant potentiality. PMID:25050265

  20. Effects of a neonicotinoid pesticide on thermoregulation of African honey bees (Apis mellifera scutellata).

    PubMed

    Tosi, Simone; Démares, Fabien J; Nicolson, Susan W; Medrzycki, Piotr; Pirk, Christian W W; Human, Hannelie

    Thiamethoxam is a widely used neonicotinoid pesticide that, as agonist of the nicotinic acetylcholine receptors, has been shown to elicit a variety of sublethal effects in honey bees. However, information concerning neonicotinoid effects on honey bee thermoregulation is lacking. Thermoregulation is an essential ability for the honey bee that guarantees the success of foraging and many in-hive tasks, especially brood rearing. We tested the effects of acute exposure to thiamethoxam (0.2, 1, 2ng/bee) on the thorax temperatures of foragers exposed to low (22°C) and high (33°C) temperature environments. Thiamethoxam significantly altered honey bee thorax temperature at all doses tested; the effects elicited varied depending on the environmental temperature and pesticide dose to which individuals were exposed. When bees were exposed to the high temperature environment, the high dose of thiamethoxam increased their thorax temperature 1-2h after exposure. When bees were exposed to the low temperature, the higher doses of the neonicotinoid reduced bee thorax temperatures 60-90min after treatment. In both experiments, the neonicotinoid decreased the temperature of bees the day following the exposure. After a cold shock (5min at 4°C), the two higher doses elicited a decrease of the thorax temperature, while the lower dose caused an increase, compared to the control. These alterations in thermoregulation caused by thiamethoxam may affect bee foraging activity and a variety of in-hive tasks, likely leading to negative consequences at the colony level. Our results shed light on sublethal effect of pesticides which our bees have to deal with. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Utilization of ICU Data to Improve 30 and 60 Day HENRE Mortality Models, Revision 1

    DTIC Science & Technology

    2017-05-12

    Acute Radiation Syndrome , Mortality, Burn Combined Injury, Lethality, Small Intestine, Ordinary...a large dose of radiation in a short period of time (high dose rate) causes acute radiation syndrome (ARS). Depending on the radiation dose, an...individual may experience the hematopoietic acute radiation syndrome (H-ARS) or the gastrointestinal acute radiation syndrome (GI-ARS) (reviewed in

  2. Regulation of steroid hormones and energy status with cysteamine and its effect on spermatogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yandi

    Although it is well known that cysteamine is a potent chemical for treating many diseases including cystinosis and it has many adverse effects, the effect of cysteamine on spermatogenesis is as yet unknown. Therefore the objective of this investigation was to explore the effects of cysteamine on spermatogenesis and the underlying mechanisms. Sheep were treated with vehicle control, 10 mg/kg or 20 mg/kg cysteamine for six months. After that, the semen samples were collected to determine the spermatozoa motility by computer-assisted sperm assay method. Blood samples were collected to detect the levels of hormones and the activity of enzymes. Spermatozoamore » and testis samples were collected to study the mechanism of cysteamine's actions. It was found that the effects of cysteamine on spermatogenesis were dose dependent. A low dose (10 mg/kg) cysteamine treatment increased ovine spermatozoa motility; however, a higher dose (20 mg/kg) decreased both spermatozoa concentration and motility. This decrease might be due to a reduction in steroid hormone production by the testis, a reduction in energy in the testis and spermatozoa, a disruption in the blood-testis barrier, or a breakdown in the vital signaling pathways involved in spermatogenesis. The inhibitory effects of cysteamine on sheep spermatogenesis may be used to model its effects on young male patients with cystinosis or other diseases that are treated with this drug. Further studies on spermatogenesis that focus on patients treated with cysteamine during the peripubertal stage are warranted. - Highlights: • Dose dependent effects of cysteamine on spermatogenesis • A low dose (10 mg/kg) increased spermatozoa motility. • A higher dose (20 mg/kg) decreased both concentration and motility of spermatozoa. • Disruption in the blood-testis barrier caused reduction in concentration and motility.« less

  3. Testosterone Replacement Therapy Prevents Alterations of Coronary Vascular Reactivity Caused by Hormone Deficiency Induced by Castration

    PubMed Central

    Rouver, Wender Nascimento; Delgado, Nathalie Tristão Banhos; Menezes, Jussara Bezerra; Santos, Roger Lyrio; Moyses, Margareth Ribeiro

    2015-01-01

    The present study aimed to determine the effects of chronic treatment with different doses of testosterone on endothelium–dependent coronary vascular reactivity in male rats. Adult male rats were divided into four experimental groups: control (SHAM), castrated (CAST), castrated and immediately treated subcutaneously with a physiological dose (0.5 mg/kg/day, PHYSIO group) or supraphysiological dose (2.5 mg/kg/day, SUPRA group) of testosterone for 15 days. Systolic blood pressure (SBP) was assessed at the end of treatment through tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed using the Langendorff retrograde perfusion technique. A dose–response curve for bradykinin (BK) was constructed, followed by inhibition with 100 μM L-NAME, 2.8 μM indomethacin (INDO), L-NAME + INDO, or L-NAME + INDO + 0.75 μM clotrimazole (CLOT). We observed significant endothelium–dependent, BK–induced coronary vasodilation, which was abolished in the castrated group and restored in the PHYSIO and SUPRA groups. Furthermore, castration modulated the lipid and hormonal profiles and decreased body weight, and testosterone therapy restored all of these parameters. Our results revealed an increase in SBP in the SUPRA group. In addition, our data led us to conclude that physiological concentrations of testosterone may play a beneficial role in the cardiovascular system by maintaining an environment that is favourable for the activity of an endothelium–dependent vasodilator without increasing SBP. PMID:26322637

  4. Subchronic arsenic exposure through drinking water alters vascular redox homeostasis and affects physical health in rats.

    PubMed

    Waghe, Prashantkumar; Sarath, Thengumpallil Sasindran; Gupta, Priyanka; Kutty, Harikumar Sankaran; Kandasamy, Kannan; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-12-01

    We evaluated whether arsenic can alter vascular redox homeostasis and modulate antioxidant status, taking rat thoracic aorta as a model vascular tissue. In addition, we evaluated whether the altered vascular biochemical homeostasis could be associated with alterations in the physical indicators of toxicity development. Rats were exposed to arsenic as 25, 50, and 100 ppm of sodium arsenite through drinking water for 90 consecutive days. Body weight, food intake, and water consumption were recorded weekly. On the 91st day, rats were sacrificed; vital organs and thoracic aorta were collected. Lipid peroxidation, reactive oxygen species generation, and antioxidants were assessed in the thoracic aorta. Arsenic increased aortic lipid peroxidation and hydrogen peroxide generation while decreased reduced glutathione content in a dose-dependent manner. The activities of the enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were decreased. Further, arsenic at 100 ppm decreased feed intake, water consumption, and body weight from the 11th week onward. At this concentration, arsenic increased the relative weights of the liver and kidney. The results suggest that arsenic causes dose-dependent oxidative stress, reduction in antioxidative defense systems, and body weight loss with alteration in hepato-renal organosomatic indices. Overall, subchronic arsenic exposure through drinking water causes alteration in vascular redox homeostasis and at high concentration affects physical health.

  5. Exploration of intrinsic and extrinsic apoptotic pathways in zearalenone-treated rat sertoli cells.

    PubMed

    Xu, Ming-Long; Hu, Jin; Guo, Bao-Ping; Niu, Ya-Ru; Xiao, Cheng; Xu, Yin-Xue

    2016-12-01

    Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin produced mainly by Fusarium. ZEA causes reproductive disorders and is both cytotoxic and genotoxic in animals; however, little is known regarding the molecular mechanism(s) leading to ZEA toxicity. Sertoli cells are somatic cells that support the development of spermatogenic cells. The objective of this study was to explore the effects of ZEA on the proliferation, apoptosis, and necrosis of rat Sertoli cells to uncover signaling pathways underlying ZEA cytotoxicity. ZEA reduced the proliferation of rat Sertoli cells in a dose-dependent manner, as indicated by a CCK8 assay, while flow cytometry revealed that ZEA caused both apoptosis and necrosis. Immunoblotting revealed that ZEA treatment increased the ratio of Bax/Bcl-2, as well as the expression of FasL and caspases-3, -8, and -9, in a dose-dependent manner. Collectively, these data suggest that ZEA induced apoptosis and necrosis in rat Sertoli cells via extrinsic and intrinsic apoptotic pathways. This study provides new insights into the molecular mechanisms by which ZEA exhibits cytotoxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1731-1739, 2016. © 2015 Wiley Periodicals, Inc.

  6. Effects of Litchi chinensis fruit isolates on prostaglandin E2 and nitric oxide production in J774 murine macrophage cells

    PubMed Central

    2012-01-01

    Background Litchi chinensis is regarded as one of the 'heating' fruits in China, which causes serious inflammation symptoms to people. Methods In the current study, the effects of isolates of litchi on prostaglandin E2 (PGE2) and nitric oxide (NO) production in J774 murine macrophage cells were investigated. Results The AcOEt extract (EAE) of litchi was found effective on stimulating PGE2 production, and three compounds, benzyl alcohol, hydrobenzoin and 5-hydroxymethyl-2-furfurolaldehyde (5-HMF), were isolated and identified from the EAE. Benzyl alcohol caused markedly increase in PGE2 and NO production, compared with lipopolysaccharide (LPS) as positive control, and in a dose-dependent manner. Hydrobenzoin and 5-HMF were found in litchi for the first time, and both of them stimulated PGE2 and NO production moderately in a dose-dependent manner. Besides, regulation of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) mRNA expression and NF-κB (p50) activation might be involved in mechanism of the stimulative process. Conclusion The study showed, some short molecular compounds in litchi play inflammatory effects on human. PMID:22380404

  7. Increased night duty loading of physicians caused elevated blood pressure and sympathetic tones in a dose-dependent manner.

    PubMed

    Lee, Hsiu-Hao; Lo, Shih-Hsiang; Chen, Bing-Yu; Lin, Yen-Hung; Chu, Dachen; Cheng, Tsun-Jen; Chen, Pau-Chung; Guo, Yue-Liang

    2016-04-01

    Night duty has been recognized as a significantly harmful stressor for physicians. However, the relationship between various levels of duty loading and stress response is unknown. This study examined whether duty load increases cardiovascular stress indicators in a dose-dependent manner. An unallocated prospective observational study was conducted among physicians performing various levels of duties in a secondary referral medical center between 2011 and 2012. Heart rate variability (HRV), blood pressure (BP), and other stress markers of 12 attending physicians were compared during different duty loads: non-duty day (NDD), duty day with one duty area and three wards (1DD), and duty day with two duty areas and six wards (2DD). During the regular sleep time (i.e., 11 p.m. to 5 a.m.), the relative sympathetic modulations measured using the HRV were 59.0 ± 9.3, 61.6 ± 10.4, and 64.4 ± 8.9 for NDD, 1DD, and 2DD, respectively (p = 0.0012); those for relative parasympathetic modulations were 37.4 ± 9.4, 34.8 ± 9.8, and 32.0 ± 8.8 for NDD, 1DD, and 2DD, respectively (p = 0.0015). The percentages of abnormal systolic BPs were 9.7 ± 13.2 %, 25.3 ± 21.8 %, and 31.5 ± 21.0 % for NDD, 1DD, and 2DD, respectively (p = 0.003), and the percentages of abnormal diastolic BP were 6.7 ± 11.0 %, 18.3 ± 11.1 %, and 27.1 ± 30.9 % for NDD, 1DD, and 2DD, respectively (p = 0.002). Total sleep time was negatively associated with sympathetic/parasympathetic balance and the percentage of abnormal diastolic BP. Admitting new patients was positively associated with the percentages of abnormal systolic BP. This observational analysis suggests that the dose-dependent stress responses of the cardiovascular system in physicians were caused by the duty load.

  8. Crocidolite asbestos causes an induction of p53 and apoptosis in cultured A-549 lung carcinoma cells.

    PubMed

    Pääkkö, P; Rämet, M; Vähäkangas, K; Korpela, N; Soini, Y; Turunen, S; Jaworska, M; Gillissen, A

    1998-01-01

    A number of genotoxic chemicals and agents, such as benzo(a)pyrene and ultraviolet light, are able to induce nuclear accumulation of p53 protein. Usually, this response is transient and a consequence of stabilization of the wild-type p53 protein. After withdrawal of the exposure, the amount of p53 protein returns to a normal level within hours or a few days. We have studied the p53 response to the exposure of crocidolite asbestos in A-549 lung carcinoma cells using three different methods, i.e., p53 immunohistochemistry, Western blotting and metabolic labelling followed by p53 immunoprecipitation. With these techniques we demonstrate a dose-dependent p53 nuclear response to crocidolite exposure. The half-life of p53 protein in A-549 lung carcinoma cells cultured in serum-free media increased from 30 up to 80 min, and the protein reacted with a wild-type specific antibody suggesting that it was in a wild-type conformation. In situ 3'-end labelling of A-549 cells demonstrated a dose-dependent increase in apoptotic activity. Our data support the idea that increased apoptotic activity, induced by crocidolite, is mediated by p53.

  9. Toxicity of dietary Heliotropium dolosum seed to broiler chickens.

    PubMed

    Eröksüz, Y; Eröksüz, H; Ozer, H; Canatan, H; Yaman, I; Cevik, A

    2001-12-01

    Five groups of 20 female broiler chicks were fed different levels of dehulled Heliotropium dolosum seed (w/w%; 0.0, 1.0, 3.0, 5.0 or 10.0%) from 10 to 52 d of age. In all doses the seed caused decreases in daily feed intake, weight gain, and feed efficiency, and biochemical findings, severity of pathologic changes, and mortality rate increased in a dose-dependent manner. Acute toxicity was observed in livers of chicks fed 10% seed. Other test groups had chronic changes. Livers had massive to submassive necrosis, hepatic megalocytosis, bile duct proliferation, fatty change, and periportal fibrosis. Biochemical evaluations revealed hypoalbuminemia, hypoprotienemia and increased ALP activity and billuribin. The seed of Heliotropium dolosum produced biochemical and specific pathologic changes in broiler chicks, as well as decreased food intake and feed efficiency. Higher seed levels induced more pronounced changes.

  10. Assessment of genotoxic effects of flumorph by the comet assay in mice organs.

    PubMed

    Zhang, T; Zhao, Q; Zhang, Y; Ning, J

    2014-03-01

    The present study investigated the genotoxic effects of flumorph in various organs (brain, liver, spleen, kidney and sperm) of mice. The DNA damage, measured as comet tail length (µm), was determined using the alkaline comet assay. The comet assay is a sensitive assay for the detection of genotoxicity caused by flumorph using mice as a model. Statistically significant increases in comet assay for both dose-dependent and duration-dependent DNA damage were observed in all the organs assessed. The organs exhibited the maximum DNA damage in 96 h at 54 mg/kg body weight. Brain showed maximum DNA damage followed by spleen > kidney > liver > sperm. Our data demonstrated that flumorph had induced systemic genotoxicity in mammals as it caused DNA damage in all tested vital organs, especially in brain and spleen.

  11. Benzodiazepine sensitivity in normal human subjects.

    PubMed

    Hommer, D W; Matsuo, V; Wolkowitz, O; Chrousos, G; Greenblatt, D J; Weingartner, H; Paul, S M

    1986-06-01

    Increasing intravenous doses of diazepam or placebo were administered to ten healthy normal volunteers, and the changes in saccadic eye velocity, self-rated sedation and anxiety, and plasma cortisol and growth hormone concentrations were measured. Diazepam administration (4.4 to 140 micrograms/kg, cumulative dose) resulted in a dose-dependent decrease in saccadic eye velocity and plasma cortisol level as well as a dose-dependent increase in self-rated sedation and plasma growth hormone level. Self-rated anxiety was unaffected in these relatively nonanxious subjects. The diazepam-induced changes in saccadic eye velocity, sedation, and growth hormone and cortisol levels were highly correlated with each other and with increasing plasma diazepam concentration. These results are consistent with a benzodiazepine receptor-mediated action of diazepam. The highly quantifiable and dose-dependent decrease in saccadic eye velocity by benzodiazepines should make this a useful measure of benzodiazepine receptor sensitivity in humans.

  12. Possible biochemical effects following inhibition of ethanol-induced gastric mucosa damage by Gymnema sylvestre in male Wistar albino rats.

    PubMed

    Al-Rejaie, Salim S; Abuohashish, Hatem M; Ahmed, Mohammed M; Aleisa, Abdulaziz M; Alkhamees, Osama

    2012-12-01

    Gymnema sylvestre (GS) R. Br. (Gymnema) (Asclepiadaceae) has been used from ancient times as a folk medicine for the treatment of diabetes, obesity, urinary disorder, and stomach stimulation. The present study was designed to investigate the effects of G. sylvestre leaves ethanol extract on gastric mucosal injury in rats. Gastric mucosal damage was induced by 80% ethanol in 36 h fasted rats. The effect of G. sylvestre on gastric secretions induced in Shay rats was estimated. In stomach, wall mucus, non-protein sulfhydryl groups (NP-SH), malondialdehyde (MDA), total proteins and nucleic acids levels were estimated. Histopathological changes were observed. G. sylvestre pretreatment at doses of 100, 200 and 400 mg/kg provided 27, 49, and 63% protection against the ulcerogenic effect of ethanol, respectively. Pylorus ligation accumulated 10.24 mL gastric secretions with 66.56 mEq of acidity in control rats. Pretreatment with G. sylvestre significantly inhibited the secretions volume and acidity in dose-dependent manner. Ethanol caused significant depletion in stomach-wall mucus (p < 0.001), total proteins (p < 0.01), nucleic acids (p < 0.001), and NP-SH (p < 0.001) levels. Pretreatment with G. sylvestre showed protection against these depleted levels in dose-dependent manner. The MDA levels increased from 19.02 to 29.22 nmol/g by ethanol ingestion and decreased with G. sylvestre pretreatments in dose-dependent manner. The protective effect of G. sylvestre observed in the present study is attributed to its effect on mucus production, increase in nucleic acid and NP-SH levels, which appears to be mediated through its free radical scavenging ability and/or possible cytoprotective properties.

  13. Stomach Cancer Risk After Treatment for Hodgkin Lymphoma

    PubMed Central

    Morton, Lindsay M.; Dores, Graça M.; Curtis, Rochelle E.; Lynch, Charles F.; Stovall, Marilyn; Hall, Per; Gilbert, Ethel S.; Hodgson, David C.; Storm, Hans H.; Johannesen, Tom Børge; Smith, Susan A.; Weathers, Rita E.; Andersson, Michael; Fossa, Sophie D.; Hauptmann, Michael; Holowaty, Eric J.; Joensuu, Heikki; Kaijser, Magnus; Kleinerman, Ruth A.; Langmark, Frøydis; Pukkala, Eero; Vaalavirta, Leila; van den Belt-Dusebout, Alexandra W.; Fraumeni, Joseph F.; Travis, Lois B.; Aleman, Berthe M.; van Leeuwen, Flora E.

    2013-01-01

    Purpose Treatment-related stomach cancer is an important cause of morbidity and mortality among the growing number of Hodgkin lymphoma (HL) survivors, but risks associated with specific HL treatments are unclear. Patients and Methods We conducted an international case-control study of stomach cancer nested in a cohort of 19,882 HL survivors diagnosed from 1953 to 2003, including 89 cases and 190 matched controls. For each patient, we quantified cumulative doses of specific alkylating agents (AAs) and reconstructed radiation dose to the stomach tumor location. Results Stomach cancer risk increased with increasing radiation dose to the stomach (Ptrend < .001) and with increasing number of AA-containing chemotherapy cycles (Ptrend = .02). Patients who received both radiation to the stomach ≥ 25 Gy and high-dose procarbazine (≥ 5,600 mg/m2) had strikingly elevated stomach cancer risk (25 cases, two controls; odds ratio [OR], 77.5; 95% CI, 14.7 to 1452) compared with those who received radiation < 25 Gy and procarbazine < 5,600 mg/m2 (Pinteraction < .001). Risk was also elevated (OR, 2.8; 95% CI, 1.3 to 6.4) among patients who received radiation to the stomach ≥ 25 Gy but procarbazine < 5,600 mg/m2; however, no procarbazine-related risk was evident with radiation < 25 Gy. Treatment with dacarbazine also increased stomach cancer risk (12 cases, nine controls; OR, 8.8; 95% CI, 2.1 to 46.6), after adjustment for radiation and procarbazine doses. Conclusion Patients with HL who received subdiaphragmatic radiotherapy had dose-dependent increased risk of stomach cancer, with marked risks for patients who also received chemotherapy containing high-dose procarbazine. For current patients, risks and benefits of exposure to both procarbazine and subdiaphragmatic radiotherapy should be weighed carefully. For patients treated previously, GI symptoms should be evaluated promptly. PMID:23980092

  14. Acute radiation syndrome: assessment and management.

    PubMed

    Donnelly, Elizabeth H; Nemhauser, Jeffrey B; Smith, James M; Kazzi, Ziad N; Farfán, Eduardo B; Chang, Arthur S; Naeem, Syed F

    2010-06-01

    Primary care physicians may be unprepared to diagnose and treat rare, yet potentially fatal, illnesses such as acute radiation syndrome (ARS). ARS, also known as radiation sickness, is caused by exposure to a high dose of penetrating, ionizing radiation over a short period of time. The time to onset of ARS is dependent on the dose received, but even at the lowest doses capable of causing illness, this will occur within a matter of hours to days. This article describes the clinical manifestations of ARS, provides guidelines for assessing its severity, and makes recommendations for managing ARS victims.

  15. [Vasopressin intravenous infusion causes dose dependent adverse cardiovascular effects in anesthetized dogs.

    PubMed

    Martins, Luiz Cláudio; Sabha, Maricene; Paganelli, Maria Ondina; Coelho, Otávio Rizzi; Ferreira-Melo, Silvia Elaine; Moreira, Marcos Mello; Cavalho, Adriana Camargo de; Araujo, Sebastião; Moreno Junior, Heitor

    2010-01-15

    BACKGROUND: Arginine vasopressin (AVP) has been broadly used in the management of vasodilatory shock. However, there are many concerns regarding its clinical use, especially in high doses, as it can be associated with adverse cardiovascular events. OBJECTIVE: To investigate the cardiovascular effects of AVP in continuous IV infusion on hemodynamic parameters in dogs. METHODS: Sixteen healthy mongrel dogs, anesthetized with pentobarbital were intravascularly catheterized, and randomly assigned to: control (saline-placebo; n=8) and AVP (n=8) groups. The study group was infused with AVP for three consecutive 10-minute periods at logarithmically increasing doses (0.01; 0.1 and 1.0U/kg/min), at them 20-min intervals. Heart rate (HR) and intravascular pressures were continuously recorded. Cardiac output was measured by the thermodilution method. RESULTS: No significant hemodynamic effects were observed during 0.01U/kg/min of AVP infusion, but at higher doses (0.1 and 1.0U/kg/min) a progressive increase in mean arterial pressure (MAP) and systemic vascular resistance index (SVRI) were observed, with a significant decrease in HR and the cardiac index (CI). A significant increase in the pulmonary vascular resistance index (PVRI) was also observed with the 1.0U/kg/min dose, mainly due to the decrease in the CI. CONCLUSION: AVP, when administered at doses between 0.1 and 1.0U/kg/min, induced significant increases in MAP and SVRI, with negative inotropic and chronotropic effects in healthy animals. Although these doses are ten to thousand times greater than those routinely used for the management of vasodilatory shock, our data confirm that AVP might be used carefully and under strict hemodynamic monitoring in clinical practice, especially if doses higher than 0.01 U/kg/min are needed. Martins, LC et al.

  16. Ionizing radiation regulates cardiac Ca handling via increased ROS and activated CaMKII.

    PubMed

    Sag, Can M; Wolff, Hendrik A; Neumann, Kay; Opiela, Marie-Kristin; Zhang, Juqian; Steuer, Felicia; Sowa, Thomas; Gupta, Shamindra; Schirmer, Markus; Hünlich, Mark; Rave-Fränk, Margret; Hess, Clemens F; Anderson, Mark E; Shah, Ajay M; Christiansen, Hans; Maier, Lars S

    2013-11-01

    Ionizing radiation (IR) is an integral part of modern multimodal anti-cancer therapies. IR involves the formation of reactive oxygen species (ROS) in targeted tissues. This is associated with subsequent cardiac dysfunction when applied during chest radiotherapy. We hypothesized that IR (i.e., ROS)-dependently impaired cardiac myocytes' Ca handling might contribute to IR-dependent cardiocellular dysfunction. Isolated ventricular mouse myocytes and the mediastinal area of anaesthetized mice (that included the heart) were exposed to graded doses of irradiation (sham 4 and 20 Gy) and investigated acutely (after ~1 h) as well as chronically (after ~1 week). IR induced a dose-dependent effect on myocytes' systolic function with acutely increased, but chronically decreased Ca transient amplitudes, which was associated with an acutely unaltered but chronically decreased sarcoplasmic reticulum (SR) Ca load. Likewise, in vivo echocardiography of anaesthetized mice revealed acutely enhanced left ventricular contractility (strain analysis) that declined after 1 week. Irradiated myocytes showed persistently increased diastolic SR Ca leakage, which was acutely compensated by an increase in SR Ca reuptake. This was reversed in the chronic setting in the face of slowed relaxation kinetics. As underlying cause, acutely increased ROS levels were identified to activate Ca/calmodulin-dependent protein kinase II (CaMKII). Accordingly, CaMKII-, but not PKA-dependent phosphorylation sites of the SR Ca release channels (RyR2, at Ser-2814) and phospholamban (at Thr-17) were found to be hyperphosphorylated following IR. Conversely, ROS-scavenging as well as CaMKII-inhibition significantly attenuated CaMKII-activation, disturbed Ca handling, and subsequent cellular dysfunction upon irradiation. Targeted cardiac irradiation induces a biphasic effect on cardiac myocytes Ca handling that is associated with chronic cardiocellular dysfunction. This appears to be mediated by increased oxidative stress and persistently activated CaMKII. Our findings suggest impaired cardiac myocytes Ca handling as a so far unknown mediator of IR-dependent cardiac damage that might be of relevance for radiation-induced cardiac dysfunction.

  17. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos.

    PubMed

    DeMicco, Amy; Cooper, Keith R; Richardson, Jason R; White, Lori A

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and lambda-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC(50), permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems.

  18. Developmental Neurotoxicity of Pyrethroid Insecticides in Zebrafish Embryos

    PubMed Central

    DeMicco, Amy; Cooper, Keith R.; Richardson, Jason R.; White, Lori A.

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and λ-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC50, permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems. PMID:19861644

  19. Caffeine and length dependence of staircase potentiation in skeletal muscle.

    PubMed

    Rassier, D E; Tubman, L A; MacIntosh, B R

    1998-01-01

    Skeletal muscle sensitivity to Ca2+ is greater at long lengths, and this results in an optimal length for twitch contractions that is longer than optimal length for tetanic contractions. Caffeine abolishes this length dependence of Ca2+ sensitivity. Muscle length (ML) also affects the degree of staircase potentiation. Since staircase potentiation is apparently caused by an increased Ca2+ sensitivity of the myofilaments, we tested the hypothesis that caffeine depresses the length dependence of staircase potentiation. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 10 s of 10-Hz stimulation were analyzed at seven different lengths to evaluate the length dependence of staircase potentiation. In the absence of caffeine, length dependence of Ca2+ sensitivity was observed, and the degree of potentiation after 10-Hz stimulation showed a linear decrease with increased length (DT = 1.47 - 0.05 ML, r2 = 0.95, where DT is developed tension). Length dependence of Ca2+ sensitivity was decreased by caffeine when caffeine was administered in amounts estimated to result in 0.5 and 0.75 mM concentrations. Furthermore, the negative slope of the relationship between staircase potentiation and muscle length was diminished at the lower caffeine dose, and the slope was not different from zero after the higher dose (DT = 1.53 - 0.009 ML, r2 = 0.43). Our study shows that length dependence of Ca2+ sensitivity in intact skeletal muscle is diminished by caffeine. Caffeine also suppressed the length dependence of staircase potentiation, suggesting that the mechanism of this length dependence may be closely related to the mechanism for length dependence of Ca2+ sensitivity.

  20. Effect of detomidine on visceral and somatic nociception and duodenal motility in conscious adult horses.

    PubMed

    Elfenbein, Johanna R; Sanchez, L Chris; Robertson, Sheilah A; Cole, Cynthia A; Sams, Richard

    2009-03-01

    To evaluate the effects of detomidine on visceral and somatic nociception, heart and respiratory rates, sedation, and duodenal motility and to correlate these effects with serum detomidine concentrations. Nonrandomized, experimental trial. Five adult horses, each with a permanent gastric cannula weighing 534 +/- 46 kg. Visceral nociception was evaluated by colorectal (CRD) and duodenal distension (DD). The duodenal balloon was used to assess motility. Somatic nociception was assessed via thermal threshold (TT). Nose-to-ground (NTG) height was used as a measure of sedation. Serum was collected for pharmacokinetic analysis. Detomidine (10 or 20 microg kg(-1)) was administered intravenously. Data were analyzed by means of a three-factor anova with fixed factors of treatment and time and random factor of horse. When a significant time x treatment interaction was detected, differences were compared with a simple t-test or Bonferroni t-test. Significance was set at p < 0.05. Detomidine produced a significant, dose-dependent decrease in NTG height, heart rate, and skin temperature and a significant, nondose-dependent decrease in respiratory rate. Colorectal distension threshold was significantly increased with 10 microg kg(-1) for 15 minutes and for at least 165 minutes with 20 microg kg(-1). Duodenal distension threshold was significantly increased at 15 minutes for the 20 microg kg(-1) dose. A significant change in TT was not observed at either dose. A marked, immediate decrease in amplitude of duodenal contractions followed detomidine administration at both doses for 50 minutes. Detomidine caused a longer period of visceral anti-nociception as determined by CRD but a shorter period of anti-nociception as determined by DD than has been previously reported. The lack of somatic anti-nociception as determined by TT testing may be related to the marked decrease in skin temperature, likely caused by peripheral vasoconstriction and the low temperature cut-off of the testing device.

  1. A rational quantitative approach to determine the best dosing regimen for a target therapeutic effect: a unified formalism for antibiotic evaluation.

    PubMed

    Li, Jun; Nekka, Fahima

    2013-02-21

    The determination of an optimal dosing regimen is a critical step to enhance the drug efficacy and avoid toxicity. Rational dosing recommendations based on mathematical considerations are increasingly being adopted in the process of drug development and use. In this paper, we propose a quantitative approach to evaluate the efficacy of antibiotic agents. By integrating both pharmacokinetic (PK) and pharmacodynamic (PD) information, this approach gives rise to a unified formalism able to measure the cause-effect of dosing regimens. This new pharmaco-metric allows to cover a whole range of antibiotics, including the two well known concentration and time dependent classes, through the introduction of the Hill-dependency concept. As a direct fallout, our formalism opens a new path toward the bioequivalence evaluation in terms of PK and PD, which associates the in vivo drug concentration and the in vitro drug effect. Using this new approach, we succeeded to reveal unexpected, but relevant behaviors of drug performance when different drug regimens and drug classes are considered. Of particular notice, we found that the doses required to reach the same therapeutic effect, when scheduled differently, exhibit completely different tendencies for concentration and time dependent drugs. Moreover, we theoretically confirmed the previous experimental results of the superiority of the once daily regimen of aminoglycosides. The proposed methodology is appealing for its computational features and can easily be applicable to design fair clinical protocols or rationalize prescription decisions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Roles of p53 and caspases in induction of apoptosis in MCF- 7 breast cancer cells treated with a methanolic extract of Nigella sativa seeds.

    PubMed

    Alhazmi, Mohammed I; Hasan, Tarique N; Shafi, Gowhar; Al-Assaf, Abdullah H; Alfawaz, Mohammed A; Alshatwi, Ali A

    2014-01-01

    Nigella Sativa (NS) is an herb from the Ranunculaceae family that exhibits numerous medicinal properties and has been used as important constituent of many complementary and alternative medicines (CAMs). The ability of NS to kill cancer cells such as PC3, HeLa and hepatoma cells is well established. However, our understanding of the mode of death caused by NS remains nebulous. The objective of this study was to gain further insight into the mode and mechanism of death caused by NS in breast cancer MCF-7 cells. Human breast cancer cells (MCF-7) were treated with a methanolic extract of NS, and a dose- and time-dependent study was performed. The IC50 was calculated using a Cell Titer Blue® viability assay assay, and evidence for DNA fragmentation was obtained by fluorescence microscopy TUNEL assay. Gene expression was also profiled for a number of apoptosis-related genes (Caspase-3, -8, -9 and p53 genes) through qPCR. The IC50 of MCF-7 cells was 62.8 μL/mL. When MCF-7 cells were exposed to 50 μL/mL and 100 μL/mL NS for 24 h, 48 h and 72 h, microscopic examination (TUNEL assay) revealed a dose- and time-dependent increase in apoptosis. Similarly, the expression of the Caspase-3, -8, -9 and p53 genes increased significantly according to the dose and time. NS induced apoptosis in MCF-7 cells through both the p53 and caspase pathways. NS could potentially represent an alternative source of medicine for breast cancer therapy.

  3. Effects of endorphins on different parts of the gastrointestinal tract of rat and guinea-pig in vitro.

    PubMed

    Nijkamp, F P; Van Ree, J M

    1980-04-01

    1 The spasmogenic and spasmolytic effects of beta-lipotropin (LPH) fragments and one analogue were investigated on different parts of the gastro-intestinal tract of guinea-pig and rat in vitro.2 Changes in muscle tone were observed in colon and rectum and to a lesser extent in jejunum and ileum of both species. Rat colon and rectum contracted to the peptides. Guinea-pig colon and rectum relaxed after an initial short-lasting contraction.3 On the rat rectum (D-ala(2))met-enkephalin, leu-enkephalin, gamma-endorphin, alpha-endorphin and beta-LPH 80-91 caused dose-dependent contractions, their ED(50) values being 0.96 x 10(-12) mol, 1.05 x 10(-11) mol, 1.22 x 10(-11) mol, 1.08 x 10(-10) mol, 2.65 x 10(-10) mol and 6.5 x 10(-9) mol, respectively.4 Naloxone dose-dependently shifted the dose-response curve of met-enkephalin to the right. Atropine, hexamethonium, burimamide, mepyramine, propranolol and indomethacin did not influence the response to met-enkephalin.5 In the presence of tetrodotoxin, the ED(50) for met-enkephalin and the maximal contractor response induced by met-enkephalin, appeared to be increased.6 The 5-hydroxytryptamine (5-HT) antagonists, methysergide and cyproheptadine, reduced the contractor response in a non-competitive manner. The alpha-adrenoceptor antagonist phentolamine, in contrast, caused an increase of the maximal response to met-enkephalin of up to 200%. Noradrenergic and tryptaminergic systems, therefore, might be involved in the changes in muscle tone induced by met-enkephalin.7 These results demonstrate that rectum and colon of guinea-pig and rat are very sensitive to opioid-like peptides.

  4. Effects of endorphins on different parts of the gastrointestinal tract of rat and guinea-pig in vitro

    PubMed Central

    Nijkamp, F.P.; Van Ree, J.M.

    1980-01-01

    1 The spasmogenic and spasmolytic effects of β-lipotropin (LPH) fragments and one analogue were investigated on different parts of the gastro-intestinal tract of guinea-pig and rat in vitro. 2 Changes in muscle tone were observed in colon and rectum and to a lesser extent in jejunum and ileum of both species. Rat colon and rectum contracted to the peptides. Guinea-pig colon and rectum relaxed after an initial short-lasting contraction. 3 On the rat rectum (D-ala2)met-enkephalin, leu-enkephalin, γ-endorphin, α-endorphin and β-LPH 80-91 caused dose-dependent contractions, their ED50 values being 0.96 × 10-12 mol, 1.05 × 10-11 mol, 1.22 × 10-11 mol, 1.08 × 10-10 mol, 2.65 × 10-10 mol and 6.5 × 10-9 mol, respectively. 4 Naloxone dose-dependently shifted the dose-response curve of met-enkephalin to the right. Atropine, hexamethonium, burimamide, mepyramine, propranolol and indomethacin did not influence the response to met-enkephalin. 5 In the presence of tetrodotoxin, the ED50 for met-enkephalin and the maximal contractor response induced by met-enkephalin, appeared to be increased. 6 The 5-hydroxytryptamine (5-HT) antagonists, methysergide and cyproheptadine, reduced the contractor response in a non-competitive manner. The α-adrenoceptor antagonist phentolamine, in contrast, caused an increase of the maximal response to met-enkephalin of up to 200%. Noradrenergic and tryptaminergic systems, therefore, might be involved in the changes in muscle tone induced by met-enkephalin. 7 These results demonstrate that rectum and colon of guinea-pig and rat are very sensitive to opioid-like peptides. PMID:6247000

  5. Streptococcus mitis Strains Causing Severe Clinical Disease in Cancer Patients

    PubMed Central

    Sahasrabhojane, Pranoti; Saldana, Miguel; Yao, Hui; Su, Xiaoping; Horstmann, Nicola; Thompson, Erika; Flores, Anthony R.

    2014-01-01

    The genetically diverse viridans group streptococci (VGS) are increasingly recognized as the cause of a variety of human diseases. We used a recently developed multilocus sequence analysis scheme to define the species of 118 unique VGS strains causing bacteremia in patients with cancer; Streptococcus mitis (68 patients) and S. oralis (22 patients) were the most frequently identified strains. Compared with patients infected with non–S. mitis strains, patients infected with S. mitis strains were more likely to have moderate or severe clinical disease (e.g., VGS shock syndrome). Combined with the sequence data, whole-genome analyses showed that S. mitis strains may more precisely be considered as >2 species. Furthermore, we found that multiple S. mitis strains induced disease in neutropenic mice in a dose-dependent fashion. Our data define the prominent clinical effect of the group of organisms currently classified as S. mitis and lay the groundwork for increased understanding of this understudied pathogen. PMID:24750901

  6. Glucose ameliorates the metabolic profile and mitochondrial function of platelet concentrates during storage in autologous plasma

    PubMed Central

    Amorini, Angela M.; Tuttobene, Michele; Tomasello, Flora M.; Biazzo, Filomena; Gullotta, Stefano; De Pinto, Vito; Lazzarino, Giuseppe; Tavazzi, Barbara

    2013-01-01

    Background It is essential that the quality of platelet metabolism and function remains high during storage in order to ensure the clinical effectiveness of a platelet transfusion. New storage conditions and additives are constantly evaluated in order to achieve this. Using glucose as a substrate is controversial because of its potential connection with increased lactate production and decreased pH, both parameters triggering the platelet lesion during storage. Materials and methods In this study, we analysed the morphological status and metabolic profile of platelets stored for various periods in autologous plasma enriched with increasing glucose concentrations (13.75, 27.5 and 55 mM). After 0, 2, 4, 6 and 8 days, high energy phosphates (ATP, GTP, ADP, AMP), oxypurines (hypoxanthine, xanthine, uric acid), lactate, pH, mitochondrial function, cell lysis and morphology, were evaluated. Results The data showed a significant dose-dependent improvement of the different parameters in platelets stored with increasing glucose, compared to what detected in controls. Interestingly, this phenomenon was more marked at the highest level of glucose tested and in the period of time generally used for platelet transfusion (0–6 days). Conclusion These results indicate that the addition of glucose during platelet storage ameliorates, in a dose-dependent manner, the biochemical parameters related to energy metabolism and mitochondrial function. Since there was no correspondence between glucose addition, lactate increase and pH decrease in our experiments, it is conceivable that platelet derangement during storage is not directly caused by glucose through an increase of anaerobic glycolysis, but rather to a loss of mitochondrial functions caused by reduced substrate availability. PMID:22682337

  7. Type I interferon causes thrombotic microangiopathy by a dose-dependent toxic effect on the microvasculature

    PubMed Central

    Kavanagh, David; Jury, Alexa; Williams, Jac; Scolding, Neil; Bellamy, Chris; Gunther, Claudia; Ritchie, Diane; Gale, Daniel P.; Kanwar, Yashpal S.; Challis, Rachel; Buist, Holly; Overell, James; Weller, Belinda; Flossmann, Oliver; Blunden, Mark; Meyer, Eric P.; Krucker, Thomas; Evans, Stephen J. W.; Campbell, Iain L.; Jackson, Andrew P.; Chandran, Siddharthan

    2016-01-01

    Many drugs have been reported to cause thrombotic microangiopathy (TMA), yet evidence supporting a direct association is often weak. In particular, TMA has been reported in association with recombinant type I interferon (IFN) therapies, with recent concern regarding the use of IFN in multiple sclerosis patients. However, a causal association has yet to be demonstrated. Here, we adopt a combined clinical and experimental approach to provide evidence of such an association between type I IFN and TMA. We show that the clinical phenotype of cases referred to a national center is uniformly consistent with a direct dose-dependent drug-induced TMA. We then show that dose-dependent microvascular disease is seen in a transgenic mouse model of IFN toxicity. This includes specific microvascular pathological changes seen in patient biopsies and is dependent on transcriptional activation of the IFN response through the type I interferon α/β receptor (IFNAR). Together our clinical and experimental findings provide evidence of a causal link between type I IFN and TMA. As such, recombinant type I IFN therapies should be stopped at the earliest stage in patients who develop this complication, with implications for risk mitigation. PMID:27663672

  8. Yohimbine use for physical enhancement and its potential toxicity.

    PubMed

    Cimolai, Nevio; Cimolai, Tomas

    2011-12-01

    Yohimbine is a naturally sourced pharmacological agent, which produces hyperadrenergic physiological effects. In excess doses, it may typically cause agitation, anxiety, hypertension, and tachycardia. There is no conclusive evidence for this drug to be of benefit in bodybuilding, exercise tolerance, physical performance, or desirable alterations of body mass. Although tolerated generally well in low doses, the potential for dose-dependent toxicity should be recognized.

  9. EXOCRINE FUNCTION OF THE LIVER IN RATS WITH EXPOSURE TO CОRVITIN.

    PubMed

    Vovkun, T V; Yanchuk, P I; Shtanova, L Y; Vesеlskyу, S P; Shalamaу, A S

    In acute experiments on rats with cannulated bile duct we studied the effect of Corvitin, water-soluble analogue of quercetin, on secretion of bile. Intraportal administration of the test compound at doses of 2,5; 5 and 10 mg/kg resulted in a significant increase in the volume of secreted bile by 20,9, 31,2 and 20,4%, respectively, as compared with the control. Using the method of thin layer chromatography it was established the mild stimulating effect of Corvitin on the processes of bile acids conjugation with taurine and glycine, especially when administered at a dose of 5 mg/kg. This flavonoid did not affect the concentration of glycocholic acid, however increased the content of glycochenodeoxycholic and glycodeoxycholic acids in the mixture between 15 to 35,1%. Regarding free bile acids, the concentration of cholic acid, chenodeoxycholic and deoxycholic acids in the mixture was increased significantly relative to control only after Corvitin application at dose 10 mg/ kg. In the first case – from 17,9 to 29,8%, in the second – from 25 to 65,4%. At the dose of 5 mg/kg, Corvitin significantly increased the ratio of bile cholates conjugation (maximum by 23,2%), whereas 10 mg/kg of the drug decreased this index by 27,0%. After administration of Corvitin, the hydroxylation ratio in all experimental groups differed little from the control: at the dose of 5 and 10 mg/kg this parameter decreased by 14%. Thus, Corvitin modulates exocrine function of the liver, causing an increase in bile secretion and concentration of different cholates, dose-dependently increasing or decreasing the effectiveness of multienzyme systems providing processes of bile acids conjugation in rats.

  10. Dose- and Ion-Dependent Effects in the Oxidative Stress Response to Space-Like Radiation Exposure in the Skeletal System

    PubMed Central

    Alwood, Joshua S.; Tran, Luan H.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Kumar, Akhilesh; Hilton, Diane; Tahimic, Candice G. T.; Globus, Ruth K.

    2017-01-01

    Space radiation may pose a risk to skeletal health during subsequent aging. Irradiation acutely stimulates bone remodeling in mice, although the long-term influence of space radiation on bone-forming potential (osteoblastogenesis) and possible adaptive mechanisms are not well understood. We hypothesized that ionizing radiation impairs osteoblastogenesis in an ion-type specific manner, with low doses capable of modulating expression of redox-related genes. 16-weeks old, male, C57BL6/J mice were exposed to low linear-energy-transfer (LET) protons (150 MeV/n) or high-LET 56Fe ions (600 MeV/n) using either low (5 or 10 cGy) or high (50 or 200 cGy) doses at NASA’s Space Radiation Lab. Five weeks or one year after irradiation, tissues were harvested and analyzed by microcomputed tomography for cancellous microarchitecture and cortical geometry. Marrow-derived, adherent cells were grown under osteoblastogenic culture conditions. Cell lysates were analyzed by RT-PCR during the proliferative or mineralizing phase of growth, and differentiation was analyzed by imaging mineralized nodules. As expected, a high dose (200 cGy), but not lower doses, of either 56Fe or protons caused a loss of cancellous bone volume/total volume. Marrow cells produced mineralized nodules ex vivo regardless of radiation type or dose; 56Fe (200 cGy) inhibited osteoblastogenesis by more than 90% (5 weeks and 1 year post-IR). After 5 weeks, irradiation (protons or 56Fe) caused few changes in gene expression levels during osteoblastogenesis, although a high dose 56Fe (200 cGy) increased Catalase and Gadd45. The addition of exogenous superoxide dismutase (SOD) protected marrow-derived osteoprogenitors from the damaging effects of exposure to low-LET (137Cs γ) when irradiated in vitro, but had limited protective effects on high-LET 56Fe-exposed cells. In sum, either protons or 56Fe at a relatively high dose (200 cGy) caused persistent bone loss, whereas only high-LET 56Fe increased redox-related gene expression, albeit to a limited extent, and inhibited osteoblastogenesis. Doses below 50 cGy did not elicit widespread responses in any parameter measured. We conclude that high-LET irradiation at 200 cGy impaired osteoblastogenesis and regulated steady-state gene expression of select redox-related genes during osteoblastogenesis, which may contribute to persistent bone loss. PMID:28994728

  11. Gender and dose dependent ovalbumin induced hypersensitivity responses in murine model of food allergy

    USDA-ARS?s Scientific Manuscript database

    While federal regulations mandate the labeling of major food allergens, allowable food allergen thresholds have yet to be determined. Therefore the aim of this project was to identify the lowest egg allergen ovalbumin (OVA) dose causing hypersensitization using a validated murine model. Mice were or...

  12. Gender and dose dependent ovalbumin induced hypersensitivity responses in murine model of food allergy

    USDA-ARS?s Scientific Manuscript database

    While federal regulations mandate the labeling of major food allergens, allowable food allergen thresholds have yet to be determined. Therefore the aim of this project was to identify the lowest egg allergen ovalbumin (OVA) dose causing hypersensitization using a validated murine model. Mice were o...

  13. Use of radiation protraction to escalate biologically effective dose to the treatment target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, V. Y.; Spradlin, G. S.; Department of Mathematics, Embry-Riddle University, Daytona Beach, Florida 32114

    2011-12-15

    Purpose: The aim of this study is to evaluate how simultaneously increasing fraction time and dose per fraction affect biologically effective dose for the target (BED{sub tar}) while biologically effective dose for the normal tissue (BED{sub nt}) is fixed. Methods: In this investigation, BED{sub tar} and BED{sub nt} were studied by assuming mono-exponential repair of sublethal damage with tissue dependent repair half-time. Results: Our results demonstrate that under certain conditions simultaneously increasing fraction time and dose per fraction result in increased BED{sub tar} while BED{sub nt} is fixed. The dependence of biologically effective dose on fraction time is influenced bymore » the dose rate. In this investigation we analytically determined time-varying dose rate R-tilde which minimizes BED. Changes in BED with fraction time were compared for constant dose rate and for R-tilde. Conclusions: A number of recent experimental and theoretical studies have demonstrated that slow delivery of radiation (known as radiation protraction) leads to reduced therapeutic effect because of increased repair of sublethal damage. In contrast, our analysis shows that under certain conditions simultaneously increasing fraction time and dose per fraction are radiobiologically advantageous.« less

  14. Effects of phencyclidine (PCP) and MK 801 on the EEGq in the prefrontal cortex of conscious rats; antagonism by clozapine, and antagonists of AMPA-, α1- and 5-HT2A-receptors

    PubMed Central

    Sebban, Claude; Tesolin-Decros, Brigitte; Ciprian-Ollivier, Jorge; Perret, Laurent; Spedding, Michael

    2002-01-01

    The electroencephalographic (EEG) effects of the propsychotic agent phencyclidine (PCP), were studied in conscious rats using power spectra (0 – 30 Hz), from the prefrontal cortex or sensorimotor cortex. PCP (0.1 – 3 mg kg−1 s.c.) caused a marked dose-dependent increase in EEG power in the frontal cortex at 1 – 3 Hz with decreases in power at higher frequencies (9 – 30 Hz). At high doses (3 mg kg−1 s.c.) the entire spectrum shifted to more positive values, indicating an increase in cortical synchronization. MK 801 (0.05 – 0.1 mg kg−1 i.p.) caused similar effects but with lesser changes in power. In contrast, the non-competitive AMPA antagonists GYKI 52466 and GYKI 53655 increased EEG power over the whole power spectrum (1 – 10 mg kg−1 i.p.) The atypical antipsychotic clozapine (0.2 mg kg−1 s.c.) synchronized the EEG (peak 8 Hz). The 5-HT2A-antagonist, M100907, specifically increased EEG power at 2 – 3 Hz at low doses (10 and 50 μg kg÷1 s.c.), whereas at higher doses (0.1 mg kg−1 s.c.) the profile resembled that of clozapine. Clozapine (0.2 mg kg−1 s.c.), GYKI 53655 (5 mg kg−1 i.p.), prazosin (0.05 and 0.1 mg kg−1 i.p.), and M100907 (0.01 and 0.05 mg kg−1 s.c.) antagonized the decrease in power between 5 and 30 Hz caused by PCP (1 mg kg−1 s.c.), but not the increase in power at 1 – 3 Hz in prefrontal cortex. PMID:11786481

  15. Effects of neuropeptides and capsaicin on the canine tracheal vasculature in vivo.

    PubMed

    Salonen, R O; Webber, S E; Widdicombe, J G

    1988-12-01

    1. The nonadrenergic, noncholinergic nervous system may control the airway vasculature via various neuropeptides. We have perfused the cranial tracheal arteries of the anaesthetized dog and investigated the effects of neuropeptides and capsaicin (which is supposed to release neuropeptides from sensory nerve endings) on the tracheal vasculature by injecting them locally into the perfusion system. 2. Neurokinin A (NKA, 0.02-20 pmol), calcitonin gene-related peptide (CGRP, 2-200 pmol) and peptide histidine isoleucine (PHI, 0.02-2 nmol) dose-dependently decreased tracheal vascular resistance (Rtv). NKA was 10 and 100 times more potent than CGRP and PHI, respectively. The duration of the response to CGRP was greatly prolonged with larger doses. Galanin (0.2-2 nmol) had no appreciable effect on Rtv. 3. Neuropeptide Y (NPY 0.02-2 nmol) and bombesin (0.02-10 nmol) dose-dependently increased Rtv. However, the dose-response curve for bombesin was bell-shaped suggesting the development of tachyphylaxis with larger doses. In smaller doses, bombesin was twice as potent as NPY. The duration of the response to NPY was prolonged with larger doses. 4. With the exception of PHI no neuropeptide altered tracheal smooth muscle tone; PHI (1 and 2 nmol) caused small dilatations of the trachea. 5. The effects of capsaicin (2-100 nmol) were complex. Usually, the vascular response had two dose-dependent phases: a rapid vasoconstriction followed by a small, longer-lasting vasodilatation. The tracheal smooth muscle response was usually biphasic, a contraction followed by a relaxation. 6. According to previous and present data, the order of potency of the neuropeptides on the canine tracheal vasculature is for the vasodilators : NKA > vasoactive intestinal peptide (VIP) > CGRP > substance P > PHI, and for the vasoconstrictors: bombesin > NPY. The longer-acting neuropeptides (VIP, CGRP and NPY) may be more important than the shorter-acting neuropeptides (substance P, NKA, PHI and bombesin) as regulators of the airway wall blood flow.

  16. Polymer-gel formation and reformation on irradiation of tertiary-butyl acrylate

    NASA Astrophysics Data System (ADS)

    Yao, Tiantian; Denkova, Antonia G.; Warman, John M.

    2014-04-01

    The purpose of the present research was to provide a radiation-chemical basis for the use of tertiary-butyl acrylate gels in radio-fluorogenic dose-imaging applications (Warman et al. 2011a,b, 2013a,b). The radiation-induced polymerization of tertiary-butyl acrylate (TBA) results in the formation of a transparent gel with an optical density lower than 0.1 cm-1 from 600 nm down to 315 nm. The fractional monomer-to-polymer conversion, CM, determined gravimetrically, increases super-linearly with dose, D Gy. Up to CM≈40%, and over the dose rate range D‧=3.5 to 49 cGy s-1, the dose dependence is given by CM=[1+ACM]KD/√D‧ with K=1.43×10-3 Gy-0.5 s-0.5 and A=0.70. For D‧=3.5 cGy s-1 the average polymer size is estimated to be 1.2×105 monomer units or 17 megadalton. For CM≥10% the gel is quasi-rigid, displaying little tendency to flow on a timescale of an hour or more. After removal of monomer by evacuation, the gel can be reformed by adding a volume of monomer to the remaining polymer equal to that removed and allowing this to swell for several days. The dose and dose rate dependence of radiation-induced monomer conversion in the reformed gel show no evidence of a discontinuity caused by the intervening evacuation and reformation procedures.

  17. Short communication: Experimental toxocarosis in Chinese Kun Ming mice: Dose-dependent larval distribution and modulation of immune responses.

    PubMed

    Ma, Guangxu; Tan, Yancai; Hu, Ling; Luo, Yongfang; Zhu, Honghong; Zhou, Rongqiong

    2015-12-01

    Toxocarosis is an important parasitic zoonosis which is mainly caused by the infective larvae of Toxocara canis. To identify whether there are correlations among the infectious dose, the larval migrans and immune modulation in inbred Chinese Kun Ming (KM) mice, experimental infections were carried out with a range of dosages of 100, 500, 1000, 2000, and 3000 embryonated eggs (EE). Pathogenic reactions were observed in terms of physical and central nervous symptoms. Distributions of T. canis larvae in liver, lung, kidney, heart and brain organs were respectively detected by scanning tissue sections. Moreover, quantitative real-time PCR was employed to identify the variations of Th2 immune response. The results showed that high inocula resulted in advanced larval emergences and arrested migrations in liver, lung, kidney and brain. However, no larvae were found in any of the histological sections of heart tissues. Higher levels of interleukin (IL)-4, IL-5, and IL-10 were detected along with the increasing inoculation doses, but the heaviest inoculum (3000 EE in this study) resulted in the sharp reduction of these ILs. Although no neurological symptoms or mortalities were noticed, these results indicated dose-dependent distribution patterns and immune regulations of T. canis larvae infection in KM mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Light intensity modulation in phototherapy

    NASA Astrophysics Data System (ADS)

    Lukyanovich, P. A.; Zon, B. A.; Kunin, A. A.; Pankova, S. N.

    2015-04-01

    A hypothesis that blocking ATP synthesis is one of the main causes of the stimulating effect is considered based on analysis of the primary photostimulation mechanisms. The light radiation intensity modulation is substantiated and the estimates of such modulation parameters are made. An explanation is offered to the stimulation efficiency decrease phenomenon at the increase of the radiation dose during the therapy. The results of clinical research of the medical treatment in preventive dentistry are presented depending on the spectrum and parameters of the light flux modulation.

  19. [The effect of tachykinins microinjections into the solitary tract nucleus on respiration and blood circulation in rats].

    PubMed

    Chepurnov, S A; Iniushkin, A N

    1997-04-01

    Administration of substance P and kassinin into the solitary tract nucleus of anesthetized rats induced a dose-dependent increase in ventilation, tidal volume, inspiratory muscle activity, and a decrease in the mean blood pressure and heart rate. Microinjections of peptides caused a decrease in ventilatory response to hypoxia and an inhibition of the Breuer-Hering reflex. The data obtained suggest involvement of tachykinins in the respiratory and circulatory control via the solitary tract nucleus.

  20. Nanosilica induced dose-dependent cytotoxicity and cell type-dependent multinucleation in HepG2 and L-02 cells

    NASA Astrophysics Data System (ADS)

    Yu, Yongbo; Duan, Junchao; Li, Yang; Yu, Yang; Hu, Hejing; Wu, Jing; Zhang, Yannan; Li, Yanbo; CaixiaGuo; Zhou, Xianqing; Sun, Zhiwei

    2016-11-01

    The prevalent exposure to nanosilica gained concerns about health effects of these particles on human beings. Although nanosilica-induced multinucleation has been confirmed previously, the underlying mechanism was still not clear; this study was to investigate the origination of multinucleated cells caused by nanosilica (62 nm) in both HepG2 and L-02 cells. Cell viability and cellular uptake was determined by MTT assay and transmission electron microscope (TEM), respectively. Giemsa staining was applied to detect multinucleation. To clarify the origination of multinucleated cells, fluorescent probes, PKH26 and PKH67, time-lapse observation were further conducted by confocal microscopy. Results indicated that nanosilica particles were internalized into cells and induced cytotoxicity in a dose-dependent manner. Quantification analysis showed that nanosilica significantly increased the rates of binucleated and multinucleated cells, which suggested mitotic catastrophe induction. Moreover, dynamic visualization verified that multinucleation resulted from cell fusion in HepG2 cells not in L-02 cells after nanosilica exposure, suggesting cell type-dependent multinucleation formation. Both multinucleation and cell fusion were involved in genetic instability, which emphasized the significance to explore the multinucleation induced by nanosilica via environmental, occupational and consumer product exposure.

  1. Effects of different doses of nandrolone decanoate on estrous cycle and ovarian tissue of rats after treatment and recovery periods.

    PubMed

    Simão, Vinícius Augusto; Berloffa Belardin, Larissa; Araújo Leite, Gabriel Adan; de Almeida Chuffa, Luiz Gustavo; Camargo, Isabel Cristina Cherici

    2015-10-01

    This study tested the hypothesis that different doses of nandrolone decanoate (ND) will cause changes in the estrous cycle and ovarian tissue of adult rats; and investigated the duration of the recovery period that is sufficient to restore the damage in the animals treated with different doses. Wistar rats were treated with ND at doses of 1.87, 3.75, 7.5 and 15 mg/kg body weight, or received mineral oil (control group) for 15 days, subcutaneously. All animals were divided into three groups according to the treatment periods: (i) ND treatment for 15 days; (ii) ND treatment followed by a 30-day recovery; and (iii) ND treatment followed by a 60-day recovery. Estrous cycle was monitored daily, and at the end of each period, the animals were euthanized for histopathological analysis. During ND treatment and after 30-day recovery, all animals exhibited persistent diestrus. After a 60-day recovery, persistent diestrus was only maintained in the group that had received the highest dose. Ovarian weight was decreased significantly after the 30-day recovery, regardless of ND doses, compared with the control group. There was a reduction (P < 0.05) in the number of corpora lutea and antral and growing follicles, in contrast to an increase (P < 0.05) in atretic follicles in a dose- and time-dependent manner. Remarkable histopathological changes occurred in the ovaries of all ND-treated groups. In conclusion, the different doses of ND caused changes in the estrous cycle and ovarian tissue of rats, and recovery periods (30 and 60 days) were insufficient to completely restore the damage in the animals treated with the highest dose. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.

  2. Dose-dependent effects of theta burst rTMS on cortical excitability and resting-state connectivity of the human motor system.

    PubMed

    Nettekoven, Charlotte; Volz, Lukas J; Kutscha, Martha; Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2014-05-14

    Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity. Copyright © 2014 the authors 0270-6474/14/346849-11$15.00/0.

  3. Dose-dependent collagen cross-linking of rabbit scleral tissue by blue light and riboflavin treatment probed by dynamic shear rheology.

    PubMed

    Schuldt, Carsten; Karl, Anett; Körber, Nicole; Koch, Christian; Liu, Qing; Fritsch, Anatol W; Reichenbach, Andreas; Wiedemann, Peter; Käs, Josef A; Francke, Mike; Iseli, Hans Peter

    2015-08-01

    To determine the visco-elastic properties of isolated rabbit scleral tissue and dose-dependent biomechanical and morphological changes after collagen cross-linking by riboflavin/blue light treatment. Scleral patches from 87 adult albino rabbit eyes were examined by dynamic shear rheology. Scleral patches were treated by riboflavin and different intensities of blue light (450 nm), and the impact on the visco-elastic properties was determined by various rheological test regimes. The relative elastic modulus was calculated from non-treated and corresponding treated scleral patches, and treatments with different blue light intensities were compared. Shear rheology enables us to study the material properties of scleral tissue within physiological relevant parameters. Cross-linking treatment increased the viscous as well as the elastic modulus and changed the ratio of the elastic versus viscous proportion in scleral tissue. Constant riboflavin application combined with different blue light intensities from 12 mW/cm(2) up to 100 mW/cm(2) increased the relative elastic modulus of scleral tissue by factors up to 1.8. Further enhancement of the applied light intensity caused a decline of the relative elastic modulus. This might be due to destructive changes of the collagen bundle structure at larger light intensities, as observed by histological examination. Collagen cross-linking by riboflavin/blue light application increases the biomechanical stiffness of the sclera in a dose-dependent manner up to certain light intensities. Therefore, this treatment might be a suitable therapeutic approach to stabilize the biomechanical properties of scleral tissue in cases of pathological eye expansion. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  4. Excess aldosterone-induced changes in insulin signaling molecules and glucose oxidation in gastrocnemius muscle of adult male rat.

    PubMed

    Selvaraj, Jayaraman; Sathish, Sampath; Mayilvanan, Chinnaiyan; Balasubramanian, Karundevi

    2013-01-01

    Emerging evidences demonstrate that excess aldosterone and insulin interact at target tissues. It has been shown that increased levels of aldosterone contribute to the development of insulin resistance and thus act as a risk factor for the development of type-2 diabetes mellitus. However, the molecular mechanisms involved in this scenario are yet to be identified. This study was designed to assess the dose-dependent effects of aldosterone on insulin signal transduction and glucose oxidation in the skeletal muscle (gastrocnemius) of adult male rat. Healthy adult male albino rats of Wistar strain (Rattus norvegicus) weighing 180-200 g were used in this study. Rats were divided into four groups. Group I: control (treated with 1 % ethanol only), group II: aldosterone treated (10 μg /kg body weight, twice daily for 15 days), group III: aldosterone treated (20 μg /kg body weight, twice daily for 15 days), and group IV: aldosterone treated (40 μg/kg body weight, twice daily for 15 days). Excess aldosterone caused glucose intolerance in a dose-dependent manner. Serum insulin and aldosterone were significantly increased, whereas serum testosterone was decreased. Aldosterone treatment impaired the rate of glucose uptake, oxidation, and insulin signal transduction in the gastrocnemius muscle through defective expression of IR, IRS-1, Akt, AS160, and GLUT4 genes. Phosphorylation of IRS-1, β-arrestin-2, and Akt was also reduced in a dose-dependent manner. Excess aldosterone results in glucose intolerance as a result of impaired insulin signal transduction leading to decreased glucose uptake and oxidation in skeletal muscle. In addition to this, it is inferred that excess aldosterone may act as one of the causative factors for the onset of insulin resistance and thus increased incidence of type-2 diabetes.

  5. Integrated metabonomics analysis of the size-response relationship of silica nanoparticles-induced toxicity in mice

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoyan; Tian, Yu; Zhao, Qinqin; Jin, Tingting; Xiao, Shun; Fan, Xiaohui

    2011-02-01

    Understanding the underlying properties-dependent interactions of nanostructures with biological systems is essential to nanotoxicological research. This study investigates the relationship between particle size and toxicity, and further reveals the mechanism of injury, using silica particles (SP) with diameters of 30, 70, and 300 nm (SP30, SP70, and SP300) as model materials. The biochemical compositions of liver tissues and serum of mice treated with SP30, SP70, and SP300 were analyzed by integrated metabonomics analysis based on gas chromatography-mass spectrometry (GC-MS) and in combination with pattern recognition approaches. Histopathological examinations and serum biochemical analysis were simultaneously performed. The toxicity induced by three different sizes of SP mainly involved hepatocytic necrosis, increased serum aminotransferase, and inflammatory cytokines. Moreover, the toxic effects of SP were dose-dependent for each particle size. The doses of SP30, SP70, and SP300 that were toxic to the liver were 10, 40, and 200 mg kg - 1, respectively. In this study, surface area has a greater effect than particle number on the toxicity of SP30, SP70, and SP300 in the liver. The disturbances in energy metabolism, amino acid metabolism, lipid metabolism, and nucleotide metabolism may be attributable to the hepatotoxicity induced by SP. In addition, no major differences were found in the response of biological systems caused by the different SP sizes among the metabolite profiles. The results suggest that not only nano-sized but also submicro-sized SP can cause similar extents of liver injury, which is dependent on the exposure dose, and the mechanism of toxicity may be almost the same.

  6. Comparative assessment of onion and garlic extracts on endogenous hepatic and renal antioxidant status in rat.

    PubMed

    Suru, Stephen M; Ugwu, Chidiebere E

    2015-07-01

    Despite growing claims of functional health benefits in folkloric medicine, the safety of chronic/elevated intakes of onion and garlic cannot be assumed. Therefore, this study assesses oral administration of varied doses of onion and garlic on some biomarkers of hepatic and renal functions in rats. Animals were divided into five groups: control group received vehicle and extract-treated groups received varied doses of onion or garlic extract (0.5 mL and 1.0 mL/100 g bwt/day) for 6 weeks. Both doses of onion caused marked (p<0.05) increase in hepatic and renal levels of glutathione (GSH), glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) and marked (p<0.05) decrease in malondialdehyde (MDA). Treatment with low dose of garlic elicited similar trend except in hepatic CAT, renal SOD and GST levels. A high dose of garlic only caused marked (p<0.05) increase in hepatic GST, renal GST, and SOD. Both doses of onion and low dose of garlic significantly (p<0.05) enhanced renal Na+/K+-ATPase activity. Only a high dose of onion caused significant (p<0.05) increase in hepatic aspartate transaminase (AST), alkaline phosphatase (ALP), and decrease in plasma AST activities. These findings suggest antioxidant enhancing capability for both doses of onion and low dose of garlic, while high dose of garlic elicited pro-oxidant conditions.

  7. Antidiarrheal Activity of Dissotis multiflora (Sm) Triana (Melastomataceae) Leaf Extract in Wistar Rats and Subacute Toxicity Evaluation

    PubMed Central

    Ndoye Foe, Chantal Florentine; Njankouo Ndam, Youchahou; Njayou, Frédéric Nico; Fonkoua, Marie Christine; Etoa, François-Xavier

    2017-01-01

    The present work was undertaken to evaluate antidiarrheal activity of ethanolic leaf extract of Dissotis multiflora (Sm) Triana (D. multiflora) on Shigella flexneri-induced diarrhea in Wistar rats and its subacute toxicity. Diarrhea was induced by oral administration of 1.2 × 109 cells/mL S. flexneri to rats. Antidiarrheal activity was investigated in rats with the doses of 111.42 mg/kg, 222.84 mg/kg, and 445.68 mg/kg. The level of biochemical parameters was assessed and organs histology examined by 14 days' subacute toxicity. S. flexneri stool load decreased significantly in dose-dependent manner. The level of ALT increased (p < 0.05) in male rats treated with the dose of 445.68 mg/kg while creatinine level increased in rats treated with both doses. In female rats, a significant decrease (p < 0.05) of the level of AST and creatinine was noted in rats treated with the dose of 222.84 mg/kg of D. multiflora. Histological exams of kidney and liver of treated rats showed architectural modifications at the dose of 445.68 mg/kg. This finding suggests that D. multiflora leaf extract is efficient against diarrhea caused by S. flexneri but the treatment with doses lower than 222.84 mg/kg is recommended while further study is required to define the exact efficient nontoxic dose. PMID:29234391

  8. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice.

    PubMed

    Fero, M L; Rivkin, M; Tasch, M; Porter, P; Carow, C E; Firpo, E; Polyak, K; Tsai, L H; Broudy, V; Perlmutter, R M; Kaushansky, K; Roberts, J M

    1996-05-31

    Targeted disruption of the murine p27(Kip1) gene caused a gene dose-dependent increase in animal size without other gross morphologic abnormalities. All tissues were enlarged and contained more cells, although endocrine abnormalities were not evident. Thymic hyperplasia was associated with increased T lymphocyte proliferation, and T cells showed enhanced IL-2 responsiveness in vitro. Thus, p27 deficiency may cause a cell-autonomous defect resulting in enhanced proliferation in response to mitogens. In the spleen, the absence of p27 selectively enhanced proliferation of hematopoietic progenitor cells. p27 deletion, like deletion of the Rb gene, uniquely caused neoplastic growth of the pituitary pars intermedia, suggesting that p27 and Rb function in the same regulatory pathway. The absence of p27 also caused an ovulatory defect and female sterility. Maturation of secondary ovarian follicles into corpora lutea, which express high levels of p27, was markedly impaired.

  9. Induction of p53-mediated apoptosis in splenocytes and thymocytes of C57BL/6 mice exposed to perfluorooctane sulfonate (PFOS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Guang-Hui, E-mail: ghdong@mail.cmu.edu.cn; Wang, Jing; Zhang, Ying-Hua

    2012-10-15

    Perfluorooctane sulfonate (PFOS) is a persistent environmental contaminant found in human and wildlife tissues. It has been reported that PFOS can cause atrophy of the immune organs and apoptosis of immunocytes in rodents. However, the mechanism behind such cause is still unclear. To understand the model of cell death and its mechanism on lymphoid cells in vivo, we conducted a dose/response experiment in which 4 groups of male adult C57BL/6 mice (12 mice per group) were dosed daily by oral gavage with PFOS at 0, 0.0167, 0.0833, or 0.8333 mg/kg/day, yielding targeted Total Administered Dose (TAD) of 0, 1, 5,more » or 50 mg PFOS/kg, respectively, over 60 days. The results showed that spleen and thymus weight were significantly reduced in the highest PFOS-dose-group (TAD 50 mg PFOS/kg) compared to the control group, whereas liver weight was significantly increased. We analyzed the cell death via apoptosis with an annexin-V/propidium iodide assay by flow cytometry, and observed that both the percentage of apoptosis and the expression of the pro-apoptotic proteins p53 in splenocytes and thymocytes increased in a dose-related manner after PFOS treatment. We also observed that PFOS induced p53-dependent apoptosis through the cooperation between the Bcl-xl down regulation without changing the Bcl-2 and Bax expression. The down regulation of Bcl-xl was strongly indicating mitochondrial involvement in apoptosis. It is confirmed by the release of cytochrome c and activation of caspase-3. All of these findings establish an important role of p53 and mitochondrial function in PFOS induced toxic environment in the host. -- Highlights: ► PFOS immunotoxicity is caused by induction of apoptosis via the p53 activation. ► PFOS exposure can induce down regulation of Bcl-xl. ► Mitochondria are involved in PFOS-induced apoptosis. ► PFOS exposure can cause the release of cytochrome c and activation of caspase-3.« less

  10. Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy.

    PubMed

    Tyagi, Ritu; Rana, Poonam; Khan, Ahmad Raza; Bhatnagar, Deepak; Devi, M Memita; Chaturvedi, Shubhra; Tripathi, Rajendra P; Khushu, Subash

    2011-10-01

    Thallium (Tl) is a toxic heavy metal and its exposure to the human body causes physiological and biochemical changes due to its interference with potassium-dependent biological reactions. A high-resolution (1)H NMR spectroscopy based metabonomic approach has been applied for investigating acute biochemical effects caused by thallium sulfate (Tl(2)SO(4)). Male strain A mice were divided in three groups and received three doses of Tl(2)SO(4) (5, 10 and 20 mg kg(-1) b.w., i.p.). Urine samples collected at 3, 24, 72 and 96 h post-dose time points were analyzed by (1)H NMR spectroscopy. NMR spectral data were processed and analyzed using principal components analysis to represent biochemical variations induced by Tl(2)SO(4). Results showed Tl-exposed mice urine to have distinct metabonomic phenotypes and revealed dose- and time-dependent clustering of treated groups. The metabolic signature of urine analysis from Tl(2)SO(4)-treated animals exhibited an increase in the levels of creatinine, taurine, hippurate and β-hydroxybutyrate along with a decrease in energy metabolites trimethylamine and choline. These findings revealed Tl-induced disturbed gut flora, membrane metabolite, energy and protein metabolism, representing physiological dysfunction of vital organs. The present study indicates the great potential of NMR-based metabonomics in mapping metabolic response for toxicology, which could ultimately lead to identification of potential markers for Tl toxicity. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Methanolic extract of Cola nitida elicits dose-dependent diuretic, natriuretic and kaliuretic activities without causing electrolyte impairment, hepatotoxicity and nephrotoxicity in rats.

    PubMed

    Adeosun, Olukayode Isaac; Olaniyi, Kehinde S; Amusa, Oluwatobi A; Jimoh, Gbemisola Z; Oniyide, Adesola A

    2017-01-01

    Cola nitida (Kolanut) is conventionally used in tropical Africa for the treatment of all kinds of ailments such as migraine, morning sickness, metabolic disorders etc. However, this study was designed to investigate the diuretic, natriuretic and kaliuretic activities of methanolic extract of Cola nitida (MECN) in male Wistar rats. Adult male Wistar rats were randomly allotted into control (25 ml/kg b.w .), furosemide (20 mg/kg b.w ; standard), MECN 1 (100 mg/kg), MECN 2 (200 mg/kg), MECN 3 (300 mg/kg), MECN 4 (400 mg/kg), MECN 5 (500 mg/kg), MECN 6 (600 mg/kg) groups with n=6. The extract was prepared as previously described and the treatment lasted for 14 days. Urine volume and diuretic indices were estimated. Urine electrolytes, plasma electrolytes, plasma/renal AST/ALT, plasma creatinine and urea were assayed using flame photometry and standard colorimetric method respectively.Administration of different doses of C. nitida significantly altered body weight gain and water intake but not food intake compared with control group. There were significant increases in urine volume and urine electrolytes (Na + , K + and Cl - ), a decrease in plasma/renal ALT and AST activities, a decrease in plasma creatinine and urea concentration and no alteration in plasma electrolytes when compared with control and furosemide-treated groups. Our study suggests that MECN elicits diuretic, natriuretic, and kaliuretic activities without causing electrolyte impairment, hepatotoxicity and nephrotoxicity. These effects are dose-dependent.

  12. Methanolic extract of Cola nitida elicits dose-dependent diuretic, natriuretic and kaliuretic activities without causing electrolyte impairment, hepatotoxicity and nephrotoxicity in rats

    PubMed Central

    Adeosun, Olukayode Isaac; Olaniyi, Kehinde S; Amusa, Oluwatobi A; Jimoh, Gbemisola Z; Oniyide, Adesola A

    2017-01-01

    Cola nitida (Kolanut) is conventionally used in tropical Africa for the treatment of all kinds of ailments such as migraine, morning sickness, metabolic disorders etc. However, this study was designed to investigate the diuretic, natriuretic and kaliuretic activities of methanolic extract of Cola nitida (MECN) in male Wistar rats. Adult male Wistar rats were randomly allotted into control (25 ml/kg b.w.), furosemide (20 mg/kg b.w; standard), MECN1 (100 mg/kg), MECN2 (200 mg/kg), MECN3 (300 mg/kg), MECN4 (400 mg/kg), MECN5 (500 mg/kg), MECN6 (600 mg/kg) groups with n=6. The extract was prepared as previously described and the treatment lasted for 14 days. Urine volume and diuretic indices were estimated. Urine electrolytes, plasma electrolytes, plasma/renal AST/ALT, plasma creatinine and urea were assayed using flame photometry and standard colorimetric method respectively.Administration of different doses of C. nitida significantly altered body weight gain and water intake but not food intake compared with control group. There were significant increases in urine volume and urine electrolytes (Na+, K+ and Cl-), a decrease in plasma/renal ALT and AST activities, a decrease in plasma creatinine and urea concentration and no alteration in plasma electrolytes when compared with control and furosemide-treated groups. Our study suggests that MECN elicits diuretic, natriuretic, and kaliuretic activities without causing electrolyte impairment, hepatotoxicity and nephrotoxicity. These effects are dose-dependent. PMID:29348800

  13. In Vitro Toxicity and Epigenotoxicity of Different Types of Ambient Particulate Matter

    PubMed Central

    Miousse, Isabelle R.; Chalbot, Marie-Cecile G.; Pathak, Rupak; Lu, Xiaoyan; Nzabarushimana, Etienne; Krager, Kimberly; Aykin-Burns, Nukhet; Hauer-Jensen, Martin; Demokritou, Philip; Kavouras, Ilias G.; Koturbash, Igor

    2015-01-01

    Exposure to ambient particulate matter (PM) has been associated with adverse health effects, including pulmonary and cardiovascular disease. Studies indicate that ambient PM originated from different sources may cause distinct biological effects. In this study, we sought to investigate the potential of various types of PM to cause epigenetic alterations in the in vitro system. RAW264.7 murine macrophages were exposed for 24 and 72 h to 5- and 50-μg/ml doses of the water soluble extract of 6 types of PM: soil dust, road dust, agricultural dust, traffic exhausts, biomass burning, and pollen, collected in January–April of 2014 in the area of Little Rock, Arkansas. Cytotoxicity, oxidative potential, epigenetic endpoints, and chromosomal aberrations were addressed. Exposure to 6 types of PM resulted in induction of cytotoxicity and oxidative stress in a type-, time-, and dose-dependent manner. Epigenetic alterations were characterized by type-, time-, and dose-dependent decreases of DNA methylation/demethylation machinery, increased DNA methyltransferases enzymatic activity and protein levels, and transcriptional activation and subsequent silencing of transposable elements LINE-1, SINE B1/B2. The most pronounced changes were observed after exposure to soil dust that were also characterized by hypomethylation and reactivation of satellite DNA and structural chromosomal aberrations in the exposed cells. The results of our study indicate that the water-soluble fractions of the various types of PM have differential potential to target the cellular epigenome. PMID:26342214

  14. The effect of intraoperative administration of dexamethasone for PONV prophylaxis on perioperative blood glucose level in obese and normal weight children.

    PubMed

    Gnatzy, Richard; Hempel, Gunther; Kaisers, Udo X; Höhne, Claudia

    2015-11-01

    The incidence of postoperative nausea and vomiting (PONV) can be reduced by dexamethasone. Single-dose administration may cause elevated blood glucose levels in obese adults. No data are available for children. The aim was to evaluate perioperative blood glucose changes related to body weight in children who received dexamethasone. This prospective observational study included 62 children. All patients received total intravenous anesthesia and a single dose of dexamethasone (0.15 mg/kg, maximum 8 mg). Blood glucose levels were measured up to 6 h. Standard deviation scores (SDS) were calculated using age- and gender-specific body mass index (BMI) percentiles, p<0.05. A total of 62 children (11.5±2.9 years, median SDS 0.43, 29% overweight/obese) were included. Blood glucose levels increased from 5.52±0.52 to 6.74±0.84 mmol/L 6 h after dexamethasone without correlation to the BMI-SDS. This study showed an increase of perioperative blood glucose (normoglycemic ranges) after single dose of dexamethasone, but no BMI-dependent effect was observed in children. Therefore, low-dose dexamethasone may be used in obese children for PONV prophylaxis.

  15. Evaluation of linalool, a natural antimicrobial and insecticidal essential oil from basil: effects on poultry.

    PubMed

    Beier, Ross C; Byrd, J Allen; Kubena, Leon F; Hume, Michael E; McReynolds, Jackson L; Anderson, Robin C; Nisbet, David J

    2014-02-01

    Linalool is a natural plant-product used in perfumes, cosmetics, and flavoring agents. Linalool has proven antimicrobial and insect-repellent properties, which indicate it might be useful for control of enteropathogens or insect pests in poultry production. However, there are no published reports that linalool may be safely administered to or tolerated by chickens. Linalool was added to the diets of day-of-hatch chicks, and they were fed linalool-supplemented diets for 3 wk. We studied the effects of linalool on serum chemistry, gross pathology, feed conversion, and relative liver weights. Linalool had a dramatic negative dose-dependent effect on feed conversion at concentrations in the feed exceeding 2% linalool, but not on gross pathology. Liver weights were significantly increased in the 5% linalool-treated birds. There was a statistical effect on blood glucose, but this parameter remained below the cut-offs for elevated serum glucose, and the result is likely of no biological significance. Linalool caused serum aspartate aminotransferase (AST) levels to increase, but it did not increase serum gamma-glutamyl transferase levels. The linalool effect on AST was dose-dependent, but in linalool doses between 0.1 and 2% of the feed, AST was not elevated beyond normal parameters. Linalool at 2% or less may be safely added to chicken feed. We suggest future studies to evaluate the addition of linalool to the litter, where it may be used as an antimicrobial or an insect repellent or to produce a calming effect.

  16. Total Dose Effects on Single Event Transients in Digital CMOS and Linear Bipolar Circuits

    NASA Technical Reports Server (NTRS)

    Buchner, S.; McMorrow, D.; Sibley, M.; Eaton, P.; Mavis, D.; Dusseau, L.; Roche, N. J-H.; Bernard, M.

    2009-01-01

    This presentation discusses the effects of ionizing radiation on single event transients (SETs) in circuits. The exposure of integrated circuits to ionizing radiation changes electrical parameters. The total ionizing dose effect is observed in both complementary metal-oxide-semiconductor (CMOS) and bipolar circuits. In bipolar circuits, transistors exhibit grain degradation, while in CMOS circuits, transistors exhibit threshold voltage shifts. Changes in electrical parameters can cause changes in single event upset(SEU)/SET rates. Depending on the effect, the rates may increase or decrease. Therefore, measures taken for SEU/SET mitigation might work at the beginning of a mission but not at the end following TID exposure. The effect of TID on SET rates should be considered if SETs cannot be tolerated.

  17. Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs.

    PubMed

    Rivera, Seth; Nemeth, Elizabeta; Gabayan, Victoria; Lopez, Miguel A; Farshidi, Dina; Ganz, Tomas

    2005-09-15

    Hepcidin is the principal iron regulatory hormone and its overproduction contributes to anemia of inflammation (AI). In vitro, hepcidin binds to and induces the degradation of the exclusive iron exporter ferroportin. We explored the effects and distribution of synthetic hepcidin in the mouse. A single intraperitoneal injection of hepcidin caused a rapid fall of serum iron in a dose-dependent manner, with a 50-microg dose resulting in iron levels 80% lower than in control mice. The full effect was seen within only 1 hour, consistent with a blockade of iron export from tissue stores and from macrophages involved in iron recycling. Serum iron remained suppressed for more than 48 hours after injection. Using radiolabeled hepcidin, we demonstrated that the serum concentration of hepcidin at the 50-microg dose was 1.4 microM, consistent with the inhibitory concentration of 50% (IC50) of hepcidin measured in vitro. Radiolabeled hepcidin accumulated in the ferroportin-rich organs, liver, spleen, and proximal duodenum. Our study highlights the central role of the hepcidin-ferroportin interaction in iron homeostasis. The rapid and sustained action of a single dose of hepcidin makes it an appealing agent for the prevention of iron accumulation in hereditary hemochromatosis.

  18. Acute Biological Effects of Simulating the Whole-Body Radiation Dose Distribution from a Solar Particle Event Using a Porcine Model

    PubMed Central

    Wilson, Jolaine M.; Sanzari, Jenine K.; Diffenderfer, Eric S.; Yee, Stephanie S.; Seykora, John T.; Maks, Casey; Ware, Jeffrey H.; Litt, Harold I.; Reetz, Jennifer A.; McDonough, James; Weissman, Drew; Kennedy, Ann R.; Cengel, Keith A.

    2011-01-01

    In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses. PMID:21859326

  19. Gestational age and dose influence on placental transfer of 63Ni in rats.

    PubMed

    Wang, X-W; Gu, J-Y; Li, Z; Song, Y-F; Wu, W-S; Hou, Y-P

    2010-04-01

    The effects of gestational age and dose of nickel exposure on regulating and influencing placental transfer were investigated. Pregnant rats on gestational day (GD) 12, 15 or 20 were injected intraperitoneally with saline, 64,320 or 640 kBq/kg body weight of (63)Ni. Twenty-four hours after administration, samples were harvested from each for measurement of radioactivity by liquid scintillation counting and for autoradiography. In placenta, amniotic fluid and fetal membrane, (63)Ni concentrations increased with increasing doses and gestational age. In fetus, (63)Ni concentrations reached a maximum on GD 15 and then declined on GD 20 although they maintained a dose-dependency for each GD group. In fetal blood on GD 20, (63)Ni concentration increased dose-dependently and was higher than in maternal blood. The autoradiographs demonstrated that (63)Ni radioactivity was located within placental basal lamina, fetal bones and most organs. These findings suggest that the nickel uptake, retention and transport in placenta increase dose- and gestation age-dependently, and nickel transfer through placental barrier is primarily from mother into the fetus, but hardly from fetus to mother. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. The effects of alpha2-adrenoceptor agents on anti-hyperalgesic effects of carbamazepine and oxcarbazepine in a rat model of inflammatory pain.

    PubMed

    Vucković, Sonja M; Tomić, Maja A; Stepanović-Petrović, Radica M; Ugresić, Nenad; Prostran, Milica S; Bosković, Bogdan

    2006-11-01

    In this study, the effects of yohimbine (alpha2-adrenoceptor antagonist) and clonidine (alpha2-adrenoceptor agonist) on anti-hyperalgesia induced by carbamazepine and oxcarbazepine in a rat model of inflammatory pain were investigated. Carbamazepine (10-40 mg/kg; i.p.) and oxcarbazepine (40-160 mg/kg; i.p.) caused a significant dose-dependent reduction of the paw inflammatory hyperalgesia induced by concanavalin A (Con A, intraplantarly) in a paw pressure test in rats. Yohimbine (1-3 mg/kg; i.p.) significantly depressed the anti-hyperalgesic effects of carbamazepine and oxcarbazepine, in a dose- and time-dependent manner. Both drug mixtures (carbamazepine-clonidine and oxcarbazepine-clonidine) administered in fixed-dose fractions of the ED50 (1/2, 1/4 and 1/8) caused significant and dose-dependent reduction of the hyperalgesia induced by Con A. Isobolographic analysis revealed a significant synergistic (supra-additive) anti-hyperalgesic effect of both combinations tested. These results indicate that anti-hyperalgesic effects of carbamazepine and oxcarbazepine are, at least partially, mediated by activation of adrenergic alpha2-receptors. In addition, synergistic interaction for anti-hyperalgesia between carbamazepine and clonidine, as well as oxcarbazepine and clonidine in a model of inflammatory hyperalgesia, was demonstrated.

  1. Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fader, Kelly A.; Nault, Rance

    Persistent aryl hydrocarbon receptor (AhR) agonists elicit dose-dependent hepatic lipid accumulation, oxidative stress, inflammation, and fibrosis in mice. Iron (Fe) promotes AhR-mediated oxidative stress by catalyzing reactive oxygen species (ROS) production. To further characterize the role of Fe in AhR-mediated hepatotoxicity, male C57BL/6 mice were orally gavaged with sesame oil vehicle or 0.01–30 μg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days. Duodenal epithelial and hepatic RNA-Seq data were integrated with hepatic AhR ChIP-Seq, capillary electrophoresis protein measurements, and clinical chemistry analyses. TCDD dose-dependently repressed hepatic expression of hepcidin (Hamp and Hamp2), the master regulator of systemic Fe homeostasis, resultingmore » in a 2.6-fold increase in serum Fe with accumulating Fe spilling into urine. Total hepatic Fe levels were negligibly increased while transferrin saturation remained unchanged. Furthermore, TCDD elicited dose-dependent gene expression changes in heme biosynthesis including the induction of aminolevulinic acid synthase 1 (Alas1) and repression of uroporphyrinogen decarboxylase (Urod), leading to a 50% increase in hepatic hemin and a 13.2-fold increase in total urinary porphyrins. Consistent with this heme accumulation, differential gene expression suggests that heme activated BACH1 and REV-ERBα/β, causing induction of heme oxygenase 1 (Hmox1) and repression of fatty acid biosynthesis, respectively. Collectively, these results suggest that Hamp repression, Fe accumulation, and increased heme levels converge to promote oxidative stress and the progression of TCDD-elicited hepatotoxicity. - Highlights: • TCDD represses hepatic hepcidin expression, leading to systemic iron overloading. • Dysregulation of heme biosynthesis is consistent with heme and porphyrin accumulation. • Heme-activated REV-ERBα/β repress circadian-regulated hepatic lipid metabolism. • Disruption of iron homeostasis promotes TCDD-elicited steatohepatitis with fibrosis.« less

  2. Dose-response comparisons of five lung surfactant factor (LSF) preparations in an animal model of adult respiratory distress syndrome (ARDS).

    PubMed Central

    Häfner, D.; Beume, R.; Kilian, U.; Krasznai, G.; Lachmann, B.

    1995-01-01

    1. We have examined the effects of five different lung surfactant factor (LSF) preparations in the rat lung lavage model. In this model repetitive lung lavage leads to lung injury with some similarities to adult respiratory distress syndrome with poor gas exchange and protein leakage into the alveolar spaces. These pathological sequelae can be reversed by LSF instillation soon after lavage. 2. The tested LSF preparations were: two bovine: Survanta and Alveofact: two synthetic: Exosurf and a protein-free phospholipid based LSF (PL-LSF) and one Recombinant LSF at doses of 25, 50 and 100 mg kg-1 body weight and an untreated control group. 3. Tracheotomized rats (10-12 per dose) were pressure-controlled ventilated (Siemens Servo Ventilator 900C) with 100% oxygen at a respiratory rate of 30 breaths min-1, inspiration expiration ratio of 1:2, peak inspiratory pressure (PIP) of 28 cmH2O at positive end-expiratory pressure (PEEP) of 8 cmH2O. Two hours after LSF administration, PEEP and in parallel PIP was reduced from 8 to 6 (1st reduction), from 6 to 3 (2nd reduction) and from 3 to 0 cmH2O (3rd reduction). 4. Partial arterial oxygen pressure (PaO2, mmHg) at 5 min and 120 min after LSF administration and during the 2nd PEEP reduction (PaO2(PEEP23/3)) were used for statistical comparison. All LSF preparations caused a dose-dependent increase for the PaO2(120'), whereas during the 2nd PEEP reduction only bovine and recombinant LSF exhibited dose-dependency. Exosurf did not increase PaO2 after administration of the highest dose. At the highest dose Exosurf exerted no further improvement but rather a tendency to relapse.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 Figure 4 PMID:7582456

  3. Developmental and genetic toxicity of stannous chloride in mouse dams and fetuses.

    PubMed

    El-Makawy, Aida I; Girgis, Shenouda M; Khalil, Wagdy K B

    2008-12-08

    Humans are exposed to stannous chloride (SnCl2) present in packaged food, soft drinks, biocides, dentifrices, etc. Health effects in children exposed to tin and tin compounds have not been investigated yet. Therefore, we evaluated the possible teratogenic and genotoxic effects of SnCl2 in pregnant female mice and their fetuses. Teratogenic effects including morphological malformation of the fetus and its skeleton were observed. Exposures to environmental stressors including toxic chemicals that have the potential of modulating the immune system can often be linked to ecologically relevant endpoints, such as reduced resistance to disease. Therefore, the semi-quantitative reverse-transcription PCR (RT-PCR) assay was used to evaluate the expression of immune-response genes in the liver of SnCl2-treated dams and their fetuses. Bone-marrow cells of dams and fetuses were investigated for the presence of aberrant chromosomes. Three oral doses of SnCl2 (2, 10 and 20 mg/kg bw) were tested. The results of the teratological study show that SnCl2 induced a significant decrease in the number of living fetuses and a significant increase in the number of post-implantation losses. The high dose of SnCl2 induced complete post-implantation loss. Furthermore, SnCl2 caused reduction in the ossification of the fetal skeleton. The RT-PCR assay showed that the immune-response genes GARP and SIMP were not expressed in the liver of dams and fetuses in the controls or in the group treated with SnCl2 at 2 mg/kg bw. However, the expression of these genes was up-regulated in the groups treated with the other doses of SnCl2. Regarding the chromosome analysis, SnCl2 induced a dose-dependent increase in the frequency of individual and total chromosomal aberrations (P

  4. Repaglinide as monotherapy in Type 2 diabetes.

    PubMed

    Gomis, R

    1999-01-01

    The action of repaglinide, a carbamoylmethyl benzoic acid derivative, mimics the physiological insulin secretion that is deficient in Type 2 diabetes mellitus. Repaglinide stimulates insulin release from beta-cells only in the presence of glucose. Two placebo-controlled studies were performed to establish the effective dose range of repaglinide. In one study, repaglinide (0.25-4.0 mg preprandially) caused a dose-dependent decrease in blood glucose and a non-dose-dependent increase in insulin over 4 weeks (all doses p < 0.001 vs. placebo). In the second study, repaglinide (0.25-8.0 mg preprandially) was titrated over 6 weeks to obtain the optimum response (fasting plasma glucose < 8.9 mmol/L). The titration period was followed by a 12-week dose-maintenance period. At the end of the study, repaglinide had decreased fasting plasma glucose by 3.4 mmol/L (p < 0.05) and 2-h postprandial blood glucose by 5.8 mmol/L (p < 0.001) versus placebo. Glycated haemoglobin (HbA1c) decreased significantly from 8.5% to 7.9% in the repaglinide group and increased significantly from 8.1% to 9.2% in the placebo group (p < 0.001 between groups). In five 1-year, multicentre, randomized, double-blind, phase III trials, repaglinide (0.5-4.0 mg preprandially) was compared with the sulphonylureas glibenclamide, glipizide and gliclazide. Repaglinide was more effective than glipizide at maintaining glycaemic control and was equivalent to glibenclamide and gliclazide on the basis of change in HbA1c. Hypoglycaemic events were reported in 16% of repaglinide-treated patients and 15-20% of sulphonylurea-treated patients. These data indicate that repaglinide monotherapy, with diet and exercise, is effective in patients with Type 2 diabetes.

  5. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist.

    PubMed

    Newman, L A; Gold, P E

    2016-03-01

    Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist-to decrease scopolamine-induced increases in acetylcholine output or to decrease postsynaptic acetylcholine receptor activation-may mediate the negative effects on memory of muscarinic antagonists.

  6. Enkephalinase inhibitor potentiates substance P- and electrically induced contraction in ferret trachea.

    PubMed

    Sekizawa, K; Tamaoki, J; Nadel, J A; Borson, D B

    1987-10-01

    To determine the role of endogenous enkephalinase (EC 3.4.24.11) in regulating peptide-induced contraction of airway smooth muscle, we studied the effect of the enkephalinase inhibitor, leucine-thiorphan (Leu-thiorphan), on responses of isolated ferret tracheal smooth muscle segments to substance P (SP) and to electrical field stimulation (EFS). Leu-thiorphan shifted the dose-response curve to SP to lower concentrations. Atropine or the SP antagonist [D-Pro2,D-Trp7,9]SP significantly inhibited SP-induced contractions in the presence of Leu-thiorphan. Leu-thiorphan increased the contractile responses to EFS dose dependently, an effect that was significantly inhibited by the SP antagonist [D-Pro2,D-Trp7,9]SP. SP, in a concentration that did not cause contraction, increased the contractile responses to EFS. This effect was augmented by Leu-thiorphan dose dependently and was not inhibited by hexamethonium or by phentolamine but was inhibited by atropine. Because contractile responses to acetylcholine were not significantly affected by SP or by Leu-thiorphan, the potentiating effects of SP were probably on presynaptic-postganglionic cholinergic neurotransmission. Captopril, bestatin, or leupeptin did not augment contractions, suggesting that enkephalinase was responsible for the effects. These results suggest that endogenous tachykinins modulate smooth muscle contraction and endogenous enkephalinase modulates contractions produced by endogenous or exogenous tachykinins and tachykinin-induced facilitation of cholinergic neurotransmission.

  7. Overexpression of parkin in the rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity.

    PubMed

    Liu, Bin; Traini, Roberta; Killinger, Bryan; Schneider, Bernard; Moszczynska, Anna

    2013-09-01

    Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum, sparing other striatal terminals and cell bodies. We previously detected a deficit in parkin after binge METH in rat striatal synaptosomes. Parkin is an ubiquitin-protein E3 ligase capable of protecting dopamine neurons from diverse cellular insults. Whether the deficit in parkin mediates the toxicity of METH and whether parkin can protect from toxicity of the drug is unknown. The present study investigated whether overexpression of parkin attenuates degeneration of striatal dopaminergic terminals exposed to binge METH. Parkin overexpression in rat nigrostriatal dopamine system was achieved by microinjection of adeno-associated viral transfer vector 2/6 encoding rat parkin (AAV2/6-parkin) into the substantia nigra pars compacta. The microinjections of AAV2/6-parkin dose-dependently increased parkin levels in both the substantia nigra pars compacta and striatum. The levels of dopamine synthesizing enzyme, tyrosine hydroxylase, remained at the control levels; therefore, tyrosine hydroxylase immunoreactivity was used as an index of dopaminergic terminal integrity. In METH-exposed rats, the increase in parkin levels attenuated METH-induced decreases in striatal tyrosine hydroxylase immunoreactivity in a dose-dependent manner, indicating that parkin can protect striatal dopaminergic terminals against METH neurotoxicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Overexpression of parkin in rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity

    PubMed Central

    Liu, Bin; Traini, Roberta; Killinger, Bryan; Schneider, Bernard; Moszczynska, Anna

    2013-01-01

    Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum, sparing other striatal terminals and cell bodies. We previously detected a deficit in parkin after binge METH in rat striatal synaptosomes. Parkin is an ubiquitin-protein E3 ligase capable of protecting dopamine neurons from diverse cellular insults. Whether the deficit in parkin mediates the toxicity of METH and whether parkin can protect from toxicity of the drug is unknown. The present study investigated whether overexpression of parkin attenuates degeneration of striatal dopaminergic terminals exposed to binge METH. Parkin overexpression in rat nigrostriatal dopamine system was achieved by microinjection of adeno-associated viral transfer vector 2/6 encoding rat parkin (AAV2/6-parkin) into the substantia nigra pars compacta. The microinjections of AAV2/6-parkin dose-dependently increased parkin levels in both the substantia nigra pars compacta and striatum. The levels of dopamine synthesizing enzyme, tyrosine hydroxylase, remained at the control levels; therefore, tyrosine hydroxylase immunoreactivity was used as an index of dopaminergic terminal integrity. In METH-exposed rats, the increase in parkin levels attenuated METH-induced decreases in striatal tyrosine hydroxylase immunoreactivity in a dose-dependent manner, indicating that parkin can protect striatal dopaminergic terminals against METH neurotoxicity. PMID:23313192

  9. Curcumin Blocks Naproxen-Induced Gastric Antral Ulcerations through Inhibition of Lipid Peroxidation and Activation of Enzymatic Scavengers in Rats.

    PubMed

    Kim, Jeong-Hwan; Jin, Soojung; Kwon, Hyun Ju; Kim, Byung Woo

    2016-08-28

    Curcumin is a polyphenol derived from the plant Curcuma longa, which is used for the treatment of diseases associated with oxidative stress and inflammation. The present study was undertaken to determine the protective effect of curcumin against naproxen-induced gastric antral ulcerations in rats. Different doses (10, 50, and 100 mg/kg) of curcumin or vehicle (curcumin, 0 mg/kg) were pretreated for 3 days by oral gavage, and then gastric mucosal lesions were caused by 80 mg/kg naproxen applied for 3 days. Curcumin significantly inhibited the naproxen-induced gastric antral ulcer area and lipid peroxidation in a dose-dependent manner. In addition, curcumin markedly increased activities of radical scavenging enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase in a dose-dependent manner. Specifically, 100 mg/kg curcumin completely protected the gastric mucosa against the loss in the enzyme, resulting in a drastic increase of activities of radical scavenging enzymes up to more than the level of untreated normal rats. Histological examination obviously showed that curcumin prevents naproxen-induced gastric antral ulceration as a result of direct protection of the gastric mucosa. These results suggest that curcumin blocks naproxen-induced gastric antral ulcerations through prevention of lipid peroxidation and activation of radical scavenging enzymes, and it may offer a potential remedy of gastric antral ulcerations.

  10. Acetaminophen Increases Aldosterone Secretion While Suppressing Cortisol and Androgens: A Possible Link to Increased Risk of Hypertension.

    PubMed

    Oskarsson, Agneta; Ullerås, Erik; Ohlsson Andersson, Åsa

    2016-10-01

    Acetaminophen (paracetamol) is a widely used analgesic and antipyretic drug. Potential side effects are of public health concern, and liver toxicity from acute overdose is well known. More recently, a regular use of acetaminophen has been associated with an increased risk of hypertension. We investigated effects of acetaminophen on steroidogenesis as a possible mechanism for the hypertensive action by using the human adrenocortical cell line, H295R. Cells were treated with 0.1, 0.5, and 1mM of acetaminophen for 24 hours, and secretion of steroids and gene expression of key steps in the steroidogenesis were investigated. Progesterone and aldosterone secretion were increased dose dependently, while secretion of 17α-OH-progesterone and cortisol as well as dehydroepiandrosterone and androstenedione was decreased. CYP17α-hydroxylase activity, assessed by the ratio 17α-OH-progesterone/progesterone, and CYP17-lyase activity, assessed by the ratio androstenedione/17α-OH-progesterone, were both dose-dependently decreased by acetaminophen. No effects were revealed on cell viability. Treatment of cells with 0.5mM of acetaminophen did not cause any effects on the expression of 10 genes in the steroidogenic pathways. The pattern of steroid secretion caused by acetaminophen can be explained by inhibition of CYP17A1 enzyme activity. A decreased secretion of glucocorticoids and androgens, as demonstrated by acetaminophen, would, in an in vivo situation, induce adrenocorticotropic hormone release via negative feedback in the hypothalamic-pituitary-adrenal axis and result in an upregulation of aldosterone secretion. Our results suggest a novel possible mechanism for acetaminophen-induced hypertension, which needs to be further elucidated in clinical investigations. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. [Potential advantages of triphasic combined oral contraceptives in the light of recent epidemiological and endocrinometabolic data].

    PubMed

    Gaspard, U; Dubois, M

    1982-09-01

    New epidemiologic data on the vascular risks of oral contraceptives (OCs) were assessed to determine whether the recently introduced low dose triphasic pills offer greater potential safety for OC users than previous formulations. Epidemiologic studies have demonstrated that vascular accidents are less frequent with OCs containing lower doses of both estrogens and progestins. The new triphasic pills have the lowest steroid content of any pills yet developed and less of a progestin climate than low dose monophasic pills. The gradual increases in the progestin dose, from 50 mcg on days 1-6 to 75 mcg on days 7-11 and 125 mcg on days 12-21 and of ethinyl estradiol from 30 mcg on days 1-6 to 40 on days 7-11 and back to 30 on days 12-21 reflect the natural cycle of steroid secretion. The endometrial mucus is better developed than under low dose monophasic pills, permitting better cycle control. Triphasic pills have been shown in all studies to block secretion by the hypothalamus and pituitary of the gonadotropins follicle stimulating hormone and luteinizing hormone, resulting in absence of follicular maturation and of ovulation. Even with the small dose of levonorgestrel, the cervical mucus is rendered inhospitable to capacitation and passage of sperm. The impact on glucose tolerance of low doses of ethinyl estradiol, even after long use, is minimal, but the 19 norsteroids used in most combined pills have a more significant impact. To the directly stimulating effect of progestins on pancreatic insulin secretion is added the development of increased peripheral resistence apparently due to a decrease in the number of insulin receptors in the target tissue. The decrease appears to be dose dependent and proportional to the androgenicity of the progestin. A recent study indicated that triphasic pills caused less of a deterioration in glucose tolerance than standard or low-dose combined OCs or a biphasic formulation. This finding was significant because of the possibility that disturbances in carbohydrate metabolism can favor development of vascular diseases. Triphasic OCs have a slight estrogen dominance, which allows them to maintain favorable levels of high density lipoprotein cholesterol, the fraction believed to provide cardiovascular protection. Similarly, they caused minimal variation on the order of 10-15% in the levels of fibrinogen, factors VII, VIII, and X, plasminogen, and antithrombine III. It has not yet been established with certainty however that changes in the levels of these coagulation factors correspond to changes in actual risk of thromboembolic accidents. Triphasics cause a minimal increase in renin substrate and activity of 12-30% compared to the 30-40% at higher estrogen doses. No significant variation in blood pressure has been observed in triphasic OC users.

  12. Physiological responses and toxin production of Microcystis aeruginosa in short-term exposure to solar UV radiation.

    PubMed

    Hernando, Marcelo; Minaglia, Melina Celeste Crettaz; Malanga, Gabriela; Houghton, Christian; Andrinolo, Darío; Sedan, Daniela; Rosso, Lorena; Giannuzzi, Leda

    2018-01-17

    The aim of this study was to evaluate the effects of short-term (hours) exposure to solar UV radiation (UVR, 280-400 nm) on the physiology of Microcystis aeruginosa. Three solar radiation treatments were implemented: (i) PAR (PAR, 400-700 nm), (ii) TUVA (PAR + UVAR, 315-700 nm) and (iii) TUVR (PAR + UVAR + UVBR, 280-700 nm). Differential responses of antioxidant enzymes and the reactive oxygen species (ROS) production to UVR were observed. Antioxidant enzymes were more active at high UVR doses. However, different responses were observed depending on the exposure to UVAR or UVBR and the dose level. No effects were observed on the biomass, ROS production or increased activity of superoxide dismutase (SOD) and catalase (CAT) compared to the control when UVR + PAR doses were lower than 9875 kJ m -2 . For intermediate doses, UVR + PAR doses between 9875 and 10 275 kJ m -2 , oxidative stress increased while resistance was imparted through SOD and CAT in the cells exposed to UVAR. Despite the increased antioxidant activity, biomass decrease and photosynthesis inhibition were observed, but no effects were observed with added exposure to UVBR. At the highest doses (UVR + PAR higher than 10 275 kJ m -2 ), the solar UVR caused decreased photosynthesis and biomass with only activation of CAT by UVBR and SOD and CAT by UVAR. In addition, for such doses, a significant decrease of microcystins (MCs, measured as MC-LR equivalents) was observed as a consequence of UVAR. This study facilitates our understanding of the SOD and CAT protection according to UVAR and UVBR doses and cellular damage and reinforces the importance of UVR as an environmental stressor. In addition, our results support the hypothesized antioxidant function of MCs.

  13. Withdrawal of repeated morphine enhances histamine-induced scratching responses in mice.

    PubMed

    Abe, Kenji; Kobayashi, Kanayo; Yoshino, Saori; Taguchi, Kyoji; Nojima, Hiroshi

    2015-04-01

    An itch is experientially well known that the scratching response of conditions such as atopic dermatitis is enhanced under psychological stress. Morphine is typical narcotic drug that induces a scratching response upon local application as an adverse drug reaction. Although long-term treatment with morphine will cause tolerance and dependence, morphine withdrawal can cause psychologically and physiologically stressful changes in humans. In this study, we evaluated the effects of morphine withdrawal on histamine-induced scratching behavior in mice. Administration of morphine with progressively increasing doses (10-50 mg/kg, i.p.) was performed for 5 consecutive days. At 3, 24, 48, and 72 hr after spontaneous withdrawal from the final morphine dose, histamine was intradermally injected into the rostral part of the back and then the number of bouts of scratching in 60 min was recorded and summed. We found that at 24 hr after morphine withdrawal there was a significant increase in histamine-induced scratching behavior. The spinal c-Fos positive cells were also significantly increased. The relative adrenal weight increased and the relative thymus weight decreased, both significantly. Moreover, the plasma corticosterone levels changed in parallel with the number of scratching bouts. These results suggest that morphine withdrawal induces a stressed state and enhances in histamine-induced scratching behavior. Increased reaction against histamine in the cervical vertebrae will participate in this stress-induced itch enhancement.

  14. The effects of boric acid on sister chromatid exchanges and chromosome aberrations in cultured human lymphocytes.

    PubMed

    Arslan, Mehmet; Topaktas, Mehmet; Rencuzogullari, Eyyüp

    2008-02-01

    The aim of this study was to determine the possible genotoxic effects of boric acid (BA) (E284), which is used as an antimicrobial agent in food, by using sister chromatid exchange (SCEs) and chromosome aberration (CAs) tests in human peripheral lymphocytes. The human lymphocytes were treated with 400, 600, 800, and 1000 mug/mL concentrations of BA dissolved in dimethyl sulfoxide (DMSO), for 24 h and 48 h treatment periods. BA did not increase the SCEs for all the concentrations and treatment periods when compared to control and solvent control (DMSO). BA induced structural and total CAs at all the tested concentrations for 24 and 48 h treatment periods. The induction of the total CAs was dose dependent for the 24 h treatment period. However, BA did not cause numerical CAs. BA showed a cytotoxic effect by decreasing the replication index (RI) and mitotic index (MI). BA decreased the MI in a dose-dependent manner for the 24 h treatment period.

  15. Yohimbine Increases Opioid-Seeking Behavior in Heroin-Dependent, Buprenorphine-Maintained Individuals

    PubMed Central

    Greenwald, Mark K.; Lundahl, Leslie H.; Steinmiller, Caren L.

    2012-01-01

    Rationale In laboratory animals, the biological stressor yohimbine (α2-noradrenergic autoreceptor antagonist) promotes drug seeking. Human laboratory studies have demonstrated that psychological stressors can increase drug craving but not that stressors alter drug seeking. Objectives This clinical study tested whether yohimbine increases opioid seeking behavior. Methods Ten heroin-dependent, buprenorphine (8-mg/day) stabilized volunteers, sampled two doses of hydromorphone (12 and 24 mg IM in counterbalanced order, labeled Drug A [session 1] and Drug B [session 2]). During each of six later sessions (within-subject, double blind, randomized crossover design), volunteers could respond on a 12-trial choice progressive ratio task to earn units (1 or 2 mg) of the sampled hydromorphone dose (Drug A or B) vs. money ($2) following different oral yohimbine pretreatment doses (0, 16.2 and 32.4 mg). Results Behavioral economic demand intensity and peak responding (Omax) were significantly higher for hydromorphone 2-mg than 1-mg. Relative to placebo, yohimbine significantly increased hydromorphone demand inelasticity, more so for hydromorphone 1-mg units (Pmax = 909, 3647 and 3225 for placebo, 16.2 and 32.4 mg yohimbine doses, respectively) than hydromorphone 2-mg units (Pmax = 2656, 3193 and 3615, respectively). Yohimbine produced significant but clinically modest dose-dependent increases in blood pressure (systolic ≈15 and diastolic ≈10 mmHg) and opioid withdrawal symptoms, and decreased opioid agonist symptoms and elated mood. Conclusions These findings concur with preclinical data by demonstrating that yohimbine increases drug seeking; in this study, these effects occurred without clinically significant subjective distress or elevated craving, and partly depended on opioid unit dose. PMID:23161001

  16. [Myocardial electrogenesis in laboratory rats under conditions of acute nitrite intoxication].

    PubMed

    Shumilova, T E; Shereshkov, V I; Ianvareva, I N; Nozdrachev, A D

    2010-01-01

    In anesthetized male rats the arterial blood pressure in femoral artery and electrocardiogram in standard leads were recorded uninterruptedly for 1-1.5 h under conditions of acute nitrite intoxication produced by a subcutaneous injection of water solution of sodium nitrite (donor of nitric oxide) at concentrations of 10, 30, and 50 mg/kg body mass. Results of the study have shown dose-dependent changes of arterial pressure as well as of time and amplitude characteristics of electrocardiogram under effect of NaNO2. At the threshold hypoxic dose, an increase of amplitude of R and S waves was observed by the 30-45th min, while at the maximal NaNO2 dose, amplitude of all waves rose by the 15th min of intoxication. High nitric doses often caused an increase of the ST segment above the isoelectric line and a rise of the amplitude of the T wave, on which a notch appeared in some cases. The change of the ECG time parameters was expressed in the dose-dependent development of bradycardia for the first 4-7 min; its level correlated with the progressively decreasing arterial pressure in the beginning (the 2-4th min) of nitrite intoxication. Variation analysis of heart rate spectral characteristics by Baevskii has revealed a rise of the total spectral power of pulse oscillations. Under effect of nitrite, in the spectrum of cardiointervals, quent recovery of the normal ECG spectrum in the end of the experimental period. The maximal nitrite dose produced more pronounced shifts of the heart rate spectrum towards the LF and VLF diapasons that were not restored for 1 h of experiment. Transitory processes of readjustment of the cardiac rhythm had discrete character. The nitrite dose of 50 mg/kg body mass increased the RR-interval after 4-7 min with amplitude steps of 3-5 imp/s and the time constant of 20-40 s. The revealed ECG changes had the reflex (enhancement of parasympathetic tonus) and metabolic (the hypoxic and histotoxic damage of myocardium) nature.

  17. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve.

    PubMed

    Radak, Zsolt; Ishihara, Kazunari; Tekus, Eva; Varga, Csaba; Posa, Aniko; Balogh, Laszlo; Boldogh, Istvan; Koltai, Erika

    2017-08-01

    It is debated whether exercise-induced ROS production is obligatory to cause adaptive response. It is also claimed that antioxidant treatment could eliminate the adaptive response, which appears to be systemic and reportedly reduces the incidence of a wide range of diseases. Here we suggest that if the antioxidant treatment occurs before the physiological function-ROS dose-response curve reaches peak level, the antioxidants can attenuate function. On the other hand, if the antioxidant treatment takes place after the summit of the bell-shaped dose response curve, antioxidant treatment would have beneficial effects on function. We suggest that the effects of antioxidant treatment are dependent on the intensity of exercise, since the adaptive response, which is multi pathway dependent, is strongly influenced by exercise intensity. It is further suggested that levels of ROS concentration are associated with peak physiological function and can be extended by physical fitness level and this could be the basis for exercise pre-conditioning. Physical inactivity, aging or pathological disorders increase the sensitivity to oxidative stress by altering the bell-shaped dose response curve. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Assessment of Ablative Therapies in Swine: Response of Respiratory Diaphragm to Varying Doses.

    PubMed

    Singal, Ashish; Mattison, Lars M; Soule, Charles L; Ballard, John R; Rudie, Eric N; Cressman, Erik N K; Iaizzo, Paul A

    2018-03-28

    Ablation is a common procedure for treating patients with cancer, cardiac arrhythmia, and other conditions, yet it can cause collateral injury to the respiratory diaphragm. Collateral injury can alter the diaphragm's properties and/or lead to respiratory dysfunction. Thus, it is important to understand the diaphragm's physiologic and biomechanical properties in response to ablation therapies, in order to better understand ablative modalities, minimize complications, and maximize the safety and efficacy of ablative procedures. In this study, we analyzed physiologic and biomechanical properties of swine respiratory diaphragm muscle bundles when exposed to 5 ablative modalities. To assess physiologic properties, we performed in vitro tissue bath studies and measured changes in peak force and baseline force. To assess biomechanical properties, we performed uniaxial stress tests, measuring force-displacement responses, stress-strain characteristics, and avulsion forces. After treating the muscle bundles with all 5 ablative modalities, we observed dose-dependent sustained reductions in peak force and transient increases in baseline force-but no consistent dose-dependent biomechanical responses. These data provide novel insights into the effects of various ablative modalities on the respiratory diaphragm, insights that could enable improvements in ablative techniques and therapies.

  19. Protective Effect of 4-(3,4-Dihydroxyphenyl)-3-Buten-2-One from Phellinus linteus on Naproxen-Induced Gastric Antral Ulcers in Rats.

    PubMed

    Kim, Jeong-Hwan; Kwon, Hyun Ju; Kim, Byung Woo

    2016-05-28

    The present study investigated the protective effect of naturally purified 4-(3,4- dihydroxyphenyl)-3-buten-2-one (DHP) from Phellinus linteus against naproxen-induced gastric antral ulcers in rats. To verify the protective effect of DHP on naproxen-induced gastric antral ulcers, various doses (1, 5, and 10 μg/kg) of DHP were pretreated for 3 days, and then gastric damage was caused by 80 mg/kg naproxen applied for 3 days. DHP prevented naproxen-induced gastric antral ulcers in a dose-dependent manner. In particular, 10 μg/kg DHP showed the best protective effect against naproxen-induced gastric antral ulcers. Moreover, DHP significantly attenuated the naproxen-induced lipid peroxide level in gastric mucosa and increased the activities of radical scavenging enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, in a dose-dependent manner. A histological examination clearly demonstrated that the gastric antral ulcer induced by naproxen nearly disappeared after the pretreatment of DHP. These results suggest that DHP can inhibit naproxen-induced gastric antral ulcers through prevention of lipid peroxidation and activation of radical scavenging enzymes.

  20. Safety, pharmacokinetics and pharmacodynamics of the anti‐hepcidin Spiegelmer lexaptepid pegol in healthy subjects

    PubMed Central

    Boyce, M; Warrington, S; Cortezi, B; Zöllner, S; Vauléon, S; Swinkels, D W; Summo, L; Schwoebel, F

    2016-01-01

    Background and Purpose Anaemia of chronic disease is characterized by impaired erythropoiesis due to functional iron deficiency, often caused by excessive hepcidin. Lexaptepid pegol, a pegylated structured l‐oligoribonucleotide, binds and inactivates hepcidin. Experimental Approach We conducted a placebo‐controlled study on the safety, pharmacokinetics and pharmacodynamics of lexaptepid after single and repeated i.v. and s.c. administration to 64 healthy subjects at doses from 0.3 to 4.8 mg·kg−1. Key Results After treatment with lexaptepid, serum iron concentration and transferrin increased dose‐dependently. Iron increased from approximately 20 μmol·L−1 at baseline by 67% at 8 h after i.v. infusion of 1.2 mg·kg−1 lexaptepid. The pharmacokinetics showed dose‐proportional increases in peak plasma concentrations and moderately over‐proportional increases in systemic exposure. Lexaptepid had no effect on hepcidin production or anti‐drug antibodies. Treatment with lexaptepid was generally safe and well tolerated, with mild and transient transaminase increases at doses ≥2.4 mg·kg−1 and with local injection site reactions after s.c. but not after i.v. administration. Conclusions and Implications Lexaptepid pegol inhibited hepcidin and dose‐dependently raised serum iron and transferrin saturation. The compound is being further developed to treat anaemia of chronic disease. PMID:26773325

  1. [Study on effect of aqueous extracts from aconite on "dose-time-toxicity" relationships in mice hearts].

    PubMed

    Feng, Qun; Li, Xiao-yu; Luan, Yong-fu; Sun, Sai-nan; Sun, Rong

    2015-03-01

    To study the effect of single administration of aqueous extracts from aconite on "dose-toxicity" relationship and "time-toxicity" relationship of mice hearts, through changes in electrocardiogram (ECG) and serum biochemical indexes. Mice were grouped according to different drug doses and time points, and orally administered with water extracts from aconite for once to observe the changes of mice ECG before and after the administration, calculate visceral indexes heart, liver and kidney, and detect levels of CK, LDH, BNP and CTn-I in serum. According to the "time-toxicity" relationship study, at 5 min after oral administration with aqueous extracts from aconite in mice, the heart rate of mice began rising, reached peak at 60 min and then slowly reduced; QRS, R amplitude, T duration and amplitude and QT interval declined at 5 min, reduced to the bottom at 60 min and then gradually elevated. The levels of CK, LDH, BNP and CTn-I in serum elevated at 5 min and reached the peak at 60 min, with no significant change in ratios of organs to body at different time points. On the basis of the "dose-toxicity" relationship, with the increase in single dose of aqueous extracts from aconite, the heart rate of mice. QRS, T duration and amplitude and QT interval declined gradually, and levels of CK, LDH, BNP and CTn-I in serum slowly elevated, with a certain dose dependence and no significant change in ratios of organs to body in mice. Single oral administration of different doses of aqueous extracts from aconite could cause different degrees of heart injury at different time points, with a certain dose dependence. Its peak time of toxicity is at 60 min after the administration of aqueous extracts from aconite.

  2. An investigation into the selectivity of a novel series of benzoquinolizines for alpha 2-adrenoceptors in vivo.

    PubMed Central

    Paciorek, P. M.; Pierce, V.; Shepperson, N. B.; Waterfall, J. F.

    1984-01-01

    The potencies and selectivities of a novel series of benzoquinolizines for the alpha 2-adrenoceptor have been investigated in the rat in comparison with yohimbine and indoramin. Peripheral postjunctional alpha 2- and alpha 1-adrenoceptor blockade was measured as the reversal of B-HT 933 and methoxamine-induced pressor responses, respectively, in the pithed rat. Peripheral prejunctional alpha 2-adrenoceptor blockade was measured as the reversal of B-HT 933-induced inhibition of an electrically evoked tachycardia in the pithed rat. Central alpha 2-adrenoceptor blockade was measured as a reversal of the hypotension induced in anaesthetized rats by central (i.c.v.) administration of clonidine. Wy 25309, Wy 26392, Wy 26703 and yohimbine (0.3-3 mg kg-1 i.v.) evoked dose-dependent shifts to the right of the dose-response curves to B-HT 933 whilst having minimal effects on the methoxamine dose-response curve. The selectivity for alpha 2-adrenoceptors increased with the dose of antagonist administered. In general, the order of selectivity was Wy 25309 greater than Wy 26392 greater than Wy 26703 greater than yohimbine. Indoramin (1 mg kg-1 i.v.) shifted the methoxamine pressor dose-response curve to the right without affecting the B-HT 933 dose-response curves, confirming its selective alpha 1-antagonist activity. Peripheral administration of all three benzoquinolizines (1-100 micrograms kg-1 i.v.) led to a dose-dependent reversal of the hypotension evoked by central administration of clonidine (500 ng i.c.v.). The reversal was incomplete, higher doses causing a further decrease in blood pressure. (ABSTRACT TRUNCATED AT 250 WORDS) PMID:6329385

  3. Post Chlorine gas exposure administration of nitrite prevents lung injury: effect of administration modality

    PubMed Central

    Samal, Andrey A.; Honavar, Jaideep; Brandon, Angela; Bradley, Kelley M.; Doran, Stephen; Liu, Yanping; Dunaway, Chad; Steele, Chad; Postlethwait, Edward M.; Squadrito, Giuseppe L.; Fanucchi, Michelle V.; Matalon, Sadis; Patel, Rakesh P.

    2012-01-01

    Cl2 gas toxicity is complex and occurs during, and post exposure leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl2 exposure can occur in diverse situations encompassing mass casualty scenarios underscoring the need for post-exposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we compared the efficacy of a single dose, post (30min) Cl2 exposure administration of nitrite (1mg/kg) via intraperitoneal (IP) or intramuscular (IM) injection in rats, to decrease ALI. Exposure of rats to Cl2 gas (400ppm, 30min) significantly increased ALI and caused RAS 6–24h post exposure as indexed by BAL sampling of lung surface protein, PMN and increased airway resistance and elastance prior to and post methacholine challenge. IP nitrite decreased Cl2 - dependent increases in BAL protein but not PMN. In contrast IM nitrite decreased BAL PMN levels without decreasing BAL protein in a xanthine oxidoreductase independent manner. Histological evaluation of airways 6h post exposure showed significant bronchial epithelium exfoliation and inflammatory injury in Cl2 exposed rats. Both IP and IM nitrite improved airway histology compared to Cl2 gas alone, but more coverage of the airway by cuboidal or columnar epithelium was observed with IM compared to IP nitrite. Airways were rendered more sensitive to methacholine induced resistance and elastance after Cl2 gas exposure. Interestingly, IM nitrite, but not IP nitrite, significantly decreased airway sensitivity to methacholine challenge. Further evaluation and comparison of IM and IP therapy showed a two-fold increase in circulating nitrite levels with the former, which was associated with reversal of post-Cl2 exposure dependent increases in circulating leukocytes. Halving the IM nitrite dose resulted in no effect in PMN accumulation but significant reduction of of BAL protein levels indicating distinct nitrite dose dependence for inhibition of Cl2 dependent lung permeability and inflammation. These data highlight the potential for nitrite as a post-exposure therapeutic for Cl2 gas induced lung injury and also suggest that administration modality is a key consideration in nitrite therapeutics. PMID:22917977

  4. Assessment of the risk of solar ultraviolet radiation to amphibians. I. Dose-dependent induction of hindlimb malformations in the northern leopard frog (Rana pipiens).

    PubMed

    Ankley, Gerald T; Diamond, Stephen A; Tietge, Joseph E; Holcombe, Gary W; Jensen, Kathleen M; Defoe, David L; Peterson, Ryan

    2002-07-01

    A number of environmental stressors have been hypothesized as responsible for recent increases in limb malformations in several species of North American amphibians. The purpose of this study was to generate dose-response data suitable for assessing the potential role of solar ultraviolet (UV) radiation in causing limb malformations in a species in which this phenomenon seemingly is particularly prevalent, the northern leopard frog (Rana pipiens). Frogs were exposed from early embryonic stages through complete metamorphosis to varying natural sunlight regimes, including unaltered (100%) sunlight, sunlight subjected to neutral density filtration to achieve relative intensities of 85%, 75%, 65%, 50%, and 25% of unaltered sunlight, and sunlight filtered with glass or acrylamide to attenuate, respectively, the UVB (290-320 nm) and UVB plus UVA (290-380 nm) portions of the spectrum. The experiments were conducted in a controlled setting, with continual monitoring of UVB, UVA, and visible light to support a robust exposure assessment. Full sunlight caused approximately 50% mortality of the frogs during early larval development; no significant treatment-related mortality occurred under any of the other exposure regimes, including 100% sunlight with glass or acrylamide filtration. There was a dose-dependent (p < 0.0001) induction of hindlimb malformations in the frogs, with the percentage of affected animals ranging from about 97% under unaltered sunlight to 0% in the 25% neutral density treatment. Malformations were comprised mostly of missing or truncated digits, and generally were bilateral as well as symmetrical. Filtration of sunlight with either glass or acrylamide both significantly reduced the incidence of malformed limbs. The estimated sunlight dose resulting in a 50% limb malformation rate (ED50) was 63.5%. The limb ED50 values based on measured sunlight intensities corresponded to average daily doses of 4.5 and 100 Wh x m(-2) for UVB and UVA, respectively. Exposure to sunlight also resulted in increased eye malformations in R. pipiens, however, the dose-response relationship for this endpoint was not monotonic. The results of this study, in conjunction with measured or predicted exposure data from natural settings, provide a basis for quantitative prediction of the risk of solar UV radiation to amphibians.

  5. Increasing LH Pulsatility in Women With Hypothalamic Amenorrhoea Using Intravenous Infusion of Kisspeptin-54

    PubMed Central

    Jayasena, Channa N.; Abbara, Ali; Veldhuis, Johannes D.; Comninos, Alexander N.; Ratnasabapathy, Risheka; De Silva, Akila; Nijher, Gurjinder M. K.; Ganiyu-Dada, Zainab; Mehta, Amrish; Todd, Catriona; Ghatei, Mohammad A.; Bloom, Stephen R.

    2014-01-01

    Background: Hypothalamic amenorrhea (HA) is the one of the most common causes of period loss in women of reproductive age and is associated with deficient LH pulsatility. High-dose kisspeptin-54 acutely stimulates LH secretion in women with HA, but chronic administration causes desensitization. GnRH has paradoxical effects on reproductive activity; we therefore hypothesized that a dose-dependent therapeutic window exists within which kisspeptin treatment restores the GnRH/LH pulsatility in women with HA. Aim: The aim of the study was to determine whether constant iv infusion of kisspeptin-54 temporarily increases pulsatile LH secretion in women with HA. Methods: Five patients with HA each underwent six assessments of LH pulsatility. Single-blinded continuous iv infusion of vehicle or kisspeptin-54 (0.01, 0.03, 0.10, 0.30, or 1.00 nmol/kg/h) was administered. The LH pulses were detected using blinded deconvolution. Results: Kisspeptin increased LH pulsatility in all patients with HA, with peak responses observed at different doses in each patient. The mean peak number of pulses during infusion of kisspeptin-54 was 3-fold higher when compared with vehicle (number of LH pulses per 8 h: 1.6 ± 0.4, vehicle; 5.0 ± 0.5, kisspeptin-54, P < .01 vs vehicle). The mean peak LH pulse secretory mass during kisspeptin-54 was 6-fold higher when compared with vehicle (LH pulse secretory mass in international units per liter: 3.92 ± 2.31, vehicle; 23.44 ± 12.59, kisspeptin-54; P < .05 vs vehicle). Conclusions: Kisspeptin-54 infusion temporarily increases LH pulsatility in women with HA. Furthermore, we have determined the dose range within which kisspeptin-54 treatment increases basal and pulsatile LH secretion in women with HA. This work provides a basis for studying the potential of kisspeptin-based therapies to treat women with HA. PMID:24517142

  6. Functional changes in cerebral 5-hydroxytryptamine metabolism in the mouse induced by anticonvulsant drugs.

    PubMed Central

    Chadwick, D; Gorrod, J W; Jenner, P; Marsden, C D; Reynolds, E H

    1978-01-01

    1 Acute administration of clonazepam, diazepam, and diphenylhydantoin to mice elevated cerebral 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA); chronic administration had less effect. 2 Acute administration of clonazepam and diazepam but not diphenylhydantoin raised cerebral trytophan levels; chronic administration of clonazepam caused a smaller elevation of cerebral tryptophan but chronic administration of diazepam still caused a large rise in cerebral tryptophan. 3 Neither clonazepam nor diazepam caused induction of drug metabolizing enzymes on chronic administration but diphenylhydantoin had a marked effect. 4 These data suggest that the altered 5-HT metabolism caused by these compounds is unrelated to a common action on tryptophan levels, and that the reduced effect of clonazepam and diazepam on chronic administration cannot be attributed to increased metabolism of these compounds. 5 Clonazepam induced abnormal head movements in mice in a dose-dependent manner. Pretreatment of animals with tranylcypromine increased the intensity of movement, although pargyline was without effect. Similar effects were observed with diazepam and diphenylhydantoin, suggesting that the increase in cerebral 5-HT caused by these compounds is of functional significance in stimulating 5-HT receptors. PMID:620092

  7. Reproductive effects of lipid soluble components of Syzygium aromaticum flower bud in male mice

    PubMed Central

    Mishra, Raghav Kumar; Singh, Shio Kumar

    2013-01-01

    Background: The flower buds of Syzygium aromaticum (clove) have been used in indigenous medicines for the treatment of male sexual disorders in Indian subcontinent. Objective: To evaluate the effect of Syzygium aromaticum flower bud on male reproduction, using Parkes (P) strain mice as animal model. Materials and Methods: Mice were orally administered lipid soluble components of Syzygium aromaticum flower bud in doses of 15, 30, and 60 mg/kg body weight for 35 days, and several male reproductive endpoints were evaluated. Results: Treatment with lower dose (15 mg) of Syzygium increased the motility of sperm and stimulated the secretory activities of epididymis and seminal vesicle, while higher doses (30 and 60 mg) had adverse effects on sperm dynamics of cauda epididymidis and on the secretory activities of epididymis and seminal vesicle. Libido was not affected in treated males; however, a significant decrease in litter in females sired by males treated with higher doses of Syzygium was recorded. Conclusion: Treatment with Syzygium aromaticum flower bud causes dose-dependent biphasic effect on male reproductive indices in P mice; lower dose of Syzygium appears stimulatory, while the higher doses have adverse effect on male reproduction. The results suggest that the lower dose of Syzygium may have androgenic effect, but further studies are needed to support this contention. PMID:23930041

  8. Are diuretics harmful in the management of acute kidney injury?

    PubMed

    Ejaz, A Ahsan; Mohandas, Rajesh

    2014-03-01

    To assess the role of diuretics in acute kidney injury (AKI) and their effectiveness in preventing AKI, achieving fluid balance, and decreasing progression to chronic kidney disease (CKD). Diuretics are associated with increased risk for AKI. The theoretical advantage of diuretic-induced preservation of renal medullary oxygenation to prevent AKI has not been proven. A higher cumulative diuretic dose during the dialysis period can cause hypotension and increase mortality in a dose-dependent manner. Data on the use of forced euvolemic diuresis to prevent AKI remains controversial. Positive fluid balance has emerged as an independent predictor of adverse outcomes. Post-AKI furosemide dose had a favorable effect on mortality due in part to the reduction of positive fluid balance. There are exciting experimental data suggesting that spironolactone may prevent AKI once an ischemic insult has occurred and thus prevent the progression to CKD. Diuretics are ineffective and even detrimental in the prevention and treatment of AKI, and neither shorten the duration of AKI, nor reduce the need for renal replacement therapy. Diuretics have an important role in volume management in AKI, but they are not recommended for the prevention of AKI. There is increased emphasis on the prevention of progression of AKI to CKD.

  9. Heart in space: effect of the extraterrestrial environment on the cardiovascular system.

    PubMed

    Hughson, Richard L; Helm, Alexander; Durante, Marco

    2018-03-01

    National space agencies and private corporations aim at an extended presence of humans in space in the medium to long term. Together with currently suboptimal technology, microgravity and cosmic rays raise health concerns about deep-space exploration missions. Both of these physical factors affect the cardiovascular system, whose gravity-dependence is pronounced. Heart and vascular function are, therefore, susceptible to substantial changes in weightlessness. The altered cardiovascular function in space causes physiological problems in the postflight period. A compromised cardiovascular system can be excessively vulnerable to space radiation, synergistically resulting in increased damage. The space radiation dose is significantly lower than in patients undergoing radiotherapy, in whom cardiac damage is well-documented following cancer therapy in the thoracic region. Nevertheless, epidemiological findings suggest an increased risk of late cardiovascular disease even with low doses of radiation. Moreover, the peculiar biological effectiveness of heavy ions in cosmic rays might increase this risk substantially. However, whether radiation-induced cardiovascular effects have a threshold at low doses is still unclear. The main countermeasures to mitigate the effect of the space environment on cardiac function are physical exercise, antioxidants, nutraceuticals, and radiation shielding.

  10. The effect of exposure duration on the subjective discomfort of aircraft cabin noise.

    PubMed

    Huang, Yu; Jiang, Weikang

    2017-01-01

    The time dependency for subjective responses to noise has been a controversial question over many years. For durations of up to 10 min, the discomfort produced by three levels of noise (ie 60, 70 and 80 dBA) was investigated in this experimental study to determine the relation of discomfort to the time duration of noise. The rate of increase in discomfort with increasing duration was 1.5 dB per doubling of exposure duration, whereas it is currently assumed to be 3 dB per doubling of exposure duration. The sound dose level (SDL) was proposed to predict the discomfort caused by noise of long duration. The combination of SDL and vibration dose value (VDV) provided more consistent estimates of the equivalent comfort contours between noise and vibration over durations from 2 to 32 s than the combination of sound exposure level and VDV or that of sound pressure level and r.m.s. acceleration. Practitioner Summary: The discomfort produced by noise of long duration can be well predicted from a new definition of sound dose level, where the discomfort increases at 1.5 dB per doubling of exposure duration.

  11. Effect of different doses of oxytocin on cardiac electrophysiology and arrhythmias induced by ischemia.

    PubMed

    Houshmand, Fariba; Faghihi, Mahdieh; Imani, Alireza; Kheiri, Soleiman

    2017-01-01

    The onset of acute myocardial ischemia (MI) is accompanied by a rapid increase in electrical instability and often fatal ventricular arrhythmias. This study investigated that whether oxytocin (OT) can modulate ischemia-induced arrhythmias and considered relationships between the severity of arrhythmia and the electrocardiogram parameters during ischemia. OT (0.0001-1 μg) was administrated intraperitoneally 30 min before ischemia. To examine receptor involved, a selective OT-receptor antagonist, atosiban (ATO), was infused 10 min before OT. OT caused a significant and biphasic dose-dependent reduction in ectopic heart activity and arrhythmia score. OT doses that reduced ventricular arrhythmia elicited significant increase in QT interval. OT attenuated the electrophysiological changes associated with MI and there was significant direct relationship between QRS duration and arrhythmia score. ATO treatment reduced beneficial effects of OT on arrhythmogenesis. Nevertheless, ATO failed to alter OT effects on premature ventricular contractions. We assume that the ability of OT to modulate the electrical activity of the heart may play an important role in the antiarrhythmic actions of OT.

  12. Effect of different doses of oxytocin on cardiac electrophysiology and arrhythmias induced by ischemia

    PubMed Central

    Houshmand, Fariba; Faghihi, Mahdieh; Imani, Alireza; Kheiri, Soleiman

    2017-01-01

    The onset of acute myocardial ischemia (MI) is accompanied by a rapid increase in electrical instability and often fatal ventricular arrhythmias. This study investigated that whether oxytocin (OT) can modulate ischemia-induced arrhythmias and considered relationships between the severity of arrhythmia and the electrocardiogram parameters during ischemia. OT (0.0001–1 μg) was administrated intraperitoneally 30 min before ischemia. To examine receptor involved, a selective OT-receptor antagonist, atosiban (ATO), was infused 10 min before OT. OT caused a significant and biphasic dose-dependent reduction in ectopic heart activity and arrhythmia score. OT doses that reduced ventricular arrhythmia elicited significant increase in QT interval. OT attenuated the electrophysiological changes associated with MI and there was significant direct relationship between QRS duration and arrhythmia score. ATO treatment reduced beneficial effects of OT on arrhythmogenesis. Nevertheless, ATO failed to alter OT effects on premature ventricular contractions. We assume that the ability of OT to modulate the electrical activity of the heart may play an important role in the antiarrhythmic actions of OT. PMID:29184844

  13. SU-F-T-322: A Comparison of Two Si Detectors for in Vivo Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talarico, O; Krylova, T; Lebedenko, I

    Purpose: To compare two types of semiconductor detectors for in vivo dosimetry by their dependence from various parameters in different conditions. Methods: QED yellow (Sun Nuclear) and EDP (Scanditronix) Si detectors were radiated by a Varian Clinac 2300 ix with 6 and 18 MV energies. 10 cm thickness water equivalent phantom consisted of 30×30 cm{sup 2} squared plates was used for experiments. Dose dependencies for different beam angles (0 – 180°), field size (3–40 cm), dose (50 – 300 MU), and dose rates (50 – 300 MU/min) were obtained and calibrated with Standard Farmer chamber (PTW). Results: Reproducibility, linearity, dosemore » rate, angular dependence, and field size dependence were obtained for QED and EDP. They show no dose-rate dependence in available clinical dose rate range (100–600 MU/min). Both diodes have linear dependence with increasing the dose. Therefore even in case of high radiation therapy (including total body irradiation) it is not necessary to apply an additional correction during in vivo dosimetry. The diodes have different behavior for angular and field size dependencies. QED diode showed that dose value is stable for beam angles from 0 to 60°, for 60–180° correction factor has to be applied for each beam angle during in vivo measurements. For EDP diode dose value is sensitive to beam angle in whole range of angles. Conclusion: The study shows that QED diode is more suitable for in vivo dosimetry due to dose value independence from incident beam angle in the range 0–60°. There is no need in correction factors for increasing of dose and dose rate for both diodes. The next step will be to carry out measurements in non-standard conditions of total body irradiation. After this modeling of these experiments with Monte Carlo simulation for comparison calculated and obtained data is planned.« less

  14. The antagonistic effects of atipamezole and yohimbine on stress-related neurohormonal and metabolic responses induced by medetomidine in dogs

    PubMed Central

    Ambrisko, T. D.; Hikasa, Y.

    2003-01-01

    This study aimed to compare the antagonistic effects of atipamezole (40, 120, and 320 μg/kg, IM), yohimbine (110 μg/kg, IM), and saline on neurohormonal and metabolic responses induced by medetomidine (20 μg/kg, IM). Five beagle dogs were used in each of the 5 experimental groups in randomized order. Blood samples were taken for 6 h. Medetomidine significantly decreased norepinephrine, epinephrine, insulin, and nonesterified fatty acid levels, and increased plasma glucose levels. Both atipamezole and yohimbine antagonized these effects. The reversal effect of atipamezole was dose-dependency, except on epinephrine. Yohimbine caused prolonged increases in plasma norepinephrine and insulin levels compared to atipamezole, possibly because of its longer half-life elimination. Only yohimbine increased the cortisol levels. Neither glucagon nor lactate levels changed significantly. Based on these findings, when medetomidine-induced sedation is antagonized in dogs, we recommend using atipamezole IM, from 2- to 6-fold the dose of medetomidine, unless otherwise indicated. PMID:12528832

  15. Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity

    PubMed Central

    Seo, Ji Yeon; Lim, Soon Sung; Park, Jia; Lim, Ji-Sun; Kim, Hyo Jung; Kang, Hui Jung; Yoon Park, Jung Han

    2010-01-01

    Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl4 treatment to the control level. Hepatic injury induced by CCl4 was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl4. PMID:20461196

  16. Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity.

    PubMed

    Seo, Ji Yeon; Lim, Soon Sung; Park, Jia; Lim, Ji-Sun; Kim, Hyo Jung; Kang, Hui Jung; Yoon Park, Jung Han; Kim, Jong-Sang

    2010-04-01

    Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl(4) treatment to the control level. Hepatic injury induced by CCl(4) was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl(4).

  17. Efficacy of PLD-118, a Novel Inhibitor of Candida Isoleucyl-tRNA Synthetase, against Experimental Oropharyngeal and Esophageal Candidiasis Caused by Fluconazole-Resistant C. albicans

    PubMed Central

    Petraitis, Vidmantas; Petraitiene, Ruta; Kelaher, Amy M.; Sarafandi, Alia A.; Sein, Tin; Mickiene, Diana; Bacher, John; Groll, Andreas H.; Walsh, Thomas J.

    2004-01-01

    PLD-118, formerly BAY 10-8888, is a synthetic antifungal derivative of the naturally occurring β-amino acid cispentacin. We studied the activity of PLD-118 in escalating dosages against experimental oropharyngeal and esophageal candidiasis (OPEC) caused by fluconazole (FLC)-resistant Candida albicans in immunocompromised rabbits. Infection was established by fluconazole-resistant (MIC > 64 μg/ml) clinical isolates from patients with refractory esophageal candidiasis. Antifungal therapy was administered for 7 days. Study groups consisted of untreated controls; animals receiving PLD-118 at 4, 10, 25, or 50 mg/kg of body weight/day via intravenous (i.v.) twice daily (BID) injections; animals receiving FLC at 2 mg/kg/day via i.v. BID injections; and animals receiving desoxycholate amphotericin B (DAMB) i.v. at 0.5 mg/kg/day. PLD-118- and DAMB-treated animals showed a significant dosage-dependent clearance of C. albicans from the tongue, oropharynx, and esophagus in comparison to untreated controls (P ≤ 0.05, P ≤ 0.01, P ≤ 0.001, respectively), while FLC had no significant activity. PLD-118 demonstrated nonlinear plasma pharmacokinetics across the investigated dosage range, as was evident from a dose-dependent increase in plasma clearance and a dose-dependent decrease in the area under the plasma concentration-time curve. The biochemical safety profile was similar to that of FLC. In summary, PLD-118 demonstrated dosage-dependent antifungal activity and nonlinear plasma pharmacokinetics in treatment of experimental FLC-resistant oropharyngeal and esophageal candidiasis. PMID:15388459

  18. Efficacy of PLD-118, a novel inhibitor of candida isoleucyl-tRNA synthetase, against experimental oropharyngeal and esophageal candidiasis caused by fluconazole-resistant C. albicans.

    PubMed

    Petraitis, Vidmantas; Petraitiene, Ruta; Kelaher, Amy M; Sarafandi, Alia A; Sein, Tin; Mickiene, Diana; Bacher, John; Groll, Andreas H; Walsh, Thomas J

    2004-10-01

    PLD-118, formerly BAY 10-8888, is a synthetic antifungal derivative of the naturally occurring beta-amino acid cispentacin. We studied the activity of PLD-118 in escalating dosages against experimental oropharyngeal and esophageal candidiasis (OPEC) caused by fluconazole (FLC)-resistant Candida albicans in immunocompromised rabbits. Infection was established by fluconazole-resistant (MIC > 64 microg/ml) clinical isolates from patients with refractory esophageal candidiasis. Antifungal therapy was administered for 7 days. Study groups consisted of untreated controls; animals receiving PLD-118 at 4, 10, 25, or 50 mg/kg of body weight/day via intravenous (i.v.) twice daily (BID) injections; animals receiving FLC at 2 mg/kg/day via i.v. BID injections; and animals receiving desoxycholate amphotericin B (DAMB) i.v. at 0.5 mg/kg/day. PLD-118- and DAMB-treated animals showed a significant dosage-dependent clearance of C. albicans from the tongue, oropharynx, and esophagus in comparison to untreated controls (P

  19. Olive oil phenolics are dose-dependently absorbed in humans.

    PubMed

    Visioli, F; Galli, C; Bornet, F; Mattei, A; Patelli, R; Galli, G; Caruso, D

    2000-02-25

    Olive oil phenolic constituents have been shown, in vitro, to be endowed with potent biological activities including, but not limited to, an antioxidant action. To date, there is no information on the absorption and disposition of such compounds in humans. We report that olive oil phenolics, namely tyrosol and hydroxytyrosol, are dose-dependently absorbed in humans after ingestion and that they are excreted in the urine as glucuronide conjugates. Furthermore, an increase in the dose of phenolics administered increased the proportion of conjugation with glucuronide.

  20. Evaluation of ameliorative potential of supranutritional selenium on enrofloxacin-induced testicular toxicity.

    PubMed

    Rungsung, Soya; Khan, Adil Mehraj; Sood, Naresh Kumar; Rampal, Satyavan; Singh Saini, Simrat Pal

    2016-05-25

    The study was designed to assess the ameliorative potential of selenium (Se) on enrofloxacin-induced testicular toxicity in rats. There was a significant decrease in body weight and non-significant decrease in mean testicular weight of enrofloxacin treated rats. In enrofloxacin treated rats, total sperm count and viability decreased where as sperm abnormalities increased. Testicular histopathology revealed dose dependent dysregulation of spermatogenesis and presence of necrotic debris in seminiferous tubules which was marginally improved with Se. Enrofloxacin also produced a dose dependent decrease in testosterone level. The activity of testicular antioxidant enzymes decreased where as lipid peroxidation increased in a dose-dependent manner. Se supplementation partially restored oxidative stress and sperm damage and did not affect the plasma concentrations of enrofloxacin or ciprofloxacain. The results indicate that enrofloxacin produces a dose-dependent testicular toxicity in rats that is moderately ameliorated with supranutritional Se. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Superoxide scavenging effects of N-acetylcysteine and vitamin C in subjects with essential hypertension.

    PubMed

    Schneider, Markus P; Delles, Christian; Schmidt, Bernhard M W; Oehmer, Sebastian; Schwarz, Thomas K; Schmieder, Roland E; John, Stefan

    2005-08-01

    It is not known whether the beneficial effects of N-acetylcysteine (NAC) in conditions associated with increased oxidative stress are caused by direct superoxide scavenging. We therefore compared the acute superoxide scavenging efficacy of NAC against vitamin C (VITC) on impaired endothelium-dependent vasodilation in subjects with essential hypertension. In a cross-over randomized study, the effects of intra-arterial administration of either NAC (48 mg/min) or VITC (18 mg/min) were examined in 15 subjects with essential hypertension and in 15 normotensive control subjects. Both endothelium-dependent and endothelium-independent vasodilation were determined as forearm blood flow (FBF) response to the intra-arterial administration of acetylcholine (Ach) and sodium nitroprusside (NP) in doses of 12 and 48 mug/min and 3.2 and 12.8 mug/min, respectively. Subjects with essential hypertension had impaired responses to both doses of Ach (Delta% FBF to higher dose of Ach: 325 +/- 146 in subjects with essential hypertension v 540 +/- 199 in control subjects; P = .02) and an impaired response to the higher dose of NP (330 +/- 108 v 500 +/- 199; P = .03). The intra-arterial administration of NAC had no effect on these responses (higher dose of Ach: 325 +/- 146 without v 338 +/- 112 with NAC, NS). In contrast, intra-arterial VITC improved both the response to Ach (320 +/- 132 without v 400 +/- 185 with VITC, P = .05) and to NP (383 +/- 162 v 447 +/- 170, P = .05). We found that NAC showed no statistically significant effect on either endothelium-dependent or endothelium-independent vasodilation in hypertensive subjects, whereas VITC did. We conclude that NAC is therefore not an effective superoxide scavenger in vivo. Other, nonimmediate effects such as the generation of glutathione may explain the beneficial effects of NAC in conditions associated with oxidative stress.

  2. Modeling effects of moisture content and advection on odor causing VOCs volatilization from stored swine manure.

    PubMed

    Liao, C M; Liang, H M

    2000-05-01

    Two models for evaluating the contents and advection of manure moisture on odor causing volatile organic compounds (VOC-odor) volatilization from stored swine manure were studied for their ability to predict the volatilization rate (indoor air concentration) and cumulative exposure dose: a MJ-I model and a MJ-II model. Both models simulating depletion of source contaminant via volatilization and degradation based on an analytical model adapted from the behavior assessment model of Jury et al. In the MJ-I model, manure moisture movement was negligible, whereas in the MJ-II model, time-dependent indoor air concentrations was a function of constant manure moisture contents and steady-state moisture advection. Predicted indoor air concentrations and inhaled doses for the study VOC-odors of p-cresol, toluene, and p-xylene varied by up to two to three orders of magnitude depending on the manure moisture conditions. The sensitivity analysis of both models suggests that when manure moisture movement exists, simply MJ-I model is inherently not sufficient to represent a more generally volatilization process, which can even become stringent as moisture content increases. The conclusion illustrates how one needs to include a wide variety of manure moisture values in order to fully assess the complex volatilization mechanisms that are present in a real situation.

  3. Effects of polysaccharide peptides from COV-1 strain of Coriolus versicolor on glutathione and glutathione-related enzymes in the mouse.

    PubMed

    Yeung, John H K; Or, Penelope M Y

    2007-06-01

    The effects of polysaccharide peptide (PSP), an immunomodulator isolated from Coriolus versicolor COV-1, on glutathione (GSH) and GSH-related enzymes was investigated in C57 mouse. Administration of PSP (1-4 micromole/kg, i.p.) produced a transient, dose-dependent depletion (10-37%) of hepatic GSH, with no effect on serum glutamic-pyruvic transaminase (SGPT) activity. Blood GSH was depleted (6-25%) at 3 h, followed by a rebound increase above the control GSH level (20%) at 18 h. The GSSG/GSH ratio, a measure of oxidative stress, was increased 3 h after PSP treatment but returned to normal levels at 24 h. Sub-chronic treatment of PSP (1-4 micromole/kg/day, i.p.) for seven days did not produce any significant changes in hepatic GSH levels and the GSSG/GSH ratio when measured 24 h after the final dose of PSP. PSP had little effect on glutathione transferase (GST), glutathione reductase (GSSG reductase) and glutathione peroxidase (GPX) activities in the liver. However, a dose-dependent increase in blood GPX activity (30-48%) was observed at 3h, which coincided with the increase in the GSSG/GSH ratio. The increase in blood GPX activity may be a responsive measure to deal with the transient oxidative stress induced by PSP treatment. The results showed that PSP only caused a transient perturbation on hepatic glutathione without affecting the GSH-related enzymes such as GST, GSSG reductase and GPX. The observed changes in blood GSH simply reflected the intra-organ translocation of glutathione, as the glutathione-related enzymes were not significantly affected by PSP treatment.

  4. Exposure to 17α-ethynylestradiol causes dose and temporally dependent changes in intersex, females and vitellogenin production in the Sydney rock oyster.

    PubMed

    Andrew, M N; O'Connor, W A; Dunstan, R H; Macfarlane, G R

    2010-11-01

    Although mounting evidence suggests exposure to estrogenic contaminants increases vitellogenin production in molluscs, demonstration of dose-response relationships and knowledge of the temporal nature of the vitellogenin response with continual exposure is currently lacking for biomarker utility. To address this knowledge gap, adult Sydney rock oysters, Saccostrea glomerata, were exposed to a range of environmentally relevant concentrations of 17α-ethynylestradiol (EE2) (0, 6.25, 12.5, 25 or 50 ng/l) in seawater under laboratory conditions. Vitellogenin induction and gonadal development was assessed following 4, 21 and 49 days exposure to EE2. Vitellogenin was found to increase in a dose dependent manner with EE2 exposure for females (4 and 49 days) and males (4 and 21 days). Histological examination of gonads revealed a number of individuals exhibited intersex (ovotestis) in 50 ng/l EE2 (after 21 days) and in 6.25 and 12.5 ng/l EE2 (after 49 days). Furthermore, a significant shift towards females was observed following 49 days exposure at 50 ng/l EE2 suggesting estrogenic exposure is capable of facilitating a progression for protandric males from male-intersex-female gametal status. Increases in female vitellogenin (4 days) were predictive of later increases in female developmental stages at 21 days and increases in oocyte area following 49 days. Male vitellogenin (4 days) was predictive of decreased male percentages and lower male developmental stages at 49 days. Vitellogenin in S. glomerata is a predictive biomarker of estrogenic exposure and effect if sampled soon after exposure and at the commencement of a gonadal development cycle.

  5. Balancing Risk and Reward: A Rat Model of Risky Decision-Making

    PubMed Central

    Simon, Nicholas W.; Gilbert, Ryan J.; Mayse, Jeffrey D.; Bizon, Jennifer L.; Setlow, Barry

    2009-01-01

    We developed a behavioral task in rats to assess the influence of risk of punishment on decision-making. Male Long-Evans rats were given choices between pressing a lever to obtain a small, “safe” food reward and a large food reward associated with risk of punishment (footshock). Each test session consisted of 5 blocks of 10 choice trials, with punishment risk increasing with each consecutive block (0, 25, 50, 75, 100%). Preference for the large, “risky” reward declined with both increased probability and increased magnitude of punishment, and reward choice was not affected by the level of satiation or the order of risk presentation. Performance in this risky decision-making task was correlated with the degree to which the rats discounted the value of probabilistic rewards, but not delayed rewards. Finally, the acute effects of different doses of amphetamine and cocaine on risky decision-making were assessed. Systemic amphetamine administration caused a dose-dependent decrease in choice of the large risky reward (i.e. – it made rats more risk-averse). Cocaine did not cause a shift in reward choice, but instead impaired rats’ sensitivity to changes in punishment risk. These results should prove useful for investigating neuropsychiatric disorders in which risk taking is a prominent feature, such as attention deficit/hyperactivity disorder and addiction. PMID:19440192

  6. Balancing risk and reward: a rat model of risky decision making.

    PubMed

    Simon, Nicholas W; Gilbert, Ryan J; Mayse, Jeffrey D; Bizon, Jennifer L; Setlow, Barry

    2009-09-01

    We developed a behavioral task in rats to assess the influence of risk of punishment on decision making. Male Long-Evans rats were given choices between pressing a lever to obtain a small, 'safe' food reward and a large food reward associated with risk of punishment (footshock). Each test session consisted of 5 blocks of 10 choice trials, with punishment risk increasing with each consecutive block (0, 25, 50, 75, 100%). Preference for the large, 'risky' reward declined with both increased probability and increased magnitude of punishment, and reward choice was not affected by the level of satiation or the order of risk presentation. Performance in this risky decision-making task was correlated with the degree to which the rats discounted the value of probabilistic rewards, but not delayed rewards. Finally, the acute effects of different doses of amphetamine and cocaine on risky decision making were assessed. Systemic amphetamine administration caused a dose-dependent decrease in choice of the large risky reward (ie, it made rats more risk averse). Cocaine did not cause a shift in reward choice, but instead impaired the rats' sensitivity to changes in punishment risk. These results should prove useful for investigating neuropsychiatric disorders in which risk taking is a prominent feature, such as attention deficit/hyperactivity disorder and addiction.

  7. Vinpocetine and piracetam exert antinociceptive effect in visceral pain model in mice.

    PubMed

    Abdel Salam, Omar M E

    2006-01-01

    The effect of vinpocetine or piracetam on thermal and visceral pain was studied in mice. In the hot plate test, vinpocetine (0.9 and 1.8 mg/kg), but not piracetam, produced a reduction in nociceptive response. Vinpocetine (0.45-1.8 mg/kg, ip) or piracetam (75-300 mg/kg, ip) caused dose-dependent inhibition of the abdominal constrictions evoked by ip injection of acetic acid. The effect of vinpocetine or piracetam was markedly potentiated by co-administration of propranolol, guanethidine, atropine, naloxone, yohimbine or prazosin. The marked potentiation of antinociception occurred upon a co-administration of vinpocetine and baclofen (5 or 10 mg/kg). In contrast, piracetam antagonized antinociception caused by the low (5 mg/kg), but not the high (10 mg/kg) dose of baclofen. The antinociception caused by vinpocetine was reduced by sulpiride; while that of piracetam was enhanced by haloperidol or sulpiride. Either vinpocetine or piracetam enhanced antinociception caused by imipramine. The antinociceptive effects of vinpocetine or piracetam were blocked by prior administration of theophylline. Low doses of either vinpocetine or piracetam reduced immobility time in the Porsolt's forced-swimming test. This study indicates that vinpocetine and piracetam possess visceral antinociceptive properties. This effect depends on activation of adenosine receptors. Piracetam in addition inhibits GABA-mediated antinociception.

  8. Proanthocyanidins from Uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil.

    PubMed

    Chen, Xiao-Xin; Leung, George Pak-Heng; Zhang, Zhang-Jin; Xiao, Jian-Bo; Lao, Li-Xing; Feng, Feng; Mak, Judith Choi-Wo; Wang, Ying; Sze, Stephen Cho-Wing; Zhang, Kalin Yan-Bo

    2017-09-01

    Breast cancer is the most frequently diagnosed cancer and cause of cancer death in women worldwide. Current treatments often result in systematic toxicity and drug resistance. Combinational use of non-toxic phytochemicals with chemotherapeutic agents to enhance the efficacy and reduce toxicity would be one promising approach. In this study, bioactive proanthocyanidins from Uncaria rhynchophylla (UPAs) were isolated and their anti-breast cancer effects alone and in combination with 5- fluorouracil (5-FU) were investigated in MDA-MB-231 breast cancer cells. The results showed that UPAs significantly inhibited cell viability and migration ability in a dose-dependent manner. Moreover, UPAs induced apoptosis in a dose-dependent manner which was associated with increased cellular reactive oxygen species production, loss of mitochondrial membrane potential, increases of Bax/Bcl-2 ratio and levels of cleaved caspase 3. Treatments of the cells with UPAs resulted in an increase in G2/M cell cycle arrest. Cytotoxic effects of 5-FU against MDA-MB-231 cells were enhanced by UPAs. The combination treatment of UPAs and 5-FU for 48 h elicited a synergistic cytotoxic effect on MDA-MB-231 cells. Altogether, these data suggest that UPAs are potential therapeutic agents for breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evaluation of the Hepato and Nephron-Protective Effect of a Polyherbal Mixture using Wistar Albino Rats

    PubMed Central

    Adebesin, Olumide Adedapo; Okpuzor, Joy

    2014-01-01

    Aim: A polyherbal formulation prepared from a mixture of leaves of Gongronema latifolia, Ocimum gratissimum and Vernonia amygdalina (GOV) was evaluated for hepato-nephro protective properties against acetaminophen-induced toxicity in Wistar albino rats. Materials and Methods: Normal Wistar albino rats were orally treated with different doses of GOV extract (2, 4 and 8 g/kg b. wt), distilled water and some standard hepatoprotective drugs such as Liv 52 and silymarin for 14 days. However, a day prior to the 14th day, 3 g/kg body weight dose of Acetaminophen (APAP) was administered p.o. 1h before GOV and the standard drugs to induce hepatic and renal damage. The normal control was setup which received only distilled water. The serum levels of liver marker enzymes, biochemical analytes, antioxidant enzymes and hematological parameters were monitored. Results: The results showed that pretreatment of experimental animals with a different doses of the polyherbal formulation dose dependently caused a significant (p≤0.05) increase in the levels of most of the measured hematological parameters but significantly (p≤0.05) reduced the levels of MCV and monocytes when compared to the APAP induced toxin control group. Rats pretreated with GOV exhibited significant (p < 0.05) increase in serum levels of ALP, ALT, AST, GGT, LDH, Cholesterol, Triglycerides, Urea and a subsequent decrease in Albumin, Creatine and Total protein when compared to the normal rats. This trend in enzyme and biochemical analytes levels were significantly (p < 0.05) reversed when compared to toxin control group. GOV significantly (p < 0.05) and dose dependently increased the serum, kidney and hepatic CAT, GPx, GSH, GST, SOD and total protein activity in APAP induced damage in rats compared to the toxin control groups. Conclusion: The data from this study suggest that the polyherbal formulation possess hepato and nephron-protective potential against acetaminophen induced hepatotoxicity in rats, thus providing scientific rationale for its use in traditional medicine for the treatment of liver diseases. PMID:25121002

  10. Putrescine as indicator of manganese neurotoxicity: Dose-response study in human SH-SY5Y cells.

    PubMed

    Fernandes, Jolyn; Chandler, Joshua D; Liu, Ken H; Uppal, Karan; Go, Young-Mi; Jones, Dean P

    2018-06-01

    Disrupted polyamine metabolism with elevated putrescine is associated with neuronal dysfunction. Manganese (Mn) is an essential nutrient that causes neurotoxicity in excess, but methods to evaluate biochemical responses to high Mn are limited. No information is available on dose-response effects of Mn on putrescine abundance and related polyamine metabolism. The present research was to test the hypothesis that Mn causes putrescine accumulation over a physiologically adequate to toxic concentration range in a neuronal cell line. We used human SH-SY5Y neuroblastoma cells treated with MnCl 2 under conditions that resulted in cell death or no cell death after 48 h. Putrescine and other metabolites were analyzed by liquid chromatography-ultra high-resolution mass spectrometry. Putrescine-related pathway changes were identified with metabolome-wide association study (MWAS). Results show that Mn caused a dose-dependent increase in putrescine over a non-toxic to toxic concentration range. MWAS of putrescine showed positive correlations with the polyamine metabolite N8-acetylspermidine, methionine-related precursors, and arginine-associated urea cycle metabolites, while putrescine was negatively correlated with γ-aminobutyric acid (GABA)-related and succinate-related metabolites (P < 0.001, FDR < 0.01). These data suggest that measurement of putrescine and correlated metabolites may be useful to study effects of Mn intake in the high adequate to UL range. Copyright © 2018. Published by Elsevier Ltd.

  11. Dietary vitamin A regulates wingless-related MMTV integration site signaling to alter the hair cycle.

    PubMed

    Suo, Liye; Sundberg, John P; Everts, Helen B

    2015-05-01

    Alopecia areata (AA) is an autoimmune hair loss disease caused by a cell-mediated immune attack of the lower portion of the cycling hair follicle. Feeding mice 3-7 times the recommended level of dietary vitamin A accelerated the progression of AA in the graft-induced C3H/HeJ mouse model of AA. In this study, we also found that dietary vitamin A, in a dose dependent manner, activated the hair follicle stem cells (SCs) to induce the development and growth phase of the hair cycle (anagen), which may have made the hair follicle more susceptible to autoimmune attack. Our purpose here is to determine the mechanism by which dietary vitamin A regulates the hair cycle. We found that vitamin A in a dose-dependent manner increased nuclear localized beta-catenin (CTNNB1; a marker of canonical wingless-type Mouse Mammary Tumor Virus integration site family (WNT) signaling) and levels of WNT7A within the hair follicle bulge in these C3H/HeJ mice. These findings suggest that feeding mice high levels of dietary vitamin A increases WNT signaling to activate hair follicle SCs. © 2014 by the Society for Experimental Biology and Medicine.

  12. Agmatine attenuates stress- and lipopolysaccharide-induced fever in rats

    PubMed Central

    Aricioglu, Feyza; Regunathan, Soundar

    2010-01-01

    Physiological stress evokes a number of responses, including a rise in body temperature, which has been suggested to be the result of an elevation in the thermoregulatory set point. This response seems to share similar mechanisms with infectious fever. The aim of the present study was to investigate the effect of agmatine on different models of stressors [(restraint and lipopolysaccaride (LPS)] on body temperature. Rats were either restrained for 4 h or injected with LPS, both of these stressors caused an increase in body temperature. While agmatine itself had no effect on body temperature, treatment with agmatine (20, 40, 80 mg/kg intraperitoneally) dose dependently inhibited stress- and LPS-induced hyperthermia. When agmatine (80 mg/kg) was administered 30 min later than LPS (500 μg/kg) it also inhibited LPS-induced hyperthermia although the effect became significant only at later time points and lower maximal response compared to simultaneous administration. To determine if the decrease in body temperature is associated with an anti-inflammatory effect of agmatine, the nitrite/nitrate levels in plasma was measured. Agmatine treatment inhibited LPS-induced production of nitrates dose dependently. As an endogenous molecule, agmatine has the capacity to inhibit stress- and LPS-induced increases in body temperature. PMID:15936786

  13. Cytotoxicity and Genotoxicity of Cypermethrin in Hepatocarcinoma Cells: A Dose- and Time-Dependent Study

    PubMed Central

    AlKahtane, Abdullah A.; Alarifi, Saud; Al-Qahtani, Ahmed A.; Ali, Daoud; Alomar, Suliman Y.; Aleissia, Mohammed S.; Alkahtani, Saad

    2018-01-01

    Most of the agricultural workers are potentially exposed to pesticides through different routes. Inhalation exposures may result in numerous diseases that can adversely affect an individual’s health and capacity to perform at work. The aim of this study was to determine the cytotoxic potential of cypermethrin pesticide on cultured human hepatocarcinoma (HepG2) cells. The HepG2 cells were exposed to cypermethrin (0, 5, 15, 40 ng/mL) for 24 and 48 hours. We observed that cypermethrin caused cell death of HepG2 cells using 3-(4, 5-dimethylthiozolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase tests. Furthermore, cypermethrin reduced HepG2 cells viability in a time and dose dependent basis, that was probably mediated through the induction of reactive oxygen species (ROS) and apoptosis. An increase in ROS generation with a concomitant increase in expression of the proapoptotic protein Bcl-2 and cytochrome c and decrease in the antiapoptosis protein Bax suggested that a mitochondria-mediated pathway was involved in cypermethrin-induced apoptosis. These findings provide insights into the underlying mechanisms involved in cytotoxicity of cypermethrin in HepG2 cells. PMID:29686591

  14. Cytotoxicity and Genotoxicity of Cypermethrin in Hepatocarcinoma Cells: A Dose- and Time-Dependent Study.

    PubMed

    AlKahtane, Abdullah A; Alarifi, Saud; Al-Qahtani, Ahmed A; Ali, Daoud; Alomar, Suliman Y; Aleissia, Mohammed S; Alkahtani, Saad

    2018-01-01

    Most of the agricultural workers are potentially exposed to pesticides through different routes. Inhalation exposures may result in numerous diseases that can adversely affect an individual's health and capacity to perform at work. The aim of this study was to determine the cytotoxic potential of cypermethrin pesticide on cultured human hepatocarcinoma (HepG2) cells. The HepG2 cells were exposed to cypermethrin (0, 5, 15, 40 ng/mL) for 24 and 48 hours. We observed that cypermethrin caused cell death of HepG2 cells using 3-(4, 5-dimethylthiozolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase tests. Furthermore, cypermethrin reduced HepG2 cells viability in a time and dose dependent basis, that was probably mediated through the induction of reactive oxygen species (ROS) and apoptosis. An increase in ROS generation with a concomitant increase in expression of the proapoptotic protein Bcl-2 and cytochrome c and decrease in the antiapoptosis protein Bax suggested that a mitochondria-mediated pathway was involved in cypermethrin-induced apoptosis. These findings provide insights into the underlying mechanisms involved in cytotoxicity of cypermethrin in HepG2 cells.

  15. Site-specific differences of insulin action in adipose tissue derived from normal prepubertal children.

    PubMed

    Grohmann, Malcolm; Stewart, Claire; Welsh, Gavin; Hunt, Linda; Tavaré, Jeremy; Holly, Jeff; Shield, Julian; Sabin, Matt; Crowne, Elizabeth

    2005-08-15

    Body fat distribution determines obesity-related morbidity in adults but little is known of the aetiology or pathophysiology in children. This study investigates differences in insulin-mediated metabolism in primary cell cultures of subcutaneous and visceral preadipocytes derived from prepubertal children. The impact of differentiation and responses to TNFalpha exposure was also investigated. Proliferation rates were greater in subcutaneous versus visceral preadipocytes (41 h3 versus 69 h4; P=0.008). Insulin caused a dose-dependent increase in GSK-3 phosphorylation and an increase in MAPK phosphorylation over time, with increased sensitivity in subcutaneous preadipocytes. Post-differentiation, dose-dependent increases in GSK-3 phosphorylation were maintained, while MAPK phosphorylation was identical in both subtypes. No changes were observed in insulin receptor abundance pre-/post-differentiation. GLUT4 abundance was significantly increased in visceral versus subcutaneous adipocytes by 76(4)%; P=0.03), coincidental with increased insulin-stimulated 2-deoxy-glucose transport (+150(26)% versus +79(10)%; P=0.014) and further elevated by acute exposure to TNFalpha (+230(52)%; P=0.019 versus +123(24)%; P=0.025, respectively). TNFalpha also significantly increased basal glucose transport rates (+44(14)%; P=0.006 versus +34(11)%; P=0.007) and GLUT1 localisation to the plasma membrane. These data establish site-specific differences in subcutaneous and visceral fat cells from children. Responses to insulin varied with differentiation and TNFalpha exposure in the two depots, consistent with parallel changes in GLUT1/4 abundance and localisation.

  16. Membrane of Candida albicans as a target of berberine.

    PubMed

    Zorić, Nataša; Kosalec, Ivan; Tomić, Siniša; Bobnjarić, Ivan; Jug, Mario; Vlainić, Toni; Vlainić, Josipa

    2017-05-17

    We investigated the mechanisms of anti-Candida action of isoquinoline alkaloid berberine, active constituent of medically important plants of Barberry species. The effects on membrane, morphological transition, synthesis of ergosterol and the consequent changes in membrane permeability have been studied. Polarization and lipid peroxidation level of the membrane following berberine treatment have been addressed. Minimal inhibitory concentration (MIC) of berberine against C. albicans was 17.75 μg/mL. Cytotoxic effect of berberine was concentration dependent, and in sub-MIC concentrations inhibit morphological transition of C. albicans cells to its filamentous form. Results showed that berberine affects synthesis of membrane ergosterol dose-dependently and induces increased membrane permeability causing loss of intracellular material to the outer space (DNA/protein leakage). Berberine also caused membrane depolarization and lipid peroxidation of membrane constituents indicating its direct effect on the membrane. Moreover, ROS levels were also increased following berberine treatment indicating further the possibility of membrane damage. Based on the obtained results it seems that berberine achieves its anti-Candida activity by affecting the cell membrane.

  17. Radiotherapy Dose Perturbation of Esophageal Stents Examined in an Experimental Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atwood, Todd F.; Hsu, Annie; Ogara, Maydeen M.

    2012-04-01

    Purpose: To investigate the radiotherapy dose perturbations caused by esophageal stents in patients undergoing external beam treatments for esophageal cancer. Methods and Materials: Four esophageal stents were examined (three metallic stents: WallFlex, Ultraflex, and Alveolus; one nonmetallic stent with limited radiopaque markers for visualization: Polyflex). All experiments were performed in a liquid water phantom with a custom acrylic stent holder. Radiochromic film was used to measure the dose distributions adjacent to the stents at locations proximal and distal to the radiation source. The stents were placed in an air-filled cavity to simulate the esophagus. Treatment plans were created and deliveredmore » for photon energies of 6 and 15 MV, and data analysis was performed on uniform regions of interest, according to the size and geometric placement of the films, to quantify the dose perturbations. Results: The three metallic stents produced the largest dose perturbations with distinct patterns of 'hot' spots (increased dose) measured proximal to the radiation source (up to 15.4%) and both 'cold' (decreased dose) and hot spots measured distal to the radiation source (range, -6.1%-5.8%). The polymeric Polyflex stent produced similar dose perturbations when the radiopaque markers were examined (range, -7.6%-15.4%). However, when the radiopaque markers were excluded from the analysis, the Polyflex stent produced significantly smaller dose perturbations, with maximum hot spots of 7.3% and cold spots of -3.2%. Conclusions: The dose perturbations caused by esophageal stents during the treatment of esophageal cancer using external beam radiotherapy should be understood. These perturbations will result in hot and cold spots in the esophageal mucosa, with varying magnitudes depending on the stent. The nonmetallic Polyflex stent appears to be the most suitable for patients undergoing radiotherapy, but further studies are necessary to determine the clinical significance of the dose perturbations.« less

  18. Radiotherapy dose perturbation of esophageal stents examined in an experimental model.

    PubMed

    Atwood, Todd F; Hsu, Annie; Ogara, Maydeen M; Luba, Daniel G; Tamler, Bradley J; Disario, James A; Maxim, Peter G

    2012-04-01

    To investigate the radiotherapy dose perturbations caused by esophageal stents in patients undergoing external beam treatments for esophageal cancer. Four esophageal stents were examined (three metallic stents: WallFlex, Ultraflex, and Alveolus; one nonmetallic stent with limited radiopaque markers for visualization: Polyflex). All experiments were performed in a liquid water phantom with a custom acrylic stent holder. Radiochromic film was used to measure the dose distributions adjacent to the stents at locations proximal and distal to the radiation source. The stents were placed in an air-filled cavity to simulate the esophagus. Treatment plans were created and delivered for photon energies of 6 and 15 MV, and data analysis was performed on uniform regions of interest, according to the size and geometric placement of the films, to quantify the dose perturbations. The three metallic stents produced the largest dose perturbations with distinct patterns of "hot" spots (increased dose) measured proximal to the radiation source (up to 15.4%) and both "cold" (decreased dose) and hot spots measured distal to the radiation source (range, -6.1%-5.8%). The polymeric Polyflex stent produced similar dose perturbations when the radiopaque markers were examined (range, -7.6%-15.4%). However, when the radiopaque markers were excluded from the analysis, the Polyflex stent produced significantly smaller dose perturbations, with maximum hot spots of 7.3% and cold spots of -3.2%. The dose perturbations caused by esophageal stents during the treatment of esophageal cancer using external beam radiotherapy should be understood. These perturbations will result in hot and cold spots in the esophageal mucosa, with varying magnitudes depending on the stent. The nonmetallic Polyflex stent appears to be the most suitable for patients undergoing radiotherapy, but further studies are necessary to determine the clinical significance of the dose perturbations. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Factors affecting infection of corals and larval oysters by Vibrio coralliilyticus.

    PubMed

    Ushijima, Blake; Richards, Gary P; Watson, Michael A; Schubiger, Carla B; Häse, Claudia C

    2018-01-01

    The bacterium Vibrio coralliilyticus can threaten vital reef ecosystems by causing disease in a variety of coral genera, and, for some strains, increases in virulence at elevated water temperatures. In addition, strains of V. coralliilyticus (formally identified as V. tubiashii) have been implicated in mass mortalities of shellfish larvae causing significant economic losses to the shellfish industry. Recently, strain BAA-450, a coral pathogen, was demonstrated to be virulent towards larval Pacific oysters (Crassostrea gigas). However, it is unclear whether other coral-associated V. coralliilyticus strains can cause shellfish mortalities and if infections are influenced by temperature. This study compared dose dependence, temperature impact, and gross pathology of four V. coralliilyticus strains (BAA-450, OCN008, OCN014 and RE98) on larval C. gigas raised at 23°C and 27°C, and evaluated whether select virulence factors are required for shellfish infections as they are for corals. All strains were infectious to larval oysters in a dose-dependent manner with OCN014 being the most pathogenic and BAA-450 being the least. At 27°C, higher larval mortalities (p < 0.05) were observed for all V. coralliilyticus strains, ranging from 38.8-93.7%. Gross pathological changes to the velum and cilia occurred in diseased larvae, but there were no distinguishable differences between oysters exposed to different V. coralliilyticus strains or temperatures. Additionally, in OCN008, the predicted transcriptional regulator ToxR and the outer membrane protein OmpU were important for coral and oyster disease, while mannose sensitive hemagglutinin type IV pili were required only for coral infection. This study demonstrated that multiple coral pathogens can infect oyster larvae in a temperature-dependent manner and identified virulence factors required for infection of both hosts.

  20. RU486 did not exacerbate cytokine release in mice challenged with LPS nor in db/db mice

    PubMed Central

    Yang, Baichun; Trump, Ryan P; Shen, Ying; McNulty, Judi A; Clifton, Lisa G; Stimpson, Stephen A; Lin, Peiyuan; Pahel, Greg L

    2008-01-01

    Background Glucocorticoids down-regulate cytokine synthesis and suppress inflammatory responses. The glucocorticoid receptor (GR) antagonist RU486 may exacerbate the inflammatory response, and concerns over this exacerbation have limited the development and clinical use of GR antagonists in the treatment of diabetes and depression. We investigated the effects of RU486 on serum cytokines in db/db mice and on lipopolysaccharide (LPS)-induced circulating TNFα levels in both normal AKR mice and diet-induced obese (DIO) C57BL/6 mice. Results Chronic treatment of db/db mice with RU486 dose-dependently decreased blood glucose, increased serum corticosterone and ACTH, but did not affect serum MCP-1 and IL-6 levels. LPS dose-dependently increased serum TNFα in both AKR and C57BL/6 DIO mice, along with increased circulating corticosterone and ACTH. Pretreatment of the mice with RU486 dose-dependently suppressed the LPS induced increases in serum TNFα and further increased serum corticosterone. Conclusion RU486 at doses that were efficacious in lowering blood glucose did not exacerbate cytokine release in these three mouse models. RU486 actually suppressed the lower dose LPS-mediated TNFα release, possibly due to the increased release of glucocorticoids. PMID:18474108

  1. Rosuvastatin protects against angiotensin II-induced renal injury in a dose-dependent fashion.

    PubMed

    Park, Joon-Keun; Mervaala, Eero Ma; Muller, Dominik N; Menne, Jan; Fiebeler, Anette; Luft, Friedrich C; Haller, Hermann

    2009-03-01

    We showed earlier that statin treatment ameliorates target-organ injury in a transgenic model of angiotensin (Ang) II-induced hypertension. We now test the hypothesis that rosuvastatin (1, 10, and 50 mg/kg/day) influences leukocyte adhesion and infiltration, prevents induction of inducible nitric oxide synthase (iNOS), and ameliorates target-organ damage in a dose-dependent fashion. We treated rats harboring the human renin and human angiotensinogen genes (dTGR) from week 4 to 8 (n = 20 per group). Untreated dTGR developed severe hypertension, cardiac hypertrophy, and renal damage, with a 100-fold increased albuminuria and focal cortical necrosis. Mortality of untreated dTGR at age 8 weeks was 59%. Rosuvastatin treatment decreased mortality dose-dependently. Blood pressure was not affected. Albuminuria was reduced dose-dependently. Interstitial adhesion molecule (ICAM)-1 expression was markedly reduced by rosuvastatin, as were neutrophil and monocyte infiltration. Immunohistochemistry showed an increased endothelial and medial iNOS expression in small vessels, infiltrating cells, afferent arterioles, and glomeruli of dTGR. Immunoreactivity was stronger in cortex than medulla. Rosuvastatin markedly reduced the iNOS expression in both cortex and medulla. Finally, matrix protein (type IV collagen, fibronectin) expression was also dose- dependently reduced by rosuvastatin. Our findings indicate that rosuvastatin dose- dependently ameliorates angiotensin II-induced-organ damage and almost completely prevents inflammation at the highest dose. The data implicate 3-hydroxy-3-methylglutaryl coenzyme A function in signaling events leading to target-organ damage.

  2. Increase in swimming endurance capacity of mice by capsaicin-induced adrenal catecholamine secretion.

    PubMed

    Kim, K M; Kawada, T; Ishihara, K; Inoue, K; Fushiki, T

    1997-10-01

    Increase in endurance swimming capacity caused by capsaicin (CAP), a pungent component of red pepper, -induced increase of fat metabolism in mice was investigated using an adjustable-current water pool. The mice administered CAP via a stomach tube, showed longer swimming time until exhaustion than the control group of mice, in a dose-dependent manner. The maximal effect was observed at a dose of 10 mg/kg while more than 15 mg/kg had no effect. The increase of endurance was observed only when CAP was administered two hours before swimming. After the administration of CAP, the serum glucose concentration rapidly increased and then decreased within 60 min, while the concentration of serum-free fatty acids gradually increased through 3 hours. The residual glycogen concentration of the gastrocnemius muscle after 30 min of swimming was significantly higher in the CAP-administered mice than in control mice, suggesting that use of the serum free fatty acids spared muscle glycogen consumption. The serum adrenaline concentration significantly increased with twin peaks at 30 min and two hours after administration of CAP. An experiment using adrenalectomized mice was done to confirm that the effect of CAP is due to increased energy metabolism through the secretion of adrenaline from the adrenal gland. The swimming endurance capacity of the adrenalectomized mice was not increased by CAP administration, although adrenaline injection induced a 58% increase in the endurance time. These results suggest that the increase of swimming endurance induced by CAP in mice is caused by an increase in fatty acid utilization due to CAP-induced adrenal catecholamine secretion.

  3. SU-F-I-40: Impact of Scan Length On Patient Dose in Abdomen/pelvis CT Diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, I; Song, J; Kim, K

    Purpose: To analysis the impact of scan length on patient doses in abdomen/pelvis CT diagnosis of each hospital. Methods: Scan length of 7 hospitals from abdomen/pelvis CT diagnosis was surveyed in Korea. Surveyed scan lengths were additional distance above diaphragm and distance below pubic symphysis except for standard scan range between diaphragm and pubic symphysis. Patient dose was estimated for adult male and female according to scan length of each hospital. CT-Expo was used to estimate the patient dose under identical equipment settings (120 kVp, 100 mAs, 10 mm collimation width, etc.) except scan length. Effective dose was calculated bymore » using tissue weighting factor of ICRP 103 recommendation. Increase rate of effective dose was calculated comparing with effective dose of standard scan range Results: Scan lengths of abdomen/pelvis CT diagnosis of each hospital were different. Also effective dose was increased with increasing the scan length. Generally increasing the distance above diaphragm caused increase of effective dose of male and female, but increasing the distance below pubic symphysis caused increase of effective dose of male. Conclusion: We estimated the patient dose according to scan length of each hospital in abdomen/pelvis CT diagnosis. Effective dose was increased by increasing the scan length because dose of organs with high tissue weighting factor such as lung, breast, testis were increased. Scan length is important factor on patient dose in CT diagnosis. If radiologic technologist interested in patient dose, decreasing the unnecessary scan length will decrease the risk of patients from radiation. This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI13C0004).« less

  4. Amphetamine increases activity but not exploration in humans and mice

    PubMed Central

    Minassian, Arpi; Young, Jared W.; Cope, Zackary A.; Henry, Brook L.; Geyer, Mark A.; Perry, William

    2015-01-01

    Rationale Cross-species quantification of physiological behavior enables a better understanding of the biological systems underlying neuropsychiatric diseases such as Bipolar Disorder (BD). Cardinal symptoms of manic BD include increased motor activity and goal-directed behavior, thought to be related to increased catecholamine activity, potentially selective to dopamine homeostatic dysregulation. Objectives The objective of this study was to test whether acute administration of amphetamine, a norepinephrine/dopamine transporter inhibitor and dopamine releaser, would replicate the profile of activity and exploration observed in both humans with manic BD and mouse models of mania. Methods Healthy volunteers with no psychiatric history were randomized to a one-time dose of placebo (n=25), 10 mg d-amphetamine (n=18), or 20 mg amphetamine (n=23). 80 mice were administered one of 4 doses of d-amphetamine or vehicle. Humans and mice were tested in the Behavioral Pattern Monitor (BPM), which quantifies motor activity, exploratory behavior, and spatial patterns of behavior. Results In humans, the 20-mg dose of amphetamine increased motor activity as measured by acceleration without marked effects on exploration or spatial patterns of activity. In mice, amphetamine increased activity, decreased specific exploration, and caused straighter, one-dimensional movements in a dose-dependent manner. Conclusions Consistent with mice, amphetamine increased motoric activity in humans without increasing exploration. Given that BD patients exhibit heightened exploration, these data further emphasize the limitation of amphetamine-induced hyperactivity as a suitable model for BD. Further, these studies highlight the utility of cross-species physiological paradigms in validating biological mechanisms of psychiatric diseases. PMID:26449721

  5. Meth math: modeling temperature responses to methamphetamine.

    PubMed

    Molkov, Yaroslav I; Zaretskaia, Maria V; Zaretsky, Dmitry V

    2014-04-15

    Methamphetamine (Meth) can evoke extreme hyperthermia, which correlates with neurotoxicity and death in laboratory animals and humans. The objective of this study was to uncover the mechanisms of a complex dose dependence of temperature responses to Meth by mathematical modeling of the neuronal circuitry. On the basis of previous studies, we composed an artificial neural network with the core comprising three sequentially connected nodes: excitatory, medullary, and sympathetic preganglionic neuronal (SPN). Meth directly stimulated the excitatory node, an inhibitory drive targeted the medullary node, and, in high doses, an additional excitatory drive affected the SPN node. All model parameters (weights of connections, sensitivities, and time constants) were subject to fitting experimental time series of temperature responses to 1, 3, 5, and 10 mg/kg Meth. Modeling suggested that the temperature response to the lowest dose of Meth, which caused an immediate and short hyperthermia, involves neuronal excitation at a supramedullary level. The delay in response after the intermediate doses of Meth is a result of neuronal inhibition at the medullary level. Finally, the rapid and robust increase in body temperature induced by the highest dose of Meth involves activation of high-dose excitatory drive. The impairment in the inhibitory mechanism can provoke a life-threatening temperature rise and makes it a plausible cause of fatal hyperthermia in Meth users. We expect that studying putative neuronal sites of Meth action and the neuromediators involved in a detailed model of this system may lead to more effective strategies for prevention and treatment of hyperthermia induced by amphetamine-like stimulants.

  6. Meth math: modeling temperature responses to methamphetamine

    PubMed Central

    Molkov, Yaroslav I.; Zaretskaia, Maria V.

    2014-01-01

    Methamphetamine (Meth) can evoke extreme hyperthermia, which correlates with neurotoxicity and death in laboratory animals and humans. The objective of this study was to uncover the mechanisms of a complex dose dependence of temperature responses to Meth by mathematical modeling of the neuronal circuitry. On the basis of previous studies, we composed an artificial neural network with the core comprising three sequentially connected nodes: excitatory, medullary, and sympathetic preganglionic neuronal (SPN). Meth directly stimulated the excitatory node, an inhibitory drive targeted the medullary node, and, in high doses, an additional excitatory drive affected the SPN node. All model parameters (weights of connections, sensitivities, and time constants) were subject to fitting experimental time series of temperature responses to 1, 3, 5, and 10 mg/kg Meth. Modeling suggested that the temperature response to the lowest dose of Meth, which caused an immediate and short hyperthermia, involves neuronal excitation at a supramedullary level. The delay in response after the intermediate doses of Meth is a result of neuronal inhibition at the medullary level. Finally, the rapid and robust increase in body temperature induced by the highest dose of Meth involves activation of high-dose excitatory drive. The impairment in the inhibitory mechanism can provoke a life-threatening temperature rise and makes it a plausible cause of fatal hyperthermia in Meth users. We expect that studying putative neuronal sites of Meth action and the neuromediators involved in a detailed model of this system may lead to more effective strategies for prevention and treatment of hyperthermia induced by amphetamine-like stimulants. PMID:24500434

  7. Monte Carlo simulation and film dosimetry for electron therapy in vicinity of a titanium mesh

    PubMed Central

    Rostampour, Masoumeh; Roayaei, Mahnaz

    2014-01-01

    Titanium (Ti) mesh plates are used as a bone replacement in brain tumor surgeries. In the case of radiotherapy, these plates might interfere with the beam path. The purpose of this study is to evaluate the effect of titanium mesh on the dose distribution of electron fields. Simulations were performed using Monte Carlo BEAMnrc and DOSXYZnrc codes for 6 and 10 MeV electron beams. In Monte Carlo simulation, the shape of the titanium mesh was simulated. The simulated titanium mesh was considered as the one which is used in head and neck surgery with a thickness of 0.055 cm. First, by simulation, the percentage depth dose was obtained while the titanium mesh was present, and these values were then compared with the depth dose of homogeneous phantom with no titanium mesh. In the experimental measurements, the values of depth dose with titanium mesh and without titanium mesh in various depths were measured. The experiments were performed using a RW3 phantom with GAFCHROMIC EBT2 film. The results of experimental measurements were compared with values of depth dose obtained by simulation. In Monte Carlo simulation, as well as experimental measurements, for the voxels immediately beyond the titanium mesh, the change of the dose were evaluated. For this purpose the ratio of the dose for the case with titanium to the case without titanium was calculated as a function of titanium depth. For the voxels before the titanium mesh there was always an increase of the dose up to 13% with respect to the same voxel with no titanium mesh. This is because of the increased back scattering effect of the titanium mesh. The results also showed that for the voxel right beyond the titanium mesh, there is an increased or decreased dose to soft tissues, depending on the depth of the titanium mesh. For the regions before the depth of maximum dose, there is an increase of the dose up to 10% compared to the dose of the same depth in homogeneous phantom. Beyond the depth of maximum dose, there was a 16% decrease in dose. For both 6 and 10 MeV, before the titanium mesh, there was always an increase in dose. If titanium mesh is placed in buildup region, it causes an increase of the dose and could lead to overdose of the adjacent tissue, whereas if titanium mesh is placed beyond the buildup region, it would lead to a decrease in dose compared to the homogenous tissue. PACS number: 87.53.Bn PMID:25207397

  8. Optimization of a murine and human tissue model to recapitulate dermal and pulmonary features of systemic sclerosis

    PubMed Central

    Watanabe, Tomoya; Mlakar, Logan; Heywood, Jonathan; Malaab, Maya; Hoffman, Stanley

    2017-01-01

    The murine bleomycin (BLM)-induced fibrosis model is the most widely used in systemic sclerosis (SSc) studies. It has been reported that systemic delivery of BLM via continuous diffusion from subcutaneously implanted osmotic minipumps can cause fibrosis of the skin, lungs, and other internal organs. However, the mouse strain, dosage of BLM, administration period, and additional important features differ from one report to the next. In this study, by employing the pump model in C57BL/6J mice, we show a dose-dependent increase in lung fibrosis by day 28 and a transient increase in dermal thickness. Dermal thickness and the level of collagen in skin treated with high-dose BLM was significantly higher than in skin treated with low dose BLM or vehicle. A reduction in the thickness of the adipose layer was noted in both high and low dose groups at earlier time points suggesting that the loss of the fat layer precedes the onset of fibrosis. High-dose BLM also induced dermal fibrosis and increased expression of fibrosis-associated genes ex vivo in human skin, thus confirming and extending the in vivo findings, and demonstrating that a human organ culture model can be used to assess the effect of BLM on skin. In summary, our findings suggest that the BLM pump model is an attractive model to analyze the underlying mechanisms of fibrosis and test the efficacy of potential therapies. However, the choice of mouse strain, duration of BLM administration and dose must be carefully considered when using this model. PMID:28651005

  9. Optimization of a murine and human tissue model to recapitulate dermal and pulmonary features of systemic sclerosis.

    PubMed

    Watanabe, Tomoya; Nishimoto, Tetsuya; Mlakar, Logan; Heywood, Jonathan; Malaab, Maya; Hoffman, Stanley; Feghali-Bostwick, Carol

    2017-01-01

    The murine bleomycin (BLM)-induced fibrosis model is the most widely used in systemic sclerosis (SSc) studies. It has been reported that systemic delivery of BLM via continuous diffusion from subcutaneously implanted osmotic minipumps can cause fibrosis of the skin, lungs, and other internal organs. However, the mouse strain, dosage of BLM, administration period, and additional important features differ from one report to the next. In this study, by employing the pump model in C57BL/6J mice, we show a dose-dependent increase in lung fibrosis by day 28 and a transient increase in dermal thickness. Dermal thickness and the level of collagen in skin treated with high-dose BLM was significantly higher than in skin treated with low dose BLM or vehicle. A reduction in the thickness of the adipose layer was noted in both high and low dose groups at earlier time points suggesting that the loss of the fat layer precedes the onset of fibrosis. High-dose BLM also induced dermal fibrosis and increased expression of fibrosis-associated genes ex vivo in human skin, thus confirming and extending the in vivo findings, and demonstrating that a human organ culture model can be used to assess the effect of BLM on skin. In summary, our findings suggest that the BLM pump model is an attractive model to analyze the underlying mechanisms of fibrosis and test the efficacy of potential therapies. However, the choice of mouse strain, duration of BLM administration and dose must be carefully considered when using this model.

  10. Acute high-dose lead exposure from beverage contaminated by traditional Mexican pottery.

    PubMed

    Matte, T D; Proops, D; Palazuelos, E; Graef, J; Hernandez Avila, M

    1994-10-15

    Screening and follow-up blood lead measurements in a 7-year-old child of a US Embassy official in Mexico City revealed an increase in blood lead concentration from 1.10 to 4.60 mumol/L in less than 4 weeks. The cause was traced to fruit punch contaminated with lead leached from traditional ceramic pottery urns. Consumption of the contaminated punch at a picnic was associated with a 20% increase in blood lead concentrations among embassy staff and dependants who were tested 6 weeks after the exposure. This episode highlights the continued health risk, even from brief exposure, posed by traditional pottery in Mexico.

  11. Evaluation of the dependence of the exposure dose on the attenuation correction in brain PET/CT scans using 18F-FDG

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Jin; Jeong, Moon-Taeg; Jang, Seong-Joo; Choi, Nam-Gil; Han, Jae-Bok; Yang, Nam-Hee; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Yun-Jong; Ryu, Young-Hwan; Choi, Sung-Hyun; Seong, Kyeong-Jeong

    2014-01-01

    This study examined whether scanning could be performed with minimum dose and minimum exposure to the patient after an attenuation correction. A Hoffman 3D Brain Phantom was used in BIO_40 and D_690 PET/CT scanners, and the CT dose for the equipment was classified as a low dose (minimum dose), medium dose (general dose for scanning) and high dose (dose with use of contrast medium) before obtaining the image at a fixed kilo-voltage-peak (kVp) and milliampere (mA) that were adjusted gradually in 17-20 stages. A PET image was then obtained to perform an attenuation correction based on an attenuation map before analyzing the dose difference. Depending on tube current in the range of 33-190 milliampere-second (mAs) when BIO_40 was used, a significant difference in the effective dose was observed between the minimum and the maximum mAs (p < 0.05). According to a Scheffe post-hoc test, the ratio of the minimum to the maximum of the effective dose was increased by approximately 5.26-fold. Depending on the change in the tube current in the range of 10-200 mA when D_690 was used, a significant difference in the effective dose was observed between the minimum and the maximum of mA (p < 0.05). The Scheffe posthoc test revealed a 20.5-fold difference. In conclusion, because effective exposure dose increases with increasing operating current, it is possible to reduce the exposure limit in a brain scan can be reduced if the CT dose can be minimized for a transmission scan.

  12. DNA adducts and liver DNA replication in rats during chronic exposure to N-nitrosodimethylamine (NDMA) and their relationships to the dose-dependence of NDMA hepatocarcinogenesis.

    PubMed

    Souliotis, Vassilis L; Henneman, John R; Reed, Carl D; Chhabra, Saranjit K; Diwan, Bhalchandra A; Anderson, Lucy M; Kyrtopoulos, Soterios A

    2002-03-20

    Exposure of rats to the hepatocarcinogen N-nitrosodimethylamine (NDMA) (0.2-2.64 ppm in the drinking water) for up to 180 days resulted in rapid accumulation of N7- and O6-methylguanine in liver and white blood cell DNA, maximum adduct levels being reached within 1-7 days, depending on the dose. The levels of both adducts remained constant up to treatment day 28, subsequently declining slowly to about 40% of maximal levels for the liver and 60% for white blood cells by day 180. In order to elucidate the role of DNA replication in NDMA hepatocarcinogenesis, changes in liver cell labeling index (LI) were also measured on treatment days 21, 120 and 180. Although the time- and dose-dependence of the observed effects were complex, a clear trend towards increased rates of hepatocyte LI, as indicated by BrdU incorporation, with increasing NDMA doses was evident, particularly above 1 ppm, a concentration above which NDMA hepatocarcinogenicity is known to increase sharply. In contrast, no increase in Kupffer cell DNA replication was found at any of the doses employed, in accordance with the low susceptibility of these cells to NDMA-induced carcinogenesis. No significant increase in the occurrence of necrotic or apoptotic cells was noted under the treatment conditions employed. These results suggest that, in addition to the accumulation of DNA damage, alterations in hepatocyte DNA replication during the chronic NDMA exposure may influence the dose-dependence of its carcinogenic efficacy.

  13. Retinoic acid receptor alpha drives cell cycle progression and is associated with increased sensitivity to retinoids in T-cell lymphoma.

    PubMed

    Wang, Xueju; Dasari, Surendra; Nowakowski, Grzegorz S; Lazaridis, Konstantinos N; Wieben, Eric D; Kadin, Marshall E; Feldman, Andrew L; Boddicker, Rebecca L

    2017-04-18

    Peripheral T-cell lymphomas (PTCLs) are aggressive non-Hodgkin lymphomas with generally poor outcomes following standard therapy. Few candidate therapeutic targets have been identified to date. Retinoic acid receptor alpha (RARA) is a transcription factor that modulates cell growth and differentiation in response to retinoids. While retinoids have been used to treat some cutaneous T-cell lymphomas (CTCLs), their mechanism of action and the role of RARA in CTCL and other mature T-cell lymphomas remain poorly understood. After identifying a PTCL with a RARAR394Q mutation, we sought to characterize the role of RARA in T-cell lymphoma cells. Overexpressing wild-type RARA or RARAR394Q significantly increased cell growth in RARAlow cell lines, while RARA knockdown induced G1 arrest and decreased expression of cyclin-dependent kinases CDK2/4/6 in RARAhigh cells. The retinoids, AM80 (tamibarotene) and all-trans retinoic acid, caused dose-dependent growth inhibition, G1 arrest, and CDK2/4/6 down-regulation. Genes down-regulated in transcriptome data were enriched for cell cycle and G1-S transition. Finally, RARA overexpression augmented chemosensitivity to retinoids. In conclusion, RARA drives cyclin-dependent kinase expression, G1-S transition, and cell growth in T-cell lymphoma. Synthetic retinoids inhibit these functions in a dose-dependent fashion and are most effective in cells with high RARA expression, indicating RARA may represent a therapeutic target in some PTCLs.

  14. The thermoregulatory effects of noradrenaline, serotonin and carbachol injected into the rat spinal subarachnoid space.

    PubMed

    Lopachin, R M; Rudy, T A

    1982-12-01

    1. We have examined the effects on thermoregulation in the rat of noradrenaline bitartrate (NA), 5-hydroxytryptamine hydrochloride (5-HT) and carbamylcholine chloride (CCh) injected into the lumbar spinal subarachnoid space via a chronic indwelling catheter.2. Intrathecal injections of the monoamines and CCh reproducibly affected thermoregulation, whereas injections of control solutions had no effect.3. Intrathecal injections of NA (0.01-0.30 mumol) produced a dose-dependent hypothermia associated with a decrease in tail skin vasomotor tone. Shivering activity was not depressed during the hypothermia and sometimes increased. Intrathecal administration of the alpha-adrenergic agonist clonidine (0.0175-0.070 mumol) elicited changes in T(c) and T(sk) similar to those induced by intrathecal NA.4. Intrathecal 5-HT (0.030-0.90 mumol) elicited a dose-dependent hyperthermia accompanied by increased tail skin vasomotor tone and increased shivering.5. CCh injected intrathecally (0.001-0.06 mumol) evoked a dose-dependent hyperthermia. During the period when core temperature was rising, tail skin vasomotor tone increased and shivering-like activity was present. Once the maximum core temperature had been reached, tail skin vasodilatation occurred. Vasodilatation persisted until core temperature had returned to normal.6. Intravenous injections of 5-HT (0.30 and 0.90 mumol) or CCh (0.006 and 0.03 mumol) caused no thermoregulatory effect. The effects of these agents injected intrathecally were therefore not due to an action in the periphery.7. Intravenous infusions of NA (0.06 and 0.10 mumol) produced hypothermia and transient tail skin vasodilatation. We suggest that an action at peripheral sites may have contributed to the effects produced by intrathecal injection of this monamine.8. These findings suggest that spinal noradrenergic, serotonergic and cholinergic synapses may be importantly involved in the control of body temperature in the rat. The possible functional roles of these synapses and the putative spinal sites of action of the injected substances are discussed.

  15. Single oral doses of netazepide (YF476), a gastrin receptor antagonist, cause dose-dependent, sustained increases in gastric pH compared with placebo and ranitidine in healthy subjects.

    PubMed

    Boyce, M; David, O; Darwin, K; Mitchell, T; Johnston, A; Warrington, S

    2012-07-01

    Nonclinical studies have shown netazepide (YF476) to be a potent, selective, competitive and orally active gastrin receptor antagonist. To administer to humans for the first time single oral doses of netazepide, to assess their tolerability, safety, pharmacokinetics and effect on 24-h gastric pH. We did two randomised double-blind single-dose studies in healthy subjects. The first (n = 12) was a six-way incomplete crossover pilot study of rising doses of netazepide (range 0.5-100 mg) and placebo. The second (n = 20) was a five-way complete crossover study of netazepide 5, 25 and 100 mg, ranitidine 150 mg and placebo. In both trials we collected frequent blood samples, measured plasma netazepide and calculated pharmacokinetic parameters. In the comparative trial we measured gastric pH continuously for 24 h and compared treatments by percentage time gastric pH ≥4. Netazepide was well tolerated. Median t (max) and t (½) for the 100 mg dose were about 1 and 7 h, respectively, and the pharmacokinetics were dose-proportional. Netazepide and ranitidine each increased gastric pH. Onset of activity was similarly rapid for both. All netazepide doses were more effective than placebo (P ≤ 0.023). Compared with ranitidine, netazepide 5 mg was as effective, and netazepide 25 and 100 mg were much more effective (P ≤ 0.010), over the 24 h after dosing. Activity of ranitidine lasted about 12 h, whereas that of netazepide exceeded 24 h. In human: netazepide is an orally active gastrin antagonist, and gastrin has a major role in controlling gastric acidity. Repeated-dose studies are justified. NCT01538784 and NCT01538797. © 2012 Blackwell Publishing Ltd.

  16. Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms

    NASA Astrophysics Data System (ADS)

    Zacharatou Jarlskog, Christina; Lee, Choonik; Bolch, Wesley E.; Xu, X. George; Paganetti, Harald

    2008-02-01

    Proton beams used for radiotherapy will produce neutrons when interacting with matter. The purpose of this study was to quantify the equivalent dose to tissue due to secondary neutrons in pediatric and adult patients treated by proton therapy for brain lesions. Assessment of the equivalent dose to organs away from the target requires whole-body geometrical information. Furthermore, because the patient geometry depends on age at exposure, age-dependent representations are also needed. We implemented age-dependent phantoms into our proton Monte Carlo dose calculation environment. We considered eight typical radiation fields, two of which had been previously used to treat pediatric patients. The other six fields were additionally considered to allow a systematic study of equivalent doses as a function of field parameters. For all phantoms and all fields, we simulated organ-specific equivalent neutron doses and analyzed for each organ (1) the equivalent dose due to neutrons as a function of distance to the target; (2) the equivalent dose due to neutrons as a function of patient age; (3) the equivalent dose due to neutrons as a function of field parameters; and (4) the ratio of contributions to secondary dose from the treatment head versus the contribution from the patient's body tissues. This work reports organ-specific equivalent neutron doses for up to 48 organs in a patient. We demonstrate quantitatively how organ equivalent doses for adult and pediatric patients vary as a function of patient's age, organ and field parameters. Neutron doses increase with increasing range and modulation width but decrease with field size (as defined by the aperture). We analyzed the ratio of neutron dose contributions from the patient and from the treatment head, and found that neutron-equivalent doses fall off rapidly as a function of distance from the target, in agreement with experimental data. It appears that for the fields used in this study, the neutron dose lateral to the field is smaller than the reported scattered photon doses in a typical intensity-modulated photon treatment. Most importantly, our study shows that neutron doses to specific organs depend considerably on the patient's age and body stature. The younger the patient, the higher the dose deposited due to neutrons. Given the fact that the risk also increases with decreasing patient age, this factor needs to be taken into account when treating pediatric patients of very young ages and/or of small body size. The neutron dose from a course of proton therapy treatment (assuming 70 Gy in 30 fractions) could potentially (depending on patient's age, organ, treatment site and area of CT scan) be equivalent to up to ~30 CT scans.

  17. ADOLESCENT INTERMITTENT ETHANOL EXPOSURE ENHANCES ETHANOL ACTIVATION OF THE NUCLEUS ACCUMBENS WHILE BLUNTING THE PREFRONTAL CORTEX RESPONSES IN ADULT RAT

    PubMed Central

    LIU, W.; CREWS, F. T.

    2016-01-01

    The brain continues to develop through adolescence when excessive alcohol consumption is prevalent in humans. We hypothesized that binge drinking doses of ethanol during adolescence will cause changes in brain ethanol responses that persist into adulthood. To test this hypothesis Wistar rats were treated with an adolescent intermittent ethanol (AIE; 5 g/kg, i.g. 2 days on–2 days off; P25–P54) model of underage drinking followed by 25 days of abstinence during maturation to young adulthood (P80). Using markers of neuronal activation c-Fos, EGR1, and phophorylated extracellar signal regulated kinase (pERK1/2), adult responses to a moderate and binge drinking ethanol challenge, e.g., 2 or 4 g/kg, were determined. Adult rats showed dose dependent increases in neuronal activation markers in multiple brain regions during ethanol challenge. Brain regional responses correlated are consistent with anatomical connections. AIE led to marked decreases in adult ethanol PFC (prefrontal cortex) and blunted responses in the amygdala. Binge drinking doses led to the nucleus accumbens (NAc) activation that correlated with the ventral tegmental area (VTA) activation. In contrast to other brain regions, AIE enhanced the adult NAc response to binge drinking doses. These studies suggest that adolescent alcohol exposure causes long-lasting changes in brain responses to alcohol that persist into adulthood. PMID:25727639

  18. Etanercept prevents decrease of cochlear blood flow dose-dependently caused by tumor necrosis factor alpha.

    PubMed

    Ihler, Friedrich; Sharaf, Kariem; Bertlich, Mattis; Strieth, Sebastian; Reichel, Christoph A; Berghaus, Alexander; Canis, Martin

    2013-07-01

    Tumor necrosis factor alpha (TNF-alpha) is a mediator of inflammation and microcirculation in the cochlea. This study aimed to quantify the effect of a local increase of TNF-alpha and study the effect of its interaction with etanercept on cochlear microcirculation. Cochlear lateral wall vessels were exposed surgically and assessed by intravital microscopy in guinea pigs in vivo. First, 24 animals were randomly distributed into 4 groups of 6 each. Exposed vessels were superfused repeatedly either with 1 of 3 different concentrations of TNF-alpha (5.0, 0.5, and 0.05 ng/mL) or with placebo (0.9% saline solution). Second, 12 animals were randomly distributed into 2 groups of 6 each. Vessels were pretreated with etanercept (1.0 microg/ mL) or placebo (0.9% saline solution), and then treated by repeated superfusion with TNF-alpha (5.0 ng/mL). TNF-alpha was shown to be effective in decreasing cochlear blood flow at a dose of 5.0 ng/mL (p < 0.01, analysis of variance on ranks). Lower concentrations or placebo treatment did not lead to significant changes. After pretreatment with etanercept, TNF-alpha at a dose of 5.0 ng/mL no longer led to a change in cochlear blood flow. The decreasing effect that TNF-alpha has on cochlear blood flow is dose-dependent. Etanercept abrogates this effect.

  19. Nandrolone and stanozolol upregulate aromatase expression and further increase IGF-I-dependent effects on MCF-7 breast cancer cell proliferation.

    PubMed

    Sirianni, Rosa; Capparelli, Claudia; Chimento, Adele; Panza, Salvatore; Catalano, Stefania; Lanzino, Marilena; Pezzi, Vincenzo; Andò, Sebastiano

    2012-11-05

    Several doping agents, such as anabolic androgenic steroids (AAS) and peptide hormones like insulin-like growth factor-I (IGF-I), are employed without considering the potential deleterious effects that they can cause. In addition, androgens are used in postmenopausal women as replacement therapy. However, there are no clear guidelines regarding the optimal therapeutic doses of androgens or long-term safety data. In this study we aimed to determine if two commonly used AAS, nandrolone and stanozolol, alone or in combination with IGF-I, could activate signaling involved in breast cancer cell proliferation. Using a human breast cancer cell line, MCF-7, as an experimental model we found that both nandrolone and stanozolol caused a dose-dependent induction of aromatase expression and, consequently, estradiol production. Moreover, when nandrolone and stanozolol were combined with IGF-I, higher induction in aromatase expression was observed. This increase involved phosphatidylinositol 3-kinase (PI3K)/AKT and phospholipase C (PLC)/protein kinase C (PKC), which are part of IGF-I transductional pathways. Specifically, both AAS were able to activate membrane rapid signaling involving IGF-I receptor, extracellular regulated protein kinases 1/2 (ERK1/2) and AKT, after binding to estrogen receptor (ER), as confirmed by the ability of the ER antagonist ICI182, 780 to block such activation. The estrogenic activity of nandrolone and stanozolol was further confirmed by their capacity to induce the expression of the ER-regulated gene, CCND1 encoding for the cell cycle regulator cyclin D1, which represents a key protein for the control of breast cancer cell proliferation. In fact, when nandrolone and stanozolol were combined with IGF-I, they increased cell proliferation to levels higher than those elicited by the single factors. Taken together these data clearly indicate that the use of high doses of AAS, as occurs in doping practice, may increase the risk of breast cancer. This potential risk is higher when AAS are used in association with IGF-I. To our knowledge this is the first report directly associating AAS with this type of cancer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. HeLa cells response to photodynamic treatment with Radachlorin at various irradiation parameters

    NASA Astrophysics Data System (ADS)

    Belashov, A. V.; Zhikhoreva, A. A.; Belyaeva, T. N.; Kornilova, E. S.; Petrov, N. V.; Salova, A. V.; Semenova, I. V.; Vasyutinskii, O. S.

    2017-07-01

    Measurements of average phase shifts introduced by living HeLa cells to probe wave front were carried out. Variations of this value were monitored in the course of morphological changes caused by photodynamic treatment at various irradiation doses. Observations of changes in living cells were also performed by means of far field optical microscopy and confocal fluorescent microscopy. Quantitative analysis of the data obtained shows that average phase shift introduced by the cells may either increase or decrease depending upon major parameters of the treatment.

  1. Cannabis induced asystole.

    PubMed

    Brancheau, Daniel; Blanco, Jessica; Gholkar, Gunjan; Patel, Brijesh; Machado, Christian

    2016-01-01

    Cannabis or marijuana is the most used recreational, and until recently illegal, drug in the United States. Although cannabis has medicinal use, its consumption has been linked to motor vehicle accidents in dose dependent fashion. Marijuana and other cannabinoids produce a multitude of effects on the human body that may result in these motor vehicle accidents. Some of the effects that marijuana has been known to cause include altered sensorium, diminished reflexes, and increased vagal tone. We present a case of cannabis induced asystole from hypervagotonia. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Synthesis and pharmacological validation of a novel series of non-steroidal FXR agonists.

    PubMed

    Abel, Ulrich; Schlüter, Thomas; Schulz, Andreas; Hambruch, Eva; Steeneck, Christoph; Hornberger, Martin; Hoffmann, Thomas; Perović-Ottstadt, Sanja; Kinzel, Olaf; Burnet, Michael; Deuschle, Ulrich; Kremoser, Claus

    2010-08-15

    To overcome the known liabilities of GW4064 a series of analogs were synthesized where the stilbene double bond is replaced by an oxymethylene or amino-methylene linker connecting a terminal benzoic acid with a substituted heteroaryl in the middle ring position. As a result we discovered compounds with increased potency in vitro that cause dose-dependent reduction of plasma triglycerides and cholesterol in db/db mice down to 2 x 1 mg/kg/day upon oral administration. 2010 Elsevier Ltd. All rights reserved.

  3. Antifungal Efficacy of Caspofungin (MK-0991) in Experimental Pulmonary Aspergillosis in Persistently Neutropenic Rabbits: Pharmacokinetics, Drug Disposition, and Relationship to Galactomannan Antigenemia

    PubMed Central

    Petraitiene, Ruta; Petraitis, Vidmantas; Groll, Andreas H.; Sein, Tin; Schaufele, Robert L.; Francesconi, Andrea; Bacher, John; Avila, Nilo A.; Walsh, Thomas J.

    2002-01-01

    The antifungal efficacy, pharmacokinetics, and safety of caspofungin (CAS) were investigated in the treatment and prophylaxis of invasive pulmonary aspergillosis due to Aspergillus fumigatus in persistently neutropenic rabbits. Antifungal therapy consisted of 1, 3, or 6 mg of CAS/kg of body weight/day (CAS1, CAS3, and CAS6, respectively) or 1 mg of deoxycholate amphotericin B (AMB)/kg/day intravenously for 12 days starting 24 h after endotracheal inoculation. Prophylaxis (CAS1) was initiated 4 days before endotracheal inoculation. Rabbits treated with CAS had significant improvement in survival and reduction in organism-mediated pulmonary injury (OMPI) measured by pulmonary infarct score and total lung weight (P < 0.01). However, animals treated with CAS demonstrated a paradoxical trend toward increased residual fungal burden (log CFU per gram) and increased serum galactomannan antigen index (GMI) despite improved survival. Rabbits receiving prophylactic CAS1 also showed significant improvement in survival and reduction in OMPI (P < 0.01), but there was no effect on residual fungal burden. In vitro tetrazolium salt hyphal damage assays and histologic studies demonstrated that CAS had concentration- and dose-dependent effects on hyphal structural integrity. In parallel with a decline in GMI, AMB significantly reduced the pulmonary tissue burden of A. fumigatus (P ≤ 0.01). The CAS1, CAS3, and CAS6 dose regimens demonstrated dose-proportional exposure and maintained drug levels in plasma above the MIC for the entire 24-h dosing interval at doses that were ≥3 mg/kg/day. As serial galactomannan antigen levels may be used for therapeutic monitoring, one should be aware that profoundly neutropenic patients receiving echinocandins for aspergillosis might have persistent galactomannan antigenemia despite clinical improvement. CAS improved survival, reduced pulmonary injury, and caused dose-dependent hyphal damage but with no reduction in residual fungal burden or galactomannan antigenemia in persistently neutropenic rabbits with invasive pulmonary aspergillosis. PMID:11751105

  4. New insights into mycotoxin mixtures: The toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alassane-Kpembi, Imourana; Université de Toulouse, ENVT, INP, UMR 1331 Toxalim, F-31076 Toulouse; Institut des Sciences Biomédicales Appliquées, Cotonou, Bénin

    Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. DON is often present with other type B trichothecenes such as 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV) and fusarenon-X (FX). Although the cytotoxicity of individual mycotoxins has been widely studied, data on the toxicity of mycotoxin mixtures are limited. The aim of this study was to assess interactions caused by co-exposure to Type B trichothecenes on intestinal epithelial cells. Proliferating Caco-2 cells were exposed to increasing doses of Type B trichothecenes, alone or in binary or ternary mixtures. The MTT test and neutral red uptake,more » respectively linked to mitochondrial and lysosomal functions, were used to measure intestinal epithelial cytotoxicity. The five tested mycotoxins had a dose-dependent effect on proliferating enterocytes and could be classified in increasing order of toxicity: 3-ADON < 15-ADON ≈ DON < NIV ≪ FX. Binary or ternary mixtures also showed a dose-dependent effect. At low concentrations (cytotoxic effect between 10 and 30–40%), mycotoxin combinations were synergistic; however DON–NIV–FX mixture showed antagonism. At higher concentrations (cytotoxic effect around 50%), the combinations had an additive or nearly additive effect. These results indicate that the simultaneous presence of low doses of mycotoxins in food commodities and diet may be more toxic than predicted from the mycotoxins alone. Considering the frequent co-occurrence of trichothecenes in the diet and the concentrations of toxins to which consumers are exposed, this synergy should be taken into account. - Highlights: • We assessed the individual and combined cytotoxicity of five trichothecenes. • The tested concentrations correspond to the French consumer exposure levels. • The type of interaction in combined cytotoxicity varied with the effect level. • Low doses of Type B trichothecenes induced synergistic cytotoxicity. • Ternary combination DON–NIV–FX showed antagonism.« less

  5. NBCe1 expression is required for normal renal ammonia metabolism

    PubMed Central

    Handlogten, Mary E.; Osis, Gunars; Lee, Hyun-Wook; Romero, Michael F.; Verlander, Jill W.

    2015-01-01

    The mechanisms regulating proximal tubule ammonia metabolism are incompletely understood. The present study addressed the role of the proximal tubule basolateral electrogenic Na+-coupled bicarbonate cotransporter (NBCe1; Slc4a4) in renal ammonia metabolism. We used mice with heterozygous and homozygous NBCe1 gene deletion and compared these mice with their wild-type littermates. Because homozygous NBCe1 gene deletion causes 100% mortality before day 25, we studied mice at day 8 (±1 day). Both heterozygous and homozygous gene deletion caused a gene dose-related decrease in serum bicarbonate. The ability to lower urinary pH was intact, and even accentuated, with NBCe1 deletion. However, in contrast to the well-known effect of metabolic acidosis to increase urinary ammonia excretion, NBCe1 deletion caused a gene dose-related decrease in ammonia excretion. There was no identifiable change in proximal tubule structure by light microscopy. Examination of proteins involved in renal ammonia metabolism showed decreased expression of phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase, key enzymes in proximal tubule ammonia generation, and increased expression of glutamine synthetase, which recycles intrarenal ammonia and regenerates glutamine. Expression of key proteins involved in ammonia transport outside of the proximal tubule (rhesus B glycoprotein and rhesus C glycoprotein) was not significantly changed by NBCe1 deletion. We conclude from these findings that NBCe1 expression is necessary for normal proximal tubule ammonia metabolism. PMID:26224717

  6. Subchronic exposure to arsenic through drinking water alters expression of cancer-related genes in rat liver.

    PubMed

    Cui, Xing; Li, Song; Shraim, Amjad; Kobayashi, Yayoi; Hayakawa, Toru; Kanno, Sanae; Yamamoto, Megumi; Hirano, Seishiro

    2004-01-01

    Although arsenic exposure causes liver disease and/or hepatoma, little is known about molecular mechanisms of arsenic-induced liver toxicity or carcinogenesis. We investigated the effects of arsenic on expression of cancer-related genes in a rat liver following subchronic exposure to sodium arsenate (1, 10, 100 ppm in drinking water), by using real-time quantitative RT-PCR and immunohistochemical analyses. Arsenic accumulated in the rat liver dose-dependently and caused hepatic histopathological changes, such as disruption of hepatic cords, sinusoidal dilation, and fatty infiltration. A 1-month exposure to arsenic significantly increased hepatic mRNA levels of cyclin D1 (10 ppm), ILK (1 ppm), and p27(Kip1) (10 ppm), whereas it reduced mRNA levels of PTEN (1 ppm) and beta-catenin (100 ppm). In contrast, a 4-month arsenic exposure showed increased mRNA expression of cyclin D1 (100 ppm), ILK (1 ppm), and p27(Kip1) (1 and 10 ppm), and decreased expression of both PTEN and beta-catenin at all 3 doses. An immunohistochemical study revealed that each protein expression accords closely with each gene expression of mRNA level. In conclusion, subchronic exposure to inorganic arsenate caused pathological changes and altered expression of cyclin D1, p27(Kip1), ILK, PTEN, and beta-catenin in the liver. This implies that arsenic liver toxicity involves disturbances of some cancer-related molecules.

  7. Epigenetic effects of prenatal estradiol-17β exposure on the reproductive system of pigs.

    PubMed

    Kradolfer, David; Flöter, Veronika L; Bick, Jochen T; Fürst, Rainer W; Rode, Kristina; Brehm, Ralph; Henning, Heiko; Waberski, Dagmar; Bauersachs, Stefan; Ulbrich, Susanne E

    2016-07-15

    There is growing evidence that early life exposure to endocrine disrupting chemicals might increase the risk for certain adult onset diseases, in particular reproductive health problems and hormone dependent cancers. Studies in rodents suggest that perinatal exposure to even low doses of estrogenic substances can cause adverse effects, including epigenetic reprogramming of the prostate and increased formation of precancerous lesions. We analyzed the effects of an in utero exposure to the strongest natural estrogen, estradiol-17β, in a pig model. Two different low and one high dose of estradiol-17β (0.05, 10 and 1000 μg/kg body weight/day) were orally applied to gilts during pregnancy and potential effects on the reproductive system of the offspring were analyzed. No significant effects on sperm vitality parameters and testes size were observed in adult boars. However, prenatal exposure to the high dose decreased absolute, but not relative weight of the testes in prepubertal piglets. RNA sequencing revealed significantly regulated genes of the prepubertal prostate, while testes and uteri were not affected. Notably, we found an increased prostate expression of CCDC80 and a decreased ADH1C expression in the low dose treatment groups. BGN and SPARC, two genes associated with prostate tumor progression, were as well more abundant in exposed animals. Strikingly, the gene body DNA methylation level of BGN was accordingly increased in the high dose group. Thus, while only prenatal exposure to a high dose of estrogen altered testes development and local DNA methylation of the prostate, even low dose exposure had significant effects on gene expression in the prostate of prepubertal piglet offspring. The relevance of these distinct, but subtle transcriptional changes following low dose treatment lacking a clear phenotype calls for further long-term investigations. An epigenetic reprogramming of the pig prostate due to prenatal estrogen cannot be neglected. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Role of catalytic iron and oxidative stress in nitrofen-induced congenital diaphragmatic hernia and its amelioration by Saireito (TJ-114).

    PubMed

    Hirako, Shima; Tsuda, Hiroyuki; Ito, Fumiya; Okazaki, Yasumasa; Hirayama, Tasuku; Nagasawa, Hideko; Nakano, Tomoko; Imai, Kenji; Kotani, Tomomi; Kikkawa, Fumitaka; Toyokuni, Shinya

    2017-11-01

    Congenital diaphragmatic hernia (CDH) is a life-threatening neonatal disease that leads to lung hypoplasia and pulmonary hypertension. We recently found that maternal prenatal administration of Saireito (TJ-114) ameliorates fetal CDH in a nitrofen-induced rat model. Here, we studied the role of iron and oxidative stress in neonates of this model and in lung fibroblasts IMR90-SV in association with nitrofen and Saireito. We observed increased immunostaining of 8-hydroxy-2'-deoxyguanosine in the lungs of neonates with CDH, which was ameliorated by maternal Saireito intake. Pulmonary transferrin receptor expression was significantly decreased in both CDH and CDH after Saireito in comparison to normal controls, indicating functional lung immaturity, whereas catalytic Fe(II) and pulmonary DMT1/ferroportin expression remained constant among the three groups. Saireito revealed a dose-dependent scavenging capacity with electron spin resonance spin trapping in vitro against hydroxyl radicals but not against superoxide. Finally, nitrofen revealed dose-dependent cytotoxicity to IMR90-SV cells, accompanied by an increase in oxidative stress, as seen by 5(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and catalytic Fe(II). Saireito ameliorated all of these in IMR90-SV cells. In conclusion, catalytic Fe(II)-dependent oxidative stress by nitrofen may be the pathogenic cause of CDH, and the antioxidative activity of Saireito is at least partially responsible for improving nitrofen-induced CDH.

  9. Role of catalytic iron and oxidative stress in nitrofen-induced congenital diaphragmatic hernia and its amelioration by Saireito (TJ-114)

    PubMed Central

    Hirako, Shima; Tsuda, Hiroyuki; Ito, Fumiya; Okazaki, Yasumasa; Hirayama, Tasuku; Nagasawa, Hideko; Nakano, Tomoko; Imai, Kenji; Kotani, Tomomi; Kikkawa, Fumitaka; Toyokuni, Shinya

    2017-01-01

    Congenital diaphragmatic hernia (CDH) is a life-threatening neonatal disease that leads to lung hypoplasia and pulmonary hypertension. We recently found that maternal prenatal administration of Saireito (TJ-114) ameliorates fetal CDH in a nitrofen-induced rat model. Here, we studied the role of iron and oxidative stress in neonates of this model and in lung fibroblasts IMR90-SV in association with nitrofen and Saireito. We observed increased immunostaining of 8-hydroxy-2'-deoxyguanosine in the lungs of neonates with CDH, which was ameliorated by maternal Saireito intake. Pulmonary transferrin receptor expression was significantly decreased in both CDH and CDH after Saireito in comparison to normal controls, indicating functional lung immaturity, whereas catalytic Fe(II) and pulmonary DMT1/ferroportin expression remained constant among the three groups. Saireito revealed a dose-dependent scavenging capacity with electron spin resonance spin trapping in vitro against hydroxyl radicals but not against superoxide. Finally, nitrofen revealed dose-dependent cytotoxicity to IMR90-SV cells, accompanied by an increase in oxidative stress, as seen by 5(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and catalytic Fe(II). Saireito ameliorated all of these in IMR90-SV cells. In conclusion, catalytic Fe(II)-dependent oxidative stress by nitrofen may be the pathogenic cause of CDH, and the antioxidative activity of Saireito is at least partially responsible for improving nitrofen-induced CDH. PMID:29203958

  10. Subinhibitory Doses of Aminoglycoside Antibiotics Induce Changes in the Phenotype of Mycobacterium abscessus

    PubMed Central

    Tsai, Sheng-Hui; Lai, Hsin-Chih

    2015-01-01

    Subinhibitory doses of antibiotics have been shown to cause changes in bacterial morphology, adherence ability, and resistance to antibiotics. In this study, the effects of subinhibitory doses of aminoglycoside antibiotics on Mycobacterium abscessus were investigated. The treatment of M. abscessus cells with subinhibitory doses of amikacin was found to change their colony from a smooth to a rough morphotype and increase their ability to adhere to a polyvinylchloride plate, aggregate in culture, and resist phagocytosis and killing by macrophages. M. abscessus cells treated with a subinhibitory dose of amikacin also became more potent in Toll-like receptor 2 (TLR-2) stimulation, leading to increased tumor necrosis factor alpha (TNF-α) production by macrophages. The MAB_3508c gene was shown to play a role in mediating these phenotypic changes, as its expression in M. abscessus cells was increased when they were treated with a subinhibitory dose of amikacin. In addition, overexpression of MAB_3508c in M. abscessus cells caused changes similar to those induced by subinhibitory doses of amikacin, including a switch from smooth to rough colony morphology, increased ability to aggregate in liquid culture, decreased motility, and increased resistance to killing by macrophages. These findings suggest the importance of using sufficient doses of antibiotics for the treatment of M. abscessus infections. PMID:26195529

  11. Radiation exposure in the remote period after the Chernobyl accident caused oxidative stress and genetic effects in Scots pine populations

    NASA Astrophysics Data System (ADS)

    Volkova, Polina Yu.; Geras'Kin, Stanislav A.; Kazakova, Elizaveta A.

    2017-02-01

    Even 30 years after the Chernobyl accident, biological effects of irradiation are observed in the chronically exposed Scots pine populations. Chronic radiation exposure at dose rates above 50 mGy•yr-1 caused oxidative stress and led to the increase of antioxidants concentrations in these populations. Genetic variability was examined for 6 enzymes and 14 enzymatic loci of 6 Scots pine populations. Dose rates over 10 mGy•yr-1 caused the increased frequency of mutations and changes in genetic structure of Scots pine populations. However, the same dose rates had no effect on enzymatic activities. The results indicate that even relatively low dose rates of radiation can be considered as an ecological factor which should be taken into account for ecological management and radiation protection of biota species.

  12. In Vitro Toxicity and Epigenotoxicity of Different Types of Ambient Particulate Matter.

    PubMed

    Miousse, Isabelle R; Chalbot, Marie-Cecile G; Pathak, Rupak; Lu, Xiaoyan; Nzabarushimana, Etienne; Krager, Kimberly; Aykin-Burns, Nukhet; Hauer-Jensen, Martin; Demokritou, Philip; Kavouras, Ilias G; Koturbash, Igor

    2015-12-01

    Exposure to ambient particulate matter (PM) has been associated with adverse health effects, including pulmonary and cardiovascular disease. Studies indicate that ambient PM originated from different sources may cause distinct biological effects. In this study, we sought to investigate the potential of various types of PM to cause epigenetic alterations in the in vitro system. RAW264.7 murine macrophages were exposed for 24 and 72 h to 5- and 50-μg/ml doses of the water soluble extract of 6 types of PM: soil dust, road dust, agricultural dust, traffic exhausts, biomass burning, and pollen, collected in January-April of 2014 in the area of Little Rock, Arkansas. Cytotoxicity, oxidative potential, epigenetic endpoints, and chromosomal aberrations were addressed. Exposure to 6 types of PM resulted in induction of cytotoxicity and oxidative stress in a type-, time-, and dose-dependent manner. Epigenetic alterations were characterized by type-, time-, and dose-dependent decreases of DNA methylation/demethylation machinery, increased DNA methyltransferases enzymatic activity and protein levels, and transcriptional activation and subsequent silencing of transposable elements LINE-1, SINE B1/B2. The most pronounced changes were observed after exposure to soil dust that were also characterized by hypomethylation and reactivation of satellite DNA and structural chromosomal aberrations in the exposed cells. The results of our study indicate that the water-soluble fractions of the various types of PM have differential potential to target the cellular epigenome. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Phospholipases A2 isolated from Micrurus lemniscatus coral snake venom: behavioral, electroencephalographic, and neuropathological aspects.

    PubMed

    Oliveira, D A; Harasawa, C; Seibert, C S; Casais e Silva, L L; Pimenta, D C; Lebrun, I; Sandoval, M R L

    2008-03-28

    The present study evaluated four phospholipase A2 (PLA2) (Mlx-8, Mlx-9, Mlx-11 and Mlx-12) isolated from Micrurus lemniscatus snake venom (Elapidae). The effects of intrahippocampal administration of these toxins have been determined on behavior, electroencephalography, and neuronal degeneration in rats. These four PLA2 toxins induced motor and EEG alterations in a dose-dependent manner. Behavioral convulsions were characterized by clonic movements and were often accompanied by EEG alterations. Mlx toxins were convulsive but weakly epileptogenic, since low rates of seizure discharges were observed in EEG records. Neuronal injury seemed to depend on the dose of the toxin used. The highest doses of toxins caused severe intoxication and death of some animals. The injury of hippocampal cells was characterized by massive neuronal loss and hippocampal gliosis. A high occurrence of compulsive scratching was observed. Moreover, the onset of seizures induced by Mlx toxins was markedly delayed. The similarities between the effects of Mlx PLA2s and those isolated from other Elapidae snakes venoms suggest that their toxicity are probably due to their specific binding to neuronal membranes and to the catalysis of phospholipid hydrolysis, producing lysophospholipids and fatty acids. These compounds likely disturb the membrane conformation, causing a marked increase in the release of neurotransmitters and concurrent inhibition of vesicle fission and recycling. These toxins can be a useful tool to investigate properties of endogenous secretory PLA2s and therefore may be important both to study mechanisms involved in neurotransmitter release at nerve terminals and to explain the convulsive properties of PLA2s toxins.

  14. Shorter Exposures to Harder X-Rays Trigger Early Apoptotic Events in Xenopus laevis Embryos

    PubMed Central

    Dong, JiaJia; Mury, Sean P.; Drahos, Karen E.; Moscovitch, Marko

    2010-01-01

    Background A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant conditions are therapeutically treated and how radiation is used in combination with other therapies. Our research challenges the current dogma of dose-dependent induction of apoptosis and establishes a new parallel paradigm to the photoelectric effect in biological systems. Methodology/Principal Findings We explored how the energy of individual X-ray photons and exposure time, both factors that determine the total dose, influence the occurrence of cell death in early Xenopus embryo. Three different experimental scenarios were analyzed and morphological and biochemical hallmarks of apoptosis were evaluated. Initially, we examined cell death events in embryos exposed to increasing incident energies when the exposure time was preset. Then, we evaluated the embryo's response when the exposure time was augmented while the energy value remained constant. Lastly, we studied the incidence of apoptosis in embryos exposed to an equal total dose of radiation that resulted from increasing the incoming energy while lowering the exposure time. Conclusions/Significance Overall, our data establish that the energy of the incident photon is a major contributor to the outcome of the biological system. In particular, for embryos exposed under identical conditions and delivered the same absorbed dose of radiation, the response is significantly increased when shorter bursts of more energetic photons are used. These results suggest that biological organisms display properties similar to the photoelectric effect in physical systems and provide new insights into how radiation-mediated apoptosis should be understood and utilized for therapeutic purposes. PMID:20126466

  15. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist

    PubMed Central

    Newman, L. A.

    2015-01-01

    Rationale Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. Objectives The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Results Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. Conclusions These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist—to decrease scopolamine-induced increases in acetylcholine output or to decrease post-synaptic acetylcholine receptor activation—may mediate the negative effects on memory of muscarinic antagonists. PMID:26660295

  16. Low but inducible contribution of renal elimination to clearance of propylene glycol in preterm and term neonates.

    PubMed

    De Cock, Roosmarijn F W; Allegaert, Karel; Vanhaesebrouck, Sophie; de Hoon, Jan; Verbesselt, Rene; Danhof, Meindert; Knibbe, Catherijne A J

    2014-06-01

    Despite limited information being available on the pharmacokinetics of excipients, propylene glycol (PG) is often used as an excipient in both adults and children. The aim of this study is to characterize the renal and hepatic elimination of PG in preterm and term neonates. The pharmacokinetic analysis of PG was performed in NONMEM 6.2. on the basis of PG concentrations in plasma and/or urine samples for a total of 69 (pre)term neonates (birth weight 630-3980 g, gestational age 24-41 weeks, postnatal age 1-29 days) who received PG coadministered with intravenous paracetamol (5-10 mg/kg per 6 hours), phenobarbital (5 mg·kg(-1)·d(-1)), or both. To capture the time-dependent trend in the renal excretion of PG, different models based on time after the first dose, urine volume, and creatinine amount in urine were tested. A one-compartment model parameterized in terms of renal clearance, hepatic clearance, and volume of distribution was found to adequately describe the observations in both plasma and urine. After the first dose was administered, the renal elimination of PG was 15% of total clearance, which increased over time to 25% at 24 hours after the first dose of PG. This increase was best described using a hyperbolic function based on time after the first dose. Renal elimination of PG in (pre)term neonates is low, particularly compared with the reported percentage of 45% in adults, but it may increase with time after the first dose of PG. To study whether this increase is caused by an autoinduced increase in the renal secretion or a reduction of tubular reabsorption of PG, further research is needed.

  17. Investigation into the mechanism(s) that leads to platelet decreases in cynomolgus monkeys during administration of ISIS-104838, a 2'-MOE-modified antisense oligonucleotide.

    PubMed

    Narayanan, P K; Shen, L; Curtis, B R; Bourdon, M; Nolan, J P; Zhou, F; Christian, B; Gupta, S; Schaubhut, J L; Greenlee, S; Hoffmaster, C; Burel, S; Witztum, J L; Engelhardt, J A; Henry, S P

    2018-05-29

    ISIS 104838, a 2'-O-methoxyethyl (2'-MOE)-modified antisense oligonucleotide (ASO), causes a moderate, reproducible, dose-dependent, but self-limiting decrease in platelet (PLT) counts in monkeys and humans. To determine the etiology of PLT decrease in cynomolgus monkeys, a 12-week repeat dose toxicology study in 5 cynomolgus monkeys given subcutaneous injections of ISIS 104838 (30 to 60 mg/kg/week). Monkeys were also injected intravenously with 111In-oxine-labeled PLTs to investigate PLT sequestration. In response to continued dosing, PLT counts were decreased by 50 to 90% by day 30 in all monkeys. PLT decreases were accompanied by 2- to 4.5-fold increases in immunoglobulin M(IgM), which were typified by a 2-to-5-fold increase in anti-platelet factor 4 (PF4) IgM and anti-PLT IgM, respectively. Monocyte chemotactic protein 1 (MCP-1) increased upon dosing of ISIS 104838, concomitant with a 2- to 6-fold increase in monocyte-derived extracellular vesicles (EVs), indicating monocyte activation but not PLT activation. Despite a 2- to- 3-fold increase in von Willebrand factor (VWF) antigen in all monkeys following ASO administration, only two monkeys showed a 2 to 4-fold increase in endothelial EVs. Additionally, a 25-45% increase in PLT sequestration in liver and spleen was also observed. Collectively, these results suggest the overall increase in total IgM, anti-PLT IgM and/or anti-PF4 IgM, in concert with monocyte activation contributed to increased PLT sequestration in spleen and liver, leading to decreased PLTs in peripheral blood.

  18. Asian sand dust enhances murine lung inflammation caused by Klebsiella pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Miao; Ichinose, Takamichi; Yoshida, Seiichi

    Inhaling concomitants from Asian sand dust (ASD) may result in exacerbation of pneumonia by the pathogen. The exacerbating effect of ASD on pneumonia induced by Klebsiella pneumoniae (KP) was investigated in ICR mice. The organic substances adsorbed onto ASD collected from the atmosphere of Iki-island in Japan were excluded by heat treatment at 360 °C for 30 min. ICR mice were instilled intratracheally with ASD at doses of 0.05 mg or 0.2 mg/mouse four times at 2-week intervals (total dose of 0.2 mg or 0.8 mg/mouse) and were administrated with ASD in the presence or absence of KP at themore » last intratracheal instillation. Pathologically, ASD caused exacerbation of pneumonia by KP as shown by increased inflammatory cells within the bronchiolar and the alveolar compartments. ASD enhanced the neutrophil number dose dependently as well as the expression of cytokines (IL-1β, IL-6, IL-12, IFN-γ, TNF-α) and chemokines (KC, MCP-1, MIP-1α) related to KP in BALF. In an in vitro study using RAW264.7 cells, combined treatment of ASD and KP increased gene expression of IL-1β, IL-6, IFN-β, KC, MCP-1, and MIP-1α. The same treatment tended to increase the protein level of IL-1β, TNF-α and MCP-1 in a culture medium compared to each treatment alone. The combined treatment tended to increase the gene expression of Toll-like receptor 2 (TLR2), and NALP3, ASC and caspase-1 compared with KP alone. These results suggest that the exacerbation of pneumonia by ASD + KP was due to the enhanced production of pro-inflammatory mediators via activation of TLR2 and NALP3 inflammasome pathways in alveolar macrophages.« less

  19. Indirect Tumor Cell Death After High-Dose Hypofractionated Irradiation: Implications for Stereotactic Body Radiation Therapy and Stereotactic Radiation Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Chang W., E-mail: songx001@umn.edu; Korea Institute of Radiological and Medical Sciences, Seoul; Lee, Yoon-Jin

    Purpose: The purpose of this study was to reveal the biological mechanisms underlying stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS). Methods and Materials: FSaII fibrosarcomas grown subcutaneously in the hind limbs of C3H mice were irradiated with 10 to 30 Gy of X rays in a single fraction, and the clonogenic cell survival was determined with in vivo–in vitro excision assay immediately or 2 to 5 days after irradiation. The effects of radiation on the intratumor microenvironment were studied using immunohistochemical methods. Results: After cells were irradiated with 15 or 20 Gy, cell survival in FSaII tumors declined for 2 to 3 daysmore » and began to recover thereafter in some but not all tumors. After irradiation with 30 Gy, cell survival declined continuously for 5 days. Cell survival in some tumors 5 days after 20 to 30 Gy irradiation was 2 to 3 logs less than that immediately after irradiation. Irradiation with 20 Gy markedly reduced blood perfusion, upregulated HIF-1α, and increased carbonic anhydrase-9 expression, indicating that irradiation increased tumor hypoxia. In addition, expression of VEGF also increased in the tumor tissue after 20 Gy irradiation, probably due to the increase in HIF-1α activity. Conclusions: Irradiation of FSaII tumors with 15 to 30 Gy in a single dose caused dose-dependent secondary cell death, most likely by causing vascular damage accompanied by deterioration of intratumor microenvironment. Such indirect tumor cell death may play a crucial role in the control of human tumors with SBRT and SRS.« less

  20. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.

    PubMed

    Wang, Fayuan; Liu, Xueqin; Shi, Zhaoyong; Tong, Ruijian; Adams, Catharine A; Shi, Xiaojun

    2016-03-01

    ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    DOE PAGES

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; ...

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presencemore » of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.« less

  2. Lead-induced changes of cytoskeletal protein is involved in the pathological basis in mice brain.

    PubMed

    Ge, Yaming; Chen, Lingli; Sun, Xianghe; Yin, Zhihong; Song, Xiaochao; Li, Chong; Liu, Junwei; An, Zhixing; Yang, Xuefeng; Ning, Hongmei

    2018-04-01

    Lead poisoning is a geochemical disease. On the other hand, lead is highly carcinogenic and exhibits liver and kidney toxicity. This element can also cross the blood-brain barrier, reduce learning and memory ability and damage the structure of the cerebral cortex and hippocampus. To further investigate the mechanism of lead neurotoxicity, 4-week-old Kunming mice were used to explore the effects of different concentrations of Pb 2+ (0, 2.4, 4.8 and 9.6 mM) for 9 days. In this study, pathological and ultrastructural changes in brain cells of the treated group were related to damages to mitochondria, chromatin and the nucleus. Lead content in blood was tested by atomic absorption spectroscopy, which showed high lead concentrations in the blood with increasing doses of lead. Distribution of lead in nerve cells was analysed by transmission electron microscopy with energy dispersive spectroscopy. Data showed the presence of lead in nucleopores, chromatin and nuclear membrane of nerve cells in the treatment groups, whereas lead content increased with increasing doses of lead acetate. Finally, microtubule-associated protein 2 (MAP2) mRNA and protein expression levels were detected by real-time PCR and Western blotting, which showed a reduction in MAP2 expression with increasing lead doses in the mouse brain. These findings suggest that acute lead poisoning can cause significant dose-dependent toxic effects on mouse brain function and can contribute to better understanding of lead-induced toxicity.

  3. [Effectiveness of various dopamine doses in acute myocardial ischemia complicated by cardiogenic shock (an experimental study)].

    PubMed

    Kipshidze, N N; Korotkov, A A; Marsagishvili, L A; Prigolashvili, T Sh; Bokhua, M R

    1981-06-01

    The effect of various doses of dopamine on the values of cardiac contractile and hemodynamic function under conditions of acute two-hour ischemia complicated by cardiogenic shock was studied in 27 experiments on dogs. In a dose of 5 microgram/kg/min dopamine caused an optimum increase in cardiac productive capacity, reduction of peripheral resistance, adequate increase in coronary circulation and decrease in ST segment depression on the ECG. Infusion of 10 microgram/kg/min dopamine usually caused myocardial hyperfunction with an increase in total peripheral resistance and cardiac performance. Maximum dopamine doses (10 microgram/kg/min and more) were effective in the areactive form of cardiogenic shock. In longterm dopamine infusion it is necessary to establish continuous control over the hemodynamic parameters and the ECG to prevent aggravation of ischemia and for stage-by-stage reduction of the drug concentration and determination of the minimum maintenance dose.

  4. Identification of lipidomic markers of chronic 3,3',4,4',5-pentachlorobiphenyl (PCB 126) exposure in the male rat liver.

    PubMed

    Kania-Korwel, Izabela; Wu, Xianai; Wang, Kai; Lehmler, Hans-Joachim

    2017-09-01

    Exposure to PCB 126, an environmentally relevant aryl hydrocarbon receptor agonist, is an environmental factor causing hepatic steatosis in rodent models; however, the lipidome of PCB 126-exposed rats has not been investigated in-depth. The objective of the present study was therefore to characterize dose-dependent changes in the lipid profile in the liver of male Sprague-Dawley rats exposed to PCB 126. Rats were exposed for three month to intraperitoneal injections of 0.01, 0.05 and 0.2μmol/kg bw PCB 126 in corn oil. Control animals were exposed in parallel and received corn oil alone. Lipids were extracted from whole liver homogenate and levels of polar lipids and fatty acids incorporated into triglycerides (FA TAGs ) were determined with tandem mass spectrometry using electrospray ionization. PCB 126 exposure increased the hepatic content of polar lipids and FA TAGs . Protein adjusted levels of several polar lipid classes, in particular phosphatidylserine levels, decreased, whereas FA TAGs levels typically increased with increasing PCB 126 dose. Sensitive, dose-dependent endpoints of PCB 126 exposure included an increase in levels of adrenic acid incorporated into triglycerides and changes in levels of certain ether-linked phospholipid and 1-alkyl/1-alkenyldiacylglycerol species, as determined using partial least square discriminant analysis (PLS-DA) and ANOVA. These changes in the composition of polar lipids and fatty acid in the liver of PCB 126 exposed rats identified several novel markers of PCB 126-mediated fatty liver disease that need to be validated in further studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. An ethanolic extract of black cohosh causes hematological changes but not estrogenic effects in female rodents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercado-Feliciano, Minerva; Cora, Michelle C.; Witt, Kristine L.

    2012-09-01

    Black cohosh rhizome (Actaea racemosa) is used as a remedy for pain and gynecological ailments; modern preparations are commonly sold as ethanolic extracts available as dietary supplements. Black cohosh was nominated to the National Toxicology Program (NTP) for toxicity testing due to its widespread use and lack of safety data. Several commercially available black cohosh extracts (BCE) were characterized by the NTP, and one with chemical composition closest to formulations available to consumers was used for all studies. Female B6C3F1/N mice and Wistar Han rats were given 0, 15 (rats only), 62.5 (mice only), 125, 250, 500, or 1000 mg/kg/daymore » BCE by gavage for 90 days starting at weaning. BCE induced dose-dependent hematological changes consistent with a non-regenerative macrocytic anemia and increased frequencies of peripheral micronucleated red blood cells (RBC) in both species. Effects were more severe in mice, which had decreased RBC counts in all treatment groups and increased micronucleated RBC at doses above 125 mg/kg. Dose-dependent thymus and liver toxicity was observed in rats but not mice. No biologically significant effects were observed in other organs. Puberty was delayed 2.9 days at the highest treatment dose in rats; a similar magnitude delay in mice occurred in the 125 and 250 mg/kg groups but not at the higher doses. An additional uterotrophic assay conducted in mice exposed for 3 days to 0.001, 0.01, 0.1, 1, 10, 100 and 500 mg/kg found no estrogenic or anti-estrogenic activity. These are the first studies to observe adverse effects of BCE in rodents. -- Highlights: ► Mice and rats were dosed with black cohosh extract for 90 days starting at weaning. ► Hematological changes were consistent with a non-regenerative macrocytic anemia. ► Peripheral micronucleated red blood cell frequencies increased. ► Puberty was delayed 2.9 days in rats. ► No estrogenic/anti-estrogenic activity was seen in the uterotrophic assay.« less

  6. Synergistic action of cyclic adenosine monophosphate- and calcium-mediated chloride secretion in a colonic epithelial cell line.

    PubMed Central

    Cartwright, C A; McRoberts, J A; Mandel, K G; Dharmsathaphorn, K

    1985-01-01

    Vasoactive intestinal polypeptide (VIP) and the calcium ionophore A23187 caused dose-dependent changes in the potential difference and the short circuit current (Isc) across confluent T84 cell monolayers mounted in modified Ussing chambers. Both VIP and A23187 stimulated net chloride secretion without altering sodium transport. Net chloride secretion accounted for the increase in Isc. When A23187 was tested in combination with VIP, net chloride secretion was significantly greater than predicted from the calculated sum of their individual responses indicating a synergistic effect. VIP increased cellular cyclic AMP (cAMP) production in a dose-dependent manner, whereas A23187 had no effect on cellular cAMP. We then determined whether VIP and A23187 activated different transport pathways. Earlier studies suggest that VIP activates a basolaterally localized, barium-sensitive potassium channel as well as an apically localized chloride conductance pathway. In this study, stimulation of basolateral membrane potassium efflux by A23187 was documented by preloading the monolayers with 86Rb+. Stimulation of potassium efflux by A23187 was additive to the VIP-stimulated potassium efflux. By itself, 0.3 microM A23187 did not alter transepithelial chloride permeability, and its stimulation of basolateral membrane potassium efflux caused only a relatively small amount of chloride secretion. However, in the presence of an increased transepithelial chloride permeability induced by VIP, the effectiveness of A23187 on chloride secretion was greatly augmented. Our studies suggest that cAMP and calcium each activate basolateral potassium channels, but cAMP also activates an apically localized chloride channel. Synergism results from cooperative interaction of potassium channels and the chloride channel. PMID:2997291

  7. Experimental and Monte Carlo measurements of dose perturbation around a non-radioactive brachytherapy seed in external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Steinman, James P.

    I-125 seeds used in permanent prostate brachytherapy are composed of high-Z metals and may number from 40 to over 100 in a typical implant. If any supplemental external beam treatment is administered afterward (as for salvaging failed brachytherapy treatment), it is possible that the seeds may cause substantial dose perturbation which will depend on numerous factors (photon energy, depth, field size, number of seeds, etc.) and this effect needs to be thoroughly investigated. Film measurements were primarily done using Kodak XV2 layered above and below a non-radioactive I-125 seed placed in a groove on a Lucite plate with 5 cm buildup and 10 cm backscatter added at 95 cm SSD. The phantom was irradiated with and without seed with 6 MV photons for a 1 x 1 cm2 field size. Monte Carlo simulations were carried out using DOSXYZnrc using the same parameters and compared with Gafchromic EBT2 film. Other comparisons looked at changing energy, depth, and field size in both with and without seeds configuration. This study was further extended to include metals of various Z of the seed's dimensions and also looked into effect of 3 seeds spaced 0.5 cm vertically. Another measurement was done using two opposing fields using single as well as 3 seed configuration to see whether the dose enhancement and attenuation cancel out in multi-field treatments which is the norm clinically in a prostate treatment. For a single I-125 seed, on XV film a localized dose enhancement of 6.3% upstream and -10.9% downstream was noticed. With three seeds, this effect did not change. With two opposing fields, a cold spot around the seed of ~3% was noticed from film measurements. Increasing energy and field size decreased the effect while increase in Z of material greatly increased the effect. Increasing depth appeared to have no effect. DOSXYZnrc and EBT2 film verified maximum dose enhancement of +15% upstream and -20% downstream of the I-125 seed surface. In general, the range of the effect was limited to ~2 mm upstream and ~5 mm downstream with reference to the seed surface in relation to the incident photon beam. As with other heterogeneities in a human body, the dose perturbation due to I-125 seeds in external beam radiotherapy depends on incident beam energy, field size, and the composition of the seed. However, unlike other heterogeneities, no depth dependence of the seed in the material was noted. With multiple seeds spaced apart and multiple fields normally used in prostate treatment, the dose perturbation due to them may not be clinically significant.

  8. Increase in cocaine- and amphetamine-regulated transcript (CART) in specific areas of the mouse brain by acute caffeine administration.

    PubMed

    Cho, Jin Hee; Cho, Yun Ha; Kim, Hyo Young; Cha, Seung Ha; Ryu, Hyun; Jang, Wooyoung; Shin, Kyung Ho

    2015-04-01

    Caffeine produces a variety of behavioral effects including increased alertness, reduced food intake, anxiogenic effects, and dependence upon repeated exposure. Although many of the effects of caffeine are mediated by its ability to block adenosine receptors, it is possible that other neural substrates, such as cocaine- and amphetamine-regulated transcript (CART), may be involved in the effects of caffeine. Indeed, a recent study demonstrated that repeated caffeine administration increases CART in the mouse striatum. However, it is not clear whether acute caffeine administration alters CART in other areas of the brain. To explore this possibility, we investigated the dose- and time-dependent changes in CART immunoreactivity (CART-IR) after a single dose of caffeine in mice. We found that a high dose of caffeine (100 mg/kg) significantly increased CART-IR 2 h after administration in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), central nucleus of the amygdala (CeA), paraventricular hypothalamic nucleus (PVN), arcuate hypothalamic nucleus (Arc), and locus coeruleus (LC), and returned to control levels after 8 h. But this increase was not observed in other brain areas. In addition, caffeine administration at doses of 25 and 50 mg/kg appears to produce dose-dependent increases in CART-IR in these brain areas; however, the magnitude of increase in CART-IR observed at a dose of 50 mg/kg was similar or greater than that observed at a dose of 100 mg/kg. This result suggests that CART-IR in AcbSh, dBNST, CeA, PVN, Arc, and LC is selectively affected by caffeine administration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. [Influence of shenxu gutong capsule on femoral inorganic elements content and ash weight in rats].

    PubMed

    Chen, X; Wei, J; Chen, Y

    1998-02-01

    To explore the mechanism of Shenxu Gutong Capsule (SXGTC) in treating postmenopausal osteoporosis. Using ovariectomized rats as the model of postmenopausal osteoporosis, the effect of SXGTC on inorganic element content of femur and femoral ash weight of the model rats were surveyed. Animals were divided into model group, SXGTC high dose group, SXGTC low dose group, positive control group (treated with Gushukang) and normal control group. The medication began at one week after operation and lasting for 120 days. The contents of inorganic elements, including Ca, P, Mg, Zn, Cu and Mn in the three medicated groups were higher than those of the model group (P < 0.01). The effect of SXGTC was dose dependent. The difference between the SXGTC groups and the positive control group was insignificant. The femoral ash weight of the SXGTC high dose group and the positive control group was significantly higher than that of the model group (P < 0.01). SXGTC could antagonize the rat's bony change caused by ovariectomy to increase the inorganic contents in bone, which may, in grneral, lead to a bone-strengthening effect.

  10. Glucose and insulin do not decrease in a dose-dependent manner after increasing doses of mixed fibers that are consumed in muffins for breakfast.

    PubMed

    Willis, Holly J; Thomas, William; Eldridge, Alison L; Harkness, Laura; Green, Hilary; Slavin, Joanne L

    2011-01-01

    Conventional wisdom suggests that fiber consumption leads to lower postprandial glucose and insulin response. We hypothesized that increasing doses of mixed, viscous fiber would lower glucose and insulin levels in a dose-dependent manner. Healthy men (n = 10) and women (n = 10) with a body mass index of 24 ± 2 (mean ± SEM) participated in this double-blind, crossover study. On 4 separate visits, fasting subjects consumed an approximately 2093 kJ (500 calorie) muffin with 0, 4, 8, or 12 g of mixed fibers. Blood was drawn to measure glucose and insulin at regular intervals throughout a 3-hour test period. Area under the curve (AUC) glucose was significantly lower after 0 g of fiber than after 4, 8, or 12 g of fiber (arbitrary AUC units ± SEM: 25.3 ± 5.2 vs 44.6 ± 7.7, 49.7 ± 7.9, 51.5 ± 6.6, respectively; P < .006). Area under the curve glucose increased with increasing fiber doses (P for trend = .0003). Area under the curve insulin was higher after the 4-g dose than after the 0-, 8-, and 12-g doses (arbitrary AUC units ± SEM: 84.4 ± 8.0 vs 60.1 ± 6.5, 69.4 ± 8.7, 69.7 ± 8.5, respectively; P < .05); it did not change in a dose-dependent manner. Area under the curve glucose and AUC insulin did not correlate with each other. Glucose and insulin did not decrease in a dose-dependent manner after 0, 4, 8, and 12 g of mixed fibers were consumed in muffins for breakfast. The lack of differences was largely based on the individual variation in glucose response. Caution should be used when making general claims about the expected impact of fiber on glucose and insulin levels. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Plasma cannabinoid concentrations during dronabinol pharmacotherapy for cannabis dependence.

    PubMed

    Milman, Garry; Bergamaschi, Mateus M; Lee, Dayong; Mendu, Damodara R; Barnes, Allan J; Vandrey, Ryan; Huestis, Marilyn A

    2014-04-01

    Recently, high-dose oral synthetic delta-9-tetrahydrocannabinol (THC) was shown to alleviate cannabis withdrawal symptoms. The present data describe cannabinoid pharmacokinetics in chronic, daily cannabis smokers who received high-dose oral THC pharmacotherapy and later a smoked cannabis challenge. Eleven daily cannabis smokers received 0, 30, 60, or 120 mg/d THC for four 5-day medication sessions, each separated by 9 days of ad libitum cannabis smoking. On the fifth day, participants were challenged with smoking one 5.9% THC cigarette. Plasma collected on the first and fifth days was quantified by two-dimensional gas chromatography mass spectrometer for THC, 11-hydroxy-THC (11-OH-THC), and 11-nor-9-carboxy-THC (THCCOOH). Linear ranges (ng/mL) were 0.5-100 for THC, 1-50 for 11-OH-THC, and 0.5-200 for THCCOOH. During placebo dosing, THC, 11-OH-THC, and THCCOOH concentrations consistently decreased, whereas all cannabinoids increased dose dependently during active dronabinol administration. THC increase over time was not significant after any dose, 11-OH-THC increased significantly during the 60- and 120-mg/d doses, and THCCOOH increased significantly only during the 120-mg/d dose. THC, 11-OH-THC, and THCCOOH concentrations peaked within 0.25 hours after cannabis smoking, except after 120 mg/d THC when THCCOOH peaked 0.5 hours before smoking. The significant withdrawal effects noted during placebo dronabinol administration were supported by significant plasma THC and 11-OH-THC concentration decreases. During active dronabinol dosing, significant dose-dependent increases in THC and 11-OH-THC concentrations support withdrawal symptom suppression. THC concentrations after cannabis smoking were only distinguishable from oral THC doses for 1 hour, too short a period to feasibly identify cannabis relapse. THCCOOH/THC ratios were higher 14 hours after overnight oral dronabinol abstinence but cannot distinguish oral THC dosing from the smoked cannabis intake.

  12. Plasma Cannabinoid Concentrations during Dronabinol Pharmacotherapy for Cannabis Dependence

    PubMed Central

    Milman, Garry; Bergamaschi, Mateus M.; Lee, Dayong; Mendu, Damodara R.; Barnes, Allan J.; Vandrey, Ryan; Huestis, Marilyn A.

    2013-01-01

    Background Recently, high-dose oral synthetic delta-9-tetrahydrocannabinol (THC) was shown to alleviate cannabis withdrawal symptoms. The present data describe cannabinoid pharmacokinetics in chronic daily cannabis smokers who received high-dose oral THC pharmacotherapy and later, a smoked cannabis challenge. Methods 11 daily cannabis smokers received 0, 30, 60, or 120 mg/day THC for four 5-day medication sessions, each separated by 9-days of ad-libitum cannabis smoking. On the 5th day, participants were challenged with smoking one 5.9% THC cigarette. Plasma collected on the 1st and 5th days was quantified by GC-GC-MS for THC, 11-hydroxy-THC (11-OH-THC), and 11-nor-9-carboxy-THC (THCCOOH). Linear ranges (ng/mL) were 0.5–100 for THC, 1–50 11-OH-THC, and 0.5–200 THCCOOH. Results During placebo dosing, THC, 11-OH-THC and THCCOOH concentrations consistently decreased, while all cannabinoids increased dose-dependently during active dronabinol administration. THC increase over time was not significant after any dose, 11-OH-THC increased significantly during 60 and 120 mg/day doses, and THCCOOH increased significantly only during the 120 mg/day dose. THC and 11-OH-THC, and THCCOOH concentrations peaked within 0.25 h after cannabis smoking, except after 120 mg/day THC when THCCOOH peaked 0.5 h before smoking. Conclusions The significant withdrawal effects noted during placebo dronabinol administration were supported by significant plasma THC and 11-OH-THC concentration decreases. During active dronabinol dosing, significant dose-dependent increases in THC and 11-OH-THC concentrations support withdrawal symptom suppression. THC concentrations after cannabis smoking were only distinguishable from oral THC doses for 1 h, too short a period to feasibly identify cannabis relapse. THCCOOH/THC ratios were higher 14 h after overnight oral dronabinol abstinence, but cannot distinguish oral THC dosing from smoked cannabis intake. PMID:24067260

  13. Regional peripheral and CNS hemodynamic effects of intrathecal administration of a substance P receptor agonist.

    PubMed

    Helke, C J; Phillips, E T; O'Neill, J T

    1987-11-01

    Regional CNS and peripheral hemodynamic effects of the intrathecal (i.t.) administration of a substance P receptor agonist, [pGlu5,MePhe8,MeGly9]-substance P5-11 ([DiMe]-SP), were studied in anesthetized rats with the radioactive microsphere technique. It was previously shown that [DiMe]-SP caused a sympathetically mediated increase in mean arterial pressure (MAP) by an action within the spinal cord. In this study, [DiMe]-SP (5 and 33 nmol, i.t.) increased MAP. The 5 nmol dose increased resistance in cutaneous, renal, splanchnic, and adrenal vascular beds but decreased resistance, and increased blood flow in some skeletal muscle beds. Total peripheral resistance was unchanged. The 33 nmol dose increased resistance in each peripheral vascular bed analyzed and increased total peripheral resistance. Whereas each dose increased heart rate, stroke volume and cardiac output were unchanged with the 5 nmol dose and were reduced with the 33 nmol dose. Neither dose of [DiMe]-SP significantly altered regional brain or spinal cord blood flows. These data show that the i.t. administration of the SP agonist, [DiMe]-SP, increased vascular tone to most peripheral vascular beds whereas the low dose caused a vasodilation of skeletal muscle. These effects are consistent with the notion of a dose-related activation of SP receptors in the spinal cord affecting sympathetic outflow to the adrenals and to the vasculature.

  14. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells.

    PubMed

    Agarwal, Ayushi; Kasinathan, Akiladdevi; Ganesan, Ramamoorthi; Balasubramanian, Akhila; Bhaskaran, Jahnavi; Suresh, Samyuktha; Srinivasan, Revanth; Aravind, K B; Sivalingam, Nageswaran

    2018-03-01

    Curcumin is a natural dietary polyphenol compound that has various pharmacological activities such as antiproliferative and cancer-preventive activities on tumor cells. Indeed, the role reactive oxygen species (ROS) generated by curcumin on cell death and cell proliferation inhibition in colon cancer is poorly understood. In the present study, we hypothesized that curcumin-induced ROS may promote apoptosis and cell cycle arrest in colon cancer. To test this hypothesis, the apoptosis-inducing potential and cell cycle inhibition effect of ROS induced by curcumin was investigated in Smd4 and p53 mutated HT-29 colon adenocarcinoma cells. We found that curcumin treatment significantly increased the level of ROS in HT-29 cells in a dose- and time-dependent manner. Furthermore, curcumin treatment markedly decreased the cell viability and proliferation potential of HT-29 cells in a dose- and time-dependent manner. Conversely, generation of ROS and inhibitory effect of curcumin on HT-29 cells were abrogated by N-acetylcysteine treatment. In addition, curcumin treatment did not show any cytotoxic effects on HT-29 cells. Furthermore, curcumin-induced ROS generation caused the DNA fragmentation, chromatin condensation, and cell nuclear shrinkage and significantly increased apoptotic cells in a dose- and time-dependent manner in HT-29 cells. However, pretreatment of N-acetylcysteine inhibited the apoptosis-triggering effect of curcumin-induced ROS in HT-29 cells. In addition, curcumin-induced ROS effectively mediated cell cycle inhibition in HT-29 cells. In conclusion, our data provide the first evidence that curcumin induces ROS independent apoptosis and cell cycle arrest in colon cancer cells that carry mutation on Smad4 and p53. Copyright © 2018. Published by Elsevier Inc.

  15. TU-G-BRA-01: Assessing Radiation-Induced Reductions in Regional Lung Perfusion Following Stereotactic Radiotherapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGurk, R; Green, R; Lawrence, M

    2015-06-15

    Purpose: The dose-dependent nature of radiation therapy (RT)-induced lung injury following hypo-fractionated stereotactic RT is unclear. We herein report preliminary results of a prospective study assessing the magnitude of RT-induced reductions in regional lung perfusion following hypo-fractionated stereotactic RT. Methods: Four patients undergoing hypo-fractionated stereotactic lung RT (SBRT: 12 Gy x 4 fractions or 10 Gy x 5 fractions) had a pre-treatment SPECT (single-photon emission computed tomography) perfusion scan providing a 3D map of regional lung perfusion. Scans were repeated 3–6 months post-treatment. Pre- and post SPECT scans were registered to the planning CT scan (and hence the 3D dosemore » data). Changes in regional perfusion (counts per cc on the pre-post scans) were computed in regions of the lung exposed to different doses of radiation (in 5 Gy intervals), thus defining a dose-response function. SPECT scans were internally normalized to the regions receiving <5 Gy. Results: At 3 months post-RT, the changes in perfusion are highly variable. At 6 months, there is a consistent dose-dependent reduction in regional perfusion. The average percent decline in regional perfusion was 10% at 15–20 Gy, 20% at 20–25 Gy, and 30% at 25–30 Gy representing a relatively linear dose response with an approximate 2% reduction per Gray for doses in excess of 10 Gy. There was a subtle increase in perfusion in the lung receiving <10 Gy. Conclusion: Hypo-fractionated stereotactic RT appears to cause a dose-dependent reduction in regional lung perfusion. There appears to be a threshold effect with no apparent perfusion loss at doses <10 Gy, though this might be in part due to the normalization technique used. Additional data is needed from a larger number of patients to better assess this issue. This sort of data can be used to assist optimizing RT treatment plans that minimize the risk of lung injury. Partly supported by the NIH (CA69579) and the Lance Armstrong Foundation.« less

  16. Dose-response characteristics of an amorphous silicon EPID.

    PubMed

    Winkler, Peter; Hefner, Alfred; Georg, Dietmar

    2005-10-01

    Electronic portal imaging devices (EPIDs) were originally developed for the purpose of patient setup verification. Nowadays, they are increasingly used as dosimeters (e.g., for IMRT verification and linac-specific QA). A prerequisite for any clinical dosimetric application is a detailed understanding of the detector's dose-response behavior. The aim of this study is to investigate the dosimetric properties of an amorphous silicon EPID (Elekta IVIEWGT) with respect to three photon beam qualities: 6, 10, and 25 MV. The EPID showed an excellent temporal stability on short term as well as on long term scales. The stability throughout the day was strongly influenced by warming up, which took several hours and affected EPID response by 2.5%. Ghosting effects increased the sensitivity of the EPID. They became more pronounced with decreasing time intervals between two exposures as well as with increasing dose. Due to ghosting, changes in pixel sensitivity amounted up to 16% (locally) for the 25 MV photon beam. It was observed that the response characteristics of our EPID depended on dose as well as on dose rate. Doubling the dose rate increased the EPID sensitivity by 1.5%. This behavior was successfully attributed to a dose per frame effect, i.e., a nonlinear relationship between the EPID signal and the dose which was delivered to the panel between two successive readouts. The sensitivity was found to vary up to 10% in the range of 1 to 1000 monitor units. This variation was governed by two independent effects. For low doses, the EPID signal was reduced due to the linac's changing dose rate during startup. Furthermore, the detector reading was influenced by intrabeam variations of EPID sensitivity, namely, an increase of detector response during uniform exposure. For the beam qualities which were used, the response characteristics of the EPID did not depend on energy. Differences in relative dose-response curves resulted from energy dependent temporal output characteristics of the accelerator. If ghosting is prevented from affecting the results and all dose-response effects are properly corrected for, the EPID signal becomes independent of dose rate, dose, and exposure time.

  17. A cumulative dose comparison between salbutamol and fenoterol metered dose aerosols in asthmatic patients.

    PubMed Central

    Bellamy, D.; Penketh, A.

    1987-01-01

    The potency and side effects of salbutamol and fenoterol inhalers have been compared in 8 asthmatic patients using a dose response curve. There was no significant difference in the absolute or percentage increase in FEV1 with the two treatments, but fenoterol caused a significantly greater (P less than 0.01) increase in heart rate than did salbutamol. A greater degree of bronchodilatation was observed with increased doses and we suggest that regular higher doses may provide better bronchodilatation and control of asthma in selected patients. PMID:3432172

  18. Association of brominated proteins and changes in protein expression in the rat kidney with subcarcinogenic to carcinogenic doses of bromate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolisetty, Narendrababu; Bull, Richard J.; Muralidhara, Srinivasa

    2013-10-15

    The water disinfection byproduct bromate (BrO{sub 3}{sup −}) produces cytotoxic and carcinogenic effects in rat kidneys. Our previous studies demonstrated that BrO{sub 3}{sup −} caused sex-dependent differences in renal gene and protein expression in rats and the elimination of brominated organic carbon in their urine. The present study examined changes in renal cell apoptosis and protein expression in male and female F344 rats treated with BrO{sub 3}{sup −} and associated these changes with accumulation of 3-bromotyrosine (3-BT)-modified proteins. Rats were treated with 0, 11.5, 46 and 308 mg/L BrO{sub 3}{sup −} in drinking water for 28 days and renal sectionsmore » were prepared and examined for apoptosis (TUNEL-staining), 8-oxo-deoxyguanosine (8-oxoG), 3-BT, osteopontin, Kim-1, clusterin, and p-21 expression. TUNEL-staining in renal proximal tubules increased in a dose-related manner beginning at 11.5 mg BrO{sub 3}{sup −}/L in female rats and 46 mg/L in males. Increased 8-oxoG staining was observed at doses as low as 46 mg/L. Osteopontin expression also increased in a dose-related manner after treatment with 46 mg/L, in males only. In contrast, Kim-1 expression increased in a dose-related manner in both sexes, although to a greater extent in females at the highest dose. Clusterin and p21 expression also increased in a dose-related manner in both sexes. The expression of 3-BT-modified proteins only increased in male rats, following a pattern previously reported for accumulation of α-2{sub u}-globulin. Increases in apoptosis in renal proximal tubules of male and female rats at the lowest doses suggest a common mode of action for renal carcinogenesis for the two sexes that is independent of α-2{sub u}-globulin nephropathy. - Highlights: • Bromate induced nephrotoxicity in both male and female rats by similar mechanisms. • Apoptosis was seen in both male and female rats at the lowest doses tested. • Bromate-induced apoptosis correlated to 8-oxo-deoxyguanosine formation. • Bromate increased the level of 3-bromotyrosine-modified proteins in male rats only. • These data identify possible novel mechanisms for bromate-induced nephrotoxicity.« less

  19. Dose Relations between Goal Setting, Theory-Based Correlates of Goal Setting and Increases in Physical Activity during a Workplace Trial

    ERIC Educational Resources Information Center

    Dishman, Rod K.; Vandenberg, Robert J.; Motl, Robert W.; Wilson, Mark G.; DeJoy, David M.

    2010-01-01

    The effectiveness of an intervention depends on its dose and on moderators of dose, which usually are not studied. The purpose of the study is to determine whether goal setting and theory-based moderators of goal setting had dose relations with increases in goal-related physical activity during a successful workplace intervention. A…

  20. Acid sphingomyelinase activity as an indicator of the cell stress in HPV-positive and HPV-negative head and neck squamous cell carcinoma.

    PubMed

    Gerle, Mirko; Medina, Tuula Peñate; Gülses, Aydin; Chu, Hanwen; Naujokat, Hendrik; Wiltfang, Jörg; Açil, Yahya

    2018-03-21

    Human papillomavirus (HPV) infection, especially HPV-16 and HPV-18, has been increasingly associated with head and neck squamous cell carcinoma. The treatment of HPV-positive squamous cell carcinoma has a better response to both radiotherapy and chemotherapy and presents a better prognosis for the patient. Defining the underlying mechanism of the difference might help in developing future treatment options and could be an important factor in personal therapy planning. Endogenously secreted acid sphingomyelinase (ASMase) levels in the cellular stress caused by irradiation and cisplatin were investigated. MTT assay was performed to evaluate the viability of the treated cells. Keratinocytes were used to evaluate the effects of radiation on normal tissues. Irradiation caused a dose-dependent increase in ASMase activity in both SCC9 HPV-negative, and UDSCC2 HPV-positive cells. ASMase activity in UDSCC2 cells was significantly higher than that in SCC9 cells. UDSCC cells were more sensitive to cisplatin treatment than SCC cells, and the dose-response in the activity was observed in long-time treatments when high doses of cisplatin were used. The results of the current study have clearly showed that HPV positivity should be considered as one of the determinative factors which should be considered when tumor treatments are planned. However, further studies are needed to determine the differences in cellular responses and pathways among HPV-negative and HPV-positive cells.

  1. Dimethylaminoethanol affects the viability of human cultured fibroblasts.

    PubMed

    Gragnani, Alfredo; Giannoccaro, Fabiana Bocci; Sobral, Christiane S; Moraes, A A F; França, Jeronimo P; Ferreira, A T; Ferreira, Lydia Masako

    2007-01-01

    In clinical practice, dimethylaminoethanol (DMAE) has been used in the fight against wrinkles and flaccidity in the cervicofacial region. The firming action of DMAE is explained by the fact that its molecule, considered to be a precursor of acetylcholine, alters muscle contraction. However, no experimental studies have confirmed this theory. Because the actual mechanism of DMAE action was not defined and there were no references in the literature regarding its direct action on fibroblasts, this study was performed to evaluate the direct action of DMAE on cultured human fibroblasts. Human fibroblasts obtained from discarded fragments of total skin from patients undergoing plastic or reconstructive surgical procedures performed within the Plastic Surgery Division at the Federal University of São Paulo were used for this study. The explant technique was used. The culture medium was supplemented with different concentrations of DMAE on the fourth cell passage, and the cell proliferation rate, cytosolic calcium levels, and cell cycle were evaluated. Statistical analysis was performed using analysis of variance (ANOVA) followed by a Newman-Keuls test for multiple comparisons. A decrease in fibroblast proliferation was associated with an increase in DMAE concentration. A longer treatment time with trypsin was required for the groups treated with DMAE in a dose-dependent manner. In the presence of DMAE, cytosolic calcium increased in a dose-dependent manner. Apoptosis also increased in groups treated with DMAE. Dimethylaminoethanol reduced the proliferation of fibroblasts, increased cytosolic calcium, and changed the cell cycle, causing an increase in apoptosis in cultured human fibroblasts.

  2. Dose- and time-dependent pharmacokinetics of apigenin trimethyl ether.

    PubMed

    Elhennawy, Mai Gamal; Lin, Hai-Shu

    2018-06-15

    Apigenin trimethyl ether (5,7,4'-trimethoxyflavone, ATE), one of the key polymethoxyflavones present in black ginger (rhizome of Kaempferia parviflora) possesses various health-promoting activities. To optimize its medicinal application, the pharmacokinetics of ATE was assessed in Sprague-Dawley rats with emphases to identify the impacts from dose and repeated dosing on its major pharmacokinetic parameters. Plasma ATE levels were monitored by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Upon single intravenous administration (2 mg/kg), plasma levels of ATE declined through an apparent first-order process while dose-escalation to 4 and 8 mg/kg led to its non-linear disposition, which could be described by the Michaelis-Menten model. Similarly, dose-dependent oral pharmacokinetics was confirmed and when the dose was escalated from 5 to 15 and 45 mg/kg, much longer mean residence time (MRT 0→last ), higher dose-normalized maximal plasma concentration (C max /Dose) and exposure (AUC/Dose) were observed at 15 and/or 45 mg/kg. One-week daily oral administration of ATE at 15 mg/kg caused its accelerated elimination and the plasma exposure (AUC) after intravenous (2 mg/kg) and oral administration (15 mg/kg) dropped ~40 and 60%, respectively. As ATE displayed both dose- and time-dependent pharmacokinetics, caution is needed in the medicinal applications of ATE and/or black ginger. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. SU-E-T-526: On the Linearity, Stability and Beam Energy Dependence of CdSe Quantum Dots as Scintillating Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delage, M-E; Centre Hospitalier Universityde Quebec, Quebec, QC; Lecavalier, M-E

    2014-06-01

    Purpose: Structure and energy transfer mechanisms confer colloidal quantum dots (cQDs) interesting properties, among them their potential as scintillators. CdSe multi-shell cQDs in powder were investigated under photons irradiation. The purpose of this work is to characterize signal to dose linearity, stability with time and to quantify the dependence of their light output with beam energy. Methods: The cQDs are placed at the extremity of a non-scintillating plastic collecting fiber, with the other extremity connected to an Apogee U2000C CCD camera. The CCD camera collects the fluorescence light from irradiated cQDs from which the delivered dose is extracted. This signalmore » is corrected for Cerenkov contamination at MV energies using the chromatic technique. The detector was irradiated with two devices: Xstrahl 200 orthovoltage unit for 120, 180 and 220 kVp and a Varian Clinac iX for 6 and 23 MV. Results: Linear output response with varying dose is observed for all beam energies with R2 factors > 0,999. Reproducibility measurements were performed at 120 kVp: the same set-up was irradiated at different time intervals (one week and three months). The results showed only a small relative decrease of light output of 3,2 % after a combine deposited dose of approximately 95 Gy. CdSe nanocrystals response has been studied as a function of beam energy. The output increases with decreasing energy from 120 kVp to 6 MV and increase again for 23 MV. This behavior could be explained in part by the cQDs high-Z composition. Conclusion: The fluorescence light output of CdSe cQDs was found to be linear as a function of dose. The results suggest stability of the scintillation output of cQDs over time. The specific composition of cQDs is the main cause of the observed energy dependence. We will further look into particle beam dependence of the cQDs. Bourse d'excellence aux etudes graduees du CRC (Centre de Recherche sur le Cancer, Universite Laval) Bourse d'excellence aux etudes graduees du CRC (Centre de Recherche sur le Cancer, Universite Laval)« less

  4. Effets pathogènes d'un faible débit de dose : la relation « dose effet »

    NASA Astrophysics Data System (ADS)

    Masse, Roland

    2002-10-01

    There is no evidence of pathogenic effects in human groups exposed to less than 100 mSv at low dose-rate. The attributed effects are therefore the result of extrapolations from higher doses. The validity of such extrapolations is discussed from the point of view of epidemiology as well as cellular and molecular biology. The Chernobyl accident resulted in large excess of thyroid cancers in children; it also raised the point that some actual sanitary effects among distressed populations might be a direct consequence of low doses. Studies under the control of UN have not confirmed this point identifying no dose-effect relationship and " severe socio-economic and psychological pressures… poverty, poor diet and living conditions, and lifestyle factors" as the main cause for depressed health. Some hypothesis are considered for explaining the dose-dependence and high prevalence of non-cancer causes of death among human groups exposed to more than 300 mSv. To cite this article: R. Masse, C. R. Physique 3 (2002) 1049-1058.

  5. Radiation Damage Formation And Annealing In Mg-Implanted GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, Sean; Kelly, Michael J.; Yan, John

    2005-06-30

    We have implanted GaN with Mg ions over an energy range of 200keV to 1MeV at substrate temperatures of -150 (cold) and +300 deg. C (hot). The radiation damage formation in GaN was increased for cold implants when compared to samples implanted at elevated temperatures. The increase in damage formation is due to a reduction in the dynamic defect annealing during ion irradiation. The dopant stopping in the solid also depends upon the implant temperature. For a fixed implant energy and dose, Mg ions have a shorter range in GaN for cold implants when compared to hot implants which ismore » caused by the increase in scattering centres (disorder)« less

  6. Trigeminal induced arousals during human sleep.

    PubMed

    Heiser, Clemens; Baja, Jan; Lenz, Franziska; Sommer, J Ulrich; Hörmann, Karl; Herr, Raphael M; Stuck, Boris A

    2015-05-01

    Arousals caused by external stimuli during human sleep have been studied for most of the sensorial systems. It could be shown that a pure nasal trigeminal stimulus leads to arousals during sleep. The frequency of arousals increases dependent on the stimulus concentration. The aim of the study was to evaluate the influence of different stimulus durations on arousal frequency during different sleep stages. Ten young healthy volunteers with 20 nights of polysomnography were included in the study. Pure trigeminal stimulation with both different concentrations of CO2 (0, 10, 20, 40% v/v) and different stimulus durations (1, 3, 5, and 10 s) were applied during different sleep stages to the volunteers using an olfactometer. The application was performed during different sleep stages (light sleep, deep sleep, REM sleep). The number of arousals increased with rising stimulus duration and stimulus concentration during each sleep stage. Trigeminal stimuli during sleep led to arousals in dose- and time-dependent manner.

  7. Dose-dependent competitive block by topical acetylsalicylic and salicylic acid of low pH-induced cutaneous pain.

    PubMed

    Steen, K H; Reeh, P W; Kreysel, H W

    1996-01-01

    In a human acid pain model, which uses continuous intradermal pressure infusion of a phosphate-buffered solution (pH 5.2) to induce localized non-adapting pain, the flow was adjusted to result in constant pain ratings of about 20% or 50% on a visual analog scale (VAS). Six volunteers in each group participated in 4 different placebo-controlled double-blind cross-over studies to measure rapidly evolving cutaneous analgesia from topically applied new ointment formulations of acetylsalicylic acid (ASA) and salicylic acid (SA) as well as of commercial ibuprofen and benzocain creams. Similar, log-linear dose-response curves were found for both ASA and SA, significant in effect at 3 g/kg and higher drug contents and reaching saturation level at 15 or 30 g/kg, respectively, which, 20 min after application, caused a mean pain suppression of 95% using ASA and 80% using SA. Half-maximal effects were achieved using 3 g/kg ASA or 15 g/kg SA. The SA action was also clearly slower to develop. With an increased flow of the acidic buffer, producing lower effective tissue pH and more intense pain, the effect of ASA and SA decreased to 73% pain suppression. A competitive mechanism of both drug effects was suggested by the fact that, with 15 g/kg ASA and SA, pain reduction could be reversed by increasing the buffer flow by a factor of 1.75, on average. Commercial ibuprofen (50 g/kg) and benzocain creams (100 g/kg) were comparably as effective as ASA and SA, but the local anesthetic caused a loss of all cutaneous sensations while the touch threshold (von Frey) under the specific analgesics was the same as under the placebo ointment. Thus, topical applications of non-steroidal anti-inflammatory drugs (NSAIDS) dissolved in different ointment formulations have proven dose-dependently effective and specific in suppressing experimental acidotic pain by a local and competitive mechanism.

  8. Beta-2 receptor agonist exposure in the uterus associated with subsequent risk of childhood asthma.

    PubMed

    Ogawa, Kohei; Tanaka, Satomi; Limin, Yang; Arata, Naoko; Sago, Haruhiko; Yamamoto-Hanada, Kiwako; Narita, Masami; Ohya, Yukihiro

    2017-12-01

    Although the beta-2 receptor agonist (B2RA) is occasionally prescribed in the prenatal period for women with preterm labor, few studies have referred to the long-term effects of intrauterine exposure to B2RA on fetus. We examined the association between intrauterine exposure to B2RA and asthma in the offspring. We obtained data from a hospital-based birth cohort study conducted in Tokyo, Japan. The outcomes of interest were three indicators, consisting of current wheeze, current asthma, and ever asthma at 5 years of age, based on the International Study of Asthma and Allergies in Childhood questionnaire. Logistic regression analysis was used to evaluate the association between intrauterine B2RA exposure and outcomes. To evaluate dose-dependent risk, we categorized children into three groups according to both the cumulative dose and duration (days) and conducted trend analysis. Of 1158 children, 94 (8.1%) were exposed to B2RA in utero, and 191 (16.5%), 111 (9.6%), and 168 (14.5%) children experienced current wheeze, current asthma, and ever asthma, respectively. After adjusting for confounders, we found an increased risk of current asthma caused by B2RA exposure with an adjusted odds ratio of 2.04 (95% confidence interval: 1.02-4.05). Trend analysis showed that B2RA exposure in utero was associated with a dose-dependent increased risk of current asthma in terms of both cumulative dose and duration (P values for trend were .015 and .017, respectively). These results were similar to those for other outcome measures. Exposure to B2RA in utero could be a risk for childhood asthma. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  9. Safety and clinical effect of i.v. infusion of cyclopropyl-methoxycarbonyl etomidate (ABP-700), a soft analogue of etomidate, in healthy subjects.

    PubMed

    Valk, B I; Absalom, A R; Meyer, P; Meier, S; den Daas, I; van Amsterdam, K; Campagna, J A; Sweeney, S P; Struys, M M R F

    2018-06-01

    Cyclopropyl-methoxycarbonyl metomidate, or ABP-700, is a second generation analogue of etomidate, developed to retain etomidate's beneficial haemodynamic and respiratory profile but diminishing its suppression of the adrenocortical axis. The objective of this study was to characterise the safety and efficacy of 30-min continuous infusions of ABP-700, and to assess its effect on haemodynamics and the adrenocortical response in healthy human volunteers. Five cohorts involving 40 subjects received increasing infusion doses of ABP-700, propofol 60 μg kg -1  min -1 or placebo. Safety was evaluated through adverse event (AE) monitoring, safety laboratory tests, and arterial blood gasses. Haemodynamic and respiratory stability were assessed by continuous monitoring. Adrenocortical function was analysed by adrenocorticotropic hormone (ACTH) stimulation tests. Clinical effect was measured using the modified observer's assessment of alertness/sedation (MOAA/S) and continuous bispectral index monitoring. No serious AEs were reported. Haemodynamic and respiratory effects included mild dose-dependent tachycardia, slightly elevated blood pressure, and no centrally mediated apnoea. Upon stimulation with ACTH, no adrenocortical depression was observed in any subject. Involuntary muscle movements (IMM) were reported, which were more extensive with higher dosing regimens. Higher dosages of ABP-700 were associated with deeper sedation and increased likelihood of sedation. Time to onset of clinical effect was variable throughout the cohorts and recovery was swift. Infusions of ABP-700 showed a dose-dependent hypnotic effect, and did not cause severe hypotension, severe respiratory depression, or adrenocortical suppression. The presentation and nature of IMM is a matter of concern. NTR4735. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  10. Suppression of E. multilocularis Hydatid Cysts after Ionizing Radiation Exposure

    PubMed Central

    Zhou, Rong; Zhang, Hong

    2013-01-01

    Background Heavy-ion therapy has an advantage over conventional radiotherapy due to its superb biological effectiveness and dose conformity in cancer therapy. It could be a potential alternate approach for hydatid cyst treatment. However, there is no information currently available on the cellular and molecular basis for heavy-ion irradiation induced cell death in cystic echinococcosis. Methododology/Principal Findings LD50 was scored by protoscolex death. Cellular and ultrastructural changes within the parasite were studied by light and electron microscopy, mitochondrial DNA (mtDNA) damage and copy number were measured by QPCR, and apoptosis was determined by caspase 3 expression and caspase 3 activity. Ionizing radiation induced sparse cytoplasm, disorganized and clumped organelles, large vacuoles and devoid of villi. The initial mtDNA damage caused by ionizing radiation increased in a dose-dependent manner. The kinetic of DNA repair was slower after carbon-ion radiation than that after X-rays radiation. High dose carbon-ion radiation caused irreversible mtDNA degradation. Cysts apoptosis was pronounced after radiation. Carbon-ion radiation was more effective to suppress hydatid cysts than X-rays. Conclusions These studies provide a framework to the evaluation of attenuation effect of heavy-ion radiation on cystic echinococcosis in vitro. Carbon-ion radiation is more effective to suppress E. multilocularis than X-rays. PMID:24205427

  11. Effects of multiple ascending doses of the glucagon receptor antagonist PF-06291874 in patients with type 2 diabetes mellitus.

    PubMed

    Kazierad, D J; Bergman, A; Tan, B; Erion, D M; Somayaji, V; Lee, D S; Rolph, T

    2016-08-01

    To assess the pharmacokinetics, pharmacodynamics, safety and tolerability of multiple ascending doses of the glucagon receptor antagonist PF-06291874 in patients with type 2 diabetes mellitus (T2DM). Patients were randomized to oral PF-06291874 or placebo on a background of either metformin (Part A, Cohorts 1-5: 5-150 mg once daily), or metformin and sulphonylurea (Part B, Cohorts 1-2: 15 or 30 mg once daily) for 14-28 days. A mixed-meal tolerance test (MMTT) was administered on days -1 (baseline), 14 and 28. Assessments were conducted with regard to pharmacokinetics, various pharmacodynamic variables, safety and tolerability. Circulating amino acid concentrations were also measured. PF-06291874 exposure was approximately dose-proportional with a half-life of ∼19.7-22.7 h. Day 14 fasting plasma glucose and mean daily glucose values were reduced from baseline in a dose-dependent manner, with placebo-corrected decreases of 34.3 and 42.4 mg/dl, respectively, at the 150 mg dose. After the MMTT, dose-dependent increases in glucagon and total glucagon-like peptide-1 (GLP-1) were observed, although no meaningful changes were noted in insulin, C-peptide or active GLP-1 levels. Small dose-dependent increases in LDL cholesterol were observed, along with reversible increases in serum aminotransferases that were largely within the laboratory reference range. An increase in circulating gluconeogenic amino acids was also observed on days 2 and 14. All dose levels of PF-06291874 were well tolerated. PF-06291874 was well tolerated, has a pharmacokinetic profile suitable for once-daily dosing, and results in reductions in glucose with minimal risk of hypoglycaemia. © 2016 John Wiley & Sons Ltd.

  12. Low-dose γ-radiation inhibits IL-1β-induced dedifferentiation and inflammation of articular chondrocytes via blockage of catenin signaling

    PubMed Central

    Hong, Eun-Hee; Song, Jie-Young; Lee, Su-Jae; Park, In-Chul; Um, Hong-Duck; Park, Jong Kuk; Lee, Kee-Ho; Nam, Seon Young; Hwang, Sang-Gu

    2014-01-01

    Although low-dose radiation (LDR) regulates a wide range of biological processes, limited information is available on the effects of LDR on the chondrocyte phenotype. Here, we found that LDR, at doses of 0.5–2 centiGray (cGy), inhibited interleukin (IL)-1β-induced chondrocyte destruction without causing side effects, such as cell death and senescence. IL-1β treatment induced an increase in the expression of α-, β-, and γ-catenin proteins in chondrocytes via Akt signaling, thereby promoting dedifferentiation through catenin-dependent suppression of Sox-9 transcription factor expression and induction of inflammation through activation of the NF-κB pathway. Notably, LDR blocked cartilage disorders by inhibiting IL-1β-induced catenin signaling and subsequent catenin-dependent suppression of the Sox-9 pathway and activation of the NF-κB pathway, without directly altering catenin expression. LDR also inhibited chondrocyte destruction through the catenin pathway induced by epidermal growth factor, phorbol 12-myristate 13-acetate, and retinoic acid. Collectively, these results identify the molecular mechanisms by which LDR suppresses pathophysiological processes and establish LDR as a potentially valuable therapeutic tool for patients with cytokine- or soluble factors-mediated cartilage disorders. PMID:24604706

  13. Functional Characterisation of Anticancer Activity in the Aqueous Extract of Helicteres angustifolia L. Roots

    PubMed Central

    Li, Kejuan; Yu, Yue; Sun, Shuang; Liu, Ye; Garg, Sukant; Kaul, Sunil C.; Lei, Zhongfang; Gao, Ran; Wadhwa, Renu; Zhang, Zhenya

    2016-01-01

    Helicteres angustifolia L. is a shrub that forms a common ingredient of several cancer treatment recipes in traditional medicine system both in China and Laos. In order to investigate molecular mechanisms of its anticancer activity, we prepared aqueous extract of Helicteres angustifolia L. Roots (AQHAR) and performed several in vitro assays using human normal fibroblasts (TIG-3) and osteosarcoma (U2OS). We found that AQHAR caused growth arrest/apoptosis of U2OS cells in a dose-dependent manner. It showed no cytotoxicity to TIG-3 cells at doses up to 50 μg/ml. Biochemical, imaging and cell cycle analyses revealed that it induces ROS signaling and DNA damage response selectively in cancer cells. The latter showed upregulation of p53, p21 and downregulation of Cyclin B1 and phospho-Rb. Furthermore, AQHAR-induced apoptosis was mediated by increase in pro-apoptotic proteins including cleaved PARP, caspases and Bax. Anti-apoptotic protein Bcl-2 showed decrease in AQHAR-treated U2OS cells. In vivo xenograft tumor assays in nude mice revealed dose-dependent suppression of tumor growth and lung metastasis with no toxicity to the animals suggesting that AQHAR could be a potent and safe natural drug for cancer treatment. PMID:27010955

  14. Astaxanthin protects against early burn-wound progression in rats by attenuating oxidative stress-induced inflammation and mitochondria-related apoptosis

    PubMed Central

    Fang, Quan; Guo, Songxue; Zhou, Hanlei; Han, Rui; Wu, Pan; Han, Chunmao

    2017-01-01

    Burn-wound progression can occur in the initial or peri-burn area after a deep burn injury. The stasis zone has a higher risk of deterioration mediated by multiple factors but is also considered salvageable. Astaxanthin (ATX), which is extracted from some marine organisms, is a natural compound with a strong antioxidant effect that has been reported to attenuate organ injuries caused by traumatic injuries. Hence, we investigated the potential effects of ATX on preventing early burn-wound progression. A classic “comb” burn rat model was established in this study for histological and biological assessments, which revealed that ATX, particularly higher doses, alleviated histological deterioration in the stasis zone. Additionally, we observed dose-dependent improvements in oxidative stress and the release of inflammatory mediators after ATX treatment. Furthermore, ATX dose-dependently attenuated burn-induced apoptosis in the wound areas, and this effect was accompanied by increases in Akt and Bad phosphorylation and a downregulation of cytochrome C and caspase expression. In addition, the administration of Ly 294002 further verified the effect of ATX. In summary, we demonstrated that ATX protected against early burn-wound progression in a rat deep-burn model. This protection might be mediated by the attenuation of oxidative stress-induced inflammation and mitochondria-related apoptosis. PMID:28128352

  15. Adding Dopamine to Proxymetacaine or Oxybuprocaine Solutions Potentiates and Prolongs the Cutaneous Antinociception in Rats.

    PubMed

    Chen, Yu-Wen; Chiu, Chong-Chi; Lin, Heng-Teng; Wang, Jhi-Joung; Hung, Ching-Hsia

    2018-05-01

    We evaluated the interaction of dopamine-proxymetacaine and dopamine- oxybuprocaine antinociception using isobolograms. This experiment uses subcutaneous drug (proxymetacaine, oxybuprocaine, and dopamine) injections under the skin of the rat's back, thus simulating infiltration blocks. The dose-related antinociceptive curves of proxymetacaine and oxybuprocaine alone and in combination with dopamine were constructed, and then the antinociceptive interactions between the local anesthetic and dopamine were analyzed using isobolograms. Subcutaneous proxymetacaine, oxybuprocaine, and dopamine produced a sensory block to local skin pinpricks in a dose-dependent fashion. The rank order of potency was proxymetacaine (0.57 [0.52-0.63] μmol/kg) > oxybuprocaine (1.05 [0.96-1.15] μmol/kg) > dopamine (165 [154-177] μmol/kg; P < .01 for each comparison) based on the 50% effective dose values. On the equianesthetic basis (25% effective dose, 50% effective dose, and 75% effective dose), the nociceptive block duration of proxymetacaine or oxybuprocaine was shorter than that of dopamine (P < .01). Oxybuprocaine or proxymetacaine coinjected with dopamine elicited a synergistic antinociceptive effect and extended the duration of action. Oxybuprocaine and proxymetacaine had a higher potency and provoked a shorter duration of sensory block compared with dopamine. The use of dopamine increased the quality and duration of skin antinociception caused by oxybuprocaine and proxymetacaine.

  16. Comparative Proteomic Analysis of Liver Steatosis and Fibrosis after Oral Hepatotoxicant Administration in Sprague-Dawley Rats.

    PubMed

    McDyre, B Claire; AbdulHameed, Mohamed Diwan M; Permenter, Matthew G; Dennis, William E; Baer, Christine E; Koontz, Jason M; Boyle, Molly H; Wallqvist, Anders; Lewis, John A; Ippolito, Danielle L

    2018-02-01

    The past decade has seen an increase in the development and clinical use of biomarkers associated with histological features of liver disease. Here, we conduct a comparative histological and global proteomics analysis to identify coregulated modules of proteins in the progression of hepatic steatosis or fibrosis. We orally administered the reference chemicals bromobenzene (BB) or 4,4'-methylenedianiline (4,4'-MDA) to male Sprague-Dawley rats for either 1 single administration or 5 consecutive daily doses. Livers were preserved for histopathology and global proteomics assessment. Analysis of liver sections confirmed a dose- and time-dependent increase in frequency and severity of histopathological features indicative of lipid accumulation after BB or fibrosis after 4,4'-MDA. BB administration resulted in a dose-dependent increase in the frequency and severity of inflammation and vacuolation. 4,4'-MDA administration resulted in a dose-dependent increase in the frequency and severity of periportal collagen accumulation and inflammation. Pathway analysis identified a time-dependent enrichment of biological processes associated with steatogenic or fibrogenic initiating events, cellular functions, and toxicological states. Differentially expressed protein modules were consistent with the observed histology, placing physiologically linked protein networks into context of the disease process. This study demonstrates the potential for protein modules to provide mechanistic links between initiating events and histopathological outcomes.

  17. Late Effects of Heavy Ion Irradiation on Ex Vivo Osteoblastogenesis and Cancellous Bone Microarchitecture

    NASA Technical Reports Server (NTRS)

    Tran, Luan Hoang; Alwood, Joshua; Kumar, Akhilesh; Limoli, C. L.; Globus, Ruth

    2012-01-01

    Prolonged spaceflight causes degeneration of skeletal tissue with incomplete recovery even after return to Earth. We hypothesize that heavy ion irradiation, a component of Galactic Cosmic Radiation, damages osteoblast progenitors and may contribute to bone loss during long duration space travel beyond the protection of the Earth's magnetosphere. Male, 16 week old C57BL6/J mice were exposed to high LET (56 Fe, 600MeV) radiation using either low (5 or 10cGy) or high (50 or 200cGy) doses at the NASA Space Radiation Lab and were euthanized 3 - 4, 7, or 35 days later. Bone structure was quantified by microcomputed tomography (6.8 micron pixel size) and marrow cell redox assessed using membrane permeable, free radical sensitive fluorogenic dyes. To assess osteoblastogenesis, adherent marrow cells were cultured ex vivo, then mineralized nodule formation quantified by imaging and gene expression analyzed by RT PCR. Interestingly, 3 - 4 days post exposure, fluorogenic dyes that reflect cytoplasmic generation of reactive nitrogen/oxygen species (DAF FM Diacetate or CM H2DCFDA) revealed irradiation (50cGy) reduced free radical generation (20-45%) compared to sham irradiated controls. Alternatively, use of a dye showing relative specificity for mitochondrial superoxide generation (MitoSOX) revealed an 88% increase compared to controls. One week after exposure, reactive oxygen/nitrogen levels remained lower(24%) relative to sham irradiated controls. After one month, high dose irradiation (200 cGy) caused an 86% decrement in ex vivo nodule formation and a 16-31% decrement in bone volume to total volume and trabecular number (50, 200cGy) compared to controls. High dose irradiation (200cGy) up regulated expression of a late osteoblast marker (BGLAP) and select genes related to oxidative metabolism (Catalase) and DNA damage repair (Gadd45). In contrast, lower doses (5, 10cGy) did not affect bone structure or ex vivo nodule formation, but did down regulate iNOS by 0.54 - 0.58 fold. Thus, both low and high doses of heavy ion irradiation cause time dependent, adaptive changes in redox state within marrow cells but only high doses (50, 200cGy) inhibit osteoblastogenesis and cause cancellous bone loss. We conclude space radiation has the potential to cause persistent damage to bone marrow derived stem and progenitor cells for osteoblasts despite adaptive changes in cellular redox state.

  18. Investigation of the influence of irradiation with Fe+7 ions on structural properties of AlN ceramics

    NASA Astrophysics Data System (ADS)

    Kozlovskiy, A.; Dukenbayev, K.; Ivanov, I.; Kozin, S.; Aleksandrenko, V.; Kurakhmedov, A.; Sambaev, E.; Kenzhina, I.; Tosi, D.; Loginov, V.; Zdorovets, M.

    2018-06-01

    The paper presents the results of investigation of defect formation in AlN ceramics under Fe+7 ion irradiation with a fluence from 1 × 1011 to 1 × 1014 ion cm‑2. The change in the main crystallographic characteristics, the decrease in the magnitude of Griffiths criterion, and the increase in the average voltage as a result of irradiation are caused by the appearance of additional defects in the structure and their further evolution leading to a change in the degree of crystallinity. For samples irradiated with Fe+7 ions to a dose of 1 × 1011 ion cm‑2, the formation of pyramidal hillocks is observed on the surface, whose average height is 17–20 nm. An increase in the irradiation dose leads to an increase in chillocks size and their density. At the same time, at large irradiation doses, the formation of conglomerates of chyllocks and grooves on the samples surface is observed. The change in surface morphology, the formation of chyllocks on the ceramic surface, and the dependence of the change in crystallographic characteristics during irradiation make it possible to unambiguously associate the formation of radiation defects in the structure of the ceramic with energy losses in elastic and inelastic interactions of iron ions with lattice atoms.

  19. Repair-dependent cell radiation survival and transformation: an integrated theory.

    PubMed

    Sutherland, John C

    2014-09-07

    The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete sigmodial dose-response data for neoplastic transformations can be fit using the repair-dependent functions with all parameters determined only from transformation frequency data.

  20. Imprinted genes and transpositions: epigenomic targets for low dose radiation effects. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jirtle, Randy L.

    2012-10-11

    The overall hypothesis of this grant application is that low dose ionizing radiation (LDIR) elicits adaptive responses in part by causing heritable DNA methylation changes in the epigenome. This novel postulate was tested by determining if the level of DNA methylation at the Agouti viable yellow (A{sup vy}) metastable locus is altered, in a dose-dependent manner, by low dose radiation exposure (<10 cGy) during early gestation. This information is particularly important to ascertain given the increased use of CT scans in disease diagnosis, increased number of people predicted to live and work in space, and the present concern about radiologicalmore » terrorism. We showed for the first time that LDIR significantly increased DNA methylation at the A{sup vy} locus in a sex-specific manner (p=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 cGy and 7.6 cGy with maximum effects at 1.4 cGy and 3.0 cGy (p<0.01). Offspring coat color was concomitantly shifted towards pseudoagouti (p<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring (p<0.05). Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic Avy mouse model epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful. Our findings not only have significant implications concerning the mechanism of hormesis, but they also emphasize the potential importance of this phenomenon in determining human risk at low radiation doses. Since the epigenetic regulation of genes varies markedly between species, the effect of LDIR on other epigenetically labile genes (e.g. imprinted genes) in animals and humans needs to be defined.« less

  1. Regulatory T Cell Responses in Participants with Type 1 Diabetes after a Single Dose of Interleukin-2: A Non-Randomised, Open Label, Adaptive Dose-Finding Trial

    PubMed Central

    Todd, John A.; Porter, Linsey; Smyth, Deborah J.; Rainbow, Daniel B.; Ferreira, Ricardo C.; Yang, Jennie H.; Bell, Charles J. M.; Schuilenburg, Helen; Challis, Ben; Clarke, Pamela; Coleman, Gillian; Dawson, Sarah; Goymer, Donna; Kennet, Jane; Brown, Judy; Greatorex, Jane; Goodfellow, Ian; Evans, Mark; Mander, Adrian P.; Bond, Simon; Wicker, Linda S.

    2016-01-01

    Background Interleukin-2 (IL-2) has an essential role in the expansion and function of CD4+ regulatory T cells (Tregs). Tregs reduce tissue damage by limiting the immune response following infection and regulate autoreactive CD4+ effector T cells (Teffs) to prevent autoimmune diseases, such as type 1 diabetes (T1D). Genetic susceptibility to T1D causes alterations in the IL-2 pathway, a finding that supports Tregs as a cellular therapeutic target. Aldesleukin (Proleukin; recombinant human IL-2), which is administered at high doses to activate the immune system in cancer immunotherapy, is now being repositioned to treat inflammatory and autoimmune disorders at lower doses by targeting Tregs. Methods and Findings To define the aldesleukin dose response for Tregs and to find doses that increase Tregs physiologically for treatment of T1D, a statistical and systematic approach was taken by analysing the pharmacokinetics and pharmacodynamics of single doses of subcutaneous aldesleukin in the Adaptive Study of IL-2 Dose on Regulatory T Cells in Type 1 Diabetes (DILT1D), a single centre, non-randomised, open label, adaptive dose-finding trial with 40 adult participants with recently diagnosed T1D. The primary endpoint was the maximum percentage increase in Tregs (defined as CD3+CD4+CD25highCD127low) from the baseline frequency in each participant measured over the 7 d following treatment. There was an initial learning phase with five pairs of participants, each pair receiving one of five pre-assigned single doses from 0.04 × 106 to 1.5 × 106 IU/m2, in order to model the dose-response curve. Results from each participant were then incorporated into interim statistical modelling to target the two doses most likely to induce 10% and 20% increases in Treg frequencies. Primary analysis of the evaluable population (n = 39) found that the optimal doses of aldesleukin to induce 10% and 20% increases in Tregs were 0.101 × 106 IU/m2 (standard error [SE] = 0.078, 95% CI = −0.052, 0.254) and 0.497 × 106 IU/m2 (SE = 0.092, 95% CI = 0.316, 0.678), respectively. On analysis of secondary outcomes, using a highly sensitive IL-2 assay, the observed plasma concentrations of the drug at 90 min exceeded the hypothetical Treg-specific therapeutic window determined in vitro (0.015–0.24 IU/ml), even at the lowest doses (0.040 × 106 and 0.045 × 106 IU/m2) administered. A rapid decrease in Treg frequency in the circulation was observed at 90 min and at day 1, which was dose dependent (mean decrease 11.6%, SE = 2.3%, range 10.0%–48.2%, n = 37), rebounding at day 2 and increasing to frequencies above baseline over 7 d. Teffs, natural killer cells, and eosinophils also responded, with their frequencies rapidly and dose-dependently decreased in the blood, then returning to, or exceeding, pretreatment levels. Furthermore, there was a dose-dependent down modulation of one of the two signalling subunits of the IL-2 receptor, the β chain (CD122) (mean decrease = 58.0%, SE = 2.8%, range 9.8%–85.5%, n = 33), on Tregs and a reduction in their sensitivity to aldesleukin at 90 min and day 1 and 2 post-treatment. Due to blood volume requirements as well as ethical and practical considerations, the study was limited to adults and to analysis of peripheral blood only. Conclusions The DILT1D trial results, most notably the early altered trafficking and desensitisation of Tregs induced by a single ultra-low dose of aldesleukin that resolves within 2–3 d, inform the design of the next trial to determine a repeat dosing regimen aimed at establishing a steady-state Treg frequency increase of 20%–50%, with the eventual goal of preventing T1D. Trial Registration ISRCTN Registry ISRCTN27852285; ClinicalTrials.gov NCT01827735 PMID:27727279

  2. Methamphetamine treatment during development attenuates the dopaminergic deficits caused by subsequent high-dose methamphetamine administration.

    PubMed

    McFadden, Lisa M; Hoonakker, Amanda J; Vieira-Brock, Paula L; Stout, Kristen A; Sawada, Nicole M; Ellis, Jonathan D; Allen, Scott C; Walters, Elliot T; Nielsen, Shannon M; Gibb, James W; Alburges, Mario E; Wilkins, Diana G; Hanson, Glen R; Fleckenstein, Annette E

    2011-08-01

    Administration of high doses of methamphetamine (METH) causes persistent dopaminergic deficits in both nonhuman preclinical models and METH-dependent persons. Noteworthy, adolescent [i.e., postnatal day (PND) 40] rats are less susceptible to this damage than young adult (PND90) rats. In addition, biweekly treatment with METH, beginning at PND40 and continuing throughout development, prevents the persistent dopaminergic deficits caused by a "challenge" high-dose METH regimen when administered at PND90. Mechanisms underlying this "resistance" were thus investigated. Results revealed that biweekly METH treatment throughout development attenuated both the acute and persistent deficits in VMAT2 function, as well as the acute hyperthermia, caused by a challenge METH treatment. Pharmacokinetic alterations did not appear to contribute to the protection afforded by the biweekly treatment. Maintenance of METH-induced hyperthermia abolished the protection against both the acute and persistent VMAT2-associated deficits suggesting that alterations in thermoregulation were caused by exposure of rats to METH during development. These findings suggest METH during development prevents METH-induced hyperthermia and the consequent METH-related neurotoxicity. Copyright © 2011 Wiley-Liss, Inc.

  3. Experimental measurements and Monte Carlo simulations of dose perturbation around a nonradioactive brachytherapy seed due to 6- and 18-MV photons.

    PubMed

    Steinman, James Paul; Bakhtiari, Mohammad; Malhotra, Harish Kumar

    2012-01-01

    Radioactive seeds used in permanent prostate brachytherapy are composed of high-Z metals and may exceed 100 in a patient. If supplemental external beam treatment is administered afterward, the seeds may cause substantial dose perturbation, which is being investigated in this article. Film measurements using 6-MV beam were primarily carried out using Kodak XV2 film layered above and below a nonradioactive iodine-125 ((125)I) seed. Monte Carlo simulations were carried out using DOSXYZnrc. Other experimental comparisons looked at changing beam energy, depth, and field size, including two opposing fields' pair. Effect of multiple seeds spatially spaced 0.5cm vertically was also studied. For a single (125)I seed, on XV film, there is a localized dose enhancement of 6.3% upstream and -10.9% downstream. With two opposing fields, a cold spot around the seed of ∼3% was noticed. Increasing beam energy and field size decreased the magnitude of this effect, whereas the effect was found to increase with the increasing Z of material. DOSXYZnrc and EBT-2 film verified maximum dose enhancement of +15% upstream and -20% downstream of the (125)I seed surface. In general, the dose perturbation because of the seeds was spatially limited to ∼2mm upstream and ∼5mm downstream to the incident beam. Similar to other heterogeneities, the seeds perturbation depends on incident beam energy, field size, and its Z. With multiple seeds spatially apart and multiple radiation fields routinely used in external beam radiotherapy, the cumulative effect may not result in clinically significant dose perturbation. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Perchlorate disrupts embryonic androgen synthesis and reproductive development in threespine stickleback without changing whole-body levels of thyroid hormone

    PubMed Central

    Petersen, Ann M.; Dillon, Danielle; Bernhardt, Richard A.; Torunsky, Roberta; Postlethwait, John H.; von Hippel, Frank A.; Buck, C. Loren; Cresko, William A.

    2014-01-01

    Perchlorate, an environmental contaminant, disrupts normal functioning of the thyroid. We previously showed that perchlorate disrupts behavior and gonad development, and induces external morphological changes in a vertebrate model organism, the threespine stickleback. Whether perchlorate alters these phenotypes via a thyroid-mediated mechanism, and the extent to which the effects depend on dose, are unknown. To address these questions, we chronically exposed stickleback to control conditions and to three concentrations of perchlorate (10, 30 and 100 ppm) at various developmental stages from fertilization to reproductive maturity. Adults chronically exposed to perchlorate had increased numbers of thyroid follicles and decreased numbers of thyrocytes. Surprisingly, T4 and T3 levels in larval, juvenile, and adult whole fish chronically exposed to perchlorate did not differ from controls, except at the lowest perchlorate dose, suggesting a non-monotonic dose response curve. We found no detectable abnormalities in external phenotype at any dose of perchlorate, indicating that the increased number of thyroid follicles compensated for the disruptive effects of these doses. In contrast to external morphology, gonadal development was altered substantially, with the highest dose of perchlorate causing the largest effects. Perchlorate increased the number both of early stage ovarian follicles in females and of advanced spermatogenic stages in males. Perchlorate also disrupted embryonic androgen levels. We conclude that chronic perchlorate exposure may not result in lasting adult gross morphological changes but can produce lasting modifications to gonads when compensation of T3 and T4 levels occurs by thyroid follicle hyperplasia. Perchlorate may therefore affect vertebrate development via both thyroidal and non-thyroidal mechanisms. PMID:25448260

  5. Sex- and dose-dependency in the pharmacokinetics and pharmacodynamics of (+)-methamphetamine and its metabolite (+)-amphetamine in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milesi-Halle, Alessandra; Hendrickson, Howard P.; Laurenzana, Elizabeth M.

    These studies investigated how (+)-methamphetamine (METH) dose and rat sex affect the pharmacological response to METH in Sprague-Dawley rats. The first set of experiments determined the pharmacokinetics of METH and its pharmacologically active metabolite (+)-amphetamine (AMP) in male and female Sprague-Dawley rats after 1.0 and 3.0 mg/kg METH doses. The results showed significant sex-dependent changes in METH pharmacokinetics, and females formed significantly lower amounts of AMP. While the area under the serum concentration-time curve in males increased proportionately with the METH dose, the females showed a disproportional increase. The sex differences in systemic clearance, renal clearance, volume of distribution, andmore » percentage of unchanged METH eliminated in the urine suggested dose-dependent pharmacokinetics in female rats. The second set of studies sought to determine the behavioral implications of these pharmacokinetic differences by quantifying locomotor activity in male and female rats after saline, 1.0, and 3.0 mg/kg METH. The results showed sex- and dose-dependent differences in METH-induced locomotion, including profound differences in the temporal profile of effects at higher dose. These findings show that the pharmacokinetic and metabolic profile of METH (slower METH clearance and lower AMP metabolite formation) plays a significant role in the differential pharmacological response to METH in male and female rats.« less

  6. Predicting in vivo cardiovascular properties of β-blockers from cellular assays: a quantitative comparison of cellular and cardiovascular pharmacological responses

    PubMed Central

    Baker, Jillian G.; Kemp, Philip; March, Julie; Fretwell, Laurice; Hill, Stephen J.; Gardiner, Sheila M.

    2011-01-01

    β-Adrenoceptor antagonists differ in their degree of partial agonism. In vitro assays have provided information on ligand affinity, selectivity, and intrinsic efficacy. However, the extent to which these properties are manifest in vivo is less clear. Conscious freely moving rats, instrumented for measurement of heart rate (β1; HR) and hindquarters vascular conductance (β2; HVC) were used to measure receptor selectivity and ligand efficacy in vivo. CGP 20712A caused a dose-dependent decrease in basal HR (P<0.05, ANOVA) at 5 doses between 6.7 and 670 μg/kg (i.v.) and shifted the dose-response curve for isoprenaline to higher agonist concentrations without altering HVC responses. In contrast, at doses of 67 μg/kg (i.v.) and above, ICI 118551 substantially reduced the HVC response to isoprenaline without affecting HR responses. ZD 7114, xamoterol, and bucindolol significantly increased basal HR (ΔHR: +122±12, +129±11, and +59±11 beats/min, respectively; n=6), whereas other β-blockers caused significant reductions (all at 2 mg/kg i.v.). The agonist effects of xamoterol and ZD 7114 were equivalent to that of the highest dose of isoprenaline. Bucindolol, however, significantly antagonized the response to the highest doses isoprenaline. An excellent correlation was obtained between in vivo and in vitro measures of β1-adrenoceptor efficacy (R2=0.93; P<0.0001).—Baker, J. G., Kemp, P., March, J., Fretwell, L., Hill, S. J., Gardiner, S. M. Predicting in vivo cardiovascular properties of β-blockers from cellular assays: a quantitative comparison of cellular and cardiovascular pharmacological responses. PMID:21865315

  7. Effects of acute and repeated oral exposure to the organophosphate insecticide chlorpyrifos on open-field activity in chicks.

    PubMed

    Al-Badrany, Y M A; Mohammad, F K

    2007-11-01

    The effects of the organophosphate insecticide chlorpyrifos on 5min open-field activity were examined in a 7-15 days old chick model. Chlorpyrifos was acutely administered taking into account cholinesterase inhibition and determination of the acute (24h) median lethal dose (LD50). The oral LD50 value of chlorpyrifos in chicks was 18.14mg/kg, with cholinergic toxicosis observed on intoxicated chicks. Chlorpyrifos at the dose rates of 5,10 and 20mg/kg orally produced within 2h signs of cholinergic toxicosis in the chicks and significantly inhibited plasma (40-70%), whole brain (43-69%) and liver (31-46%) cholinesterase activities in a dose-dependent manner. Chlorpyrifos at 2 and 4mg/kg, orally did not produce overt signs of cholinergic toxicosis, but decreased (30, 60 and 90min after dosing) the general locomotor activity of the chicks as seen by a significant increase in the latency to move from the central square of the open-field arena, decreases in the numbers of lines crossed and vocalization score. Repeated daily chlorpyrifos treatments (2 and 4mg/kg, orally) for seven consecutive days also caused hypoactivity in chicks in the open-field behavioral paradigm. Only the high dose of chlorpyrifos (4mg/kg, orally) given repeatedly for 7 days caused significant cholinesterase inhibition in the whole brain (37%) and the liver (22%). In conclusion, chlorpyrifos at single or short-term repeated doses-induced behavioral changes in 7-15 days old chicks, in a model that could be used for further neurobehavioral studies involving subtle effects of organophosphates on chicks.

  8. Effects of Prenatal Exposure to a Low Dose Atrazine Metabolite Mixture on Pubertal Timing and Prostate Development of Male Long Evans Rats

    PubMed Central

    Stanko, Jason P.; Enoch, Rolondo R.; Rayner, Jennifer L.; Davis, Christine C.; Wolf, Douglas C.; Malarkey, David E.; Fenton, Suzanne E.

    2010-01-01

    The present study examines the postnatal reproductive development of male rats following prenatal exposure to an atrazine metabolite mixture (AMM) consisting of the herbicide atrazine and its environmental metabolites diaminochlorotriazine, hydroxyatrazine, deethylatrazine, and deisopropylatrazine. Pregnant Long Evans rats were treated by gavage with 0.09, 0.87, or 8.73 mg AMM/kg body weight (BW), vehicle, or 100 mg ATR/kg BW positive control, on gestation days 15-19. Preputial separation was significantly delayed in 0.87 mg and 8.73 mg AMM-exposed males. AMM-exposed males demonstrated a significant treatment-related increase in incidence and severity of inflammation in the prostate on postnatal day (PND) 120. A dose-dependent increase in epididymal fat masses and prostate foci were grossly visible in AMM-exposed offspring. These results indicate that a short, late prenatal exposure to mixture of chlorotriazine metabolites can cause chronic prostatitis in male LE rats. The mode of action for these effects is presently unclear. PMID:20727709

  9. Novelty response of rats determines the effect of prefrontal alpha-2 adrenoceptor modulation on anxiety.

    PubMed

    Uzsoki, B; Tóth, M; Hernádi, I

    2011-07-25

    In this study we provide evidence that animals of the same population, although identical in age and sex, have individual reactions to the prefrontal modulation of adrenoceptors. We have examined the dose-dependent action of α(2)-adrenoceptor agents on the anxiety of rats with different response to novelty in the elevated plus maze (EPM) apparatus. Rats were divided into high (HR) and low responder (LR) groups based on their locomotor activity in a novel open field environment. HR rats also showed increased locomotion and low anxiety in the EPM. Prefrontal injection of α(2)-receptor antagonist yohimbine, BRL44408 or imiloxan caused anxiety only in HR rats. The α(2A/D)-receptor agonist guanfacine increased anxiety levels of both groups. However, the effective dose was lower in HR rats. The present results propose different prefrontal adrenoceptor sensitivity of rats showing distinct baseline activity levels. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Formation of metal nanoparticles in MgF2, CaF2 and BaF2 crystals under the electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Bochkareva, Elizaveta S.; Sidorov, Alexander I.; Yurina, Uliana V.; Podsvirov, Oleg A.

    2017-07-01

    It is shown experimentally that electron beam action with electrons energies of 50 and 70 keV on MgF2, CaF2 and BaF2 crystals results in local formation in the crystal near-surface layer of Mg, Ca or Ba nanoparticles which possess plasmon resonance. In the case of MgF2 spheroidal nanoparticles are formed, in the cases of CaF2 and BaF2 - spherical. The formation of metal nanoparticles is confirmed by computer simulation in dipole quasistatic approximation. The dependence of absorption via electron irradiation dose is non-linear. It is caused by the increase of nanoparticles concentration and by the increase of nanoparticles sizes during irradiation. In the irradiated zones of MgF2 crystals, for irradiation doses less than 80 mC/cm2, the intense luminescence in a visible range appears. The practical application of fabricated composite materials for multilevel optical information recording is discussed.

  11. Intravenous Nicotine Self-Administration in Smokers: Dose-Response Function and Sex Differences.

    PubMed

    Jensen, Kevin P; DeVito, Elise E; Valentine, Gerald; Gueorguieva, Ralitza; Sofuoglu, Mehmet

    2016-07-01

    Sex differences in the sensitivity to nicotine may influence vulnerability to tobacco dependence. The goal of this study was to investigate the dose-response function for the reinforcing and subjective effects of intravenous nicotine in male and female smokers. Tobacco-dependent subjects (12 male and 14 female) participated in four experimental sessions in which they received sample infusions of saline and nicotine (0.1, 0.2, 0.3, or 0.4 mg doses) in a randomized double-blind crossover design. During each session, subjects first received the sample infusions, and heart rate (HR), blood pressure, and subjective stimulatory, pleasurable and aversive responses were monitored. Immediately following the sample infusions, subjects self-administered either nicotine or saline in six double-blind forced-choice trials. A sex by dose interaction was observed in the nicotine choice paradigm. Nicotine self-administration rate was negatively correlated with nicotine dose in males (males displayed choice preference for low doses of nicotine over high doses of nicotine), but no significant relationship between dose and choice preference was evident in females. Relative to placebo, sample doses of nicotine increased heart rate and blood pressure, and induced stimulatory, pleasurable, and aversive subjective effects. Diastolic blood pressure increased dose dependently in males, but not in females. These findings, which demonstrate sex differences in nicotine self-administration for doses that are near to the reinforcement threshold, suggest that male and female smokers may respond differently to the changes in nicotine doses available for self-administration.

  12. Multiparametric Determination of Radiation Risk

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.

    2003-01-01

    Predicting risk of human cancer following exposure to ionizing space radiation is challenging in part because of uncertainties of low-dose distribution amongst cells, of unknown potentially synergistic effects of microgravity upon cellular protein-expression, and of processing dose-related damage within cells to produce rare and late-appearing malignant transformation, degrade the confidence of cancer risk-estimates. The NASA- specific responsibility to estimate the risks of radiogenic cancer in a limited number of astronauts is not amenable to epidemiologic study, thereby increasing this challenge. Developing adequately sensitive cellular biodosimeters that simultaneously report 1) the quantity of absorbed close after exposure to ionizing radiation, 2) the quality of radiation delivering that dose, and 3) the risk of developing malignant transformation by the cells absorbing that dose could be useful for resolving these challenges. Use of a multiparametric cellular biodosimeter is suggested using analyses of gene-expression and protein-expression whereby large datasets of cellular response to radiation-induced damage are obtained and analyzed for expression-profiles correlated with established end points and molecular markers predictive for cancer-risk. Analytical techniques of genomics and proteomics may be used to establish dose-dependency of multiple gene- and protein- expressions resulting from radiation-induced cellular damage. Furthermore, gene- and protein-expression from cells in microgravity are known to be altered relative to cells grown on the ground at 1g. Therefore, hypotheses are proposed that 1) macromolecular expression caused by radiation-induced damage in cells in microgravity may be different than on the ground, and 2) different patterns of macromolecular expression in microgravity may alter human radiogenic cancer risk relative to radiation exposure on Earth. A new paradigm is accordingly suggested as a national database wherein genomic and proteomic datasets are registered and interrogated in order to provide statistically significant dose-dependent risk estimation of radiogenic cancer in astronauts.

  13. Identification of Granulocyte Colony-Stimulating Factor and Interleukin-6 as Candidate Biomarkers of CBLB502 Efficacy as a Medical Radiation Countermeasure

    PubMed Central

    Krivokrysenko, Vadim I.; Shakhov, Alexander N.; Singh, Vijay K.; Bone, Frederick; Kononov, Yevgeniy; Shyshynova, Inna; Cheney, Alec; Maitra, Ratan K.; Purmal, Andrei; Whitnall, Mark H.; Feinstein, Elena

    2012-01-01

    Given an ever-increasing risk of nuclear and radiological emergencies, there is a critical need for development of medical radiation countermeasures (MRCs) that are safe, easily administered, and effective in preventing and/or mitigating the potentially lethal tissue damage caused by acute high-dose radiation exposure. Because the efficacy of MRCs for this indication cannot be ethically tested in humans, development of such drugs is guided by the Food and Drug Administration's Animal Efficacy Rule. According to this rule, human efficacious doses can be projected from experimentally established animal efficacious doses based on the equivalence of the drug's effects on efficacy biomarkers in the respective species. Therefore, identification of efficacy biomarkers is critically important for drug development under the Animal Efficacy Rule. CBLB502 is a truncated derivative of the Salmonella flagellin protein that acts by triggering Toll-like receptor 5 (TLR5) signaling and is currently under development as a MRC. Here, we report identification of two cytokines, granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6), as candidate biomarkers of CBLB502's radioprotective/mitigative efficacy. Induction of both G-CSF and IL-6 by CBLB502 1) is strictly TLR5-dependent, 2) occurs in a CBLB502 dose-dependent manner within its efficacious dose range in both nonirradiated and irradiated mammals, including nonhuman primates, and 3) is critically important for the ability of CBLB502 to rescue irradiated animals from death. After evaluation of CBLB502 effects on G-CSF and IL-6 levels in humans, these biomarkers will be useful for accurate prediction of human efficacious CBLB502 doses, a key step in the development of this prospective radiation countermeasure. PMID:22837010

  14. Utilization of ICU Data to Improve 30 and 60 Day Mortality Models

    DTIC Science & Technology

    2017-01-06

    Acute Radiation Syndrome , Mortality, Burn Combined Injury, Lethality, Small Intestine, Ordinary Differential...short period of time (high dose rate) causes acute radiation syndrome (ARS). Depending on the radiation dose, an individual may experience the...hematopoietic acute radiation syndrome (H-ARS) or the gastrointestinal acute radiation syndrome (GI-ARS) (reviewed in Maciàă I Garau et al., 2011). For acute

  15. Effects of ionizing radiation and temperature on uranyl silicates: soddyite (UO2)2(SiO4)(H2O)2 and Uranophane Ca(UO2)2(SiO3OH)2·5H2O.

    PubMed

    Sureda, R; Casas, I; Giménez, J; de Pablo, J; Quiñones, J; Zhang, J; Ewing, R C

    2011-03-15

    The stability of soddyite under electron irradiation has been studied over the temperature range of 25-300 °C. At room temperature, soddyite undergoes a crystalline-to-amorphous transformation (amorphization) at a total dose of 6.38 × 10(8) Gy. The electron beam irradiation results suggest that the soddyite structure is susceptible to radiation-induced nanocrystallization of UO(2). The temperature dependence of amorphization dose increases linearly up to 300 °C. A thermogravimetric and calorimetric analysis (TGA-DSC) combined with X-ray diffraction (XRD) indicates that soddyite retains its water groups up to 400 °C, followed by the collapse of the structure. Based on thermal analysis of uranophane, the removal of some water groups at relatively low temperatures provokes the collapse of the uranophane structure. This structural change appears to be the reason for the increase of amorphization dose at 140 °C. According to the results obtained, radiation field of a nuclear waste repository, rather than temperature effects, may cause changes in the crystallinity of soddyite and affect its stability during long-term storage.

  16. Advanced Oxidative Protein Products Cause Pain Hypersensitivity in Rats by Inducing Dorsal Root Ganglion Neurons Apoptosis via NADPH Oxidase 4/c-Jun N-terminal Kinase Pathways

    PubMed Central

    Ding, Ruoting; Sun, Baihui; Liu, Zhongyuan; Yao, Xinqiang; Wang, Haiming; Shen, Xing; Jiang, Hui; Chen, Jianting

    2017-01-01

    Pain hypersensitivity is the most common category of chronic pain and is difficult to cure. Oxidative stress and certain cells apoptosis, such as dorsal root ganglion (DRG) neurons, play an essential role in the induction and development of pain hypersensitivity. The focus of this study is at a more specific molecular level. We investigated the role of advanced oxidative protein products (AOPPs) in inducing hypersensitivity and the cellular mechanism underlying the proapoptotic effect of AOPPs. Normal rats were injected by AOPPs-Rat serum albumin (AOPPs–RSA) to cause pain hypersensitivity. Primary cultured DRG neurons were treated with increasing concentrations of AOPPs–RSA or for increasing time durations. The MTT, flow cytometry and western blot analyses were performed in the DRG neurons. A loss of mitochondrial membrane potential (MMP) and an increase in intracellular reactive oxygen species (ROS) were observed. We found that AOPPs triggered DRG neurons apoptosis and MMP loss. After AOPPs treatment, intracellular ROS generation increased in a time- and dose-dependent manner, whereas, N-acetyl-L-cysteine (NAC), a specific ROS scavenger could inhibit the ROS generation. Proapoptotic proteins, such as Bax, caspase 9/caspase 3, and PARP-1 were activated, whereas anti-apoptotic Bcl-2 protein was down-regulated. AOPPs also increased Nox4 and JNK expression. Taken together, these findings suggest that AOPPs cause pain hypersensitivity in rats, and extracellular AOPPs accumulation triggered Nox4-dependent ROS production, which activated JNK, and induced DRG neurons apoptosis by activating caspase 3 and PARP-1. PMID:28674486

  17. Advanced Oxidative Protein Products Cause Pain Hypersensitivity in Rats by Inducing Dorsal Root Ganglion Neurons Apoptosis via NADPH Oxidase 4/c-Jun N-terminal Kinase Pathways.

    PubMed

    Ding, Ruoting; Sun, Baihui; Liu, Zhongyuan; Yao, Xinqiang; Wang, Haiming; Shen, Xing; Jiang, Hui; Chen, Jianting

    2017-01-01

    Pain hypersensitivity is the most common category of chronic pain and is difficult to cure. Oxidative stress and certain cells apoptosis, such as dorsal root ganglion (DRG) neurons, play an essential role in the induction and development of pain hypersensitivity. The focus of this study is at a more specific molecular level. We investigated the role of advanced oxidative protein products (AOPPs) in inducing hypersensitivity and the cellular mechanism underlying the proapoptotic effect of AOPPs. Normal rats were injected by AOPPs-Rat serum albumin (AOPPs-RSA) to cause pain hypersensitivity. Primary cultured DRG neurons were treated with increasing concentrations of AOPPs-RSA or for increasing time durations. The MTT, flow cytometry and western blot analyses were performed in the DRG neurons. A loss of mitochondrial membrane potential (MMP) and an increase in intracellular reactive oxygen species (ROS) were observed. We found that AOPPs triggered DRG neurons apoptosis and MMP loss. After AOPPs treatment, intracellular ROS generation increased in a time- and dose-dependent manner, whereas, N -acetyl-L-cysteine (NAC), a specific ROS scavenger could inhibit the ROS generation. Proapoptotic proteins, such as Bax, caspase 9/caspase 3, and PARP-1 were activated, whereas anti-apoptotic Bcl-2 protein was down-regulated. AOPPs also increased Nox4 and JNK expression. Taken together, these findings suggest that AOPPs cause pain hypersensitivity in rats, and extracellular AOPPs accumulation triggered Nox4-dependent ROS production, which activated JNK, and induced DRG neurons apoptosis by activating caspase 3 and PARP-1.

  18. 2,3-Butanedione monoxime facilitates successful resuscitation in a dose-dependent fashion in a pig model of cardiac arrest.

    PubMed

    Lee, Byung Kook; Kim, Mu Jin; Jeung, Kyung Woon; Choi, Sung Soo; Park, Sang Wook; Yun, Seong Woo; Lee, Sung Min; Lee, Dong Hun; Min, Yong Il

    2016-06-01

    Ischemic contracture compromises the hemodynamic effectiveness of cardiopulmonary resuscitation (CPR) and resuscitability from cardiac arrest. In a pig model of cardiac arrest, 2,3-butanedione monoxime (BDM) attenuated ischemic contracture. We investigated the effects of different doses of BDM to determine whether increasing the dose of BDM could improve the hemodynamic effectiveness of CPR further, thus ultimately improving resuscitability. After 16minutes of untreated ventricular fibrillation and 8minutes of basic life support, 36 pigs were divided randomly into 3 groups that received 50mg/kg (low-dose group) of BDM, 100mg/kg (high-dose group) of BDM, or an equivalent volume of saline (control group) during advanced cardiovascular life support. During advanced cardiovascular life support, the control group showed an increase in left ventricular (LV) wall thickness and a decrease in LV chamber area. In contrast, the BDM-treated groups showed a decrease in the LV wall thickness and an increase in the LV chamber area in a dose-dependent fashion. Mixed-model analyses of the LV wall thickness and LV chamber area revealed significant group effects and group-time interactions. Central venous oxygen saturation at 3minutes after the drug administration was 21.6% (18.4-31.9), 39.2% (28.8-53.7), and 54.0% (47.5-69.4) in the control, low-dose, and high-dose groups, respectively (P<.001). Sustained restoration of spontaneous circulation was attained in 7 (58.3%), 10 (83.3%), and 12 animals (100%) in the control, low-dose, and high-dose groups, respectively (P=.046). 2,3-Butanedione monoxime administered during CPR attenuated ischemic contracture and improved the resuscitability in a dose-dependent fashion. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effects of irradiation source and dose level on quality characteristics of processed meat products

    NASA Astrophysics Data System (ADS)

    Ham, Youn-Kyung; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Choi, Yun-Sang; Song, Beom-Seok; Park, Jong-Heum; Kim, Cheon-Jei

    2017-01-01

    The effect of irradiation source (gamma-ray, electron-beam, and X-ray) and dose levels on the physicochemical, organoleptic and microbial properties of cooked beef patties and pork sausages was studied, during 10 days of storage at 30±1 °C. The processed meat products were irradiated at 0, 2.5, 5, 7.5, and 10 kGy by three different irradiation sources. The pH of cooked beef patties and pork sausages was unaffected by irradiation sources or their doses. The redness of beef patties linearly decreased with increasing dose level (P<0.05), obviously by e-beam irradiation compared to gamma-ray and X-ray (P<0.05). The redness of pork sausages was increased by gamma-ray irradiation, whereas it decreased by e-beam irradiation depending on absorbed dose level. No significant changes in overall acceptability were observed for pork sausages regardless of irradiation source (P>0.05), while gamma-ray irradiated beef patties showed significantly decreased overall acceptability in a dose-dependent manner (P<0.05). Lipid oxidation of samples was accelerated by irradiation depending on irradiation sources and dose levels during storage at 30 °C. E-beam reduced total aerobic bacteria of beef patties more effectively, while gamma-ray considerably decreased microbes in pork sausages as irradiation dose increased. The results of this study indicate that quality attributes of meat products, in particular color, lipid oxidation, and microbial properties are significantly influenced by the irradiation sources.

  20. Toxicity of Mineral Dusts and a Proposed Mechanism for the Pathogenesis of Particle-Induced Lung Diseases

    NASA Technical Reports Server (NTRS)

    Lam, C.-W.; Zeidler-Erdely, P.; Scully, R.R.; Meyers, V.; Wallace, W.; Hunter, R.; Renne, R.; McCluskey, R.; Castranova, V.; Barger, M.; hide

    2015-01-01

    Humans will set foot on the moon again. The lunar surface has been bombarded for 4 billion years by micrometeoroids and cosmic radiation, creating a layer of fine dust having a potentially reactive particle surface. To investigate the impact of surface reactivity (SR) on the toxicity of particles, and in particular, lunar dust (LD), we ground 2 Apollo 14 LD samples to increase their SR and compare their toxicity with those of unground LD, TiO2 and quartz. Intratracheally instilled at 0, 1, 2.5, or 7.5 mg/rat, all dusts caused dose-dependent increases in pulmonary lesions, and enhancement of biomarkers of toxicity assessed in bronchoalveolar lavage fluids (BALF). The toxicity of LD was greater than that of TiO2 but less than that of quartz. Three LDs differed 14-fold in SR but were equally toxic; quartz had the lowest SR but was most toxic. These results show no correlation between particle SR and toxicity. Often pulmonary toxicity of a dust can be attributed to oxidative stress (OS). We further observed dose-dependent and dustcytotoxicity- dependent increases in neutrophils. The oxidative content per BALF cell was also directly proportional to both the dose and cytotoxicity of the dusts. Because neutrophils are short-lived and release of oxidative contents after they die could initiate and promote a spectrum of lesions, we postulate a general mechanism for the pathogenesis of particle-induced diseases in the lung that involves chiefly neutrophils, the source of persistent endogenous OS. This mechanism explains why one dust (e.g., quartz or nanoparticles) is more toxic than another (e.g., micrometer-sized TiO2), why dust-induced lesions progress with time, and why lung cancer occurs in rats but not in mice and hamsters exposed to the same duration and concentration of dust.

  1. Thapsigargin-induced activation of Ca(2+)-CaMKII-ERK in brainstem contributes to substance P release and induction of emesis in the least shrew.

    PubMed

    Zhong, Weixia; Chebolu, Seetha; Darmani, Nissar A

    2016-04-01

    Cytoplasmic calcium (Ca(2+)) mobilization has been proposed to be an important factor in the induction of emesis. The selective sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin, is known to deplete intracellular Ca(2+) stores, which consequently evokes extracellular Ca(2+) entry through cell membrane-associated channels, accompanied by a prominent rise in cytosolic Ca(2+). A pro-drug form of thapsigargin is currently under clinical trial as a targeted cancer chemotherapeutic. We envisioned that the intracellular effects of thapsigargin could cause emesis and planned to investigate its mechanisms of emetic action. Indeed, thapsigargin did induce vomiting in the least shrew in a dose-dependent and bell-shaped manner, with maximal efficacy (100%) at 0.5 mg/kg (i.p.). Thapsigargin (0.5 mg/kg) also caused increases in c-Fos immunoreactivity in the brainstem emetic nuclei including the area postrema (AP), nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMNX), as well as enhancement of substance P (SP) immunoreactivity in DMNX. In addition, thapsigargin (0.5 mg/kg, i.p.) led to vomit-associated and time-dependent increases in phosphorylation of Ca(2+)/calmodulin kinase IIα (CaMKIIα) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) in the brainstem. We then explored the suppressive potential of diverse chemicals against thapsigargin-evoked emesis including antagonists of: i) neurokinin-1 receptors (netupitant), ii) the type 3 serotonin receptors (palonosetron), iii) store-operated Ca(2+) entry (YM-58483), iv) L-type Ca(2+) channels (nifedipine), and v) SER Ca(2+)-release channels inositol trisphosphate (IP3Rs) (2-APB)-, and ryanodine (RyRs) (dantrolene)-receptors. In addition, the antiemetic potential of inhibitors of CaMKII (KN93) and ERK1/2 (PD98059) were investigated. All tested antagonists/blockers attenuated emetic parameters to varying degrees except palonosetron, however a combination of non-effective doses of netupitant and palonosetron exhibited additive antiemetic efficacy. A low-dose combination of nifedipine and 2-APB plus dantrolene mixture completely abolished thapsigargin-evoked vomiting, CaMKII-ERK1/2 activation and SP elevation. In addition, pretreatment with KN93 or PD98059 suppressed thapsigargin-induced increases in SP and ERK1/2 activation. Intracerebroventricular injection of netupitant suppressed vomiting caused by thapsigargin which suggests that the principal site of evoked emesis is the brainstem. In sum, this is the first study to demonstrate that thapsigargin causes vomiting via the activation of the Ca(2+)-CaMKII-ERK1/2 cascade, which is associated with an increase in the brainstem tissue content of SP, and the evoked emesis occurs through SP-induced activation of neurokinin-1 receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Antimicrobial preservatives induce aggregation of interferon alpha-2a: The order in which preservatives induce protein aggregation is independent of the protein

    PubMed Central

    Bis, Regina L.; Mallela, Krishna M.G.

    2014-01-01

    Antimicrobial preservatives (APs) are included in liquid multi-dose protein formulations to combat the growth of microbes and bacteria. These compounds have been shown to cause protein aggregation, which leads to serious immunogenic and toxic side-effects in patients. Our earlier work on a model protein cytochrome c (Cyt c) demonstrated that APs cause protein aggregation in a specific manner. The aim of this study is to validate the conclusions obtained from our model protein studies on a pharmaceutical protein. Interferon α-2a (IFNA2) is available as a therapeutic treatment for numerous immune-compromised disorders including leukemia and hepatitis c, and APs have been used in its multi-dose formulation. Similar to Cyt c, APs induced IFNA2 aggregation, demonstrated by the loss of soluble monomer and increase in solution turbidity. The extent of IFNA2 aggregation increased with the increase in AP concentration. IFNA2 aggregation also depended on the nature of AP, and followed the order m-cresol > phenol > benzyl alcohol > phenoxyethanol. This specific order exactly matched with that observed for the model protein Cyt c. These and previously published results on antibodies and other recombinant proteins suggest that the general mechanism by which APs induce protein aggregation may be independent of the protein. PMID:24974985

  3. Antimicrobial preservatives induce aggregation of interferon alpha-2a: the order in which preservatives induce protein aggregation is independent of the protein.

    PubMed

    Bis, Regina L; Mallela, Krishna M G

    2014-09-10

    Antimicrobial preservatives (APs) are included in liquid multi-dose protein formulations to combat the growth of microbes and bacteria. These compounds have been shown to cause protein aggregation, which leads to serious immunogenic and toxic side-effects in patients. Our earlier work on a model protein cytochrome c (Cyt c) demonstrated that APs cause protein aggregation in a specific manner. The aim of this study is to validate the conclusions obtained from our model protein studies on a pharmaceutical protein. Interferon α-2a (IFNA2) is available as a therapeutic treatment for numerous immune-compromised disorders including leukemia and hepatitis C, and APs have been used in its multi-dose formulation. Similar to Cyt c, APs induced IFNA2 aggregation, demonstrated by the loss of soluble monomer and increase in solution turbidity. The extent of IFNA2 aggregation increased with the increase in AP concentration. IFNA2 aggregation also depended on the nature of AP, and followed the order m-cresol>phenol>benzyl alcohol>phenoxyethanol. This specific order exactly matched with that observed for the model protein Cyt c. These and previously published results on antibodies and other recombinant proteins suggest that the general mechanism by which APs induce protein aggregation may be independent of the protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. SU-E-I-06: Measurement of Skin Dose from Dental Cone-Beam CT Scans.

    PubMed

    Akyalcin, S; English, J; Abramovitch, K; Rong, J

    2012-06-01

    To directly measure skin dose using point-dosimeters from dental cone-beam CT (CBCT) scans. To compare the results among three different dental CBCT scanners and compare the CBCT results with those from a conventional panoramic and cephalomic dental imaging system. A head anthropomorphic phantom was used with nanoDOT dosimeters attached to specified anatomic landmarks of selected radiosensitive tissues of interest. To ensure reliable measurement results, three dosimeters were used for each location. The phantom was scanned under various modes of operation and scan protocols for typical dental exams on three dental CBCT systems plus a conventional dental imaging system. The Landauer OSL nanoDOT dosimeters were calibrated under the same imaging condition as the head phantom scan protocols, and specifically for each of the imaging systems. Using nanoDOT dosimeters, skin doses at several positions on the surface of an adult head anthropomorphic phantom were measured for clinical dental imaging. The measured skin doses ranged from 0.04 to 4.62mGy depending on dosimeter positions and imaging systems. The highest dose location was at the parotid surface for all three CBCT scanners. The surface doses to the locations of the eyes were ∼4.0mGy, well below the 500mGy threshold for possibly causing cataract development. The results depend on x-ray tube output (kVp and mAs) and also are sensitive to SFOV. Comparing to the conventional dental imaging system operated in panoramic and cephalometric modes, doses from all three CBCT systems were at least an order of magnitude higher. No image artifact was caused by presence of nanoDOT dosimeters in the head phantom images. Direct measurements of skin dose using nanoDOT dosimeters provided accurate skin dose values without any image artifacts. The results of skin dose measurements serve as dose references in guiding future dose optimization efforts in dental CBCT imaging. © 2012 American Association of Physicists in Medicine.

  5. SU-F-T-474: Evaluation of Dose Perturbation, Temperature and Sensitivity Variation With Accumulated Dose of MOSFET Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, B; Prakasarao, A; Singaravelu, G

    Purpose: The use of mega voltage gamma and x-ray sources with their skin sparring qualities in radiation therapy has been a boon in relieving patient discomfort and allowing high tumor doses to be given with fewer restrictions due to radiation effects in the skin. However, high doses given to deep tumors may require careful consideration of dose distribution in the buildup region in order to avoid irreparable damage to the skin. Methods: To measure the perturbation of MOSFET detector in Co60,6MV and 15MV the detector was placed on the surface of the phantom covered with the brass build up cap.more » To measure the effect of temperature the MOSFET detector was kept on the surface of hot water polythene container and the radiation was delivere. In order to measure the sensitivity variation with accumulated dose Measurements were taken by delivering the dose of 200 cGy to MOSFET until the MOSFET absorbed dose comes to 20,000 cGy Results: the Measurement was performed by positioning the bare MOSFET and MOSFET with brass build up cap on the top surface of the solid water phantom for various field sizes in order to find whether there is any attenuation caused in the dose distribution. The response of MOSFET was monitored for temperature ranging from 42 degree C to 22 degree C. The integrated dose dependence of MOSFET dosimeter sensitivity over different energy is not well characterized. This work investigates the dual-bias MOSFET dosimeter sensitivity response to 6 MV and 15 MV beams. Conclusion: From this study it is observed that unlike diode, bare MOSFET does not perturb the radiation field.. It is observed that the build-up influences the temperature dependency of MOSFET and causes some uncertainty in the readings. In the case of sensitivity variation with accumulated dose MOSFET showed higher sensitivity with dose accumulation for both the energies.« less

  6. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    PubMed

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  7. The c-Abl signaling network in the radioadaptive response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi-Min, Yuan

    2014-01-28

    The radioadaptive response, or radiation hormesis, i.e. a low dose of radiation can protect cells and organisms from the effects of a subsequent higher dose, is a widely recognized phenomenon. Mechanisms underlying such radiation hormesis, however, remain largely unclear. Preliminary studies indicate an important role of c-Abl signaling in mediating the radioadaptive response. We propose to investigate how c-Abl regulates the crosstalk between p53 and NFκB in response to low doses irradiation. We found in our recent study that low dose IR induces a reciprocal p53 suppression and NFκB activation, which induces HIF-a and subsequently a metabolic reprogramming resulting inmore » a transition from oxidative phosphorylation to glycolysis. Of importance is that this glycolytic switch is essential for the radioadaptive response. This low-dose radiationinduced HIF1α activation was in sharp contrast with the high-dose IR-induced p53 activation and HIF1α inhibition. HIF1α and p53 seem to play distinct roles in mediating the radiation dose-dependent metabolic response. The induction of HIF1α-mediated glycolysis is restricted to a low dose range of radiation, which may have important implications in assessing the level of radiation exposure and its potential health risk. Our results support a dose-dependent metabolic response to IR. When IR doses are below the threshold of causing detectable DNA damage (<0.2Gy) and thus little p53 activation, HIF1α is induced resulting in induction of glycolysis and increased radiation resistance. When the radiation dose reaches levels eliciting DNA damage, p53 is activated and diminishes the activity of HIF1α and glycolysis, leading to the induction of cell death. Our work challenges the LNT model of radiation exposure risk and provides a metabolic mechanism of radioadaptive response. The study supports a need for determining the p53 and HIF1α activity as a potential reliable biological readout of radiation exposure in humans. The exquisite sensitivity of cellular metabolism to low doses of radiation could also serve as a valuable biomarker for estimating the health effects of low-level radiation exposure.« less

  8. SU-E-T-318: The Effect of Patient Positioning Errors On Target Coverage and Cochlear Dose in Stereotactic Radiosurgery Treatment of Acoustic Neuromas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dellamonica, D.; Luo, G.; Ding, G.

    Purpose: Setup errors on the order of millimeters may cause under-dosing of targets and significant changes in dose to critical structures especially when planning with tight margins in stereotactic radiosurgery. This study evaluates the effects of these types of patient positioning uncertainties on planning target volume (PTV) coverage and cochlear dose for stereotactic treatments of acoustic neuromas. Methods: Twelve acoustic neuroma patient treatment plans were retrospectively evaluated in Brainlab iPlan RT Dose 4.1.3. All treatment beams were shaped by HDMLC from a Varian TX machine. Seven patients had planning margins of 2mm, five had 1–1.5mm. Six treatment plans were createdmore » for each patient simulating a 1mm setup error in six possible directions: anterior-posterior, lateral, and superiorinferior. The arcs and HDMLC shapes were kept the same for each plan. Change in PTV coverage and mean dose to the cochlea was evaluated for each plan. Results: The average change in PTV coverage for the 72 simulated plans was −1.7% (range: −5 to +1.1%). The largest average change in coverage was observed for shifts in the patient's superior direction (−2.9%). The change in mean cochlear dose was highly dependent upon the direction of the shift. Shifts in the anterior and superior direction resulted in an average increase in dose of 13.5 and 3.8%, respectively, while shifts in the posterior and inferior direction resulted in an average decrease in dose of 17.9 and 10.2%. The average change in dose to the cochlea was 13.9% (range: 1.4 to 48.6%). No difference was observed based on the size of the planning margin. Conclusion: This study indicates that if the positioning uncertainty is kept within 1mm the setup errors may not result in significant under-dosing of the acoustic neuroma target volumes. However, the change in mean cochlear dose is highly dependent upon the direction of the shift.« less

  9. Fulminant hyperammonaemia induced by thiopental coma in rats.

    PubMed

    Ivnitsky, Jury Ju; Rejniuk, Vladimir L; Schäfer, Timur V; Malakhovsky, Vladimir N

    2006-07-25

    Fulminant hyperammonaemia as a threshold effect of coma-inducing dose of sodium thiopental has been revealed in rats. Blood ammonia content increased progressively after the introduction of 1.0 LD(50) (but not 0.8 LD(50)) of sodium thiopental three times in 3h and five times in 18h. The urinary ammonia excretion was not impaired while the volatilization of ammoniac from the body of ST-treated rats was higher, giving evidence of the augmentation of ammonia production. Blood urea increased by one third despite of insignificant alterations of haematocrit and blood creatinine. Ammonia hyperproduction in the digestive tract could result from gastrointestinal stasis, which has been verified by roentgenography and confirmed by correlation of hyperammonaemia with the stool retardation. In thiopental coma rats the slope of a dose-dependent increase of the blood ammonia and the blood urea after the intraperitoneal injection of ammonium acetate did not exceed that in intact animals. So the ammonia hyperproduction in the digestive tract could be the main contributing cause of fulminant hyperammonaemia in rats with thiopental coma and thus be involved into pathogenesis of the coma.

  10. Neurotoxic Methamphetamine Doses Increase LINE-1 Expression in the Neurogenic Zones of the Adult Rat Brain

    PubMed Central

    Moszczynska, Anna; Flack, Amanda; Qiu, Ping; Muotri, Alysson R.; Killinger, Bryan A.

    2015-01-01

    Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause neurotoxicity in the striatum and hippocampus. Several epigenetic changes have been described after administration of METH; however, there are no data regarding the effects of METH on the activity of transposable elements in the adult brain. The present study demonstrates that systemic administration of neurotoxic METH doses increases the activity of Long INterspersed Element (LINE-1) in two neurogenic niches in the adult rat brain in a promoter hypomethylation-independent manner. Our study also demonstrates that neurotoxic METH triggers persistent decreases in LINE-1 expression and increases the LINE-1 levels within genomic DNA in the striatum and dentate gyrus of the hippocampus, and that METH triggers LINE-1 retrotransposition in vitro. We also present indirect evidence for the involvement of glutamate (GLU) in LINE-1 activation. The results suggest that LINE-1 activation might occur in neurogenic areas in human METH users and might contribute to METH abuse-induced hippocampus-dependent memory deficits and impaired performance on several cognitive tasks mediated by the striatum. PMID:26463126

  11. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures.

    PubMed

    Cleary, Ryan T; Sun, Hongyu; Huynh, Thanhthao; Manning, Simon M; Li, Yijun; Rotenberg, Alexander; Talos, Delia M; Kahle, Kristopher T; Jackson, Michele; Rakhade, Sanjay N; Berry, Gerard T; Berry, Gerard; Jensen, Frances E

    2013-01-01

    Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+)-K(+)-2 Cl(-) cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures.

  12. Bumetanide Enhances Phenobarbital Efficacy in a Rat Model of Hypoxic Neonatal Seizures

    PubMed Central

    Cleary, Ryan T.; Sun, Hongyu; Huynh, Thanhthao; Manning, Simon M.; Li, Yijun; Rotenberg, Alexander; Talos, Delia M.; Kahle, Kristopher T.; Jackson, Michele; Rakhade, Sanjay N.; Berry, Gerard; Jensen, Frances E.

    2013-01-01

    Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na+-K+-2 Cl− cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures. PMID:23536761

  13. Effect of oral dosing vehicles on the developmental toxicity of flubendazole in rats.

    PubMed

    Yoshimura, Haruo

    2003-01-01

    Flubendazole was suspended in deionized water or olive oil and administered by gavage once daily to pregnant rats on Days 8-15 of pregnancy to examine if the embryolethal and teratogenic doses were affected by the vehicles used. Flubendazole in olive oil caused a statistically significant increase in embryolethality at doses of 7.83 mg/kg per day and higher, with complete resorption in all dams at 31.33 mg/kg per day. When flubendazole was suspended in deionized water, a significant increase in embryolethality occurred only at a maternal dose of 125.32 mg/kg per day. The proportion of litters with anomalous fetuses was significantly increased at doses of 31.33 mg/kg per day and above when flubendazole was administered in deionized water, but increased at doses at four times lower when flubendazole was administered as in olive oil. Administered as a single dose in olive oil on any one of Days 6-12 of pregnancy, a flubendazole dose of 31.33 mg/kg caused significant increases in embryolethality and decreased fetal body weights on Days 7-9, with an 82.7% incidence of embryolethality on Day 8, with complete resorption in 5 of the 8 dams. The critical periods for teratogenic effects were between Days 8 and 11 of pregnancy, with Day 9 being the most critical. Fetuses with gross, skeletal, or internal anomalies were seen in dams given a single dose of as low as 7.83 mg/kg.

  14. Crosstalk between the angiotensin and endothelin system in the cerebrovasculature after experimental induced subarachnoid hemorrhage.

    PubMed

    Wanderer, Stefan; Mrosek, Jan; Vatter, Hartmut; Seifert, Volker; Konczalla, Juergen

    2018-04-01

    Under physiologic conditions, losartan showed a dose-dependent antagonistic effect to the endothelin-1 (ET-1)-mediated vasoconstriction. This reduced vasoconstriction was abolished after preincubation with an endothelin B 1 receptor (ET(B 1 )-receptor) antagonist. Also, an increased ET(B 1 )-receptor-dependent relaxation to sarafotoxin S6c (S6c; an ET(B 1 )-receptor agonist) was detected by preincubation with losartan. Investigations after experimental induced subarachnoid hemorrhage (SAH) are still missing. Therefore, we analyzed losartan in a further pathological setup. Cerebral vasospasm was induced by a modified double hemorrhage model. Rats were sacrificed on day 3 and isometric force of basilar artery ring segments was measured. Parallel to physiological conditions, after SAH, the ET-1-induced vasoconstriction was decreased by preincubation with losartan. This reduced contraction has been abolished after preincubation with BQ-788, an ET(B 1 )-receptor antagonist. In precontracted vessels, ET-1 induced a higher vasorelaxation under losartan and the endothelin A receptor (ET(A)-receptor) antagonist BQ-123. After SAH, losartan caused a modulatory effect on the ET(B 1 )-receptor-dependent vasorelaxation. It further induced an upregulation of the NO pathway. Under losartan, the formerly known loss of the ET(B 1 )-receptor vasomotor function was abolished and a significantly increased relaxation, accompanied with an enhanced sensitivity of the ET(B 1 )-receptor, has been detected. Also, the dose-dependent antagonistic effect to the ET-1-induced contraction can be effected by angiotensin II type 1 receptor (AT 1 -receptor) antagonism due to losartan directly via the ET(B 1 )-receptor.

  15. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    PubMed

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  16. The essential oil of bergamot enhances the levels of amino acid neurotransmitters in the hippocampus of rat: implication of monoterpene hydrocarbons.

    PubMed

    Morrone, Luigi A; Rombolà, Laura; Pelle, Cinzia; Corasaniti, Maria T; Zappettini, Simona; Paudice, Paolo; Bonanno, Giambattista; Bagetta, Giacinto

    2007-04-01

    The effects of bergamot essential oil (BEO) on the release of amino acid neurotransmitters in rat hippocampus have been studied by in vivo microdialysis and by in vitro superfusion of isolated nerve terminals. Intraperitoneal administration of BEO (100microl/kg) significantly elevated the extracellular concentration of aspartate, glycine and taurine in a Ca(2+)-dependent manner. A dose-relation study generated a bell-shaped curve. When perfused into the hippocampus via the dialysis probe (20microl/20min), BEO produced a significant increase of extracellular aspartate, glycine, taurine as well as of GABA and glutamate. The augmentation of all amino acids was Ca(2+)-independent. Focally injected 1:1 diluted BEO preferentially caused extracellular increase of glutamate. Interestingly, this release appeared to be strictly Ca(2+)-dependent. BEO concentration-dependently enhanced the release of [(3)H]D-aspartate from superfused hippocampal synaptosomes. Similar results were obtained by monitoring the BEO-evoked release of endogenous glutamate. At relatively high concentrations, the BEO-induced [(3)H]d-aspartate release was almost entirely prevented by the glutamate transporter blocker dl-threo-beta-benzyloxyaspartic acid (DL-TBOA) and was Ca(2+)-independent. At relatively low concentrations the release of [(3)H]D-aspartate was only in part ( approximately 50%) DL-TBOA-sensitive and Ca(2+)-independent; the remaining portion of release was dependent on extracellular Ca(2+). Interestingly, the monoterpene hydrocarbon-free fraction of the essential oil appeared to be inactive while the bergapten-free fraction superimposed the releasing effect of BEO supporting the deduction that psoralens may not be implicated. To conclude, BEO contains into its volatile fraction still unidentified monoterpene hydrocarbons able to stimulate glutamate release by transporter reversal and/or by exocytosis, depending on the dose administered.

  17. Chronic methamphetamine administration causes differential regulation of transcription factors in the rat midbrain.

    PubMed

    Krasnova, Irina N; Ladenheim, Bruce; Hodges, Amber B; Volkow, Nora D; Cadet, Jean Lud

    2011-04-25

    Methamphetamine (METH) is an addictive and neurotoxic psychostimulant widely abused in the USA and throughout the world. When administered in large doses, METH can cause depletion of striatal dopamine terminals, with preservation of midbrain dopaminergic neurons. Because alterations in the expression of transcription factors that regulate the development of dopaminergic neurons might be involved in protecting these neurons after toxic insults, we tested the possibility that their expression might be affected by toxic doses of METH in the adult brain. Male Sprague-Dawley rats pretreated with saline or increasing doses of METH were challenged with toxic doses of the drug and euthanized two weeks later. Animals that received toxic METH challenges showed decreases in dopamine levels and reductions in tyrosine hydroxylase protein concentration in the striatum. METH pretreatment protected against loss of striatal dopamine and tyrosine hydroxylase. In contrast, METH challenges caused decreases in dopamine transporters in both saline- and METH-pretreated animals. Interestingly, METH challenges elicited increases in dopamine transporter mRNA levels in the midbrain in the presence but not in the absence of METH pretreatment. Moreover, toxic METH doses caused decreases in the expression of the dopamine developmental factors, Shh, Lmx1b, and Nurr1, but not in the levels of Otx2 and Pitx3, in saline-pretreated rats. METH pretreatment followed by METH challenges also decreased Nurr1 but increased Otx2 and Pitx3 expression in the midbrain. These findings suggest that, in adult animals, toxic doses of METH can differentially influence the expression of transcription factors involved in the developmental regulation of dopamine neurons. The combined increases in Otx2 and Pitx3 expression after METH preconditioning might represent, in part, some of the mechanisms that served to protect against METH-induced striatal dopamine depletion observed after METH preconditioning.

  18. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis

    NASA Astrophysics Data System (ADS)

    Ong, Cynthia; Lee, Qian Ying; Cai, Yu; Liu, Xiaoli; Ding, Jun; Yung, Lin-Yue Lanry; Bay, Boon-Huat; Baeg, Gyeong-Hun

    2016-02-01

    Silver nanoparticles (AgNPs), one of the most popular nanomaterials, are commonly used in consumer products and biomedical devices, despite their potential toxicity. Recently, AgNP exposure was reported to be associated with male reproductive toxicity in mammalian models. However, there is still a limited understanding of the effects of AgNPs on spermatogenesis. The fruit fly Drosophila testis is an excellent in vivo model to elucidate the mechanisms underlying AgNP-induced defects in spermatogenesis, as germ lineages can be easily identified and imaged. In this study, we evaluated AgNP-mediated toxicity on spermatogenesis by feeding Drosophila with AgNPs at various concentrations. We first observed a dose-dependent uptake of AgNPs in vivo. Concomitantly, AgNP exposure caused a significant decrease in the viability and delay in the development of Drosophila in a dose-dependent manner. Furthermore, AgNP-treated male flies showed a reduction in fecundity, and the resulting testes contained a decreased number of germline stem cells (GSCs) compared to controls. Interestingly, testes exposed to AgNPs exhibited a dramatic increase in reactive oxygen species levels and showed precocious GSC differentiation. Taken together, our study suggests that AgNP exposure may increase ROS levels in the Drosophila testis, leading to a reduction of GSC number by promoting premature GSC differentiation.

  19. The effect of silver nanoparticles on zebrafish embryonic development and toxicology.

    PubMed

    Xia, Guangqing; Liu, Tiantian; Wang, Zhenwei; Hou, Yi; Dong, Lihong; Zhu, Junyi; Qi, Jie

    2016-06-01

    The unique physical and chemical characteristics of nanomaterials, such as the effects of their small size, surface effects, very high rates of reaction, and quantum tunnel effect, have aroused great interest among scholars. However, improper usage has led to an increasing number of nanomaterials entering the environment through various channels, greatly threatening the security of the ecological environment and human health. The urgent need for a scientific assessment of their biosafety can enable nanomaterials to truly benefit humanity. However, the current research in this field is extremely limited with regard to safety standards and waste disposal. In this study, we used silver nanoparticles (nano-Ag) and zebrafish embryos as experimental subjects, and we have reported the deleterious effect on zebrafish embryos treated with different concentrations of nano-Ag, with respect to morphological features (mortality, deformity rate, and heartbeat) and the analysis of expression of relevant genes (sox17, gsc, ntl, otx2); we found a dose-dependent increase in mortality and hatching delay. The results of in situ hybridization indicated that nano-Ag causes a dose-dependent toxicity in embryonic development, and would affect their development and lead to deformity, delayed development, and even death. The safety limit for the concentration of nano-Ag was found to be less than 5 mg/L.

  20. Dexmedetomidine reduces pain associated with rocuronium injection without causing a decrease in BIS values: a dose-response study.

    PubMed

    Joo, Jin; Baek, Jungwon; Lee, Jaemin

    2014-09-01

    To examine whether dexmedetomidine reduces the injection pain of propofol and rocuronium and to investigate whether the decrease in injection pain is associated with the known sedative action of dexmedetomidine. Randomized, double-blind, placebo-controlled clinical comparison study. Patients undergoing general anesthesia with intubation received 40 mg of 1% lidocaine (lidocaine group; n = 28), 0.25 μg/kg of dexmedetomidine (low-dose group; n = 27), 0.5 μg/kg of dexmedetomidine (subclinical dose group; n = 28), 1.0 μg/kg of dexmedetomidine (clinical dose group, n = 27), or normal saline (saline group; n = 28) before anesthetic induction. Pain associated with propofol and rocuronium injection was assessed using a 10-point verbal analog scale (VAS) and a 4-point withdrawal movement scale, respectively. The BIS value was measured 60 seconds after administration of the study drug, and at the time of rocuronium injection and intubation. The overall incidence of withdrawal movements due to rocuronium decreased significantly as the dose of dexmedetomidine increased (92.8%, 85.2%, 78.6%, and 51.9% in the saline, low-dose, subclinical dose, and clinical dose groups, respectively; P = 0.001). There was no significant difference in BIS values among the groups 60 seconds after study drug administration or at the time of rocuronium injection. Dexmedetomidine reduced pain associated with rocuronium injection in a dose-dependent manner. This effect was not associated with the decrease in BIS value. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. High-pitch computed tomography coronary angiography-a new dose-saving algorithm: estimation of radiation exposure.

    PubMed

    Ketelsen, Dominik; Buchgeister, Markus; Korn, Andreas; Fenchel, Michael; Schmidt, Bernhard; Flohr, Thomas G; Thomas, Christoph; Schabel, Christoph; Tsiflikas, Ilias; Syha, Roland; Claussen, Claus D; Heuschmid, Martin

    2012-01-01

    Purpose. To estimate effective dose and organ equivalent doses of prospective ECG-triggered high-pitch CTCA. Materials and Methods. For dose measurements, an Alderson-Rando phantom equipped with thermoluminescent dosimeters was used. The effective dose was calculated according to ICRP 103. Exposure was performed on a second-generation dual-source scanner (SOMATOM Definition Flash, Siemens Medical Solutions, Germany). The following scan parameters were used: 320 mAs per rotation, 100 and 120 kV, pitch 3.4 for prospectively ECG-triggered high-pitch CTCA, scan range of 13.5 cm, collimation 64 × 2 × 0.6 mm with z-flying focal spot, gantry rotation time 280 ms, and simulated heart rate of 60 beats per minute. Results. Depending on the applied tube potential, the effective whole-body dose of the cardiac scan ranged from 1.1 mSv to 1.6 mSv and from 1.2 to 1.8 mSv for males and females, respectively. The radiosensitive breast tissue in the range of the primary beam caused an increased female-specific effective dose of 8.6%±0.3% compared to males. Decreasing the tube potential, a significant reduction of the effective dose of 35.8% and 36.0% can be achieved for males and females, respectively (P < 0.001). Conclusion. The radiologist and the CT technician should be aware of this new dose-saving strategy to keep the radiation exposure as low as reasonablly achievable.

  2. Physical and radiological properties of radiochromic gel as of its composition

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Kim, Juree; Shim, Su Jung; Chang, Kyung Hwan; Lim, Sangwook; Huh, Hyun Do; Shin, Dong Oh; Cho, Sam Ju

    2014-04-01

    In the research, we evaluated the use of leuco crystal violet (LCV) gel as a dosimeter for therapeutic radiation by investigating its optical characteristics at various component concentrations. We also investigated the aging effect of the LCV gel at different beam energies, doserates, and dosing times to evaluate the LCV's applicability to radiation therapy. We confirmed that the optimal optical wavelength of the LCV gel dosimeter was 600 nm. The dose sensitivity increased with increasing concentration of LCV; however, the optimal concentration was 1 mM LCV because the transparency of the gel dosimeter is important for use in optical CT scanners. However, the dose sensitivity decreased with increasing concentration of trichloroacetic acid (TAA). Moreover, the transparency of LCV rapidly decreased because of the generation of a white precipitate at TAA concentrations below 25 mM. Thus, an optimal TAA concentration of 30 mM was used in this study. Triton X-100 (8 mM) was identified as the optimal reagent for determining the optimum gel transparency and dose sensitivity. Thus, we present an LCV gel dosimeter composed of 4% gelatin by mass, 1 mM LCV, 30 mM TAA, and 8-mM Triton X-100 for use with an optical CT scanner. We showed good dose linearity up to 30 Gy. There was a little doserate dependency at a beam energy of 6 MV while the doserate dependence was more than 4.2% at a beam energy of 10 MV. To evaluate the energy dependence of the LCV gel dosimeter, we irradiated it at 20 Gy by using 6 MV and 10 MV beams. At the high doserate, the difference in the dose energy dependence was relatively small at approximately 1%, but the difference increased to 4.6% at the low doserate. With respect to the radiation absorbance at a photon energy of 6 MV, the absorbance at an electron energy of 6 MeV decreased by 5.4%, and the absorbances at 9, 12, and 15 MeV increased by 3, 18.7, and 12.2%, respectively. Furthermore, the aging effect was larger in the low-dose group then in the high-dose group. Moreover, we observed that the absorbance between 24 and 48 h after irradiation increased by approximately 5% at 5 Gy. For gel groups tested at high doses, the aging effect was reduced by approximately 1%.

  3. Effects of aqueous, methanolic and chloroform extracts of rhizome and aerial parts of Valeriana officinalis L. on naloxone-induced jumping in morphine-dependent mice.

    PubMed

    Sharifzadeh, Mohammad; Hadjiakhoondi, Abbas; Khanavi, Mahnaz; Susanabadi, Maryam

    2006-06-01

    In the present study, the effects of rhizomes and aerial parts extracts of Valeriana officinalis L. on morphine dependence in mice have been investigated. Animals were treated subcutaneously with morphine (50, 50 and 75 mg/kg) three times daily (10 am, 1 pm and 4 pm) for 3 days, and a last dose of morphine (50 mg/kg) was administered on the fourth day. Withdrawal syndrome (jumping) was precipitated by naloxone (5 mg/kg) which was administered intraperitoneally 2 hours after the last dose of morphine. To study the effects of the aqueous, methanolic and chloroform extracts of both aerial parts and rhizome of the V. officinalis L. on naloxone-induced jumping in morphine-dependent animals, 10 injections of morphine (three administrations each day) for dependence and a dose of 5 mg/kg of naloxone for withdrawal induction were employed. Intraperitoneal injection of different doses (1, 5, 25 and 50 mg/kg) of aqueous, methanolic and chloroform extracts of the rhizome of V. officinalis L. 60 minutes before naloxone injection decreased the jumping response dose-dependently. Pre-treatment of animals with different doses (1, 5, 25, 50 and 100 mg/kg) of aqueous and methanolic extracts of aerial parts of V. officinalis L. 60 minutes before naloxone injection caused a significant decrease on naloxone-induced jumping. The chloroform extract of the aerial parts of V. officinalis L. did not show any significant changes on jumping response in morphine-dependent animals. It is concluded that the extracts of V. officinalis L. could affect morphine withdrawal syndrome via possible interactions with inhibitory neurotransmitters in nervous system.

  4. The impact of the oxygen scavenger on the dose-rate dependence and dose sensitivity of MAGIC type polymer gels

    NASA Astrophysics Data System (ADS)

    Khan, Muzafar; Heilemann, Gerd; Kuess, Peter; Georg, Dietmar; Berg, Andreas

    2018-03-01

    Recent developments in radiation therapy aimed at more precise dose delivery along with higher dose gradients (dose painting) and more efficient dose delivery with higher dose rates e.g. flattening filter free (FFF) irradiation. Magnetic-resonance-imaging based polymer gel dosimetry offers 3D information for precise dose delivery techniques. Many of the proposed polymer gels have been reported to exhibit a dose response, measured as relaxation rate ΔR2(D), which is dose rate dependent. A lack of or a reduced dose-rate sensitivity is very important for dosimetric accuracy, especially with regard to the increasing clinical use of FFF irradiation protocols with LINACs at high dose rates. Some commonly used polymer gels are based on Methacrylic-Acid-Gel-Initiated-by-Copper (MAGIC). Here, we report on the dose sensitivity (ΔR2/ΔD) of MAGIC-type gels with different oxygen scavenger concentration for their specific dependence on the applied dose rate in order to improve the dosimetric performance, especially for high dose rates. A preclinical x-ray machine (‘Yxlon’, E  =  200 kV) was used for irradiation to cover a range of dose rates from low \\dot{D} min  =  0.6 Gy min-1 to high \\dot{D} max  =  18 Gy min-1. The dose response was evaluated using R2-imaging of the gel on a human high-field (7T) MR-scanner. The results indicate that all of the investigated dose rates had an impact on the dose response in polymer gel dosimeters, being strongest in the high dose region and less effective for low dose levels. The absolute dose rate dependence \\frac{(Δ R2/Δ D)}{Δ \\dot{D}} of the dose response in MAGIC-type gel is significantly reduced using higher concentrations of oxygen scavenger at the expense of reduced dose sensitivity. For quantitative dose evaluations the relative dose rate dependence of a polymer gel, normalized to its sensitivity is important. Based on this normalized sensitivity the dose rate sensitivity was reduced distinctly using an increased oxygen scavenger concentration with reference to standard MAGIC-type gel formulation at high dose rate levels. The proposed gel composition with high oxygen scavenger concentration exhibits a larger linear active dose response and might be used especially in FFF-radiation applications and preclinical dosimetry at high dose rates. We propose in general to use high dose rates for calibration and evaluation as the change in relative dose sensitivity is reduced at higher dose rates in all of the investigated gel types.

  5. Alpha-adrenergic systems mediate chronic central AII hypertension in rats fed high sodium chloride diet from weaning.

    PubMed

    Camara, A K; Osborn, J L

    1999-04-16

    Hypertension is elicited by chronic, low dose intracerebroventricular (ICV) angiotensin II (AII) infusion in rats raised from weaning on relatively high sodium chloride diet (250 mEq kg(-1) food). This experimental model of hypertension is dependent upon renal innervation and associated with neurogenic sodium retention. The present study determined whether this neurogenic ICV AII hypertension is mediated by central alpha-adrenoceptors. Rats were weaned at 21 days of age and fed a 1.5% (250 mg kg(-1) food) sodium chloride diet for 10-12 weeks. At adulthood, animals were instrumented with central nervous system (CNS) lateral ventricular cannulas, femoral artery and vein catheters and housed in metabolic pens for chronic study. Low dose ICV AII infusion (20 ng min(-1)) increased mean arterial pressure (MAP) from 121 +/- 4 to 140 +/- 6 mm Hg on the day of ICV infusion. This increase in arterial pressure was associated with 3 consecutive days of decreased urinary sodium excretion. Subsequent ICV alpha-adrenoceptor blockade with phentolamine (AII + phentolamine) abolished the pressor and antinatriuretic responses to low dose chronic ICV AII infusion. Resumption of ICV AII infusion alone increased in MAP toward pre-alpha-adrenergic blockade values (133 +/- 5 mm Hg) on day 8. Following cessation of ICV AII infusion, arterial pressure and sodium excretion returned to values not significantly different from control. This model of hypertension was not dependent on circulating plasma renin activity (PRA), since PRA decreased during ICV AII infusion. These data confirm that low dose ICV AII causes hypertension and sodium retention in rats raised from weaning on moderately elevated sodium intake. We conclude that AII mediated neurogenic hypertension and antinatriuresis is elicited by stimulation of AT1 receptors on neurons which interact with noradrenergic cell bodies in cardiovascular and autonomic centers that may modulate renal sympathetic outflow via alpha-adrenoceptors.

  6. Stimulation of body weight increase and epiphyseal cartilage growth by insulin like growth factor

    NASA Technical Reports Server (NTRS)

    Ellis, S.

    1981-01-01

    The ability of insulin-like growth factor (IGF) to induce growth in hypophysectomized immature rats was tested by continuous infusion of the partially purified factor at daily doses of 6, 21, and 46 mU for an 8-day period. A dose-dependent growth of the proximal epiphyseal cartilage of the tibia and an associated stimulation of the primary spongiosa were produced by these amounts of IGF. The two highest doses of IGF also resulted in dose-dependent increases of body weight. Gel permeation of the sera at neutrality showed that the large-molecular-weight IGF binding protein was not induced by the infusion of IGF, whereas it ws generated in the sera of hypophysectomized rats that were infused with daily doses of 86 mU of human growth hormone.

  7. Reduction of experimental colitis in the rat by inhibitors of glycogen synthase kinase-3beta.

    PubMed

    Whittle, Brendan J R; Varga, Csaba; Pósa, Anikó; Molnár, Andor; Collin, Marika; Thiemermann, Christoph

    2006-03-01

    The effects of the inhibitors of glycogen synthase kinase-3beta (GSK-3beta), TDZD-8 and SB 415286, which can substantially reduce the systemic inflammation associated with endotoxic shock in vivo, have now been investigated on the acute colitis provoked by trinitrobenzene sulphonic acid (TNBS) in the rat. Administration of the GSK-3beta inhibitor TDZD-8 (0.1, 0.33 or 1.0 mg kg-1, s.c., b.i.d., for 3 days) caused a dose-dependent reduction in the colonic inflammation induced by intracolonic TNBS assessed after 3 days, both as the area of macroscopic involvement and as a score using 0-10 scale. Likewise, following administration of the GSK-3beta inhibitor SB 415286 (0.1, 0.33 or 1.0 mg kg-1, s.c., b.i.d., for 3 days), the extent and degree of the TNBS-provoked colonic inflammation was reduced. Administration of either TDZD-8 or SB 415286 reduced the fall in body weight following challenge with TNBS at each dose level studied. The increase in myeloperoxidase activity, an index of neutrophil infiltration into the TNBS-induced inflamed colon, was significantly inhibited by both TDZD-8 and SB 415286 at each dose level. The increase in the levels of the proinflammatory cytokine, TNF-alpha, in the inflamed colon was also significantly inhibited by either compound at the highest doses evaluated. The elevated levels of the transcription factor NF-kappaB subunit p65, as determined by Western blot in the nuclear extracts from the TNBS-provoked inflamed colonic tissue, were dose-dependently reduced by TDZD-8 or SB 415286 treatment. These findings demonstrate that two chemically distinct selective inhibitors of the activity of GSK-3beta reduce the inflammation and tissue injury in a rat model of acute colitis. The mechanisms underlying this anti-inflammatory action may be related to downregulation of NF-kappaB activity, involved in the generation of proinflammatory mediators.

  8. Reproductive responses of male Brandt's voles ( Lasiopodomys brandtii) to 6-methoxybenzoxazolinone (6-MBOA) under short photoperiod

    NASA Astrophysics Data System (ADS)

    Dai, Xin; Jiang, Lian Yu; Han, Mei; Ye, Man Hong; Wang, Ai Qin; Wei, Wan Hong; Yang, Sheng Mei

    2016-04-01

    The plant secondary metabolite 6-methoxybenzoxazolinone (6-MBOA) can stimulate and enhance animal reproduction. This compound has been successfully detected in Leymus chinensis, which is the main diet of Brandt's voles. The aim of this study was to investigate the effect of different 6-MBOA doses on the reproductive physiology of male Brandt's voles under a short photoperiod. The results showed that 6-MBOA administration increased relative testis weight, regardless of the dose, but it had little effect on the body mass. Low and middle doses of 6-MBOA increased the concentrations of luteinizing hormone and testosterone in the serum and the mRNA levels of StAR and CYP11a1 in the testes. However, 6-MBOA did not cause any significant increase in the mRNA levels of KiSS-1, GPR54, and GnRH compared to those in the control group. The mRNA level of KiSS-1 in the arcuate nucleus (ARC) was higher than that in the anteroventral periventricular nucleus (AVPV). Collectively, our results demonstrated that the number of KiSS-1-expressing neurons located in the ARC was the highest, and that 6-MBOA, which might modulate the reproductive activity along the hypothalamic-pituitary-gonadal axis, had a dose-dependent stimulatory effect on the reproductive activity of Brandt's voles under a short photoperiod. Our study provided insights into the mechanism of 6-MBOA action and the factors influencing the onset of reproduction in Brandt's voles.

  9. Reproductive responses of male Brandt's voles (Lasiopodomys brandtii) to 6-methoxybenzoxazolinone (6-MBOA) under short photoperiod.

    PubMed

    Dai, Xin; Jiang, Lian Yu; Han, Mei; Ye, Man Hong; Wang, Ai Qin; Wei, Wan Hong; Yang, Sheng Mei

    2016-04-01

    The plant secondary metabolite 6-methoxybenzoxazolinone (6-MBOA) can stimulate and enhance animal reproduction. This compound has been successfully detected in Leymus chinensis, which is the main diet of Brandt's voles. The aim of this study was to investigate the effect of different 6-MBOA doses on the reproductive physiology of male Brandt's voles under a short photoperiod. The results showed that 6-MBOA administration increased relative testis weight, regardless of the dose, but it had little effect on the body mass. Low and middle doses of 6-MBOA increased the concentrations of luteinizing hormone and testosterone in the serum and the mRNA levels of StAR and CYP11a1 in the testes. However, 6-MBOA did not cause any significant increase in the mRNA levels of KiSS-1, GPR54, and GnRH compared to those in the control group. The mRNA level of KiSS-1 in the arcuate nucleus (ARC) was higher than that in the anteroventral periventricular nucleus (AVPV). Collectively, our results demonstrated that the number of KiSS-1-expressing neurons located in the ARC was the highest, and that 6-MBOA, which might modulate the reproductive activity along the hypothalamic-pituitary-gonadal axis, had a dose-dependent stimulatory effect on the reproductive activity of Brandt's voles under a short photoperiod. Our study provided insights into the mechanism of 6-MBOA action and the factors influencing the onset of reproduction in Brandt's voles.

  10. Vasoactive intestinal polypeptide mediates cholecystokinin-induced relaxation of the sphincter of Oddi.

    PubMed Central

    Wiley, J W; O'Dorisio, T M; Owyang, C

    1988-01-01

    This study evaluates the hypothesis that cholecystokinin (CCK) relaxes the sphincter of Oddi via vasoactive intestinal polypeptide (VIP). Isolated canine sphincter of Oddi were suspended in organ baths under standard conditions. Responses to cholecystokinin octapeptide (CCK-8) and VIP were recorded on a pen recorder via an isometric transducer. 10(-11)-10(-7) M CCK-8 and 4 X 10(-11)-5 X 10(-7) M VIP generated dose-related sphincter of Oddi relaxation, which was unaffected by atropine, propranolol, and phentolamine. The effect of CCK-8 was antagonized by dibutyryl cGMP (Bt2 cGMP) (10(-3) M), the VIP-antagonist (N-Ac-Tyr1, D-Phe2)-growth hormone-releasing factor-(1-29)-NH2, and abolished by tetrodotoxin. In contrast, VIP's relaxing action was tetrodotoxin insensitive. 10(-11)-10(-7) M CCK-8 stimulated dose-dependent release of VIP (0.5-2.2 fm/ml.mg tissue), which was not inhibited by atropine, propranolol, and phentolamine, but was antagonized by 10(-3) M Bt2 cGMP and tetrodotoxin. In addition CCK-8 and VIP generated dose-related (10(-10)-10(-7) M) increases in sphincter of Oddi cAMP levels that were not affected by atropine, propranolol, and phentolamine. Furthermore, 10(-5)-10(-2) M 8-bromo-cAMP caused dose-dependent relaxation of the sphincter of Oddi. In separate studies, a 2-h incubation in physiological solution containing 12 parts/1,000 of rabbit VIP antiserum antagonized sphincter relaxation caused by 4 nM CCK-8 and 6 nM VIP. The antiserum also significantly decreased the sphincter of Oddi cAMP level stimulated by 4 nM CCK-8 by 48 +/- 15%. These studies demonstrate that CCK-8 relaxes the canine sphincter of Oddi via a noncholinergic, nonadrenergic neural pathway involving VIP. The intracellular mechanism mediating CCK/VIP relaxation involves generation of cAMP. Images PMID:3384954

  11. In vivo and in vitro immunosuppressive effects of benzo[k]fluoranthene in female Balb/c mice.

    PubMed

    Jeon, Tae Won; Jin, Chun Hua; Lee, Sang Kyu; Lee, Dong Wook; Hyun, Sun Hee; Kim, Ghee Hwan; Jun, In Hye; Lee, Byung Mu; Yum, Young Na; Kim, Jun Kyou; Kim, Ok Hee; Jeong, Tae Cheon

    2005-12-10

    Although polycyclic aromatic hydrocarbons (PAHs) have been known to suppress immune responses, few studies have addressed the immunotoxicity of benzo[k]fluoranthene (B[k]F). In this study, we investigated the immunosuppression by B[k]F, both in vivo and in vitro, in female BALB/c mice. To assess the effects of B[k]F on humoral immunity as splenic antibody response to sheep red blood cells (SRBCs), B[k]F was given a single dose or once daily for 7 consecutive days po with 30, 60, and 120 micromol/kg. B[k]F reduced the number of antibody-forming cells (AFCs) in a dose-dependent manner. Subacute treatment with B[k]F caused weight increases in liver and decreases in spleen and thymus. The number of AFCs was dramatically decreased by B[k]F in a dose-dependent manner. In a subsequent study, mice were subacutely exposed to the same doses of B[k]F without an immunization with SRBCs, followed by splenic and thymic lymphocyte phenotypings using a flow cytometry and ex vivo mitogen-stimulated proliferation. B[k]F-exposed mice exhibited reduced splenic and thymic cellularity, decreased numbers of total T cells, CD4(+) cells, and CD8(+) cells in spleen, and immature CD4(+)CD8(+) cells, CD4(+)CD8(-) cells, and CD8(+)CD4(-) cells in thymus. The number of CD4(+) IL-2(+) cells was reduced by about 11%, 31%, and 53% following exposure of mice to 30, 60, and 120 micromol/kg of B[k]F, respectively. In the ex vivo lymphocyte proliferation assay, B[k]F inhibited splenocyte proliferation by LPS and Con A. In the in vitro mitogen-stimulated proliferation by untreated splenic suspensions, B[k]F only suppressed splenocyte proliferation to LPS. These results suggested that B[k]F-induced immunosuppression might be mediated, at least in part, through the IL-2 production, and caused by mechanisms associated with metabolic processes.

  12. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  13. In vitro evaluation of antiproliferative and cytotoxic properties of pterostilbene against human colon cancer cells.

    PubMed

    Wawszczyk, Joanna; Kapral, Małgorzata; Hollek, Andrzej; Węglarz, Ludmiła

    2014-01-01

    Colon cancer has been remaining the second leading cause of cancer mortality in Poland in the last years. Epidemiological, preclinical and clinical studies reveal that dietary phytochemicals may exert chemopreventive and therapeutic effect against colorectal cancer. There is a growing interest in identifying new biologically active agents from dietary sources in this respect. Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is a naturally occurring stilbene, that has been found to have antioxidative, anti-inflammatory and antipro- liferative properties. Compared to other stilbenes, pterostilbene has greater bioavailability, and so, a greater potential for clinical applications. Recent studies showed that pterostilbene exhibits the hallmark characteristics of an anticancer agent. The aim of this study was to analyze antiproliferative and cytotoxic effects of pterostilbene on human colon cancer Caco-2 cells. They were cultured using standard techniques and exposed to increasing doses of pterostilbene (5-100 μM) for 48 and 72 h. Cell proliferation was determined by sulforhodamine B assay. The growth of treated cells was expressed as a percentage of that of untreated control cells. Pterostilbene decreased proliferation rate of Caco-2 cells in a dose- and time-dependent manner. Its concentrations = 25 μM did not affect cell growth after 48 h treatment period. Significant growth inhibition was observed in cultures incubated with higher concentrations of pterostilbene (40-100 μM). Pterostilbene at all concentrations used (5-100 μM) caused significant inhibition of cell proliferation when the experimental time period was elongated to 72 h. The maximum growth reduction was observed at 100 mM pterostilbene. The cytotoxicity of pterostilbene was evaluated in 48 h cultures based on lactate dehydrogenase (LDH) leakage into the culture medium and showed dose-related pattern. The findings of this study showed significant dose-dependent antiproliferative and cytotoxic effects of pterostilbene against human colon cancer cells in vitro.

  14. Anti-inflammatory pharmacotherapy during pregnancy.

    PubMed

    Østensen, Monika E; Skomsvoll, Johan F

    2004-03-01

    NSAIDs or cyclooxygenase inhibitors (COX inhibitors), including aspirin, are widely used to treat pain, fever and the articular symptoms of chronic rheumatic diseases. Manifestations of connective tissue or autoimmune diseases are commonly treated with glucocorticosteroids. The effect and side effects of NSAIDs depend on the isoforms of cyclooxygenases that they preferentially or selectively inhibit. The use of COX inhibitors has recently been associated with infertility and miscarriage. The classical nonselective COX inhibitors, including aspirin, do not increase the risk of congenital malformations in humans but administered in the latter part of gestation, they can affect pregnancy and the fetus. The ability of nonselective and selective COX inhibitors to prolong gestation has been used by obstetricians to inhibit premature delivery. The vascular effects of prostaglandin inhibitors can cause constriction of the fetal ductus arteriosus and reduce renal blood flow. These complications have been described for most nonselective COX inhibitors but are increasingly reported also for the selective COX-2 inhibitors. Aspirin, which causes irreversible inhibition of cyclooxygenases, differs from other NSAIDs with regard to indication, effects and side effects. Prematurity, which is increased in pregnancies of women with connective tissue diseases, is an additional risk factor for adverse effects of antenatal exposure to NSAIDs. Therefore, treatment with COX inhibitors should be discontinued at week 32 of gestation. The ability of NSAIDs to compromise reproductive function by inhibition of ovulation and as causative agents for miscarriage is still under debate. Glucocorticosteroids given in early pregnancy are a risk factor for the development of oral clefts. Therefore, the daily dose should be kept to

  15. In vitro and in vivo assessment of cellular permeability and pharmacodynamics of S-nitrosylated Captopril, a nitric oxide donor

    PubMed Central

    Jia, Lee; Wong, Hong

    2001-01-01

    The present studies were aimed at testing the hypothesis that S-nitrosylated captopril (CapNO), a novel crystalline nitric oxide (NO) donor, readily permeates both in vitro and in vivo endothelial monolayers, resulting in its pharmacodynamic effects. CapNO and Captopril (Cap) were added to apical side of endothelial monolayers formed on microporous membranes, and the permeated drugs were collected from basolateral side and detected by a HPLC method. The permeability coefficient (Papp; cm sec−1) of CapNO across the endothelial monolayers was 6.0×10−5, higher than that of Cap (3.13×10−5), indicating the enhancement effect of the attached NO group in CapNO on cellular permeability. The Papp of CapNO and Cap across Caco-2 cells were 3.15×10−5 and 1.53×10−5, respectively. The low Papp of CapNO to Caco-2 cells may be attributed to the high membrane resistance of Caco-2 cells. A bolus injection of CapNO to epicardial coronary artery of chronically-instrumented awake dogs caused significant increases in coronary blood flow and coronary diameters dose-dependently without significant changes in aortic pressure. In contrast, the equimolar doses of Cap did not produce haemodynamic responses. Intravenous CapNO caused an instant increase in the regional cerebral blood flow determined by H2-clearance, whereas the equimolar doses of Cap did not enhance the cerebral blood flow. These results conclude that the NO group, an active component of CapNO, enhances both in vitro and in vivo endothelial permeability to the entire compound, resulting in instant increases in blood flow and vascular diameters. In contrast, the equimolar Cap does not have the instant vascular effects. PMID:11739246

  16. In vitro and in vivo assessment of cellular permeability and pharmacodynamics of S-nitrosylated captopril, a nitric oxide donor.

    PubMed

    Jia, L; Wong, H

    2001-12-01

    1. The present studies were aimed at testing the hypothesis that S-nitrosylated captopril (CapNO), a novel crystalline nitric oxide (NO) donor, readily permeates both in vitro and in vivo endothelial monolayers, resulting in its pharmacodynamic effects. 2. CapNO and Captopril (Cap) were added to apical side of endothelial monolayers formed on microporous membranes, and the permeated drugs were collected from basolateral side and detected by a HPLC method. The permeability coefficient (P(app); cm sec(-1)) of CapNO across the endothelial monolayers was 6.0 x 10(-5), higher than that of Cap (3.13 x 10(-5)), indicating the enhancement effect of the attached NO group in CapNO on cellular permeability. The P(app) of CapNO and Cap across Caco-2 cells were 3.15 x 10(-5) and 1.53 x 10(-5), respectively. The low P(app) of CapNO to Caco-2 cells may be attributed to the high membrane resistance of Caco-2 cells. 3. A bolus injection of CapNO to epicardial coronary artery of chronically-instrumented awake dogs caused significant increases in coronary blood flow and coronary diameters dose-dependently without significant changes in aortic pressure. In contrast, the equimolar doses of Cap did not produce haemodynamic responses. 4. Intravenous CapNO caused an instant increase in the regional cerebral blood flow determined by H(2)-clearance, whereas the equimolar doses of Cap did not enhance the cerebral blood flow. 5. These results conclude that the NO group, an active component of CapNO, enhances both in vitro and in vivo endothelial permeability to the entire compound, resulting in instant increases in blood flow and vascular diameters. In contrast, the equimolar Cap does not have the instant vascular effects.

  17. Proof that green tea tannin suppresses the increase in the blood methylguanidine level associated with renal failure.

    PubMed

    Yokozawa, T; Dong, E; Oura, H

    1997-02-01

    The effects of a green tea tannin mixture and its individual tannin components on methylguanidine were examined in rats with renal failure. The green tea tannin mixture caused a dose-dependent decrease in methylguanidine, a substance which accumulates in the blood with the progression of renal failure. Among individual tannin components, the effect was most conspicuous with (-)-epigallocatechin 3-O-gallate and (-)-epicatechin 3-O-gallate, while other components not linked to gallic acid showed only weak effects. Thus, the effect on methylguanidine was found to vary among different types of tannin.

  18. Organotin compounds cause structure-dependent induction of progesterone in human choriocarcinoma Jar cells.

    PubMed

    Hiromori, Youhei; Yui, Hiroki; Nishikawa, Jun-ichi; Nagase, Hisamitsu; Nakanishi, Tsuyoshi

    2016-01-01

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), are typical environmental contaminants and suspected endocrine-disrupting chemicals because they cause masculinization in female mollusks. In addition, previous studies have suggested that the endocrine disruption by organotin compounds leads to activation of peroxisome proliferator-activated receptor (PPAR)γ and retinoid X receptor (RXR). However, whether organotin compounds cause crucial toxicities in human development and reproduction is unclear. We here investigated the structure-dependent effect of 12 tin compounds on mRNA transcription of 3β-hydroxysteroid dehydrogenase type I (3β-HSD I) and progesterone production in human choriocarcinoma Jar cells. TBT, TPT, dibutyltin, monophenyltin, tripropyltin, and tricyclohexyltin enhanced progesterone production in a dose-dependent fashion. Although tetraalkyltin compounds such as tetrabutyltin increased progesterone production, the concentrations necessary for activation were 30-100 times greater than those for trialkyltins. All tested active organotins increased 3β-HSD I mRNA transcription. We further investigated the correlation between the agonistic activity of organotin compounds on PPARγ and their ability to promote progesterone production. Except for DBTCl2, the active organotins significantly induced the transactivation function of PPARγ. In addition, PPARγ knockdown significantly suppressed the induction of mRNA transcription of 3β-HSD I by all active organotins except DBTCl2. These results suggest that some organotin compounds promote progesterone biosynthesis in vitro by inducing 3β-HSD I mRNA transcription via the PPARγ signaling pathway. The placenta represents a potential target organ for these compounds, whose endocrine-disrupting effects might cause local changes in progesterone concentration in pregnant women. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration.

    PubMed

    Dunn, S R; Thomason, J C; Le Tissier, M D A; Bythell, J C

    2004-11-01

    Bleaching of reef building corals and other symbiotic cnidarians due to the loss of their dinoflagellate algal symbionts (=zooxanthellae), and/or their photosynthetic pigments, is a common sign of environmental stress. Mass bleaching events are becoming an increasingly important cause of mortality and reef degradation on a global scale, linked by many to global climate change. However, the cellular mechanisms of stress-induced bleaching remain largely unresolved. In this study, the frequency of apoptosis-like and necrosis-like cell death was determined in the symbiotic sea anemone Aiptasia sp. using criteria that had previously been validated for this symbiosis as indicators of programmed cell death (PCD) and necrosis. Results indicate that PCD and necrosis occur simultaneously in both host tissues and zooxanthellae subject to environmentally relevant doses of heat stress. Frequency of PCD in the anemone endoderm increased within minutes of treatment. Peak rates of apoptosis-like cell death in the host were coincident with the timing of loss of zooxanthellae during bleaching. The proportion of apoptosis-like host cells subsequently declined while cell necrosis increased. In the zooxanthellae, both apoptosis-like and necrosis-like activity increased throughout the duration of the experiment (6 days), dependent on temperature dose. A stress-mediated PCD pathway is an important part of the thermal stress response in the sea anemone symbiosis and this study suggests that PCD may play different roles in different components of the symbiosis during bleaching.

  20. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore,more » a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were also mildly increased in ADH{sup −} deer mice fed 1 or 2% ethanol. Only small increases were observed for allylic and diallylic protons, FAMEs and unsaturations in ADH{sup +} deer mice fed 3.5% ethanol vs. pair-fed controls. PCA of NMR data showed increased clustering by gradual separation of ethanol-fed ADH{sup −} deer mice groups from their respective pair-fed control groups and corresponding ethanol-fed ADH{sup +} deer mice groups. Our data indicate that dose of ethanol and hepatic ADH deficiency are two key factors involved in initiation and progression of alcoholic fatty liver disease. Further studies on characterization of individual lipid entities and associated metabolic pathways altered in our deer mouse model after different durations of ethanol feeding could be important to delineate mechanism(s) and identify potential biomarker candidate(s) of early stage ALD. -- Highlights: ► Dose-dependent ethanol-induced fatty liver was studied in deer mouse model. ► A NMR-based lipidomic approach with histology and dry lipid weights was used. ► We used principal component analysis (PCA) to analyze the NMR lipidomic data. ► Dose-dependent clustering patterns by PCA were compared among the groups.« less

  1. High glucose impaired estrogen receptor alpha signaling via β-catenin in osteoblastic MC3T3-E1.

    PubMed

    Wang, Rui; Gao, Dong; Zhou, Yin; Chen, Lu; Luo, Bin; Yu, Yanrong; Li, Hao; Hu, Jiawei; Huang, Qiren; He, Ming; Peng, Weijie; Luo, Dan

    2017-11-01

    Diabetic Mellitus is a risk factor for osteoporosis. It has been suggested that altered estrogen or estrogen receptor α/β (ERα/β) signaling may be involved in diabetic osteoporosis. The present study is to investigate the effects of high glucose on ERα/β signaling in osteoblastic MC3T3-E1 and how the altered signaling of ERα/β affect osteoblastic bone formation. ERα/β signaling was demonstrated as ERα/β protein expression (Western Blotting) and ER transcription activity (Luciferase Reporter assays). Proliferation (WSK-1 assaying), differentiation (ALP staining) and mineralization (Alizalard Red staining) of MC3T3-E1 were examined to evaluate bone formation function. It has been found that high glucose increased ERα/β expression dose-dependently and time-dependently, but high glucose (33mM) decreased ERα transcription activity. 17β-estradiol increased the ERα/β expression dose-dependently in normal medium, but decreased the ERα/β expression dose-dependently in medium with high glucose (33mM). High glucose decreased bone formation and also decreased the osteogenic effects of 17β-estradiol (10 -8 M). High glucose decreased β-catenin expression dose-dependently and time-dependently. LiCl, an inhibitor of β-catenin degradation, decreased ERα expression but increased ERα transcription activity. When compared with high glucose treatment, LiCl (5mM) increased ALP activity and calcified nodes. Besides, high glucose also decreased the protein expression PI-3K, pAKT/AKT, GSK-3β. In conclusion, the present study suggested that high glucose may impair ERα transcription activity by inhibiting β-catenin signaling in osteoblastic MC3T3-E1, leading decreased bone formation ligand-dependently or ligand-independently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Discovery of glycyrrhetinic acid as an orally active, direct inhibitor of blood coagulation factor xa.

    PubMed

    Jiang, Lilong; Wang, Qiong; Shen, Shu; Xiao, Tongshu; Li, Youbin

    2014-03-01

    Factor Xa (FXa) plays an important role in blood coagulation. This study investigated glycyrrhetinic acid, a small molecule derived from Chinese herbs, and whether it has a direct inhibitory effect on FXa to display its anticoagulant activity. Enzyme activities of FXa, plasmin, trypsin and thrombin, inhibition of FXa enzyme kinetics and plasma clotting time by glycyrrhentinic acid were performed in vitro. A rat tail-bleeding model and a rat venous stasis model were also used to evaluate in vivo tail-bleeding time and thrombus formation, respectively. Glycyrrhetinic acid in vitro directly inhibited FXa uncompetitivly with IC50 of 32.6 ± 1.24 μmol/L, and displayed 2-, 14- and 20-fold selectivity for FXa when compared to plasmin, thrombin and trypsin, respectively. The plasma clotting time was increased in a dose-dependent manner. The prothrombin time doubled (PT2), when the concentration of glycyrrhetinic acid reached 2.02 mmol/L. During in vivo experiments intragastric administration of glycyrrhetinic acid caused a dose-dependent reduction in thrombus weight on the rat venous stasis model (all P<0.05). 50 mg/kg glycyrrhetinic acid resulted in 34.8% of venous thrombus weight lost, compared to the control. In addition, 200, 300 and 400 mg/kg doses of glycyrrhetinic acid caused a moderate hemorrhagic effect in the rat tail-bleeding model by prolonging bleeding time 1.1-, 1.5- and 1.9-fold compared to the control, respectively. Glycyrrhetinic acid is a direct inhibitor of FXa that is effective by oral administration, and with further research could be used to treat blood coagulation disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. High-Dose Polymerized Hemoglobin Fails to Alleviate Cardiac Ischemia/Reperfusion Injury due to Induction of Oxidative Damage in Coronary Artery.

    PubMed

    Yang, Qian; Wu, Wei; Li, Qian; Chen, Chan; Zhou, Ronghua; Qiu, Yanhua; Luo, Ming; Tan, Zhaoxia; Li, Shen; Chen, Gang; Zhou, Wentao; Liu, Jiaxin; Yang, Chengmin; Liu, Jin; Li, Tao

    2015-01-01

    Objective. Ischemia/reperfusion (I/R) injury is an unavoidable event for patients in cardiac surgery under cardiopulmonary bypass (CPB). This study was designed to investigate whether glutaraldehyde-polymerized human placenta hemoglobin (PolyPHb), a hemoglobin-based oxygen carrier (HBOC), can protect heart against CPB-induced I/R injury or not and to elucidate the underlying mechanism. Methods and Results. A standard dog CPB model with 2-hour cardiac arrest and 2-hour reperfusion was established. The results demonstrated that a low-dose PolyPHb (0.1%, w/v) provided a significant protection on the I/R heart, whereas the high-dose PolyPHb (3%, w/v) did not exhibit cardioprotective effect, as evidenced by the impaired cardiac function, decreased myocardial oxygen utilization, and elevated enzymes release and pathological changes. Further study indicated that exposure of isolated coronary arteries or human umbilical vein endothelial cells (HUVECs) to a high-dose PolyPHb caused impaired endothelium-dependent relaxation, which was companied with increased reactive oxygen species (ROS) production, reduced superoxide dismutase (SOD) activity, and elevated malonaldehyde (MDA) formation. Consistent with the increased oxidative stress, the NAD(P)H oxidase activity and subunits expression, including gp91(phox), p47(phox), p67(phox), and Nox1, were greatly upregulated. Conclusion. The high-dose PolyPHb fails to protect heart from CPB-induced I/R injury, which was due to overproduction of NAD(P)H oxidase-induced ROS and resultant endothelial dysfunction.

  4. Impact of oral cadmium intoxication on levels of different essential trace elements and oxidative stress measures in mice: a response to dose.

    PubMed

    Kumar, Narendra; Kumari, Vandna; Ram, Chand; Bharath Kumar, Bagepalli Sathyanarayana; Verma, Sunita

    2018-02-01

    The study evaluated the effect of oral intoxication of cadmium and the possible causes of oxidative stress and its preferential accumulation in different organs as well as sub-sequential effects in mice. Twenty-four Swiss albino male mice were divided into three groups viz., normal control group without cadmium chloride (CdCl 2 ), whereas a daily dose of 0.5 and 1.2 mg of CdCl 2 was orally administered for a period of a week to dose group 1 (DG-1) and dose group 2 (DG-2), respectively. A significant increase in the severity of cadmium toxicity was observed in animals as evidenced by aggravation in liver enzymes viz., serum alanine aminotransferase and aspartate transaminase, whereas lower levels of antioxidative stress markers in liver and kidney tissues of treated mice were observed as compared to normal control group. A significant depletion of calcium levels in liver tissues of DG-1 (217.36 ± 1.73 μg/g of wet tissues) and DG-2 (186.41 ± 1.56 μg/g of wet tissues) groups, along with Cd accumulation, was observed. To summarize, the current study would increase our understanding with respect to dose-dependent absorption of Cd and its toxicity led to mortality as well as adverse health effects in the body of mice. Graphical abstract ᅟ.

  5. Elevated mu-opioid receptor expression in the nucleus of the solitary tract accompanies attenuated withdrawal signs after chronic low dose naltrexone in opiate-dependent rats.

    PubMed

    Van Bockstaele, E J; Rudoy, C; Mannelli, P; Oropeza, V; Qian, Y

    2006-02-15

    We previously described a decrease in withdrawal behaviors in opiate-dependent rats that were chronically treated with very low doses of naltrexone in their drinking water. Attenuated expression of withdrawal behaviors correlated with decreased c-Fos expression and intracellular signal transduction elements [protein kinase A regulatory subunit II (PKA) and phosphorylated cAMP response element binding protein (pCREB)] in brainstem noradrenergic nuclei. In this study, to determine whether similar cellular changes occurred in forebrain nuclei associated with drug reward, expressions of PKA and pCREB were analyzed in the ventral tegmental area, frontal cortex, striatum, and amygdala of opiate-treated rats that received low doses of naltrexone in their drinking water. No significant difference in PKA or pCREB was detected in these regions following drug treatment. To examine further the cellular mechanisms in noradrenergic nuclei that could underlie attenuated withdrawal behaviors following low dose naltrexone administration, the nucleus of the solitary tract (NTS) and locus coeruleus (LC) were examined for opioid receptor (OR) protein expression. Results showed a significant increase in muOR expression in the NTS of morphine-dependent rats that received low doses of naltrexone in their drinking water, and increases in muOR expression were also found to be dose dependent. Protein expression of muOR in the LC and deltaOR in either brain region remained unchanged. In conclusion, our previously reported decreases in c-Fos and PKA expression in the NTS following pretreatment with low doses of naltrexone may be partially explained by a greater inhibition of NTS neurons resulting from increased muOR expression in this region.

  6. Accurate condensed history Monte Carlo simulation of electron transport. II. Application to ion chamber response simulations.

    PubMed

    Kawrakow, I

    2000-03-01

    In this report the condensed history Monte Carlo simulation of electron transport and its application to the calculation of ion chamber response is discussed. It is shown that the strong step-size dependencies and lack of convergence to the correct answer previously observed are the combined effect of the following artifacts caused by the EGS4/PRESTA implementation of the condensed history technique: dose underprediction due to PRESTA'S pathlength correction and lateral correlation algorithm; dose overprediction due to the boundary crossing algorithm; dose overprediction due to the breakdown of the fictitious cross section method for sampling distances between discrete interaction and the inaccurate evaluation of energy-dependent quantities. These artifacts are now understood quantitatively and analytical expressions for their effect are given.

  7. Dosimetric properties of radiophotoluminescent glass detector in low-energy photon beams.

    PubMed

    Kadoya, Noriyuki; Shimomura, Kouhei; Kitou, Satoshi; Shiota, Yasuo; Fujita, Yukio; Dobashi, Suguru; Takeda, Ken; Jingu, Keiichi; Matsushita, Haruo; Namito, Yoshihito; Ban, Syuichi; Koyama, Syuji; Tabushi, Katsuyoshi

    2012-10-01

    A radiophotoluminescent glass rod dosimeter (RGD) has recently become commercially available. It is being increasingly used for dosimetry in radiotherapy to measure the absorbed dose including scattered low-energy photons on the body surface of a patient and for postal dosimetry audit. In this article, the dosimetric properties of the RGD, including energy dependence of the dose response, reproducibly, variation in data obtained by the RGD for each energy, and angular dependence in low-energy photons, are discussed. An RGD (GD-301, Asahi Techno Glass Corporation, Shizuoka, Japan) was irradiated with monochromatic low-energy photon beams generated by synchrotron radiation at Photon Factory, High Energy Accelerator Research Organization (KEK). The size of GD-301 was 1.5 mm in diameter and 8.5 mm in length and the active dose readout volume being 1 mm diameter and 0.6 mm depth located 0.7 mm from the end of the detector. The energy dependence of the dose response and reproducibility and variation were investigated for RGDs irradiated with a plastic holder and those irradiated without the plastic holder. Response of the RGD was obtained by not only conventional single field irradiation but also bilateral irradiation. Angular dependence of the RGD was measured in the range of 0°-90° for 13, 17, 40, and 80 keV photon beams by conventional single field irradiation. The dose responses had a peak at around 40 keV. For the energy range of less than 25 keV, all dose response curves steeply decreased in comparison with the ratio of mass energy absorption coefficient of the RGD to that of air. As for the reproducibility and variation in data obtained by the RGD, the coefficient of variance increased with decrease in photon energy. Furthermore, the variation for bilateral irradiation was less than that for single field irradiation. Regarding angular dependence of the RGD, for energies of 13 and 17 keV, the response decreased with increase in the irradiation angle, and the minimum values were 93.5% and 86%, respectively. Our results showed the dosimetric properties of the RGD, including the energy dependence of the dose response, reproducibly, variation, and angular dependence in low-energy photons and suggest that the accuracy of the absorbed dose in low-energy photons is affected by the readout method and the distribution of radiophotoluminescence centers in the RGD.

  8. Radiation-Induced Salivary Gland Dysfunction Results From p53-Dependent Apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, Jennifer L.; Grundmann, Oliver; Burd, Randy

    2009-02-01

    Purpose: Radiotherapy for head-and-neck cancer causes adverse secondary side effects in the salivary glands and results in diminished quality of life for the patient. A previous in vivo study in parotid salivary glands demonstrated that targeted head-and-neck irradiation resulted in marked increases in phosphorylated p53 (serine{sup 18}) and apoptosis, which was suppressed in transgenic mice expressing a constitutively active mutant of Akt1 (myr-Akt1). Methods and Materials: Transgenic and knockout mouse models were exposed to irradiation, and p53-mediated transcription, apoptosis, and salivary gland dysfunction were analyzed. Results: The proapoptotic p53 target genes PUMA and Bax were induced in parotid salivary glandsmore » of mice at early time points after therapeutic radiation. This dose-dependent induction requires expression of p53 because no radiation-induced expression of PUMA and Bax was observed in p53-/- mice. Radiation also induced apoptosis in the parotid gland in a dose-dependent manner, which was p53 dependent. Furthermore, expression of p53 was required for the acute and chronic loss of salivary function after irradiation. In contrast, apoptosis was not induced in p53-/- mice, and their salivary function was preserved after radiation exposure. Conclusions: Apoptosis in the salivary glands after therapeutic head-and-neck irradiation is mediated by p53 and corresponds to salivary gland dysfunction in vivo.« less

  9. Lipopolysaccharide-induced pulmonary endothelial barrier disruption and lung edema: critical role for bicarbonate stimulation of AC10.

    PubMed

    Nickols, Jordan; Obiako, Boniface; Ramila, K C; Putinta, Kevin; Schilling, Sarah; Sayner, Sarah L

    2015-12-15

    Bacteria-induced sepsis is a common cause of pulmonary endothelial barrier dysfunction and can progress toward acute respiratory distress syndrome. Elevations in intracellular cAMP tightly regulate pulmonary endothelial barrier integrity; however, cAMP signals are highly compartmentalized: whether cAMP is barrier-protective or -disruptive depends on the compartment (plasma membrane or cytosol, respectively) in which the signal is generated. The mammalian soluble adenylyl cyclase isoform 10 (AC10) is uniquely stimulated by bicarbonate and is expressed in pulmonary microvascular endothelial cells (PMVECs). Elevated extracellular bicarbonate increases cAMP in PMVECs to disrupt the endothelial barrier and increase the filtration coefficient (Kf) in the isolated lung. We tested the hypothesis that sepsis-induced endothelial barrier disruption and increased permeability are dependent on extracellular bicarbonate and activation of AC10. Our findings reveal that LPS-induced endothelial barrier disruption is dependent on extracellular bicarbonate: LPS-induced barrier failure and increased permeability are exacerbated in elevated bicarbonate compared with low extracellular bicarbonate. The AC10 inhibitor KH7 attenuated the bicarbonate-dependent LPS-induced barrier disruption. In the isolated lung, LPS failed to increase Kf in the presence of minimal perfusate bicarbonate. An increase in perfusate bicarbonate to the physiological range (24 mM) revealed the LPS-induced increase in Kf, which was attenuated by KH7. Furthermore, in PMVECs treated with LPS for 6 h, there was a dose-dependent increase in AC10 expression. Thus these findings reveal that LPS-induced pulmonary endothelial barrier failure requires bicarbonate activation of AC10. Copyright © 2015 the American Physiological Society.

  10. Lipopolysaccharide-induced pulmonary endothelial barrier disruption and lung edema: critical role for bicarbonate stimulation of AC10

    PubMed Central

    Nickols, Jordan; Obiako, Boniface; Ramila, K. C.; Putinta, Kevin; Schilling, Sarah

    2015-01-01

    Bacteria-induced sepsis is a common cause of pulmonary endothelial barrier dysfunction and can progress toward acute respiratory distress syndrome. Elevations in intracellular cAMP tightly regulate pulmonary endothelial barrier integrity; however, cAMP signals are highly compartmentalized: whether cAMP is barrier-protective or -disruptive depends on the compartment (plasma membrane or cytosol, respectively) in which the signal is generated. The mammalian soluble adenylyl cyclase isoform 10 (AC10) is uniquely stimulated by bicarbonate and is expressed in pulmonary microvascular endothelial cells (PMVECs). Elevated extracellular bicarbonate increases cAMP in PMVECs to disrupt the endothelial barrier and increase the filtration coefficient (Kf) in the isolated lung. We tested the hypothesis that sepsis-induced endothelial barrier disruption and increased permeability are dependent on extracellular bicarbonate and activation of AC10. Our findings reveal that LPS-induced endothelial barrier disruption is dependent on extracellular bicarbonate: LPS-induced barrier failure and increased permeability are exacerbated in elevated bicarbonate compared with low extracellular bicarbonate. The AC10 inhibitor KH7 attenuated the bicarbonate-dependent LPS-induced barrier disruption. In the isolated lung, LPS failed to increase Kf in the presence of minimal perfusate bicarbonate. An increase in perfusate bicarbonate to the physiological range (24 mM) revealed the LPS-induced increase in Kf, which was attenuated by KH7. Furthermore, in PMVECs treated with LPS for 6 h, there was a dose-dependent increase in AC10 expression. Thus these findings reveal that LPS-induced pulmonary endothelial barrier failure requires bicarbonate activation of AC10. PMID:26475732

  11. Underestimation of Low-Dose Radiation in Treatment Planning of Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Si Young; Liu, H. Helen; Mohan, Radhe

    2008-08-01

    Purpose: To investigate potential dose calculation errors in the low-dose regions and identify causes of such errors for intensity-modulated radiotherapy (IMRT). Methods and Materials: The IMRT treatment plans of 23 patients with lung cancer and mesothelioma were reviewed. Of these patients, 15 had severe pulmonary complications after radiotherapy. Two commercial treatment-planning systems (TPSs) and a Monte Carlo system were used to calculate and compare dose distributions and dose-volume parameters of the target volumes and critical structures. The effect of tissue heterogeneity, multileaf collimator (MLC) modeling, beam modeling, and other factors that could contribute to the differences in IMRT dose calculationsmore » were analyzed. Results: In the commercial TPS-generated IMRT plans, dose calculation errors primarily occurred in the low-dose regions of IMRT plans (<50% of the radiation dose prescribed for the tumor). Although errors in the dose-volume histograms of the normal lung were small (<5%) above 10 Gy, underestimation of dose <10 Gy was found to be up to 25% in patients with mesothelioma or large target volumes. These errors were found to be caused by inadequate modeling of MLC transmission and leaf scatter in commercial TPSs. The degree of low-dose errors depends on the target volumes and the degree of intensity modulation. Conclusions: Secondary radiation from MLCs contributes a significant portion of low dose in IMRT plans. Dose underestimation could occur in conventional IMRT dose calculations if such low-dose radiation is not properly accounted for.« less

  12. Year-long upregulation of connexin43 in rabbit hearts by heavy ion irradiation.

    PubMed

    Amino, Mari; Yoshioka, Koichiro; Fujibayashi, Daisuke; Hashida, Tadashi; Furusawa, Yoshiya; Zareba, Wojciech; Ikari, Yuji; Tanaka, Etsuro; Mori, Hidezo; Inokuchi, Sadaki; Kodama, Itsuo; Tanabe, Teruhisa

    2010-03-01

    A previous study from our laboratory has shown that a single targeted heavy ion irradiation (THIR; 15 Gy) to rabbit hearts increases connexin43 (Cx43) expression for 2 wk in association with an improvement of conduction, a decrease of the spatial inhomogeneity of repolarization, and a reduction of vulnerability to ventricular arrhythmias after myocardial infarction. This study investigated the time- and dose-dependent effects of THIR (5-15 Gy) on Cx43 expression in normal rabbit hearts (n = 45). Five rabbits without THIR were used as controls. A significant upregulation of Cx43 protein and mRNA in the ventricular myocardium was recognized by immunohistochemistry, Western blotting, and real-time PCR from 2 wk up to 1 yr after a single THIR at 15 Gy. THIR > or =10 Gy caused a significant dose-dependent increase of Cx43 protein and mRNA 2 wk after THIR. Anterior, lateral, and posterior free wall of the left ventricle, interventricular septum, and right ventricular free wall were affected similarly by THIR in terms of Cx43 upregulation. The radiation-induced increase of immunolabeled Cx43 was observed not only at the intercalated disk region but also at the lateral surface of ventricular myocytes. The increase of immunoreactive Cx43 protein was predominant in the membrane fraction insoluble in Triton X-100, that is the Cx43 in the sarcolemma. In vivo examinations of the rabbits 1 yr after THIR (15 Gy) revealed no significant changes in ECGs and echocardiograms (left ventricular dimensions, contractility, and diastolic function), indicating no apparent late radiation injury. A single application of THIR causes upregulation and altered cellular distribution of Cx43 in the ventricles lasting for at least 1 yr. This long-lasting remodeling effect on gap junctions may open the pathway to novel therapy against life threatening ventricular arrhythmias in structural heart disease.

  13. Antithrombin activity of an algal polysaccharide.

    PubMed

    Trento, F; Cattaneo, F; Pescador, R; Porta, R; Ferro, L

    2001-06-01

    In an effort to reduce the risks of a possible iatrogenic transmission of bovine spongiform encephalitis (BSE) through the use of bovine-derived medicinal products, we patented in the USA in 1999 a polysaccharide from brown algae, endowed with interesting pharmacological activities: (a) concentration-dependent inhibition of thromboplastin or cephalin-kaolin-induced thrombin generation from platelets, (b) concentration-dependent inhibition of thrombin-induced platelet aggregation, (c) thrombin has hypotensive effect, which was blunted and zeroed by our fucansulfate in a dose-dependent way, (d) when aortae are stimulated with thrombin, they become stickier for polymorphonucleated leukocytes (PMNs); our fucansulfate decreased concentration-dependently, PMNs sticking to autologous rabbit aortae, (e) dose-dependent inhibition of thrombin-induced thrombosis. All the above data suggest that our fucansulfate could be a heparin substitute endowed with antithrombotic and anti-inflammatory activities, devoid or the problems caused to heparin by its animal origin, i.e., possible prion protein contamination.

  14. Density-dependent changes of the pore properties of the P2X2 receptor channel

    PubMed Central

    Fujiwara, Yuichiro; Kubo, Yoshihiro

    2004-01-01

    Ligand-gated ion channels underlie and play important roles in synaptic transmission, and it is generally accepted that the ion channel pores have a rigid structure that enables strict regulation of ion permeation. One exception is the P2X ATP-gated channel. After application of ATP, the ion selectivity of the P2X2 channel time-dependently changes, i.e. permeability to large cations gradually increases, and there is significant cell-to-cell variation in the intensity of inward rectification. Here we show P2X2 channel properties are correlated with the expression level: increasing P2X2 expression level in oocytes increases permeability to large cations, decreases inward rectification and increases ligand sensitivity. We also observed that the inward rectification changed in a dose-dependent manner, i.e. when low concentration of ATP was applied to an oocyte with a high expression level, the intensity of inward rectification of the evoked current was weak. Taken together, these results show that the pore properties of P2X2 channel are not static but change dynamically depending on the open channel density. Furthermore, we identified by mutagenesis study that Ile328 located at the outer mouth of the pore is critical for the density-dependent changes of P2X2. Our findings suggest synaptic transmission can be modulated by the local density-dependent changes of channel properties caused, for example, by the presence of clustering molecules. PMID:15107474

  15. Development of CER-001: Preclinical Dose Selection Through to Phase I Clinical Findings.

    PubMed

    Keyserling, Constance H; Barbaras, Ronald; Benghozi, Renee; Dasseux, Jean-Louis

    2017-05-01

    CER-001 comprises recombinant human apolipoprotein A-I complexed with phospholipids that mimics natural, nascent, pre-β high-density lipoprotein (HDL). We present animal model data showing dose-dependent increases in cholesterol efflux with CER-001 and its subsequent elimination by reverse lipid transport, together with inhibition of atherosclerotic plaque progression. We report the first phase I study results with CER-001 in humans, starting at 0.25 mg/kg, which is 1/80th of the safe dose (20 mg/kg) established in 4-week multiple-dose animal studies dosed every second day. Healthy volunteers, 18-55 years old with a low-density lipoprotein-cholesterol:HDL-cholesterol ratio greater than 3.0, received single intravenous escalating doses of CER-001 (0.25-45.0 mg/kg) and placebo in a double-blind randomised cross-over fashion. Subjects were followed up for 3 weeks post-dose. Assessments included adverse event monitoring, blood sampling, and clinical laboratory measurements. Thirty-two subjects were enrolled. All CER-001 doses (0.25-45 mg/kg) were safe and well tolerated, with an adverse event profile similar to placebo. Effects on clinical chemistry, haematology and coagulation parameters were comparable to placebo. No adverse effects of CER-001 on electrocardiograms were observed. No antibodies to apolipoprotein A-I were detected following single-dose administration of CER-001. Plasma apolipoprotein A-I levels increased in a dose-related manner and returned to baseline by 24 h post-dose for doses up to 10 mg/kg but remained in circulation for >72 h post-dose for doses >10 mg/kg. CER-001 caused elevations in plasma cholesterol and total and unesterified cholesterol in the HDL fraction. Mobilisation of unesterified cholesterol in the HDL fraction was seen with CER-001 at doses as low as 2 mg/kg. CER-001 is well tolerated when administered to humans as single doses up to 45 mg/kg and mobilises and eliminates cholesterol via reverse lipid transport.

  16. UTILIZATION OF THE LEAST SHREW AS A RAPID AND SELECTIVE SCREENING MODEL FOR THE ANTIEMETIC POTENTIAL AND BRAIN PENETRATION OF SUBSTANCE P AND NK1 RECEPTOR ANTAGONISTS

    PubMed Central

    Darmani, Nissar A.; Wang, Yaozhi; Abad, Joseph; Ray, Andrew P.; Thrush, Gerald R.; Ramirez, Juan

    2008-01-01

    Substance P (SP) is thought to play a cardinal role in emesis via the activation of central tachykinin NK1 receptors during the delayed phase of vomiting produced by chemotherapeutics. Although the existing supportive evidence is significant, due to lack of an appropriate animal model, the evidence is indirect. As yet, no study has confirmed that emesis produced by SP or a selective NK1 receptor agonist is sensitive to brain penetrating antagonists of either NK1, NK2, or NK3 receptors. The goals of this investigation were to demonstrate: 1) whether intraperitoneal (i.p.) administration of either SP, a brain penetrating (GR73632) or non-penetrating (e.g. SarMet – SP) NK1 receptor agonist, an NK2 receptor agonist (GR64349), or an NK3 receptor agonist (Pro7-NKB), would induce vomiting and/or scratching in the least shrew (Cryptotis parva) in a dose-dependent manner; and whether these effects are sensitive to the above selective receptor antagonists; 2) whether an exogenous emetic dose of SP (50 mg/kg, i.p.) can penetrate into the shrew brain stem and frontal cortex; 3) whether GR73632 (2.5 mg/kg, i.p.)-induced activation of NK1 receptors increases Fos-measured neuronal activity in the neurons of both brain stem emetic nuclei and the enteric nervous system of the gut; and 4) whether selective ablation of peripheral NK1 receptors can affect emesis produced by GR73632. The results clearly demonstrated that while SP produced vomiting only, GR73632 caused both emesis and scratching behavior dose-dependently in shrews, and these effects were sensitive to NK1-, but not NK2- or NK3-receptor antagonists. Neither the selective, non-penetrating NK1 receptor agonists, nor the selective NK2- or NK3-receptor agonists, caused a significant dose-dependent behavioral effect. An emetic dose of SP selectively and rapidly penetrated the brain stem but not the frontal cortex. Systemic GR73632 increased Fos expression in the enteric nerve plexi, the medial subnucleus of nucleus tractus solitarius, and the dorsal motor nucleus of the vagus, but not the area postrema. Ablation of peripheral NK1 receptors attenuated the ability of GR73632 to induce a maximal frequency of emesis and shifted its percent animals vomiting dose-response curve to the right. The NK1-ablated shrews exhibited scratching behavior after systemic GR73632-injection. These results, for the first time, affirm a cardinal role for central NK1 receptors in SP-induced vomiting, and a facilitatory role for gastrointestinal NK1 receptors. In addition, these data support the validation of the least shrew as a specific and rapid behavioral animal model to screen concomitantly both the CNS penetration and the antiemetic potential of tachykinin NK1 receptor antagonists. PMID:18471804

  17. Preferential inhibition of Ih in rat trigeminal ganglion neurons by an organic blocker.

    PubMed

    Janigro, D; Martenson, M E; Baumann, T K

    1997-11-15

    The potency and specificity of a novel organic Ih current blocker DK-AH 268 (DK, Boehringer) was studied in cultured rat trigeminal ganglion neurons using whole-cell patch-clamp recording techniques. In neurons current-clamped at the resting potential, the application of 10 microM DK caused a slight hyperpolarization of the membrane potential and a small increase in the threshold for action potential discharge without any major change in the shape of the action potential. In voltage-clamped neurons, DK caused a reduction of a hyperpolarization-activated current. Current subtraction protocols revealed that the time-dependent, hyperpolarization-activated currents blocked by 10 microM DK or external Cs+ (3 mM) had virtually identical activation properties, suggesting that DK and Cs+ caused blockade of the same current, namely Ih. The block of Ih by DK was dose-dependent. At the intermediate and higher concentrations of DK (10 and 100 microM) a decrease in specificity was observed so that time-independent, inwardly rectifying and noninactivating, voltage-gated outward potassium currents were also reduced by DK but to a much lesser extent than the time-dependent, hyperpolarization-activated currents. Blockade of the time-dependent, hyperpolarization-activated currents by DK appeared to be use-dependent since it required hyperpolarization for the effect to take place. Relief of DK block was also aided by membrane hyperpolarization. Since both the time-dependent current blocked by DK and the Cs+-sensitive time-dependent current behaved as Ih, we conclude that 10 microM DK can preferentially reduce Ih without a major effect on other potassium currents. Thus, DK may be a useful agent in the investigation of the function of Ih in neurons.

  18. 13-cis Retinoic acid induces apoptosis and cell cycle arrest in human SEB-1 sebocytes.

    PubMed

    Nelson, Amanda M; Gilliland, Kathryn L; Cong, Zhaoyuan; Thiboutot, Diane M

    2006-10-01

    Isotretinoin (13-cis retinoic acid (13-cis RA)) is the most potent inhibitor of sebum production, a key component in the pathophysiology of acne, yet its mechanism of action remains largely unknown. The effects of 13-cis RA, 9-cis retinoic acid (9-cis RA), and all-trans retinoic acid (ATRA) on cell proliferation, apoptosis, and cell cycle proteins were examined in SEB-1 sebocytes and keratinocytes. 13-cis RA causes significant dose-dependent and time-dependent decreases in viable SEB-1 sebocytes. A portion of this decrease can be attributed to cell cycle arrest as evidenced by decreased DNA synthesis, increased p21 protein expression, and decreased cyclin D1. Although not previously demonstrated in sebocytes, we report that 13-cis RA induces apoptosis in SEB-1 sebocytes as shown by increased Annexin V-FITC staining, increased TUNEL staining, and increased cleaved caspase 3 protein. Furthermore, the ability of 13-cis RA to induce apoptosis cannot be recapitulated by 9-cis RA or ATRA, and it is not inhibited by the presence of a retinoid acid receptor (RAR) pan-antagonist AGN 193109. Taken together these data indicate that 13-cis RA causes cell cycle arrest and induces apoptosis in SEB-1 sebocytes by a RAR-independent mechanism, which contributes to its sebosuppressive effect and the resolution of acne.

  19. Impact of smoking on estrogenic efficacy.

    PubMed

    Ruan, X; Mueck, A O

    2015-02-01

    Depending on the type, duration and intensity of cigarette smoking, the efficacy of endogenous and exogenous estrogen can be reduced or completely cancelled. Not only does smoking diminish the beneficial effects of estrogen on hot flushes and urogenital symptoms and its positive effects on lipid metabolism, but smoking also can reduce estrogen's ability to prevent osteoporosis and perhaps also cardiovascular diseases. This is mainly caused by dose-dependent elevated hepatic clearance, partially in conjunction with lower estrogen levels, and has been demonstrated so far only with oral estrogen applications. Compensation for the failure of therapeutic action should not be made by increasing the dose in smokers since this might result in the production of potentially mutagenic estrogen metabolites associated with a higher risk of breast cancer. Since the favorable effects of estrogens seem to be not lost in smokers when estrogens are applied transdermally, this route should be preferred in smokers. The most important conclusion from the data presented is that the effects of smoking are very complex and dependent on a multiplicity of factors, so that different types of clinically relevant negative effects must be expected. Women who continue to smoke despite all warnings should be informed that smoking, in addition to all its other negative effects, can also jeopardize the success of hormone replacement therapy.

  20. Bax and Bak are required for apoptosis induction by sulforaphane, a cruciferous vegetable-derived cancer chemopreventive agent.

    PubMed

    Choi, Sunga; Singh, Shivendra V

    2005-03-01

    Sulforaphane, a constituent of many edible cruciferous vegetables, including broccoli, effectively suppresses proliferation of cancer cells in culture and in vivo by causing apoptosis induction, but the sequence of events leading to cell death is poorly defined. Here, we show that multidomain proapoptotic Bcl-2 family members Bax and Bak play a critical role in apoptosis induction by sulforaphane. This conclusion is based on the following observations: (a) sulforaphane treatment caused a dose- and time-dependent increase in the protein levels of both Bax and Bak and conformational change and mitochondrial translocation of Bax in SV40-transformed mouse embryonic fibroblasts (MEF) derived from wild-type mice to trigger cytosolic release of apoptogenic molecules (cytochrome c and Smac/DIABLO), activation of caspase-9 and caspase-3, and ultimately cell death; (b) MEFs derived from Bax or Bak knockout mice resisted cell death by sulforaphane, and (c) MEFs derived from Bax and Bak double knockout mice exhibited even greater protection against sulforaphane-induced cytochrome c release, caspase activation, and apoptosis compared with wild-type or single knockout cells. Interestingly, sulforaphane treatment also caused a dose- and time-dependent increase in the protein level of Apaf-1 in wild-type, Bax-/-, and Bak-/- MEFs but not in double knockout, suggesting that Bax and Bak might regulate sulforaphane-mediated induction of Apaf-1 protein. A marked decline in the protein level of X-linked inhibitor of apoptosis on treatment with sulforaphane was also observed. Thus, it is reasonable to postulate that sulforaphane-induced apoptosis is amplified by a decrease in X-linked inhibitor of apoptosis level, which functions to block cell death by inhibiting activities of caspases. In conclusion, the results of the present study indicate that Bax and Bak proteins play a critical role in initiation of cell death by sulforaphane.

Top