Sample records for caused significant structural

  1. 40 CFR 717.15 - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REACTIONS TO HEALTH OR THE ENVIRONMENT General Provisions § 717.15 Recordkeeping requirements. (a... significant adverse reactions alleged to have been caused by chemical substances or mixtures manufactured or... structure. Records must be retrievable by the alleged cause of the significant adverse reaction, which cause...

  2. 40 CFR 717.15 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... REACTIONS TO HEALTH OR THE ENVIRONMENT General Provisions § 717.15 Recordkeeping requirements. (a... significant adverse reactions alleged to have been caused by chemical substances or mixtures manufactured or... structure. Records must be retrievable by the alleged cause of the significant adverse reaction, which cause...

  3. Unbonded Prestressed Columns for Earthquake Resistance

    DOT National Transportation Integrated Search

    2012-05-01

    Modern structures are able to survive significant shaking caused by earthquakes. By implementing unbonded post-tensioned tendons in bridge columns, the damage caused by an earthquake can be significantly lower than that of a standard reinforced concr...

  4. [The effect of physical therapy on the most severe forms of knee structral changes caused by osteoarthritis].

    PubMed

    Kapidzić-Basić, Nedima; Dzananović, Dzevad; Kapidzić-Duraković, Suada; Kikanović, Sahza; Mulić-Bacić, Suada; Hotić-Hadziefendić, Asja

    2011-01-01

    In the most severe form of structural changes on knee caused by osteoarthritis non-surgical treatment provide minimal results and a question of its purpose is being raised. Aim of the study was to examine the possibilities of physical treatment of patients with the most severe degree of structural changes caused by knee osteoarthritis. Examination was conducted on 60 patients that were on physical treatment because of the knee OA. Structural changes are evaluated by Kellgren-Lawrence scale, functional ability by Lequesne index, and pain by Visual analog scale. Physical treatment lasted for 4 weeks. After the physical treatment there was a significant improvement of functional ability (p = 1.78E-07), but the size of improvement was reduced by the level of structural changes. It was significantly lower in IV class in relation to III and II class (p < 0.05). Physical treatment has lower affect by patients with the most severe form of structural changes caused by knee osteoarthritis, but it still can help patients to ease the appearance of complete dependence on other people's help.

  5. Population structure of Cercospora sojina collected from different soybean culitvars in Milan and Jackson Tennessee

    USDA-ARS?s Scientific Manuscript database

    Frogeye Leaf Spot (FLS) of soybean is caused by the fungal pathogen, Cercospora sojina Hara. FLS causes significant damage resulting in a yield loss of 4 to 6 Bu/Acre, mostly in the Southern U.S. Since its first report in South Carolina in 1924 it has caused significant damage resulting in a yield ...

  6. Where Do We Go From Here?

    Treesearch

    Martin L. Blaney; Scott Simon; James M. Guldin; Tom Riley; Donny Harris; Rebecca McPeake

    2004-01-01

    The structure and diversity of the upland oak ecosystem has changed significantly, primarily caused by fire suppression and historic forestry practices, leaving the ecosystem vulnerable to outbreaks of pathogens and insects. These conditions, coupled with periods of drought, have caused significant oak mortality throughout the Interior Highland region shifting the...

  7. Biological Effects of Clinically Relevant CoCr Nanoparticles in the Dura Mater: An Organ Culture Study

    PubMed Central

    Papageorgiou, Iraklis; Abberton, Thomas; Fuller, Martin; Tipper, Joanne L.; Fisher, John; Ingham, Eileen

    2014-01-01

    Medical interventions for the treatment of spinal disc degeneration include total disc replacement and fusion devices. There are, however, concerns regarding the generation of wear particles by these devices, the majority of which are in the nanometre sized range with the potential to cause adverse biological effects in the surrounding tissues. The aims of this study were to develop an organ culture model of the porcine dura mater and to investigate the biological effects of CoCr nanoparticles in this model. A range of histological techniques were used to analyse the structure of the tissue in the organ culture. The biological effects of the CoCr wear particles and the subsequent structural changes were assessed using tissue viability assays, cytokine assays, histology, immunohistochemistry, and TEM imaging. The physiological structure of the dura mater remained unchanged during the seven days of in vitro culture. There was no significant loss of cell viability. After exposure of the organ culture to CoCr nanoparticles, there was significant loosening of the epithelial layer, as well as the underlying collagen matrix. TEM imaging confirmed these structural alterations. These structural alterations were attributed to the production of MMP-1, -3, -9, -13, and TIMP-1. ELISA analysis revealed that there was significant release of cytokines including IL-8, IL-6, TNF-α, ECP and also the matrix protein, tenascin-C. This study suggested that CoCr nanoparticles did not cause cytotoxicity in the dura mater but they caused significant alterations to its structural integrity that could lead to significant secondary effects due to nanoparticle penetration, such as inflammation to the local neural tissue. PMID:28344233

  8. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    PubMed Central

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  9. Monitoring corrosion of steel bars in reinforced concrete structures.

    PubMed

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  10. Acid-fast lipids are important structural components of oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria

    USDA-ARS?s Scientific Manuscript database

    Coccidia are protozoan parasites that cause significant human disease and are of major agricultural importance. Cryptosporidium spp.cause diarrhea in humans and animals, while congenital Toxoplasma infections causes blindness and death. Eimeria kills chickens, so all poultry feed contain antibioti...

  11. Conformational Effects of UV Light on DNA Origami.

    PubMed

    Chen, Haorong; Li, Ruixin; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun

    2017-02-01

    The responses of DNA origami conformation to UV radiation of different wavelengths and doses are investigated. Short- and medium-wavelength UV light can cause photo-lesions in DNA origami. At moderate doses, the lesions do not cause any visible defects in the origami, nor do they significantly affect the hybridization capability. Instead, they help relieve the internal stress in the origami structure and restore it to the designed conformation. At high doses, staple dissociation increases which causes structural disintegration. Long-wavelength UV does not show any effect on origami conformation by itself. We show that this UV range can be used in conjunction with photoactive molecules for photo-reconfiguration, while avoiding any damage to the DNA structures.

  12. The Effect of Heat Treatment on the Sensitized Corrosion of the 5383-H116 Al-Mg Alloy

    PubMed Central

    Lin, Ying-Kai; Wang, Shing-Hai; Chen, Ren-Yu; Hsieh, Tso-Sheng; Tsai, Liren; Chiang, Chia-Chin

    2017-01-01

    In this study, the effects of heat treatment and sensitized corrosion on the 5383-H116 Al-Mg alloy were investigated for temperatures ranging from 100 to 450 °C. The results show that the heat treatment temperature is the main factor that causes changes to the microstructure and mechanical strength of the 5383-H116 Al-Mg alloy, inducing β-phase (Al3Mg2) precipitation in the form of a continuous layer along the grain boundaries. Intergranular corrosion was caused by the β-phase of the grain boundary precipitation, and the corrosion susceptibility of the recrystallized structure was significantly higher than the corrosion susceptibility of the recovered structure. According to the conductivity values detected, β-phase precipitation can enhance the 5383-H116 Al-Mg alloy conductivity, with the response due to structural dislocation density being higher than that due to the recrystallized structure. As such, the β-phase precipitation after sensitization is more significant than the β-phase precipitation prior to the sensitization, such that after sensitization, the conductivity rises to a significantly higher level than that exhibited by the recrystallization structure. PMID:28772635

  13. 18 CFR 12.35 - Specific inspection requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... from monitoring instruments; and (vi) The quality and adequacy of maintenance, surveillance, and... life or cause significant property damage, the independent consultant must evaluate the ability of... endanger the project works. (2) If structural failure would not present a hazard to human life of cause...

  14. 18 CFR 12.35 - Specific inspection requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from monitoring instruments; and (vi) The quality and adequacy of maintenance, surveillance, and... life or cause significant property damage, the independent consultant must evaluate the ability of... endanger the project works. (2) If structural failure would not present a hazard to human life of cause...

  15. Erosion and abrasion on dental structures undergoing at-home bleaching

    PubMed Central

    Demarco, Flávio Fernando; Meireles, Sônia Saeger; Sarmento, Hugo Ramalho; Dantas, Raquel Venâncio Fernandes; Botero, Tatiana; Tarquinio, Sandra Beatriz Chaves

    2011-01-01

    This review investigates erosion and abrasion in dental structures undergoing at- home bleaching. Dental erosion is a multifactorial condition that may be idiopathic or caused by a known acid source. Some bleaching agents have a pH lower than the critical level, which can cause changes in the enamel mineral content. Investigations have shown that at-home tooth bleaching with low concentrations of hydrogen or carbamide peroxide have no significant damaging effects on enamel and dentin surface properties. Most studies where erosion was observed were in vitro. Even though the treatment may cause side effects like sensitivity and gingival irritation, these usually disappear at the end of treatment. Considering the literature reviewed, we conclude that tooth bleaching agents based on hydrogen or carbamide peroxide have no clinically significant influence on enamel/dentin mineral loss caused by erosion or abrasion. Furthermore, the treatment is tolerable and safe, and any adverse effects can be easily reversed and controlled. PMID:23674914

  16. Determination of brace forces caused by construction loads and wind loads during bridge construction : [summary].

    DOT National Transportation Integrated Search

    2014-04-01

    Bridges are constructed in stages as pilings, : columns, girders, decks, and other components : are added. At each stage, the structure must be : stable. Girders, which add significant weight to : the developing structure, rest on elastomeric : beari...

  17. Reasons for service failure of an ÉKG-20 power shovel bogie wheel

    NASA Astrophysics Data System (ADS)

    Yakovleva, S. P.; Milokhin, S. E.

    1985-10-01

    Early failure of a bogie wheel is caused by the occurrence after heat treatment of a working surface structure with insufficient resistance to plastic deformation, which under the specific conditions of contact loading causes flattening of it with the formation of accumulations of material on the side surfaces. This leads to the occurrence of significant stresses on the faces of the wheel which intensify the nonuniformity of the structure obtained after machining of the side surface.

  18. Mitigation measures for highway-caused impacts to birds

    Treesearch

    Sandra L. Jacobson

    Highways cause significant impacts to birds in four ways: direct mortality, indirect mortality, habitat fragmentation, and disturbance. In this paper I discuss highway-related impacts, and suggest solutions from a highway management perspective. Non-flying birds (either behaviorally or structurally) such as gallinaceous birds and ducklings; waterbirds such as terns;...

  19. Shining light on the differences in molecular structural chemical makeup and the cause of distinct degradation behavior between malting- and feed-type barley using synchrotron FTIR microspectroscopy: a novel approach.

    PubMed

    Yu, Peiqiang; Doiron, Kevin; Liu, Dasen

    2008-05-14

    The objective of this study was to use advanced synchrotron-sourced FTIR microspectroscopy (SFTIRM) as a novel approach to identify the differences in protein and carbohydrate molecular structure (chemical makeup) between these two varieties of barley and illustrate the exact causes for their significantly different degradation kinetics. Items assessed included (1) molecular structural differences in protein amide I to amide II intensities and their ratio within cellular dimensions, (2) molecular structural differences in protein secondary structure profile and their ratios, and (3) molecular structural differences in carbohydrate component peak profile. Our hypothesis was that molecular structure (chemical makeup) affects barley quality, fermentation, and degradation behavior in both humans and animals. Using SFTIRM, the protein and carbohydrate molecular structural chemical makeup of barley was revealed and identified. The protein molecular structural chemical makeup differed significantly between the two varieties of barleys. No difference in carbohydrate molecular structural chemical makeup was detected. Harrington was lower than Valier in protein amide I, amide II, and protein amide I to amide II ratio, while Harrington was relatively higher in model-fitted protein alpha-helix and beta-sheet, but lower in the others (beta-turn and random coil). These results indicated that it is the molecular structure of protein (chemical makeup) that may play a major role in the different degradation kinetics between the two varieties of barleys (not the molecular structure of carbohydrate). It is believed that use of the advanced synchrotron technology will make a significant step and an important contribution to research in examining the molecular structure (chemical makeup) of plant, feed, and seeds.

  20. Analysis of individual risk belief structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, B.E.; Travis, C.B.; Arrowood, L.

    An interactive computer program developed at Oak Ridge National Laboratory is presented as a methodology to model individualized belief structures. The logic and general strategy of the model is presented for two risk topics: AIDs and toxic waste. Subjects identified desirable and undesirable consequences for each topic and formulated an associative rule linking topic and consequence in either a causal or correlational framework. Likelihood estimates, generated by subjects in several formats (probability, odds statements, etc.), constituted one outcome measure. Additionally, source of belief (personal experience, news media, etc.) and perceived personal and societal impact are reviewed. Briefly, subjects believe thatmore » AIDs causes significant emotional problems, and to a lesser degree, physical health problems whereas toxic waste causes significant environmental problems.« less

  1. The Loss and Gain of Functional Amino Acid Residues Is a Common Mechanism Causing Human Inherited Disease

    PubMed Central

    Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A.; Mort, Matthew; Cooper, David N.; Mooney, Sean D.; Radivojac, Predrag

    2016-01-01

    Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption. PMID:27564311

  2. The Loss and Gain of Functional Amino Acid Residues Is a Common Mechanism Causing Human Inherited Disease.

    PubMed

    Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A; Jain, Shantanu; Mort, Matthew; Cooper, David N; Mooney, Sean D; Radivojac, Predrag

    2016-08-01

    Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption.

  3. Effects of Nitrogen Deposition and Empirical Nitrogen Critical Loads for Ecoregions of the United States

    EPA Science Inventory

    Human activity in the last century has led to a significant increase in nitrogen (N) emissions and atmospheric deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United St...

  4. Study of Autophagy and Microangiopathy in Sural Nerves of Patients with Chronic Idiopathic Axonal Polyneuropathy

    PubMed Central

    Samuelsson, Kristin; Osman, Ayman A. M.; Angeria, Maria; Risling, Mårten; Mohseni, Simin; Press, Rayomand

    2016-01-01

    Twenty-five percent of polyneuropathies are idiopathic. Microangiopathy has been suggested to be a possible pathogenic cause of chronic idiopathic axonal polyneuropathy (CIAP). Dysfunction of the autophagy pathway has been implicated as a marker of neurodegeneration in the central nervous system, but the autophagy process is not explored in the peripheral nervous system. In the current study, we examined the presence of microangiopathy and autophagy-related structures in sural nerve biopsies of 10 patients with CIAP, 11 controls with inflammatory neuropathy and 10 controls without sensory polyneuropathy. We did not find any significant difference in endoneurial microangiopathic markers in patients with CIAP compared to normal controls, though we did find a correlation between basal lamina area thickness and age. Unexpectedly, we found a significantly larger basal lamina area thickness in patients with vasculitic neuropathy. Furthermore, we found a significantly higher density of endoneurial autophagy-related structures, particularly in patients with CIAP but also in patients with inflammatory neuropathy, compared to normal controls. It is unclear if the alteration in the autophagy pathway is a consequence or a cause of the neuropathy. Our results do not support the hypothesis that CIAP is primarily caused by a microangiopathic process in endoneurial blood vessels in peripheral nerves. The significantly higher density of autophagy structures in sural nerves obtained from patients with CIAP and inflammatory neuropathy vs. controls indicates the involvement of this pathway in neuropathy, particularly in CIAP, since the increase in density of autophagy-related structures was more pronounced in patients with CIAP than those with inflammatory neuropathy. To our knowledge this is the first report investigating signs of autophagy process in peripheral nerves in patients with CIAP and inflammatory neuropathy. PMID:27662650

  5. Performance Metrics for Monitoring Parallel Program Executions

    NASA Technical Reports Server (NTRS)

    Sarukkai, Sekkar R.; Gotwais, Jacob K.; Yan, Jerry; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Existing tools for debugging performance of parallel programs either provide graphical representations of program execution or profiles of program executions. However, for performance debugging tools to be useful, such information has to be augmented with information that highlights the cause of poor program performance. Identifying the cause of poor performance necessitates the need for not only determining the significance of various performance problems on the execution time of the program, but also needs to consider the effect of interprocessor communications of individual source level data structures. In this paper, we present a suite of normalized indices which provide a convenient mechanism for focusing on a region of code with poor performance and highlights the cause of the problem in terms of processors, procedures and data structure interactions. All the indices are generated from trace files augmented with data structure information.. Further, we show with the help of examples from the NAS benchmark suite that the indices help in detecting potential cause of poor performance, based on augmented execution traces obtained by monitoring the program.

  6. Structural and functional changes in the microcirculation of lepromatous leprosy patients - Observation using orthogonal polarization spectral imaging and laser Doppler flowmetry iontophoresis

    PubMed Central

    Treu, Curt; de Souza, Maria das Graças Coelho; Lupi, Omar; Sicuro, Fernando Lencastre; Maranhão, Priscila Alves; Kraemer-Aguiar, Luiz Guilherme; Bouskela, Eliete

    2017-01-01

    Leprosy is a chronic granulomatous infection of skin and peripheral nerves caused by Mycobacterium leprae and is considered the main infectious cause of disability worldwide. Despite the several studies regarding leprosy, little is known about its effects on microvascular structure and function in vivo. Thus, we have aimed to compare skin capillary structure and functional density, cutaneous vasomotion (spontaneous oscillations of arteriolar diameter), which ensures optimal blood flow distribution to skin capillaries) and cutaneous microvascular blood flow and reactivity between ten men with lepromatous leprosy (without any other comorbidity) and ten age- and gender-matched healthy controls. Orthogonal polarization spectral imaging was used to evaluate skin capillary morphology and functional density and laser Doppler flowmetry to evaluate blood flow, vasomotion and spectral analysis of flowmotion (oscillations of blood flow generated by vasomotion) and microvascular reactivity, in response to iontophoresis of acetylcholine and sodium nitroprusside. The contribution of different frequency components of flowmotion (endothelial, neurogenic, myogenic, respiratory and cardiac) was not statistically different between groups. However, endothelial-dependent and -independent vasodilatations elicited by acetylcholine and sodium nitroprusside iontophoresis, respectively, were significantly reduced in lepromatous leprosy patients compared to controls, characterizing the existence of microvascular dysfunction. These patients also presented a significant increase in the number of capillaries with morphological abnormalities and in the diameters of the dermal papilla and capillary bulk when compared to controls. Our results suggest that lepromatous leprosy causes severe microvascular dysfunction and significant alterations in capillary structure. These structural and functional changes are probably induced by exposure of the microvascular bed to chronic inflammation evoked by the Mycobacterium leprae. PMID:28419120

  7. On the causal structure between CO2 and global temperature

    PubMed Central

    Stips, Adolf; Macias, Diego; Coughlan, Clare; Garcia-Gorriz, Elisa; Liang, X. San

    2016-01-01

    We use a newly developed technique that is based on the information flow concept to investigate the causal structure between the global radiative forcing and the annual global mean surface temperature anomalies (GMTA) since 1850. Our study unambiguously shows one-way causality between the total Greenhouse Gases and GMTA. Specifically, it is confirmed that the former, especially CO2, are the main causal drivers of the recent warming. A significant but smaller information flow comes from aerosol direct and indirect forcing, and on short time periods, volcanic forcings. In contrast the causality contribution from natural forcings (solar irradiance and volcanic forcing) to the long term trend is not significant. The spatial explicit analysis reveals that the anthropogenic forcing fingerprint is significantly regionally varying in both hemispheres. On paleoclimate time scales, however, the cause-effect direction is reversed: temperature changes cause subsequent CO2/CH4 changes. PMID:26900086

  8. Effects of the nematicide imicyafos on soil nematode community structure and damage to radish caused by Pratylenchus penetrans

    PubMed Central

    Toyota, Koki; Takada, Atsushi

    2011-01-01

    The effects of the non-fumigant nematicide imicyafos on soil nematode community structure and damage to radish caused by Pratylenchus penetrans were evaluated in two field experiments in consecutive years (2007 and 2008). Nematode densities in soil at 0 - 10 cm (the depth of nematicide incorporation) and 10 - 30 cm were measured. The application of imicyafos had a significant impact on the density of P. penetrans at 0 - 10 cm but had no effect on free-living nematode density. PCR-DGGE analysis conducted using extracted nematodes showed that the nematode community structure 12 d after application in 2007 was altered by the application of imicyafos at the 0 - 10 cm depth, but not at 10 - 30 cm. No significant differences were observed in the diversity of the nematode community at harvest (89 and 91 d after application) between the control and imicyafos treatments in both depths and both years. In both years, the damage to radish caused by P. penetrans was markedly suppressed by the nematicide. Overall, the nematicide imicyafos decreased populations of P. penetrans in soil and thereby decreased damage to radish, while having little impact on the soil nematode community. PMID:22791909

  9. Population structure and the rapid increase of QoI fungicide resistance in frogeye leaf spot (Cercospora sojina) from Tennessee

    USDA-ARS?s Scientific Manuscript database

    Frogeye leaf spot (FLS), caused by Cercospora sojina, causes significant damage to soybean in the US. In this study, C. sojina isolates collected from Jackson and Milan, TN in 2015 and historical isolates collected before 2015 were included. Fifty novel single nucleotide polymorphism (SNP) markers, ...

  10. Evolutionary genomics and population structure of Entamoeba histolytica

    PubMed Central

    Das, Koushik; Ganguly, Sandipan

    2014-01-01

    Amoebiasis caused by the gastrointestinal parasite Entamoeba histolytica has diverse disease outcomes. Study of genome and evolution of this fascinating parasite will help us to understand the basis of its virulence and explain why, when and how it causes diseases. In this review, we have summarized current knowledge regarding evolutionary genomics of E. histolytica and discussed their association with parasite phenotypes and its differential pathogenic behavior. How genetic diversity reveals parasite population structure has also been discussed. Queries concerning their evolution and population structure which were required to be addressed have also been highlighted. This significantly large amount of genomic data will improve our knowledge about this pathogenic species of Entamoeba. PMID:25505504

  11. Effect of Polysorbate 20 and Polysorbate 80 on the Higher-Order Structure of a Monoclonal Antibody and Its Fab and Fc Fragments Probed Using 2D Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Singh, Surinder M; Bandi, Swati; Jones, David N M; Mallela, Krishna M G

    2017-12-01

    We examined how polysorbate 20 (PS20; Tween 20) and polysorbate 80 (PS80; Tween 80) affect the higher-order structure of a monoclonal antibody (mAb) and its antigen-binding (Fab) and crystallizable (Fc) fragments, using near-UV circular dichroism and 2D nuclear magnetic resonance (NMR). Both polysorbates bind to the mAb with submillimolar affinity. Binding causes significant changes in the tertiary structure of mAb with no changes in its secondary structure. 2D 13 C- 1 H methyl NMR indicates that with increasing concentration of polysorbates, the Fab region showed a decrease in crosspeak volumes. In addition to volume changes, PS20 caused significant changes in the chemical shifts compared to no changes in the case of PS80. No such changes in crosspeak volumes or chemical shifts were observed in the case of Fc region, indicating that polysorbates predominantly affect the Fab region compared to the Fc region. This differential effect of polysorbates on the Fab and Fc regions was because of the lesser thermodynamic stability of the Fab compared to the Fc. These results further indicate that PS80 is the preferred polysorbate for this mAb formulation, because it offers higher protection against aggregation, causes lesser structural perturbation, and has weaker binding affinity with fewer binding sites compared to PS20. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. 33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potential for catastrophic failure to cause significant loss of life, the economic benefits of the area... identify critical sections where levee stability appears weakest and will document the location, reach, and... stability of the structure. (4) Other structural features. Other features that may be present, such as pump...

  13. Evaluation of a bead-free immunoprecipitation technique coupled with tandem mass spectrometry for identification of plant-virus protein interactions

    USDA-ARS?s Scientific Manuscript database

    Potato leafroll virus (PLRV) is an aphid-borne, positive sense, single stranded RNA virus in the Luteoviridae that causes significant loss to potato production worldwide. The capsid structure for this family consists of a non-enveloped, icosohedral shaped virion composed of two structural proteins, ...

  14. regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution.

    PubMed

    Zhang, Xinjun; Li, Meng; Lin, Hai; Rao, Xi; Feng, Weixing; Yang, Yuedong; Mort, Matthew; Cooper, David N; Wang, Yue; Wang, Yadong; Wells, Clark; Zhou, Yaoqi; Liu, Yunlong

    2017-09-01

    While synonymous single-nucleotide variants (sSNVs) have largely been unstudied, since they do not alter protein sequence, mounting evidence suggests that they may affect RNA conformation, splicing, and the stability of nascent-mRNAs to promote various diseases. Accurately prioritizing deleterious sSNVs from a pool of neutral ones can significantly improve our ability of selecting functional genetic variants identified from various genome-sequencing projects, and, therefore, advance our understanding of disease etiology. In this study, we develop a computational algorithm to prioritize sSNVs based on their impact on mRNA splicing and protein function. In addition to genomic features that potentially affect splicing regulation, our proposed algorithm also includes dozens structural features that characterize the functions of alternatively spliced exons on protein function. Our systematical evaluation on thousands of sSNVs suggests that several structural features, including intrinsic disorder protein scores, solvent accessible surface areas, protein secondary structures, and known and predicted protein family domains, show significant differences between disease-causing and neutral sSNVs. Our result suggests that the protein structure features offer an added dimension of information while distinguishing disease-causing and neutral synonymous variants. The inclusion of structural features increases the predictive accuracy for functional sSNV prioritization.

  15. Ocean acidification causes structural deformities in juvenile coral skeletons.

    PubMed

    Foster, Taryn; Falter, James L; McCulloch, Malcolm T; Clode, Peta L

    2016-02-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a "business-as-usual" emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100.

  16. Ocean acidification causes structural deformities in juvenile coral skeletons

    PubMed Central

    Foster, Taryn; Falter, James L.; McCulloch, Malcolm T.; Clode, Peta L.

    2016-01-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a “business-as-usual” emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100. PMID:26989776

  17. Insights on the structural perturbations in human MTHFR Ala222Val mutant by protein modeling and molecular dynamics.

    PubMed

    Abhinand, P A; Shaikh, Faraz; Bhakat, Soumendranath; Radadiya, Ashish; Bhaskar, L V K S; Shah, Anamik; Ragunath, P K

    2016-01-01

    Methylenetetrahydrofolate reductase (MTHFR) protein catalyzes the only biochemical reaction which produces methyltetrahydrofolate, the active form of folic acid essential for several molecular functions. The Ala222Val polymorphism of human MTHFR encodes a thermolabile protein associated with increased risk of neural tube defects and cardiovascular disease. Experimental studies have shown that the mutation does not affect the kinetic properties of MTHFR, but inactivates the protein by increasing flavin adenine dinucleotide (FAD) loss. The lack of completely solved crystal structure of MTHFR is an impediment in understanding the structural perturbations caused by the Ala222Val mutation; computational modeling provides a suitable alternative. The three-dimensional structure of human MTHFR protein was obtained through homology modeling, by taking the MTHFR structures from Escherichia coli and Thermus thermophilus as templates. Subsequently, the modeled structure was docked with FAD using Glide, which revealed a very good binding affinity, authenticated by a Glide XP score of -10.3983 (kcal mol(-1)). The MTHFR was mutated by changing Alanine 222 to Valine. The wild-type MTHFR-FAD complex and the Ala222Val mutant MTHFR-FAD complex were subjected to molecular dynamics simulation over 50 ns period. The average difference in backbone root mean square deviation (RMSD) between wild and mutant variant was found to be ~.11 Å. The greater degree of fluctuations in the mutant protein translates to increased conformational stability as a result of mutation. The FAD-binding ability of the mutant MTHFR was also found to be significantly lowered as a result of decreased protein grip caused by increased conformational flexibility. The study provides insights into the Ala222Val mutation of human MTHFR that induces major conformational changes in the tertiary structure, causing a significant reduction in the FAD-binding affinity.

  18. Vertical structure of recent Arctic warming.

    PubMed

    Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla

    2008-01-03

    Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.

  19. Assessment of big floods in the Eastern Black Sea Basin of Turkey.

    PubMed

    Yüksek, Ömer; Kankal, Murat; Üçüncü, Osman

    2013-01-01

    In this study, general knowledge and some details of the floods in Eastern Black Sea Basin of Turkey are presented. Brief hydro-meteorological analysis of selected nine floods and detailed analysis of the greatest flood are given. In the studied area, 51 big floods have taken place between 1955-2005 years, causing 258 deaths and nearly US $500,000,000 of damage. Most of the floods have occurred in June, July and August. It is concluded that especially for the rainstorms that have caused significantly damages, the return periods of the rainfall heights and resultant flood discharges have gone up to 250 and 500 years, respectively. A general agreement is observed between the return periods of rains and resultant floods. It is concluded that there has been no significant climate change to cause increases in flood harms. The most important human factors to increase the damage are determined as wrong and illegal land use, deforestation and wrong urbanization and settlement, psychological and technical factors. Some structural and non-structural measures to mitigate flood damages are also included in the paper. Structural measures include dykes and flood levees. Main non-structural measures include flood warning system, modification of land use, watershed management and improvement, flood insurance, organization of flood management studies, coordination between related institutions and education of the people and informing of the stakeholders.

  20. Attributions of poverty among social work and non-social work students in Croatia.

    PubMed

    Ljubotina, Olja Druzić; Ljubotina, Damir

    2007-10-01

    To investigate how students in Croatia perceive causes of poverty and to examine the differences in attributions of poverty between students of social work, economics, and agriculture. The study included 365 participants, students of social work (n=143), economics (n=137), and agriculture (n=82). We used the newly developed Attribution of Poverty Scale, consisting of 4 factors, as follows: individual causes of poverty (eg, lack of skills and capabilities, lack of effort, poor money management, alcohol abuse); micro-environmental causes (eg, poor family, region, single parenthood); structural/societal causes (eg, poor economy, consequences of political transition, war); and fatalistic causes (eg, bad luck, fate, God's will). We also used a questionnaire that measured 5 dimensions of students' personal values: humanistic values, family values, striving for self-actualization, traditional values, and hedonistic values. In both questionnaires, items were rated on a 5-point Likert-type scale. Students of all three faculties put most emphasis on structural causes of poverty (mean+/-standard deviation=3.54+/-0.76 on a 1-5 scale), followed by environmental (3.18+/-0.60), individual (2.95+/-0.68), and fatalistic causes (1.81+/-0.74). Social work students perceived individual factors as significantly less important causes of poverty (ANOVA, F-value=12.55, P<0.001) than students of economics and agriculture. We found a correlation between humanistic values and perceived structural (r=0.267, P<0.001) and micro-environmental causes of poverty (r=0.185, P<0.001), and also between traditional values and structural (r=0.168, P<0.001), micro-environmental (r=0.170, P<0.001), and fatalistic causes of poverty (r=0.149, P<0.001). Students see structural/societal factors, such as poor economy and political transition as main causes of poverty in Croatia. Individual factors connected with individual's personal characteristics were considered less important, while luck and fate were considered as least important. Students of social work perceived individual causes to be less important than students of agriculture and economics. Students with strong humanistic and traditional values put more emphasis on external sources of poverty.

  1. Trends in aerospace structures

    NASA Technical Reports Server (NTRS)

    Card, M. F.

    1978-01-01

    Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.

  2. Evidence from Serpula lacrymans that 2,5-Dimethoxyhydroquinone Is a Lignocellulolytic Agent of Divergent Brown Rot Basidiomycetes

    Treesearch

    Premsagar Korripally; Vitaliy I. Timokhin; Carl J. Houtman; Michael D. Mozuch; Kenneth E. Hammel

    2013-01-01

    Basidiomycetes that cause brown rot of wood are essential biomass recyclers in coniferous forest ecosystems and a major cause of failure in wooden structures. Recent work indicates that distinct lineages of brown rot fungi have arisen independently from ligninolytic white rot ancestors via loss of lignocellulolytic enzymes. Brown rot thus proceeds without significant...

  3. Nonlinear ordinary difference equations

    NASA Technical Reports Server (NTRS)

    Caughey, T. K.

    1979-01-01

    Future space vehicles will be relatively large and flexible, and active control will be necessary to maintain geometrical configuration. While the stresses and strains in these space vehicles are not expected to be excessively large, their cumulative effects will cause significant geometrical nonlinearities to appear in the equations of motion, in addition to the nonlinearities caused by material properties. Since the only effective tool for the analysis of such large complex structures is the digital computer, it will be necessary to gain a better understanding of the nonlinear ordinary difference equations which result from the time discretization of the semidiscrete equations of motion for such structures.

  4. Apollo experience report: The problem of stress-corrosion cracking

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1973-01-01

    Stress-corrosion cracking has been the most common cause of structural-material failures in the Apollo Program. The frequency of stress-corrosion cracking has been high and the magnitude of the problem, in terms of hardware lost and time and money expended, has been significant. In this report, the significant Apollo Program experiences with stress-corrosion cracking are discussed. The causes of stress-corrosion cracking and the corrective actions are discussed, in terminology familiar to design engineers and management personnel, to show how stress-corrosion cracking can be prevented.

  5. Research notes : zinc anodes to protect coastal bridges.

    DOT National Transportation Integrated Search

    2002-04-01

    Oregon is blessed with a beautiful coastline. Unfortunately, transportation structures on the coast must withstand an aggressive marine environment that causes corrosion problems. Many reinforced concrete bridges, some having historical significance,...

  6. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests

    Treesearch

    Linda T.A. Van Diepen; Erik Lilleskov; Kurt S. Pregitzer

    2011-01-01

    Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community...

  7. Changes in the equine fecal microbiota associated with the use of systemic antimicrobial drugs.

    PubMed

    Costa, Marcio C; Stämpfli, Henry R; Arroyo, Luis G; Allen-Vercoe, Emma; Gomes, Roberta G; Weese, J Scott

    2015-02-03

    The intestinal tract is a rich and complex environment and its microbiota has been shown to have an important role in health and disease in the host. Several factors can cause disruption of the normal intestinal microbiota, including antimicrobial therapy, which is an important cause of diarrhea in horses. This study aimed to characterize changes in the fecal bacterial populations of healthy horses associated with the administration of frequently used antimicrobial drugs. Twenty-four adult mares were assigned to receive procaine penicillin intramuscularly (IM), ceftiofur sodium IM, trimethoprim sulfadiazine (TMS) orally or to a control group. Treatment was given for 5 consecutive days and fecal samples were collected before drug administration (Day 1), at the end of treatment (Days 5), and on Days 14 and 30 of the trial. High throughput sequencing of the V4 region of the 16S rRNA gene was performed using an Illumina MiSeq sequencer. Significant changes of population structure and community membership were observed after the use of all drugs. TMS caused the most marked changes on fecal microbiota even at higher taxonomic levels including a significant decrease of richness and diversity. Those changes were mainly due to a drastic decrease of Verrucomicrobia, specifically the "5 genus incertae sedis". Changes in structure and membership caused by antimicrobial administration were specific for each drug and may be predictable. Twenty-five days after the end of treatment, bacterial profiles were more similar to pre-treatment patterns indicating a recovery from changes caused by antimicrobial administration, but differences were still evident, especially regarding community membership. The use of systemic antimicrobials leads to changes in the intestinal microbiota, with different and specific responses to different antimicrobials. All antimicrobials tested here had some impact on the microbiota, but TMS significantly reduced bacterial species richness and diversity and had the greatest apparent impact on population structure, specifically targeting members of the Verrucomicrobia phylum.

  8. On the influence of ion exchange on the local structure of the titanosilicate ETS-10.

    PubMed

    Pavel, Claudiu C; Zibrowius, Bodo; Löffler, Elke; Schmidt, Wolfgang

    2007-07-14

    The effect of ion exchange with different monovalent cations (NH(4)(+), K(+), Na(+) and Cs(+)) on the local structure of the titanosilicate ETS-10 has been studied by (29)Si MAS NMR and Raman spectroscopy. Although X-ray diffraction shows no significant influence of ion exchange on the long range order, ammonium exchange is found to result in substantial damage to the local structure. Ion exchange experiments with alkali cations under significantly more acidic conditions clearly show that the structural damage brought about by ammonium exchange is not caused by the low pH of the exchange solution. The exchange with potassium and caesium ions also leads to significant changes in the (29)Si NMR and Raman spectra. However, these changes can largely be reversed by sodium back-exchange.

  9. pH-dependent relationship between thermodynamic and kinetic stability in the denaturation of human phosphoglycerate kinase 1.

    PubMed

    Pey, Angel L

    2014-08-01

    Human phosphoglycerate kinase 1 (hPGK1) is a glycolytic enzyme essential for ATP synthesis, and it is implicated in different pathological conditions such as inherited diseases, oncogenesis and activation of drugs for cancer and viral treatments. Particularly, mutations in hPGK1 cause human PGK1 deficiency, a rate metabolic conformational disease. We have recently found that most of these mutations cause protein kinetic destabilization by significant changes in the structure/energetics of the transition state for irreversible denaturation. In this work, we explore the relationships between protein conformation, thermodynamic and kinetic stability in hPGK1 by performing comprehensive analyses in a wide pH range (2.5-8). hPGK1 remains in a native conformation at pH 5-8, but undergoes a conformational transition to a molten globule-like state at acidic pH. Interestingly, hPGK1 kinetic stability remains essentially constant at pH 6-8, but is significantly reduced when pH is decreased from 6 to 5. We found that this decrease in kinetic stability is caused by significant changes in the energetic/structural balance of the denaturation transition state, which diverge from those found for disease-causing mutations. We also show that protein kinetic destabilization by acidic pH is strongly linked to lower thermodynamic stability, while in disease-causing mutations seems to be linked to lower unfolding cooperativity. These results highlight the plasticity of the hPGK1 denaturation mechanism that responds differently to changes in pH and in disease-causing mutations. New insight is presented into the different factors contributing to hPGK1 thermodynamic and kinetic stability and the role of denaturation mechanisms in hPGK1 deficiency. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Exfoliation of Hexagonal Boron Nitride via Ferric Chloride Intercalation

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Rogers, Richard B.

    2014-01-01

    Sodium fluoride (NaF) was used as an activation agent to successfully intercalate ferric chloride (FeCl3) into hexagonal boron nitride (hBN). This reaction caused the hBN mass to increase by approx.100 percent, the lattice parameter c to decrease from 6.6585 to between 6.6565 and 6.6569 ?, the x-ray diffraction (XRD) (002) peak to widen from 0.01deg to 0.05deg of the full width half maximum value, the Fourier transform infrared (FTIR) spectrum's broad band (1277/cm peak) to change shape, and new FTIR bands to emerge at 3700 to 2700 and 1600/cm. This indicates hBN's structural and chemical properties are significantly changed. The intercalated product was hygroscopic and interacted with moisture in the air to cause further structural and chemical changes (from XRD and FTIR). During a 24-h hold at room temperature in air with 100 percent relative humidity, the mass increased another 141 percent. The intercalated product, hydrated or not, can be heated to 750 C in air to cause exfoliation. Exfoliation becomes significant after two intercalation-air heating cycles, when 20-nm nanosheets are commonly found. Structural and chemical changes indicated by XRD and FTIR data were nearly reversed after the product was placed in hydrochloric acid (HCl), resulting in purified, exfoliated, thin hBN products.

  11. Rhythmic crowd bobbing on a grandstand simulator

    NASA Astrophysics Data System (ADS)

    Comer, A. J.; Blakeborough, A.; Williams, M. S.

    2013-01-01

    It is widely accepted that concerted human activity such as bouncing or bobbing can excite cantilever grandstands. Crowd coordination can be unwitting and may be exacerbated by structural motion caused by resonant structural response. This is an area of uncertainty in the design and analysis of modern grandstands. This paper presents experimental measurement and analysis of rhythmic crowd bobbing loads obtained from tests on a grandstand simulator with two distinct support conditions; (a) rigid, and; (b) flexible. It was found that significant structural vibration at the bobbing frequency did not increase the effective bobbing load. Structural motion at the bobbing frequency caused a reduction in the dynamic load factor (DLF) at the frequency of the second harmonic while those at the first and third harmonics were unaffected. Two plausible reasons for this are: (a) the bobbing group were unable to supply significant energy to the system at the frequency of the second harmonic; (b) the bobbing group altered their bobbing style to reduce the response of the grandstand simulator. It was deduced that the bobbing group did not absorb energy from the dynamic system. Furthermore, dynamic load factors for groups of test subjects bobbing on a rigid structure were typically greater than those of synthesised groups derived from individuals bobbing alone, possibly due to group effects such as audio and visual stimuli from neighbouring test subjects. Last, the vibration levels experienced by the test subjects appear to be below levels likely to cause discomfort. This is to be expected as the test subjects were themselves controlling the magnitude and duration of vibration for the bobbing tests considered.

  12. Targeting the r(CGG) repeats that cause FXTAS with modularly assembled small molecules and oligonucleotides.

    PubMed

    Tran, Tuan; Childs-Disney, Jessica L; Liu, Biao; Guan, Lirui; Rzuczek, Suzanne; Disney, Matthew D

    2014-04-18

    We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)(exp)) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)(exp) toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)(exp) in vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)(exp)'s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2'-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide.

  13. Targeting the r(CGG) Repeats That Cause FXTAS with Modularly Assembled Small Molecules and Oligonucleotides

    PubMed Central

    2015-01-01

    We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)exp) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)exp toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)expin vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)exp’s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2′-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide. PMID:24506227

  14. Moisture migration, microstructure damage and protein structure changes in porcine longissimus muscle as influenced by multiple freeze-thaw cycles.

    PubMed

    Zhang, Mingcheng; Li, Fangfei; Diao, Xinping; Kong, Baohua; Xia, Xiufang

    2017-11-01

    This study investigated the effects of multiple freeze-thaw (F-T) cycles on water mobility, microstructure damage and protein structure changes in porcine longissimus muscle. The transverse relaxation time T 2 increased significantly when muscles were subjected to multiple F-T cycles (P<0.05), which means that immobile water shifted to free water and the free water mobility increased. Multiple F-T cycles caused sarcomere shortening, Z line fractures, and I band weakening and also led to microstructural destruction of muscle tissue. The decreased free amino group content and increased dityrosine in myofibrillar protein (MP) revealed that multiple F-T cycles caused protein cross-linking and oxidation. In addition, the results of size exclusion chromatography, circular dichroism spectra, UV absorption spectra, and intrinsic fluorescence spectroscopy indirectly proved that multiple F-T cycles could cause protein aggregation and degradation, α-helix structure disruption, hydrophobic domain exposure, and conformational changes of MP. Overall, repeated F-T cycles changed the protein structure and water distribution within meat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States

    Treesearch

    Linda H. Pardo; Mark E. Fenn; Christine L. Goodale; Linda H. Geiser; Charles T. Driscoll; Edith B. Allen; Jill S. Baron; Roland Bobbink; William D. Bowman; Christopher M. Clark; Bridget Emmett; Frank S. Gilliam; Tara L. Greaver; Sharon J. Hall; Erik A. Lilleskov; Lingli Liu; Jason A. Lynch; Knute J. Nadelhoffer; Steven S. Perakis; Molly J. Robin-Abbott; John L. Stoddard; Kathleen C. Weathers; Robin L. Dennis

    2011-01-01

    Human activity in the last century has led to a significant increase in nitrogen (N) emissions and atmospheric deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the deposition of pollution that would be harmful to...

  16. Determinism and mass-media portrayals of genetics.

    PubMed Central

    Condit, C M; Ofulue, N; Sheedy, K M

    1998-01-01

    Scholars have expressed concern that the introduction of substantial coverage of "medical genetics" in the mass media during the past 2 decades represents an increase in biological determinism in public discourse. To test this contention, we analyzed the contents of a randomly selected, structured sample of American public newspapers (n=250) and magazines (n=722) published during 1919-95. Three coders, using three measures, all with intercoder reliability >85%, were employed. Results indicate that the introduction of the discourse of medical genetics is correlated with both a statistically significant decrease in the degree to which articles attribute human characteristics to genetic causes (P<.001) and a statistically significant increase in the differentiation of attributions to genetic and other causes among various conditions or outcomes (P<. 016). There has been no statistically significant change in the relative proportions of physical phenomena attributed to genetic causes, but there has been a statistically significant decrease in the number of articles assigning genetic causes to mental (P<.002) and behavioral (P<.000) characteristics. These results suggest that the current discourse of medical genetics is not accurately described as more biologically deterministic than its antecedents. PMID:9529342

  17. Patients With Undetermined Stroke Have Increased Atrial Fibrosis: A Cardiac Magnetic Resonance Imaging Study.

    PubMed

    Fonseca, Ana Catarina; Alves, Pedro; Inácio, Nuno; Marto, João Pedro; Viana-Baptista, Miguel; Pinho-E-Melo, Teresa; Ferro, José M; Almeida, Ana G

    2018-03-01

    Some patients with ischemic strokes that are currently classified as having an undetermined cause may have structural or functional changes of the left atrium (LA) and left atrial appendage, which increase their risk of thromboembolism. We compared the LA and left atrial appendage of patients with different ischemic stroke causes using cardiac magnetic resonance imaging. We prospectively included a consecutive sample of ischemic stroke patients. Patients with structural changes on echocardiography currently considered as causal for stroke in the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) classification were excluded. A 3-T cardiac magnetic resonance imaging was performed. One hundred and eleven patients were evaluated. Patients with an undetermined cause had a higher percentage of LA fibrosis ( P =0.03) than patients with other stroke causes and lower, although not statistically significant, values of LA ejection fraction. Patients with atrial fibrillation and undetermined stroke cause showed a similar value of atrial fibrosis. The LA phenotype that was found in patients with undetermined cause supports the hypothesis that an atrial disease may be associated with stroke. © 2018 American Heart Association, Inc.

  18. Conjugation of cytochrome c with ferrocene-terminated hyperbranched polymer and its influence on protein structure, conformation and function.

    PubMed

    Xiao, Fengjuan; Yue, Lin; Li, Song; Li, Xinxin

    2016-06-05

    Interaction mechanism of a new hyperbranched polyurethane-based ferrocene (HPU-Fc) with cytochrome c (cyt c) and cyt c structure and conformation change induced by HPU-Fc were investigated using cyclic voltammogram(CV), differential pulse voltammetry (DPV), circular dichroism (CD), fluorescence, synchronous fluorescence and absorbance spectroscopy technique. The peroxidase activity of cyt c in the presence of HPU-Fc was also studied. The structure and conformation of protein are relatively stable at moderate concentration of HPU-Fc without obvious perturbation of the heme pocket and significant changes in protein secondary structure. Conjugation of cyt c with excessive HPU-Fc (over about 3 times of cyt c) slightly changed the α-helix structure in protein, disturbed the microenvironment around heme as well as away from the heme crevice, which caused the changes of the electrochemical behavior and the absorption spectra. Reasonable amount of HPU-Fc has no significant influence on the protein enzymatic activity, while excess HPU-Fc may cause a conformation not suitable for H2O2 activation and guaiacol oxidation. The interaction of HPU-Fc with cyt c and the conservation of protein function at suitable HPU-Fc amount make prepared complex promising for the synergistic anticancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Interagency Coordination Structures in Stabilization and Reconstruction Operations

    DTIC Science & Technology

    2010-06-11

    poor interagency coordination and lack of unity as significant problems that compromise USG efforts in Afghanistan. This lack of interagency...objectives into consolidated tactical level goals and initiatives. Lack of interagency coordination structures at this level causes a variety of...Iraqi Reconstruction noticed a similar series of issues in an audit of civil police training in Afghanistan and Iraq. The lack of coordination

  20. Experimental research on the electromagnetic radiation (EMR) characteristics of cracked rock.

    PubMed

    Song, Xiaoyan; Li, Xuelong; Li, Zhonghui; Cheng, Fuqi; Zhang, Zhibo; Niu, Yue

    2018-03-01

    Coal rock would emit the electromagnetic radiation (EMR) while deformation and fracture, and there exists structural body in the coal rock because of mining and geological structure. In this paper, we conducted an experimental test the EMR characteristics of cracked rock under loading. Results show that crack appears firstly in the prefabricated crack tip then grows stably parallel to the maximum principal stress, and the coal rock buckling failure is caused by the wing crack tension. Besides, the compressive strength significantly decreases because of the precrack, and the compressive strength increases with the crack angle. Intact rock EMR increases with the loading, and the cracked rock EMR shows stage and fluctuant characteristics. The bigger the angle, the more obvious the stage and fluctuant characteristics, that is EMR becomes richer. While the cracked angle is little, EMR is mainly caused by the electric charge rapid separates because of friction sliding. While the cracked angle is big, there is another significant contribution to EMR, which is caused by the electric dipole transient of crack expansion. Through this, we can know more clear about the crack extends route and the corresponding influence on the EMR characteristic and mechanism, which has important theoretical and practical significance to monitor the coal rock dynamical disasters.

  1. Long-Range Structural Effects of a Charcot-Marie-Tooth Disease-Causing Mutation in Human Glycyl-TRNA Synthetase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, W.; Nangle, L.A.; Zhang, W.

    2009-06-04

    Functional expansion of specific tRNA synthetases in higher organisms is well documented. These additional functions may explain why dominant mutations in glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase cause Charcot-Marie-Tooth (CMT) disease, the most common heritable disease of the peripheral nervous system. At least 10 disease-causing mutant alleles of GlyRS have been annotated. These mutations scatter broadly across the primary sequence and have no apparent unifying connection. Here we report the structure of wild type and a CMT-causing mutant (G526R) of homodimeric human GlyRS. The mutation is at the site for synthesis of glycyl-adenylate, but the rest of the two structuresmore » are closely similar. Significantly, the mutant form diffracts to a higher resolution and has a greater dimer interface. The extra dimer interactions are located {approx}30 {angstrom} away from the G526R mutation. Direct experiments confirm the tighter dimer interaction of the G526R protein. The results suggest the possible importance of subtle, long-range structural effects of CMT-causing mutations at the dimer interface. From analysis of a third crystal, an appended motif, found in higher eukaryote GlyRSs, seems not to have a role in these long-range effects.« less

  2. Microwave emission and crop residues

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; O'Neill, Peggy E.

    1991-01-01

    A series of controlled experiments were conducted to determine the significance of crop residues or stubble in estimating the emission of the underlying soil. Observations using truck-mounted L and C band passive microwave radiometers showed that for dry wheat and soybeans the dry residue caused negligible attenuation of the background emission. Green residues, with water contents typical of standing crops, did have a significant effect on the background emission. Results for these green residues also indicated that extremes in plant structure, as created using parallel and perpendicular stalk orientations, can cause very large differences in the degree of attenuation.

  3. Low-permeability concretes containing slag and silica fume.

    DOT National Transportation Integrated Search

    1993-01-01

    Chloride-induced corrosion causes significant deterioration in transportation structures where uncoated reinforcing steel is used. Concretes having a very low permeability are used to prevent the intrusion of chlorides into concrete to the level of t...

  4. Large scale analysis of the mutational landscape in β-glucuronidase: A major player of mucopolysaccharidosis type VII.

    PubMed

    Khan, Faez Iqbal; Shahbaaz, Mohd; Bisetty, Krishna; Waheed, Abdul; Sly, William S; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-01-15

    The lysosomal storage disorders are a group of 50 unique inherited diseases characterized by unseemly lipid storage in lysosomes. These malfunctions arise due to genetic mutations that result in deficiency or reduced activities of the lysosomal enzymes, which are responsible for catabolism of biological macromolecules. Sly syndrome or mucopolysaccharidosis type VII is a lysosomal storage disorder associated with the deficiency of β-glucuronidase (EC 3.2.1.31) that catalyzes the hydrolysis of β-D-glucuronic acid residues from the non-reducing terminal of glycosaminoglycan. The effects of the disease causing mutations on the framework of the sequences and structure of β-glucuronidase (GUSBp) were analyzed utilizing a variety of bioinformatic tools. These analyses showed that 211 mutations may result in alteration of the biological activity of GUSBp, including previously experimentally validated mutations. Finally, we refined 90 disease causing mutations, which presumably cause a significant impact on the structure, function, and stability of GUSBp. Stability analyses showed that mutations p.Phe208Pro, p.Phe539Gly, p.Leu622Gly, p.Ile499Gly and p.Ile586Gly caused the highest impact on GUSBp stability and function because of destabilization of the protein structure. Furthermore, structures of wild type and mutant GUSBp were subjected to molecular dynamics simulation to examine the relative structural behaviors in the explicit conditions of water. In a broader view, the use of in silico approaches provided a useful understanding of the effect of single point mutations on the structure-function relationship of GUSBp. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Developing a bridge scour warning system : technical summary.

    DOT National Transportation Integrated Search

    2016-09-01

    Flooding and scour can be major threats to the integrity of bridges. During flood events, : scour at bridge piers and abutments can undermine the foundations of the bridge, causing : significant damage or even total structure loss. Because scour occu...

  6. Developing a bridge scour warning system : final report.

    DOT National Transportation Integrated Search

    2016-09-01

    Flooding and scour can be major threats to the integrity of bridges. During flood events, scour at bridge piers : and abutments can undermine the foundations of the bridge, causing significant damage or even total structure loss. : Because scour occu...

  7. [Structural changes in the tissues of white rats after capsaicin administration].

    PubMed

    Vorob'eva, N F; Kniazev, G G; Lazarev, V A; Spiridonov, V K

    1997-01-01

    Tissue structure of albino rat lung, skin and cornea changing after administration of capsaicin (neurotoxin isolated from red pepper) was studied using light and electron microscope. 5 mg/kg dose causes tissue swelling and microcirculatory bed reaction. 200 mg/kg dose leads to more significant dystrophic tissue alterations. Fibrosclerosis signs were found in certain cases. Microcirculatory disorders are proposed as the main reason for tissue structure alterations observed, although the mechanism of their development is still unclear.

  8. Toward resolving an earthquake ground motion mystery in west Seattle, Washington State: Shallow seismic focusing may cause anomalous chimney damage

    USGS Publications Warehouse

    Stephenson, W.J.; Frankel, A.D.; Odum, J.K.; Williams, R.A.; Pratt, T.L.

    2006-01-01

    A shallow bedrock fold imaged by a 1.3-km long high-resolution shear-wave seismic reflection profile in west Seattle focuses seismic waves arriving from the south. This focusing may cause a pocket of amplified ground shaking and the anomalous chimney damage observed in earthquakes of 1949, 1965 and 2001. The 200-m bedrock fold at ???300-m depth is caused by deformation across an inferred fault within the Seattle fault zone. Ground motion simulations, using the imaged geologic structure and northward-propagating north-dipping plane wave sources, predict a peak horizontal acceleration pattern that matches that observed in strong motion records of the 2001 Nisqually event. Additionally, a pocket of chimney damage reported for both the 1965 and the 2001 earthquakes generally coincides with a zone of simulated amplification caused by focusing. This study further demonstrates the significant impact shallow (<1km) crustal structures can have on earthquake ground-motion variability.

  9. Oxidative damage of 18S and 5S ribosomal RNA in digestive gland of mussels exposed to trace metals.

    PubMed

    Kournoutou, Georgia G; Giannopoulou, Panagiota C; Sazakli, Eleni; Leotsinidis, Michel; Kalpaxis, Dimitrios L

    2017-11-01

    Numerous studies have shown the ability of trace metals to accumulate in marine organisms and cause oxidative stress that leads to perturbations in many important intracellular processes, including protein synthesis. This study is mainly focused on the exploration of structural changes, like base modifications, scissions, and conformational changes, caused in 18S and 5S ribosomal RNA (rRNA) isolated from the mussel Mytilus galloprovincialis exposed to 40μg/L Cu, 30μg/L Hg, or 100μg/L Cd, for 5 or 15days. 18S rRNA and 5S rRNA are components of the small and large ribosomal subunit, respectively, found in complex with ribosomal proteins, translation factors and other auxiliary components (metal ions, toxins etc). 18S rRNA plays crucial roles in all stages of protein synthesis, while 5S rRNA serves as a master signal transducer between several functional regions of 28S rRNA. Therefore, structural changes in these ribosomal constituents could affect the basic functions of ribosomes and hence the normal metabolism of cells. Especially, 18S rRNA along with ribosomal proteins forms the decoding centre that ensures the correct codon-anticodon pairing. As exemplified by ELISA, primer extension analysis and DMS footprinting analysis, each metal caused oxidative damage to rRNA, depending on the nature of metal ion and the duration of exposure. Interestingly, exposure of mussels to Cu or Hg caused structural alterations in 5S rRNA, localized in paired regions and within loops A, B, C, and E, leading to a continuous progressive loss of the 5S RNA structural integrity. In contrast, structural impairments of 5S rRNA in mussels exposed to Cd were accumulating for the initial 5days, and then progressively decreased to almost the normal level by day 15, probably due to the parallel elevation of metallothionein content that depletes the pools of free Cd. Regions of interest in 18S rRNA, such as the decoding centre, sites implicated in the binding of tRNAs (A- and P-sites) or translation factors, and areas related to translation fidelity, were found to undergo significant metal-induced conformational alterations, leading either to loosening of their structure or to more compact folding. These modifications were associated with parallel alterations in the translation process at multiple levels, a fact suggesting that structural perturbations in ribosomes, caused by metals, pose significant hurdles in translational efficiency and fidelity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The engineering significance of shrinkage and swelling soils in blast damage investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitton, S.J.; Harris, W.W.

    1996-12-01

    In the US each year it has been estimated that expansive soils cause approximately $9.0 billion in damage to buildings, roads, airports, and other facilities. This figure alone exceeds the damage estimate for earthquakes, floods, tornadoes, and hurricanes combined. Unfortunately, some cases of expansive soil damage (swelling) are blamed on rock blasting operations if the blasting operations are located within the immediate area. While simple tests, such as the Atterberg limits test, can characterize a soil as expansive, it does not necessarily answer the question whether the foundation soils are causing distresses to a structure. In particular, it appears thatmore » once a soil has been labeled as nonexpansive it is no longer considered as a problem soil, in which case blast vibrations become the prime suspect. It should be emphasized, however, that even non-plastic soils, those soils with low to nonexistent plastic indexes, can exhibit significant shrinkage characteristics that can result in significant damage to structures. While expansive soil is a function of the mineralogy of the soil particles, i.e., swelling clay minerals, shrinkage is caused by the loss of moisture from soil as capillary pressures exceed the cohesion or tensile strength and is therefore a function of the soils particle size and its pore size distribution. This is a significant problem for all fine grained soils regardless of the soil`s mineralogy. It`s particularly important for regions of the US that typically have a positive water balance but experience significant drought periods when soil moisture is lost.« less

  11. Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea).

    PubMed Central

    Andersen, Liselotte W.; Fog, Kåre; Damgaard, Christian

    2004-01-01

    A genetic study of the European tree frog, Hyla arborea, in Denmark was undertaken to examine the population structure on mainland Jutland and the island of Lolland after a period of reduction in suitable habitat and population sizes. The two regions have experienced the same rate of habitat loss but fragmentation has been more severe on Lolland. Genetic variation based on 12 polymorphic DNA microsatellites was analysed in 494 tree frogs sampled from two ponds in Jutland and 10 ponds on Lolland. A significant overall deviation from Hardy-Weinberg expectations could be attributed to three ponds, all on Lolland. This was most probably caused by an inbreeding effect reducing fitness, which was supported by the observed significant negative correlation between larva survival and mean F(IS) value and mean individual inbreeding coefficient. A significant reduction in genetic variation (bottleneck) was detected in most of the ponds on Lolland. Population-structure analysis suggested the existence of at least 11 genetically different populations, corresponding to most of the sampled population units. The results indicated that the populations were unique genetic units and could be used to illustrate the migration pattern between newly established ponds arisen either by natural colonization of tree frogs or by artificial introduction. A high degree of pond fidelity in the tree frogs was suggested. A severe fragmentation process reducing population size and fitness within some of the populations probably caused the significant reduction in genetic variation of tree frog populations on Lolland. PMID:15306354

  12. A molecular dynamics study of thermal transport in nanoparticle doped Argon like solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahadat, Muhammad Rubayat Bin, E-mail: rubayat37@gmail.com; Ahmed, Shafkat; Morshed, A. K. M. M.

    2016-07-12

    Interfacial phenomena such as mass and type of the interstitial atom, nano scale material defect influence heat transfer and the effect become very significant with the reduction of the material size. Non Equilibrium Molecular Dynamics (NEMD) simulation was carried out in this study to investigate the effect of the interfacial phenomena on solid. Argon like solid was considered in this study and LJ potential was used for atomic interaction. Nanoparticles of different masses and different molecular defects were inserted inside the solid. From the molecular simulation, it was observed that a large interfacial mismatch due to change in mass inmore » the homogenous solid causes distortion of the phonon frequency causing increase in thermal resistance. Position of the doped nanoparticles have more profound effect on the thermal conductivity of the solid whereas influence of the mass ratio is not very significant. Interstitial atom positioned perpendicular to the heat flow causes sharp reduction in thermal conductivity. Structural defect caused by the molecular defect (void) also observed to significantly affect the thermal conductivity of the solid.« less

  13. Geohazards on the Moon and the Importance of the International Lunar Network

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2009-01-01

    Seven of the 28 shallow seismic events recorded by the Apollo passive seismic experiment (PSE) network released energy equivalent to earthquakes with magnitudes of 5 or greater. On Earth, such quakes can cause extensive damage to structures near the epicenter. Unexpected structural damage to a lunar habitat could have devastating results and thus, lunar seismicity may present a significant geohazard to long-term human habitation.

  14. Analysis of an Aircraft Honeycomb Sandwich Panel with Circular Face Sheet/Core Disbond Subjected to Ground-Air Pressurization

    NASA Technical Reports Server (NTRS)

    Rinker, Martin; Krueger, Ronald; Ratcliffe, James

    2013-01-01

    The ground-air pressurization of lightweight honeycomb sandwich structures caused by alternating pressure differences between the enclosed air within the honeycomb core and the ambient environment is a well-known and controllable loading condition of aerospace structures. However, initial face sheet/core disbonds intensify the face sheet peeling effect of the internal pressure load significantly and can decrease the reliability of the sandwich structure drastically. Within this paper, a numerical parameter study was carried out to investigate the criticality of initial disbonds in honeycomb sandwich structures under ground-air pressurization. A fracture mechanics approach was used to evaluate the loading at the disbond front. In this case, the strain energy release rate was computed via the Virtual Crack Closure Technique. Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed.

  15. Effects of topographic position and geology on shaking damage to residential wood-framed structures during the 2003 San Simeon earthquake, western San Luis obispo county, California

    USGS Publications Warehouse

    McCrink, T.P.; Wills, C.J.; Real, C.R.; Manson, M.W.

    2010-01-01

    A statistical evaluation of shaking damage to wood-framed houses caused by the 2003 M6.5 San Simeon earthquake indicates that both the rate and severity of damage, independent of structure type, are significantly greater on hilltops compared to hill slopes when underlain by Cretaceous or Tertiary sedimentary rocks. This increase in damage is interpreted to be the result of topographic amplification. An increase in the damage rate is found for all structures built on Plio-Pleistocene rocks independent of topographic position, and this is interpreted to be the result of amplified shaking caused by geologic site response. Damage rate and severity to houses built on Tertiary rocks suggest that amplification due to both topographic position and geologic site response may be occurring in these rocks, but effects from other topographic parameters cannot be ruled out. For all geologic and topographic conditions, houses with raised foundations are more frequently damaged than those with slab foundations. However, the severity of damage to houses on raised foundations is only significantly greater for those on hill slopes underlain by Tertiary rocks. Structures with some damage-resistant characteristics experienced greater damage severity on hilltops, suggesting a spectral response to topographic amplification. ?? 2010, Earthquake Engineering Research Institute.

  16. The natural product citral can cause significant damage to the hyphal cell walls of Magnaporthe grisea.

    PubMed

    Li, Rong-Yu; Wu, Xiao-Mao; Yin, Xian-Hui; Liang, Jing-Nan; Li, Ming

    2014-07-15

    In order to find a natural alternative to the synthetic fungicides currently used against the devastating rice blast fungus, Magnaporthe grisea, this study explored the antifungal potential of citral and its mechanism of action. It was found that citral not only inhibited hyphal growth of M. grisea, but also caused a series of marked hyphal morphological and structural alterations. Specifically, citral was tested for antifungal activity against M. grisea in vitro and was found to significantly inhibit colony development and mycelial growth with IC50 and IC90 values of 40.71 and 203.75 μg/mL, respectively. Furthermore, citral reduced spore germination and germ tube length in a concentration-dependent manner. Following exposure to citral, the hyphal cell surface became wrinkled with folds and cell breakage that were observed under scanning electron microscopy (SEM). There was damage to hyphal cell walls and membrane structures, loss of villous-like material outside of the cell wall, thinning of the cell wall, and discontinuities formed in the cell membrane following treatment based on transmission electron microscopy (TEM). This increase in chitinase activity both supports the morphological changes seen in the hyphae, and also suggests a mechanism of action. In conclusion, citral has strong antifungal properties, and treatment with this compound is capable of causing significant damage to the hyphal cell walls of M. grisea.

  17. Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan

    2017-05-01

    Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.

  18. Example Building Damage Caused by Mining Exploitation in Disturbed Rock Mass

    NASA Astrophysics Data System (ADS)

    Florkowska, Lucyna

    2013-06-01

    Issues concerning protection of buildings against the impact of underground coal mining pose significant scientific and engineering challenges. In Poland, where mining is a potent and prominent industry assuring domestic energy security, regions within reach of mining influences are plenty. Moreover, due to their industrial character they are also densely built-up areas. Because minerals have been extracted on an industrial scale in majority of those areas for many years, the rock mass structure has been significantly disturbed. Hence, exploitation of successive layers of multi-seam deposits might cause considerable damage - both in terms of surface and existing infrastructure networks. In the light of those facts, the means of mining and building prevention have to be improved on a regular basis. Moreover, they have to be underpinned by reliable analyses holistically capturing the comprehensive picture of the mining, geotechnical and constructional situation of structures. Scientific research conducted based on observations and measurements of mining-induced strain in buildings is deployed to do just that. Presented in this paper examples of damage sustained by buildings armed with protection against mining influences give an account of impact the mining exploitation in disturbed rock mass can have. This paper is based on analyses of mining damage to church and Nursing Home owned by Evangelical Augsburg Parish in Bytom-Miechowice. Neighbouring buildings differ in the date they were built, construction, building technology, geometry of the building body and fitted protection against mining damage. Both the buildings, however, have sustained lately significant deformation and damage caused by repeated mining exploitation. Selected damage has been discussed hereunder. The structures have been characterised, their current situation and mining history have been outlined, which have taken their toll on character and magnitude of damage. Description has been supplemented with photographic documentation.

  19. The importance of structural softening for the evolution and architecture of passive margins

    PubMed Central

    Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.

    2016-01-01

    Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057

  20. [Influence of intermittently monitoring on endotracheal tube cuff pressure using handheld pressure gauge].

    PubMed

    Huang, Ling; Xie, Chen; Zhang, Lifeng; Meng, Liying; Li, Guizheng; Li, Yang; Huang, Bing; Pan, Linghui; Tang, Zhanhong

    2017-01-01

    To discuss the influence of intermittently monitoring on endotracheal tube cuff pressure using handheld pressure gauge, and to provide some reference for the clinical work. The experiment was carried out on the model of the glass tube, which was divided into three parts. Each part of the experiment was divided into normal pressure group and high pressure group according to the different inflation pressure target value. The endotracheal tube cuff pressure was determined intermittently by using the transparent tracheal models which had a static diameter of 2 cm. The target press value of normal pressure group was 32 cmH 2 O (1 cmH 2 O = 0.098 kPa) while that of high pressure group was 40 cmH 2 O. The handheld pressure gauge was connected with the indicated cuff through a tee joint, and the pressure in the cuff in both groups was determined. The pressure loss caused by intermittent measurement of the two groups was compared. By switching the tee joint, the pressure loss through the gauge self-structure and the pressure loss when connecting and disconnecting the indicated cuff were determined to analyze the causes of pressure loss caused by intermittent measurement of pressure gauge. The pressure loss caused by intermittent measurement of high pressure group was significantly higher than that of normal pressure group (cmH 2 O: 15.10±0.43 vs. 10.19±0.45) with statistical significance (t = -24.875, P = 0.000). The pressure loss through the gauge self-structure of high pressure group was also significantly higher than that of normal pressure group (cmH 2 O: 13.91±0.48 vs. 8.77±0.53), which showed a statistics significance (t = -22.854, P = 0.000). The pressure loss when connecting and disconnecting the indicated cuff of the normal pressure and high pressure groups were (1.33±0.49) cmH 2 O and (1.23±0.55) cmH 2 O, respectively, without statistics significance (t = 0.445, P = 0.662). It was figured that the total pressure loss caused by intermittent measurement of the endotracheal intubation cuff was approximately equal to the value of the pressure loss caused by the pressure gauge self-structure and the pressure loss when the indicated cuff was connected and disconnected [normal pressure group: (10.19±0.45) cmH 2 O ≍ (8.77±0.53) cmH 2 O + (1.33±0.49) cmH 2 O, high pressure group: (15.10±0.43) cmH 2 O ≍ (13.91±0.48) cmH 2 O + (1.23±0.55) cmH 2 O]. The intermittently monitoring on endotracheal tube cuff pressure is the main cause of the pressure loss. The total pressure loss consists of the pressure leak from the cuff to the gauge and the pressure leak when connecting and disconnecting the gauge and the indicated cuff during each test. When the pressure in the cuff is increased, it will cause more pressure loss.

  1. Absorbance and light scattering of lenses organ cultured with glucose.

    PubMed

    Alghamdi, Ali Hendi Sahmi; Mohamed, Hasabelrasoul; Sledge, Samiyyah M; Borchman, Douglas

    2018-06-06

    Purpose/Aim: Diabetes is one of the major factors related to cataract. Our aim was to determine if the attenuation of light through glucose treated lenses was due to light scattering from structural changes or absorbance from metabolic changes. Human and rat lenses were cultured in a medium with and without 55 mM glucose for a period of five days. Absorbance and light scattering were measured using a ultraviolet spectrometer. Aldose reductase and catalase activity, RAGE, and glutathione were measured using classical assays. Almost all of the glucose related attenuation of light through the human lens was due to light scattering from structural changes. Glucose treatment caused three absorbance band to appear at 484, 540 to 644 and 657 nm in both the rat and human lens. The optimum time point for equilibration of human lenses was found to be between 2 and 3 days in organ culture. Glucose caused a more significant effect on the opacity of human lenses compared with rat lenses. Since the levels of glutathione, catalase and aldose reductase were reduced in glucose treated rat lenses compared with untreated lenses, glucose may have caused oxidative stress on the rat lens. The absorbance and light scattering of glucose treated lenses in organ culture were quantitated for the first time which could be important for future studies designed to test the efficacy of agents to ameliorate the opacity. Almost all of the glucose related attenuation of light through the human lens was due to light scattering from structural changes and not absorbance from metabolic changes. Glucose caused a more significant effect on the opacity of human lenses compared with rat lenses. The lens model employed could be used to study the efficacy of agents that potentially ameliorate lens opacity.

  2. Korsakoff syndrome from retrochiasmatic suprasellar lesions: rapid reversal after relief of cerebral compression in 4 cases.

    PubMed

    Savastano, Luis E; Hollon, Todd C; Barkan, Ariel L; Sullivan, Stephen E

    2018-06-01

    Korsakoff syndrome is a chronic memory disorder caused by a severe deficiency of thiamine that is most commonly observed in alcoholics. However, some have proposed that focal structural lesions disrupting memory circuits-in particular, the mammillary bodies, the mammillothalamic tract, and the anterior thalamus-can give rise to this amnestic syndrome. Here, the authors present 4 patients with reversible Korsakoff syndromes caused by suprasellar retrochiasmatic lesions compressing the mammillary bodies and adjacent caudal hypothalamic structures. Three of the patients were found to have large pituitary macroadenomas in their workup for memory deficiency and cognitive decline with minimal visual symptoms. These tumors extended superiorly into the suprasellar region in a retrochiasmatic position and caused significant mass effect in the bilateral mammillary bodies in the base of the brain. These 3 patients had complete and rapid resolution of amnestic problems shortly after initiation of treatment, consisting of resection in 1 case of nonfunctioning pituitary adenoma or cabergoline therapy in 2 cases of prolactinoma. The fourth patient presented with bizarre and hostile behavior along with significant memory deficits and was found to have a large cystic craniopharyngioma filling the third ventricle and compressing the midline diencephalic structures. This patient underwent cyst fenestration and tumor debulking, with a rapid improvement in his mental status. The rapid and dramatic memory improvement observed in all of these cases is probably due to a reduction in the pressure imposed by the lesions on structures contiguous to the third ventricle, rather than a direct destructive effect of the tumor, and highlights the essential role of the caudal diencephalic structures-mainly the mammillary bodies-in memory function. In summary, large pituitary lesions with suprasellar retrochiasmatic extension and third ventricular craniopharyngiomas can cause severe Korsakoff-like amnestic syndromes, probably because of bilateral pressure on or damage to mammillary bodies, anterior thalamic nuclei, or their major connections. Neuropsychiatric symptoms may rapidly and completely reverse shortly after initiation of therapy via surgical decompression of tumors or pharmacological treatment of prolactinomas. Early identification of these lesions with timely treatment can lead to a favorable prognosis for this severe neuropsychiatric disorder.

  3. Flexural properties of structural lumber products after long-term exposure to high temperatures

    Treesearch

    Bruce A. Craig; David W. Green; David S. Gromala

    2006-01-01

    When wood fiber is exposed to significant heat, its strength decreases. It has long been known that prolonged heating at temperatures over 66°C (150°F) can cause a permanent loss in strength. The National Design Specification (NDS) provides factors (Ct) for adjusting allowable properties when structural wood members are exposed to temperatures between 38°C (100°F) and...

  4. Plasma turbulence and coherent structures in the polar cap observed by the ICI-2 sounding rocket

    NASA Astrophysics Data System (ADS)

    Spicher, A.; Miloch, W. J.; Clausen, L. B. N.; Moen, J. I.

    2015-12-01

    The electron density data from the ICI-2 sounding rocket experiment in the high-latitude F region ionosphere are analyzed using the higher-order spectra and higher-order statistics. Two regions of enhanced fluctuations are chosen for detailed analysis: the trailing edge of a polar cap patch and an electron density enhancement associated with particle precipitation. While these two regions exhibit similar power spectra, our analysis reveals that their internal structures are significantly different. The structures on the edge of the polar cap patch are likely due to nonlinear wave interactions since this region is characterized by intermittency and significant coherent mode coupling. The plasma enhancement subjected to precipitation, however, exhibits stronger random characteristics with uncorrelated phases of density fluctuations. These results suggest that particle precipitation plays a fundamental role in ionospheric plasma structuring creating turbulent-like structures. We discuss the physical mechanisms that cause plasma structuring as well as the possible processes for the low-frequency part of the spectrum in terms of plasma instabilities.

  5. A mutation in the gamma actin 1 (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26)

    PubMed Central

    van Wijk, E; Krieger, E; Kemperman, M; De Leenheer, E M R; Huygen, P; Cremers, C; Cremers, F; Kremer, H

    2003-01-01

    Linkage analysis in a multigenerational family with autosomal dominant hearing loss yielded a chromosomal localisation of the underlying genetic defect in the DFNA20/26 locus at 17q25-qter. The 6-cM critical region harboured the γ-1-actin (ACTG1) gene, which was considered an attractive candidate gene because actins are important structural elements of the inner ear hair cells. In this study, a Thr278Ile mutation was identified in helix 9 of the modelled protein structure. The alteration of residue Thr278 is predicted to have a small but significant effect on the γ 1 actin structure owing to its close proximity to a methionine residue at position 313 in helix 11. Met313 has no space in the structure to move away. Moreover, the Thr278 residue is highly conserved throughout eukaryotic evolution. Using a known actin structure the mutation could be predicted to impair actin polymerisation. These findings strongly suggest that the Thr278Ile mutation in ACTG1 represents the first disease causing germline mutation in a cytoplasmic actin isoform. PMID:14684684

  6. 76 FR 38213 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... quality standards for using Portland Cement grout to protect prestressing steel from corrosion. The prestressing tendon system of a prestressed concrete containment structure is a principal strength element of... strength elements. Thus, any significant deterioration of the prestressing elements caused by corrosion may...

  7. Structural biology of peanut allergens

    USDA-ARS?s Scientific Manuscript database

    Peanuts are a cause of one of the most common food allergies. Allergy to peanuts not only affects a significant fraction of the population, but it is relatively often associated with strong reactions in sensitized individuals. Peanut and tree nut allergies, which start in childhood, are often persi...

  8. Dysphagia: A Short Review of the Current State

    ERIC Educational Resources Information Center

    Koidou, Irene; Kollias, Nikolaos; Sdravou, Katerina; Grouios, George

    2013-01-01

    Dysphagia is the clinical expression of disruption of the synchronized activity surrounding the normal swallowing mechanism. It results from a large number of causes including neurologic, myopathic, metabolic, inflammatory/autoimmune, infectious, structural, iatrogenic, and psychiatric diseases. It can have a significant impact on social and…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashin, Alexander A., E-mail: alexander-rashin@hotmail.com; Iowa State University, 112 Office and Lab Bldg, Ames, IA 50011-3020; Domagalski, Marcin J.

    Conformational differences between myoglobin structures are studied. Most structural differences in whale myoglobin beyond the uncertainty threshold can be correlated with a few specific structural factors. There are always exceptions and a search for additional factors is needed. The results might have serious implications for biological insights from conformational differences. Validation of general ideas about the origins of conformational differences in proteins is critical in order to arrive at meaningful functional insights. Here, principal component analysis (PCA) and distance difference matrices are used to validate some such ideas about the conformational differences between 291 myoglobin structures from sperm whale, horsemore » and pig. Almost all of the horse and pig structures form compact PCA clusters with only minor coordinate differences and outliers that are easily explained. The 222 whale structures form a few dense clusters with multiple outliers. A few whale outliers with a prominent distortion of the GH loop are very similar to the cluster of horse structures, which all have a similar GH-loop distortion apparently owing to intermolecular crystal lattice hydrogen bonds to the GH loop from residues near the distal histidine His64. The variations of the GH-loop coordinates in the whale structures are likely to be owing to the observed alternative intermolecular crystal lattice bond, with the change to the GH loop distorting bonds correlated with the binding of specific ‘unusual’ ligands. Such an alternative intermolecular bond is not observed in horse myoglobins, obliterating any correlation with the ligands. Intermolecular bonds do not usually cause significant coordinate differences and cannot be validated as their universal cause. Most of the native-like whale myoglobin structure outliers can be correlated with a few specific factors. However, these factors do not always lead to coordinate differences beyond the previously determined uncertainty thresholds. The binding of unusual ligands by myoglobin, leading to crystal-induced distortions, suggests that some of the conformational differences between the apo and holo structures might not be ‘functionally important’ but rather artifacts caused by the binding of ‘unusual’ substrate analogs. The causes of P6 symmetry in myoglobin crystals and the relationship between crystal and solution structures are also discussed.« less

  10. Mitochondrial energy metabolism dysfunction involved in reproductive toxicity of mice caused by endosulfan and protective effects of vitamin E.

    PubMed

    Wang, Na; Qian, Hong-Yan; Zhou, Xian-Qing; Li, Yan-Bo; Sun, Zhi-Wei

    2012-08-01

    The experiment was designed to study the mechanism of reproductive toxicity caused by endosulfan in mice and protective effects of vitamin E. The experiment was composed of three groups: the control group did not receive any endosulfan and vitamin E; the endosulfan exposed group received 0.8 mg/kg/d endosulfan and 0mg/kg/d vitamin E; and the endosulfan+vitamin E group received 0.8 mg/kg/d endosulfan and 100mg/kg/d vitamin E. The results showed that vitamin E significantly reversed the decline of the concentration and motility rate of sperm, and inhibited the increase of sperm abnormality rate caused by endosulfan. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and lactate dehydrogenase-C4 (LDH-C4) and the level of adenosine triphosphate (ATP) in the endosulfan+vitamin E group were higher while the malondialdehyde (MDA) content was significantly lower than those of the endosulfan exposed group. The results from pathology and electron microscope observed showed vitamin E decreased the cavities formation by desquamating of spermatogenic cells, stopped the ruptures and disappearances of mitochondrial cristaes in spermatogenic cells, and prevented the breakages and partial dissolvings of sperm tails induced by endosulfan. It is likely that endosulfan could directly damage sperm structures by oxidative stress, leading to a decrease in sperm quantity and quality. It also could indirectly cause a decline in reproductive function by damaging the structure of mitochondria, resulting in energy metabolism dysfunction, which could be one of the mechanisms behind the reproductive toxicity induced by endosulfan. It was inferred that vitamin E helps maintain the structural integrities of sperm architecture and prevent mitochondrial dysfunction through inhibiting oxidative stress, and thereby prevent the reproductive dysfunctions caused by endosulfan. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. ACS Imaging of beta Pic: Searching for the origin of rings and asymmetry in planetesimal disks

    NASA Astrophysics Data System (ADS)

    Kalas, Paul

    2003-07-01

    The emerging picture for planetesimal disks around main sequence stars is that their radial and azimuthal symmetries are significantly deformed by the dynamical effects of either planets interior to the disk, or stellar objects exterior to the disk. The cause of these structures, such as the 50 AU cutoff of our Kuiper Belt, remains mysterious. Structure in the beta Pic planetesimal disk could be due to dynamics controlled by an extrasolar planet, or by the tidal influence of a more massive object exterior to the disk. The hypothesis of an extrasolar planet causing the vertical deformation in the disk predicts a blue color to the disk perpendicular to the disk midplane. The hypothesis that a stellar perturber deforms the disk predicts a globally uniform color and the existence of ring-like structure beyond 800 AU radius. We propose to obtain deep, multi-color images of the beta Pic disk ansae in the region 15"-220" {200-4000 AU} radius with the ACS WFC. The unparalleled stability of the HST PSF means that these data are uniquely capable of delivering the color sensitivity that can distinguish between the two theories of beta Pic's disk structure. Ascertaining the cause of such structure provide a meaningful context for understanding the dynamical history of our early solar system, as well as other planetesimal systems imaged around main sequence stars.

  12. Higher impact of female than male migration on population structure in large mammals.

    PubMed

    Tiedemann, R; Hardy, O; Vekemans, X; Milinkovitch, M C

    2000-08-01

    We simulated large mammal populations using an individual-based stochastic model under various sex-specific migration schemes and life history parameters from the blue whale and the Asian elephant. Our model predicts that genetic structure at nuclear loci is significantly more influenced by female than by male migration. We identified requisite comigration of mother and offspring during gravidity and lactation as the primary cause of this phenomenon. In addition, our model predicts that the common assumption that geographical patterns of mitochondrial DNA (mtDNA) could be translated into female migration rates (Nmf) will cause biased estimates of maternal gene flow when extensive male migration occurs and male mtDNA haplotypes are included in the analysis.

  13. The dissociation of liquid silica at high pressure and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, D; Boehly, T; Eggert, J

    2005-11-17

    Liquid silica at high pressure and temperature is shown to undergo significant structural modifications and profound changes in its electronic properties. Temperature measurements on shock waves in silica at 70-1000 GPa indicate that the specific heat of liquid SiO{sub 2} rises well above the Dulong-Petit limit, exhibiting a broad peak with temperature that is attributable to the growing structural disorder caused by bond-breaking in the melt. The simultaneous sharp rise in optical reflectivity of liquid SiO{sub 2} indicates that dissociation causes the electrical and therefore thermal conductivities of silica to attain metallic-like values of 1-5 x 10{sup 5} S/m andmore » 24-600 W/m.K respectively.« less

  14. Repair-Resistant DNA Lesions

    PubMed Central

    2017-01-01

    The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance. PMID:28750166

  15. Feasibility of using piezoelectric actuators to control launch vehicle acoustics and structural vibrations

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Cudney, Harley H.

    2000-06-01

    Future launch vehicle payload fairings will be manufactured form advanced lightweight composite materials. The loss of distributed mass causes a significant increase in the internal acoustic environment, causing a severe threat to the payload. Using piezoelectric actuators to control the fairing vibration and the internal acoustic environment has been proposed. To help determine the acoustic control authority of piezoelectric actuators mounted on a rocket fairing, the internal acoustic response created by the actuators needs to be determined. In this work, the internal acoustic response of a closed simply-supported (SS) cylinder actuated by piezoelectric (PZT) actuators is determined using a n impedance model for the actuator and boundary element analysis. The experimentally validated model is used to extrapolate results for a SS cylinder that emulates a Minotaur payload fairing. The internal cylinder acoustic levels are investigated for PZT actuation between 35 and 400 Hz. Significant reductions in the structural response due to increased damping do not equate to similar reductions in the acoustic SPLs for the cylinder. The sound levels at the acoustic resonant frequencies are essentially unaffected by the significant increase in structural damping while the acoustic level sat the structural resonant frequencies are mildly reduced. The interior acoustic response of the cylinder is dominated by the acoustic modes and therefore significant reductions in the overall interior acoustic levels will not be achieved if only the structural resonances are controlled. As the actuation frequency is reduced, the number of actuators required to generate acoustic levels commensurate to that found in the fairing increases to impractical values. Below approximately 100 Hz, the current demands reach levels that are extremely difficult to achieve with a practical system. The results of this work imply that PZT actuators do not have the authority to control the payload fairing internal acoustics below approximately 100 Hz.

  16. Method for detecting moment connection fracture using high-frequency transients in recorded accelerations

    USGS Publications Warehouse

    Rodgers, J.E.; Elebi, M.

    2011-01-01

    The 1994 Northridge earthquake caused brittle fractures in steel moment frame building connections, despite causing little visible building damage in most cases. Future strong earthquakes are likely to cause similar damage to the many un-retrofitted pre-Northridge buildings in the western US and elsewhere. Without obvious permanent building deformation, costly intrusive inspections are currently the only way to determine if major fracture damage that compromises building safety has occurred. Building instrumentation has the potential to provide engineers and owners with timely information on fracture occurrence. Structural dynamics theory predicts and scale model experiments have demonstrated that sudden, large changes in structure properties caused by moment connection fractures will cause transient dynamic response. A method is proposed for detecting the building-wide level of connection fracture damage, based on observing high-frequency, fracture-induced transient dynamic responses in strong motion accelerograms. High-frequency transients are short (<1 s), sudden-onset waveforms with frequency content above 25 Hz that are visually apparent in recorded accelerations. Strong motion data and damage information from intrusive inspections collected from 24 sparsely instrumented buildings following the 1994 Northridge earthquake are used to evaluate the proposed method. The method's overall success rate for this data set is 67%, but this rate varies significantly with damage level. The method performs reasonably well in detecting significant fracture damage and in identifying cases with no damage, but fails in cases with few fractures. Combining the method with other damage indicators and removing records with excessive noise improves the ability to detect the level of damage. ?? 2010 Elsevier B.V. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, R.D.; Duke, T.W.; Macauley, J.M.

    Effects of a used drilling fluid on an experimental seagrass community (Thalassia testudinum) were measured by exposing the community to the suspended particulate phase (SPP) in laboratory microcosms. Structure of the macroinvertebrate assemblage, growth and chlorophyll content of grass and associated epiphytes, and rates of decomposition as indicated by weight loss of grass leaves in treated and untreated microcosms were compared. There were statistically significant differences in community structure and function among untreated microcosms and those receiving the clay and drilling fluid. For example, drilling fluid and clay caused a significant loss in the number of the ten most numericallymore » abundant (dominant) macroinvertebrates, and drilling fluid decreased the rate at which Thalassia leaves decomposed.« less

  18. Structural alterations by five disease-causing mutations in the low-pH conformation of human dihydrolipoamide dehydrogenase (hLADH) analyzed by molecular dynamics - Implications in functional loss and modulation of reactive oxygen species generation by pathogenic hLADH forms.

    PubMed

    Ambrus, Attila; Mizsei, Reka; Adam-Vizi, Vera

    2015-07-01

    Human dihydrolipoamide dehydrogenase (hLADH) is a flavoenzyme component (E3) of the human alpha-ketoglutarate dehydrogenase complex (α-KGDHc) and few other dehydrogenase complexes. Pathogenic mutations of hLADH cause severe metabolic diseases (atypical forms of E3 deficiency) that often escalate to cardiological or neurological presentations and even premature death; the pathologies are generally accompanied by lactic acidosis. hLADH presents a distinct conformation under acidosis (pH 5.5-6.8) with lower physiological activity and the capacity of generating reactive oxygen species (ROS). It has been shown by our laboratory that selected pathogenic mutations, besides lowering the physiological activity of hLADH, significantly stimulate ROS generation by hLADH, especially at lower pH, which might play a role in the pathogenesis of E3-deficiency in respective cases. Previously, we generated by molecular dynamics (MD) simulation the low-pH hLADH structure and analyzed the structural changes induced in this structure by eight of the pathogenic mutations of hLADH. In the absence of high resolution mutant structures these pieces of information are crucial for the mechanistic investigation of the molecular pathogeneses of the hLADH protein. In the present work we analyzed by molecular dynamics simulation the structural changes induced in the low-pH conformation of hLADH by five pathogenic mutations of hLADH; the structures of these disease-causing mutants of hLADH have never been examined before.

  19. Double-strand breaks in genome-sized DNA caused by mechanical stress under mixing: Quantitative evaluation through single-molecule observation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Hayato; Nose, Keiji; Yoshikawa, Yuko; Yoshikawa, Kenichi

    2018-06-01

    It is becoming increasingly apparent that changes in the higher-order structure of genome-sized DNA molecules of more than several tens kbp play important roles in the self-control of genome activity in living cells. Unfortunately, it has been rather difficult to prepare genome-sized DNA molecules without damage or fragmentation. Here, we evaluated the degree of double-strand breaks (DSBs) caused by mechanical mixing by single-molecule observation with fluorescence microscopy. The results show that DNA breaks are most significant for the first second after the initiation of mechanical agitation. Based on such observation, we propose a novel mixing procedure to significantly decrease DSBs.

  20. Teacher Burnout: Stylish Fad or Profound Problem.

    ERIC Educational Resources Information Center

    Cunningham, William G.

    1982-01-01

    Evidence suggests that teacher burnout has significant impact on the quality of education and on teacher job satisfaction. Its causes include job stress and organizational structures or professional relationships. Reduction of burnout may come from such strategies as increased teacher role differentiation, greater teacher support, and improved…

  1. Effects of substrate network topologies on competition dynamics

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Jeong, Hawoong

    2006-08-01

    We study a competition dynamics, based on the minority game, endowed with various substrate network structures. We observe the effects of the network topologies by investigating the volatility of the system and the structure of follower networks. The topology of substrate structures significantly influences the system efficiency represented by the volatility and such substrate networks are shown to amplify the herding effect and cause inefficiency in most cases. The follower networks emerging from the leadership structure show a power-law incoming degree distribution. This study shows the emergence of scale-free structures of leadership in the minority game and the effects of the interaction among players on the networked version of the game.

  2. Second-harmonic generation reveals a relationship between metastatic potential and collagen fiber structure

    NASA Astrophysics Data System (ADS)

    Burke, Kathleen A.; Dawes, Ryan P.; Cheema, Mehar K.; Perry, Seth; Brown, Edward

    2014-02-01

    Second Harmonic Generation (SHG) of collagen signals allows for the analysis of collagen structural changes throughout metastatic progression. The directionality of coherent SHG signals, measured through the ratio of the forward-propagating to backward propagating signal (F/B ratio), is affected by fibril diameter, spacing, and order versus disorder of fibril packing within a fiber. As tumors interact with their microenvironment and metastasize, it causes changes in these parameters, and concurrent changes in the F/B ratio. Specifically, the F/B ratio of breast tumors that are highly metastatic to the lymph nodes is significantly higher than those in tumors with restricted lymph node involvement. We utilized in vitro analysis of tumor cell motility through collagen gels of different microstructures, and hence different F/B ratios, to explore the relationship between collagen microstructures and metastatic capabilities of the tumor. By manipulating environmental factors of fibrillogenesis and biochemical factors of fiber composition we created methods of varying the average F/B ratio of the gel, with significant changes in fiber structure occurring as a result of alterations in incubation temperature and increasing type III collagen presence. A migration assay was performed using simultaneous SHG and fluorescent imaging to measure average penetration depth of human tumor cells into the gels of significantly different F/B ratios, with preliminary data demonstrating that cells penetrate deeper into gels of higher F/B ratio caused by lower type III collagen concentration. Determining the role of collagen structure in tumor cell motility will aid in the future prediction metastatic capabilities of a primary tumor.

  3. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy

    PubMed Central

    Li, Mei; Arner, Anders

    2015-01-01

    Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf) of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf) was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM). This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively. PMID:26536238

  4. Long-term experimental warming alters nitrogen-cycling communities but site factors remain the primary drivers of community structure in high arctic tundra soils.

    PubMed

    Walker, Jennifer K M; Egger, Keith N; Henry, Gregory H R

    2008-09-01

    Arctic air temperatures are expected to rise significantly over the next century. Experimental warming of arctic tundra has been shown to increase plant productivity and cause community shifts and may also alter microbial community structure. Hence, the objective of this study was to determine whether experimental warming caused shifts in soil microbial communities by measuring changes in the frequency, relative abundance and/or richness of nosZ and nifH genotypes. Five sites at a high arctic coastal lowland were subjected to a 13-year warming experiment using open-top chambers (OTCs). Sites differed by dominant plant community, soil parent material and/or moisture regimen. Six soil cores were collected from each of four replicate OTC and ambient plots at each site and subdivided into upper and lower samples. Differences in frequency and relative abundance of terminal restriction fragments were assessed graphically by two-way cluster analysis and tested statistically with permutational multivariate analysis of variance (ANOVA). Genotypic richness was compared using factorial ANOVA. The genotype frequency, relative abundance and genotype richness of both nosZ and nifH communities differed significantly by site, and by OTC treatment and/or depth at some sites. The site that showed the most pronounced treatment effect was a wet sedge meadow, where community structure and genotype richness of both nosZ and nifH were significantly affected by warming. Although warming was an important factor affecting these communities at some sites at this high arctic lowland, overall, site factors were the main determinants of community structure.

  5. Localized damage caused by topographic amplification during the 2010 M7.0 Haiti earthquake

    USGS Publications Warehouse

    Hough, S.E.; Altidor, J.R.; Anglade, D.; Given, D.; Janvier, M.G.; Maharrey, J.Z.; Meremonte, M.; Mildor, B.S.-L.; Prepetit, C.; Yong, A.

    2010-01-01

    Local geological conditions, including both near-surface sedimentary layers and topographic features, are known to significantly influence ground motions caused by earthquakes. Microzonation maps use local geological conditions to characterize seismic hazard, but commonly incorporate the effect of only sedimentary layers. Microzonation does not take into account local topography, because significant topographic amplification is assumed to be rare. Here we show that, although the extent of structural damage in the 2010 Haiti earthquake was primarily due to poor construction, topographic amplification contributed significantly to damage in the district of Petionville, south of central Port-au-Prince. A large number of substantial, relatively well-built structures situated along a foothill ridge in this district sustained serious damage or collapse. Using recordings of aftershocks, we calculate the ground motion response at two seismic stations along the topographic ridge and at two stations in the adjacent valley. Ground motions on the ridge are amplified relative to both sites in the valley and a hard-rock reference site, and thus cannot be explained by sediment-induced amplification. Instead, the amplitude and predominant frequencies of ground motion indicate the amplification of seismic waves by a narrow, steep ridge. We suggest that microzonation maps can potentially be significantly improved by incorporation of topographic effects. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  6. Using the USGS Seismic Risk Web Application to estimate aftershock damage

    USGS Publications Warehouse

    McGowan, Sean M.; Luco, Nicolas

    2014-01-01

    The U.S. Geological Survey (USGS) Engineering Risk Assessment Project has developed the Seismic Risk Web Application to combine earthquake hazard and structural fragility information in order to calculate the risk of earthquake damage to structures. Enabling users to incorporate their own hazard and fragility information into the calculations will make it possible to quantify (in near real-time) the risk of additional damage to structures caused by aftershocks following significant earthquakes. Results can quickly be shared with stakeholders to illustrate the impact of elevated ground motion hazard and earthquake-compromised structural integrity on the risk of damage during a short-term, post-earthquake time horizon.

  7. The effects of a combination of text structure awareness and graphic postorganizers on recall and retention of science knowledge

    NASA Astrophysics Data System (ADS)

    Spiegel, George F., Jr.; Barufaldi, James P.

    The purpose of this study was to determine the effectiveness of a self-regulated strategy on immediate recall and retention of science knowledge in community-college anatomy and physiology students who participated in a 14-hour (8 weeks) study skills class. The class emphasized the recognition of five common science textbook text structures (cause and effect, classification, enumeration, generalization, and sequence) and the construction of graphic postorganizers of the text structures. A pretest, two immediate posttests, and a retention posttest were used to measure recall and retention. Results indicated that on immediate posttests students who actively constructed graphic postorganizers of the test structure recalled significantly more content than did the control students who simply underlined, reread, or highlighted. On a 3-week retention posttest, those students in the study skills class retained significantly more of the material studied than did the control group of students.

  8. Development and application of an instrument for analysis of bone structure on radiographs.

    PubMed

    Xu, S; Liu, S; Bao, K

    1997-01-01

    An instrument used for quantitative assessment of trabecular structure of radius on radiograph including trabecular number and trabecular width was developed using a microdensitometer and a single-chip microcomputer. The device is characterized by its high sensitivity, good reproducibility, convenience and economy. The results obtained with the instrument were significantly correlated to actual bone mineral content. This device can be used for the diagnosis of osteoporosis, fluorosis, rickets and bone damages caused by cadmium.

  9. The effect of electromagnetic radiation on the rat brain: an experimental study.

    PubMed

    Eser, Olcay; Songur, Ahmet; Aktas, Cevat; Karavelioglu, Ergun; Caglar, Veli; Aylak, Firdevs; Ozguner, Fehmi; Kanter, Mehmet

    2013-01-01

    The aim of this study is to determine the structural changes of electromagnetic waves in the frontal cortex, brain stem and cerebellum. 24 Wistar Albino adult male rats were randomly divided into four groups: group I consisted of control rats, and groups II-IV comprised electromagnetically irradiated (EMR) with 900, 1800 and 2450 MHz. The heads of the rats were exposed to 900, 1800 and 2450 MHz microwaves irradiation for 1h per day for 2 months. While the histopathological changes in the frontal cortex and brain stem were normal in the control group, there were severe degenerative changes, shrunken cytoplasm and extensively dark pyknotic nuclei in the EMR groups. Biochemical analysis demonstrated that the Total Antioxidative Capacity level was significantly decreased in the EMR groups and also Total Oxidative Capacity and Oxidative Stress Index levels were significantly increased in the frontal cortex, brain stem and cerebellum. IL-1β level was significantly increased in the EMR groups in the brain stem. EMR causes to structural changes in the frontal cortex, brain stem and cerebellum and impair the oxidative stress and inflammatory cytokine system. This deterioration can cause to disease including loss of these areas function and cancer development.

  10. Introduced species: A significant component of human-caused global change

    USGS Publications Warehouse

    Vitousek, Peter M.; D'Antonio, Carla M.; Loope, Lloyd L.; Rejmanek, Marcel; Westbrooks, Randy G.

    1997-01-01

    Biological invasions are a widespread and significant component of human-caused global environmental change. The extent of invasions of oceanic islands, and their consequences for native biological diversity, have long been recognized. However, invasions of continental regions also are substantial. For example, more than 2,000 species of alien plants are established in the continental United States. These invasions represent a human-caused breakdown of the regional distinctiveness of Earth's flora and fauna—a substantial global change in and of itself. Moreover, there are well- documented examples of invading species that degrade human health and wealth, alter the structure and functioning of otherwise undisturbed ecosystems, and/or threaten native biological diversity. Invasions also interact synergistically with other components of global change. notably land use change. People and institutions working to understand, prevent, and control invasions are carrying out some of the most important—and potentially most effective—work on global environmental change.

  11. III. Insects

    Treesearch

    Jose F. Negron

    2011-01-01

    RMRS research on insect pests focuses mostly on conifer pests. There is a long history of invasive insects causing significant impacts, mortality, and changes in forest ecosystem structure in North America. Perhaps the most evident example is the introduction of the gypsy moth, Lymantria dispar, into eastern North America in the 1860s (Forbush and Frenald 1896)....

  12. Effects of fire damage on the structural properties of steel bridge elements.

    DOT National Transportation Integrated Search

    2011-04-30

    It is well known that fire can cause severe damage to steel bridges. There are documented cases where fire has directly led to the collapse or significant sagging of a steel bridge. However, when the damage is less severe, the effects of the fire, if...

  13. The Impact of Noninvariant Intercepts in Latent Means Models

    ERIC Educational Resources Information Center

    Whittaker, Tiffany A.

    2013-01-01

    Latent means methods such as multiple-indicator multiple-cause (MIMIC) and structured means modeling (SMM) allow researchers to determine whether or not a significant difference exists between groups' factor means. Strong invariance is typically recommended when interpreting latent mean differences. The extent of the impact of noninvariant…

  14. The mode of inhibitor binding to peptidyl-tRNA hydrolase: binding studies and structure determination of unbound and bound peptidyl-tRNA hydrolase from Acinetobacter baumannii.

    PubMed

    Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P

    2013-01-01

    The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.

  15. Cardiac Channelopathies and Sudden Death: Recent Clinical and Genetic Advances.

    PubMed

    Fernández-Falgueras, Anna; Sarquella-Brugada, Georgia; Brugada, Josep; Brugada, Ramon; Campuzano, Oscar

    2017-01-29

    Sudden cardiac death poses a unique challenge to clinicians because it may be the only symptom of an inherited heart condition. Indeed, inherited heart diseases can cause sudden cardiac death in older and younger individuals. Two groups of familial diseases are responsible for sudden cardiac death: cardiomyopathies (mainly hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic cardiomyopathy) and channelopathies (mainly long QT syndrome, Brugada syndrome, short QT syndrome, and catecholaminergic polymorphic ventricular tachycardia). This review focuses on cardiac channelopathies, which are characterized by lethal arrhythmias in the structurally normal heart, incomplete penetrance, and variable expressivity. Arrhythmias in these diseases result from pathogenic variants in genes encoding cardiac ion channels or associated proteins. Due to a lack of gross structural changes in the heart, channelopathies are often considered as potential causes of death in otherwise unexplained forensic autopsies. The asymptomatic nature of channelopathies is cause for concern in family members who may be carrying genetic risk factors, making the identification of these genetic factors of significant clinical importance.

  16. Cerebral coenurosis in a cat caused by Taenia serialis: neurological, magnetic resonance imaging and pathological features.

    PubMed

    Jull, Philip; Browne, Elizabeth; Boufana, Belgees S; Schöniger, Sandra; Davies, Emma

    2012-09-01

    CLINICAL SUMMARY: A 4-year-old Birman cat was presented with marked obtundation and non-ambulatory tetraparesis. Two well-demarcated, intra-axial T2-hyperintense, T1-hypointense structures, which did not contrast enhance, were evident on magnetic resonance imaging (MRI). Histopathology of the structures revealed metacestodes that were morphologically indicative of larval stages of Taenia species. Polymerase chain reaction amplification of a fragment within the 12S rRNA gene confirmed the subspecies as Taenia serialis. PRACTICAL SIGNIFICANCE: This is the first report of MRI findings of cerebral coenurosis caused by T serialis in a cat. Early MRI should be considered an important part of the diagnostic work-up for this rare clinical disease, as it will help guide subsequent treatment and may improve the prognosis.

  17. The impact of short-term UV irradiation on grains of sensitive and tolerant cereal genotypes studied by EPR.

    PubMed

    Kurdziel, Magdalena; Filek, Maria; Łabanowska, Maria

    2018-05-01

    UV irradiation has ionisation character and leads to the generation of reactive oxygen species (ROS). The destructive character of ROS was observed among others during interaction of cereal grains with ozone and was caused by changes in structures of biomolecules leading to the formation of stable organic radicals. That effect was more evident for stress sensitive genotypes. In this study we investigated the influence of UV irradiation on cereal grains originating from genotypes with different tolerance to oxidative stress. Grains and their parts (endosperm, embryo and seed coat) of barley, wheat and oat were subjected to short-term UV irradiation. It was found that UV caused the appearance of various kinds of reactive species (O 2 -• , H 2 O 2 ) and stable radicals (semiquinone, phenoxyl and carbon-centred). Simultaneously, lipid peroxidation occurred and the organic structure of Mn(II) and Fe(III) complexes become disturbed. UV irradiation causes damage of main biochemical structures of plant tissues, the effect is more significant in sensitive genotypes. In comparison with ozone treatment, UV irradiation leads to stronger destruction of biomolecules in grains and their parts. It is caused by the high energy of UV light, facilitating easier breakage of molecular bonds in biochemical compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Comparative study of cyanotoxins affecting cytoskeletal and chromatin structures in CHO-K1 cells.

    PubMed

    Gácsi, Mariann; Antal, Otilia; Vasas, Gábor; Máthé, Csaba; Borbély, György; Saker, Martin L; Gyori, János; Farkas, Anna; Vehovszky, Agnes; Bánfalvi, Gáspár

    2009-06-01

    In this study we compared the effects of the two frequently occuring and most dangerous cyanobacterial toxins on the cellular organization of microfilaments, microtubules and on the chromatin structure in Chinese hamster ovary (CHO-K1) cells. These compounds are the widely known microcystin-LR (MC-LR) and cylindrospermopsin (CYN) classified as the highest-priority cyanotoxin. Toxic effects were tested in a concentration and time dependent manner. The hepatotoxic MC-LR did not cause significant cytotoxicity on CHO-K1 cells under 20 microM, but caused apoptotic changes at higher concentrations. Apoptotic shrinkage was associated with the shortening and loss of actin filaments and with a concentration dependent depolymerization of microtubules. No necrosis was observed over the concentration range (1-50 microM MC-LR) tested. Cylindrospermopsin did cause apoptosis at low concentrations (1-2 microM) and over short exposure periods (12h). Necrosis was observed at higher concentrations (5-10 microM) and following longer exposure periods (24 or 48h). Cyanotoxins also affected the chromatin structure. The condensation process was inhibited by MC-LR at a later stage and manifested as broken elongated prechromosomes. CYN inhibited chromatin condensation at the early fibrillary stage leading to blurred fluorescent images of apoptotic bodies and preventing the formation of metaphase chromosomes. Cylindrospermopsin exhibited a more pronounced toxic effect causing cytoskeletal and nuclear changes as well as apoptotic and necrotic alterations.

  19. Implications of a class of grand unified theories for large scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Shafi, Q.; Stecker, F. W.

    1983-01-01

    A class of grand unified theories in which cosmologicaly significant axion and neutrino energy densities arise naturally is discussed. To obtain large scale structure three scenarios are considered: (1) an inflationary scenario; (2) inflation followed by string production; and (3) a non-inflationary scenario with density fluctuations caused solely by strings. Inflation may be compatible with the recent observational indications that mega 1 on the scale of superclusters, particularly if strings are present.

  20. Analysis and Visualization of Nerve Vessel Contacts for Neurovascular Decompression

    NASA Astrophysics Data System (ADS)

    Süßmuth, Jochen; Piazza, Alexander; Enders, Frank; Naraghi, Ramin; Greiner, Günther; Hastreiter, Peter

    Neurovascular compression syndromes are caused by a pathological contact between cranial nerves and vascular structures at the surface of the brainstem. Aiming at improved pre-operative analysis of the target structures, we propose calculating distance fields to provide quantitative information of the important nerve-vessel contacts. Furthermore, we suggest reconstructing polygonal models for the nerves and vessels. Color-coding with the respective distance information is used for enhanced visualization. Overall, our new strategy contributes to a significantly improved clinical understanding.

  1. Implications of a class of grand-unified theories for large-scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Shafi, Q.; Stecker, F. W.

    1984-01-01

    A class of grand-unified theories in which cosmologically significant axion and neutrino energy densities arise naturally is considered. To obtain large-scale structure, attention is given to (1) an inflationary scenario, (2) inflation followed by string production, and (3) a noninflationary scenario with density fluctuations caused solely by strings. It is shown that inflation may be compatible with the recent observational indications that Omega less than 1 on the scale of superclusters, particularly if strings are present.

  2. Lipase in aqueous-polar organic solvents: Activity, structure, and stability

    PubMed Central

    Kamal, Md Zahid; Yedavalli, Poornima; Deshmukh, Mandar V; Rao, Nalam Madhusudhana

    2013-01-01

    Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ∼20% v/v) of dimethylsulfoxide, isopropanol, and methanol. None of the organic solvents caused any appreciable structural change as evident from circular dichorism and NMR studies, thus do not support any significant role of enzyme denaturation in activity change. Change in 2D [15N, 1H]-HSQC chemical shifts suggested that all the organic solvents preferentially localize to a hydrophobic patch in the active-site vicinity and no chemical shift perturbation was observed for residues present in protein's core. This suggests that activity alteration might be directly linked to change in active site environment only. All organic solvents decreased the apparent binding of substrate to the enzyme (increased Km); however significantly enhanced the kcat. Melting temperature (Tm) of lipase, measured by circular dichroism and differential scanning calorimetry, altered in all solvents, albeit to a variable extent. Interestingly, although the effect of all organic solvents on various properties on lipase is qualitatively similar, our study suggest that magnitudes of effects do not appear to follow bulk solvent properties like polarity and the solvent effects are apparently dictated by specific and local interactions of solvent molecule(s) with the protein. PMID:23625694

  3. A Raman spectroscopic comparison of calcite and dolomite.

    PubMed

    Sun, Junmin; Wu, Zeguang; Cheng, Hongfei; Zhang, Zhanjun; Frost, Ray L

    2014-01-03

    Raman spectroscopy was used to characterize and differentiate the two minerals calcite and dolomite and the bands related to the mineral structure. The (CO3)(2-) group is characterized by four prominent Raman vibrational modes: (a) the symmetric stretching, (b) the asymmetric deformation, (c) asymmetric stretching and (d) symmetric deformation. These vibrational modes of the calcite and dolomite were observed at 1440, 1088, 715 and 278 cm(-1). The significant differences between the minerals calcite and dolomite are observed by Raman spectroscopy. Calcite shows the typical bands observed at 1361, 1047, 715 and 157 cm(-1), and the special bands at 1393, 1098, 1069, 1019, 299, 258 and 176 cm(-1) for dolomite are observed. The difference is explained on the basis of the structure variation of the two minerals. Calcite has a trigonal structure with two molecules per unit cell, and dolomite has a hexagonal structure. This is more likely to cause the splitting and distorting of the carbonate groups. Another cause for the difference is the cation substituting for Mg in the dolomite mineral. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. When transcription goes on Holliday: Double Holliday junctions block RNA polymerase II transcription in vitro.

    PubMed

    Pipathsouk, Anne; Belotserkovskii, Boris P; Hanawalt, Philip C

    2017-02-01

    Non-canonical DNA structures can obstruct transcription. This transcription blockage could have various biological consequences, including genomic instability and gratuitous transcription-coupled repair. Among potential structures causing transcription blockage are Holliday junctions (HJs), which can be generated as intermediates in homologous recombination or during processing of stalled replication forks. Of particular interest is the double Holliday junction (DHJ), which contains two HJs. Topological considerations impose the constraint that the total number of helical turns in the DNA duplexes between the junctions cannot be altered as long as the flanking DNA duplexes are intact. Thus, the DHJ structure should strongly resist transient unwinding during transcription; consequently, it is predicted to cause significantly stronger blockage than single HJ structures. The patterns of transcription blockage obtained for RNA polymerase II transcription in HeLa cell nuclear extracts were in accordance with this prediction. However, we did not detect transcription blockage with purified T7 phage RNA polymerase; we discuss a possible explanation for this difference. In general, our findings implicate naturally occurring Holliday junctions in transcription arrest. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A Raman spectroscopic comparison of calcite and dolomite

    NASA Astrophysics Data System (ADS)

    Sun, Junmin; Wu, Zeguang; Cheng, Hongfei; Zhang, Zhanjun; Frost, Ray L.

    2014-01-01

    Raman spectroscopy was used to characterize and differentiate the two minerals calcite and dolomite and the bands related to the mineral structure. The (CO3)2- group is characterized by four prominent Raman vibrational modes: (a) the symmetric stretching, (b) the asymmetric deformation, (c) asymmetric stretching and (d) symmetric deformation. These vibrational modes of the calcite and dolomite were observed at 1440, 1088, 715 and 278 cm-1. The significant differences between the minerals calcite and dolomite are observed by Raman spectroscopy. Calcite shows the typical bands observed at 1361, 1047, 715 and 157 cm-1, and the special bands at 1393, 1098, 1069, 1019, 299, 258 and 176 cm-1 for dolomite are observed. The difference is explained on the basis of the structure variation of the two minerals. Calcite has a trigonal structure with two molecules per unit cell, and dolomite has a hexagonal structure. This is more likely to cause the splitting and distorting of the carbonate groups. Another cause for the difference is the cation substituting for Mg in the dolomite mineral.

  6. Developing Master Keys to Brain Pathology, Cancer and Aging from the Structural Biology of Proteins Controlling Reactive Oxygen Species and DNA Repair

    PubMed Central

    Perry, J. Jefferson P.; Fan, Li; Tainer, John A.

    2007-01-01

    This review is focused on proteins with key roles in pathways controlling either reactive oxygen species or DNA damage responses, both of which are essential for preserving the nervous system. An imbalance of reactive oxygen species or inappropriate DNA damage response likely causes mutational or cytotoxic outcomes, which may lead to cancer and/or aging phenotypes. Moreover, individuals with hereditary disorders in proteins of these cellular pathways have significant neurological abnormalities. Mutations in a superoxide dismutase, which removes oxygen free radicals, may cause the neurodegenerative disease amyotrophic lateral sclerosis. Additionally, DNA repair disorders that affect the brain to varying extents include ataxia-telangiectasia-like disorder, Cockayne syndrome or Werner syndrome. Here, we highlight recent advances gained through structural biochemistry studies on enzymes linked to these disorders and other related enzymes acting within the same cellular pathways. We describe the current understanding of how these vital proteins coordinate chemical steps and integrate cellular signaling and response events. Significantly, these structural studies may provide a set of master keys to developing a unified understanding of the survival mechanisms utilized after insults by reactive oxygen species and genotoxic agents, and also provide a basis for developing an informed intervention in brain tumor and neurodegenerative disease progression. PMID:17174478

  7. Design and Operation of a Vibration-Acoustic-Thermal Apparatus for Identifying Variations in Free and Forced Response of Sandwich Panels Due to Combined Loading

    NASA Astrophysics Data System (ADS)

    Ellmer, Claudia; Adams, Douglas E.; White, Jonathan R.; Jata, Kumar

    2008-02-01

    Combined vibration, thermal, and acoustic environments cause significant changes in the free and forced response characteristics of spacecraft metallic, ceramic, and carbon thermal protection systems, exhaust wash structures in fixed wing aircraft, and ground vehicle components exposed to blast loading. When structural components become damaged, the effects of combined loads are even more apparent on the structural response. A new combined vibration-acoustic-thermal apparatus designed to simultaneously expose specimens up to 4' by 4' with 10 g vibration up to either 100 Hz or 1 inch displacement vibrations, 140 dB acoustic pressures, and >400 °F temperatures will first be described in this paper. Then observations from experiments conducted on a sandwich metallic panel exposed to thermal loads will be described. Modal impact and active sensor data will be utilized to extract frequency response function models that change as a function of the loading. These frequency response models indicate significant changes in the free response properties of the panel. For example, it will be shown that temperature changes cause the resonant frequencies of the panel to decrease resulting in higher response amplitudes. Likewise, acoustic pressure loads distributed across the panel will be shown to change as a function of temperature.

  8. Reactivity change of IgE to buckwheat protein treated with high-pressure and enzymatic hydrolysis.

    PubMed

    Lee, Chaeyoon; In, Sooyeon; Han, Youngshin; Oh, Sangsuk

    2016-04-01

    Buckwheat is a popular food material in eastern Asian countries that can cause allergenic response. This study was conducted to evaluate the effects of hydrolysis with papain and high-pressure (HP) treatment of buckwheat protein (BWP) on reactivity of immunoglobulin E (IgE) and its secondary structure. Reactivity of IgE was examined by enzyme-linked immunosorbent assay (ELISA) with serum samples from 16 patients allergic to buckwheat. Reactivity of IgE to hydrolysate of BWP with papain showed a maximum decrease of 79.8%. After HP treatment at 600 MPa for 1 min, reactivity of IgE to BWP decreased by up to 55.1%. When extracted, BWP was hydrolyzed with papain overnight following HP treatment at 600 MPa which the reactivity of IgE decreased significantly by up to 87.1%. Significant changes in secondary structure of BWP were observed by circular dichroism (CD) analysis after hydrolysis with papain following HP treatment. Reduction of reactivity of IgE showed a correlation with changes in secondary structure of BWP, which may cause changes in conformational epitopes. This suggests the possibility of decreasing the reactivity of IgE to BWP using combined physical and enzymatic treatments. © 2015 Society of Chemical Industry.

  9. Marsh canopy structure changes and the Deepwater Horizon oil spill

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2016-01-01

    Marsh canopy structure was mapped yearly from 2009 to 2012 in the Barataria Bay, Louisiana coastal region that was impacted by the 2010 Deepwater Horizon (DWH) oil spill. Based on the previously demonstrated capability of NASA's UAVSAR polarimetric synthetic aperture radar (PolSAR) image data to map Spartina alterniflora marsh canopy structure, structure maps combining the leaf area index (LAI) and leaf angle distribution (LAD, orientation) were constructed for yearly intervals that were directly relatable to the 2010 LAI-LAD classification. The yearly LAI-LAD and LAI difference maps were used to investigate causes for the previously revealed dramatic change in marsh structure from prespill (2009) to postspill (2010, spill cessation), and the occurrence of structure features that exhibited abnormal spatial and temporal patterns. Water level and salinity records showed that freshwater releases used to keep the oil offshore did not cause the rapid growth from 2009 to 2010 in marsh surrounding the inner Bay. Photointerpretation of optical image data determined that interior marsh patches exhibiting rapid change were caused by burns and burn recovery, and that the pattern of 2010 to 2011 LAI decreases in backshore marsh and extending along some tidal channels into the interior marsh were not associated with burns. Instead, the majority of 2010 to 2011 shoreline features aligned with vectors displaying the severity of 2010 shoreline oiling from the DWH spill. Although the association is not conclusive of a causal oil impact, the coexistent pattern is a significant discovery. PolSAR marsh structure mapping provided a unique perspective of marsh biophysical status that enhanced detection of change and monitoring of trends important to management effectiveness.

  10. Structural basis of Bloom syndrome (BS) causing mutations in the BLM helicase domain.

    PubMed Central

    Rong, S. B.; Väliaho, J.; Vihinen, M.

    2000-01-01

    BACKGROUND: Bloom syndrome (BS) is characterized by mutations within the BLM gene. The Bloom syndrome protein (BLM) has similarity to the RecQ subfamily of DNA helicases, which contain seven conserved helicase domains and share significant sequence and structural similarity with the Rep and PcrA DNA helicases. We modeled the three-dimensional structure of the BLM helicase domain to analyze the structural basis of BS-causing mutations. MATERIALS AND METHODS: The sequence alignment was performed for RecQ DNA helicases and Rep and PcrA helicases. The crystal structure of PcrA helicase (PDB entry 3PJR) was used as the template for modeling the BLM helicase domain. The model was used to infer the function of BLM and to analyze the effect of the mutations. RESULTS: The structural model with good stereochemistry of the BLM helicase domain contains two subdomains, 1A and 2A. The electrostatic potential of the model is highly negative over most of the surface, except for the cleft between subdomains 1A and 2A which is similar to the template protein. The ATP-binding site is located inside the model between subdomains 1A and 2A; whereas, the DNA-binding region is situated at the surface cleft, with positive potential between 1A and 2A. CONCLUSIONS: The three-dimensional structure of the BLM helicase domain was modeled and applied to interpret BS-causing mutations. The mutation I841T is likely to weaken DNA binding, while the mutations C891R, C901Y, and Q672R presumably disturb the ATP binding. In addition, other critical positions are discussed. PMID:10965492

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, R.D.; Duke, T.W.; Macauley, J.M.

    Effects of a used drilling fluid on an experimental seagrass community (Thalassia testudinum Konig et Sims) were measured by exposing the community to the suspended particulate phase (SPP) in laboratory microcosms. Structure of the macroinvertebrate assemblage, growth, and chlorophyll content of grass and associated epiphytes, and rates of decomposition as indicated by weight loss of grass leaves in treated and untreated microcosms were compared. There were statistically significant differences in community structure and function among untreated microcosms and those receiving the clay and drilling fluid. For example, drilling fluid and clay caused a significant decrease in the numbers of themore » ten most numerically abundant (dominant) macroinvertebrates, and drilling fluid decreased the rate at which Thalassia leaves decomposed.« less

  12. Active sites of the cytochrome p450cam (CYP101) F87W and F87A mutants. Evidence for significant structural reorganization without alteration of catalytic regiospecificity.

    PubMed

    Tuck, S F; Graham-Lorence, S; Peterson, J A; Ortiz de Montellano, P R

    1993-01-05

    Ferricyanide oxidation of the aryl-iron complexes formed by the reaction of cytochrome P450 enzymes with arylhydrazines causes in situ migration of the aryl group from the iron to the porphyrin nitrogen atoms. The regiochemistry of this migration, defined by the ratio of the four possible N-arylprotoporphyrin IX isomers, provides a method for mapping the topologies of cytochrome P450 active sites. The method has been validated by using it to examine the active site of cytochrome P450cam (CYP101), for which a crystal structure is available. In agreement with the crystal structure, reaction with phenylhydrazine gives a 5:25:70 ratio of the NA:NC:ND (subscript indicates pyrrole ring) N-phenylprotoporphyrin IX isomers. Naphthylhydrazine, however, yields exclusively the NC regioisomer and 4-(phenyl)phenylhydrazine the NA:NC:ND isomers in a 14:40:46 ratio. These isomer ratio differences are readily explained by topological differences between the upper and lower reaches of the active site. Having validated the aryl-iron shift as a topological probe, we used it to investigate the structural changes caused by mutation of Phe-87, a residue that provides the ceiling over pyrrole ring D in the crystal structure of cytochrome P450cam. Mutation of Phe-87 to a tryptophan causes no detectable change in the regiochemistry of camphor hydroxylation and only minor changes in the N-aryl isomer ratios. However, mutation of Phe-87 to an alanine, which was expected to open up the region above pyrrole ring D, severely decreased the proportion of the ND in favor of the NA isomer. Less rather than more space is therefore available over pyrrole ring D in the F87A mutant despite the fact that the regiochemistry of camphor hydroxylation remains unchanged. These results provide evidence for significant structural reorganization in the upper regions of the substrate binding site without alteration of the camphor hydroxylation regiospecificity in the F87A mutant.

  13. Acetaldehyde-induced structural and conformational alterations in human immunoglobulin G: A physicochemical and multi-spectroscopic study.

    PubMed

    Waris, Sana; Habib, Safia; Tantry, Irfan Qadir; Khan, Rizwan Hasan; Mahmood, Riaz; Ali, Asif

    2018-07-01

    Acetaldehyde is a reactive aldehyde produced as an intermediate of alcohol metabolism and tobacco pyrolysis. It has the potential to interact with different biomolecules in various tissues which results in the formation of stable, unstable and covalent adducts. This causes structural and functional modifications that may lead to severe complications such as cancer. This study has probed the structural modifications in human immunoglobulin G (IgG) as a function of different concentrations of acetaldehyde in the presence of reducing agent, sodium borohydride. Acetaldehyde mediated modifications in IgG have been characterised by various physicochemical techniques. UV-spectrophotometry showed that acetaldehyde modified IgG exhibited marked increase in hyperchromicity. Fluorescence studies revealed a significant quenching of tryptophan fluorescence which resulted in loss of β-sheet secondary structure that was confirmed by circular dichroic analysis. Gross structural changes in the morphology of IgG were confirmed by increase in mass and hydrodynamic radius of this glycoprotein along with the appearance of fibrillar structures in modified IgG, when compared to the granular structure of the native form of IgG observed by scanning electron microscope. The results indicate that acetaldehyde causes alterations in the secondary and tertiary structure of the protein leading to diminution of normal function of IgG molecule. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Collision effects of wind-power generators and other obstacles on birds.

    PubMed

    Drewitt, Allan L; Langston, Rowena H W

    2008-01-01

    There is extensive literature on avian mortality due to collision with man-made structures, including wind turbines, communication masts, tall buildings and windows, power lines, and fences. Many studies describe the consequences of bird-strike rather than address the causes, and there is little data based on long-term, standardized, and systematic assessments. Despite these limitations, it is apparent that bird-strike is a significant cause of mortality. It is therefore important to understand the effects of this mortality on bird populations. The factors which determine avian collision risk are described, including location, structural attributes, such as height and the use of lighting, weather conditions, and bird morphology and behavior. The results of incidental and more systematic observations of bird-strike due to a range of structures are presented and the implications of collision mortality for bird populations, particularly those of scarce and threatened species susceptible to collisions, are discussed. Existing measures for reducing collision mortality are described, both generally and specifically for each type of structure. It is concluded that, in some circumstances, collision mortality can adversely affect bird populations, and that greater effort is needed to derive accurate estimates of mortality levels locally, regionally, and nationally to better assess impacts on avian populations. Priority areas for future work are suggested, including further development of remote technology to monitor collisions, research into the causes of bird-strike, and the design of new, effective mitigation measures.

  15. Evolutionary genomics of Entamoeba

    PubMed Central

    Weedall, Gareth D.; Hall, Neil

    2011-01-01

    Entamoeba histolytica is a human pathogen that causes amoebic dysentery and leads to significant morbidity and mortality worldwide. Understanding the genome and evolution of the parasite will help explain how, when and why it causes disease. Here we review current knowledge about the evolutionary genomics of Entamoeba: how differences between the genomes of different species may help explain different phenotypes, and how variation among E. histolytica parasites reveals patterns of population structure. The imminent expansion of the amount genome data will greatly improve our knowledge of the genus and of pathogenic species within it. PMID:21288488

  16. Effect of bauhinia bauhinioides kallikrein inhibitor on endothelial proliferation and intracellular calcium concentration.

    PubMed

    Bilgin, M; Burgazli, K M; Rafiq, A; Mericliler, M; Neuhof, C; Oliva, M L; Parahuleva, M; Soydan, N; Doerr, O; Abdallah, Y; Erdogan, A

    2014-01-01

    Proteinase inhibitors act as a defensive system against predators e.g. insects, in plants. Bauhinia bauhinioides kallikrein inhibitor (BbKI) is a serine proteinase inhibitor, isolated from seeds of Bauhinia bauhinioides and is structurally similar to plant Kunitz-type inhibitors but lacks disulfide bridges. In this study we evaluated the antiproliferative effect of BbKI on endothelial cells and its impact on changes in membrane potential and intracellular calcium. HUVEC proliferation was significantly reduced by incubation with BbKI 50 and 100 µM 12% and 13%. Furthermore, BbKI (100 µM) exposure caused a significant increase in intracellular Ca2+ concentration by 35% as compared to untreated control. The intracellular rise in calcium was not affected by the absence of extracellular calcium. BBKI also caused a significant change in the cell membrane potential but the antiproliferative effect was independent of changes in membrane potential. BBKI has an antiproliferative effect on HUVEC, which is independent of the changes in membrane potential, and it causes an increase in intracellular Ca2+.

  17. Crystal structural analysis of protein–protein interactions drastically destabilized by a single mutation

    PubMed Central

    Urakubo, Yoshiaki; Ikura, Teikichi; Ito, Nobutoshi

    2008-01-01

    The complex of barnase (bn) and barstar (bs), which has been widely studied as a model for quantitative analysis of protein–protein interactions, is significantly destabilized by a single mutation, namely, bs Asp39 → Ala, which corresponds to a change of 7.7 kcal·mol−1 in the free energy of binding. However, there has been no structural information available to explain such a drastic destabilization. In the present study, we determined the structure of the mutant complex at 1.58 Å resolution by X-ray crystallography. The complex was similar to the wild-type complex in terms of overall and interface structures; however, the hydrogen bond network mediated by water molecules at the interface was significantly different. Several water molecules filled the cavity created by the mutation and consequently caused rearrangement of the hydrated water molecules at the interface. The water molecules were redistributed into a channel-like structure that penetrated into the complex. Furthermore, molecular dynamics simulations showed that the mutation increased the mobility of water molecules at the interface. Since such a drastic change in hydration was not observed in other mutant complexes of bn and bs, the significant destabilization of the interaction may be due to this channel-like structure of hydrated water molecules. PMID:18441234

  18. Seed-mediated gene flow promotes genetic diversity of weedy rice within populations: implications for weed management.

    PubMed

    He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong

    2014-01-01

    Increased infestation of weedy rice-a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.

  19. Development of a fluorescent ASFV strain that retains the ability to cause disease in swine

    USDA-ARS?s Scientific Manuscript database

    African swine fever is a contagious and often lethal disease for domestic pigs with a significant economic impact for the swine industry. The etiological agent, African swine fever virus (ASFV), is a highly structurally complex double strain DNA virus. No effective vaccines or antiviral treatment ar...

  20. Hyperthyroidism and the Heart.

    PubMed

    Osuna, Patricia Mejia; Udovcic, Maja; Sharma, Morali D

    2017-01-01

    Thyroid hormones have a significant impact on cardiac function and structure. Excess thyroid hormone affects cardiovascular hemodynamics, leading to high-output heart failure and, in late stages, dilated cardiomyopathy. In this review, we discuss how hyperthyroidism affects cardiovascular pathophysiology and molecular mechanisms and examine the complications caused by excess thyroid hormone, such as heart failure and atrial fibrillation.

  1. Organizing Schools. Educational Leadership for the 21st Century.

    ERIC Educational Resources Information Center

    Bailey, William J.

    The American public schools need a total revamping of structure, philosophy, pedagogy, and professionalism. This book is part of a series that explains why significant changes are needed and how changes can be made given the present constitutional authority. Part 1 introduces the causes and effects of the malfunctioning of the typical school…

  2. Maintaining saproxylic insects in Canada's extensively managed boreal forests: a review

    Treesearch

    David W. Langor; John R. Spence; H.E. James Hammond; Joshua Jacobs; Tyler P. Cobb

    2006-01-01

    Recent work on saproxylic insect assemblages in western Canadian boreal forests has demonstrated high faunal diversity and variability, and that adequate assessment of these insects involves significant sampling and taxonomic challenges. Some major determinants of assemblage structure include tree species, degree of decay, stand age and cause of tree death. Experiments...

  3. Modeling biological disturbances in LANDIS: a module description and demonstration using spruce budworm

    Treesearch

    Brian R. Sturtevant; Eric J. Gustafson; Wei Li; Hong S. He

    2004-01-01

    Insects and diseases are common disturbance agents in forested ecosystems. Severe outbreaks can cause significant changes in tree species composition, age structure, and fuel conditions over broad areas. To investigate the role of biological disturbances in shaping forest landscapes over time, we constructed a new "biological disturbance agent" (BDA) module...

  4. Demographics, Dollars and Difficulties in Graduate Education.

    ERIC Educational Resources Information Center

    Atkinson, Richard C.

    In a discussion of the crisis in graduate education in the sciences and engineering, focus is on factors that threaten American capability to produce world-class science in universities. While finances play a part, the causes are basically structural--the rigidity of university faculties, stemming from a significant expansion in tenured positions,…

  5. Effect of viroid infection on the dynamics of phenolic metabolites in the apoplast of tomato

    USDA-ARS?s Scientific Manuscript database

    Plants are capable of producing a wide array of secondary metabolites which serve many functions, due to their bioactive, redox or structural properties. Subtle changes in the external or internal environment can cause significant changes in the array of secondary metabolites presented in the tissu...

  6. Working Children as Social Subjects: The Contribution of Working Children's Organizations to Social Transformations.

    ERIC Educational Resources Information Center

    Liebel, Manfred

    2003-01-01

    Focuses on the significance of organizations of working children for processes of transformation in their societies. Argues that while structural causes of exploitation and poverty account for persistence of child labor, organizations of working children are of growing importance in efforts to improve their life conditions, noting that many…

  7. 33 CFR 154.1035 - Specific requirements for facilities that could reasonably be expected to cause significant and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... spill management team member within the organizational structure described in paragraph (b)(3)(iii) of... discharge, potential discharge, or emergency involving the following equipment and scenarios: (A) Failure of manifold, mechanical loading arm, other transfer equipment, or hoses, as appropriate; (B) Tank overfill; (C...

  8. Population genomics of Fusarium graminearum reveals signatures of divergent evolution within a major cereal pathogen

    USDA-ARS?s Scientific Manuscript database

    The cereal pathogen Fusarium graminearum is the primary cause of Fusarium head blight (FHB) and a significant threat to food safety and crop production. To elucidate population structure and identify genomic targets of selection within major FHB pathogen populations in North America we sequenced the...

  9. Effect of Multiple Freezing/Thawing Cycles on the Structural and Functional Properties of Waxy Rice Starch

    PubMed Central

    Tao, Han; Yan, Juan; Zhao, Jianwei; Tian, Yaoqi; Jin, Zhengyu; Xu, Xueming

    2015-01-01

    The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS), as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL). The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water. PMID:26018506

  10. Cerebral versus Ocular Visual Impairment: The Impact on Developmental Neuroplasticity.

    PubMed

    Martín, Maria B C; Santos-Lozano, Alejandro; Martín-Hernández, Juan; López-Miguel, Alberto; Maldonado, Miguel; Baladrón, Carlos; Bauer, Corinna M; Merabet, Lotfi B

    2016-01-01

    Cortical/cerebral visual impairment (CVI) is clinically defined as significant visual dysfunction caused by injury to visual pathways and structures occurring during early perinatal development. Depending on the location and extent of damage, children with CVI often present with a myriad of visual deficits including decreased visual acuity and impaired visual field function. Most striking, however, are impairments in visual processing and attention which have a significant impact on learning, development, and independence. Within the educational arena, current evidence suggests that strategies designed for individuals with ocular visual impairment are not effective in the case of CVI. We propose that this variance may be related to differences in compensatory neuroplasticity related to the type of visual impairment, as well as underlying alterations in brain structural connectivity. We discuss the etiology and nature of visual impairments related to CVI, and how advanced neuroimaging techniques (i.e., diffusion-based imaging) may help uncover differences between ocular and cerebral causes of visual dysfunction. Revealing these differences may help in developing future strategies for the education and rehabilitation of individuals living with visual impairment.

  11. Foveal splitting causes differential processing of Chinese orthography in the male and female brain.

    PubMed

    Hsiao, Janet Hui-Wen; Shillcock, Richard

    2005-10-01

    Chinese characters contain separate phonetic and semantic radicals. A dominant character type exists in which the semantic radical is on the left and the phonetic radical on the right; an opposite, minority structure also exists, with the semantic radical on the right and the phonetic radical on the left. We show that, when asked to pronounce isolated tokens of these two character types, males responded significantly faster when the phonetic information was on the right, whereas females showed a non-significant tendency in the opposite direction. Recent research on foveal structure and reading suggests that the two halves of a centrally fixated character are initially processed in different hemispheres. The male brain typically relies more on the left hemisphere for phonological processing compared with the female brain, causing this gender difference to emerge. This interaction is predicted by an implemented computational model. This study supports the existence of a gender difference in phonological processing, and shows that the effects of foveal splitting in reading extend far enough into word recognition to interact with the gender of the reader in a naturalistic reading task.

  12. Cerebral versus Ocular Visual Impairment: The Impact on Developmental Neuroplasticity

    PubMed Central

    Martín, Maria B. C.; Santos-Lozano, Alejandro; Martín-Hernández, Juan; López-Miguel, Alberto; Maldonado, Miguel; Baladrón, Carlos; Bauer, Corinna M.; Merabet, Lotfi B.

    2016-01-01

    Cortical/cerebral visual impairment (CVI) is clinically defined as significant visual dysfunction caused by injury to visual pathways and structures occurring during early perinatal development. Depending on the location and extent of damage, children with CVI often present with a myriad of visual deficits including decreased visual acuity and impaired visual field function. Most striking, however, are impairments in visual processing and attention which have a significant impact on learning, development, and independence. Within the educational arena, current evidence suggests that strategies designed for individuals with ocular visual impairment are not effective in the case of CVI. We propose that this variance may be related to differences in compensatory neuroplasticity related to the type of visual impairment, as well as underlying alterations in brain structural connectivity. We discuss the etiology and nature of visual impairments related to CVI, and how advanced neuroimaging techniques (i.e., diffusion-based imaging) may help uncover differences between ocular and cerebral causes of visual dysfunction. Revealing these differences may help in developing future strategies for the education and rehabilitation of individuals living with visual impairment. PMID:28082927

  13. Effect of multiple freezing/thawing cycles on the structural and functional properties of waxy rice starch.

    PubMed

    Tao, Han; Yan, Juan; Zhao, Jianwei; Tian, Yaoqi; Jin, Zhengyu; Xu, Xueming

    2015-01-01

    The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS), as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL). The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water.

  14. CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1.

    PubMed

    Huynh, Kevin W; Jiang, Jiansen; Abuladze, Natalia; Tsirulnikov, Kirill; Kao, Liyo; Shao, Xuesi; Newman, Debra; Azimov, Rustam; Pushkin, Alexander; Zhou, Z Hong; Kurtz, Ira

    2018-03-02

    Na + -coupled acid-base transporters play essential roles in human biology. Their dysfunction has been linked to cancer, heart, and brain disease. High-resolution structures of mammalian Na + -coupled acid-base transporters are not available. The sodium-bicarbonate cotransporter NBCe1 functions in multiple organs and its mutations cause blindness, abnormal growth and blood chemistry, migraines, and impaired cognitive function. Here, we have determined the structure of the membrane domain dimer of human NBCe1 at 3.9 Å resolution by cryo electron microscopy. Our atomic model and functional mutagenesis revealed the ion accessibility pathway and the ion coordination site, the latter containing residues involved in human disease-causing mutations. We identified a small number of residues within the ion coordination site whose modification transformed NBCe1 into an anion exchanger. Our data suggest that symporters and exchangers utilize comparable transport machinery and that subtle differences in their substrate-binding regions have very significant effects on their transport mode.

  15. Conformational dynamics of activation for the pentameric complex of dimeric G protein – coupled receptor and heterotrimeric G protein

    PubMed Central

    Orban, Tivadar; Jastrzebska, Beata; Gupta, Sayan; Wang, Benlian; Miyagi, Masaru; Chance, Mark R.; Palczewski, Krzysztof

    2012-01-01

    Summary Photoactivation of rhodopsin (Rho), a G protein-coupled receptor (GPCR), causes conformational changes that provide a specific binding site for the rod G protein, Gt. In this work we employed structural mass spectrometry (MS) techniques to elucidate the structural changes accompanying transition of ground state Rho to photoactivated Rho (Rho*) and in the pentameric complex between dimeric Rho* and heterotrimeric Gt. Observed differences in hydroxyl radical labeling and deuterium uptake between Rho* and the (Rho*)2-Gt complex suggest that photoactivation causes structural relaxation of Rho following its initial tightening upon Gt coupling. In contrast, nucleotide-free Gt in the complex is significantly more accessible to deuterium uptake allowing it to accept GTP and mediating complex dissociation. Thus, we provide direct evidence that in the critical step of signal amplification, Rho* and Gt exhibit dissimilar conformational changes when they are coupled in the (Rho*)2-Gt complex. PMID:22579250

  16. Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions

    PubMed Central

    Dodson, Karen W; Hazen, Jennie E; Conover, Matt S; Wang, Fengbin; Svenmarker, Pontus; Luna-Rico, Areli; Francetic, Olivera; Andersson, Magnus; Egelman, Edward H

    2018-01-01

    Uropathogenic E. coli (UPEC), which cause urinary tract infections (UTI), utilize type 1 pili, a chaperone usher pathway (CUP) pilus, to cause UTI and colonize the gut. The pilus rod, comprised of repeating FimA subunits, provides a structural scaffold for displaying the tip adhesin, FimH. We solved the 4.2 Å resolution structure of the type 1 pilus rod using cryo-electron microscopy. Residues forming the interactive surfaces that determine the mechanical properties of the rod were maintained by selection based on a global alignment of fimA sequences. We identified mutations that did not alter pilus production in vitro but reduced the force required to unwind the rod. UPEC expressing these mutant pili were significantly attenuated in bladder infection and intestinal colonization in mice. This study elucidates an unappreciated functional role for the molecular spring-like property of type 1 pilus rods in host-pathogen interactions and carries important implications for other pilus-mediated diseases. PMID:29345620

  17. Effects of sentence-structure complexity on speech initiation time and disfluency.

    PubMed

    Tsiamtsiouris, Jim; Cairns, Helen Smith

    2013-03-01

    There is general agreement that stuttering is caused by a variety of factors, and language formulation and speech motor control are two important factors that have been implicated in previous research, yet the exact nature of their effects is still not well understood. Our goal was to test the hypothesis that sentences of high structural complexity would incur greater processing costs than sentences of low structural complexity and these costs would be higher for adults who stutter than for adults who do not stutter. Fluent adults and adults who stutter participated in an experiment that required memorization of a sentence classified as low or high structural complexity followed by production of that sentence upon a visual cue. Both groups of speakers initiated most sentences significantly faster in the low structural complexity condition than in the high structural complexity condition. Adults who stutter were over-all slower in speech initiation than were fluent speakers, but there were no significant interactions between complexity and group. However, adults who stutter produced significantly more disfluencies in sentences of high structural complexity than in those of low complexity. After reading this article, the learner will be able to: (a) identify integral parts of all well-known models of adult sentence production; (b) summarize the way that sentence structure might negatively influence the speech production processes; (c) discuss whether sentence structure influences speech initiation time and disfluencies. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Tianeptine, olanzapine and fluoxetine show similar restoring effects on stress induced molecular changes in mice brain: An FT-IR study

    NASA Astrophysics Data System (ADS)

    Türker-Kaya, Sevgi; Mutlu, Oğuz; Çelikyurt, İpek K.; Akar, Furuzan; Ulak, Güner

    2016-05-01

    Chronic stress which can cause a variety of disorders and illness ranging from metabolic and cardiovascular to mental leads to alterations in content, structure and dynamics of biomolecules in brain. The determination of stress-induced changes along with the effects of antidepressant treatment on these parameters might bring about more effective therapeutic strategies. In the present study, we investigated unpredictable chronic mild stress (UCMS)-induced changes in biomolecules in mouse brain and the restoring effects of tianeptine (TIA), olanzapine (OLZ) and fluoxetine (FLX) on these variations, by Fourier transform infrared (FT-IR) spectroscopy. The results revealed that chronic stress causes different membrane packing and an increase in lipid peroxidation, membrane fluidity. A significant increment for lipid/protein, Cdbnd O/lipid, CH3/lipid, CH2/lipid, PO-2/lipid, COO-/lipid and RNA/protein ratios but a significant decrease for lipid/protein ratios were also obtained. Additionally, altered protein secondary structure components were estimated, such as increment in random coils and beta structures. The administration of TIA, OLZ and FLX drugs restored these stress-induced variations except for alterations in protein structure and RNA/protein ratio. This may suggest that these drugs have similar restoring effects on the consequences of stress activity in brain, in spite of the differences in their action mechanisms. All findings might have importance in understanding molecular mechanisms underlying chronic stress and contribute to studies aimed for drug development.

  19. Toward efficient aeroelastic energy harvesting through limit cycle shaping

    NASA Astrophysics Data System (ADS)

    Kirschmeier, Benjamin; Bryant, Matthew

    2016-04-01

    Increasing demand to harvest energy from renewable resources has caused significant research interest in unsteady aerodynamic and hydrodynamic phenomena. Apart from the traditional horizontal axis wind turbines, there has been significant growth in the study of bio-inspired oscillating wings for energy harvesting. These systems are being built to harvest electricity for wireless devices, as well as for large scale mega-watt power generation. Such systems can be driven by aeroelastic flutter phenomena which, beyond a critical wind speed, will cause the system to enter into limitcycle oscillations. When the airfoil enters large amplitude, high frequency motion, leading and trailing edge vortices form and, when properly synchronized with the airfoil kinematics, enhance the energy extraction efficiency of the device. A reduced order dynamic stall model is employed on a nonlinear aeroelastic structural model to investigate whether the parameters of a fully passive aeroelastic device can be tuned to produce limit cycle oscillations at desired kinematics. This process is done through an optimization technique to find the necessary structural parameters to achieve desired structural forces and moments corresponding to a target limit cycle. Structural nonlinearities are explored to determine the essential nonlinearities such that the system's limit cycle closely matches the desired kinematic trajectory. The results from this process demonstrate that it is possible to tune system parameters such that a desired limit cycle trajectory can be achieved. The simulations also demonstrate that the high efficiencies predicted by previous computational aerodynamics studies can be achieved in fully passive aeroelastic devices.

  20. Effects of analgesia of the digital flexor tendon sheath on pain originating in the sole, distal interphalangeal joint or navicular bursa of horses.

    PubMed

    Harper, J; Schumacher, John; Degraves, F; Schramme, M; Schumacher, Jim

    2007-11-01

    Specific analgesic techniques are required in diagnosis of lameness to isolate the exact origin of pain to the many structures of the foot that may be involved. To determine if analgesia of the digital flexor tendon sheath (DFTS) results in anaesthesia of other portions of the foot, such as the sole, distal interphalangeal joint (DIPJ), or navicular bursa (NB). Lameness caused by pain in the dorsal margin or heel region of the sole of the foot was induced in 18 horses by: using set-screws to create solar pressure (Trial 1: n = 5); or administering endotoxin intrasynovially into the DIPJ (Trial 2: n = 6) and NB (Trial 3: n = 7). The gait of each horse was evaluated by examining videotape recorded before and after creation of lameness and after administration of mepivacaine hydrochloride into the DFTS. Median lameness scores in Trial 1 at 10 min post injection of the DFTS were not significantly different from those before administration of local anaesthetic solution into the DFTS (P> or =0.05), but median lameness scores were reduced significantly at 20 min (P< or =0.05). In Trials 2 and 3, median lameness scores were not significantly different at observations made at 10 and 20 min post injection of the DFTS. Analgesia of the DFTS has little effect on lameness caused by pain originating in the sole, DIPJ or NB. Improvement of lameness in horses after intrasynovial analgesia of the DFTS is probably caused by attenuation of pain within the structures contained in the DFTS.

  1. The versatile DNA nucleotide excision repair (NER) and its medical significance.

    PubMed

    Falik-Zaccai, Tzipora C; Keren, Zohar; Slor, Hanoch

    2009-12-01

    Two of DNA's worst enemies, ultraviolet light and chemical carcinogens, can cause damage to the molecule by mutating individual nucleotides or changing its physical structure. In most cases, genomic integrity is restored by specialized suites of proteins dedicated to repairing specific types of injuries. One restoration mechanism, called nucleotide excision repair (NER), recruits and coordinates the services of 20-30 proteins to recognize and remove structure-impairing lesions, including those induced by ultraviolet (UV) light. Mutations in a gene that encodes a protein from the NER machinery might cause a wide variety of rare inherited human disorders. Sun sensitivity, cancer, developmental retardation, neurodegeneration and premature aging characterize these syndromes. Identification of the causative genes and proteins in affected families in Israel allowed us to establish accurate molecular diagnosis of couples at risk, and provide them with better genetic counseling.

  2. Use of vacuum-steam-vacuum and ionizing radiation to eliminate Listeria innocua from ham.

    PubMed

    Sommers, Christopher; Kozempel, Michael; Fan, Xuetong; Radewonuk, E Richard

    2002-12-01

    Listeria spp. are a frequent postprocess contaminant of ready-to-eat (RTE) meat products, including ham. Vacuum-steam-vacuum (VSV) technology has been used successfully to eliminate Listeria innocua from hot dogs. Ionizing radiation can eliminate Listeria spp. from RTE meats. However, the excessive application of either technology can cause changes in product quality, including structural changes, changes in cure color (redness), and lipid oxidation. In this study, two cycles of VSV were combined with 2.0 kGy of ionizing radiation to obtain 4.40- and 4.85-log10 reductions of L. innocua on ham meat and skin, respectively. The use of both treatments resulted in an additive, as opposed to synergistic, reduction of L. innocua on ham. The combination treatment did not cause statistically significant changes in product structure, color (redness), or lipid oxidation.

  3. An Emerging Tick-Borne Disease of Humans Is Caused by a Subset of Strains with Conserved Genome Structure

    PubMed Central

    Barbet, Anthony F.; Al-Khedery, Basima; Stuen, Snorre; Granquist, Erik G.; Felsheim, Roderick F.; Munderloh, Ulrike G.

    2013-01-01

    The prevalence of tick-borne diseases is increasing worldwide. One such emerging disease is human anaplasmosis. The causative organism, Anaplasma phagocytophilum, is known to infect multiple animal species and cause human fatalities in the U.S., Europe and Asia. Although long known to infect ruminants, it is unclear why there are increasing numbers of human infections. We analyzed the genome sequences of strains infecting humans, animals and ticks from diverse geographic locations. Despite extensive variability amongst these strains, those infecting humans had conserved genome structure including the pfam01617 superfamily that encodes the major, neutralization-sensitive, surface antigen. These data provide potential targets to identify human-infective strains and have significance for understanding the selective pressures that lead to emergence of disease in new species. PMID:25437207

  4. Structure-activity relationships of sialogogic heptapeptides analogous to physalaemin.

    PubMed

    Gao, C; Abe, K

    2000-05-01

    The rationale behind this study was to determine in detail which amino acids in physalaemin are crucial to its sialogogue activity, with a view of synthesizing new sialogogues which might be of use in the treatment of dry mouth. With the progressive elimination of amino acids, one by one, from the C- and N-terminal regions, 126 heptapeptides were newly synthesized by the multipin peptide method, for comparison with II naturally occurring tachykinins. The C-terminal amide in position II was essential for salivation, but not the pyrolidine group or the N-terminal amino acid residues in positions I to 4. In 18 heptapeptides in which M in position II (MII) was replaced by another amino acid, one by one, none caused salivation. In 18 heptapeptides, in which L10 or G9 was replaced, three peptides caused salivation but none had significantly increased secretory activities. In 18 heptapeptides in which Y8 was replaced, four caused salivation but only one (I) had significantly increased secretory activity. In 18 heptapeptides in which F7 was replaced, only Y caused salivation but with significantly reduced secretory activity. In contrast, in 18 heptapeptides in which K6 and N5 were replaced, most caused salivation and some of them had significantly increased secretory activities. It is concluded that the sequence FYGLM-NH2 conserved in the C-terminal region of physalaemin is optimal, that amides in position II and F7 are very important for salivation, but that K6 and N5 can be replaced by some other amino acids, resulting in increased secretory activities.

  5. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin

    NASA Astrophysics Data System (ADS)

    Shinno, Yuko; Ishimoto, Takuya; Saito, Mitsuru; Uemura, Reo; Arino, Masumi; Marumo, Keishi; Nakano, Takayoshi; Hayashi, Mikako

    2016-01-01

    In clinical dentistry, since fracture is a major cause of tooth loss, better understanding of mechanical properties of teeth structures is important. Dentin, the major hard tissue of teeth, has similar composition to bone. In this study, we investigated the mechanical properties of human dentin not only in terms of mineral density but also using structural and quality parameters as recently accepted in evaluating bone strength. Aged crown and root dentin (age ≥ 40) exhibited significantly lower flexural strength and toughness than young dentin (age < 40). Aged dentin, in which the dentinal tubules were occluded with calcified material, recorded the highest mineral density; but showed significantly lower flexural strength than young dentin. Dentin with strong alignment of the c-axis in hydroxyapatite exhibited high fracture strength, possibly because the aligned apatite along the collagen fibrils may reinforce the intertubular dentin. Aged dentin, showing a high advanced glycation end-products (AGEs) level in its collagen, recorded low flexural strength. We first comprehensively identified significant factors, which affected the inferior mechanical properties of aged dentin. The low mechanical strength of aged dentin is caused by the high mineral density resulting from occlusion of dentinal tubules and accumulation of AGEs in dentin collagen.

  6. Multi-target parallel processing approach for gene-to-structure determination of the influenza polymerase PB2 subunit.

    PubMed

    Armour, Brianna L; Barnes, Steve R; Moen, Spencer O; Smith, Eric; Raymond, Amy C; Fairman, James W; Stewart, Lance J; Staker, Bart L; Begley, Darren W; Edwards, Thomas E; Lorimer, Donald D

    2013-06-28

    Pandemic outbreaks of highly virulent influenza strains can cause widespread morbidity and mortality in human populations worldwide. In the United States alone, an average of 41,400 deaths and 1.86 million hospitalizations are caused by influenza virus infection each year (1). Point mutations in the polymerase basic protein 2 subunit (PB2) have been linked to the adaptation of the viral infection in humans (2). Findings from such studies have revealed the biological significance of PB2 as a virulence factor, thus highlighting its potential as an antiviral drug target. The structural genomics program put forth by the National Institute of Allergy and Infectious Disease (NIAID) provides funding to Emerald Bio and three other Pacific Northwest institutions that together make up the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The SSGCID is dedicated to providing the scientific community with three-dimensional protein structures of NIAID category A-C pathogens. Making such structural information available to the scientific community serves to accelerate structure-based drug design. Structure-based drug design plays an important role in drug development. Pursuing multiple targets in parallel greatly increases the chance of success for new lead discovery by targeting a pathway or an entire protein family. Emerald Bio has developed a high-throughput, multi-target parallel processing pipeline (MTPP) for gene-to-structure determination to support the consortium. Here we describe the protocols used to determine the structure of the PB2 subunit from four different influenza A strains.

  7. Environmental cost and pollution risk caused by the industrial transfer in Qinghai Province

    NASA Astrophysics Data System (ADS)

    Jiang, Qun'ou; Tang, Chengcai; Zhan, Jinyan; Zhang, Wei; Wu, Feng

    2014-09-01

    With the rising pressure due to energy consumption and costs of environmental protection and recovery, industrial transfer from the eastern to central and western areas has surged in China. However, extremely fragile ecological conditions and severe water shortage are significant hurdles for industry development in Western China. Whether the vulnerable environment can bear the pollution caused by the transferred industry from Eastern China becomes a significant issue. This study firstly estimates energy and environmental costs in different areas of China, and assesses the necessity to upgrade the industrial structure of Qinghai Province. Then the emissions of waste water, waste gas, and smoke caused by transferred industries are calculated by Input-Output Model. On the basis of the effect analysis of waste emission on environment, pollution risks of Qinghai province are assessed. The results illustrate that the costs of environmental protection and recovery in China have a gradient distribution, of which the energy efficiency is lower while environmental costs are higher in Western China. Industrial structure adjustment has different impacts on the pollution of different sectors. Although the development of machinery and equipment, hotels and catering services, and real estate, leasing, and business services has increased the emission of pollutants, it is offset by the decreasing emissions caused by other industries such as construction and metal products. Therefore, although economic development will increase environmental pollution, industrial adjustments can effectively decrease waste water and waste gas emissions to reduce the pollution risk. It should be noted that there are still tremendous challenges for industrial transfer in Qinghai Province to coordinate the environment and industry development.

  8. QUASI-PERIODIC WIGGLES OF MICROWAVE ZEBRA STRUCTURES IN A SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sijie; Tan, Baolin; Yan, Yihua

    2013-11-10

    Quasi-periodic wiggles of microwave zebra pattern (ZP) structures with periods ranging from about 0.5 s to 1.5 s are found in an X-class solar flare on 2006 December 13 at the 2.6-3.8 GHz with the Chinese Solar Broadband Radio Spectrometer (SBRS/Huairou). Periodogram and correlation analysis show that the wiggles have two to three significant periodicities and are almost in phase between stripes at different frequencies. The Alfvén speed estimated from the ZP structures is about 700 km s{sup –1}. We find the spatial size of the wave-guiding plasma structure to be about 1 Mm with a detected period of aboutmore » 1 s. This suggests that the ZP wiggles can be associated with the fast magnetoacoustic oscillations in the flaring active region. The lack of a significant phase shift between wiggles of different stripes suggests that the ZP wiggles are caused by a standing sausage oscillation.« less

  9. Structure and Mechanical and Corrosion Properties of a Magnesium Mg-Y-Nd-Zr Alloy after High Pressure Torsion

    NASA Astrophysics Data System (ADS)

    Lukyanova, E. A.; Martynenko, N. S.; Serebryany, V. N.; Belyakov, A. N.; Rokhlin, L. L.; Dobatkin, S. V.; Estrin, Yu. Z.

    2017-11-01

    The structure and the properties of an Mg-Y-Nd-Zr alloy (WE43) are studied after high pressure torsion (HPT) in the temperature range 20-300°C. Structure refinement proceeds mainly by deformation twinning with the formation of a partial nanocrystalline structure with a grain size of 30-100 nm inside deformation twins. The WE43 alloy is shown to be aged during heating after HPT due to the decomposition of a magnesium solid solution. HPT at room temperature and subsequent aging causes maximum hardening. It is shown that HPT significantly accelerates the decomposition of a magnesium solid solution. HPT at all temperatures considerably increases the tensile strength and the yield strength upon tensile tests and significantly decreases plasticity. Subsequent aging additionally hardens the WE43 alloy. A potentiodynamic study shows that the corrosion resistance of this alloy after HPT increases. However, subsequent aging degrades the corrosion properties of the alloy.

  10. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids.

    PubMed

    Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M

    2015-12-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids1

    PubMed Central

    Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón

    2015-01-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. PMID:26450705

  12. The R403Q Myosin Mutation Implicated in Familial Hypertrophic Cardiomyopathy Causes Disorder at the Actomyosin Interface

    PubMed Central

    Volkmann, Niels; Lui, HongJun; Hazelwood, Larnele; Trybus, Kathleen M.; Lowey, Susan; Hanein, Dorit

    2007-01-01

    Background Mutations in virtually all of the proteins comprising the cardiac muscle sarcomere have been implicated in causing Familial Hypertrophic Cardiomyopathy (FHC). Mutations in the β-myosin heavy chain (MHC) remain among the most common causes of FHC, with the widely studied R403Q mutation resulting in an especially severe clinical prognosis. In vitro functional studies of cardiac myosin containing the R403Q mutation have revealed significant changes in enzymatic and mechanical properties compared to wild-type myosin. It has been proposed that these molecular changes must trigger events that ultimately lead to the clinical phenotype. Principal Findings Here we examine the structural consequences of the R403Q mutation in a recombinant smooth muscle myosin subfragment (S1), whose kinetic features have much in common with slow β-MHC. We obtained three-dimensional reconstructions of wild-type and R403Q smooth muscle S1 bound to actin filaments in the presence (ADP) and absence (apo) of nucleotide by electron cryomicroscopy and image analysis. We observed that the mutant S1 was attached to actin at highly variable angles compared to wild-type reconstructions, suggesting a severe disruption of the actin-myosin interaction at the interface. Significance These results provide structural evidence that disarray at the molecular level may be linked to the histopathological myocyte disarray characteristic of the diseased state. PMID:17987111

  13. Studies related to the Charleston, South Carolina, earthquake of 1886; tectonics and seismicity

    USGS Publications Warehouse

    Gottfried, David; Annell, C.S.; Byerly, G.R.; Lanphere, Marvin A.; Phillips, Jeffrey D.; Gohn, Gregory S.; Houser, Brenda B.; Schneider, Ray R.; Ackermann, Hans D.; Yantis, B.R.; Costain, John K.; Schilt, F. Steve; Brown, Larry; Oliver, Jack E.; Kaufman, Sidney; Hamilton, Robert Morrison; Behrendt, John C.; Henry, V. James; Bayer, Kenneth C.; Daniels, David L.; Zietz, Isidore; Popenoe, Peter; Chowns, T.M.; Williams, C.T.; Dooley, Robert E.; Wampler, J.; Dillon, William P.; Klitgord, Kim D.; Paull, Charles K.; McGinnis, Lyle D.; Dewey, James W.; Tarr, Arthur C.; Rhea, Susan; Wentworth, Carl M.; Mergner-Keefer, Marcia; Bollinger, G.A.; Gohn, Gregory S.

    1983-01-01

    Since 1973, the U.S. Geological Survey (USGS), with support from the Nuclear Regulatory Commission, has conducted extensive investigations of the tectonic and seismic history of the Charleston, S.C., earthquake zone and surrounding areas. The goal of these investigations has been to discover the cause of the large intraplate Charleston earthquake of 1886, which dominates the record of seismicity in the Southeastern United States, through an understanding of the historic and modern seismicity at Charleston and of the tectonic setting of the seismicity. This goal is being pursued to evaluate the potential for additional large earthquakes in the Charleston area and surrounding regions and to determine whether the Charleston area differs tectonically in any significant fashion from other parts of the Southeastern United States. An understanding of the specific cause for the 1886 event and of the regional distribution of any structures that are generically related to or geometrically and mechanically similar to the source structure is essential for evaluation of seismic hazards throughout the Southeast.The results given herein represent significant progress toward understanding the tectonic setting of the Charleston-area seismicity. Several chapters in the volume address the distribution and origin of pre-Cretaceous rocks and structures beneath Coastal Plain sediments in the Charleston area and regionally beneath the southern Atlantic Coastal Plain and adjacent Continental Shelf. The modern seismicity at Charleston is occurring at depths equal to or greater than the known extent of these older structures, and rejuvenation of an older fault in the modern stress field is a possible cause of the seismicity. Accordingly, several chapters discuss the possible relationships of the various pre-Cretaceous structures to faults identified near Charleston that have a known Cretaceous and Cenozoic movement history and to the historic and instrumentally recorded seismicity. However, at the present time, none of the young structures can be related unequivocally to the seismicity because earthquake fault-plane solutions and hypocenter distributions do not agree with the locations and orientations of these structures. Therefore, a major emphasis of continuing USGS investigations near Charleston will be to identify additional faults, if any exist, to delineate fault movement histories, and to further refine earthquake locations, focal mechanisms, and related seismological interpretations.

  14. Multisource least-squares reverse-time migration with structure-oriented filtering

    NASA Astrophysics Data System (ADS)

    Fan, Jing-Wen; Li, Zhen-Chun; Zhang, Kai; Zhang, Min; Liu, Xue-Tong

    2016-09-01

    The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.

  15. Betavoltaic Battery Conversion Efficiency Improvement Based on Interlayer Structures

    NASA Astrophysics Data System (ADS)

    Li, Da-Rang; Jiang, Lan; Yin, Jian-Hua; Tan, Yuan-Yuan; Lin, Nai

    2012-07-01

    Significant differences among the doping densities of PN junctions in semiconductors cause lattice mismatch and lattice defects that increase the recombination current of betavoltaic batteries. This extensively decreases the open circuit voltage and the short current, which results in low conversion efficiency. This study proposes P+PINN+-structure based betavoltaic batteries by adding an interlayer to typical PIN structures to improve conversion efficiency. Numerical simulations are conducted for the energy deposition of beta particles along the thickness direction in semiconductors. Based on this, 63Ni-radiation GaAs batteries with PIN and P+PINN+ structures are designed and fabricated to experimentally verify the proposed design. It turns out that the conversion efficiency of the betavoltaic battery with the proposed P+PINN+ structure is about 1.45 times higher than that with the traditional PIN structure.

  16. Monoclonal Antibody Interactions with Micro- and Nanoparticles: Adsorption, Aggregation and Accelerated Stress Studies

    PubMed Central

    Bee, Jared S.; Chiu, David; Sawicki, Suzanne; Stevenson, Jennifer L.; Chatterjee, Koustuv; Freund, Erwin; Carpenter, John F.; Randolph, Theodore W.

    2009-01-01

    Therapeutic proteins are exposed to various wetted surfaces that could shed sub-visible particles. In this work we measured the adsorption of a monoclonal antibody (mAb) to various microparticles, characterized the adsorbed mAb secondary structure, and determined the reversibility of adsorption. We also developed and used a front-face fluorescence quenching method to determine that the mAb tertiary structure was near-native when adsorbed to glass, cellulose and silica. Initial adsorption to each of the materials tested was rapid. During incubation studies, exposure to the air-water interface was a significant cause of aggregation but acted independently of the effects of microparticles. Incubations with glass, cellulose, stainless steel or Fe2O3 microparticles gave very different results. Cellulose preferentially adsorbed aggregates from solution. Glass and Fe2O3 adsorbed the mAb but did not cause aggregation. Adsorption to stainless steel microparticles was irreversible, and caused appearance of soluble aggregates upon incubation. The secondary structure of mAb adsorbed to glass and cellulose was near-native. We suggest that the protocol described in this work could be a useful preformulation stress screening tool to determine the sensitivity of a therapeutic protein to exposure to common surfaces encountered during processing and storage. PMID:19492408

  17. Targeted Deletion of the Muscular Dystrophy Gene myotilin Does Not Perturb Muscle Structure or Function in Mice▿

    PubMed Central

    Moza, Monica; Mologni, Luca; Trokovic, Ras; Faulkner, Georgine; Partanen, Juha; Carpén, Olli

    2007-01-01

    Myotilin, palladin, and myopalladin form a novel small subfamily of cytoskeletal proteins that contain immunoglobulin-like domains. Myotilin is a thin filament-associated protein localized at the Z-disk of skeletal and cardiac muscle cells. The direct binding to F-actin, efficient cross-linking of actin filaments, and prevention of induced disassembly of filaments are key roles of myotilin that are thought to be involved in structural maintenance and function of the sarcomere. Missense mutations in the myotilin-encoding gene cause dominant limb girdle muscular dystrophy type 1A and spheroid body myopathy and are the molecular defect that can cause myofibrillar myopathy. Here we describe the generation and analysis of mice that lack myotilin, myo−/− mice. Surprisingly, myo−/− mice maintain normal muscle sarcomeric and sarcolemmal integrity. Also, loss of myotilin does not cause alterations in the heart or other organs of newborn or adult myo−/− mice. The mice develop normally and have a normal life span, and their muscle capacity does not significantly differ from wild-type mice even after prolonged physical stress. The results suggest that either myotilin does not participate in muscle development and basal function maintenance or other proteins serve as structural and functional compensatory molecules when myotilin is absent. PMID:17074808

  18. Protein structural development of threadfin bream ( Nemipterus spp.) surimi gels induced by glucose oxidase.

    PubMed

    Wang, Lei; Fan, Daming; Fu, Lulu; Jiao, Xidong; Huang, Jianlian; Zhao, Jianxin; Yan, Bowen; Zhou, Wenguo; Zhang, Wenhai; Ye, Weijian; Zhang, Hao

    2018-01-01

    This study investigated the effect of glucose oxidase on the gel properties of threadfin bream surimi. The gel strength of surimi increased with the addition of 0.5‰ glucose oxidase after two-step heating. Based on the results of the chemical interactions, the hydrophobic interaction and disulfide bond of glucose oxidase-treated surimi samples increased compared with the control samples at the gelation temperature and gel modori temperature. The surface hydrophobicity of samples with glucose oxidase and glucose increased significantly ( p < 0.05) and total sulfhydryl groups decreased significantly ( p < 0.05). The analysis of Raman spectroscopy shows that the addition of glucose oxidase induced more α-helixes to turn into a more elongated random and flocculent structure. Glucose oxidase changes the secondary structure of the surimi protein, making more proteins depolarize and stretch and causing actomyosin to accumulate to each other, resulting in the formation of surimi gel.

  19. Silicide formation process of Pt added Ni at low temperature: Control of NiSi2 formation

    NASA Astrophysics Data System (ADS)

    Ikarashi, Nobuyuki; Masuzaki, Koji

    2011-03-01

    Transmission electron microscopy (TEM) and ab initio calculations revealed that the Ni-Si reaction around 300 °C is significantly changed by adding Pt to Ni. TEM analysis clarified that NiSi2 was formed in a reaction between Ni thin film (˜1 nm) and Si substrate, while NiSi was formed when Pt was added to the Ni film. We also found that the Ni-adamantane structure, which acts as a precursor for NiSi2 formation around the reaction temperature, was formed in the former reaction but was significantly suppressed in the latter reaction. Theoretical calculations indicated that Pt addition increased stress at the Ni-adamantane structure/Si-substrate interface. The increase in interface stress caused by Pt addition should raise the interface energy to suppress the Ni-adamantane structure formation, leading to NiSi2 formation being suppressed.

  20. CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease by haploinsufficiency.

    PubMed

    Brockmann, Sarah J; Freischmidt, Axel; Oeckl, Patrick; Müller, Kathrin; Ponna, Srinivas K; Helferich, Anika M; Paone, Christoph; Reinders, Jörg; Kojer, Kerstin; Orth, Michael; Jokela, Manu; Auranen, Mari; Udd, Bjarne; Hermann, Andreas; Danzer, Karin M; Lichtner, Peter; Walther, Paul; Ludolph, Albert C; Andersen, Peter M; Otto, Markus; Kursula, Petri; Just, Steffen; Weishaupt, Jochen H

    2018-02-15

    Mutations in the mitochondrially located protein CHCHD10 cause motoneuron disease by an unknown mechanism. In this study, we investigate the mutations p.R15L and p.G66V in comparison to wild-type CHCHD10 and the non-pathogenic variant p.P34S in vitro, in patient cells as well as in the vertebrate in vivo model zebrafish. We demonstrate a reduction of CHCHD10 protein levels in p.R15L and p.G66V mutant patient cells to approximately 50%. Quantitative real-time PCR revealed that expression of CHCHD10 p.R15L, but not of CHCHD10 p.G66V, is already abrogated at the mRNA level. Altered secondary structure and rapid protein degradation are observed with regard to the CHCHD10 p.G66V mutant. In contrast, no significant differences in expression, degradation rate or secondary structure of non-pathogenic CHCHD10 p.P34S are detected when compared with wild-type protein. Knockdown of CHCHD10 expression in zebrafish to about 50% causes motoneuron pathology, abnormal myofibrillar structure and motility deficits in vivo. Thus, our data show that the CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease primarily based on haploinsufficiency of CHCHD10. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Raman and FTIR spectroscopic studies on two hydroxylated tung oils (HTO) bearing conjugated double bonds

    NASA Astrophysics Data System (ADS)

    Zhuang, Yuwei; Ren, Zhiyong; Jiang, Lei; Zhang, Jiaxiang; Wang, Huafen; Zhang, Guobao

    2018-06-01

    Tung oil (TO) was used as a model compound to study two hydroxylated tung oils (HTO), prepared from TO by either aminolysis (HTO-am) or alcoholysis (HTO-al). Main bands in Raman and FTIR spectra were initially assigned based on the detailed analysis of the compound spectra before and after exposure to elevated temperature (200 °C). The effect of heat treatment in air on spectral bands, and especially on the changes associated with double bonds, were then investigated. In the present work, changes in spectral bands due to heat treatment were compared with those revealed in the previous work of others. The results show that the conjugated triene structure of TO has been retained during alcoholysis and aminolysis, to yield the HTOs studied; yet the change of the triene structure caused by heating is different among the three samples; the H-bonding strength between OH and Cdbnd O in HTO-am is higher than that in HTO-al; the changes in HTO vOH and vCdbnd O bands in FTIR caused by the present heat treatment were significant; for TO, there is a big difference between changes in spectra as caused by thermal exposure, compared to those caused by ageing under UV light or exposure to a catalyst. The present work has laid additional groundwork for further study of the reactions of such triply conjugated double bond structures under different ageing conditions.

  2. Influence of Steel Reinforcement on In-Situ Stress Evaluation in Concrete Structures by the Core-Drilling Method

    NASA Astrophysics Data System (ADS)

    McGinnis, M. J.; Pessiki, S.

    2006-03-01

    The core-drilling method is an emerging technique for evaluating in-situ stress in a concrete structure. A small hole is drilled into the structure, and the deformations in the vicinity of the hole are measured and related via elasticity theory to the stress. The method is similar to the ASTM hole-drilling strain-gauge method excepting that displacements rather than strains are the measured quantities. The technique may be considered nondestructive since the ability of the structure to perform its function is unaffected, and the hole is easily repaired. Displacement measurements in the current work are performed using 3D digital image correlation and industrial photogrammetry. The current paper addresses perturbations in the method caused by steel reinforcement within the concrete. The reinforcement is significantly stiffer than the surrounding concrete, altering the expected displacement field. A numerical investigation performed indicates an under-prediction of stress by as much as 18 percent in a heavily reinforced structure, although the effect is significantly smaller for more common amounts of reinforcement.

  3. Influence of Steel Reinforcement on In-Situ Stress Evaluation in Concrete Structures by the Core-Drilling Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinnis, M. J.; Pessiki, S.

    2006-03-06

    The core-drilling method is an emerging technique for evaluating in-situ stress in a concrete structure. A small hole is drilled into the structure, and the deformations in the vicinity of the hole are measured and related via elasticity theory to the stress. The method is similar to the ASTM hole-drilling strain-gauge method excepting that displacements rather than strains are the measured quantities. The technique may be considered nondestructive since the ability of the structure to perform its function is unaffected, and the hole is easily repaired. Displacement measurements in the current work are performed using 3D digital image correlation andmore » industrial photogrammetry. The current paper addresses perturbations in the method caused by steel reinforcement within the concrete. The reinforcement is significantly stiffer than the surrounding concrete, altering the expected displacement field. A numerical investigation performed indicates an under-prediction of stress by as much as 18 percent in a heavily reinforced structure, although the effect is significantly smaller for more common amounts of reinforcement.« less

  4. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic acids with zinc.

  5. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties

    PubMed Central

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic acids with zinc. PMID:27077915

  6. The spatial genetic differentiation of the legume pod borer, Maruca vitrata F. (Lepidoptera: Pyralidae) populations in West Africa

    USDA-ARS?s Scientific Manuscript database

    The legume pod borer, Maruca vitrata, is an endemic insect pest that causes significant yield loss to the cowpea crop in West Africa, and contributes to food shortages and malnutrition in native human populations. The genetic structure of Maruca vitrata was investigated among five sites from Burkin...

  7. Hyperthyroidism and the Heart

    PubMed Central

    Osuna, Patricia Mejia; Udovcic, Maja; Sharma, Morali D.

    2017-01-01

    Thyroid hormones have a significant impact on cardiac function and structure. Excess thyroid hormone affects cardiovascular hemodynamics, leading to high-output heart failure and, in late stages, dilated cardiomyopathy. In this review, we discuss how hyperthyroidism affects cardiovascular pathophysiology and molecular mechanisms and examine the complications caused by excess thyroid hormone, such as heart failure and atrial fibrillation. PMID:28740583

  8. Relationship between the cervical component of the slump test and change in hamstring muscle tension.

    PubMed

    Lew, P. C.; Briggs, C. A.

    1997-05-01

    SUMMARY. The slump test has been used routinely to differentiate low back pain due to involvement of neural structures from low back pain attributable to other factors. It is also said to differentiate between posterior thigh pain due to neural involvement from that due to hamstring injury. If changes in cervical position affect the hamstring muscles, differential diagnosis is confounded. Posterior thigh pain caused by the cervical component of the slump could then be caused either by increased tension on neural structures or increased tension in the hamstrings themselves. The aim of this study was to determine whether changing the cervical position during slump altered posterior thigh pain and/or the tension in the hamstring muscle. Asymptomatic subjects aged between 18 and 30 years were tested. A special fixation device was engineered to fix the trunk, pelvis and lower limb. Pain levels in cervical flexion and extension were assessed by visual analogue scale. Fixation was successful in that there were no significant differences in position of the pelvis or knee during changes in cervical position. Averaged over the group, there was a 40% decrease (P < 0.05) in posterior thigh pain with cervical extension. There were no significant differences in hamstring electromyographic readings during the cervical movements. This indicated that: (1) cervical movement did not change hamstring muscle tension, and (2) the change in experimentally induced pain during cervical flexion was not due to changes in the hamstring muscle. This conclusion supports the view that posterior thigh pain caused by the slump test and relieved by cervical extension arises from neural structures rather than the hamstring muscle. Copyright 1997 Harcourt Publishers Ltd.

  9. Structured telephone support or non-invasive telemonitoring for patients with heart failure.

    PubMed

    Inglis, Sally C; Clark, Robyn A; Dierckx, Riet; Prieto-Merino, David; Cleland, John G F

    2015-10-31

    Specialised disease management programmes for heart failure aim to improve care, clinical outcomes and/or reduce healthcare utilisation. Since the last version of this review in 2010, several new trials of structured telephone support and non-invasive home telemonitoring have been published which have raised questions about their effectiveness. To review randomised controlled trials (RCTs) of structured telephone support or non-invasive home telemonitoring compared to standard practice for people with heart failure, in order to quantify the effects of these interventions over and above usual care. We updated the searches of the Cochrane Central Register of Controlled Trials (CENTRAL), Database of Abstracts of Reviews of Effects (DARE), Health Technology AsseFssment Database (HTA) on the Cochrane Library; MEDLINE (OVID), EMBASE (OVID), CINAHL (EBSCO), Science Citation Index Expanded (SCI-EXPANDED), Conference Proceedings Citation Index- Science (CPCI-S) on Web of Science (Thomson Reuters), AMED, Proquest Theses and Dissertations, IEEE Xplore and TROVE in January 2015. We handsearched bibliographies of relevant studies and systematic reviews and abstract conference proceedings. We applied no language limits. We included only peer-reviewed, published RCTs comparing structured telephone support or non-invasive home telemonitoring to usual care of people with chronic heart failure. The intervention or usual care could not include protocol-driven home visits or more intensive than usual (typically four to six weeks) clinic follow-up. We present data as risk ratios (RRs) with 95% confidence intervals (CIs). Primary outcomes included all-cause mortality, all-cause and heart failure-related hospitalisations, which we analysed using a fixed-effect model. Other outcomes included length of stay, health-related quality of life, heart failure knowledge and self care, acceptability and cost; we described and tabulated these. We performed meta-regression to assess homogeneity (the null hypothesis) in each subgroup analysis and to see if the effect of the intervention varied according to some quantitative variable (such as year of publication or median age). We include 41 studies of either structured telephone support or non-invasive home telemonitoring for people with heart failure, of which 17 were new and 24 had been included in the previous Cochrane review. In the current review, 25 studies evaluated structured telephone support (eight new studies, plus one study previously included but classified as telemonitoring; total of 9332 participants), 18 evaluated telemonitoring (nine new studies; total of 3860 participants). Two of the included studies trialled both structured telephone support and telemonitoring compared to usual care, therefore 43 comparisons are evident.Non-invasive telemonitoring reduced all-cause mortality (RR 0.80, 95% CI 0.68 to 0.94; participants = 3740; studies = 17; I² = 24%, GRADE: moderate-quality evidence) and heart failure-related hospitalisations (RR 0.71, 95% CI 0.60 to 0.83; participants = 2148; studies = 8; I² = 20%, GRADE: moderate-quality evidence). Structured telephone support reduced all-cause mortality (RR 0.87, 95% CI 0.77 to 0.98; participants = 9222; studies = 22; I² = 0%, GRADE: moderate-quality evidence) and heart failure-related hospitalisations (RR 0.85, 95% CI 0.77 to 0.93; participants = 7030; studies = 16; I² = 27%, GRADE: moderate-quality evidence).Neither structured telephone support nor telemonitoring demonstrated effectiveness in reducing the risk of all-cause hospitalisations (structured telephone support: RR 0.95, 95% CI 0.90 to 1.00; participants = 7216; studies = 16; I² = 47%, GRADE: very low-quality evidence; non-invasive telemonitoring: RR 0.95, 95% CI 0.89 to 1.01; participants = 3332; studies = 13; I² = 71%, GRADE: very low-quality evidence).Seven structured telephone support studies reported length of stay, with one reporting a significant reduction in length of stay in hospital. Nine telemonitoring studies reported length of stay outcome, with one study reporting a significant reduction in the length of stay with the intervention. One telemonitoring study reported a large difference in the total number of hospitalisations for more than three days, but this was not an analysis of length of stay per hospitalisation. Nine of 11 structured telephone support studies and five of 11 telemonitoring studies reported significant improvements in health-related quality of life. Nine structured telephone support studies and six telemonitoring studies reported costs of the intervention or cost effectiveness. Three structured telephone support studies and one telemonitoring study reported a decrease in costs and two telemonitoring studies reported increases in cost, due both to the cost of the intervention and to increased medical management. Adherence was rated between 55.1% and 98.5% for those structured telephone support and telemonitoring studies which reported this outcome. Participant acceptance of the intervention was reported in the range of 76% to 97% for studies which evaluated this outcome. Seven of nine studies that measured these outcomes reported significant improvements in heart failure knowledge and self-care behaviours. For people with heart failure, structured telephone support and non-invasive home telemonitoring reduce the risk of all-cause mortality and heart failure-related hospitalisations; these interventions also demonstrated improvements in health-related quality of life and heart failure knowledge and self-care behaviours. Studies also demonstrated participant satisfaction with the majority of the interventions which assessed this outcome.

  10. A Hymen Epiphany.

    PubMed

    Jarral, Farrah

    2015-01-01

    The hymen is a structure of the female genitalia that is poorly understood even by many medical professionals. Despite the significant anatomical variation in the hymen and no guarantee that rupture or bleeding will occur at first coitus, it has come to hold major cultural significance around the world as a perceived biological indicator of virginity. The persistence of such myths around the hymen causes real harm, including the increase in so-called revirgination surgical procedures. Copyright 2015 The Journal of Clinical Ethics. All rights reserved.

  11. Large area InN terahertz emitters based on the lateral photo-Dember effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallauer, Jan, E-mail: jan.wallauer@fmf.uni-freiburg.de; Grumber, Christian; Walther, Markus

    2015-09-14

    Large area terahertz emitters based on the lateral photo-Dember effect in InN (indium nitride) are presented. The formation of lateral photo-Dember currents is induced by laser-illumination through a microstructured metal cover processed onto the InN substrate, causing an asymmetry in the lateral photogenerated charge carrier distribution. Our design uses simple metal structures, which are produced by conventional two-dimensional micro-structuring techniques. Having favoring properties as a photo-Dember material InN is particularly well-suited as a substrate for our emitters. We demonstrate that the emission intensity of the emitters can be significantly influenced by the structure of the metal cover leaving room formore » improvement by optimizing the masking structures.« less

  12. The structure and host entry of an invertebrate parvovirus.

    PubMed

    Meng, Geng; Zhang, Xinzheng; Plevka, Pavel; Yu, Qian; Tijssen, Peter; Rossmann, Michael G

    2013-12-01

    The 3.5-Å resolution X-ray crystal structure of mature cricket parvovirus (Acheta domesticus densovirus [AdDNV]) has been determined. Structural comparisons show that vertebrate and invertebrate parvoviruses have evolved independently, although there are common structural features among all parvovirus capsid proteins. It was shown that raising the temperature of the AdDNV particles caused a loss of their genomes. The structure of these emptied particles was determined by cryo-electron microscopy to 5.5-Å resolution, and the capsid structure was found to be the same as that for the full, mature virus except for the absence of the three ordered nucleotides observed in the crystal structure. The viral protein 1 (VP1) amino termini could be externalized without significant damage to the capsid. In vitro, this externalization of the VP1 amino termini is accompanied by the release of the viral genome.

  13. The Structure and Host Entry of an Invertebrate Parvovirus

    PubMed Central

    Meng, Geng; Zhang, Xinzheng; Plevka, Pavel; Yu, Qian; Tijssen, Peter

    2013-01-01

    The 3.5-Å resolution X-ray crystal structure of mature cricket parvovirus (Acheta domesticus densovirus [AdDNV]) has been determined. Structural comparisons show that vertebrate and invertebrate parvoviruses have evolved independently, although there are common structural features among all parvovirus capsid proteins. It was shown that raising the temperature of the AdDNV particles caused a loss of their genomes. The structure of these emptied particles was determined by cryo-electron microscopy to 5.5-Å resolution, and the capsid structure was found to be the same as that for the full, mature virus except for the absence of the three ordered nucleotides observed in the crystal structure. The viral protein 1 (VP1) amino termini could be externalized without significant damage to the capsid. In vitro, this externalization of the VP1 amino termini is accompanied by the release of the viral genome. PMID:24027306

  14. Proof test methodology for composites

    NASA Technical Reports Server (NTRS)

    Wu, Edward M.; Bell, David K.

    1992-01-01

    The special requirements for proof test of composites are identified based on the underlying failure process of composites. Two proof test methods are developed to eliminate the inevitable weak fiber sites without also causing flaw clustering which weakens the post-proof-test composite. Significant reliability enhancement by these proof test methods has been experimentally demonstrated for composite strength and composite life in tension. This basic proof test methodology is relevant to the certification and acceptance of critical composite structures. It can also be applied to the manufacturing process development to achieve zero-reject for very large composite structures.

  15. Computational analysis of histidine mutations on the structural stability of human tyrosinases leading to albinism insurgence.

    PubMed

    Hassan, Mubashir; Abbas, Qamar; Raza, Hussain; Moustafa, Ahmed A; Seo, Sung-Yum

    2017-07-25

    Misfolding and structural alteration in proteins lead to serious malfunctions and cause various diseases in humans. Mutations at the active binding site in tyrosinase impair structural stability and cause lethal albinism by abolishing copper binding. To evaluate the histidine mutational effect, all mutated structures were built using homology modelling. The protein sequence was retrieved from the UniProt database, and 3D models of original and mutated human tyrosinase sequences were predicted by changing the residual positions within the target sequence separately. Structural and mutational analyses were performed to interpret the significance of mutated residues (N 180 , R 202 , Q 202 , R 211 , Y 363 , R 367 , Y 367 and D 390 ) at the active binding site of tyrosinases. CSpritz analysis depicted that 23.25% residues actively participate in the instability of tyrosinase. The accuracy of predicted models was confirmed through online servers ProSA-web, ERRAT score and VERIFY 3D values. The theoretical pI and GRAVY generated results also showed the accuracy of the predicted models. The CCA negative correlation results depicted that the replacement of mutated residues at His within the active binding site disturbs the structural stability of tyrosinases. The predicted CCA scores of Tyr 367 (-0.079) and Q/R 202 (0.032) revealed that both mutations have more potential to disturb the structural stability. MD simulation analyses of all predicted models justified that Gln 202 , Arg 202 , Tyr 367 and D 390 replacement made the protein structures more susceptible to destabilization. Mutational results showed that the replacement of His with Q/R 202 and Y/R 363 has a lethal effect and may cause melanin associated diseases such as OCA1. Taken together, our computational analysis depicts that the mutated residues such as Q/R 202 and Y/R 363 actively participate in instability and misfolding of tyrosinases, which may govern OCA1 through disturbing the melanin biosynthetic pathway.

  16. Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers.

    PubMed

    Xu, Kai; Deng, Qingshan; Cai, Lujun; Ho, Siuchun; Song, Gangbing

    2018-04-28

    Some of the most severe structural loadings come in the form of blast loads, which may be caused by severe accidents or even terrorist activities. Most commonly after exposure to explosive forces, a structure will suffer from different degrees of damage, and even progress towards a state of collapse. Therefore, damage detection of a structure subject to explosive loads is of importance. This paper proposes a new approach to damage detection of a concrete column structure subjected to blast loads using embedded piezoceramic smart aggregates (SAs). Since the sensors are embedded in the structure, the proposed active-sensing based approach is more sensitive to internal or through cracks than surface damage. In the active sensing approach, the embedded SAs act as actuators and sensors, that can respectively generate and detect stress waves. If the stress wave propagates across a crack, the energy of the wave attenuates, and the reduction of the energy compared to the healthy baseline is indicative of a damage. With a damage index matrix constructed by signals obtained from an array of SAs, cracks caused by blast loads can be detected throughout the structure. Conventional sensing methods such as the measurement of dynamic strain and acceleration were included in the experiment. Since columns are critical elements needed to prevent structural collapse, knowledge of their integrity and damage conditions is essential for safety after exposure to blast loads. In this research, a concrete column with embedded SAs was chosen as the specimen, and a series of explosive tests were conducted on the column. Experimental results reveal that surface damages, though appear severe, cause minor changes in the damage index, and through cracks result in significant increase of the damage index, demonstrating the effectiveness of the active sensing, enabled by embedded SAs, in damage monitoring of the column under blast loads, and thus providing a reliable indication of structural integrity in the event of blast loads.

  17. Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers

    PubMed Central

    Deng, Qingshan; Cai, Lujun; Ho, Siuchun; Song, Gangbing

    2018-01-01

    Some of the most severe structural loadings come in the form of blast loads, which may be caused by severe accidents or even terrorist activities. Most commonly after exposure to explosive forces, a structure will suffer from different degrees of damage, and even progress towards a state of collapse. Therefore, damage detection of a structure subject to explosive loads is of importance. This paper proposes a new approach to damage detection of a concrete column structure subjected to blast loads using embedded piezoceramic smart aggregates (SAs). Since the sensors are embedded in the structure, the proposed active-sensing based approach is more sensitive to internal or through cracks than surface damage. In the active sensing approach, the embedded SAs act as actuators and sensors, that can respectively generate and detect stress waves. If the stress wave propagates across a crack, the energy of the wave attenuates, and the reduction of the energy compared to the healthy baseline is indicative of a damage. With a damage index matrix constructed by signals obtained from an array of SAs, cracks caused by blast loads can be detected throughout the structure. Conventional sensing methods such as the measurement of dynamic strain and acceleration were included in the experiment. Since columns are critical elements needed to prevent structural collapse, knowledge of their integrity and damage conditions is essential for safety after exposure to blast loads. In this research, a concrete column with embedded SAs was chosen as the specimen, and a series of explosive tests were conducted on the column. Experimental results reveal that surface damages, though appear severe, cause minor changes in the damage index, and through cracks result in significant increase of the damage index, demonstrating the effectiveness of the active sensing, enabled by embedded SAs, in damage monitoring of the column under blast loads, and thus providing a reliable indication of structural integrity in the event of blast loads. PMID:29710807

  18. [Effect of electromagnetic pulse irradiation on structure and function of Leydig cells in mice].

    PubMed

    Wang, Shui-Ming; Wang, De-Wen; Peng, Rui-Yun; Gao, Ya-Bing; Yang, Yi; Hu, Wen-Hua; Chen, Hao-Yu; Zhang, You-Ren; Gao, Yan

    2003-08-01

    To explore the effect of electromagnetic pulse (EMP) irradiation on structure and function of Leydig cells in mice. One hundred and fourteen male Kunming mice were randomly divided into irradiated and control group, the former radiated generally by 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP respectively five times within two minutes. Pathological changes of Leydig cells were observed by light and electron microscope. Serum testosterone (T), luteinizing hormone (LH) and estradiol (E2) were measured dynamically by radioimmunoassay at 6 h, 1 d, 3 d, 7 d, 14 d and 28 d after irradiation. Main pathological changes were edema and vacuolation, swelling of cytoplasmic mitochondria, reduce of lipid droplets, pale staining of most of lipid droplets, and partial or complete cavitation of lipid droplets in Leydig cells within 28 days after EMP radiation. Compared with normal controls, serum T decreased in all in different degrees within 28 days, and dropped significantly at 6 h-14 d, 6 h-7 d and 1 d-28 d after 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP irradiation(P < 0.05 or P < 0.01). EMP irradiation caused no significant changes in serum LH and E2. Leydig cells are among those that are the most susceptible to EMP irradiation. EMP irradiation may cause significant injury in structure and function of Leydig cells in mice, whose earlier and continuous effect is bound to affect sexual function and sperm production.

  19. Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method.

    PubMed

    Petukh, Marharyta; Li, Minghui; Alexov, Emil

    2015-07-01

    A new methodology termed Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) was developed to predict the changes of the binding free energy caused by mutations. The method utilizes 3D structures of the corresponding protein-protein complexes and takes advantage of both approaches: sequence- and structure-based methods. The method has two components: a MM/PBSA-based component, and an additional set of statistical terms delivered from statistical investigation of physico-chemical properties of protein complexes. While the approach is rigid body approach and does not explicitly consider plausible conformational changes caused by the binding, the effect of conformational changes, including changes away from binding interface, on electrostatics are mimicked with amino acid specific dielectric constants. This provides significant improvement of SAAMBE predictions as indicated by better match against experimentally determined binding free energy changes over 1300 mutations in 43 proteins. The final benchmarking resulted in a very good agreement with experimental data (correlation coefficient 0.624) while the algorithm being fast enough to allow for large-scale calculations (the average time is less than a minute per mutation).

  20. Seed-Mediated Gene Flow Promotes Genetic Diversity of Weedy Rice within Populations: Implications for Weed Management

    PubMed Central

    He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong

    2014-01-01

    Increased infestation of weedy rice—a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka. PMID:25436611

  1. Phylogeographic patterns of Lygus pratensis (Hemiptera: Miridae): Evidence for weak genetic structure and recent expansion in northwest China.

    PubMed

    Zhang, Li-Juan; Cai, Wan-Zhi; Luo, Jun-Yu; Zhang, Shuai; Wang, Chun-Yi; Lv, Li-Min; Zhu, Xiang-Zhen; Wang, Li; Cui, Jin-Jie

    2017-01-01

    Lygus pratensis (L.) is an important cotton pest in China, especially in the northwest region. Nymphs and adults cause serious quality and yield losses. However, the genetic structure and geographic distribution of L. pratensis is not well known. We analyzed genetic diversity, geographical structure, gene flow, and population dynamics of L. pratensis in northwest China using mitochondrial and nuclear sequence datasets to study phylogeographical patterns and demographic history. L. pratensis (n = 286) were collected at sites across an area spanning 2,180,000 km2, including the Xinjiang and Gansu-Ningxia regions. Populations in the two regions could be distinguished based on mitochondrial criteria but the overall genetic structure was weak. The nuclear dataset revealed a lack of diagnostic genetic structure across sample areas. Phylogenetic analysis indicated a lack of population level monophyly that may have been caused by incomplete lineage sorting. The Mantel test showed a significant correlation between genetic and geographic distances among the populations based on the mtDNA data. However the nuclear dataset did not show significant correlation. A high level of gene flow among populations was indicated by migration analysis; human activities may have also facilitated insect movement. The availability of irrigation water and ample cotton hosts makes the Xinjiang region well suited for L. pratensis reproduction. Bayesian skyline plot analysis, star-shaped network, and neutrality tests all indicated that L. pratensis has experienced recent population expansion. Climatic changes and extensive areas occupied by host plants have led to population expansion of L. pratensis. In conclusion, the present distribution and phylogeographic pattern of L. pratensis was influenced by climate, human activities, and availability of plant hosts.

  2. Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions.

    PubMed

    Goberna, M; García, C; Insam, H; Hernández, M T; Verdú, M

    2012-07-01

    Wildfires subject soil microbes to extreme temperatures and modify their physical and chemical habitat. This might immediately alter their community structure and ecosystem functions. We burned a fire-prone shrubland under controlled conditions to investigate (1) the fire-induced changes in the community structure of soil archaea, bacteria and fungi by analysing 16S or 18S rRNA gene amplicons separated through denaturing gradient gel electrophoresis; (2) the physical and chemical variables determining the immediate shifts in the microbial community structure; and (3) the microbial drivers of the change in ecosystem functions related to biogeochemical cycling. Prokaryotes and eukaryotes were structured by the local environment in pre-fire soils. Fire caused a significant shift in the microbial community structure, biomass C, respiration and soil hydrolases. One-day changes in bacterial and fungal community structure correlated to the rise in total organic C and NO(3)(-)-N caused by the combustion of plant residues. In the following week, bacterial communities shifted further forced by desiccation and increasing concentrations of macronutrients. Shifts in archaeal community structure were unrelated to any of the 18 environmental variables measured. Fire-induced changes in the community structure of bacteria, rather than archaea or fungi, were correlated to the enhanced microbial biomass, CO(2) production and hydrolysis of C and P organics. This is the first report on the combined effects of fire on the three biological domains in soils. We concluded that immediately after fire the biogeochemical cycling in Mediterranean shrublands becomes less conservative through the increased microbial biomass, activity and changes in the bacterial community structure.

  3. In-channel Restoration Structures and the Implications on Hyporheic Exchange: a Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Han, B.; Chu, H. H.; Endreny, T. A.

    2014-12-01

    In-channel structures, i.e. cross-vanes and J-hooks, are commonly installed in river restoration projects to modify the streambed morphology and stream water surface profile, and are known to change hyporhiec exchange flux and habitats for riverine animals. However, few studies have continuous and accurate pre- and post-treatment data to evaluate the impact of these structures on channel hydraulic gradients and morphology. To quantify the effects of in-channel structures, we developed a scaled physical model of a meandering stream with a cross-vane and 6 J-hooks on a mobile-bed river table. Close-range photogrammetry technique was applied to obtain 3-D water and ground surface profiles with sub-millimeter vertical accuracy and horizontal resolution. The experiment was compared with a control experiment without structures while maintaining the same initial conditions of river bed, floodplain and stream flow. Results indicated that the cross-vane caused an average local head loss that represented 16% of the total stream reach head loss, and a 74% increase in channel load in the entire stream reach. Most J-hooks can create stepwise patterns in stream longitudinal profile, and cross-vane can create even more significant ones. Hydraulic gradients across the intra-meander zone also increased with in-channel structures, i.e. from 2.5% to 3.5% at the meander neck. Scour pools developed downstream of the cross-vane, and mostly around the 4 meander apex J-hooks at their hooked tip. Backwater caused by the cross-vane steepened the local water table profile by an additional 4.2%, and was the primary driver of statistically significant hydraulic gradient increase. Reach scale water and streambed surface profiles from our study provided detailed data to improve the understanding of in-channel structure effects, and may serve as reliable data source in computational modeling of hyporheic exchange.

  4. The Mode of Inhibitor Binding to Peptidyl-tRNA Hydrolase: Binding Studies and Structure Determination of Unbound and Bound Peptidyl-tRNA Hydrolase from Acinetobacter baumannii

    PubMed Central

    Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P.

    2013-01-01

    The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design. PMID:23844024

  5. Sinking coastal cities

    NASA Astrophysics Data System (ADS)

    Erkens, G.; Bucx, T.; Dam, R.; de Lange, G.; Lambert, J.

    2015-11-01

    In many coastal and delta cities land subsidence now exceeds absolute sea level rise up to a factor of ten. A major cause for severe land subsidence is excessive groundwater extraction related to rapid urbanization and population growth. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will sink below sea level. Land subsidence increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. In addition, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs for (infra)structure. The total damage worldwide is estimated at billions of dollars annually. As subsidence is often spatially variable and can be caused by multiple processes, an assessment of subsidence in delta cities needs to answer questions such as: what are the main causes? What is the current subsidence rate and what are future scenarios (and interaction with other major environmental issues)? Where are the vulnerable areas? What are the impacts and risks? How can adverse impacts be mitigated or compensated for? Who is involved and responsible to act? In this study a quick-assessment of subsidence is performed on the following mega-cities: Jakarta, Ho Chi Minh City, Dhaka, New Orleans and Bangkok. Results of these case studies will be presented and compared, and a (generic) approach how to deal with subsidence in current and future subsidence-prone areas is provided.

  6. Qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in olfactory bulbectomy animal depression model.

    PubMed

    Depciuch, J; Parlinska-Wojtan, M

    2018-01-30

    Depression becomes nowadays a high mortality civilization disease with one of the potential causes being impaired smell. In this study Raman, Fourier Transform Infra Red (FTIR) and Ultraviolet-Visible (UV-vis) spectroscopies were used to determine the changes in the quantity and structure of phospholipids and proteins in the blood serum of bulbectomized rats (OB_NaCl), which is a common animal depression model. The efficiency of amitriptyline (AMI) treatment was also evaluated. The obtained results show a significant decrease in the phospholipid and protein fractions (as well as changes in their secondary structures) in blood serum of bulbectomized rats. AMI treatment in bulbectomized rats increased protein level and did not affect the level of phospholipids. Structural information from phospholipids and proteins was obtained from UV-vis spectroscopy combined with the second derivative of the FTIR spectra. Indeed, the structure of proteins in blood serum of bulbectomized rats was normalized after amitriptyline therapy, while the damaged structure of phospholipids remained unaffected. These findings strongly suggest that impaired smell could be one of the causes of depression and may induce permanent (irreversible) damages into the phospholipid structure identified as shortened carbon chains. This study shows a possible new application of spectroscopic techniques in the diagnosis and therapy monitoring of depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of impurities on optical properties of pentaerythritol tetranitrate

    NASA Astrophysics Data System (ADS)

    Tsyshevskiy, Roman; Sharia, Onise; Kuklja, Maija M.

    2012-03-01

    Despite numerous efforts, the electronic nature of initiation of high explosives to detonation in general and mechanisms of their sensitivity to laser initiation in particular are far from being completely understood. Recent experiments show that Nd:YAG laser irradiation (at 1064nm) causes resonance explosive decomposition of PETN samples. In an attempt to shed some light on electronic excitations and to develop a rigorous interpretation to these experiments, the electronic structure and optical properties of PETN and a series of common impurities were studied. Band gaps (S0→S1) and optical singlet-triplet (S0→T1) transitions in both an ideal material and PETN containing various defects were simulated by means of state-of-the-art quantum-chemical computational techniques. It was shown that the presence of impurities in the PETN crystal causes significant narrowing of the band gap. The structure and role of molecular excitons in PETN are discussed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdova, Maria; Liu, Xuwen; Franssila, Sami, E-mail: sami.franssila@aalto.fi

    The investigation of mechanical properties of atomic layer deposition HfO{sub 2} films is important for implementing these layers in microdevices. The mechanical properties of films change as a function of composition and structure, which accordingly vary with deposition temperature and post-annealing. This work describes elastic modulus, hardness, and wear resistance of as-grown and annealed HfO{sub 2}. From nanoindentation measurements, the elastic modulus and hardness remained relatively stable in the range of 163–165 GPa and 8.3–9.7 GPa as a function of deposition temperature. The annealing of HfO{sub 2} caused significant increase in hardness up to 14.4 GPa due to film crystallization and densification. Themore » structural change also caused increase in the elastic modulus up to 197 GPa. Wear resistance did not change as a function of deposition temperature, but improved upon annealing.« less

  9. Chromosomal abnormalities as a cause of recurrent abortions in Egypt

    PubMed Central

    El-Dahtory, Faeza Abdel Mogib

    2011-01-01

    BACKGROUND: In 4%-8% of couples with recurrent abortion, at least one of the partners has chromosomal abnormality. Most spontaneous miscarriages which happen in the first and second trimesters are caused by chromosomal abnormalities. These chromosomal abnormalities may be either numerical or structural. MATERIAL AND METHODS: Cytogenetic study was done for 73 Egyptian couples who presented with recurrent abortion at Genetic Unit of Children Hospital, Mansoura University. RESULTS: We found that the frequency of chromosomal abnormalities was not significantly different from that reported worldwide. Chromosomal abnormalities were detected in 9 (6.1%) of 73 couples. Seven of chromosomal abnormalities were structural and two of them were numerical. CONCLUSION: Our results showed that 6.1% of the couples with recurrent abortion had chromosomal abnormalities, with no other abnormalities. We suggest that it is necessary to perform cytogenetic in vestigation for couples who have recurrent abortion. PMID:22090718

  10. How to Make a Heart Valve: From Embryonic Development to Bioengineering of Living Valve Substitutes

    PubMed Central

    MacGrogan, Donal; Luxán, Guillermo; Driessen-Mol, Anita; Bouten, Carlijn; Baaijens, Frank; de la Pompa, José Luis

    2014-01-01

    Cardiac valve disease is a significant cause of ill health and death worldwide, and valve replacement remains one of the most common cardiac interventions in high-income economies. Despite major advances in surgical treatment, long-term therapy remains inadequate because none of the current valve substitutes have the potential for remodeling, regeneration, and growth of native structures. Valve development is coordinated by a complex interplay of signaling pathways and environmental cues that cause disease when perturbed. Cardiac valves develop from endocardial cushions that become populated by valve precursor mesenchyme formed by an epithelial–mesenchymal transition (EMT). The mesenchymal precursors, subsequently, undergo directed growth, characterized by cellular compartmentalization and layering of a structured extracellular matrix (ECM). Knowledge gained from research into the development of cardiac valves is driving exploration into valve biomechanics and tissue engineering directed at creating novel valve substitutes endowed with native form and function. PMID:25368013

  11. Reversible “triple-Q” elastic field structures in a chiral magnet

    PubMed Central

    Hu, Yangfan; Wang, Biao

    2016-01-01

    The analytical solution of the periodic elastic fields in chiral magnets caused by presence of periodically distributed eigenstrains is obtained. For the skyrmion phase, both the periodic displacement field and the stress field are composed of three “triple-Q” structures with different wave numbers. The periodic displacement field, obtained by combining the three “triple-Q” displacement structures, is found to have the same lattice vectors with the magnetic skyrmion lattice. We find that for increasing external magnetic field, one type of “triple-Q” displacement structure and stress structure undergo a “configurational reversal”, where the initial and the final field configuration share similar pattern but with opposite direction of all the field vectors. The solution obtained is of fundamental significance for understanding the emergent mechanical properties of skyrmions in chiral magnets. PMID:27457629

  12. Resistance of alpha-crystallin quaternary structure to UV irradiation.

    PubMed

    Krivandin, A V; Muranov, K O; Yakovlev, F Yu; Poliansky, N B; Wasserman, L A; Ostrovsky, M A

    2009-06-01

    The damaging effect of UV radiation (lambda > 260 nm) on bovine alpha-crystallin in solution was studied by small-angle X-ray scattering, gel permeation chromatography, electrophoresis, absorption and fluorescence spectroscopy, and differential scanning calorimetry. The results obtained show that damage to even a large number of subunits within an alpha-crystallin oligomer does not cause significant rearrangement of its quaternary structure, aggregation of oligomers, or the loss of their solubility. Due to the high resistance of its quaternary structure, alpha-crystallin is able to prevent aggregation of destabilized proteins (especially of gamma- and beta-crystallins) and so to maintain lens transparency throughout the life of an animal (the chaperone-like function of alpha-crystallin).

  13. A review on the effects of supercritical carbon dioxide on enzyme activity.

    PubMed

    Wimmer, Zdenek; Zarevúcka, Marie

    2010-01-19

    Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO(2). The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability.

  14. A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity

    PubMed Central

    Wimmer, Zdeněk; Zarevúcka, Marie

    2010-01-01

    Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO2. The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability. PMID:20162013

  15. Aftershock risks such as those demonstrated by the recent events in New Zealand and Japan

    USGS Publications Warehouse

    Shome, Nilesh; Luco, Nicolas; Gerstenberger, Matt; Boyd, Oliver; Field, Edward; Liel, Abbie; van de Lindt, John W.

    2014-01-01

    Recent earthquakes in New Zealand and Japan show that it is important to consider the spatial and temporal distribution of aftershocks following large magnitude events since the probability of high intensity ground motions from aftershocks, which are capable of causing significant societal impact, can be considerable. This is due to the fact that a mainshock will have many aftershocks, some of which may occur closer to populated areas and may be large enough to cause damage. When a large magnitude event strikes a region, the chance that aftershocks will cause damage can be significant as was observed after the 2011 Tohoku and 2010 Canterbury earthquakes (e.g., damage caused by Mw6.6 April 11, 2011 Fukushima-Hamadori earthquake following Tohoku earthquake or by Mw6.3 February 22, 2011 Christchurch earthquake following Canterbury earthquake). Aftershock events may further damage already damaged buildings, thereby further complicating assessments of risk to the built environment. In this paper, the issue of aftershock risk is addressed by summarizing current research regarding: (1) aftershock hazard, (2) structural fragility/vulnerability before and after the mainshock, and (3) change in risk due to aftershocks.

  16. Restoration of the Retinal Structure and Function after Injury

    DTIC Science & Technology

    2013-10-01

    cells in the retina, pan-retinal photocoagulation for proliferative diabetic retinopathy involves the purposeful destruction of a significant fraction of...also causes scotomata and scarring (Morgan and Schatz, 1989; Schatz et al., 1991; Early Treatment Diabetic Retinopathy Study Research Group, 1995... Retinopathy Study Research Group 1995 Focal photocoagulation treatment of diabetic macular edema–relationship of treatment effect to fluorescein

  17. Cultural Nuances, Assumptions, and the Butterfly Effect: Addressing the Unpredictability Caused by Unconscious Values Structures in Cross-Cultural Interactions

    ERIC Educational Resources Information Center

    Remer, Rory

    2007-01-01

    Cultural values, cross-cultural interaction patterns that are produced by dynamical (chaotic) systems, have a significant impact on interaction, particularly among and between people from different cultures. The butterfly effect, which states that small differences in initial conditions may have severe consequences for patterns in the long run,…

  18. Titanium Honeycomb Panel Testing

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance; Thompson, Randolph C.

    1996-01-01

    Thermal-mechanical tests were performed on a titanium honeycomb sandwich panel to experimentally validate the hypersonic wing panel concept and compare test data with analysis. Details of the test article, test fixture development, instrumentation, and test results are presented. After extensive testing to 900 deg. F, non-destructive evaluation of the panel has not detected any significant structural degradation caused by the applied thermal-mechanical loads.

  19. Residential tornado safe room from commodity wood products – design and development

    Treesearch

    Robert H. Falk; James J. Bridwell

    2018-01-01

    In the United States, tornadoes cause significant damage and result in many injuries and deaths. Although the development and use of tornado safe rooms have helped decrease the human toll associated with these events, the cost of these structures is often too high for many that could benefit from their use. The development of a nonproprietary residential tornado safe...

  20. In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. I. Crystal structure analysis and texture development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman, Amjad; Chen, Yan; Lugovy, Mykola

    2014-01-01

    The dynamics of texture formation, changes in crystal structure and stress accommodation mechanisms are studied in R3c rhombohedral LaCoO3 perovskite during in-situ uniaxial compression experiment by neutron diffraction. The neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during in-situ compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in LaCoO3 perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However in the second loading/unloading cycle the hysteresismore » loop was closed and no irreversible strain appears after deformation. The significant texture formation is responsible for increase in the Young s modulus of LaCoO3 at high compressive loads, where the reported values of Young s modulus increase from 76 GPa measured at the very beginning of the loading to 194 GPa at 900 MPa applied compressive stress measured at the beginning of the unloading curve.« less

  1. Damage Tolerance of Pre-Stressed Composite Panels Under Impact Loads

    NASA Astrophysics Data System (ADS)

    Johnson, Alastair F.; Toso-Pentecôte, Nathalie; Schueler, Dominik

    2014-02-01

    An experimental test campaign studied the structural integrity of carbon fibre/epoxy panels preloaded in tension or compression then subjected to gas gun impact tests causing significant damage. The test programme used representative composite aircraft fuselage panels composed of aerospace carbon fibre toughened epoxy prepreg laminates. Preload levels in tension were representative of design limit loads for fuselage panels of this size, and maximum compression preloads were in the post-buckle region. Two main impact scenarios were considered: notch damage from a 12 mm steel cube projectile, at velocities in the range 93-136 m/s; blunt impact damage from 25 mm diameter glass balls, at velocities 64-86 m/s. The combined influence of preload and impact damage on panel residual strengths was measured and results analysed in the context of damage tolerance requirements for composite aircraft panels. The tests showed structural integrity well above design limit loads for composite panels preloaded in tension and compression with visible notch impact damage from hard body impact tests. However, blunt impact tests on buckled compression loaded panels caused large delamination damage regions which lowered plate bending stiffness and reduced significantly compression strengths in buckling.

  2. Distinct effects of tubulin isotype mutations on neurite growth in Caenorhabditis elegans

    PubMed Central

    Zheng, Chaogu; Diaz-Cuadros, Margarete; Nguyen, Ken C. Q.; Hall, David H.; Chalfie, Martin

    2017-01-01

    Tubulins, the building block of microtubules (MTs), play a critical role in both supporting and regulating neurite growth. Eukaryotic genomes contain multiple tubulin isotypes, and their missense mutations cause a range of neurodevelopmental defects. Using the Caenorhabditis elegans touch receptor neurons, we analyzed the effects of 67 tubulin missense mutations on neurite growth. Three types of mutations emerged: 1) loss-of-function mutations, which cause mild defects in neurite growth; 2) antimorphic mutations, which map to the GTP binding site and intradimer and interdimer interfaces, significantly reduce MT stability, and cause severe neurite growth defects; and 3) neomorphic mutations, which map to the exterior surface, increase MT stability, and cause ectopic neurite growth. Structure-function analysis reveals a causal relationship between tubulin structure and MT stability. This stability affects neuronal morphogenesis. As part of this analysis, we engineered several disease-associated human tubulin mutations into C. elegans genes and examined their impact on neuronal development at the cellular level. We also discovered an α-tubulin (TBA-7) that appears to destabilize MTs. Loss of TBA-7 led to the formation of hyperstable MTs and the generation of ectopic neurites; the lack of potential sites for polyamination and polyglutamination on TBA-7 may be responsible for this destabilization. PMID:28835377

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopmann, Ch.; Weber, M.; Schöngart, M.

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), lasermore » structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.« less

  4. Multi-target Parallel Processing Approach for Gene-to-structure Determination of the Influenza Polymerase PB2 Subunit

    PubMed Central

    Moen, Spencer O.; Smith, Eric; Raymond, Amy C.; Fairman, James W.; Stewart, Lance J.; Staker, Bart L.; Begley, Darren W.; Edwards, Thomas E.; Lorimer, Donald D.

    2013-01-01

    Pandemic outbreaks of highly virulent influenza strains can cause widespread morbidity and mortality in human populations worldwide. In the United States alone, an average of 41,400 deaths and 1.86 million hospitalizations are caused by influenza virus infection each year 1. Point mutations in the polymerase basic protein 2 subunit (PB2) have been linked to the adaptation of the viral infection in humans 2. Findings from such studies have revealed the biological significance of PB2 as a virulence factor, thus highlighting its potential as an antiviral drug target. The structural genomics program put forth by the National Institute of Allergy and Infectious Disease (NIAID) provides funding to Emerald Bio and three other Pacific Northwest institutions that together make up the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The SSGCID is dedicated to providing the scientific community with three-dimensional protein structures of NIAID category A-C pathogens. Making such structural information available to the scientific community serves to accelerate structure-based drug design. Structure-based drug design plays an important role in drug development. Pursuing multiple targets in parallel greatly increases the chance of success for new lead discovery by targeting a pathway or an entire protein family. Emerald Bio has developed a high-throughput, multi-target parallel processing pipeline (MTPP) for gene-to-structure determination to support the consortium. Here we describe the protocols used to determine the structure of the PB2 subunit from four different influenza A strains. PMID:23851357

  5. Cerium Improves Growth of Maize Seedlings via Alleviating Morphological Structure and Oxidative Damages of Leaf under Different Stresses.

    PubMed

    Hong, Fashui; Qu, Chunxiang; Wang, Ling

    2017-10-18

    It had been indicated that cerium (Ce) could promote maize growth involving photosynthetic improvement under potassium (K) deficiency, salt stress, and combined stress of K + deficiency and salt stress. However, whether the improved growth is related to leaf morphological structure, oxidative stress in maize leaves is not well understood. The present study showed that K + deficiency, salt stress, and their combined stress inhibited growth of maize seedlings, affecting the formation of appendages of leaf epidermal cells, and stomatal opening, which may be due to increases in H 2 O 2 and malondialdehyde levels, and reductions in Ca 2+ content, ratios of glutathione/oxidized glutathione, ascorbic acid/dehydroascorbic acid, and the activities of superoxide dismutase, catalase, ascorbic acid peroxidase, guaiacol peroxidase, and glutathione reductase in leaves under different stresses. The adverse effects caused by combined stress were higher than those of single stress. Furthermore, our findings demonstrated that adding Ce 3+ could significantly promote seedling growth, and alleviate morphological and structural damage of leaf, decrease oxidative stress and increase antioxidative capacity in maize leaves caused by different stresses.

  6. Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures.

    PubMed

    Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei

    2012-01-02

    The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.

  7. Tunable bandgaps in a deployable metamaterial

    NASA Astrophysics Data System (ADS)

    Nanda, Aditya; Karami, M. Amin

    2018-03-01

    In this manuscript, we envision deployable structures (such as solar arrays) and origami-inspired foldable structures as metamaterials capable of tunable wave manipulation. Specifically, we present a metamaterial whose bandgaps can be modulated by changing the fold angle of adjacent panels. The repeating unit cell of the structure consists of a beam (representing a panel) and a torsional spring (representing the folding mechanism). Two important cases are considered. Firstly, the fold angle (angle between adjacent beams), Ψ, is zero and only flexural waves propagate. In the second case, the fold angle is greater than zero (Ψ > 0). This causes longitudinal and transverse vibration to be coupled. FEM models are used to validate both these analyses. Increasing the fold angle was found to inflict profound changes to the wave transmission characteristics of the structure. In general, increasing the fold angles caused the bandwidth of bandgaps to increase significantly. For the lowest four bandgaps we found bandwidth increases of 252 %, 177 %, 230 % and 163 % respectively at Ψ = 90 deg (relative to the bandwidths at Ψ = 0). In addition, significant increase in bandwidth of the odd-numbered bandgaps occurs even at small fold angles- the bandwidth for the first and third bandgaps effectively double in size (increase by 100%) at Ψ = 20 deg relative to those at Ψ = 0. This has important ramifications in the context of tunable wave manipulation and adaptive filtering. In addition, by expanding out the characteristic equation of transfer matrix for the straight structure, we prove that the upper band edge of the nth bandgap will always equal the nth simply supported natural frequency of the constituent beam. Further, we found that the ratio (EI/kt) is an important parameter affecting the bandwidth of bandgaps. For low values of the ratio, effectively, no bandgap exists. For higher values of the ratio (EI/kt), we obtain a relatively large bandgap over which no waves propagate. This can have important ramifications for the design of foldable structures. As an alternative to impedance-based structural health monitoring, these insights can aid in health monitoring of deployable structures by tracking the bandwidth of bandgaps which can provide important clues about the mechanical parameters of the structure.

  8. Organotin compounds cause structure-dependent induction of progesterone in human choriocarcinoma Jar cells.

    PubMed

    Hiromori, Youhei; Yui, Hiroki; Nishikawa, Jun-ichi; Nagase, Hisamitsu; Nakanishi, Tsuyoshi

    2016-01-01

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), are typical environmental contaminants and suspected endocrine-disrupting chemicals because they cause masculinization in female mollusks. In addition, previous studies have suggested that the endocrine disruption by organotin compounds leads to activation of peroxisome proliferator-activated receptor (PPAR)γ and retinoid X receptor (RXR). However, whether organotin compounds cause crucial toxicities in human development and reproduction is unclear. We here investigated the structure-dependent effect of 12 tin compounds on mRNA transcription of 3β-hydroxysteroid dehydrogenase type I (3β-HSD I) and progesterone production in human choriocarcinoma Jar cells. TBT, TPT, dibutyltin, monophenyltin, tripropyltin, and tricyclohexyltin enhanced progesterone production in a dose-dependent fashion. Although tetraalkyltin compounds such as tetrabutyltin increased progesterone production, the concentrations necessary for activation were 30-100 times greater than those for trialkyltins. All tested active organotins increased 3β-HSD I mRNA transcription. We further investigated the correlation between the agonistic activity of organotin compounds on PPARγ and their ability to promote progesterone production. Except for DBTCl2, the active organotins significantly induced the transactivation function of PPARγ. In addition, PPARγ knockdown significantly suppressed the induction of mRNA transcription of 3β-HSD I by all active organotins except DBTCl2. These results suggest that some organotin compounds promote progesterone biosynthesis in vitro by inducing 3β-HSD I mRNA transcription via the PPARγ signaling pathway. The placenta represents a potential target organ for these compounds, whose endocrine-disrupting effects might cause local changes in progesterone concentration in pregnant women. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Adsorption-Induced Changes in Ribonuclease A Structure and Enzymatic Activity on Solid Surfaces

    PubMed Central

    2015-01-01

    Ribonuclease A (RNase A) is a small globular enzyme that lyses RNA. The remarkable solution stability of its structure and enzymatic activity has led to its investigation to develop a new class of drugs for cancer chemotherapeutics. However, the successful clinical application of RNase A has been reported to be limited by insufficient stability and loss of enzymatic activity when it was coupled with a biomaterial carrier for drug delivery. The objective of this study was to characterize the structural stability and enzymatic activity of RNase A when it was adsorbed on different surface chemistries (represented by fused silica glass, high-density polyethylene, and poly(methyl-methacrylate)). Changes in protein structure were measured by circular dichroism, amino acid labeling with mass spectrometry, and in vitro assays of its enzymatic activity. Our results indicated that the process of adsorption caused RNase A to undergo a substantial degree of unfolding with significant differences in its adsorbed structure on each material surface. Adsorption caused RNase A to lose about 60% of its native-state enzymatic activity independent of the material on which it was adsorbed. These results indicate that the native-state structure of RNase A is greatly altered when it is adsorbed on a wide range of surface chemistries, especially at the catalytic site. Therefore, drug delivery systems must focus on retaining the native structure of RNase A in order to maintain a high level of enzymatic activity for applications such as antitumor chemotherapy. PMID:25420087

  10. Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter.

    PubMed

    Ashuri, Maziar; He, Qianran; Shaw, Leon L

    2016-01-07

    Silicon has attracted huge attention in the last decade because it has a theoretical capacity ∼10 times that of graphite. However, the practical application of Si is hindered by three major challenges: large volume expansion during cycling (∼300%), low electrical conductivity, and instability of the SEI layer caused by repeated volume changes of the Si material. Significant research efforts have been devoted to addressing these challenges, and significant breakthroughs have been made particularly in the last two years (2014 and 2015). In this review, we have focused on the principles of Si material design, novel synthesis methods to achieve such structural designs, and the synthesis-structure-performance relationships to enhance the properties of Si anodes. To provide a systematic overview of the Si material design strategies, we have grouped the design strategies into several categories: (i) particle-based structures (containing nanoparticles, solid core-shell structures, hollow core-shell structures, and yolk-shell structures), (ii) porous Si designs, (iii) nanowires, nanotubes and nanofibers, (iv) Si-based composites, and (v) unusual designs. Finally, our personal perspectives on outlook are offered with an aim to stimulate further discussion and ideas on the rational design of durable and high performance Si anodes for the next generation Li-ion batteries in the near future.

  11. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.

    2015-05-01

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  12. Removal of the blue component of light significantly decreases retinal damage after high intensity exposure.

    PubMed

    Vicente-Tejedor, Javier; Marchena, Miguel; Ramírez, Laura; García-Ayuso, Diego; Gómez-Vicente, Violeta; Sánchez-Ramos, Celia; de la Villa, Pedro; Germain, Francisco

    2018-01-01

    Light causes damage to the retina (phototoxicity) and decreases photoreceptor responses to light. The most harmful component of visible light is the blue wavelength (400-500 nm). Different filters have been tested, but so far all of them allow passing a lot of this wavelength (70%). The aim of this work has been to prove that a filter that removes 94% of the blue component may protect the function and morphology of the retina significantly. Three experimental groups were designed. The first group was unexposed to light, the second one was exposed and the third one was exposed and protected by a blue-blocking filter. Light damage was induced in young albino mice (p30) by exposing them to white light of high intensity (5,000 lux) continuously for 7 days. Short wavelength light filters were used for light protection. The blue component was removed (94%) from the light source by our filter. Electroretinographical recordings were performed before and after light damage. Changes in retinal structure were studied using immunohistochemistry, and TUNEL labeling. Also, cells in the outer nuclear layer were counted and compared among the three different groups. Functional visual responses were significantly more conserved in protected animals (with the blue-blocking filter) than in unprotected animals. Also, retinal structure was better kept and photoreceptor survival was greater in protected animals, these differences were significant in central areas of the retina. Still, functional and morphological responses were significantly lower in protected than in unexposed groups. In conclusion, this blue-blocking filter decreases significantly photoreceptor damage after exposure to high intensity light. Actually, our eyes are exposed for a very long time to high levels of blue light (screens, artificial light LED, neons…). The potential damage caused by blue light can be palliated.

  13. Effects of the KIF2C neck peptide on microtubules: lateral disintegration of microtubules and β-structure formation.

    PubMed

    Shimizu, Youské; Shimizu, Takashi; Nara, Masayuki; Kikumoto, Mahito; Kojima, Hiroaki; Morii, Hisayuki

    2013-04-01

    Members of the kinesin-13 sub-family, including KIF2C, depolymerize microtubules. The positive charge-rich 'neck' region extending from the N-terminus of the catalytic head is considered to be important in the depolymerization activity. Chemically synthesized peptides, covering the basic region (A182-E200), induced a sigmoidal increase in the turbidity of a microtubule suspension. The increase was suppressed by salt addition or by reduction of basicity by amino acid substitutions. Electron microscopic observations revealed ring structures surrounding the microtubules at high peptide concentrations. Using the peptide A182-D218, we also detected free thin straight filaments, probably protofilaments disintegrated from microtubules. Therefore, the neck region, even without the catalytic head domain, may induce lateral disintegration of microtubules. With microtubules lacking anion-rich C-termini as a result of subtilisin treatment, addition of the peptide induced only a moderate increase in turbidity, and rings and protofilaments were rarely detected, while aggregations, also thought to be caused by lateral disintegration, were often observed in electron micrographs. Thus, the C-termini are not crucial for the action of the peptides in lateral disintegration but contribute to structural stabilization of the protofilaments. Previous structural studies indicated that the neck region of KIF2C is flexible, but our IR analysis suggests that the cation-rich region (K190-A204) forms β-structure in the presence of microtubules, which may be of significance with regard to the action of the neck region. Therefore, the neck region of KIF2C is sufficient to cause disintegration of microtubules into protofilaments, and this may contribute to the ability of KIF2C to cause depolymerization of microtubules. © 2013 The Authors Journal compilation © 2013 FEBS.

  14. Molecular modeling of retinoschisin with functional analysis of pathogenic mutations from human X-linked retinoschisis

    PubMed Central

    Sergeev, Y.V.; Caruso, R.C.; Meltzer, M.R.; Smaoui, N.; MacDonald, I.M.; Sieving, P.A.

    2010-01-01

    Gene mutations that encode retinoschisin (RS1) cause X-linked retinoschisis (XLRS), a form of juvenile macular and retinal degeneration that affects males. RS1 is an adhesive protein which is proposed to preserve the structural and functional integrity of the retina, but there is very little evidence of the mechanism by which protein changes are related to XLRS disease. Here, we report molecular modeling of the RS1 protein and consider perturbations caused by mutations found in human XLRS subjects. In 60 XLRS patients who share 27 missense mutations, we then evaluated possible correlations of the molecular modeling with retinal function as determined by the electroretinogram (ERG) a- and b-waves. The b/a-wave ratio reflects visual-signal transfer in retina. We sorted the ERG b/a-ratios by patient age and by the mutation impact on protein structure. The majority of RS1 mutations caused minimal structure perturbation and targeted the protein surface. These patients' b/a-ratios were similar across younger and older subjects. Maximum structural perturbations from either the removal or insertion of cysteine residues or changes in the hydrophobic core were associated with greater difference in the b/a-ratio with age, with a significantly smaller ratio at younger ages, analogous to the ERG changes with age observed in mice with no RS1-protein expression due to a recombinant RS1-knockout gene. The molecular modeling suggests an association between the predicted structural alteration and/or damage to retinoschisin and the severity of XLRS as measured by the ERG analogous to the RS1-knockout mouse. PMID:20061330

  15. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis

    NASA Astrophysics Data System (ADS)

    Bian, Jian; Gu, Yuantong; Murray, Martin Howard

    2013-06-01

    Wheel-rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel-rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel-rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional finite element (FE) model for the impact analysis induced by the wheel flat is developed by the use of the FE analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this FEA and they are important for track engineers to improve their understanding of the design and maintenance of the track system.

  16. Experimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers

    PubMed Central

    Rathnaweera, T. D.; Ranjith, P. G.; Perera, M. S. A.

    2016-01-01

    Interactions between injected CO2, brine, and rock during CO2 sequestration in deep saline aquifers alter their natural hydro-mechanical properties, affecting the safety, and efficiency of the sequestration process. This study aims to identify such interaction-induced mineralogical changes in aquifers, and in particular their impact on the reservoir rock’s flow characteristics. Sandstone samples were first exposed for 1.5 years to a mixture of brine and super-critical CO2 (scCO2), then tested to determine their altered geochemical and mineralogical properties. Changes caused uniquely by CO2 were identified by comparison with samples exposed over a similar period to either plain brine or brine saturated with N2. The results show that long-term reaction with CO2 causes a significant pH drop in the saline pore fluid, clearly due to carbonic acid (as dissolved CO2) in the brine. Free H+ ions released into the pore fluid alter the mineralogical structure of the rock formation, through the dissolution of minerals such as calcite, siderite, barite, and quartz. Long-term CO2 injection also creates a significant CO2 drying-out effect and crystals of salt (NaCl) precipitate in the system, further changing the pore structure. Such mineralogical alterations significantly affect the saline aquifer’s permeability, with important practical consequences for the sequestration process. PMID:26785912

  17. Hericium erinaceus polysaccharide facilitates restoration of injured intestinal mucosal immunity in Muscovy duck reovirus-infected Muscovy ducklings.

    PubMed

    Wu, Yijian; Jiang, Huihui; Zhu, Erpeng; Li, Jian; Wang, Quanxi; Zhou, Wuduo; Qin, Tao; Wu, Xiaoping; Wu, Baocheng; Huang, Yifan

    2018-02-01

    To elucidate the effect of Hericium erinaceus polysaccharide (HEP) on the intestinal mucosal immunity in normal and Muscovy duck reovirus (MDRV)-infected Muscovy ducklings, 1-day-old healthy Muscovy ducklings were pretreated with 0.2g/L HEP and/or following by MDRV infection in this study, duodenal samples were respectively collected at 1, 3, 6, 10, 15 and 21day post-infection, tissue sections were prepared for observation of morphological structure and determination of intestinal parameters (villus height/crypt depth ratio, villus surface area) as well as counts of intraepithelial lymphocytes (IELs), goblet cells, mast cells. Additionally, dynamics of secretory immunoglobin A (sIgA), interferon-γ (IFN-γ) and interleukin-4 (IL-4) productions in intestinal mucosa were measured with radioimmunoassay. Results showed that HEP significantly improved intestinal morphological structure and related indexes, and significantly inhibited the reduction of intestinal mucosal IELs, goblet cells and mast cells caused by MDRV infection. Furthermore, HEP significantly increased the secretion of sIgA, IFN-γ and IL-4 to enhance intestinal mucosal immune functions. Our findings indicate that HEP treatment can effectively repair MDRV-caused injures of small intestinal mucosal immune barrier, and improve mucosal immune function in sick Muscovy ducklings, which will provide valuable help for further application of HEP in prevention and treatment of MDRV infection. Copyright © 2017. Published by Elsevier B.V.

  18. In Silico and In Vitro Investigations of the Mutability of Disease-Causing Missense Mutation Sites in Spermine Synthase

    PubMed Central

    Zhang, Zhe; Norris, Joy; Schwartz, Charles; Alexov, Emil

    2011-01-01

    Background Spermine synthase (SMS) is a key enzyme controlling the concentration of spermidine and spermine in the cell. The importance of SMS is manifested by the fact that single missense mutations were found to cause Snyder-Robinson Syndrome (SRS). At the same time, currently there are no non-synonymous single nucleoside polymorphisms, nsSNPs (harmless mutations), found in SMS, which may imply that the SMS does not tolerate amino acid substitutions, i.e. is not mutable. Methodology/Principal Findings To investigate the mutability of the SMS, we carried out in silico analysis and in vitro experiments of the effects of amino acid substitutions at the missense mutation sites (G56, V132 and I150) that have been shown to cause SRS. Our investigation showed that the mutation sites have different degree of mutability depending on their structural micro-environment and involvement in the function and structural integrity of the SMS. It was found that the I150 site does not tolerate any mutation, while V132, despite its key position at the interface of SMS dimer, is quite mutable. The G56 site is in the middle of the spectra, but still quite sensitive to charge residue replacement. Conclusions/Significance The performed analysis showed that mutability depends on the detail of the structural and functional factors and cannot be predicted based on conservation of wild type properties alone. Also, harmless nsSNPs can be expected to occur even at sites at which missense mutations were found to cause diseases. PMID:21647366

  19. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates.

    PubMed

    Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi

    2017-01-01

    Streptococcus agalactiae , or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain ( P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28-39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin-antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.

  20. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates

    PubMed Central

    Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi

    2017-01-01

    Streptococcus agalactiae, or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination. PMID:29056932

  1. Presence of Extracellular DNA during Biofilm Formation by Xanthomonas citri subsp. citri Strains with Different Host Range.

    PubMed

    Sena-Vélez, Marta; Redondo, Cristina; Graham, James H; Cubero, Jaime

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) A strain causes citrus bacterial canker, a serious leaf, fruit and stem spotting disease of several Citrus species. X. alfalfae subsp. citrumelonis (Xac) is the cause of citrus bacterial spot, a minor disease of citrus nursery plants and X. campestris pv. campestris (Xc) is a systemic pathogen that causes black rot of cabbage. Xanthomonas spp. form biofilms in planta that facilitate the host infection process. Herein, the role of extracellular DNA (eDNA) was evaluated in the formation and stabilization of the biofilm matrix at different stages of biofilm development. Fluorescence and light microscopy, as well as DNAse treatments, were used to determine the presence of eDNA in biofilms and bacterial cultures. DNAse treatments of Xcc strains and Xac reduced biofilm formation at the initial stage of development, as well as disrupted preformed biofilm. By comparison, no significant effect of the DNAse was detected for biofilm formation by Xc. DNAse effects on biofilm formation or disruption varied among Xcc strains and Xanthomonas species which suggest different roles for eDNA. Variation in the structure of fibers containing eDNA in biofilms, bacterial cultures, and in twitching motility was also visualized by microscopy. The proposed roles for eDNA are as an adhesin in the early stages of biofilm formation, as an structural component of mature bacterial aggregates, and twitching motility structures.

  2. Large-scale variation in subsurface stream biofilms: a cross-regional comparison of metabolic function and community similarity.

    PubMed

    Findlay, S; Sinsabaugh, R L

    2006-10-01

    We examined bacterial metabolic activity and community similarity in shallow subsurface stream sediments distributed across three regions of the eastern United States to assess whether there were parallel changes in functional and structural attributes at this large scale. Bacterial growth, oxygen consumption, and a suite of extracellular enzyme activities were assayed to describe functional variability. Community similarity was assessed using randomly amplified polymorphic DNA (RAPD) patterns. There were significant differences in streamwater chemistry, metabolic activity, and bacterial growth among regions with, for instance, twofold higher bacterial production in streams near Baltimore, MD, compared to Hubbard Brook, NH. Five of eight extracellular enzymes showed significant differences among regions. Cluster analyses of individual streams by metabolic variables showed clear groups with significant differences in representation of sites from different regions among groups. Clustering of sites based on randomly amplified polymorphic DNA banding resulted in groups with generally less internal similarity although there were still differences in distribution of regional sites. There was a marginally significant (p = 0.09) association between patterns based on functional and structural variables. There were statistically significant but weak (r2 approximately 30%) associations between landcover and measures of both structure and function. These patterns imply a large-scale organization of biofilm communities and this structure may be imposed by factor(s) such as landcover and covariates such as nutrient concentrations, which are known to also cause differences in macrobiota of stream ecosystems.

  3. Inheritance vs ongoing evolution of the passive margin lithosphere in the southeastern United States: A comparison of <50Ma tectonism with tomographically imaged lithospheric structures.

    NASA Astrophysics Data System (ADS)

    Wagner, L. S.; Fischer, K. M.; Hawman, R. B.; Hopper, E.; Howell, D.

    2017-12-01

    The southeastern United States is an archetypical passive margin, and yet significant evidence exists that this region, separated from the nearest plate boundary by thousands of kilometers and over 170 Ma, has experienced significant tectonism since the Eocene. This tectonism includes volcanism, uplift/deformation, and ongoing seismicity such as the 2011 Mw = 5.8 Mineral, VA earthquake and the 1886 M=7 Charleston, SC event. For each of these examples, numerous theories exist on their respective causes. However, there are two common themes that span all of these types of events: first, their proximity to regional terrane boundaries whose inherited structures could play a role; second, the nature of the mantle lithosphere underlying them. We present a recently completed inversion of seismic Rayleigh waves for the shear wave velocity structure of the uppermost 150 - 200 km beneath the southeastern United States. This inversion includes not only EarthScope Transportable Array data, but also the data from the 85 broadband stations installed as part of the Flex Array SouthEastern Suture of the Appalachian Mountains Experiment (SESAME). We find some evidence for structures inherited from previous episodes of rifting, accretion, and orogenesis. However, we also find several examples of mantle lithospheric structures that spatially correlate strongly with Eocene to recent tectonic activity, but do not correlate to any known inherited geometries. These examples include a small but pronounced sub-crustal low velocity anomaly beneath the Eocene volcanoes in western Virginia and eastern West Virginia, as well as evidence for mantle delamination beneath the Cape Fear Arch and uplifted portions of the Orangeburg Escarpment. We will discuss these, along with instances of recent tectonism in our study area that do not bear any obvious relationship to lithospheric structures, in order to shed light on the causes of ongoing tectonic activity in this supposedly "passive" margin setting.

  4. Structural Changes and Proapoptotic Peroxidase Activity of Cardiolipin-Bound Mitochondrial Cytochrome c

    PubMed Central

    Mandal, Abhishek; Hoop, Cody L.; DeLucia, Maria; Kodali, Ravindra; Kagan, Valerian E.; Ahn, Jinwoo; van der Wel, Patrick C.A.

    2015-01-01

    The cellular process of intrinsic apoptosis relies on the peroxidation of mitochondrial lipids as a critical molecular signal. Lipid peroxidation is connected to increases in mitochondrial reactive oxygen species, but there is also a required role for mitochondrial cytochrome c (cyt-c). In apoptotic mitochondria, cyt-c gains a new function as a lipid peroxidase that catalyzes the reactive oxygen species-mediated chemical modification of the mitochondrial lipid cardiolipin (CL). This peroxidase activity is caused by a conformational change in the protein, resulting from interactions between cyt-c and CL. The nature of the conformational change and how it causes this gain-of-function remain uncertain. Via a combination of functional, structural, and biophysical experiments we investigate the structure and peroxidase activity of cyt-c in its membrane-bound state. We reconstituted cyt-c with CL-containing lipid vesicles, and determined the increase in peroxidase activity resulting from membrane binding. We combined these assays of CL-induced proapoptotic activity with structural and dynamic studies of the membrane-bound protein via solid-state NMR and optical spectroscopy. Multidimensional magic angle spinning (MAS) solid-state NMR of uniformly 13C,15N-labeled protein was used to detect site-specific conformational changes in oxidized and reduced horse heart cyt-c bound to CL-containing lipid bilayers. MAS NMR and Fourier transform infrared measurements show that the peripherally membrane-bound cyt-c experiences significant dynamics, but also retains most or all of its secondary structure. Moreover, in two-dimensional and three-dimensional MAS NMR spectra the CL-bound cyt-c displays a spectral resolution, and thus structural homogeneity, that is inconsistent with extensive membrane-induced unfolding. Cyt-c is found to interact primarily with the membrane interface, without significantly disrupting the lipid bilayer. Thus, membrane binding results in cyt-c gaining the increased peroxidase activity that represents its pivotal proapoptotic function, but we do not observe evidence for large-scale unfolding or penetration into the membrane core. PMID:26536264

  5. Iterative cross section sequence graph for handwritten character segmentation.

    PubMed

    Dawoud, Amer

    2007-08-01

    The iterative cross section sequence graph (ICSSG) is an algorithm for handwritten character segmentation. It expands the cross section sequence graph concept by applying it iteratively at equally spaced thresholds. The iterative thresholding reduces the effect of information loss associated with image binarization. ICSSG preserves the characters' skeletal structure by preventing the interference of pixels that causes flooding of adjacent characters' segments. Improving the structural quality of the characters' skeleton facilitates better feature extraction and classification, which improves the overall performance of optical character recognition (OCR). Experimental results showed significant improvements in OCR recognition rates compared to other well-established segmentation algorithms.

  6. Numerical Investigation of the Hydrogen Jet Flammable Envelope Extent with Account for Unsteady Phenomena

    NASA Astrophysics Data System (ADS)

    Chernyavsky, Boris; Benard, Pierre

    2010-11-01

    An important aspect of safety analysis in hydrogen applications is determination of the extent of flammable gas envelope in case of hydrogen jet release. Experimental investigations had shown significant disagreements between the extent of average flammable envelope predicted by steady-state numerical methods, and the region observed to support ignition, with proposed cause being non-steady jet phenomena resulting in significant variations of instantaneous gas concentration and velocity fields in the jet. In order to investigate the influence of these transient phenomena, a numerical investigation of hydrogen jet at low Mach number had been performed using unsteady Large Eddy Simulation. Instantaneous hydrogen concentration and velocity fields were monitored to determine instantaneous flammable envelope. The evolution of the instantaneous fields, including the development of the turbulence structures carrying hydrogen, their extent and frequency, and their relation with averaged fields had been characterized. Simulation had shown significant variability of the flammable envelope, with jet flapping causing shedding of large scale rich and lean gas pockets from the main jet core, which persist for significant times and substantially alter the extent of flammability envelope.

  7. Dietary Fiber-Induced Changes in the Structure and Thermal Properties of Gluten Proteins Studied by Fourier Transform-Raman Spectroscopy and Thermogravimetry.

    PubMed

    Nawrocka, Agnieszka; Szymańska-Chargot, Monika; Miś, Antoni; Wilczewska, Agnieszka Z; Markiewicz, Karolina H

    2016-03-16

    Interactions between gluten proteins and dietary fiber supplements at the stage of bread dough formation are crucial in the baking industry. The dietary fiber additives are regarded as a source of polysaccharides and antioxidants, which have positive effects on human health. The fiber enrichment of bread causes a significant reduction in its quality, which is connected with changes in the structure of gluten proteins. Changes in the structure of gluten proteins and their thermal properties induced by seven commercial dietary fibers (fruit, vegetable, and cereal) were studied by FT-Raman spectroscopy and thermogravimetry (TGA), respectively. For this aim the bread dough at 500 FU consistency was made of a blend of wheat starch and wheat gluten as well as the fiber, the content of which ranged from 3 to 18% w/w. The obtained results revealed that all dietary fibers apart from oat caused similar changes in the secondary structure of gluten proteins. The most noticeable changes were observed in the regions connected with hydrogen-bonded β-sheets (1614 and 1684 cm(-1)) and β-turns (1640 and 1657 cm(-1)). Other changes observed in the gluten structure, concerning other β-structures, conformation of disulfide bridges, and aromatic amino acid microenvironment, depend on the fibers' chemical composition. The results concerning structural changes suggested that the observed formation of hydrogen bonds in the β-structures can be connected with aggregation or abnormal folding. This hypothesis was confirmed by thermogravimetric results. Changes in weight loss indicated the formation of a more complex and strong gluten network.

  8. Inspection of Nuclear Power Plant Containment Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discoveredmore » at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.« less

  9. Boron Deficiency in Trifoliate Orange Induces Changes in Pectin Composition and Architecture of Components in Root Cell Walls.

    PubMed

    Wu, Xiuwen; Riaz, Muhammad; Yan, Lei; Du, Chenqing; Liu, Yalin; Jiang, Cuncang

    2017-01-01

    Boron (B) is a micronutrient indispensable for citrus and B deficiency causes a considerable loss of productivity and quality in China. However, studies on pectin composition and architecture of cell wall components in trifoliate orange roots under B deficiency condition are not sufficient. In this study, we investigated the alteration in pectin characteristics and the architecture of cell wall components in trifoliate orange [ Poncirus trifoliata (L.) Raf.] roots under B starvation. The results showed that B-deficient roots resulted in a significant enlargement of root tips and an obvious decrease in cell wall B and uronic acid content in Na 2 CO 3 -soluble pectin compared with B-adequate roots. Meanwhile, they showed a decrease of 2-keto-3-deoxyoctanoic acid in CDTA-soluble and Na 2 CO 3 -soluble pectin in cell walls, while the degree of methylation (DM) of CDTA-soluble pectin was significantly increased under B deficiency. Transmission electron microscope (TEM) micrographs of B deficient plants showed a distinct thickening of the cell walls, with the thickness 1.82 times greater than that of control plant roots. The results from Fourier-transform infrared spectroscopy (FTIR) showed that B deficiency changed the mode of hydrogen bonding between protein and carbohydrates (cellulose and hemicellulose). The FTIR spectra exhibited a destroyed protein structure and accumulation of wax and cellulose in the cell walls under B starvation. The 13 C nuclear magnetic resonance ( 13 C-NMR) spectra showed that B starvation changed the organic carbon structure of cell walls, and enhanced the contents of amino acid, cellulose, phenols, and lignin in the cell wall. The results reveal that the swelling and weakened structural integrity of cell walls, which induced by alteration on the network of pectin and cell wall components and structure in B-deficient roots, could be a major cause of occurrence of the rapid interruption of growth and significantly enlarged root tips in trifoliate orange roots under B-insufficient condition.

  10. Near-Atomic Resolution Structure of a Highly Neutralizing Fab Bound to Canine Parvovirus.

    PubMed

    Organtini, Lindsey J; Lee, Hyunwook; Iketani, Sho; Huang, Kai; Ashley, Robert E; Makhov, Alexander M; Conway, James F; Parrish, Colin R; Hafenstein, Susan

    2016-11-01

    Canine parvovirus (CPV) is a highly contagious pathogen that causes severe disease in dogs and wildlife. Previously, a panel of neutralizing monoclonal antibodies (MAb) raised against CPV was characterized. An antibody fragment (Fab) of MAb E was found to neutralize the virus at low molar ratios. Using recent advances in cryo-electron microscopy (cryo-EM), we determined the structure of CPV in complex with Fab E to 4.1 Å resolution, which allowed de novo building of the Fab structure. The footprint identified was significantly different from the footprint obtained previously from models fitted into lower-resolution maps. Using single-chain variable fragments, we tested antibody residues that control capsid binding. The near-atomic structure also revealed that Fab binding had caused capsid destabilization in regions containing key residues conferring receptor binding and tropism, which suggests a mechanism for efficient virus neutralization by antibody. Furthermore, a general technical approach to solving the structures of small molecules is demonstrated, as binding the Fab to the capsid allowed us to determine the 50-kDa Fab structure by cryo-EM. Using cryo-electron microscopy and new direct electron detector technology, we have solved the 4 Å resolution structure of a Fab molecule bound to a picornavirus capsid. The Fab induced conformational changes in regions of the virus capsid that control receptor binding. The antibody footprint is markedly different from the previous one identified by using a 12 Å structure. This work emphasizes the need for a high-resolution structure to guide mutational analysis and cautions against relying on older low-resolution structures even though they were interpreted with the best methodology available at the time. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Near-Atomic Resolution Structure of a Highly Neutralizing Fab Bound to Canine Parvovirus

    PubMed Central

    Organtini, Lindsey J.; Lee, Hyunwook; Iketani, Sho; Huang, Kai; Ashley, Robert E.; Makhov, Alexander M.; Conway, James F.

    2016-01-01

    ABSTRACT Canine parvovirus (CPV) is a highly contagious pathogen that causes severe disease in dogs and wildlife. Previously, a panel of neutralizing monoclonal antibodies (MAb) raised against CPV was characterized. An antibody fragment (Fab) of MAb E was found to neutralize the virus at low molar ratios. Using recent advances in cryo-electron microscopy (cryo-EM), we determined the structure of CPV in complex with Fab E to 4.1 Å resolution, which allowed de novo building of the Fab structure. The footprint identified was significantly different from the footprint obtained previously from models fitted into lower-resolution maps. Using single-chain variable fragments, we tested antibody residues that control capsid binding. The near-atomic structure also revealed that Fab binding had caused capsid destabilization in regions containing key residues conferring receptor binding and tropism, which suggests a mechanism for efficient virus neutralization by antibody. Furthermore, a general technical approach to solving the structures of small molecules is demonstrated, as binding the Fab to the capsid allowed us to determine the 50-kDa Fab structure by cryo-EM. IMPORTANCE Using cryo-electron microscopy and new direct electron detector technology, we have solved the 4 Å resolution structure of a Fab molecule bound to a picornavirus capsid. The Fab induced conformational changes in regions of the virus capsid that control receptor binding. The antibody footprint is markedly different from the previous one identified by using a 12 Å structure. This work emphasizes the need for a high-resolution structure to guide mutational analysis and cautions against relying on older low-resolution structures even though they were interpreted with the best methodology available at the time. PMID:27535057

  12. Chronic intermittent fasting improves cognitive functions and brain structures in mice.

    PubMed

    Li, Liaoliao; Wang, Zhi; Zuo, Zhiyi

    2013-01-01

    Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day) fasting or high fat diet (45% caloric supplied by fat) for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice). Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.

  13. Chronic Intermittent Fasting Improves Cognitive Functions and Brain Structures in Mice

    PubMed Central

    Li, Liaoliao; Wang, Zhi; Zuo, Zhiyi

    2013-01-01

    Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day) fasting or high fat diet (45% caloric supplied by fat) for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice). Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals. PMID:23755298

  14. The Genetic Diversity and Structure of Linkage Disequilibrium of the MTHFR Gene in Populations of Northern Eurasia.

    PubMed

    Trifonova, E A; Eremina, E R; Urnov, F D; Stepanov, V A

    2012-01-01

    The structure of the haplotypes and linkage disequilibrium (LD) of the methylenetetrahydrofolate reductase gene (MTHFR) in 9 population groups from Northern Eurasia and populations of the international HapMap project was investigated in the present study. The data suggest that the architecture of LD in the human genome is largely determined by the evolutionary history of populations; however, the results of phylogenetic and haplotype analyses seems to suggest that in fact there may be a common "old" mechanism for the formation of certain patterns of LD. Variability in the structure of LD and the level of diversity of MTHFRhaplotypes cause a certain set of tagSNPs with an established prognostic significance for each population. In our opinion, the results obtained in the present study are of considerable interest for understanding multiple genetic phenomena: namely, the association of interpopulation differences in the patterns of LD with structures possessing a genetic susceptibility to complex diseases, and the functional significance of the pleiotropicMTHFR gene effect. Summarizing the results of this study, a conclusion can be made that the genetic variability analysis with emphasis on the structure of LD in human populations is a powerful tool that can make a significant contribution to such areas of biomedical science as human evolutionary biology, functional genomics, genetics of complex diseases, and pharmacogenomics.

  15. Effects of bioaugmentation in para-nitrophenol-contaminated soil on the abundance and community structure of ammonia-oxidizing bacteria and archaea.

    PubMed

    Chi, Xiang-Qun; Liu, Kun; Zhou, Ning-Yi

    2015-07-01

    Pseudomonas sp. strain WBC-3 mineralizes the priority pollutant para-nitrophenol (PNP) and releases nitrite (NO2 (-)), which is probably involved in the nitrification. In this study, the rate of PNP removal in soil bioaugmented with strain WBC-3 was more accelerated with more NO2 (-) accumulation than in uninoculated soils. Strain WBC-3 survived well and remained stable throughout the entire period. Real-time polymerase chain reaction (real-time PCR) indicated a higher abundance of ammonia-oxidizing bacteria (AOB) than ammonia-oxidizing archaea (AOA), suggesting that AOB played a greater role in nitrification in the original sampled soil. Real-time PCR and multivariate analysis based on the denaturing gradient gel electrophoresis showed that PNP contamination did not significantly alter the abundance and community structure of ammonia oxidizers except for inhibiting the AOB abundance. Bioaugmentation of PNP-contaminated soil showed a significant effect on AOB populations and community structure as well as AOA populations. In addition, ammonium (NH4 (+)) variation was found to be the primary factor affecting the AOB community structure, as determined by the correlation between the community structures of ammonia oxidizers and environmental factors. It is here proposed that the balance between archaeal and bacterial ammonia oxidation could be influenced significantly by the variation in NH4 (+) levels as caused by bioaugmentation of contaminated soil by a pollutant containing nitrogen.

  16. Waveguide detuning caused by transverse magnetic fields on a simulated in-line 6 MV linac.

    PubMed

    St Aubin, J; Steciw, S; Fallone, B G

    2010-09-01

    Due to the close proximity of the linear accelerator (linac) to the magnetic resonance (MR) imager in linac-MR systems, it will be subjected to magnet fringe fields larger than the Earth's magnetic field of 5 x 10(-5) T. Even with passive or active shielding designed to reduce these fields, some magnitude of the magnetic field is still expected to intersect the linac, causing electron deflection and beam loss. This beam loss, resulting from magnetic fields that cannot be eliminated with shielding, can cause a detuning of the waveguide due to excessive heating. The detuning, if significant, could lead to an even further decrease in output above what would be expected strictly from electron deflections caused by an external magnetic field. Thus an investigation of detuning was performed through various simulations. According to the Lorentz force, the electrons will be deflected away from their straight course to the target, depositing energy as they impact the linac copper waveguide. The deposited energy would lead to a heating and deformation of the copper structure resulting in resonant frequency changes. PARMELA was used to determine the mean energy and fraction of total beam lost in each linac cavity. The energy deposited into the copper waveguide from the beam losses caused by transverse magnetic fields was calculated using the Monte Carlo program DOSRZnrc. From the total energy deposited, the rise in temperature and ultimately the deformation of the structure was estimated. The deformed structure was modeled using the finite element method program COMSOL MULTIPHYSICS to determine the change in cavity resonant frequency. The largest changes in resonant frequency were found in the first two accelerating cavities for each field strength investigated. This was caused by a high electron fluence impacting the waveguide inner structures coupled with their low kinetic energies. At each field strength investigated, the total change in accelerator frequency was less than a manufacturing tolerance of 10 kHz and is thus not expected to have a noticeable effect on accelerator performance. The amount of beam loss caused by magnetic fringe fields for a linac in a linac-MR system depends on the effectiveness of its magnetic shielding. Despite the best efforts to shield the linac from the magnetic fringe fields, some persistent magnetic field is expected which would result in electron beam loss. This investigation showed that the detuning of the waveguide caused by additional electron beam loss in persistent magnetic fields is not a concern.

  17. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests

    PubMed Central

    2012-01-01

    Background Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. Results We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Conclusions Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the survival and growth of seedlings and saplings damaged by foraging peccaries. Given the abundance of fruit produced by each palm, the widespread effects of these small-scale disturbances appear, over long time-scales, to cause directional changes in community structure at larger scales. PMID:22429883

  18. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests.

    PubMed

    Queenborough, Simon A; Metz, Margaret R; Wiegand, Thorsten; Valencia, Renato

    2012-03-19

    Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the survival and growth of seedlings and saplings damaged by foraging peccaries. Given the abundance of fruit produced by each palm, the widespread effects of these small-scale disturbances appear, over long time-scales, to cause directional changes in community structure at larger scales.

  19. [Prospect and application of microsatellite population genetics in study of geoherbs].

    PubMed

    Zhang, Wen-Jing; Zhang, Yong-Qing; Yuan, Qing-Jun; Huang, Lu-Qi; Jiang, Dan; Jing, Li

    2013-12-01

    The author introduces the basic concepts of microsatellite and population genetics and its characteristics, expounds the application of these theories for population genetic structure and genetic diversity, gene flow and evolutionary significant unit ESU division research. This paper discuss its applicationin study of genetic causes, origin of cultivation, different regional origins of geoherbs, aiming at providing a new theory and method for geoherbs.

  20. Long-term effects of dormant-season prescribed fire on plant community diversity, structure and productivity in a longleaf pine wiregrass ecosystem

    Treesearch

    Dale G. Brockway; Clifford E. Lewis

    1997-01-01

    A flatwoods longleaf pine wiregrass ecosystem, which regenerated naturally following wildfire in 1942, on the Coastal Plain of southern Georgia was treated over a period of four decades with prescribed fire at annual, biennial and triennial intervals during the winter dormant season. Burning caused substantial changes in the understory plant community, with significant...

  1. Residential Tornado Safe Rooms from Commodity Wood Products: Wall Development and Impact Testing

    Treesearch

    Robert H. Falk; James J. Bridwell; John C. Hermanson

    2015-01-01

    In the United States, tornadoes cause significant damage and result in many injuries and deaths. Although the development and use of tornado safe rooms and shelters have helped reduce the human toll associated with these events, the cost of these structures is often too high for many that could benefit from their use. The development of a residential tornado safe room...

  2. Knowing How and Showing How: Interdisciplinary Collaboration on Substance Abuse Skill OSCEs for Medical, Nursing and Social Work Students

    ERIC Educational Resources Information Center

    Baez, Annecy; Eckert-Norton, Margaret; Morrison, Ann

    2005-01-01

    The problem use of alcohol causes over 100,000 deaths in the United States per year and has substantial negative impact on family structure, the economy and the criminal justice system. Screening and early treatment of individuals with problem use of alcohol by health professionals can significantly reduce mortality and morbidity. Students from…

  3. Genetic diversity and population structure of Raffaelea quercus-mongolicae, a fungus associated with oak mortality in South Korea

    Treesearch

    M. -S. Kim; P. A. Hohenlohe; K. -H. Kim; S. -T. Seo; Ned Klopfenstein

    2016-01-01

    Raffaelea quercus-mongolicae is a fungus associated with oak wilt and deemed to cause extensive oak mortality in South Korea. Since the discovery of this fungus on a dead Mongolian oak (Quercus mongolica) in 2004, the mortality continued to spread southwards in South Korea. Despite continued expansion of the disease and associated significant impacts on forest...

  4. Electronic structure of the chiral helimagnet and 3d-intercalated transition metal dichalcogenide Cr 1/3NbS 2

    DOE PAGES

    Sirca, N.; Mo, S. -K.; Bondino, F.; ...

    2016-08-18

    The electronic structure of the chiral helimagnet Cr 1/3NbS 2 has been studied with core level and angle-resolved photoemission spectroscopy (ARPES). Intercalated Cr atoms are found to be effective in donating electrons to the NbS 2 layers but also cause significant modifications of the electronic structure of the host NbS 2 material. Specifically, the data provide evidence that a description of the electronic structure of Cr 1/3NbS 2 on the basis of a simple rigid band picture is untenable. The data also reveal substantial inconsistencies with the predictions of standard density functional theory. In conclusion, the relevance of these resultsmore » to the attainment of a correct description of the electronic structure of chiral helimagnets, magnetic thin films/multilayers, and transition metal dichalcogenides intercalated with 3d magnetic elements is discussed.« less

  5. Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors

    NASA Astrophysics Data System (ADS)

    Buragohain, P.; Richter, C.; Schenk, T.; Lu, H.; Mikolajick, T.; Schroeder, U.; Gruverman, A.

    2018-05-01

    Visualization of domain structure evolution under an electrical bias has been carried out in ferroelectric La:HfO2 capacitors by a combination of Piezoresponse Force Microscopy (PFM) and pulse switching techniques to study the nanoscopic mechanism of polarization reversal and the wake-up process. It has been directly shown that the main mechanism behind the transformation of the polarization hysteretic behavior and an increase in the remanent polarization value upon the alternating current cycling is electrically induced domain de-pinning. PFM imaging and local spectroscopy revealed asymmetric switching in the La:HfO2 capacitors due to a significant imprint likely caused by the different boundary conditions at the top and bottom interfaces. Domain switching kinetics can be well-described by the nucleation limited switching model characterized by a broad distribution of the local switching times. It has been found that the domain velocity varies significantly throughout the switching process indicating strong interaction with structural defects.

  6. High-resolution probing of inner core structure with seismic interferometry

    NASA Astrophysics Data System (ADS)

    Huang, Hsin-Hua; Lin, Fan-Chi; Tsai, Victor C.; Koper, Keith D.

    2015-12-01

    Increasing complexity of Earth's inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.

  7. Recorded motions of the 6 April 2009 Mw 6.3 L'Aquila, Italy, earthquake and implications for building structural damage: Overview

    USGS Publications Warehouse

    Celebi, M.; Bazzurro, P.; Chiaraluce, L.; Clemente, P.; Decanini, L.; Desortis, A.; Ellsworth, W.; Gorini, A.; Kalkan, E.; Marcucci, S.; Milana, G.; Mollaioli, F.; Olivieri, M.; Paolucci, R.; Rinaldis, D.; Rovelli, A.; Sabetta, F.; Stephens, C.

    2010-01-01

    The normal-faulting earthquake of 6 April 2009 in the Abruzzo Region of central Italy caused heavy losses of life and substantial damage to centuriesold buildings of significant cultural importance and to modern reinforcedconcrete- framed buildings with hollow masonry infill walls. Although structural deficiencies were significant and widespread, the study of the characteristics of strong motion data from the heavily affected area indicated that the short duration of strong shaking may have spared many more damaged buildings from collapsing. It is recognized that, with this caveat of shortduration shaking, the infill walls may have played a very important role in preventing further deterioration or collapse of many buildings. It is concluded that better new or retrofit construction practices that include reinforcedconcrete shear walls may prove helpful in reducing risks in such seismic areas of Italy, other Mediterranean countries, and even in United States, where there are large inventories of deficient structures. ?? 2010, Earthquake Engineering Research Institute.

  8. Marriage structure and contraception in Niger.

    PubMed

    Peterson, S A

    1999-01-01

    Analysis of the 1992 Niger Demographic and Health Survey showed that although roughly two-thirds of both polygamous and monogamous women approve of birth control, polygamous wives are less likely than monogamous wives to discuss family size or birth control with their husband or to plan on using birth control. The study suggests that characteristics of polygamous couples have caused polygamous women to be more resistant to birth control use than monogamous women. The polygamous women tended to be married to older men who had not gone to primary school and who desired more children than monogamous husbands. The influence of marital structure is not significantly associated with intention to use birth control when the husband's age and the wife's ideal number of children were controlled for in the multivariate logistic regression model suggesting that background social factors may be more influential. In fact, educational level and age at first marriage were significantly associated with attitudes towards birth control and also with marital structure.

  9. Interdisciplinary applications and interpretations of ERTS data within the Susquehanna River basin

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The full potential of high quality data is achieved only with the application of efficient and effective interpretation techniques. An excellent operating system for handling, processing, and interpreting ERTS-1 and other MSS data was achieved. Programs for processing digital data are implemented on a large nondedicated general purpose computer. Significant results were attained in mapping land use, agricultural croplands, forest resources, and vegetative cover. Categories of land use classified and mapped depend upon the geographic location, the detail required, and the types of lands use of interest. Physiographic and structural provinces are spectacularly displayed on ERTS-1 MSS image mosaics. Geologic bedrock structures show up well and formation contacts can sometimes be traced for hundreds of kilometers. Large circular structures and regional features, previously obscured by the detail of higher resolution data, can be seen. Environmental monitoring was performed in three areas: coal strip mining, coal refuse problems, and damage to vegetation caused by insects and pollution.

  10. Regulation of Synaptic Structure by the Ubiquitin C-terminal Hydrolase UCH-L1

    PubMed Central

    Cartier, Anna E.; Djakovic, Stevan N.; Salehi, Afshin; Wilson, Scott M.; Masliah, Eliezer; Patrick, Gentry N.

    2009-01-01

    UCH-L1 is a de-ubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We have found that UCH-L1 activity is rapidly up-regulated by NMDA receptor activation which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of pre and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1 inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner. PMID:19535597

  11. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.

    PubMed

    Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N

    2009-06-17

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.

  12. Geological structures control on earthquake ruptures: The Mw7.7, 2013, Balochistan earthquake, Pakistan

    NASA Astrophysics Data System (ADS)

    Vallage, A.; Klinger, Y.; Lacassin, R.; Delorme, A.; Pierrot-Deseilligny, M.

    2016-10-01

    The 2013 Mw7.7 Balochistan earthquake, Pakistan, ruptured the Hoshab fault. Left-lateral motion dominated the deformation pattern, although significant vertical motion is found along the southern part of the rupture. Correlation of high-resolution (2.5 m) optical satellite images provided horizontal displacement along the entire rupture. In parallel, we mapped the ground rupture geometry at 1:500 scale. We show that the azimuth of the ground rupture distributes mainly between two directions, N216° and N259°. The direction N216° matches the direction of preexisting geologic structures resulting from penetrative deformation caused by the nearby Makran subduction. Hence, during a significant part of its rupture, the 2013 Balochistan rupture kept switching between a long-term fault front and secondary branches, in which existence and direction are related to the compressional context. It shows unambiguous direct interactions between different preexisting geologic structures, regional stress, and dynamic-rupture stress, which controlled earthquake propagation path.

  13. Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod.

    PubMed

    Templeton, Ryan C; Ferguson, P Lee; Washburn, Kate M; Scrivens, Wally A; Chandler, G Thomas

    2006-12-01

    Single-walled carbon nanotubes (SWNT) are finding increasing use in consumer electronics and structural composites. These nanomaterials and their manufacturing byproducts may eventually reach estuarine systems through wastewater discharge. The acute and chronic toxicity of SWNTs were evaluated using full life-cycle bioassays with the estuarine copepod Amphiascus tenuiremis (ASTM method E-2317-04). A synchronous cohort of naupliar larvae was assayed by culturing individual larvae to adulthood in individual 96-well microplate wells amended with SWNTs in seawater. Copepods were exposed to "as prepared" (AP) SWNTs, electrophoretically purified SWNTs, or a fluorescent fraction of nanocarbon synthetic byproducts. Copepods ingesting purified SWNTs showed no significant effects on mortality, development, and reproduction across exposures (p < 0.05). In contrast, exposure to the more complex AP-SWNT mixture significantly increased life-cycle mortality, reduced fertilization rates, and reduced molting success in the highest exposure (10 mg x L(-1)) (p < 0.05). Exposure to small fluorescent nanocarbon byproducts caused significantly increased life-cycle mortality at 10 mg x L(-1) (p < 0.05). The fluorescent nanocarbon fraction also caused significant reduction in life-cycle molting success for all exposures (p < 0.05). These results suggest size-dependent toxicity of SWNT-based nanomaterials, with the smallest synthetic byproduct fractions causing increased mortality and delayed copepod development over the concentration ranges tested.

  14. Effects of passive inhalation of cigarette smoke on structural and functional parameters in the respiratory system of guinea pigs

    PubMed Central

    de Vasconcelos, Thiago Brasileiro; de Araújo, Fernanda Yvelize Ramos; de Pinho, João Paulo Melo; Soares, Pedro Marcos Gomes; Bastos, Vasco Pinheiro Diógenes

    2016-01-01

    ABSTRACT Objective: To evaluate the effects of passive inhalation of cigarette smoke on the respiratory system of guinea pigs. Methods: Male guinea pigs were divided into two groups: control and passive smoking, the latter being exposed to the smoke of ten cigarettes for 20 min in the morning, afternoon and evening (30 cigarettes/day) for five days. After that period, inflammatory parameters were studied by quantifying mesenteric mast cell degranulation, as well as oxidative stress, in BAL fluid. In addition, we determined MIP, MEP, and mucociliary transport (in vivo), as well as tracheal contractility response (in vitro). Results: In comparison with the control group, the passive smoking group showed a significant increase in mast cell degranulation (19.75 ± 3.77% vs. 42.53 ± 0.42%; p < 0.001) and in the levels of reduced glutathione (293.9 ± 19.21 vs. 723.7 ± 67.43 nM/g of tissue; p < 0.05); as well as a significant reduction in mucociliary clearance (p < 0.05), which caused significant changes in pulmonary function (in MIP and MEP; p < 0.05 for both) and airway hyperreactivity. Conclusions: Passive inhalation of cigarette smoke caused significant increases in mast cell degranulation and oxidative stress. This inflammatory process seems to influence the decrease in mucociliary transport and to cause changes in pulmonary function, leading to tracheal hyperreactivity. PMID:27812632

  15. Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages.

    PubMed

    Wilson, Brittan A; Smith, Val H; deNoyelles, Frank; Larive, Cynthia K

    2003-05-01

    Treated wastewaters in the United States contain detectable quantities of surfactants, antibiotics, and other types of antimicrobial chemicals contained in pharmaceutical and personal-care products (PPCPs) that are released into stream ecosystems. The degradation characteristics of many of these chemicals are not yet known, nor are the chemical properties of their byproducts. They also are not currently mandated for removal under the U.S. Clean Water Act. Three representative PPCPs were individually tested in this study using a series of laboratory dilution bioassays: Ciprofloxacin (an antibiotic), Triclosan (an antimicrobial agent), and Tergitol NP 10 (a surfactant), to determine their effects on natural algal communities sampled both upstream and downstream of the Olathe, KS wastewater treatment plant (WWTP). There were no significant treatment effects on algal community growth rates during the exponential phase of growth, but significant differences were observed in the final biomass yields (p < 0.001). All three compounds caused marked shifts in the community structure of suspended and attached algae at both the upstream and downstream sites (p < 0.05). Increasing the concentrations of all three compounds over a 3 orders of magnitude range also caused a consistent decline in final algal genus richness in the bioassays. Our results suggest that these three PPCPs may potentially influence both the structure and the function of algal communities in stream ecosystems receiving WWTP effluents. These changes could result in shifts in both the nutrient processing capacity and the natural food web structure of these streams.

  16. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Lu, Cheng; Tieu, Kiet; Zhao, Xing; Pei, Linqing

    2015-04-01

    Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11<1 1 0> tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures.Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11<1 1 0> tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures. Electronic supplementary information (ESI) available: Movies show the evolution of different grain boundaries under shear deformation: S-0, S-54.74, S-70.53-A, S-70.53-B, S-90. See DOI: 10.1039/c4nr07496c

  17. A Hypertrophic Cardiomyopathy-associated MYBPC3 Mutation Common in Populations of South Asian Descent Causes Contractile Dysfunction*

    PubMed Central

    Kuster, Diederik W. D.; Govindan, Suresh; Springer, Tzvia I.; Martin, Jody L.; Finley, Natosha L.; Sadayappan, Sakthivel

    2015-01-01

    Hypertrophic cardiomyopathy (HCM) results from mutations in genes encoding sarcomeric proteins, most often MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C). A recently discovered HCM-associated 25-base pair deletion in MYBPC3 is inherited in millions worldwide. Although this mutation causes changes in the C10 domain of cMyBP-C (cMyBP-CC10mut), which binds to the light meromyosin (LMM) region of the myosin heavy chain, the underlying molecular mechanism causing HCM is unknown. In this study, adenoviral expression of cMyBP-CC10mut in cultured adult rat cardiomyocytes was used to investigate protein localization and evaluate contractile function and Ca2+ transients, compared with wild-type cMyBP-C expression (cMyBP-CWT) and controls. Forty-eight hours after infection, 44% of cMyBP-CWT and 36% of cMyBP-CC10mut protein levels were determined in total lysates, confirming equal expression. Immunofluorescence experiments showed little or no localization of cMyBP-CC10mut to the C-zone, whereas cMyBP-CWT mostly showed C-zone staining, suggesting that cMyBP-CC10mut could not properly integrate in the C-zone of the sarcomere. Subcellular fractionation confirmed that most cMyBP-CC10mut resided in the soluble fraction, with reduced presence in the myofilament fraction. Also, cMyBP-CC10mut displayed significantly reduced fractional shortening, sarcomere shortening, and relaxation velocities, apparently caused by defects in sarcomere function, because Ca2+ transients were unaffected. Co-sedimentation and protein cross-linking assays confirmed that C10mut causes the loss of C10 domain interaction with myosin LMM. Protein homology modeling studies showed significant structural perturbation in cMyBP-CC10mut, providing a potential structural basis for the alteration in its mode of interaction with myosin LMM. Therefore, expression of cMyBP-CC10mut protein is sufficient to cause contractile dysfunction in vitro. PMID:25583989

  18. Milling of rice grains: effects of starch/flour structures on gelatinization and pasting properties.

    PubMed

    Hasjim, Jovin; Li, Enpeng; Dhital, Sushil

    2013-01-30

    Starch gelatinization and flour pasting properties were determined and correlated with four different levels of starch structures in rice flour, i.e. flour particle size, degree of damaged starch granules, whole molecular size, and molecular branching structure. Onset starch-gelatinization temperatures were not significantly different among all flour samples, but peak and conclusion starch-gelatinization temperatures were significantly different and were strongly correlated with the flour particle size, indicating that rice flour with larger particle size has a greater barrier for heat transfer. There were slight differences in the enthalpy of starch gelatinization, which are likely associated with the disruption of crystalline structure in starch granules by the milling processes. Flours with volume-median diameter ≥56 μm did not show a defined peak viscosity in the RVA viscogram, possibly due to the presence of native protein and/or cell-wall structure stabilizing the swollen starch granules against the rupture caused by shear during heating. Furthermore, RVA final viscosity of flour was strongly correlated with the degree of damage to starch granules, suggesting the contribution of granular structure, possibly in swollen form. The results from this study allow the improvement in the manufacture and the selection criteria of rice flour with desirable gelatinization and pasting properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Crystal Structure of Arginase from Plasmodium falciparum and Implications for l-Arginine Depletion in Malarial Infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, Daniel P.; Ilies, Monica; Olszewski, Kellen L.

    The 2.15 {angstrom} resolution crystal structure of arginase from Plasmodium falciparum, the parasite that causes cerebral malaria, is reported in complex with the boronic acid inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) (K{sub d} = 11 {micro}M). This is the first crystal structure of a parasitic arginase. Various protein constructs were explored to identify an optimally active enzyme form for inhibition and structural studies and to probe the structure and function of two polypeptide insertions unique to malarial arginase: a 74-residue low-complexity region contained in loop L2 and an 11-residue segment contained in loop L8. Structural studies indicate that the low-complexity region ismore » largely disordered and is oriented away from the trimer interface; its deletion does not significantly compromise enzyme activity. The loop L8 insertion is located at the trimer interface and makes several intra- and intermolecular interactions important for enzyme function. In addition, we also demonstrate that arg- Plasmodium berghei sporozoites show significantly decreased liver infectivity in vivo. Therefore, inhibition of malarial arginase may serve as a possible candidate for antimalarial therapy against liver-stage infection, and ABH may serve as a lead for the development of inhibitors.« less

  20. Structural basis of Zika virus helicase in recognizing its substrates.

    PubMed

    Tian, Hongliang; Ji, Xiaoyun; Yang, Xiaoyun; Zhang, Zhongxin; Lu, Zuokun; Yang, Kailin; Chen, Cheng; Zhao, Qi; Chi, Heng; Mu, Zhongyu; Xie, Wei; Wang, Zefang; Lou, Huiqiang; Yang, Haitao; Rao, Zihe

    2016-08-01

    The recent explosive outbreak of Zika virus (ZIKV) infection has been reported in South and Central America and the Caribbean. Neonatal microcephaly associated with ZIKV infection has already caused a public health emergency of international concern. No specific vaccines or drugs are currently available to treat ZIKV infection. The ZIKV helicase, which plays a pivotal role in viral RNA replication, is an attractive target for therapy. We determined the crystal structures of ZIKV helicase-ATP-Mn(2+) and ZIKV helicase-RNA. This is the first structure of any flavivirus helicase bound to ATP. Comparisons with related flavivirus helicases have shown that although the critical P-loop in the active site has variable conformations among different species, it adopts an identical mode to recognize ATP/Mn(2+). The structure of ZIKV helicase-RNA has revealed that upon RNA binding, rotations of the motor domains can cause significant conformational changes. Strikingly, although ZIKV and dengue virus (DENV) apo-helicases share conserved residues for RNA binding, their different manners of motor domain rotations result in distinct individual modes for RNA recognition. It suggests that flavivirus helicases could have evolved a conserved engine to convert chemical energy from nucleoside triphosphate to mechanical energy for RNA unwinding, but different motor domain rotations result in variable RNA recognition modes to adapt to individual viral replication.

  1. Experimental Traumatic Brain Injury Results in Long-Term Recovery of Functional Responsiveness in Sensory Cortex but Persisting Structural Changes and Sensorimotor, Cognitive, and Emotional Deficits.

    PubMed

    Johnstone, Victoria P A; Wright, David K; Wong, Kendrew; O'Brien, Terence J; Rajan, Ramesh; Shultz, Sandy R

    2015-09-01

    Traumatic brain injury (TBI) is a leading cause of death worldwide. In recent studies, we have shown that experimental TBI caused an immediate (24-h post) suppression of neuronal processing, especially in supragranular cortical layers. We now examine the long-term effects of experimental TBI on the sensory cortex and how these changes may contribute to a range of TBI morbidities. Adult male Sprague-Dawley rats received either a moderate lateral fluid percussion injury (n=14) or a sham surgery (n=12) and 12 weeks of recovery before behavioral assessment, magnetic resonance imaging, and electrophysiological recordings from the barrel cortex. TBI rats demonstrated sensorimotor deficits, cognitive impairments, and anxiety-like behavior, and this was associated with significant atrophy of the barrel cortex and other brain structures. Extracellular recordings from ipsilateral barrel cortex revealed normal neuronal responsiveness and diffusion tensor MRI showed increased fractional anisotropy, axial diffusivity, and tract density within this region. These findings suggest that long-term recovery of neuronal responsiveness is owing to structural reorganization within this region. Therefore, it is likely that long-term structural and functional changes within sensory cortex post-TBI may allow for recovery of neuronal responsiveness, but that this recovery does not remediate all behavioral deficits.

  2. Effects of experimentally measured pressure oscillations on the vibration of a solid rocket motor

    NASA Technical Reports Server (NTRS)

    Schoenster, J. A.; Pierce, H. B.

    1972-01-01

    Results are presented of firing a Nike rocket against a backstop for the purpose of obtaining pressure fluctuations in the rocket case and determining their relationship to structural vibrations of the case. Special care was required to obtain these pressure fluctuations because of the much higher static pressure generated in the rocket. Very small pressure fluctuations within the rocket case can cause significant vibration levels. A previously observed high frequency was shown to decrease with time before completely disappearing at about 1 second of burning time. The vibration of the case itself is probably related to the longitudinal structural modes at frequencies below 500 Hz and is dependent on local structural conditions at frequencies above this value.

  3. The Effect of Quantum-Mechanical Interference on Precise Measurements of the n = 2 Triplet P Fine Structure of Helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsman, A.; Horbatsch, M.; Hessels, E. A., E-mail: hessels@yorku.ca

    2015-09-15

    For many decades, improvements in both theory and experiment of the fine structure of the n = 2 triplet P levels of helium have allowed for an increasingly precise determination of the fine-structure constant. Recently, it has been observed that quantum-mechanical interference between neighboring resonances can cause significant shifts, even if such neighboring resonances are separated by thousands of natural widths. The shifts depend in detail on the experimental method used for the measurement, as well as the specific experimental parameters employed. Here, we review how these shifts apply for the most precise measurements of the helium 2{sup 3}P fine-structuremore » intervals.« less

  4. Chronic Irreducible Anterior Dislocation of the Shoulder without Significant Functional Deficit.

    PubMed

    Chung, Hoejeong; Yoon, Yeo-Seung; Shin, Ji-Soo; Shin, John Junghun; Kim, Doosup

    2016-09-01

    Shoulder dislocation is frequently encountered by orthopedists, and closed manipulation is often sufficient to treat the injury in an acute setting. Although most dislocations are diagnosed and managed promptly, there are rare cases that are missed or neglected, leading to a chronically dislocated state of the joint. They are usually irreducible and cause considerable pain and functional disability in most affected patients, prompting the need to find a surgical method to reverse the worsening conditions caused by the dislocated joint. However, there are cases of even greater rarity in which chronic shoulder dislocations are asymptomatic with minimal functional or structural degeneration in the joint. These patients are usually left untreated, and most show good tolerance to their condition without developing disabling symptoms or significant functional loss over time. We report on one such patient who had a chronic shoulder dislocation for more than 2 years without receiving treatment.

  5. Clinical Manifestations and Overall Management Strategies for Duchenne Muscular Dystrophy.

    PubMed

    Tsuda, Takeshi

    2018-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder that causes progressive weakness and wasting of skeletal muscular and myocardium in boys due to mutation of dystrophin. The structural integrity of each individual skeletal and cardiac myocyte is significantly compromised upon physical stress due to the absence of dystrophin. The progressive destruction of systemic musculature and myocardium causes affected patients to develop multiple organ disabilities, including loss of ambulation, physical immobility, neuromuscular scoliosis, joint contracture, restrictive lung disease, obstructive sleep apnea, and cardiomyopathy. There are some central nervous system-related medical problems, as dystrophin is also expressed in the neuronal tissues. Although principal management is to mainly delay the pathological process, an enhanced understanding of underlying pathological processes has significantly improved quality of life and longevity for DMD patients. Future research in novel molecular approach is warranted to answer unanswered questions.

  6. Planetary Structures And Simulations Of Large-scale Impacts On Mars

    NASA Astrophysics Data System (ADS)

    Swift, Damian; El-Dasher, B.

    2009-09-01

    The impact of large meteroids is a possible cause for isolated orogeny on bodies devoid of tectonic activity. On Mars, there is a significant, but not perfect, correlation between large, isolated volcanoes and antipodal impact craters. On Mercury and the Moon, brecciated terrain and other unusual surface features can be found at the antipodes of large impact sites. On Earth, there is a moderate correlation between long-lived mantle hotspots at opposite sides of the planet, with meteoroid impact suggested as a possible cause. If induced by impacts, the mechanisms of orogeny and volcanism thus appear to vary between these bodies, presumably because of differences in internal structure. Continuum mechanics (hydrocode) simulations have been used to investigate the response of planetary bodies to impacts, requiring assumptions about the structure of the body: its composition and temperature profile, and the constitutive properties (equation of state, strength, viscosity) of the components. We are able to predict theoretically and test experimentally the constitutive properties of matter under planetary conditions, with reasonable accuracy. To provide a reference series of simulations, we have constructed self-consistent planetary structures using simplified compositions (Fe core and basalt-like mantle), which turn out to agree surprisingly well with the moments of inertia. We have performed simulations of large-scale impacts, studying the transmission of energy to the antipodes. For Mars, significant antipodal heating to depths of a few tens of kilometers was predicted from compression waves transmitted through the mantle. Such heating is a mechanism for volcanism on Mars, possibly in conjunction with crustal cracking induced by surface waves. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Light might directly affect retinal ganglion cell mitochondria to potentially influence function.

    PubMed

    del Olmo-Aguado, Susana; Manso, Alberto G; Osborne, Neville N

    2012-01-01

    Visible light (360-760 nm) entering the eye impinges on the many ganglion cell mitochondria in the non-myelinated part of their axons. The same light also disrupts isolated mitochondrial function in vitro and kills cells in culture with the blue light component being particularly lethal whereas red light has little effect. Significantly, a defined light insult only affects the survival of fibroblasts in vitro that contain functional mitochondria supporting the view that mitochondrial photosensitizers are influenced by light. Moreover, a blue light insult to cells in culture causes a change in mitochondrial structure and membrane potential and results in a release of cytochrome c. Blue light also causes an alteration in mitochondria located components of the OXPHOS (oxidative phosphorylation system). Complexes III and IV as well as complex V are significantly upregulated whereas complexes I and II are slightly but significantly up- and downregulated, respectively. Also, blue light causes Dexras1 and reactive oxygen species to be upregulated and for mitochondrial located apoptosis-inducing factor to be activated. A blue light detrimental insult to cells in culture does not involve the activation of caspases but is known to be attenuated by necrostatin-1, typical of a death mechanism named necroptosis. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  8. Inhibition of angiogenesis by β-galactosylceramidase deficiency in globoid cell leukodystrophy

    PubMed Central

    Belleri, Mirella; Ronca, Roberto; Coltrini, Daniela; Nico, Beatrice; Ribatti, Domenico; Poliani, Pietro L.; Giacomini, Arianna; Alessi, Patrizia; Marchesini, Sergio; Santos, Marta B.; Bongarzone, Ernesto R.

    2013-01-01

    Globoid cell leukodystrophy (Krabbe disease) is a neurological disorder of infants caused by genetic deficiency of the lysosomal enzyme β-galactosylceramidase leading to accumulation of the neurotoxic metabolite 1-β-d-galactosylsphingosine (psychosine) in the central nervous system. Angiogenesis plays a pivotal role in the physiology and pathology of the brain. Here, we demonstrate that psychosine has anti-angiogenic properties by causing the disassembling of endothelial cell actin structures at micromolar concentrations as found in the brain of patients with globoid cell leukodystrophy. Accordingly, significant alterations of microvascular endothelium were observed in the post-natal brain of twitcher mice, an authentic model of globoid cell leukodystrophy. Also, twitcher endothelium showed a progressively reduced capacity to respond to pro-angiogenic factors, defect that was corrected after transduction with a lentiviral vector harbouring the murine β-galactosylceramidase complementary DNA. Finally, RNA interference-mediated β-galactosylceramidase gene silencing causes psychosine accumulation in human endothelial cells and hampers their mitogenic and motogenic response to vascular endothelial growth factor. Accordingly, significant alterations were observed in human microvasculature from brain biopsy of a globoid cell leukodystrophy case. Together these data demonstrate that β-galactosylceramidase deficiency induces significant alterations in endothelial neovascular responses that may contribute to central nervous system and systemic damages that occur in globoid cell leukodystrophy. PMID:23983033

  9. Fabrication and characterization of nanowalls CdS/dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Abdulelah, Haider; Ali, Basil; Mahdi, M. A.; Hassan, J. J.; Al-Taay, H. F.; Jennings, P.

    2017-06-01

    A microwave assisted chemical bath deposition (MA-CBD) was adopted to fabricate nanowalls CdS nanocrystalline thin film. Nanomaterials (such as nanowalls structure) have attracted significant attention due to their fascinating properties and unique applications, especially in optoelectronic nanodevices. Here we describe the fabrication of dye sensitized solar cells (DSSCs) based nanowalls cadmium sulfide (CdS) nanocrystalline thin films. The surface morphology, crystalline structure, and optical properties of the prepared nanocrystalline thin films are investigated. Rhodamine B, Malachite green, Eosin methylene blue, and Cresyl violet perchlorate dyes are used to fabricate the DSSCS devices. Current-voltage (I-V) characteristics show that the nanowall CdS/Eosin methylene blue device is the highest conversion efficiency of 0.89% under 100 mW/cm2. However, heat treatment of the fabricated solar cells causes significant enhancement in the output of all devices.

  10. The effect of truncation on very small cardiac SPECT camerasystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohmer, Damien; Eisner, Robert L.; Gullberg, Grant T.

    2006-08-01

    Background: The limited transaxial field-of-view (FOV) of avery small cardiac SPECT camera system causes view-dependent truncationof the projection of structures exterior to, but near the heart. Basictomographic principles suggest that the reconstruction of non-attenuatedtruncated data gives a distortion-free image in the interior of thetruncated region, but the DC term of the Fourier spectrum of thereconstructed image is incorrect, meaning that the intensity scale of thereconstruction is inaccurate. The purpose of this study was tocharacterize the reconstructed image artifacts from truncated data, andto quantify their effects on the measurement of tracer uptake in themyocardial. Particular attention was given to instances wheremore » the heartwall is close to hot structures (structures of high activity uptake).Methods: The MCAT phantom was used to simulate a 2D slice of the heartregion. Truncated and non-truncated projections were formed both with andwithout attenuation. The reconstructions were analyzed for artifacts inthe myocardium caused by truncation, and for the effect that attenuationhas relative to increasing those artifacts. Results: The inaccuracy dueto truncation is primarily caused by an incorrect DC component. Forvisualizing theleft ventricular wall, this error is not worse than theeffect of attenuation. The addition of a small hot bowel-like structurenear the left ventricle causes few changes in counts on the wall. Largerartifacts due to the truncation are located at the boundary of thetruncation and can be eliminated by sinogram interpolation. Finally,algebraic reconstruction methods are shown to give better reconstructionresults than an analytical filtered back-projection reconstructionalgorithm. Conclusion: Small inaccuracies in reconstructed images fromsmall FOV camera systems should have little effect on clinicalinterpretation. However, changes in the degree of inaccuracy in countsfrom slice toslice are due to changes in the truncated structures. Thesecan result in a visual 3-dimensional distortion. As with conventionallarge FOV systems attenuation effects have a much more significant effecton image accuracy.« less

  11. Protein thermal denaturation is modulated by central residues in the protein structure network.

    PubMed

    Souza, Valquiria P; Ikegami, Cecília M; Arantes, Guilherme M; Marana, Sandro R

    2016-03-01

    Network structural analysis, known as residue interaction networks or graphs (RIN or RIG, respectively) or protein structural networks or graphs (PSN or PSG, respectively), comprises a useful tool for detecting important residues for protein function, stability, folding and allostery. In RIN, the tertiary structure is represented by a network in which residues (nodes) are connected by interactions (edges). Such structural networks have consistently presented a few central residues that are important for shortening the pathways linking any two residues in a protein structure. To experimentally demonstrate that central residues effectively participate in protein properties, mutations were directed to seven central residues of the β-glucosidase Sfβgly (β-D-glucoside glucohydrolase; EC 3.2.1.21). These mutations reduced the thermal stability of the enzyme, as evaluated by changes in transition temperature (Tm ) and the denaturation rate at 45 °C. Moreover, mutations directed to the vicinity of a central residue also caused significant decreases in the Tm of Sfβgly and clearly increased the unfolding rate constant at 45 °C. However, mutations at noncentral residues or at surrounding residues did not affect the thermal stability of Sfβgly. Therefore, the data reported in the present study suggest that the perturbation of the central residues reduced the stability of the native structure of Sfβgly. These results are in agreement with previous findings showing that networks are robust, whereas attacks on central nodes cause network failure. Finally, the present study demonstrates that central residues underlie the functional properties of proteins. © 2016 Federation of European Biochemical Societies.

  12. Evaluation of the effects of intra-arterial sugammadex and dexmedetomidine: an experimental study.

    PubMed

    Hancı, Volkan; Özbilgin, Şule; Özbal, Seda; Kamacı, Gonca; Ateş, Hasan; Boztaş, Nilay; Ergür, Bekir Uğur; Arıkanoğlu, Ahmet; Yılmaz, Osman; Yurtlu, Bülent Serhan

    2016-01-01

    Intra-arterial injection of medications may cause acute and severe ischemia and result in morbidity and mortality. There is no information in the literature evaluating the arterial endothelial effects of sugammadex and dexmedetomidine. The hypothesis of our study is that sugammadex and dexmedetomidine will cause histological changes in arterial endothelial structure when administered intra-arterially. Rabbits were randomly divided into 4 groups. Group Control (n=7); no intervention performed. Group Catheter (n=7); a cannula inserted in the central artery of the ear, no medication was administered. Group Sugammadex (n=7); rabbits were given 4mg/kg sugammadex into the central artery of the ear, and Group Dexmedetomidine (n=7); rabbits were given 1μg/kg dexmedetomidine into the central artery of the ear. After 72h, the ears were amputated and histologically investigated. There was no significant difference found between the control and catheter groups in histological scores. The endothelial damage, elastic membrane and elastic fiber damage, smooth muscle hypertrophy and connective tissue increase scores in the dexmedetomidine and sugammadex groups were significantly higher than both the control and the catheter groups (p<0.05). There was no significant difference found between the dexmedetomidine and sugammadex groups in histological scores. Administration of sugammadex and dexmedetomidine to rabbits by intra-arterial routes caused histological arterial damage. To understand the histological changes caused by sugammadex and dexmedetomidine more clearly, more experimental research is needed. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. [Evaluation of the effects of intra-arterial sugammadex and dexmedetomidine: an experimental study].

    PubMed

    Hancı, Volkan; Özbilgin, Şule; Özbal, Seda; Kamacı, Gonca; Ateş, Hasan; Boztaş, Nilay; Ergür, Bekir Uğur; Arıkanoğlu, Ahmet; Yılmaz, Osman; Yurtlu, Bülent Serhan

    2016-01-01

    Intra-arterial injection of medications may cause acute and severe ischemia and result in morbidity and mortality. There is no information in the literature evaluating the arterial endothelial effects of sugammadex and dexmedetomidine. The hypothesis of our study is that sugammadex and dexmedetomidine will cause histological changes in arterial endothelial structure when administered intra-arterially. Rabbits were randomly divided into 4 groups. Group Control (n=7); no intervention performed. Group Catheter (n=7); a cannula inserted in the central artery of the ear, no medication was administered. Group Sugammadex (n=7); rabbits were given 4mg/kg sugammadex into the central artery of the ear, and Group Dexmedetomidine (n=7); rabbits were given 1μg/kg dexmedetomidine into the central artery of the ear. After 72h, the ears were amputated and histologically investigated. There was no significant difference found between the control and catheter groups in histological scores. The endothelial damage, elastic membrane and elastic fiber damage, smooth muscle hypertrophy and connective tissue increase scores in the dexmedetomidine and sugammadex groups were significantly higher than both the control and the catheter groups (p<0.05). There was no significant difference found between the dexmedetomidine and sugammadex groups in histological scores. Administration of sugammadex and dexmedetomidine to rabbits by intra-arterial routes caused histological arterial damage. To understand the histological changes caused by sugammadex and dexmedetomidine more clearly, more experimental research is needed. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  14. Molecular Structures and Functional Relationships in Clostridial Neurotoxins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminathan S.

    2011-12-01

    The seven serotypes of Clostridium botulinum neurotoxins (A-G) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structure-function relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structuresmore » have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structure-function relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here.« less

  15. Structural and Environmental Characteristics of Extratropical Cyclones that Cause Tornado Outbreaks in the Warm Sector

    NASA Astrophysics Data System (ADS)

    Tochimoto, Eigo; Niino, Hiroshi

    2016-04-01

    The differences in structural and environmental characteristics of extratropical cyclones (hereafter, ECs) that cause tornado outbreaks and those that do not were examined through composite analyses of the newly-released Japanese reanalysis data (JRA-55) and idealized numerical experiments. ECs that developed in the United States in April and May between 1995 and 2012 are categorized into two groups: ECs accompanied by 15 or more tornadoes (hereafter, outbreak cyclones (OCs)) and ECs accompanied by 5 or less tornadoes (non-outbreak cyclones (NOCs)). 55 OCs and 41 NOCs that are of similar strength as OCs are selected in this study. The composite analyses show significant differences in convective environmental parameters between OCs and NOCs. For OCs, convective available potential energy (CAPE) and storm relative environmental helicity (SREH) are larger and the areas in which these parameters have significant values are wider in the warm sector. The larger CAPE in OCs is due to larger amount of low-level water vapor, while the larger SREH in OCs due to stronger southerly wind at low levels. A piecewise potential vorticity (PV) diagnostics (Davis and Emanuel, 1991) indicates that low- to mid-level PV anomalies mainly contribute to the difference in the low-level winds between OCs and NOCs. On the other hand, the low-level winds associated with upper-level PV anomalies are not the major contributor to the difference. The results of the idealized numerical experiments for OCs and NOCs (hereafter, referred to as OC-CTL and NOC-CTL, respectively) using WRF ver. 3.4 show that the characteristics of the low-level wind fields and SREH distributions for the simulated ECs in OC-CTL and NOC-CTL are similar to those for OCs and NOCs, respectively. In OC-CTL, SREH and low-level winds in the east-southeast region of the EC center is larger than those in NOC-CTL, respectively. It is suggested that these differences are due to the structures of jetstream. The structure of jetstream in OC-CTL has larger anticyclonic horizontal shear in the southern side of the jet axis than that in NOC-CTL. Larger horizontal anticyclonic shear of the jetstream in OC-CTL causes more meridionally-elongated structure of the EC, resulting stronger low-level winds and larger SREH in the southeast region of the cyclone center.

  16. Chemical glycosylation of cytochrome c improves physical and chemical protein stability.

    PubMed

    Delgado, Yamixa; Morales-Cruz, Moraima; Hernández-Román, José; Martínez, Yashira; Griebenow, Kai

    2014-08-06

    Cytochrome c (Cyt c) is an apoptosis-initiating protein when released into the cytoplasm of eukaryotic cells and therefore a possible cancer drug candidate. Although proteins have been increasingly important as pharmaceutical agents, their chemical and physical instability during production, storage, and delivery remains a problem. Chemical glycosylation has been devised as a method to increase protein stability and thus enhance their long-lasting bioavailability. Three different molecular weight glycans (lactose and two dextrans with 1 kD and 10 kD) were chemically coupled to surface exposed Cyt c lysine (Lys) residues using succinimidyl chemistry via amide bonds. Five neo-glycoconjugates were synthesized, Lac4-Cyt-c, Lac9-Cyt-c, Dex5(10kD)-Cyt-c, Dex8(10kD)-Cyt-c, and Dex3(1kD)-Cyt-c. Subsequently, we investigated glycoconjugate structure, activity, and stability. Circular dichroism (CD) spectra demonstrated that Cyt c glycosylation did not cause significant changes to the secondary structure, while high glycosylation levels caused some minor tertiary structure perturbations. Functionality of the Cyt c glycoconjugates was determined by performing cell-free caspase 3 and caspase 9 induction assays and by measuring the peroxidase-like pseudo enzyme activity. The glycoconjugates showed ≥94% residual enzyme activity and 86 ± 3 to 95 ± 1% relative caspase 3 activation compared to non-modified Cyt c. Caspase 9 activation by the glycoconjugates was with 92 ± 7% to 96 ± 4% within the error the same as the caspase 3 activation. There were no major changes in Cyt c activity upon glycosylation. Incubation of Dex3(1 kD)-Cyt c with mercaptoethanol caused significant loss in the tertiary structure and a drop in caspase 3 and 9 activation to only 24 ± 8% and 26 ± 6%, respectively. This demonstrates that tertiary structure intactness of Cyt c was essential for apoptosis induction. Furthermore, glycosylation protected Cyt c from detrimental effects by some stresses (i.e., elevated temperature and humidity) and from proteolytic degradation. In addition, non-modified Cyt c was more susceptible to denaturation by a water-organic solvent interface than its glycoconjugates, important for the formulation in polymers. The results demonstrate that chemical glycosylation is a potentially valuable method to increase Cyt c stability during formulation and storage and potentially during its application after administration.

  17. Recent global trends in structural materials research

    NASA Astrophysics Data System (ADS)

    Murakami, Hideyuki; Ohmura, Takahito; Nishimura, Toshiyuki

    2013-02-01

    Structural materials support the basis of global society, such as infrastructure and transportation facilities, and are therefore essential for everyday life. The optimization of such materials allows people to overcome environmental, energy and resource depletion issues on a global scale. The creation and manufacture of structural materials make a large contribution to economies around the world every year. The use of strong, resistant materials can also have profound social effects, providing a better quality of life at both local and national levels. The Great East Japan Earthquake of 11 March 2011 caused significant structural damage in the Tohoku and Kanto regions of Japan. On a global scale, accidents caused by the ageing and failure of structural materials occur on a daily basis. Therefore, the provision and inspection of structural reliability, safety of nuclear power facilities and construction of a secure and safe society hold primary importance for researchers and engineers across the world. Clearly, structural materials need to evolve further to address both existing problems and prepare for new challenges that may be faced in the future. With this in mind, the National Institute for Materials Science (NIMS) organized the 'NIMS Conference 2012' to host an extensive discussion on a variety of global issues related to the future development of structural materials. Ranging from reconstruction following natural disasters, verification of structural reliability, energy-saving materials to fundamental problems accompanying the development of materials for high safety standards, the conference covered many key issues in the materials industry today. All the above topics are reflected in this focus issue of STAM, which introduces recent global trends in structural materials research with contributions from world-leading researchers in this field. This issue covers the development of novel alloys, current methodologies in the characterization of structural materials and fundamental research on structure-property relationships. We are grateful to the authors who contributed to cover these issues, and sincerely hope that our readers will expand their knowledge of emerging international research within the field of structural materials.

  18. Relationship between hyposalivation and oxidative stress in aging mice.

    PubMed

    Yamauchi, Yoshitaka; Matsuno, Tomonori; Omata, Kazuhiko; Satoh, Tazuko

    2017-07-01

    The increase in oxidative stress that accompanies aging has been implicated in the abnormal advance of aging and in the onset of various systemic diseases. However, the details of what effects the increase in oxidative stress that accompanies aging has on saliva secretion are not known. In this study, naturally aging mice were used to examine the stimulated whole saliva flow rate, saliva and serum oxidative stress, antioxidant level, submandibular gland H-E staining, and immunofluorescence staining to investigate the effect of aging on the volume of saliva secretion and the relationship with oxidative stress, as well as the effect of aging on the structure of salivary gland tissue. The stimulated whole saliva flow rate decreased significantly with age. Also, oxidative stress increased significantly with age. Antioxidant levels, however, decreased significantly with age. Structural changes of the submandibular gland accompanying aging included atrophy of parenchyma cells and fatty degeneration and fibrosis of stroma, and the submandibular gland weight ratio decreased. These results suggest that oxidative stress increases with age, not just systemically but also locally in the submandibular gland, and that oxidative stress causes changes in the structure of the salivary gland and is involved in hyposalivation.

  19. Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation

    PubMed Central

    Siraj, Maheyzah Md; Zainal, Anazida; Elshoush, Huwaida Tagelsir; Elhaj, Fatin

    2016-01-01

    Grouping and clustering alerts for intrusion detection based on the similarity of features is referred to as structurally base alert correlation and can discover a list of attack steps. Previous researchers selected different features and data sources manually based on their knowledge and experience, which lead to the less accurate identification of attack steps and inconsistent performance of clustering accuracy. Furthermore, the existing alert correlation systems deal with a huge amount of data that contains null values, incomplete information, and irrelevant features causing the analysis of the alerts to be tedious, time-consuming and error-prone. Therefore, this paper focuses on selecting accurate and significant features of alerts that are appropriate to represent the attack steps, thus, enhancing the structural-based alert correlation model. A two-tier feature selection method is proposed to obtain the significant features. The first tier aims at ranking the subset of features based on high information gain entropy in decreasing order. The‏ second tier extends additional features with a better discriminative ability than the initially ranked features. Performance analysis results show the significance of the selected features in terms of the clustering accuracy using 2000 DARPA intrusion detection scenario-specific dataset. PMID:27893821

  20. Modulators and inhibitors of gamma- and beta-secretases.

    PubMed

    Schmidt, Boris; Baumann, Stefanie; Narlawar, Rajeshwar; Braun, Hannes A; Larbig, Gregor

    2006-01-01

    Most gene mutations associated with Alzheimer's disease point to the metabolism of amyloid precursor protein as a potential cause. The beta- and gamma-secretases are two executioners of amyloid precursor protein processing resulting in amyloid-beta. Significant progress has been made in the selective inhibition of both proteases, regardless of structural information for gamma-secretase. Several peptidic and nonpeptidic leads were identified for both targets. Copyright 2006 S. Karger AG, Basel.

  1. Social Media Strategies for the United States Armed Forces: An Israeli Case Study

    DTIC Science & Technology

    2013-05-03

    experiences a significant military failure. Discussion: The US military is facing pressure to adapt to a rapidly evolving information environment...Marine Corps, but as I explored the issue, it rapidly became apparent that the institutional structures that both enable and constrain social media use... rapidly changing nature of the information environment itself is causing drastic societal changes, with widespread effects on both individual and

  2. Chemical Fracturing of Refractory-Metal Vessels

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Localized reactions cause refractory-metal vessels to break up at predetermined temperatures. Device following concept designed to break up along predetermined lines into smaller pieces at temperature significantly below melting point of metal from which made. Possible applications include fire extinguishers that breakup to release extinguishing gas in enclosed areas, pressure vessels that could otherwise burst dangerously in fire, and self-destroying devices. Technique particularly suitable modification to already existing structures.

  3. Fuels planning: science synthesis and integration; environmental consequences fact sheet 03: structure fires in the wildland-urban interface

    Treesearch

    Steve Sutherland

    2004-01-01

    National Fire Protection Association (NFPA) data indicate that wildfires destroyed approximately 9,000 homes between 1985 and 1994 in the United States. The loss of homes to wildfire has had a significant impact on Federal fire policy. This fact sheet discusses the causes of home ignitions in the wildland-urban interface, home ignition zones, how to reduce home...

  4. Novel CDK inhibition profiles of structurally varied 1-aza-9-oxafluorenes.

    PubMed

    Voigt, Burkhardt; Meijer, Laurent; Lozach, Olivier; Schächtele, Christoph; Totzke, Frank; Hilgeroth, Andreas

    2005-02-01

    A series of 1-aza-9-oxafluorenes with functionally varied 3-substituents have been prepared from N-phenoxycarbonyl-4-phenyl-1,4-dihydropyridines and p-benzoquinone and biologically evaluated as inhibitors of various cyclin-dependant kinases. The absence of a 3-hydrogen bond acceptor function leads to a complete loss of inhibitory activity. Differing hydrogen bond acceptor functions surprisingly cause significant shifts in the selectivity of inhibition profiles.

  5. Symposium Z: Materials Challenges for Energy Storage Across Multiple Scales

    DTIC Science & Technology

    2015-04-02

    materials significantly improve the conductivity of the S and effectively buffer the structural strain/stress caused by the large volume change during...UNCD coating provide effective conduction channels for both electrons and Li-ions and protect the integrity of SiNWs by featuring electrochemical...approach circumvents the need to apply coatings to the carbon or for thermal infusion of the sulfur into a porous carbon host. Preliminary thermodynamic

  6. Whole exome sequencing confirms the clinical diagnosis of Marfan syndrome combined with X-linked hypophosphatemia.

    PubMed

    Sheng, Xunlun; Chen, Xue; Lei, Bo; Chen, Rui; Wang, Hui; Zhang, Fangxia; Rong, Weining; Ha, Ruoshui; Liu, Yani; Zhao, Feng; Yang, Peizeng; Zhao, Chen

    2015-06-04

    To determine the genetic lesions and to modify the clinical diagnosis for a Chinese family with significant intrafamilial phenotypic diversities and unusual presentations. Three affected patients and the asymptomatic father were included and received comprehensive systemic examinations. Whole exome sequencing (WES) was performed for mutation detection. Structural modeling test was applied to analyze the potential structural changes caused by the missense substitution. The proband showed a wide spectrum of systemic anomalies, including bilateral ectopia lentis, atrial septal defect, ventricular septal defect, widening of tibial metaphysis with medial bowing, and dolichostenomelia in digits, while her mother and elder brother only demonstrated similar skeletal changes. A recurrent mutation, PHEX p.R291*, was found in all patients, while a de novo mutation, FBN1 p.C792F, was only detected in the proband. The FBN1 substitution was also predicted to cause significant conformational change in fibrillin-1 protein, thus changing its physical and biological properties. Taken together, we finalized the diagnosis for this family as X-linked hypophosphatemia (XLH), and diagnosed this girl as Marfan syndrome combined with XLH, and congenital heart disease. Our study also emphasizes the importance of WES in assisting the clinical diagnosis for complicated cases when the original diagnoses are challenged.

  7. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions

    NASA Astrophysics Data System (ADS)

    Li, Xiangchen; Yan, Xiaopeng; Kang, Yili

    2018-04-01

    The combined effects of gas sorption, stress and temperature play a significant role in the changing behavior of gas permeability in coal seams. The effect of temperature on nitrogen and methane permeability of naturally fractured coal is investigated. Coal permeability, P-wave velocity and axial strain were simultaneously measured under two effective stresses and six different temperatures. The results showed that the behavior of nitrogen and methane permeability presented nonmonotonic changes with increasing temperature. The variation in the P-wave velocity and axial strain showed a good correspondence with coal permeability. A higher effective stress limited the bigger deformation and caused the small change in permeability. Methane adsorption and desorption significantly influence the mechanical properties of coal and play an important role in the variations in coal permeability. The result of coal permeability during a complete stress-strain process showed that the variation in permeability is determined by the evolution of the internal structure. The increase in the temperature of the gas saturated coal causes the complex interaction between matrix swelling, matrix shrinkage and micro-fracture generation, which leads to the complex changes in coal structure and permeability. These results are helpful to understand the gas transport mechanism for exploiting coal methane by heat injection.

  8. Spatial and Temporal Variation of Archaeal, Bacterial and Fungal Communities in Agricultural Soils

    PubMed Central

    Pereira e Silva, Michele C.; Dias, Armando Cavalcante Franco; van Elsas, Jan Dirk; Salles, Joana Falcão

    2012-01-01

    Background Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. Methodology/Principal Findings In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal β-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal β-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers. Conclusions Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities. PMID:23284712

  9. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO 4

    DOE PAGES

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; ...

    2015-07-06

    We report significant details of the magnetic structure and spin dynamics of LiFePO 4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, wemore » show that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.« less

  10. Structural investigation of HIV-1 nonnucleoside reverse transcriptase inhibitors: 2-Aryl-substituted benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-11-01

    Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is one of the most destructive epidemics in history. Inhibitors of HIV enzymes are the main targets to develop drugs against that disease. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic. Structural studies provide information necessary to design more active compounds. The crystal structures of four NNRTI derivatives of 2-aryl-substituted N-benzyl-benzimidazole are presented here. Analysis of the geometrical parameters shows that the structures of the investigated inhibitors are rigid. The important geometrical parameter is the dihedral angle between the planes of the π-electron systems of the benzymidazole and benzyl moieties. The values of these dihedral angles are in a narrow range for all investigated inhibitors. There is no significant difference between the structure of the free inhibitor and the inhibitor in the complex with RT HIV-1. X-ray structures of the investigated inhibitors are a good basis for modeling enzyme-inhibitor interactions in rational drug design.

  11. STS-133/ET-137 Tanking Test Photogrammetry Assessment

    NASA Technical Reports Server (NTRS)

    Oliver, Stanley T.

    2012-01-01

    Following the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, an anomalous condition of cracked and raised thermal protection system (TPS) foam was observed on the External Tank (ET). Subsequent dissection of the affected TPS region revealed cracks in the feet of two Intertank (IT) metallic stringers. An extensive investigation into the cause(s) and corrective action(s) for the cracked stringers was initiated, involving a wide array of material and structural tests and nondestructive evaluations, with the intent to culminate into the development of flight rational. One such structural test was the instrumented tanking test performed on December 17, 2010. The tanking test incorporated two three-dimensional optical displacement measurement systems to measure full-field outer surface displacements of the TPS surrounding the affected region that contained the stringer cracks. The results showed that the radial displacement and rotation of the liquid oxygen (LO2) tank flange changed significantly as the fluid level of the LO2 approached and passed the LO2 tank flange.

  12. Thermal alteration experiments on organic matter in recent marine sediments as a model for petroleum genesis

    NASA Technical Reports Server (NTRS)

    Baedecker, M. J.; Ikan, R.; Ishiwatari, R.; Kaplan, I. R.

    1977-01-01

    The fate of naturally occurring lipids and pigments in a marine sediment exposed to elevated temperatures was studied. Samples of a young marine sediment from Tanner Basin, California, were heated to a series of temperatures (65-200 C) for varying periods of time (7-64 days). The sediment was analyzed prior to and after heating for pigments, isoprenoid compounds, alcohols, fatty acids, and hydrocarbons. Structural changes caused by heating unextractable organic material (kerogen) were also studied, and the significance of the results for understanding petroleum genesis is considered. Among other results, fatty acids and hydrocarbons increased in abundance although there appeared to be no obvious precursor-to-product relationship via simple decarboxylation reactions. Chlorins were partially converted into porphyrins. The phytyl side chain of pheophytin was initially preserved intact by reduction of the phytyl double bond, but later converted to a variety of isoprenoid compounds including alkanes. Thermal grafting of components onto kerogen occurred as well as structural changes caused by heat.

  13. Identifcation of a Novel Mutation p.I240T in the FRMD7 gene in a Family with Congenital Nystagmus

    NASA Astrophysics Data System (ADS)

    Zhu, Yihua; Zhuang, Jianfu; Ge, Xianglian; Zhang, Xiao; Wang, Zheng; Sun, Ji; Yang, Juhua; Gu, Feng

    2013-10-01

    Congenital Nystagmus (CN) is a genetically heterogeneous ocular disease, which causes a significant proportion of childhood visual impairment. To identify the underlying genetic defect of a CN family, twenty-two members were recruited. Genotype analysis showed that affected individuals shared a common haplotype with markers flanking FRMD7 locus. Sequencing FRMD7 revealed a T > C transition in exon 8, causing a conservative substitution of Isoleucine to Tyrosine at codon 240. By protein structural modeling, we found the mutation may disrupt the hydrophobic core and destabilize the protein structure. We reviewed the literature and found that exons 2, 8, and 9 (11.4% of the sequence of FRMD7 mRNA) represent the majority (55.3%) of the reported FRMD7 mutations. In summary, we identified a novel mutation in FRMD7, showed its molecular consequence, and revealed the mutation-rich exons of the FRMD7 gene. Collectively, this provides molecular insights for future CN clinical genetic diagnosis and treatment.

  14. Causes of sudden death in young female military recruits.

    PubMed

    Eckart, Robert E; Scoville, Stephanie L; Shry, Eric A; Potter, Robert N; Tedrow, Usha

    2006-06-15

    This study sought to examine the incidence of sudden death in a large, multiethnic cohort of young women. Approximately 852,300 women entered basic military training from 1977 to 2001. During this period, there were 15 sudden deaths in female recruits (median age 19 years, 73% African-American), occurring at a median of 25 days after arrival for training. Of the sudden deaths, 13 (81%) were due to reasons that may have been cardiac in origin. Presumed arrhythmic sudden death in the setting of a structurally normal heart was seen in 8 recruits (53%), and anomalous coronary origins were found in 2 recruits (13%). The mortality rate was 11.4 deaths per 100,000 recruit-years (95% confidence interval 6.9 to 18.9). The rate was significantly higher for African-American female recruits (risk ratio 10.2, p <0.001). Sudden death with a structurally normal heart was the leading cause of death in female recruits during military training.

  15. The High-Strain Rate Loading of Structural Biological Materials

    NASA Astrophysics Data System (ADS)

    Proud, W. G.; Nguyen, T.-T. N.; Bo, C.; Butler, B. J.; Boddy, R. L.; Williams, A.; Masouros, S.; Brown, K. A.

    2015-10-01

    The human body can be subjected to violent acceleration as a result of explosion caused by military ordinance or accident. Blast waves cause injury and blunt trauma can be produced by violent impact of objects against the human body. The long-term clinical manifestations of blast injury can be significantly different in nature and extent to those suffering less aggressive insult. Similarly, the damage seen in lower limbs from those injured in explosion incidents is in general more severe than those falling from height. These phenomena increase the need for knowledge of the short- and long-term effect of transient mechanical loading to the biological structures of the human body. This paper gives an overview of some of the results of collaborative investigation into blast injury. The requirement for time-resolved data, appropriate mechanical modeling, materials characterization and biological effects is presented. The use of a range of loading platforms, universal testing machines, drop weights, Hopkinson bars, and bespoke traumatic injury simulators are given.

  16. The place of human values in the language of science: Kuhn, Saussure, and structuralism.

    PubMed

    Psaty, B M; Inui, T S

    1991-12-01

    The current paradigm in medicine generally distinguishes between genetic and environmental causes of disease. Although the word "paradigm" has become a commonplace, the theories of Thomas Kuhn have not received much attention in the journals of medicine. Kuhn's structuralist method differs radically from the daily activities of the scientific method itself. Using linguistic theory, this essay offers a structuralist reading of Thomas Kuhn's The Structure of Scientific Revolutions. Our purpose is to highlight the similarities between these structuralist models of science and language. In part, we focus on the logic that enables Kuhn to assert the priority of perception over interpretation in the history of science. To illustrate some of these issues, we refer to the distinction between environmental and genetic causes of disease. While the activity of scientific research results in the revision of concepts in science, the production of significant differences that shape our knowledge is in part a social and linguistic process.

  17. Identifcation of a novel mutation p.I240T in the FRMD7 gene in a family with congenital nystagmus.

    PubMed

    Zhu, Yihua; Zhuang, Jianfu; Ge, Xianglian; Zhang, Xiao; Wang, Zheng; Sun, Ji; Yang, Juhua; Gu, Feng

    2013-10-30

    Congenital Nystagmus (CN) is a genetically heterogeneous ocular disease, which causes a significant proportion of childhood visual impairment. To identify the underlying genetic defect of a CN family, twenty-two members were recruited. Genotype analysis showed that affected individuals shared a common haplotype with markers flanking FRMD7 locus. Sequencing FRMD7 revealed a T > C transition in exon 8, causing a conservative substitution of Isoleucine to Tyrosine at codon 240. By protein structural modeling, we found the mutation may disrupt the hydrophobic core and destabilize the protein structure. We reviewed the literature and found that exons 2, 8, and 9 (11.4% of the sequence of FRMD7 mRNA) represent the majority (55.3%) of the reported FRMD7 mutations. In summary, we identified a novel mutation in FRMD7, showed its molecular consequence, and revealed the mutation-rich exons of the FRMD7 gene. Collectively, this provides molecular insights for future CN clinical genetic diagnosis and treatment.

  18. Identifcation of a Novel Mutation p.I240T in the FRMD7 gene in a Family with Congenital Nystagmus

    PubMed Central

    Zhu, Yihua; Zhuang, Jianfu; Ge, Xianglian; Zhang, Xiao; Wang, Zheng; Sun, Ji; Yang, Juhua; Gu, Feng

    2013-01-01

    Congenital Nystagmus (CN) is a genetically heterogeneous ocular disease, which causes a significant proportion of childhood visual impairment. To identify the underlying genetic defect of a CN family, twenty-two members were recruited. Genotype analysis showed that affected individuals shared a common haplotype with markers flanking FRMD7 locus. Sequencing FRMD7 revealed a T > C transition in exon 8, causing a conservative substitution of Isoleucine to Tyrosine at codon 240. By protein structural modeling, we found the mutation may disrupt the hydrophobic core and destabilize the protein structure. We reviewed the literature and found that exons 2, 8, and 9 (11.4% of the sequence of FRMD7 mRNA) represent the majority (55.3%) of the reported FRMD7 mutations. In summary, we identified a novel mutation in FRMD7, showed its molecular consequence, and revealed the mutation-rich exons of the FRMD7 gene. Collectively, this provides molecular insights for future CN clinical genetic diagnosis and treatment. PMID:24169426

  19. Desiccant outdoor air preconditioners maximize heat recovery ventilation potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meckler, M.

    1995-12-31

    Microorganisms are well protected indoors by the moisture surrounding them if the relative humidity is above 70%. They can cause many acute diseases, infections, and allergies. Humidity also has an effect on air cleanliness and causes the building structure and its contents to deteriorate. Therefore, controlling humidity is a very important factor to human health and comfort and the structural longevity of a building. To date, a great deal of research has been done, and is continuing, in the use of both solid and liquid desiccants. This paper introduces a desiccant-assisted system that combines dehumidification and mechanical refrigeration by meansmore » of a desiccant preconditioning module that can serve two or more conventional air-conditioning units. It will be demonstrated that the proposed system, also having indirect evaporative cooling within the preconditioning module, can reduce energy consumption and provide significant cost savings, independent humidity and temperature control, and, therefore, improved indoor air quality and enhanced occupant comfort.« less

  20. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System.

    PubMed

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-09-03

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments.

  1. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System

    PubMed Central

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-01-01

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174

  2. Effect of copper sulphate treatment on natural phytoplanktonic communities.

    PubMed

    Le Jeune, Anne-Hélène; Charpin, Marie; Deluchat, Véronique; Briand, Jean-François; Lenain, Jean-François; Baudu, Michel; Amblard, Christian

    2006-12-01

    Copper sulphate treatment is widely used as a global and empirical method to remove or control phytoplankton blooms without precise description of the impact on phytoplanktonic populations. The effects of two copper sulphate treatments on natural phytoplanktonic communities sampled in the spring and summer seasons, were assessed by indoor mesocosm experiments. The initial copper-complexing capacity of each water sample was evaluated before each treatment. The copper concentrations applied were 80 microg l(-1) and 160 microg l(-1) of copper, below and above the water complexation capacity, respectively. The phytoplanktonic biomass recovered within a few days after treatment. The highest copper concentration, which generated a highly toxic environment, caused a global decrease in phytoplankton diversity, and led to the development and dominance of nanophytoplanktonic Chlorophyceae. In mesocosms treated with 80 microg l(-1) of copper, the effect on phytoplanktonic community size-class structure and composition was dependent on seasonal variation. This could be related to differences in community composition, and thus to species sensitivity to copper and to differences in copper bioavailability between spring and summer. Both treatments significantly affected cyanobacterial biomass and caused changes in the size-class structure and composition of phytoplanktonic communities which may imply modifications of the ecosystem structure and function.

  3. CT-based MCNPX dose calculations for gynecology brachytherapy employing a Henschke applicator

    NASA Astrophysics Data System (ADS)

    Yu, Pei-Chieh; Nien, Hsin-Hua; Tung, Chuan-Jong; Lee, Hsing-Yi; Lee, Chung-Chi; Wu, Ching-Jung; Chao, Tsi-Chian

    2017-11-01

    The purpose of this study is to investigate the dose perturbation caused by the metal ovoid structures of a Henschke applicator using Monte Carlo simulation in a realistic phantom. The Henschke applicator has been widely used for gynecologic patients treated by brachytherapy in Taiwan. However, the commercial brachytherapy planning system (BPS) did not properly evaluate the dose perturbation caused by its metal ovoid structures. In this study, Monte Carlo N-Particle Transport Code eXtended (MCNPX) was used to evaluate the brachytherapy dose distribution of a Henschke applicator embedded in a Plastic water phantom and a heterogeneous patient computed tomography (CT) phantom. The dose comparison between the MC simulations and film measurements for a Plastic water phantom with Henschke applicator were in good agreement. However, MC dose with the Henschke applicator showed significant deviation (-80.6%±7.5%) from those without Henschke applicator. Furthermore, the dose discrepancy in the heterogeneous patient CT phantom and Plastic water phantom CT geometries with Henschke applicator showed 0 to -26.7% dose discrepancy (-8.9%±13.8%). This study demonstrates that the metal ovoid structures of Henschke applicator cannot be disregard in brachytherapy dose calculation.

  4. Beach Resilience to Coastal Structures on a Natural Beach

    NASA Astrophysics Data System (ADS)

    Torres-Freyermuth, A.; Medellín, G.; Hofman, A.; Tereszkiewicz, P.; Palemón-Arcos, L.; López-González, J.

    2016-12-01

    Beach resilience plays an important role on reducing coastal risk associated to either natural or human induced perturbations affecting the coast. Field experiments were conducted in order to investigate beach resilience in Sisal, Yucatán. Both impermeable and permeable 14-m groins were designed to asses the impact of coastal structures on the beach morphology during a 24-hour period. The experiments were conducted in the spring of 2015 and 2016, allowing the assessment of both structures under similar forcing conditions. Intense sea breeze events (W>12 m/s) generated high-angle short-waves, driving alongshore transport in the swash zone. Wind, waves, tides, and currents were measured concurrently and are correlated with beach morphology evolution data derived from intense monitoring conducted during the structure deployment. The impermeable structure induced a significant beach accretion (>60 m3/day) in the updrift side of the structure causing a tremendous impact downdrift. On the other hand, the permeable groin induced a smaller but still significant accretion (40 m3/day), allowing sediment bypass throughout the structure. Furthermore, the beach surveying continued after structures removal in order to estimate the beach recovery capability. Field observations show that the impact of the structure on the morphology is negligible six days after structure removal for the impermeable groin and only one day for the permeable structure. The latter suggests the high beach resilience of the study area. We acknowledge field support provided by researchers and students at the LIPC-UNAM. Financial support was provided by CONACYT (Projects LN271544 and Cátedras 1146), DGAPA-UNAM (PAPIIT-IN107315) and Grupo BARI.

  5. Diagnosis of reversible causes of coma.

    PubMed

    Edlow, Jonathan A; Rabinstein, Alejandro; Traub, Stephen J; Wijdicks, Eelco F M

    2014-12-06

    Because coma has many causes, physicians must develop a structured, algorithmic approach to diagnose and treat reversible causes rapidly. The three main mechanisms of coma are structural brain lesions, diffuse neuronal dysfunction, and, rarely, psychiatric causes. The first priority is to stabilise the patient by treatment of life-threatening conditions, then to use the history, physical examination, and laboratory findings to identify structural causes and diagnose treatable disorders. Some patients have a clear diagnosis. In those who do not, the first decision is whether brain imaging is needed. Imaging should be done in post-traumatic coma or when structural brain lesions are probable or possible causes. Patients who do not undergo imaging should be reassessed regularly. If CT is non-diagnostic, a checklist should be used use to indicate whether advanced imaging is needed or evidence is present of a treatable poisoning or infection, seizures including non-convulsive status epilepticus, endocrinopathy, or thiamine deficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Processing of single channel air and water gun data for imaging an impact structure at the Chesapeake Bay

    USGS Publications Warehouse

    Lee, Myung W.

    1999-01-01

    Processing of 20 seismic profiles acquired in the Chesapeake Bay area aided in analysis of the details of an impact structure and allowed more accurate mapping of the depression caused by a bolide impact. Particular emphasis was placed on enhancement of seismic reflections from the basement. Application of wavelet deconvolution after a second zero-crossing predictive deconvolution improved the resolution of shallow reflections, and application of a match filter enhanced the basement reflections. The use of deconvolution and match filtering with a two-dimensional signal enhancement technique (F-X filtering) significantly improved the interpretability of seismic sections.

  7. Investigation of SSME alternate high pressure fuel turbopump lift-off seal fluid and structural dynamic interaction

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1989-01-01

    The Space Shuttle main engine (SSME) alternate turbopump development program (ATD) high pressure fuel turbopump (HPFTP) design utilizes an innovative lift-off seal (LOS) design that is located in close proximity to the turbine end bearing. Cooling flow exiting the bearing passes through the lift-off seal during steady state operation. The potential for fluid excitation of lift-off seal structural resonances is investigated. No fluid excitation of LOS resonances is predicted. However, if predicted LOS natural frequencies are significantly lowered by the presence of the coolant, pressure oscillations caused by synchronous whirl of the HPFTP rotor may excite a resonance.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Cappa, Frédéric; Rinaldi, Antonio P.

    In this paper, we present model simulations of ground motions caused by CO 2 -injection-induced fault reactivation and analyze the results in terms of the potential for damage to ground surface structures and nuisance to the local human population. It is an integrated analysis from cause to consequence, including the whole chain of processes starting from earthquake inception in the subsurface, wave propagation toward the ground surface, and assessment of the consequences of ground vibration. For a small magnitude (M w =3) event at a hypocenter depth of about 1000m, we first used the simulated ground-motion wave train in anmore » inverse analysis to estimate source parameters (moment magnitude, rupture dimensions and stress drop), achieving good agreement and thereby verifying the modeling of the chain of processes from earthquake inception to ground vibration. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and frequency content, with comparison to U.S. Geological Survey's instrumental intensity scales for earthquakes and the U.S. Bureau of Mines' vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. Our results confirm the appropriateness of using PGV (rather than PGA) and frequency for the evaluation of potential ground-vibration effects on structures and humans from shallow injection-induced seismic events. For the considered synthetic M w =3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, but would certainly be felt by the local population.« less

  9. Combining Functional and Structural Genomics to Sample the Essential Burkholderia Structome

    PubMed Central

    Baugh, Loren; Gallagher, Larry A.; Patrapuvich, Rapatbhorn; Clifton, Matthew C.; Gardberg, Anna S.; Edwards, Thomas E.; Armour, Brianna; Begley, Darren W.; Dieterich, Shellie H.; Dranow, David M.; Abendroth, Jan; Fairman, James W.; Fox, David; Staker, Bart L.; Phan, Isabelle; Gillespie, Angela; Choi, Ryan; Nakazawa-Hewitt, Steve; Nguyen, Mary Trang; Napuli, Alberto; Barrett, Lynn; Buchko, Garry W.; Stacy, Robin; Myler, Peter J.; Stewart, Lance J.; Manoil, Colin; Van Voorhis, Wesley C.

    2013-01-01

    Background The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. Methodology/Principal Findings We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an “ortholog rescue” strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. Conclusions/Significance This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases caused by Burkholderia. All expression clones and proteins created in this study are freely available by request. PMID:23382856

  10. Estimation of Uncertainties in the Global Distance Test (GDT_TS) for CASP Models.

    PubMed

    Li, Wenlin; Schaeffer, R Dustin; Otwinowski, Zbyszek; Grishin, Nick V

    2016-01-01

    The Critical Assessment of techniques for protein Structure Prediction (or CASP) is a community-wide blind test experiment to reveal the best accomplishments of structure modeling. Assessors have been using the Global Distance Test (GDT_TS) measure to quantify prediction performance since CASP3 in 1998. However, identifying significant score differences between close models is difficult because of the lack of uncertainty estimations for this measure. Here, we utilized the atomic fluctuations caused by structure flexibility to estimate the uncertainty of GDT_TS scores. Structures determined by nuclear magnetic resonance are deposited as ensembles of alternative conformers that reflect the structural flexibility, whereas standard X-ray refinement produces the static structure averaged over time and space for the dynamic ensembles. To recapitulate the structural heterogeneous ensemble in the crystal lattice, we performed time-averaged refinement for X-ray datasets to generate structural ensembles for our GDT_TS uncertainty analysis. Using those generated ensembles, our study demonstrates that the time-averaged refinements produced structure ensembles with better agreement with the experimental datasets than the averaged X-ray structures with B-factors. The uncertainty of the GDT_TS scores, quantified by their standard deviations (SDs), increases for scores lower than 50 and 70, with maximum SDs of 0.3 and 1.23 for X-ray and NMR structures, respectively. We also applied our procedure to the high accuracy version of GDT-based score and produced similar results with slightly higher SDs. To facilitate score comparisons by the community, we developed a user-friendly web server that produces structure ensembles for NMR and X-ray structures and is accessible at http://prodata.swmed.edu/SEnCS. Our work helps to identify the significance of GDT_TS score differences, as well as to provide structure ensembles for estimating SDs of any scores.

  11. Three-dimensional spatial analysis of missense variants in RTEL1 identifies pathogenic variants in patients with Familial Interstitial Pneumonia.

    PubMed

    Sivley, R Michael; Sheehan, Jonathan H; Kropski, Jonathan A; Cogan, Joy; Blackwell, Timothy S; Phillips, John A; Bush, William S; Meiler, Jens; Capra, John A

    2018-01-23

    Next-generation sequencing of individuals with genetic diseases often detects candidate rare variants in numerous genes, but determining which are causal remains challenging. We hypothesized that the spatial distribution of missense variants in protein structures contains information about function and pathogenicity that can help prioritize variants of unknown significance (VUS) and elucidate the structural mechanisms leading to disease. To illustrate this approach in a clinical application, we analyzed 13 candidate missense variants in regulator of telomere elongation helicase 1 (RTEL1) identified in patients with Familial Interstitial Pneumonia (FIP). We curated pathogenic and neutral RTEL1 variants from the literature and public databases. We then used homology modeling to construct a 3D structural model of RTEL1 and mapped known variants into this structure. We next developed a pathogenicity prediction algorithm based on proximity to known disease causing and neutral variants and evaluated its performance with leave-one-out cross-validation. We further validated our predictions with segregation analyses, telomere lengths, and mutagenesis data from the homologous XPD protein. Our algorithm for classifying RTEL1 VUS based on spatial proximity to pathogenic and neutral variation accurately distinguished 7 known pathogenic from 29 neutral variants (ROC AUC = 0.85) in the N-terminal domains of RTEL1. Pathogenic proximity scores were also significantly correlated with effects on ATPase activity (Pearson r = -0.65, p = 0.0004) in XPD, a related helicase. Applying the algorithm to 13 VUS identified from sequencing of RTEL1 from patients predicted five out of six disease-segregating VUS to be pathogenic. We provide structural hypotheses regarding how these mutations may disrupt RTEL1 ATPase and helicase function. Spatial analysis of missense variation accurately classified candidate VUS in RTEL1 and suggests how such variants cause disease. Incorporating spatial proximity analyses into other pathogenicity prediction tools may improve accuracy for other genes and genetic diseases.

  12. Study on the fabrication of composite photonic crystals with high structural stability by co-sedimentation self-assembly on fabric substrates

    NASA Astrophysics Data System (ADS)

    Li, Yichen; Zhou, Lan; Liu, Guojin; Chai, Liqin; Fan, Qinguo; Shao, Jianzhong

    2018-06-01

    The Silica/Poly(methylmethacrylate-butylacrylate)[SiO2/P(MMA-BA)] photonic crystals(PCs) with brilliant structural colors were fabricated on fabric substrates by co-sedimentation self-assembly, in which the relatively smaller P(MMA-BA) copolymer particles filled in the interstices among the larger SiO2 microspheres. The fabricated composite PCs were mechanically robust and strongly bonded to the substrate because of the cementing effect caused by the soft P(MMA-BA) copolymer particles filling in the interstices of the SiO2 microspheres like cement filling in the gap and tightly holding stones in a sturdy cement wall. The volume fraction and the size ratios of the two components significantly influenced the structural colors of the composite PCs, and the larger volume fraction could improve the structural stability of the composite PCs, while the smaller size ratios could enhance the brightness of the structural colors of the composite PCs. The composite PCs with both high structural stability and brilliant structural colors have great application prospect for structural coloration of textiles.

  13. Structural analysis of determinants of histo-blood group antigen binding specificity in genogroup I noroviruses.

    PubMed

    Shanker, Sreejesh; Czako, Rita; Sankaran, Banumathi; Atmar, Robert L; Estes, Mary K; Prasad, B V Venkataram

    2014-06-01

    Human noroviruses (NoVs) cause acute epidemic gastroenteritis. Susceptibility to the majority of NoV infections is determined by genetically controlled secretor-dependent expression of histo-blood group antigens (HBGAs), which are also critical for NoV attachment to host cells. Human NoVs are classified into two major genogroups (genogroup I [GI] and GII), with each genogroup further divided into several genotypes. GII NoVs are more prevalent and exhibit periodic emergence of new variants, suggested to be driven by altered HBGA binding specificities and antigenic drift. Recent epidemiological studies show increased activity among GI NoVs, with some members showing the ability to bind nonsecretor HBGAs. NoVs bind HBGAs through the protruding (P) domain of the major capsid protein VP1. GI NoVs, similar to GII, exhibit significant sequence variations in the P domain; it is unclear how these variations affect HBGA binding specificities. To understand the determinants of possible strain-specific HBGA binding among GI NoVs, we determined the structure of the P domain of a GI.7 clinical isolate and compared it to the previously determined P domain structures of GI.1 and GI.2 strains. Our crystallographic studies revealed significant structural differences, particularly in the loop regions of the GI.7 P domain, altering its surface topography and electrostatic landscape and potentially indicating antigenic variation. The GI.7 strain bound to H- and A-type, Lewis secretor, and Lewis nonsecretor families of HBGAs, allowing us to further elucidate the structural determinants of nonsecretor HBGA binding among GI NoVs and to infer several contrasting and generalizable features of HBGA binding in the GI NoVs. Human noroviruses (NoVs) cause acute epidemic gastroenteritis. Recent epidemiological studies have shown increased prevalence of genogroup I (GI) NoVs. Although secretor-positive status is strongly correlated with NoV infection, cases of NoV infection associated with secretor-negative individuals are reported. Biochemical studies have shown that GI NoVs exhibit genotype-dependent binding to nonsecretor histo-blood group antigens (HBGAs). From our crystallographic studies of a GI.7 NoV, in comparison with previous studies on GI.1 and GI.2 NoVs, we show that genotypic differences translate to extensive structural changes in the loop regions that significantly alter the surface topography and electrostatic landscape of the P domain; these features may be indicative of antigenic variations contributing to serotypic differentiation in GI NoVs and also differential modulation of the HBGA binding characteristics. A significant finding is that the threshold length and the structure of one of the loops are critical determinants in the binding of GI NoVs to nonsecretor HBGAs.

  14. Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. Reece; Sherman, Daniel M.; Wilkinson, Stephen P.

    1998-01-01

    Low speed wind tunnel data have been acquired for planar panels covered by a uniform, glow-discharge surface plasma in atmospheric pressure air known as the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). Streamwise and spanwise arrays of flush, plasma-generating surface electrodes have been studied in laminar, transitional, and fully turbulent boundary layer flow. Plasma between symmetric streamwise electrode strips caused large increases in panel drag, whereas asymmetric spanwise electrode configurations produced a significant thrust. Smoke wire flow visualization and mean velocity diagnostics show the primary cause of the phenomena to be a combination of mass transport and vortical structures induced by strong paraelectric ElectroHydroDynamic (EHD) body forces on the flow.

  15. Effect of homogenization and pasteurization on the structure and stability of whey protein in milk.

    PubMed

    Qi, Phoebe X; Ren, Daxi; Xiao, Yingping; Tomasula, Peggy M

    2015-05-01

    The effect of homogenization alone or in combination with high-temperature, short-time (HTST) pasteurization or UHT processing on the whey fraction of milk was investigated using highly sensitive spectroscopic techniques. In pilot plant trials, 1-L quantities of whole milk were homogenized in a 2-stage homogenizer at 35°C (6.9 MPa/10.3 MPa) and, along with skim milk, were subjected to HTST pasteurization (72°C for 15 s) or UHT processing (135°C for 2 s). Other whole milk samples were processed using homogenization followed by either HTST pasteurization or UHT processing. The processed skim and whole milk samples were centrifuged further to remove fat and then acidified to pH 4.6 to isolate the corresponding whey fractions, and centrifuged again. The whey fractions were then purified using dialysis and investigated using the circular dichroism, Fourier transform infrared, and Trp intrinsic fluorescence spectroscopic techniques. Results demonstrated that homogenization combined with UHT processing of milk caused not only changes in protein composition but also significant secondary structural loss, particularly in the amounts of apparent antiparallel β-sheet and α-helix, as well as diminished tertiary structural contact. In both cases of homogenization alone and followed by HTST treatments, neither caused appreciable chemical changes, nor remarkable secondary structural reduction. But disruption was evident in the tertiary structural environment of the whey proteins due to homogenization of whole milk as shown by both the near-UV circular dichroism and Trp intrinsic fluorescence. In-depth structural stability analyses revealed that even though processing of milk imposed little impairment on the secondary structural stability, the tertiary structural stability of whey protein was altered significantly. The following order was derived based on these studies: raw whole>HTST, homogenized, homogenized and pasteurized>skimmed and pasteurized, and skimmed UHT>homogenized UHT. The methodology demonstrated in this study can be used to gain insight into the behavior of milk proteins when processed and provides a new empirical and comparative approach for analyzing and assessing the effect of processing schemes on the nutrition and quality of milk and dairy product without the need for extended separation and purification, which can be both time-consuming and disruptive to protein structures. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Interaction of a common painkiller piroxicam and copper-piroxicam with chromatin causes structural alterations accompanied by modulation at the epigenomic/genomic level.

    PubMed

    Goswami, Sathi; Sanyal, Sulagna; Chakraborty, Payal; Das, Chandrima; Sarkar, Munna

    2017-08-01

    NSAIDs are the most common class of painkillers and anti-inflammatory agents. They also show other functions like chemoprevention and chemosuppression for which they act at the protein but not at the genome level since they are mostly anions at physiological pH, which prohibit their approach to the poly-anionic DNA. Complexing the drugs with bioactive metal obliterate their negative charge and allow them to bind to the DNA, thereby, opening the possibility of genome level interaction. To test this hypothesis, we present the interaction of a traditional NSAID, Piroxicam and its copper complex with core histone and chromatin. Spectroscopy, DLS, and SEM studies were applied to see the effect of the interaction on the structure of histone/chromatin. This was coupled with MTT assay, immunoblot analysis, confocal microscopy, micro array analysis and qRT-PCR. The interaction of Piroxicam and its copper complex with histone/chromatin results in structural alterations. Such structural alterations can have different biological manifestations, but to test our hypothesis, we have focused only on the accompanied modulations at the epigenomic/genomic level. The complex, showed alteration of key epigenetic signatures implicated in transcription in the global context, although Piroxicam caused no significant changes. We have correlated such alterations caused by the complex with the changes in global gene expression and validated the candidate gene expression alterations. Our results provide the proof of concept that DNA binding ability of the copper complexes of a traditional NSAID, opens up the possibility of modulations at the epigenomic/genomic level. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Modeling of induced seismicity and ground vibrations associated with geologic CO 2 storage, and assessing their effects on surface structures and human perception

    DOE PAGES

    Rutqvist, Jonny; Cappa, Frédéric; Rinaldi, Antonio P.; ...

    2014-05-01

    In this paper, we present model simulations of ground motions caused by CO 2 -injection-induced fault reactivation and analyze the results in terms of the potential for damage to ground surface structures and nuisance to the local human population. It is an integrated analysis from cause to consequence, including the whole chain of processes starting from earthquake inception in the subsurface, wave propagation toward the ground surface, and assessment of the consequences of ground vibration. For a small magnitude (M w =3) event at a hypocenter depth of about 1000m, we first used the simulated ground-motion wave train in anmore » inverse analysis to estimate source parameters (moment magnitude, rupture dimensions and stress drop), achieving good agreement and thereby verifying the modeling of the chain of processes from earthquake inception to ground vibration. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and frequency content, with comparison to U.S. Geological Survey's instrumental intensity scales for earthquakes and the U.S. Bureau of Mines' vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. Our results confirm the appropriateness of using PGV (rather than PGA) and frequency for the evaluation of potential ground-vibration effects on structures and humans from shallow injection-induced seismic events. For the considered synthetic M w =3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, but would certainly be felt by the local population.« less

  18. Bridging the gap between individual-level risk for HIV and structural determinants: using root cause analysis in strategic planning.

    PubMed

    Willard, Nancy; Chutuape, Kate; Stines, Stephanie; Ellen, Jonathan M

    2012-01-01

    HIV prevention efforts have expanded beyond individual-level interventions to address structural determinants of risk. Coalitions have been an important vehicle for addressing similar intractable and deeply rooted health-related issues. A root cause analysis process may aid coalitions in identifying fundamental, structural-level contributors to risk and in identifying appropriate solutions. For this article, strategic plans for 13 coalitions were analyzed both before and after a root cause analysis approach was applied to determine the coalitions' strategic plans potential impact and comprehensiveness. After root cause analysis, strategic plans trended toward targeting policies and practices rather than on single agency programmatic changes. Plans expanded to target multiple sectors and several changes within sectors to penetrate deeply into a sector or system. Findings suggest that root cause analysis may be a viable tool to assist coalitions in identifying structural determinants and possible solutions for HIV risk.

  19. Molecular structures and functional relationships in clostridial neurotoxins.

    PubMed

    Swaminathan, Subramanyam

    2011-12-01

    The seven serotypes of Clostridium botulinum neurotoxins (A-G) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structure-function relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structures have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structure-function relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here. Journal compilation © 2011 FEBS. No claim to original US government works.

  20. Exploring the process-structure-function relationship of horseradish peroxidase through investigation of pH- and heat induced conformational changes

    NASA Astrophysics Data System (ADS)

    Stănciuc, Nicoleta; Aprodu, Iuliana; Ioniță, Elena; Bahrim, Gabriela; Râpeanu, Gabriela

    2015-08-01

    Given the importance of peroxidase as an indicator for the preservation of vegetables by heat treatment, the present study is focused on enzyme behavior under different pH and temperature conditions, in terms of process-structure-function relationships. Thus, the process-structure-function relationship of peroxidase was investigated by combining fluorescence spectroscopy, in silico prediction methods and inactivation kinetic studies. The fluorescence spectra indicated that at optimum pH value, the Trp117 residue is not located in the hydrophobic core of the protein. Significant blue- and red-shifts were obtained at different pH values, whereas the heat-treatment did not cause significant changes in Trp and Tyr environment. The ANS and quenching experiments demonstrated a more flexible conformation at lower pH and respectively at higher temperature. On the other hand molecular dynamics simulations at different temperatures highlighted that the secondary structure appeared better preserved against temperature, whereas the tertiary structure around the heme was more affected. Temperature dependent changes in the hydrogen bonding and ion paring involving amino acids from the heme-binding region (His170 and Asp247) might trigger miss-coordination of the heme iron atom by His170 residue and further enzyme activity loss.

  1. Evidence of Dynamic Crustal Deformation in Tohoku, Japan, From Time-Varying Receiver Functions

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Yoshioka, S.

    2017-10-01

    Temporal variation of crustal structure is key to our understanding of Earth processes on human timescales. Often, we expect that the most significant structural variations are caused by strong ground shaking associated with large earthquakes, and recent studies seem to confirm this. Here we test the possibility of using P receiver functions (PRF) to isolate structural variations over time. Synthetic receiver function tests indicate that structural variation could produce PRF changes on the same order of magnitude as random noise or contamination by local earthquakes. Nonetheless, we find significant variability in observed receiver functions over time at several stations located in northeastern Honshu. Immediately following the Tohoku-oki earthquake, we observe high PRF variation clustering spatially, especially in two regions near the beginning and end of the rupture plane. Due to the depth sensitivity of PRF and the timescales over which this variability is observed, we infer this effect is primarily due to fluid migration in volcanic regions and shear stress/strength reorganization. While the noise levels in PRF are high for this type of analysis, by sampling small data sets, the computational cost is lower than other methods, such as ambient noise, thereby making PRF a useful tool for estimating temporal variations in crustal structure.

  2. Effects of Monomer Structure on Their Organization and Polymerization in a Smectic Liquid Crystal

    PubMed

    Guymon; Hoggan; Clark; Rieker; Walba; Bowman

    1997-01-03

    Photopolymerizable diacrylate monomers dissolved in fluid-layer smectic A and smectic C liquid crystal (LC) hosts exhibited significant spatial segregation and orientation that depend strongly on monomer structure. Small, flexible monomers such as 1,6-hexanediol diacrylate (HDDA) oriented parallel to the smectic layers and intercalated, whereas rod-shaped mesogen-like monomers such as 1,4-di-(4-(6-acryloyloxyhexyloxy)benzoyloxy)-2-methylbenzene (C6M) oriented normal to the smectic layers and collected within them. Such spatial segregation caused by the smectic layering dramatically enhanced photopolymerization rates; for HDDA, termination rates were reduced, whereas for C6M, both the termination and propagation rates were increased. These polymerization precursor structures suggest novel materials-design paradigms for gel LCs and nanophase-separated polymer systems.

  3. Research on the technologies of cracking-resistance of mass concrete in subway station

    NASA Astrophysics Data System (ADS)

    Sheng, Yanmin; Li, Shujin; Jiang, Guoquan; Shi, Xiaoqing; Yang, Zhu; Zhu, Zhihang

    2018-03-01

    This paper takes the theory of multi-field coupling and the model of hydration-temperature-humidity-constraint to assess the effect of cracking-resistance on structural concrete and optimize the controlling index of crack resistance. The effect is caused by structure, material and construction, etc. The preparation technology of high cracking-resistance concrete is formed through the researching on the temperature rising and deformation over the controlling influence of new anti-cracking materials and technologies. A series of technologies on anti-cracking and waterproof in underground structural concrete of urban rail transit are formed based on the above study. The technologies include design, construction, materials and monitoring. Those technologies are used in actual engineering to improve the quality of urban rail transit and this brings significant economic and social benefits.

  4. The Myriad Properties of Pasteurella multocida Lipopolysaccharide

    PubMed Central

    Harper, Marina; Boyce, John Dallas

    2017-01-01

    Pasteurella multocida is a heterogeneous species that is a primary pathogen of many different vertebrates. This Gram-negative bacterium can cause a range of diseases, including fowl cholera in birds, haemorrhagic septicaemia in ungulates, atrophic rhinitis in swine, and lower respiratory tract infections in cattle and pigs. One of the primary virulence factors of P. multocida is lipopolysaccharide (LPS). Recent work has shown that this crucial surface molecule shows significant structural variability across different P. multocida strains, with many producing LPS structures that are highly similar to the carbohydrate component of host glycoproteins. It is likely that this LPS mimicry of host molecules plays a major role in the survival of P. multocida in certain host niches. P. multocida LPS also plays a significant role in resisting the action of chicken cathelicidins, and is a strong stimulator of host immune responses. The inflammatory response to the endotoxic lipid A component is a major contributor to the pathogenesis of certain infections. Recent work has shown that vaccines containing killed bacteria give protection only against other strains with identical, or nearly identical, surface LPS structures. Conversely, live attenuated vaccines give protection that is broadly protective, and their efficacy is independent of LPS structure. PMID:28825691

  5. Development of Equivalent Material Properties of Microbump for Simulating Chip Stacking Packaging

    PubMed Central

    Lee, Chang-Chun; Tzeng, Tzai-Liang; Huang, Pei-Chen

    2015-01-01

    A three-dimensional integrated circuit (3D-IC) structure with a significant scale mismatch causes difficulty in analytic model construction. This paper proposes a simulation technique to introduce an equivalent material composed of microbumps and their surrounding wafer level underfill (WLUF). The mechanical properties of this equivalent material, including Young’s modulus (E), Poisson’s ratio, shear modulus, and coefficient of thermal expansion (CTE), are directly obtained by applying either a tensile load or a constant displacement, and by increasing the temperature during simulations, respectively. Analytic results indicate that at least eight microbumps at the outermost region of the chip stacking structure need to be considered as an accurate stress/strain contour in the concerned region. In addition, a factorial experimental design with analysis of variance is proposed to optimize chip stacking structure reliability with four factors: chip thickness, substrate thickness, CTE, and E-value. Analytic results show that the most significant factor is CTE of WLUF. This factor affects microbump reliability and structural warpage under a temperature cycling load and high-temperature bonding process. WLUF with low CTE and high E-value are recommended to enhance the assembly reliability of the 3D-IC architecture. PMID:28793495

  6. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms.

    PubMed

    Gu, Huan; Hou, Shuyu; Yongyat, Chanokpon; De Tore, Suzanne; Ren, Dacheng

    2013-09-03

    Bacterial biofilms are ubiquitous and are the major cause of chronic infections in humans and persistent biofouling in industry. Despite the significance of bacterial biofilms, the mechanism of biofilm formation and associated drug tolerance is still not fully understood. A major challenge in biofilm research is the intrinsic heterogeneity in the biofilm structure, which leads to temporal and spatial variation in cell density and gene expression. To understand and control such structural heterogeneity, surfaces with patterned functional alkanthiols were used in this study to obtain Escherichia coli cell clusters with systematically varied cluster size and distance between clusters. The results from quantitative imaging analysis revealed an interesting phenomenon in which multicellular connections can be formed between cell clusters depending on the size of interacting clusters and the distance between them. In addition, significant differences in patterned biofilm formation were observed between wild-type E. coli RP437 and some of its isogenic mutants, indicating that certain cellular and genetic factors are involved in interactions among cell clusters. In particular, autoinducer-2-mediated quorum sensing was found to be important. Collectively, these results provide missing information that links cell-to-cell signaling and interaction among cell clusters to the structural organization of bacterial biofilms.

  7. A Comparison of Solar p-Mode Parameters from MDI and Gong: Mode Frequencies and Structure Inversions

    NASA Technical Reports Server (NTRS)

    Basu, S.; Christensen-Dalsgaard, J.; Howe, R.; Schou, J.; Thompson, M. J.; Hill, F.; Komm, R.

    2003-01-01

    Helioseismic analysis of solar global oscillations allows investigation of the internal structure of the Sun. One important test of the reliability of the inferences from helioseismology is that the results from independent sets of contemporaneous data are consistent with one another. Here we compare mode frequencies from the Global Oscillation Network Group and Michelson Doppler Imager on board SOHO and resulting inversion results on the Sun's internal structure. The average relative differences between the data sets are typically less than 1 x 10(exp -5) substantially smaller than the formal errors in the differences; however, in some cases the frequency differences show a systematic behavior that might nonetheless influence the inversion results. We find that the differences in frequencies are not a result of instrumental effects but are almost entirely related to the data pipeline software. Inversion of the frequencies shows that their differences do not result in any significant effects on the resulting inferences on solar structure. We have also experimented with fitting asymmetric profiles to the oscillation power spectra and find that, compared with the symmetric fits, this causes no significant change in the inversion results.

  8. Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus

    PubMed Central

    Mangala Prasad, Vidya

    2017-01-01

    Viral infections during pregnancy are a significant cause of infant morbidity and mortality. Of these, rubella virus infection is a well-substantiated example that leads to miscarriages or severe fetal defects. However, structural information about the rubella virus has been lacking due to the pleomorphic nature of the virions. Here we report a helical structure of rubella virions using cryo-electron tomography. Sub-tomogram averaging of the surface spikes established the relative positions of the viral glycoproteins, which differed from the earlier icosahedral models of the virus. Tomographic analyses of in vitro assembled nucleocapsids and virions provide a template for viral assembly. Comparisons of immature and mature virions show large rearrangements in the glycoproteins that may be essential for forming the infectious virions. These results present the first known example of a helical membrane-enveloped virus, while also providing a structural basis for its assembly and maturation pathway. PMID:28575072

  9. Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus.

    PubMed

    Mangala Prasad, Vidya; Klose, Thomas; Rossmann, Michael G

    2017-06-01

    Viral infections during pregnancy are a significant cause of infant morbidity and mortality. Of these, rubella virus infection is a well-substantiated example that leads to miscarriages or severe fetal defects. However, structural information about the rubella virus has been lacking due to the pleomorphic nature of the virions. Here we report a helical structure of rubella virions using cryo-electron tomography. Sub-tomogram averaging of the surface spikes established the relative positions of the viral glycoproteins, which differed from the earlier icosahedral models of the virus. Tomographic analyses of in vitro assembled nucleocapsids and virions provide a template for viral assembly. Comparisons of immature and mature virions show large rearrangements in the glycoproteins that may be essential for forming the infectious virions. These results present the first known example of a helical membrane-enveloped virus, while also providing a structural basis for its assembly and maturation pathway.

  10. Structural enhancement of ZnO on SiO2 for photonic applications

    NASA Astrophysics Data System (ADS)

    Ruth, Marcel; Meier, Cedrik

    2013-07-01

    Multi-layer thin films are often the basis of photonic devices. Zinc oxide (ZnO) with its excellent optoelectronic properties can serve as a high quality emitter in structures like microdisks or photonic crystals. Here, we present a detailed study on the enhancement of the structural properties of low-temperature MBE grown ZnO on silica (SiO2). By thermal annealing a grain coalescence of the initially polycrystalline layer leads to an enhancement of the electronic structure, indicated by a blue shift of the photoluminescence (PL) signal maximum. Oxygen atmosphere during the annealing process prevents the creation of intrinsic defects by out-diffusion. Pre-annealing deposited SiO2 capping layers instead obstruct the recrystallization and lead to less intense emission. While thin capping layers partially detach from the ZnO film at high temperatures and cause higher surface roughness and the weakest emission, thicker layers remain smoother and exhibit a significantly stronger photoluminescence.

  11. Buried structure for increasing fabrication performance of micromaterial by electromigration

    NASA Astrophysics Data System (ADS)

    Kimura, Yasuhiro; Saka, Masumi

    2016-06-01

    The electromigration (EM) technique is a physical synthetic growth method for micro/nanomaterials. EM causes atomic diffusion in a metal line by high-density electron flows. The intentional control of accumulation and relaxation of atoms by EM can lead to the fabrication of a micro/nanomaterial. TiN passivation has been utilized as a component of sample in the EM technique. Although TiN passivation can simplify the cumbersome processes for preparing the sample, the leakage of current naturally occurs because of the conductivity of TiN as a side effect and decreases the performance of micro/nanomaterial fabrication. In the present work, we propose a buried structure, which contributes to significantly decreasing the current for fabricating an Al micromaterial by confining the current flow in the EM technique. The fabrication performance was evaluated based on the threshold current for fabricating an Al micromaterial using the buried structure and the previous structure with the leakage of current.

  12. Combined effects of molecular geometry and nanoconfinement on liquid flows through carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Suga, Kazuhiko; Mori, Yuki; Moritani, Rintaro; Kaneda, Masayuki

    2018-05-01

    Molecular dynamics simulations are carried out to investigate the geometry effects of diatomic molecules on liquid flows in carbon nanotubes (CNTs). Oxygen molecules are considered as the fluid inside armchair (n ,n ) (n =6 -20 ) CNTs. The simulated fluid temperature and bulk pressure for the liquid state are T =133 K and ρb=1346 kg/m 3 , respectively. In the agglomerated molecular cluster, nanoconfinement-induced structural changes are observed. As the CNT diameter decreases, it is confirmed that the flow rate significantly increases with irregular trends (discontinuity points in the profiles). From the discussion of the structure of the agglomerated fluid molecules, it is found that those trends are not simply caused by the structural changes. The main factor to induce the irregularity is confirmed to be the interlayer molecular movement affected by the combination of the molecular geometry and the arrangement of the multilayered structure.

  13. A Structural Equation Model on Korean Adolescents' Excessive Use of Smartphones.

    PubMed

    Lee, Hana; Kim, JooHyun

    2018-03-31

    We develop a unified structural model that defines multi-relationships between systematic factors causing excessive use of smartphones and the corresponding results. We conducted a survey with adolescents who live in Seoul, Pusan, Gangneung, Donghae, and Samcheok from Feb. to Mar. 2016. We utilized SPSS Ver. 22 and Amos Ver. 22 to analyze the survey result at a 0.05 significance level. To investigate demographic characteristics of the participants and their variations, we employed descriptive analysis. We adopted the maximum likelihood estimate method to verify the fitness of the hypothetical model and the hypotheses therein. We used χ 2 statistics, GFI, AGFI, CFI, NFI, IFI, RMR, and RMSEA to verify the fitness of our structural model. (1) Our proposed structural model demonstrated a fine fitness level. (2) Our proposed structural model could describe the excessive use of a smartphone with 88.6% accuracy. (3) The absence of the family function and relationship between friends, impulsiveness, and low self-esteem were confirmed as key factors that cause excessive use of smartphones. (4) Further, impulsiveness and low self-esteem are closely related to the absence of family functions and relations between friends by 68.3% and 54.4%, respectively. We suggest that nursing intervention programs from various angles are required to reduce adolescents' excessive use of smartphones. For example, family communication programs would be helpful for both parents and children. Consultant programs about friend relationship also meaningful for the program. Copyright © 2018. Published by Elsevier B.V.

  14. Simplified Technique for Predicting Offshore Pipeline Expansion

    NASA Astrophysics Data System (ADS)

    Seo, J. H.; Kim, D. K.; Choi, H. S.; Yu, S. Y.; Park, K. S.

    2018-06-01

    In this study, we propose a method for estimating the amount of expansion that occurs in subsea pipelines, which could be applied in the design of robust structures that transport oil and gas from offshore wells. We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines. Due to the effects of high pressure and high temperature, the production of fluid from offshore wells is typically caused by physical deformation of subsea structures, e.g., expansion and contraction during the transportation process. In severe cases, vertical and lateral buckling occurs, which causes a significant negative impact on structural safety, and which is related to on-bottom stability, free-span, structural collapse, and many other factors. In addition, these factors may affect the production rate with respect to flow assurance, wax, and hydration, to name a few. In this study, we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage, which can lead to savings in both cost and computation time. As such, in this paper, we propose an applicable diagram, which we call the standard dimensionless ratio (SDR) versus virtual anchor length (L A ) diagram, that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios. With this user guideline, offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation, design, and maintenance of the subsea pipeline.

  15. Impact source localisation in aerospace composite structures

    NASA Astrophysics Data System (ADS)

    De Simone, Mario Emanuele; Ciampa, Francesco; Boccardi, Salvatore; Meo, Michele

    2017-12-01

    The most commonly encountered type of damage in aircraft composite structures is caused by low-velocity impacts due to foreign objects such as hail stones, tool drops and bird strikes. Often these events can cause severe internal material damage that is difficult to detect and may lead to a significant reduction of the structure’s strength and fatigue life. For this reason there is an urgent need to develop structural health monitoring systems able to localise low-velocity impacts in both metallic and composite components as they occur. This article proposes a novel monitoring system for impact localisation in aluminium and composite structures, which is able to determine the impact location in real-time without a-priori knowledge of the mechanical properties of the material. This method relies on an optimal configuration of receiving sensors, which allows linearization of well-known nonlinear systems of equations for the estimation of the impact location. The proposed algorithm is based on the time of arrival identification of the elastic waves generated by the impact source using the Akaike Information Criterion. The proposed approach was demonstrated successfully on both isotropic and orthotropic materials by using a network of closely spaced surface-bonded piezoelectric transducers. The results obtained show the validity of the proposed algorithm, since the impact sources were detected with a high level of accuracy. The proposed impact detection system overcomes current limitations of other methods and can be retrofitted easily on existing aerospace structures allowing timely detection of an impact event.

  16. Structural and functional analysis of RopB: A major virulence regulator in Streptococcus pyogenes

    DOE PAGES

    Makthal, Nishanth; Gavagan, Maire; Do, Hackwon; ...

    2016-02-19

    Group A Streptococcus (GAS) is an exclusive human pathogen that causes significant disease burden. Global regulator RopB of GAS controls the expression of several major virulence factors including secreted protease SpeB during high cell density. However, the molecular mechanism for RopB-dependent speB expression remains unclear. To understand the mechanism of transcription activation by RopB, we determined the crystal structure of the C-terminal domain of RopB. RopB-CTD has the TPR motif, a signature motif involved in protein-peptide interactions and shares significant structural homology with the quorum sensing RRNPP family regulators. Characterization of the high cell density-specific cell-free growth medium demonstrated themore » presence of a low molecular weight proteinaceous secreted factor that upregulates RopB-dependent speB expression. Together, these results suggest that RopB and its cognate peptide signals constitute an intercellular signalling machinery that controls the virulence gene expression in concert with population density. Structure-guided mutational analyses of RopB dimer interface demonstrated that single alanine substitutions at this critical interface significantly altered RopB-dependent speB expression and attenuated GAS virulence. Finally, results presented here suggested that a properly aligned RopB dimer interface is important for GAS pathogenesis and highlighted the dimerization interactions as a plausible therapeutic target for the development of novel antimicrobials.« less

  17. Structural and functional analysis of RopB: A major virulence regulator in Streptococcus pyogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makthal, Nishanth; Gavagan, Maire; Do, Hackwon

    Group A Streptococcus (GAS) is an exclusive human pathogen that causes significant disease burden. Global regulator RopB of GAS controls the expression of several major virulence factors including secreted protease SpeB during high cell density. However, the molecular mechanism for RopB-dependent speB expression remains unclear. To understand the mechanism of transcription activation by RopB, we determined the crystal structure of the C-terminal domain of RopB. RopB-CTD has the TPR motif, a signature motif involved in protein-peptide interactions and shares significant structural homology with the quorum sensing RRNPP family regulators. Characterization of the high cell density-specific cell-free growth medium demonstrated themore » presence of a low molecular weight proteinaceous secreted factor that upregulates RopB-dependent speB expression. Together, these results suggest that RopB and its cognate peptide signals constitute an intercellular signalling machinery that controls the virulence gene expression in concert with population density. Structure-guided mutational analyses of RopB dimer interface demonstrated that single alanine substitutions at this critical interface significantly altered RopB-dependent speB expression and attenuated GAS virulence. Finally, results presented here suggested that a properly aligned RopB dimer interface is important for GAS pathogenesis and highlighted the dimerization interactions as a plausible therapeutic target for the development of novel antimicrobials.« less

  18. Altered Brain Network Segregation in Fragile X Syndrome Revealed by Structural Connectomics.

    PubMed

    Bruno, Jennifer Lynn; Hosseini, S M Hadi; Saggar, Manish; Quintin, Eve-Marie; Raman, Mira Michelle; Reiss, Allan L

    2017-03-01

    Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism spectrum disorder, is associated with significant behavioral, social, and neurocognitive deficits. Understanding structural brain network topology in FXS provides an important link between neurobiological and behavioral/cognitive symptoms of this disorder. We investigated the connectome via whole-brain structural networks created from group-level morphological correlations. Participants included 100 individuals: 50 with FXS and 50 with typical development, age 11-23 years. Results indicated alterations in topological properties of structural brain networks in individuals with FXS. Significantly reduced small-world index indicates a shift in the balance between network segregation and integration and significantly reduced clustering coefficient suggests that reduced local segregation shifted this balance. Caudate and amygdala were less interactive in the FXS network further highlighting the importance of subcortical region alterations in the neurobiological signature of FXS. Modularity analysis indicates that FXS and typically developing groups' networks decompose into different sets of interconnected sub networks, potentially indicative of aberrant local interconnectivity in individuals with FXS. These findings advance our understanding of the effects of fragile X mental retardation protein on large-scale brain networks and could be used to develop a connectome-level biological signature for FXS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Structural and functional plasticity specific to musical training with wind instruments.

    PubMed

    Choi, Uk-Su; Sung, Yul-Wan; Hong, Sujin; Chung, Jun-Young; Ogawa, Seiji

    2015-01-01

    Numerous neuroimaging studies have shown structural and functional changes resulting from musical training. Among these studies, changes in primary sensory areas are mostly related to motor functions. In this study, we looked for some similar functional and structural changes in other functional modalities, such as somatosensory function, by examining the effects of musical training with wind instruments. We found significant changes in two aspects of neuroplasticity, cortical thickness, and resting-state neuronal networks. A group of subjects with several years of continuous musical training and who are currently playing in university wind ensembles showed differences in cortical thickness in lip- and tongue-related brain areas vs. non-music playing subjects. Cortical thickness in lip-related brain areas was significantly thicker and that in tongue-related areas was significantly thinner in the music playing group compared with that in the non-music playing group. Association analysis of lip-related areas in the music playing group showed that the increase in cortical thickness was caused by musical training. In addition, seed-based correlation analysis showed differential activation in the precentral gyrus and supplementary motor areas (SMA) between the music and non-music playing groups. These results suggest that high-intensity training with specific musical instruments could induce structural changes in related anatomical areas and could also generate a new functional neuronal network in the brain.

  20. Structural and functional plasticity specific to musical training with wind instruments

    PubMed Central

    Choi, Uk-Su; Sung, Yul-Wan; Hong, Sujin; Chung, Jun-Young; Ogawa, Seiji

    2015-01-01

    Numerous neuroimaging studies have shown structural and functional changes resulting from musical training. Among these studies, changes in primary sensory areas are mostly related to motor functions. In this study, we looked for some similar functional and structural changes in other functional modalities, such as somatosensory function, by examining the effects of musical training with wind instruments. We found significant changes in two aspects of neuroplasticity, cortical thickness, and resting-state neuronal networks. A group of subjects with several years of continuous musical training and who are currently playing in university wind ensembles showed differences in cortical thickness in lip- and tongue-related brain areas vs. non-music playing subjects. Cortical thickness in lip-related brain areas was significantly thicker and that in tongue-related areas was significantly thinner in the music playing group compared with that in the non-music playing group. Association analysis of lip-related areas in the music playing group showed that the increase in cortical thickness was caused by musical training. In addition, seed-based correlation analysis showed differential activation in the precentral gyrus and supplementary motor areas (SMA) between the music and non-music playing groups. These results suggest that high-intensity training with specific musical instruments could induce structural changes in related anatomical areas and could also generate a new functional neuronal network in the brain. PMID:26578939

  1. The effects of aircraft certification rules on general aviation accidents

    NASA Astrophysics Data System (ADS)

    Anderson, Carolina Lenz

    The purpose of this study was to analyze the frequency of general aviation airplane accidents and accident rates on the basis of aircraft certification to determine whether or not differences in aircraft certification rules had an influence on accidents. In addition, the narrative cause descriptions contained within the accident reports were analyzed to determine whether there were differences in the qualitative data for the different certification categories. The certification categories examined were: Federal Aviation Regulations Part 23, Civil Air Regulations 3, Light Sport Aircraft, and Experimental-Amateur Built. The accident causes examined were those classified as: Loss of Control, Controlled Flight into Terrain, Engine Failure, and Structural Failure. Airworthiness certification categories represent a wide diversity of government oversight. Part 23 rules have evolved from the initial set of simpler design standards and have progressed into a comprehensive and strict set of rules to address the safety issues of the more complex airplanes within the category. Experimental-Amateur Built airplanes have the least amount of government oversight and are the fastest growing segment. The Light Sport Aircraft category is a more recent certification category that utilizes consensus standards in the approval process. Civil Air Regulations 3 airplanes were designed and manufactured under simpler rules but modifying these airplanes has become lengthy and expensive. The study was conducted using a mixed methods methodology which involves both quantitative and qualitative elements. A Chi-Square test was used for a quantitative analysis of the accident frequency among aircraft certification categories. Accident rate analysis of the accidents among aircraft certification categories involved an ANCOVA test. The qualitative component involved the use of text mining techniques for the analysis of the narrative cause descriptions contained within the accident reports. The Chi-Square test indicated that there was no significant difference in the number of accidents among the different certification categories when either Controlled Flight into Terrain or Structural Failure was listed as cause. However, there was a significant difference in the frequency of accidents with regard to Loss of Control and Engine Failure accidents. The results of the ANCOVA test indicated that there was no significant difference in the accident rate with regard to Loss of Control, Controlled Flight into Terrain, or Structural Failure accidents. There was, however, a significant difference in Engine Failure accidents between Experimental-Amateur Built and the other categories.The text mining analysis of the narrative causes of Loss of Control accidents indicated that only the Civil Air Regulations 3 category airplanes had clusters of words associated with visual flight into instrument meteorological conditions. Civil Air Regulations 3 airplanes were designed and manufactured prior to the 1960s and in most cases have not been retrofitted to take advantage of newer technologies that could help prevent Loss of Control accidents. The study indicated that General Aviation aircraft certification rules do not have a statistically significant effect on aircraft accidents except for Loss of Control and Engine Failure. According to the literature, government oversight could have become an obstacle in the implementation of safety enhancing equipment that could reduce Loss of Control accidents. Oversight should focus on ensuring that Experimental-Amateur Built aircraft owners perform a functional test that could prevent some of the Engine Failure accidents.

  2. Live intramacrophagic Staphylococcus aureus as a potential cause of antibiotic therapy failure: observations in an in vivo mouse model of prosthetic vascular material infections.

    PubMed

    Boudjemaa, Rym; Steenkeste, Karine; Jacqueline, Cédric; Briandet, Romain; Caillon, Jocelyne; Boutoille, David; Le Mabecque, Virginie; Tattevin, Pierre; Fontaine-Aupart, Marie-Pierre; Revest, Matthieu

    2018-06-12

    To evaluate the significant role played by biofilms during prosthetic vascular material infections (PVMIs). We developed an in vivo mouse model of Staphylococcus aureus PVMI allowing its direct observation by confocal microscopy to describe: (i) the structure of biofilms developed on Dacron® vascular material; (ii) the localization and effect of antibiotics on these biostructures; and (iii) the interaction between bacteria and host tissues and cells during PVMI. In this model we demonstrated that the biofilm structures are correlated to the activity of antibiotics. Furthermore, live S. aureus bacteria were visualized inside the macrophages present at the biofilm sites, which is significant as antibiotics do not penetrate these immune cells. This intracellular situation may explain the limited effect of antibiotics and also why PVMIs can relapse after antibiotic therapy.

  3. Cancer in Machado-Joseph disease patients-low frequency as a cause of death.

    PubMed

    Souza, Gabriele Nunes; Kersting, Nathália; Gonçalves, Thomaz Abramsson; Pacheco, Daphne Louise Oliveira; Saraiva-Pereira, Maria-Luiza; Camey, Suzi Alves; Saute, Jonas Alex Morales; Jardim, Laura Bannach

    2017-04-01

    Since polyglutamine diseases have been related to a reduced risk of cancer, we aimed to study the 15 years cumulative incidence of cancer (CIC) (arm 1) and the proportion of cancer as a cause of death (arm 2) in symptomatic carriers of spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD). SCA3/MJD and control individuals from our state were invited to participate. A structured interview was performed. CIC as published by the Brazilian National Institute of Cancer, was used as populational control. Causes of death were obtained from the Public Information System on Mortality. We interviewed 154 SCA3/MJD patients and 80 unrelated controls: CIC was 7/154 (4.5%) and 5/80 (6.3%), respectively. The interim analysis for futility showed that the number of individuals required to detect a significant difference between groups (1938) would be three times larger than the existing local SCA3/MJD population (625), for an absolute risk reduction of 1.8%. Then this study arm was discontinued due to lack of power. In the same period, cancer was a cause of death in 9/101 (8.9%) SCA3/MJD and in 52/202 (26.2%) controls, with an absolute reduction risk of 17.3% (OR 0.27, 95%CI 0.13 to 0.58, p = 0.01). A significant reduction of cancer as cause of death was observed in SCA3/MJD, suggesting a common effect to all polyglutamine diseases. Copyright © 2017. Published by Elsevier Inc.

  4. The posterolateral corner of the knee.

    PubMed

    Vinson, Emily N; Major, Nancy M; Helms, Clyde A

    2008-02-01

    The purpose of this article is to review the clinical importance and MRI appearances of injuries to the posterolateral corner of the knee. Injuries to the posterolateral corner structures of the knee can cause significant disability due to instability, cartilage degeneration, and cruciate graft failure. Becoming familiar with the anatomy of this region can improve one's ability to detect subtle abnormalities and can perhaps lead to improvements in diagnosing and understanding injuries to this area.

  5. Research Review: Structural Language in Autistic Spectrum Disorder--Characteristics and Causes

    ERIC Educational Resources Information Center

    Boucher, Jill

    2012-01-01

    Background: Structural language anomalies or impairments in autistic spectrum disorder (ASD) are theoretically and practically important, although underrecognised as such. This review aims to highlight the ubiquitousness of structural language anomalies and impairments in ASD, and to stimulate investigation of their immediate causes and…

  6. A cis-Regulatory Mutation of PDSS2 Causes Silky-Feather in Chickens

    PubMed Central

    Feng, Chungang; Gao, Yu; Dorshorst, Ben; Song, Chi; Gu, Xiaorong; Li, Qingyuan; Li, Jinxiu; Liu, Tongxin; Rubin, Carl-Johan; Zhao, Yiqiang; Wang, Yanqiang; Fei, Jing; Li, Huifang; Chen, Kuanwei; Qu, Hao; Shu, Dingming; Ashwell, Chris; Da, Yang; Andersson, Leif; Hu, Xiaoxiang; Li, Ning

    2014-01-01

    Silky-feather has been selected and fixed in some breeds due to its unique appearance. This phenotype is caused by a single recessive gene (hookless, h). Here we map the silky-feather locus to chromosome 3 by linkage analysis and subsequently fine-map it to an 18.9 kb interval using the identical by descent (IBD) method. Further analysis reveals that a C to G transversion located upstream of the prenyl (decaprenyl) diphosphate synthase, subunit 2 (PDSS2) gene is causing silky-feather. All silky-feather birds are homozygous for the G allele. The silky-feather mutation significantly decreases the expression of PDSS2 during feather development in vivo. Consistent with the regulatory effect, the C to G transversion is shown to remarkably reduce PDSS2 promoter activity in vitro. We report a new example of feather structure variation associated with a spontaneous mutation and provide new insight into the PDSS2 function. PMID:25166907

  7. Influenza virus inactivated by artificial ribonucleases as a prospective killed virus vaccine.

    PubMed

    Fedorova, Antonina A; Goncharova, Elena P; Kovpak, Mikhail P; Vlassov, Valentin V; Zenkova, Marina A

    2012-04-19

    The inactivation of viral particles with agents causing minimal damage to the structure of surface epitopes is a well-established approach for the production of killed virus vaccines. Here, we describe new agents for the inactivation of influenza virus, artificial ribonucleases (aRNases), which are chemical compounds capable of cleaving RNA molecules. Several aRNases were identified, exhibiting significant virucidal activity against the influenza A virus and causing a minimal effect on the affinity of monoclonal antibodies for the inactivated virus. Using a murine model of the influenza virus infection, a high protective activity of the aRNase-inactivated virus as a vaccine was demonstrated. The results of the experiments demonstrate the efficacy of novel chemical agents in the preparation of vaccines against influenza and, perhaps, against other infections caused by RNA viruses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, R.P.; Kincaid, R.H.; Short, S.A.

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. Task I of the study, which is presented in NUREG/CR-3805, Vol. 1, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in four parts: (1) effects of ground motion characteristics onmore » structural response of a typical PWR reactor building with localized nonlinearities and soil-structure interaction effects; (2) empirical data on spatial variations of earthquake ground motion; (3) soil-structure interaction effects on structural response; and (4) summary of conclusions and recommendations based on Tasks I and II studies. This report presents the results of the first part of Task II. The results of the other parts will be presented in NUREG/CR-3805, Vols. 3 to 5.« less

  9. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

    PubMed Central

    Wiens, Matthew; Lakatos, Mathias; Heerwig, Andreas; Ostermaier, Frieder; Haufe, Nora

    2016-01-01

    Summary DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures. PMID:27547612

  10. A recombination hot spot in HIV-1 contains guanosine runs that can form a G-quartet structure and promote strand transfer in vitro.

    PubMed

    Shen, Wen; Gao, Lu; Balakrishnan, Mini; Bambara, Robert A

    2009-12-04

    The co-packaged RNA genomes of human immunodeficiency virus-1 recombine at a high rate. Recombination can mix mutations to generate viruses that escape immune response. A cell-culture-based system was designed previously to map recombination events in a 459-bp region spanning the primer binding site through a portion of the gag protein coding region. Strikingly, a strong preferential site for recombination in vivo was identified within a 112-nucleotide-long region near the beginning of gag. Strand transfer assays in vitro revealed that three pause bands in the gag hot spot each corresponded to a run of guanosine (G) residues. Pausing of reverse transcriptase is known to promote recombination by strand transfer both in vivo and in vitro. To assess the significance of the G runs, we altered them by base substitutions. Disruption of the G runs eliminated both the associated pausing and strand transfer. Some G-rich sequences can develop G-quartet structures, which were first proposed to form in telomeric DNA. G-quartet structure formation is highly dependent on the presence of specific cations. Incubation in cations discouraging G-quartets altered gel mobility of the gag template consistent with breakdown of G-quartet structure. The same cations faded G-run pauses but did not affect pauses caused by hairpins, indicating that quartet structure causes pausing. Moreover, gel analysis with cations favoring G-quartet structure indicated no structure in mutated templates. Overall, results point to reverse transcriptase pausing at G runs that can form quartets as a unique feature of the gag recombination hot spot.

  11. Bioinformatic Analysis of Pathogenic Missense Mutations of Activin Receptor Like Kinase 1 Ectodomain

    PubMed Central

    Scotti, Claudia; Olivieri, Carla; Boeri, Laura; Canzonieri, Cecilia; Ornati, Federica; Buscarini, Elisabetta; Pagella, Fabio; Danesino, Cesare

    2011-01-01

    Activin A receptor, type II-like kinase 1 (also called ALK1), is a serine-threonine kinase predominantly expressed on endothelial cells surface. Mutations in its ACVRL1 encoding gene (12q11-14) cause type 2 Hereditary Haemorrhagic Telangiectasia (HHT2), an autosomal dominant multisystem vascular dysplasia. The study of the structural effects of mutations is crucial to understand their pathogenic mechanism. However, while an X-ray structure of ALK1 intracellular domain has recently become available (PDB ID: 3MY0), structure determination of ALK1 ectodomain (ALK1EC) has been elusive so far. We here describe the building of a homology model for ALK1EC, followed by an extensive bioinformatic analysis, based on a set of 38 methods, of the effect of missense mutations at the sequence and structural level. ALK1EC potential interaction mode with its ligand BMP9 was then predicted combining modelling and docking data. The calculated model of the ALK1EC allowed mapping and a preliminary characterization of HHT2 associated mutations. Major structural changes and loss of stability of the protein were predicted for several mutations, while others were found to interfere mainly with binding to BMP9 or other interactors, like Endoglin (CD105), whose encoding ENG gene (9q34) mutations are known to cause type 1 HHT. This study gives a preliminary insight into the potential structure of ALK1EC and into the structural effects of HHT2 associated mutations, which can be useful to predict the potential effect of each single mutation, to devise new biological experiments and to interpret the biological significance of new mutations, private mutations, or non-synonymous polymorphisms. PMID:22028876

  12. Loss of keratin K2 expression causes aberrant aggregation of K10, hyperkeratosis, and inflammation.

    PubMed

    Fischer, Heinz; Langbein, Lutz; Reichelt, Julia; Praetzel-Wunder, Silke; Buchberger, Maria; Ghannadan, Minoo; Tschachler, Erwin; Eckhart, Leopold

    2014-10-01

    Keratin K2 is one of the most abundant structural proteins of the epidermis; however, its biological significance has remained elusive. Here we show that suprabasal type II keratins, K1 and K2, are expressed in a mutually exclusive manner at different body sites of the mouse, with K2 being confined to the ear, sole, and tail skin. Deletion of K2 caused acanthosis and hyperkeratosis of the ear and the tail epidermis, corneocyte fragility, increased transepidermal water loss, and local inflammation in the ear skin. The loss of K2 was partially compensated by upregulation of K1 expression. However, a significant portion of K2-deficient suprabasal keratinocytes lacked a regular cytoskeleton and developed massive aggregates of the type I keratin, K10. Aggregate formation, but not hyperkeratosis, was suppressed by the deletion of both K2 and K10, whereas deletion of K10 alone caused clumping of K2 in ear skin. Taken together, this study demonstrates that K2 is a necessary and sufficient binding partner of K10 at distinct body sites of the mouse and that unbalanced expression of these keratins results in aggregate formation.

  13. The effect of root canal preparation on the development of dentin cracks.

    PubMed

    Milani, Amin Salem; Froughreyhani, Mohammad; Rahimi, Saeed; Jafarabadi, Mohammad Asghari; Paksefat, Sara

    2012-01-01

    Root fracture is not an instant phenomenon but a result of gradual development of tiny craze lines in tooth structure. Recent studies have shown that canal instrumentation has the potential to cause dentinal cracks. The purpose of this study was to evaluate and compare the formation of dentinal cracks caused by ProTaper rotary system to hand instrumentation. This in vitro study was carried out using 57 mandible incisor teeth. The teeth were decoronated. The roots were then examined to exclude cracked samples. A standard model for PDL simulation was used. The teeth were randomly divided into two experimental and one control group (n=19). The teeth in the experimental groups were prepared using hand or ProTaper Universal rotary instrumentation. The teeth in the control group were left unprepared. The teeth were then sectioned horizontally 3 and 6 mm from the apex, and the number of various dentinal defects was recorded using a dental operating microscope. The differences between groups were analyzed with Fisher's exact test. The hand group demonstrated significantly more defects than the control group (P=0.001). However, there was no significant difference between the rotary compared to the control and hand groups (P>0.05). There was no significant difference between groups with regards to fracture (P>0.05). Other defects including internal, external and surface cracks were more frequent in the hand than in the control or rotary groups (P=0.02), but the difference was not significant between the rotary and control groups (P>0.05). Canal preparation, whether hand or rotary, produces structural defects in dentin. The ProTaper rotary system when used according to the manufacturer's instructions, tends to produce fewer cracks and can be considered a safe preparation technique.

  14. Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing

    NASA Astrophysics Data System (ADS)

    Wu, Linkun; Chen, Jun; Wu, Hongmiao; Wang, Juanying; Wu, Yanhong; Lin, Sheng; Khan, Muhammad Umar; Zhang, Zhongyi; Lin, Wenxiong

    2016-05-01

    Under consecutive monoculture, the biomass and quality of Pseudostellaria heterophylla declines significantly. In this study, a three-year field experiment was conducted to identify typical growth inhibition effects caused by extended monoculturing of P. heterophylla. Deep pyrosequencing was used to examine changes in the structure and composition of soil fungal community along a three-year gradient of monoculture. The results revealed a distinct separation between the newly planted plot and the two-year, three-year monocultured plots. The Shannon and Simpson diversity indices were significantly higher in the two-year and three-year monoculture soils than in the newly planted soil. Consecutive monoculture of this plant led to a significant increase in relative abundance of Fusarium, Trichocladium and Myrothecium and Simplicillium, etc., but a significant decrease in the relative abundance of Penicillium. Quantitative PCR analysis confirmed a significant increase in Fusarium oxysporum, an agent known to cause wilt and rot disease of P. heterophylla. Furthermore, phenolic acid mixture at a ratio similar to that found in the rhizosphere could promote mycelial growth of pathogenic F. oxysporum. Overall, this study demonstrated that consecutive monoculture of P. heterophylla can alter the fungal community in the rhizosphere, including enrichment of host-specific pathogenic fungi at the expense of plant-beneficial fungi.

  15. Meeting the Grand Challenge of Protecting Astronauts Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.

    2016-01-01

    This report describes the research completed during 2011 for the NASA Innovative Advanced Concepts (NIAC) project. The research is motivated by the desire to safely send humans in deep space missions and to keep radiation exposures within permitted limits. To this end current material shielding, developed for low earth orbit missions, is not a viable option due to payload and cost penalties. The active radiation shielding is the path forward for such missions. To achieve active space radiation shielding innovative large lightweight gossamer space structures are used. The goal is to deflect enough positive ions without attracting negatively charged plasma and to investigate if a charged Gossamer structure can perform charge deflections without significant structural instabilities occurring. In this study different innovative configurations are explored to design an optimum active shielding. In addition, to establish technological feasibility experiments are performed with up to 10kV of membrane charging, and an electron flux source with up to 5keV of energy and 5mA of current. While these charge flux energy levels are much less than those encountered in space, the fundamental coupled interaction of charged Gossamer structures with the ambient charge flux can be experimentally investigated. Of interest are, will the EIMS remain inflated during the charge deflections, and are there visible charge flux interactions. Aluminum coated Mylar membrane prototype structures are created to test their inflation capability using electrostatic charging. To simulate the charge flux, a 5keV electron emitter is utilized. The remaining charge flux at the end of the test chamber is measured with a Faraday cup mounted on a movable boom. A range of experiments with this electron emitter and detector were performed within a 30x60cm vacuum chamber with vacuum environment capability of 10-7 Torr. Experiments are performed with the charge flux aimed at the electrostatically inflated membrane structure (EIMS) in both charged and uncharged configurations. The amount of charge shielding behind and around the EIMS was studied for different combinations of membrane structure voltages and electron energies. Both passive and active shielding were observed, with active shielding capable of deflecting nearly all incoming electrons. The pattern of charge distribution around the structure was studied as well as the stability of the structures in the charge flow. The charge deflection experiments illustrate that the EIMS remain inflated during charge deflection, but will experience small amplitude oscillations. Investigations were performed to determine a potential cause of the vibrations. It is postulated these vibrations are due to the charge flux causing local membrane charge distribution changes. As the membrane structure inflation pressure is changed, the shape responds, and causes the observed sustained vibration. Having identified this phenomenon is important when considering electrostatically inflated membrane structures (EIMS) in a space environment. Additionally, this project included a study of membrane material impacts, specifically the impact of membrane thickness. Extremely thin materials presented new challenges with vacuum preparation techniques and rapid charging. The thinner and lighter membrane materials were successfully inflated using electrostatic forces in a vacuum chamber. However, care must be taken when varying the potentials of such lighter structures as the currents can cause local heating and melting of the very thin membranes. Lastly, a preliminary analysis is performed to study rough order of magnitude power requirements for using EIMS for radiation shielding. The EIMS power requirement becomes increasingly more challenging as the spacecraft voltage is increased. As a result, the emphasis is on the deflection of charges away from the spacecraft rather than totally stopping them. This significantly alleviates the initial power requirements. With modest technological development(s) active shielding is emerging to be a viable option.

  16. Pediatric ocular trauma caused by recreational drones: two case reports.

    PubMed

    Spitzer, Nicole; Singh, Jasleen K

    2018-03-14

    Drones are increasingly being used by children and adults recreationally and commercially. The propeller blades when spinning at high speeds may cause serious harm to the eye and orbital structures. We report 2 cases of injuries to the eye and orbital structures caused by drones. Copyright © 2018. Published by Elsevier Inc.

  17. Landscape of Pleiotropic Proteins Causing Human Disease: Structural and System Biology Insights.

    PubMed

    Ittisoponpisan, Sirawit; Alhuzimi, Eman; Sternberg, Michael J E; David, Alessia

    2017-03-01

    Pleiotropy is the phenomenon by which the same gene can result in multiple phenotypes. Pleiotropic proteins are emerging as important contributors to rare and common disorders. Nevertheless, little is known on the mechanisms underlying pleiotropy and the characteristic of pleiotropic proteins. We analyzed disease-causing proteins reported in UniProt and observed that 12% are pleiotropic (variants in the same protein cause more than one disease). Pleiotropic proteins were enriched in deleterious and rare variants, but not in common variants. Pleiotropic proteins were more likely to be involved in the pathogenesis of neoplasms, neurological, and circulatory diseases and congenital malformations, whereas non-pleiotropic proteins in endocrine and metabolic disorders. Pleiotropic proteins were more essential and had a higher number of interacting partners compared with non-pleiotropic proteins. Significantly more pleiotropic than non-pleiotropic proteins contained at least one intrinsically long disordered region (P < 0.001). Deleterious variants occurring in structurally disordered regions were more commonly found in pleiotropic, rather than non-pleiotropic proteins. In conclusion, pleiotropic proteins are an important contributor to human disease. They represent a biologically different class of proteins compared with non-pleiotropic proteins and a better understanding of their characteristics and genetic variants can greatly aid in the interpretation of genetic studies and drug design. © 2016 WILEY PERIODICALS, INC.

  18. Biochemical defects of mutant nudel alleles causing early developmental arrest or dorsalization of the Drosophila embryo.

    PubMed Central

    LeMosy, E K; Leclerc, C L; Hashimoto, C

    2000-01-01

    The nudel gene of Drosophila is maternally required both for structural integrity of the egg and for dorsoventral patterning of the embryo. It encodes a structurally modular protein that is secreted by ovarian follicle cells. Genetic and molecular studies have suggested that the Nudel protein is also functionally modular, with a serine protease domain that is specifically required for ventral development. Here we describe biochemical and immunolocalization studies that provide insight into the molecular basis for the distinct phenotypes produced by nudel mutations and for the interactions between these alleles. Mutations causing loss of embryonic dorsoventral polarity result in a failure to activate the protease domain of Nudel. Our analyses support previous findings that catalytic activity of the protease domain is required for dorsoventral patterning and that the Nudel protease is auto-activated and reveal an important role for a region adjacent to the protease domain in Nudel protease function. Mutations causing egg fragility and early embryonic arrest result in a significant decrease in extracellular Nudel protein, due to defects in post-translational processing, stability, or secretion. On the basis of these and other studies of serine proteases, we suggest potential mechanisms for the complementary and antagonistic interactions between the nudel alleles. PMID:10628985

  19. Hemin as a generic and potent protein misfolding inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yanqin; Carver, John A.; Ho, Lam H.

    2014-11-14

    Highlights: • Hemin prevents Aβ42, α-synuclein and RCM-κ-casein forming amyloid fibrils. • Hemin inhibits the β-sheet structure formation of Aβ42. • Hemin reduces the cell toxicity caused by fibrillar Aβ42. • Hemin dissociates partially formed Aβ42 fibrils. • Hemin prevents amorphous aggregation by ADH, catalase and γs-crystallin. - Abstract: Protein misfolding causes serious biological malfunction, resulting in diseases including Alzheimer’s disease, Parkinson’s disease and cataract. Molecules which inhibit protein misfolding are a promising avenue to explore as therapeutics for the treatment of these diseases. In the present study, thioflavin T fluorescence and transmission electron microscopy experiments demonstrated that hemin preventsmore » amyloid fibril formation of kappa-casein, amyloid beta peptide and α-synuclein by blocking β-sheet structure assembly which is essential in fibril aggregation. Further, inhibition of fibril formation by hemin significantly reduces the cytotoxicity caused by fibrillar amyloid beta peptide in vitro. Interestingly, hemin degrades partially formed amyloid fibrils and prevents further aggregation to mature fibrils. Light scattering assay results revealed that hemin also prevents protein amorphous aggregation of alcohol dehydrogenase, catalase and γs-crystallin. In summary, hemin is a potent agent which generically stabilises proteins against aggregation, and has potential as a key molecule for the development of therapeutics for protein misfolding diseases.« less

  20. Study of cobalt effect on structural and optical properties of Dy doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Pandey, Praveen C.

    2018-05-01

    The present study has been carried out to investigate the effect of Co doping on structural and optical properties of Dy doped ZnO nanoparticles. We have prepared pure Zinc oxide, Dy (1%) doped ZnO and Dy (1%) doped ZnO co-doped with Co(2%) with the help of simple sol-gel combustion method. The structural analysis carried out using X-ray diffraction spectra (XRD) indicates substitution of Dy and Co at Zn site of ZnO crystal structure and hexagonal crystal structure without any secondary phase formation in all the samples. The surface morphology was analyzed by transmission electron microscopy (TEM). Absorption study indicates that Dy doping causes a small shift in band edge, while Co co-doping results significant change is absorption edge as well as introduce defect level absorption in the visible region. The band gap of samples decreases due to Dy and Co doping, which can be attributed to defect level formation below the conduction band in the system.

  1. Structure of Bombyx mori densovirus 1, a silkworm pathogen.

    PubMed

    Kaufmann, Bärbel; El-Far, Mohamed; Plevka, Pavel; Bowman, Valorie D; Li, Yi; Tijssen, Peter; Rossmann, Michael G

    2011-05-01

    Bombyx mori densovirus 1 (BmDNV-1), a major pathogen of silkworms, causes significant losses to the silk industry. The structure of the recombinant BmDNV-1 virus-like particle has been determined at 3.1-Å resolution using X-ray crystallography. It is the first near-atomic-resolution structure of a virus-like particle within the genus Iteravirus. The particles consist of 60 copies of the 55-kDa VP3 coat protein. The capsid protein has a β-barrel "jelly roll" fold similar to that found in many diverse icosahedral viruses, including archaeal, bacterial, plant, and animal viruses, as well as other parvoviruses. Most of the surface loops have little structural resemblance to other known parvovirus capsid proteins. In contrast to vertebrate parvoviruses, the N-terminal β-strand of BmDNV-1 VP3 is positioned relative to the neighboring 2-fold related subunit in a "domain-swapped" conformation, similar to findings for other invertebrate parvoviruses, suggesting domain swapping is an evolutionarily conserved structural feature of the Densovirinae.

  2. Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener.

    PubMed

    An, Yun-Kyu; Shen, Zhiqi; Wu, Zhishen

    2016-09-16

    This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ) of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ.

  3. Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener

    PubMed Central

    An, Yun-Kyu; Shen, Zhiqi; Wu, Zhishen

    2016-01-01

    This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ) of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ. PMID:27649200

  4. Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell

    NASA Astrophysics Data System (ADS)

    Winter, Shoshana; Zenou, Michael; Kotler, Zvi

    2016-04-01

    We present a study of the morphology and electrical properties of copper structures which are printed by laser induced forward transfer from bulk copper. The percentage of voids and the oxidation levels are too low to account for the high resistivities (~4 to 14 times the resistivity of bulk monocrystalline copper) of these structures. Transmission electron microscope (TEM) images of slices cut from the printed areas using a focused ion beam (FIB) show nano-sized crystal structures with grain sizes that are smaller than the electron free path length. Scattering from such grain boundaries causes a significant increase in the resistivity and can explain the measured resistivities of the structures. The TEM images also show a nano-amorphous layer (~5 nm) at the droplet boundaries which also contributes to the overall resistivity. Such morphological characteristics are best explained by the ultrafast cooling rate of the molten copper droplets during printing.

  5. Nanoscopic imaging of thick heterogeneous soft-matter structures in aqueous solution

    PubMed Central

    Bartsch, Tobias F.; Kochanczyk, Martin D.; Lissek, Emanuel N.; Lange, Janina R.; Florin, Ernst-Ludwig

    2016-01-01

    Precise nanometre-scale imaging of soft structures at room temperature poses a major challenge to any type of microscopy because fast thermal fluctuations lead to significant motion blur if the position of the structure is measured with insufficient bandwidth. Moreover, precise localization is also affected by optical heterogeneities, which lead to deformations in the imaged local geometry, the severity depending on the sample and its thickness. Here we introduce quantitative thermal noise imaging, a three-dimensional scanning probe technique, as a method for imaging soft, optically heterogeneous and porous matter with submicroscopic spatial resolution in aqueous solution. By imaging both individual microtubules and collagen fibrils in a network, we demonstrate that structures can be localized with a precision of ∼10 nm and that their local dynamics can be quantified with 50 kHz bandwidth and subnanometre amplitudes. Furthermore, we show how image distortions caused by optically dense structures can be corrected for. PMID:27596919

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy

    In this study, CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase ( DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecularmore » dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.« less

  7. Aspects of three-dimensional strain at the margin of the extensional orogen, Virgin River depression area, Nevada, Utah, and Arizona

    USGS Publications Warehouse

    Anderson, R.E.; Barnhard, T.P.

    1993-01-01

    The Virgin River depression and surrounding mountains are Neogene features that are partly contiguous with the little-strained rocks of the structural transition to the Colorado Plateau province. This contiguity makes the area ideally suited for evaluating the sense, magnitude, and kinematics of Neogene deformation. Analysis along the strain boundary shows that, compared to the adjacent little-strained area, large-magnitude vertical deformation greatly exceeds extensional deformation and that significant amounts of lateral displacement approximately parallel the province boundary. Isostatic rebound following tectonic denudation is an unlikely direct cause of the strong vertical structural relief adjacent to the strain boundary. Instead, the observed structures are first-order features defining a three-dimensional strain field produced by approximately east-west extension, vertical structural attenuation, and extension-normal shortening. All major structural elements of the strain-boundary strain field are also found in the adjacent Basin and Range. -from Authors

  8. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    PubMed

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Variations in the structure of nexuses in the myocardium of the golden hamster Mesocricetus auratus.

    PubMed Central

    Skepper, J N; Navaratnam, V

    1986-01-01

    The structure of nexuses in the atrioventricular node of the golden hamster was studied with the transmission electron microscope, using thin sections and freeze-fracture replicas, and was compared with that of nexuses in the working myocardium of the right ventricular wall. Whereas ventricular myocardium contained macular nexuses only, nodal tissue contained annular and linear configurations as well as maculae of varying size. The significance of such variations in nexus pattern is not clear although several hypotheses are discussed in the literature. Measurements made on electron micrographs, after allowing for tilt of the specimen, yielded a particle diameter of 10.59 nm for nodal myocardium and 10.95 nm for ventricular myocardium, both measurements being substantially higher than figures generally cited in the literature. In each area the measurements had a normal distribution suggesting a single type of particle. The small but significant difference in particle size between the two areas is more likely to be caused by dissimilarities in packing arrangement rather than by differences in intrinsic structure or in functional state. Images Fig. 1 Fig. 3 PMID:3693102

  10. The compression dome concept: the restorative implications.

    PubMed

    Milicich, Graeme

    2017-01-01

    Evidence now supports the concept that the enamel on a tooth acts like a compression dome, much like the dome of a cathedral. With an overlying enamel compression dome, the underlying dentin is protected from damaging tensile forces. Disruption of a compression system leads to significant shifts in load pathways. The clinical restorative implications are significant and far-reaching. Cutting the wrong areas of a tooth exposes the underlying dentin to tensile forces that exceed natural design parameters. These forces lead to crack propagation, causing flexural pain and eventual fracture and loss of tooth structure. Improved understanding of the microanatomy of tooth structure and where it is safe to cut teeth has led to a revolution in dentistry that is known by several names, including microdentistry, minimally invasive dentistry, biomimetic dentistry, and bioemulation dentistry. These treatment concepts have developed due to a coalescence of principles of tooth microanatomy, material science, adhesive dentistry, and reinforcing techniques that, when applied together, will allow dentists to repair a compromised compression dome so that it more closely replicates the structure of the healthy tooth.

  11. Exposure of Mn and FeSODs, but not Cu/ZnSOD, to NO leads to nitrosonium and nitroxyl ions generation which cause enzyme modification and inactivation: an in vitro study.

    PubMed

    Niketíc, V; Stojanović, S; Nikolić, A; Spasić, M; Michelson, A M

    1999-11-01

    The effect of NO treatment in vitro on structural and functional alterations of Cu/Zn, Mn, and Fe type of SODs was studied. Significant difference in response to NO of Cu/ZnSOD compared to the Mn and Fe types was demonstrated. Cu/ZnSOD was shown to be stable with respect to NO: even on prolonged exposure, NO produced negligible effect on its structure and activity. In contrast, both Mn and Fe types were found to be NO-sensitive: exposure to NO led to their fast and extensive inactivation, which was accompanied by extensive structural alterations, including (in some of the samples tested) the cleavage of enzyme polypeptide chains, presumably at His residues of the enzyme metal binding sites. The generation of nitrosonium (NO+) and nitroxyl (NO-) ions in NO treated Mn and FeSODs, which produce enzyme modifications and inactivation, was demonstrated. The physiological and biomedical significance of described findings is briefly discussed.

  12. Structural, chemical, and magnetic properties of Fe films grown on InAs(100)

    NASA Astrophysics Data System (ADS)

    Ruppel, L.; Witte, G.; Wöll, Ch.; Last, T.; Fischer, S. F.; Kunze, U.

    2002-12-01

    The structure of epitaxial Fe films grown on an InAs(100)-c(8×2)/(4×2) surface has been studied in situ by means of low-energy electron diffraction and x-ray photoelectron spectroscopy, while their magnetic properties were characterized ex situ by superconducting quantum interference device magnetometry at temperatures of 5 300 K. Deposition of iron at room temperature or below leads to the formation of a thin iron arsenide layer that floats on the Fe film upon further deposition. Postdeposition annealing causes no significant improvement of the film structure but activates a further arsenic diffusion through the Fe film. Significant exchange-bias effects were found at low temperatures for insufficiently capped and partially oxidized Fe films, and are attributed to noncollinear spin order at the Ag capping layer/Fe interface. For perfect, nonoxidized Fe films, such a noncollinear spin order at the Fe/InAs interface is excluded as no thermomagnetic irreversibilities were found. This indicates that the spin order at the Fe/InAs interface is suitable for spin injection.

  13. The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms.

    PubMed

    Simões, Manuel; Pereira, Maria O; Sillankorva, Sanna; Azeredo, Joana; Vieira, Maria J

    2007-01-01

    This study investigated the phenotypic characteristics of monoculture P. fluorescens biofilms grown under turbulent and laminar flow, using flow cells reactors with stainless steel substrata. The cellular physiology and the overall biofilm activity, structure and composition were characterized, and compared, within hydrodynamically distinct conditions. The results indicate that turbulent flow-generated biofilm cells were significantly less extensive, with decreased metabolic activity and a lower protein and polysaccharides composition per cell than those from laminar flow-generated biofilms. The effect of flow regime did not cause significantly different outer membrane protein expression. From the analysis of biofilm activity, structure and composition, turbulent flow-generated biofilms were metabolically more active, had twice more mass per cm(2), and higher cellular density and protein content (mainly cellular) than laminar flow-generated biofilms. Conversely, laminar flow-generated biofilms presented higher total and matrix polysaccharide contents. Direct visualisation and scanning electron microscopy analysis showed that these different flows generate structurally different biofilms, corroborating the quantitative results. The combination of applied methods provided useful information regarding a broad spectrum of biofilm parameters, which can contribute to control and model biofilm processes.

  14. Structural changes caused by H 2 adsorption on the Si(111)7 × 7 surface

    NASA Astrophysics Data System (ADS)

    Wolff, S. H.; Wagner, S.; Gibson, J. M.; Loretto, D.; Robinson, I. K.; Bean, J. C.

    1990-12-01

    Structural changes caused by the adsorption of molecular hydrogen adsorption onto the Si(111)7 × 7 surface reconstruction are quantified using the first structure parameter refinement on transmission electron diffraction (TED) data. We find that initial adsorption of molecular hydrogen onto the Si(111)7 × 7 surface causes a preferential decrease in the occupancy of the center adatoms. Further adsorption of hydrogen results in the breaking of the dimer bonds and the removal of the corner adatoms.

  15. DDS, 4,4′-diaminodiphenylsulfone, extends organismic lifespan

    PubMed Central

    Keam, Bhumsuk; Choi, Jung Min; Cho, Yunje; Hyun, Soonsil; Park, Sang Chul; Lee, Junho

    2010-01-01

    DDS, 4,4′-diaminodiphenylsulfone, is the most common drug prescribed to treat Hansen disease patients. In addition to its antibacterial activity, DDS has been reported to be involved in other cellular processes that occur in eukaryotic cells. Because DDS treatment significantly enhances the antioxidant activity in humans, we examined its effect on lifespan extension. Here we show that DDS extends organismic lifespan using Caenorhabditis elegans as a model system. DDS treatment caused a delay in aging and decreased the levels of a mitochondrial complex. The oxygen consumption rate was also significantly lowered. Consistent with these data, paraquat treatment evoked less reactive oxygen species in DDS-treated worms, and these worms were less sensitive to paraquat. Interestingly enough, all of the molecular events caused by DDS treatment were consistently reproduced in mice treated with DDS for 3 mo and in the C2C12 muscle cell line. Structural prediction identified pyruvate kinase (PK) as a protein target of DDS. Indeed, DDS bound and inhibited PK in vitro and inhibited it in vivo, and a PK mutation conferred extended lifespan of C. elegans. Supplement of pyruvate to the media protected C2C12 cells from apoptosis caused by paraquat. Our findings establish the significance of DDS in lowering reactive oxygen species generation and extending the lifespan, which renders the rationale to examining the possible effect of DDS on human lifespan extension. PMID:20974969

  16. Potential pathways by which maternal second-hand smoke exposure during pregnancy causes full-term low birth weight.

    PubMed

    Niu, Zhongzheng; Xie, Chuanbo; Wen, Xiaozhong; Tian, Fuying; Yuan, Shixin; Jia, Deqin; Chen, Wei-Qing

    2016-04-29

    It is well documented that maternal exposure to second-hand smoke (SHS) during pregnancy causes low birth weight (LBW), but its mechanism remains unknown. This study explored the potential pathways. We enrolled 195 pregnant women who delivered full-term LBW newborns, and 195 who delivered full-term normal birth weight newborns as the controls. After controlling for maternal age, education level, family income, pre-pregnant body mass index, newborn gender and gestational age, logistic regression analysis revealed that LBW was significantly and positively associated with maternal exposure to SHS during pregnancy, lower placental weight, TNF-α and IL-1β, and that SHS exposure was significantly associated with lower placental weight, TNF-α and IL-1β. Structural equation modelling identified two plausible pathways by which maternal exposure to SHS during pregnancy might cause LBW. First, SHS exposure induced the elevation of TNF-α, which might directly increase the risk of LBW by transmission across the placenta. Second, SHS exposure first increased maternal secretion of IL-1β and TNF-α, which then triggered the secretion of VCAM-1; both TNF-α and VCAM-1 were significantly associated with lower placental weight, thus increasing the risk of LBW. In conclusion, maternal exposure to SHS during pregnancy may lead to LBW through the potential pathways of maternal inflammation and lower placental weight.

  17. Simulation Analysis and Performance Study of CoCrMo Porous Structure Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Guoqing, Zhang; Junxin, Li; Jin, Li; Chengguang, Zhang; Zefeng, Xiao

    2018-04-01

    To fabricate porous implants with improved biocompatibility and mechanical properties that are matched to their application using selective laser melting (SLM), flow within the mold and compressive properties and performance of the porous structures must be comprehensively studied. Parametric modeling was used to build 3D models of octahedron and hexahedron structures. Finite element analysis was used to evaluate the mold flow and compressive properties of the parametric porous structures. A DiMetal-100 SLM molding apparatus was used to manufacture the porous structures and the results evaluated by light microscopy. The results showed that parametric modeling can produce robust models. Square structures caused higher blood cell adhesion than cylindrical structures. "Vortex" flow in square structures resulted in chaotic distribution of blood elements, whereas they were mostly distributed around the connecting parts in the cylindrical structures. No significant difference in elastic moduli or compressive strength was observed in square and cylindrical porous structures of identical characteristics. Hexahedron, square and cylindrical porous structures had the same stress-strain properties. For octahedron porous structures, cylindrical structures had higher stress-strain properties. Using these modeling and molding results, an important basis for designing and the direct manufacture of fixed biological implants is provided.

  18. Simulation Analysis and Performance Study of CoCrMo Porous Structure Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Guoqing, Zhang; Junxin, Li; Jin, Li; Chengguang, Zhang; Zefeng, Xiao

    2018-05-01

    To fabricate porous implants with improved biocompatibility and mechanical properties that are matched to their application using selective laser melting (SLM), flow within the mold and compressive properties and performance of the porous structures must be comprehensively studied. Parametric modeling was used to build 3D models of octahedron and hexahedron structures. Finite element analysis was used to evaluate the mold flow and compressive properties of the parametric porous structures. A DiMetal-100 SLM molding apparatus was used to manufacture the porous structures and the results evaluated by light microscopy. The results showed that parametric modeling can produce robust models. Square structures caused higher blood cell adhesion than cylindrical structures. "Vortex" flow in square structures resulted in chaotic distribution of blood elements, whereas they were mostly distributed around the connecting parts in the cylindrical structures. No significant difference in elastic moduli or compressive strength was observed in square and cylindrical porous structures of identical characteristics. Hexahedron, square and cylindrical porous structures had the same stress-strain properties. For octahedron porous structures, cylindrical structures had higher stress-strain properties. Using these modeling and molding results, an important basis for designing and the direct manufacture of fixed biological implants is provided.

  19. Atypical gunshot injury to the right side of the face with the bullet lodged in the carotid sheath: a case report.

    PubMed

    Ongom, Peter A; Kijjambu, Stephen C; Jombwe, Josephat

    2014-01-27

    Gunshot injuries of the head and neck from the AK-47 rifle (a common assault rifle, submachine gun type) are a significant contributor to morbidity and mortality among civilians in Sub-Saharan Africa. They may cause significant damage to the closely arranged structures in this region, and the bullet's trajectory can be very difficult to determine. We present an unusual case of gunshot injury with an atypical bullet entry wound, profound injury to the face, lodgment in the right carotid sheath, and 'wandering'; a first of its kind in East Africa. A 27-year-old African-Ugandan woman of Nilotic ethnicity was referred to the Accident and Emergency Department of a tertiary hospital in Uganda, having sustained complex injuries due to an inadvertent AK-47 rifle gunshot injury. The gunshot injury was to the right side of her face with a large ragged entry wound and no exit wound. Prior basic wound care and radiological imaging showed a comminuted fracture of her mandible with lodgment of the bullet in her neck, anterior to her sixth and seventh cervical vertebrae. Standard debridement of her wound was done. A computed tomography scan showed an apparent cephalad shift ('wandering') of the bullet, leaving it lying partially anterior to her fifth cervical vertebra as well as within her carotid sheath. Other injuries were to her facial and trigeminal nerves, and her middle ear. The 'wandering' bullet was successfully removed surgically. It had caused no damage to any part of her neck structure. AK-47 rifle bullet injuries may present with uncharacteristically large entry wounds and cause complex structural injuries at the area of impact. The consequent trajectory is difficult to predict making regional examination and radiological investigations essential in management. Bullets may be retained, leaving no exit wound. Securing the airway, controlling hemorrhage and identifying other injuries are the first vital steps. This case illustrates all these interventions and the important decision to extract the entrapped bullet from the patient's neck because it had started to 'wander' and could have caused grave injury over time with further migration. Maxillofacial, plastic, trauma, general and military surgeons, otorhinolaryngologists and emergency physicians can gain from this experience because it calls for a multidisciplinary team approach.

  20. Effects of endogenous cysteine proteinases on structures of collagen fibres from dermis of sea cucumber (Stichopus japonicus).

    PubMed

    Liu, Yu-Xin; Zhou, Da-Yong; Ma, Dong-Dong; Liu, Zi-Qiang; Liu, Yan-Fei; Song, Liang; Dong, Xiu-Ping; Li, Dong-Mei; Zhu, Bei-Wei; Konno, Kunihiko; Shahidi, Fereidoon

    2017-10-01

    Autolysis of sea cucumber, caused by endogenous enzymes, leads to postharvest quality deterioration of sea cucumber. However, the effects of endogenous proteinases on structures of collagen fibres, the major biologically relevant substrates in the body wall of sea cucumber, are less clear. Collagen fibres were prepared from the dermis of sea cucumber (Stichopus japonicus), and the structural consequences of degradation of the collagen fibres caused by endogenous cysteine proteinases (ECP) from Stichopus japonicus were examined. Scanning electron microscopic images showed that ECP caused partial disaggregation of collagen fibres into collagen fibrils by disrupting interfibrillar proteoglycan bridges. Differential scanning calorimetry and Fourier transform infrared analysis revealed increased structural disorder of fibrillar collagen caused by ECP. SDS-PAGE and chemical analysis indicated that ECP can liberate glycosaminoglycan, hydroxyproline and collagen fragments from collagen fibres. Thus ECP can cause disintegration of collagen fibres by degrading interfibrillar proteoglycan bridges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Maple syrup urine disease caused by two novel BCKDHB gene mutations in a Chinese neonate].

    PubMed

    Shen, Yunlin; Gong, Xiaohui; Yan, Jingbin; Qin, Li; Qiu, Gang

    2015-01-01

    Maple syrup urine disease (MSUD) is an autosomal recessive metabolic disorder that is caused by mutations in the subunits of the branched chain α-ketoacid dehydrogenase (BCKD) complex. This report presents a Han ethnic Chinese newborn infant with the severe classic form of MSUD caused by two novel missense mutations in the BCKDHB gene. The clinical and biochemical data of a Chinese neonate with classic form of MSUD were analyzed, and the DNA sequences of BCKDHA, BCKDHB, DBT and DLD genes were investigated for mutations. Then the DNA samples of the proband and the patient's parents were tested with Sanger sequencing. The manifestations of this patient were poor feeding, low reaction, and compensatory metabolic acidosis. Tandem mass spectrometry (MS/MS) showed that leucine and valine were significantly higher than normal. Urine gas chromatography-mass spectrometry (GC/MS) showed significant abnormality. Brain CT scan showed white matter changes. We identified two previously unreported mutations in the BCKDHB gene, p.Leu194Phe (c.580 C>T) and p.Ser199Arg (c.597 T>G) in exon 5. Segregation analysis showed that the novel mutation p.Ser199Arg was maternally inherited and the novel mutation p.Leu194Phe was paternally inherited. Neither mutation was found in the 186 alleles of 93 normal Han ethnic Chinese individuals. In human BCKDHB protein crystal structure, the 194th and 199th amino acids changes are likely to affect the spatial structure of the protein. The 194th and 199th amino acid of human BCKDHB protein was conserved among species. PolyPhen protein function prediction indicated that the 194th and 199th amino acid changes were likely to affect protein function. Two novel missense mutations were identified in the BCKDHB gene in the Chinese patient with MSUD.

  2. Conformational locking by design: relating strain energy with luminescence and stability in rigid metal-organic frameworks.

    PubMed

    Shustova, Natalia B; Cozzolino, Anthony F; Dincă, Mircea

    2012-12-05

    Minimization of the torsional barrier for phenyl ring flipping in a metal-organic framework (MOF) based on the new ethynyl-extended octacarboxylate ligand H(8)TDPEPE leads to a fluorescent material with a near-dark state. Immobilization of the ligand in the rigid structure also unexpectedly causes significant strain. We used DFT calculations to estimate the ligand strain energies in our and all other topologically related materials and correlated these with empirical structural descriptors to derive general rules for trapping molecules in high-energy conformations within MOFs. These studies portend possible applications of MOFs for studying fundamental concepts related to conformational locking and its effects on molecular reactivity and chromophore photophysics.

  3. Mechanism and active variety of allelochemicals

    USGS Publications Warehouse

    Peng, S.-L.; Wen, J.; Guo, Q.-F.

    2004-01-01

    This article summarizes allelochemicals' active variety, its potential causes and function mechanisms. Allelochemicals' activity varies with temperature, photoperiod, water and soils during natural processes, with its initial concentration, compound structure and mixed degree during functional processes, with plant accessions, tissues and maturity within-species, and with research techniques and operation processes. The prospective developmental aspects of allelopathy studies in the future are discussed. Future research should focus on: (1) to identify and purify allelochemicals more effectively, especially for agriculture, (2) the functions of allelopathy at the molecular structure level, (3) using allelopathy to explain plant species interactions, (4) allelopathy as a driving force of succession, and (5) the significance of allelopathy in the evolutionary processes.

  4. Tetrameres (Tetrameres) grusi (Shumakovich, 1946) (Nematoda: Tetrameridae) in Eurasian cranes (Grus grus) in central Iran.

    PubMed

    Mowlavi, G R; Massoud, J; Mobedi, I; Gharagozlou, M J; Rezaian, M; Solaymani-Mohammadi, S

    2006-04-01

    The proventriculi of 11 Eurasian cranes (Grus grus) from central Iran were examined for the existence of parasitic helminths. Preliminary reports suggested that the death of these birds was related to untimely cold weather. Nine proventriculi (82%) were heavily infected by the nematode Tetrameres grusi. Glandular structure of the infected proventriculi was replaced by epithelial atrophy but significant inflammatory reactions were not observed in any of the infected organs. In serious infections, the nematode produced vast structural and functional changes, causing organ dysfunction and glandular necrosis. The coincidence of heavy helminth infection at times of environmental stress may lead to debilitation, wasting, and perhaps mortality in migratory cranes.

  5. Effect of Destined High-Pressure Torsion on the Structure and Mechanical Properties of Rare Earth-Based Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Cheng, H.; Jiang, X.; Wu, M. L.; Li, G.

    2018-03-01

    Changes in the atomic structure and mechanical properties of rare earth-based metallic glasses caused by destined high-pressure torsion (HPT) were studied by X-ray diffraction synchrotron radiation and nanoindentation. Results showed that destined HPT improved nanohardness and wear resistance, which indicated the significant contributions of this technique. The diffraction patterns showed that the contents of pairs between solvent and solute atoms with a large negative mixing enthalpy increased, whereas those of pairs between solvent atoms and between solute atoms decreased after destined HPT. Thus, the process was improved by increasing the proportion of high-intensity pairs between solvent and solute atoms.

  6. Nano-cone resistive memory for ultralow power operation.

    PubMed

    Kim, Sungjun; Jung, Sunghun; Kim, Min-Hwi; Kim, Tae-Hyeon; Bang, Suhyun; Cho, Seongjae; Park, Byung-Gook

    2017-03-24

    SiN x -based nano-structure resistive memory is fabricated by fully silicon CMOS compatible process integration including particularly designed anisotropic etching for the construction of a nano-cone silicon bottom electrode (BE). Bipolar resistive switching characteristics have significantly reduced switching current and voltage and are demonstrated in a nano-cone BE structure, as compared with those in a flat BE one. We have verified by systematic device simulations that the main cause of reduction in the performance parameters is the high electric field being more effectively concentrated at the tip of the cone-shaped BE. The greatly improved nonlinearity of the nano-cone resistive memory cell will be beneficial in the ultra-high-density crossbar array.

  7. Significance of beating observed in earthquake responses of buildings

    USGS Publications Warehouse

    Çelebi, Mehmet; Ghahari, S. F.; Taciroglu, E.

    2016-01-01

    The beating phenomenon observed in the recorded responses of a tall building in Japan and another in the U.S. are examined in this paper. Beating is a periodic vibrational behavior caused by distinctive coupling between translational and torsional modes that typically have close frequencies. Beating is prominent in the prolonged resonant responses of lightly damped structures. Resonances caused by site effects also contribute to accentuating the beating effect. Spectral analyses and system identification techniques are used herein to quantify the periods and amplitudes of the beating effects from the strong motion recordings of the two buildings. Quantification of beating effects is a first step towards determining remedial actions to improve resilient building performance to strong earthquake induced shaking.

  8. Quantitative Evaluation of Hard X-ray Damage to Biological Samples using EUV Ptychography

    NASA Astrophysics Data System (ADS)

    Baksh, Peter; Odstrcil, Michal; Parsons, Aaron; Bailey, Jo; Deinhardt, Katrin; Chad, John E.; Brocklesby, William S.; Frey, Jeremy G.

    2017-06-01

    Coherent diffractive imaging (CDI) has become a standard method on a variety of synchrotron beam lines. The high brilliance short wavelength radiation from these sources can be used to reconstruct attenuation and relative phase of a sample with nanometre resolution via CDI methods. However, the interaction between the sample and high energy ionising radiation can cause degradation to sample structure. We demonstrate, using a laboratory based high harmonic generation (HHG) based extreme ultraviolet (EUV) source, imaging a sample of hippocampal neurons using the ptychography method. The significant increase in contrast of the sample in the EUV light allows identification of damage induced from exposure to 7.3 keV photons, without causing any damage to the sample itself.

  9. Spectroscopic analysis of the impact of oxidative stress on the structure of human serum albumin (HSA) in terms of its binding properties

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.

    2015-02-01

    Oxygen metabolism has an important role in the pathogenesis of rheumatoid arthritis (RA). Reactive oxygen species (ROS) are produced in the course of cellular oxidative phosphorylation and by activated phagocytic cells during oxidative bursts, exceed the physiological buffering capacity and result in oxidative stress. ROS result in oxidation of serum albumin, which causes a number of structural changes in the spatial structure, may influence the binding and cause significant drug interactions, particularly in polytherapy. During the oxidation modification of amino acid residues, particularly cysteine and methionine may occur. The aim of the study was to investigate the influence of oxidative stress on human serum albumin (HSA) structure and evaluate of possible alterations in the binding of the drug to oxidized human serum albumin (oHSA). HSA was oxidized by a chloramine-T (CT). CT reacts rapidly with sulfhydryl groups and at pH 7.4 the reaction was monitored by spectroscopic techniques. Modification of free thiol group in the Cys residue in HSA was quantitatively determined by the use of Ellman's reagent. Changes of albumin conformation were examined by comparison of modified (oHSA) and nonmodified human serum albumin (HSA) absorption spectra, emission spectra, red-edge shift (REES) and synchronous spectroscopy. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region of 200-250 nm involve structural alterations in peptide backbone conformation. Synchronous fluorescence spectroscopy technique confirmed changes of position of tryptophanyl and tyrosyl residues fluorescent band caused by CT. Moreover analysis of REES effect allowed to observe structural changes caused by CT in the region of the hydrophobic pocket containing the tryptophanyl residue. Effect of oxidative stress on binding of anti-rheumatic drugs, sulfasalazine (SSZ) and sulindac (SLD) in the high and low affinity binding sites was investigated by spectrofluorescence, ITC and 1H NMR spectroscopy, respectively. SSZ and SLD change the affinity of each other to the binding site in non- and modified human serum albumin. The presence of SLD causes the increase of association constant (Ka) of SSZ-oHSA system and the strength of binding and the stability of the complexes has been observed while in the presence of SSZ a displacement of SLD from the SLD-HSA has been recorded. The analysis of 1H NMR spectral parameters i.e. changes of chemical shifts of the drug indicate that the presence of SSZ and SLD have a mutual influence on changes in the affinity of human serum albumin binding site and this competition takes place not only due to the additional drug but also to the oxidation of HSA.

  10. Insulin protects against hepatic damage postburn.

    PubMed

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes.

  11. Insulin Protects against Hepatic Damage Postburn

    PubMed Central

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes. PMID:21267509

  12. Modeling the circle of Willis to assess the effect of anatomical variations on the development of unilateral internal carotid artery stenosis.

    PubMed

    Zhang, Chi; Wang, Ling; Li, Xiaoyun; Li, Shuyu; Pu, Fang; Fan, Yubo; Li, Deyu

    2014-01-01

    Circle of Willis (CoW) plays a significant role in maintaining the blood supply for the brain. Specifically, when the stenosis occurs in the internal carotid artery (ICA), abnormal structures of CoW would decrease the compensatory capacity, leading to the local insufficiency of cerebral blood supply. The present paper built a series of lumped parameter models for CoW, and simulated the blood redistribution caused by the unilateral ICA stenosis with different severities in cerebral arteries in the normal and abnormal CoW respectively. The results showed that when unilateral ICA stenosis occurred, the collateral circulation was built through the anterior communicating artery and the ipsilateral posterior communicating artery, maintaining the flow in cerebral arteries. The absence of the two communicating arteries would cause an obvious decrease of flow in local cerebral arteries in the anterior circulation. In conclusion, the two arteries play a significant role in maintaining the balance of cerebral blood supply in the development of ICA stenosis.

  13. Evidence that failure of osteoid bone matrix resorption is caused by perturbation of osteoclast polarization.

    PubMed

    Yovich, S; Seydel, U; Papadimitriou, J M; Nicholson, G C; Wood, D J; Zheng, M H

    1998-04-01

    Osteoclasts resorb bone by a complex dynamic process that initially involves attachment, polarization and enzyme secretion, followed by their detachment and migration to new sites. In this study, we postulated that mineralized and osteoid bone matrix signal osteoclasts differently, resulting in the resorption of mineralized bone matrix only. We, therefore, compared the cytoplasmic distribution of cytoskeletal proteins F-actin and vinculin using confocal laser-scanning microscopy in osteoclasts cultured on mineralized and demineralized bone slices and correlated the observations with their functional activity. Our results have demonstrated significant differences in F-actin and vinculin staining patterns between osteoclasts cultured on mineralized bone matrix and those on demineralized bone matrix. In addition, the structural variations were accompanied by significant differences in bone resorbing activity between osteoclasts grown on mineralized bone matrix and those on demineralized bone matrix after 24 h of culture --resorption only occurring in mineralized bone but not in demineralized bone. These results indicated that failure of osteoid bone resorption is caused by perturbation of osteoclast polarization.

  14. Hydroxyapatite with Permanent Electrical Polarization: Preparation, Characterization, and Response against Inorganic Adsorbates.

    PubMed

    Rivas, Manuel; Del Valle, Luis J; Armelin, Elaine; Bertran, Oscar; Turon, Pau; Puiggalí, Jordi; Alemán, Carlos

    2018-04-16

    Permanently polarized hydroxyapatite (HAp) particles have been prepared by applying a constant DC of 500 V at 1000 °C for 1 h to the sintered mineral. This process causes important chemical changes, as the formation of OH - defects (vacancies), the disappearance of hydrogenophosphate ions at the mineral surface layer, and structural variations reflected by the increment of the crystallinity. As a consequence, the electrochemical properties and electrical conductivity of the polarized mineral increase noticeably compared with as-prepared and sintered samples. Moreover, these increments remain practically unaltered after several months. In addition, permanent polarization favours significantly the ability of HAp to adsorb inorganic bioadsorbates in comparison with as-prepared and sintered samples. The adsorbates cause a significant increment of the electrochemical stability and electrical conductivity with respect to bare polarized HAp, which may have many implications for biomedical applications of permanently polarized HAp. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Demographic processes underlying subtle patterns of population structure in the scalloped hammerhead shark, Sphyrna lewini.

    PubMed

    Nance, Holly A; Klimley, Peter; Galván-Magaña, Felipe; Martínez-Ortíz, Jimmy; Marko, Peter B

    2011-01-01

    Genetic diversity (θ), effective population size (N(e)), and contemporary levels of gene flow are important parameters to estimate for species of conservation concern, such as the globally endangered scalloped hammerhead shark, Sphyrna lewini. Therefore, we have reconstructed the demographic history of S. lewini across its Eastern Pacific (EP) range by applying classical and coalescent population genetic methods to a combination of 15 microsatellite loci and mtDNA control region sequences. In addition to significant population genetic structure and isolation-by-distance among seven coastal sites between central Mexico and Ecuador, the analyses revealed that all populations have experienced a bottleneck and that all current values of θ are at least an order of magnitude smaller than ancestral θ, indicating large decreases in N(e) (θ = 4N(e)μ), where μ is the mutation rate. Application of the isolation-with-migration (IM) model showed modest but significant genetic connectivity between most sampled sites (point estimates of Nm = 0.1-16.7), with divergence times (t) among all populations significantly greater than zero. Using a conservative (i.e., slow) fossil-based taxon-specific phylogenetic calibration for mtDNA mutation rates, posterior probability distributions (PPDs) for the onset of the decline in N(e) predate modern fishing in this region. The cause of decline over the last several thousand years is unknown but is highly atypical as a post-glacial demographic history. Regardless of the cause, our data and analyses suggest that S. lewini was far more abundant throughout the EP in the past than at present.

  16. Demographic Processes Underlying Subtle Patterns of Population Structure in the Scalloped Hammerhead Shark, Sphyrna lewini

    PubMed Central

    Nance, Holly A.; Klimley, Peter; Galván-Magaña, Felipe; Martínez-Ortíz, Jimmy; Marko, Peter B.

    2011-01-01

    Genetic diversity (θ), effective population size (Ne), and contemporary levels of gene flow are important parameters to estimate for species of conservation concern, such as the globally endangered scalloped hammerhead shark, Sphyrna lewini. Therefore, we have reconstructed the demographic history of S. lewini across its Eastern Pacific (EP) range by applying classical and coalescent population genetic methods to a combination of 15 microsatellite loci and mtDNA control region sequences. In addition to significant population genetic structure and isolation-by-distance among seven coastal sites between central Mexico and Ecuador, the analyses revealed that all populations have experienced a bottleneck and that all current values of θ are at least an order of magnitude smaller than ancestral θ, indicating large decreases in Ne (θ = 4Neμ), where μ is the mutation rate. Application of the isolation-with-migration (IM) model showed modest but significant genetic connectivity between most sampled sites (point estimates of Nm = 0.1–16.7), with divergence times (t) among all populations significantly greater than zero. Using a conservative (i.e., slow) fossil-based taxon-specific phylogenetic calibration for mtDNA mutation rates, posterior probability distributions (PPDs) for the onset of the decline in Ne predate modern fishing in this region. The cause of decline over the last several thousand years is unknown but is highly atypical as a post-glacial demographic history. Regardless of the cause, our data and analyses suggest that S. lewini was far more abundant throughout the EP in the past than at present. PMID:21789171

  17. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases.

    PubMed

    Chiti, Fabrizio; Calamai, Martino; Taddei, Niccolo; Stefani, Massimo; Ramponi, Giampietro; Dobson, Christopher M

    2002-12-10

    Protein aggregation and the formation of highly insoluble amyloid structures is associated with a range of debilitating human conditions, which include Alzheimer's disease, Parkinson's disease, and the Creutzfeldt-Jakob disease. Muscle acylphosphatase (AcP) has already provided significant insights into mutational changes that modulate amyloid formation. In the present paper, we have used this system to investigate the effects of mutations that modify the charge state of a protein without affecting significantly the hydrophobicity or secondary structural propensities of the polypeptide chain. A highly significant inverse correlation was found to exist between the rates of aggregation of the protein variants under denaturing conditions and their overall net charge. This result indicates that aggregation is generally favored by mutations that bring the net charge of the protein closer to neutrality. In light of this finding, we have analyzed natural mutations associated with familial forms of amyloid diseases that involve alteration of the net charge of the proteins or protein fragments associated with the diseases. Sixteen mutations have been identified for which the mechanism of action that causes the pathological condition is not yet known or fully understood. Remarkably, 14 of these 16 mutations cause the net charge of the corresponding peptide or protein that converts into amyloid deposits to be reduced. This result suggests that charge has been a key parameter in molecular evolution to ensure the avoidance of protein aggregation and identifies reduction of the net charge as an important determinant in at least some forms of protein deposition diseases.

  18. Inhibitors and modulators of beta- and gamma-secretase.

    PubMed

    Schmidt, Boris; Baumann, Stefanie; Braun, Hannes A; Larbig, Gregor

    2006-01-01

    Most gene mutations associated with Alzheimer's disease point to the metabolism of amyloid precursor protein as potential cause. The beta- and gamma-secretases are two executioners of amyloid precursor protein processing resulting in amyloid beta. Significant progress has been made in the selective inhibition of both proteases, regardless of structural information for gamma-secretase. Several peptidic and non-peptidic leads were identified and first drug candidates are in clinical trials. This review focuses on the developments since 2003.

  19. Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3β Activity.

    PubMed

    Shanmugam, Karthi; Ravindran, Sriram; Kurian, Gino A; Rajesh, Mohanraj

    2018-01-01

    Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide. Timely reperfusion is considered an optimal treatment for AMI. Paradoxically, the procedure of reperfusion can itself cause myocardial tissue injury. Therefore, a strategy to minimize the reperfusion-induced myocardial tissue injury is vital for salvaging the healthy myocardium. Herein, we investigated the cardioprotective effects of fisetin, a natural flavonoid, against ischemia/reperfusion (I/R) injury (IRI) using a Langendorff isolated heart perfusion system. I/R produced significant myocardial tissue injury, which was characterized by elevated levels of lactate dehydrogenase and creatine kinase in the perfusate and decreased indices of hemodynamic parameters. Furthermore, I/R resulted in elevated oxidative stress, uncoupling of the mitochondrial electron transport chain, increased mitochondrial swelling, a decrease of the mitochondrial membrane potential, and induction of apoptosis. Moreover, IRI was associated with a loss of the mitochondrial structure and decreased mitochondrial biogenesis. However, when the animals were pretreated with fisetin, it significantly attenuated the I/R-induced myocardial tissue injury, blunted the oxidative stress, and restored the structure and function of mitochondria. Mechanistically, the fisetin effects were found to be mediated via inhibition of glycogen synthase kinase 3 β (GSK3 β ), which was confirmed by a biochemical assay and molecular docking studies.

  20. Two-dimensional auto-correlation analysis and Fourier-transform analysis of second-harmonic-generation image for quantitative analysis of collagen fiber in human facial skin

    NASA Astrophysics Data System (ADS)

    Ogura, Yuki; Tanaka, Yuji; Hase, Eiji; Yamashita, Toyonobu; Yasui, Takeshi

    2018-02-01

    We compare two-dimensional auto-correlation (2D-AC) analysis and two-dimensional Fourier transform (2D-FT) for evaluation of age-dependent structural change of facial dermal collagen fibers caused by intrinsic aging and extrinsic photo-aging. The age-dependent structural change of collagen fibers for female subjects' cheek skin in their 20s, 40s, and 60s were more noticeably reflected in 2D-AC analysis than in 2D-FT analysis. Furthermore, 2D-AC analysis indicated significantly higher correlation with the skin elasticity measured by Cutometer® than 2D-AC analysis. 2D-AC analysis of SHG image has a high potential for quantitative evaluation of not only age-dependent structural change of collagen fibers but also skin elasticity.

  1. Exploring the wake of a dust particle by a continuously approaching test grain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hendrik, E-mail: hjung@physik.uni-kiel.de; Greiner, Franko; Asnaz, Oguz Han

    2015-05-15

    The structure of the ion wake behind a dust particle in the plasma sheath of an rf discharge is studied in a two-particle system. The wake formation leads to attractive forces between the negatively charged dust and can cause a reduction of the charge of a particle. By evaluating the dynamic response of the particle system to small external perturbations, these quantities can be measured. Plasma inherent etching processes are used to achieve a continuous mass loss and hence an increasing levitation height of the lower particle, so that the structure of the wake of the upper particle, which ismore » nearly unaffected by etching, can be probed. The results show a significant modification of the wake structure in the plasma sheath to one long potential tail.« less

  2. Kneelike Structure in the Spectrum of the Heavy Component of Cosmic Rays Observed with KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2011-10-01

    We report the observation of a steepening in the cosmic ray energy spectrum of heavy primary particles at about 8×1016eV. This structure is also seen in the all-particle energy spectrum, but is less significant. Whereas the “knee” of the cosmic ray spectrum at 3-5×1015eV was assigned to light primary masses by the KASCADE experiment, the new structure found by the KASCADE-Grande experiment is caused by heavy primaries. The result is obtained by independent measurements of the charged particle and muon components of the secondary particles of extensive air showers in the primary energy range of 1016 to 1018eV. The data are analyzed on a single-event basis taking into account also the correlation of the two observables.

  3. Structural Basis for Binding and Selectivity of Antimalarial and Anticancer Ethylenediamine Inhibitors to Protein Farnesyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hast, Michael A.; Fletcher, Steven; Cummings, Christopher G.

    Protein farnesyltransferase (FTase) catalyzes an essential posttranslational lipid modification of more than 60 proteins involved in intracellular signal transduction networks. FTase inhibitors have emerged as a significant target for development of anticancer therapeutics and, more recently, for the treatment of parasitic diseases caused by protozoan pathogens, including malaria (Plasmodium falciparum). We present the X-ray crystallographic structures of complexes of mammalian FTase with five inhibitors based on an ethylenediamine scaffold, two of which exhibit over 1000-fold selective inhibition of P. falciparum FTase. These structures reveal the dominant determinants in both the inhibitor and enzyme that control binding and selectivity. Comparison tomore » a homology model constructed for the P. falciparum FTase suggests opportunities for further improving selectivity of a new generation of antimalarial inhibitors.« less

  4. Anatomic changes due to interspecific grafting in cassava (Manihot esculenta).

    PubMed

    Bomfim, N; Ribeiro, D G; Nassar, N M A

    2011-05-31

    Cassava rootstocks of varieties UnB 201 and UnB 122 grafted with scions of Manihot fortalezensis were prepared for anatomic study. The roots were cut, stained with safranin and alcian blue, and examined microscopically, comparing them with sections taken from ungrafted roots. There was a significant decrease in number of pericyclic fibers, vascular vessels and tyloses in rootstocks. They exhibited significant larger vessels. These changes in anatomic structure are a consequence of genetic effects caused by transference of genetic material from scion to rootstock. The same ungrafted species was compared. This is the first report on anatomic changes due to grafting in cassava.

  5. Increase in the Acceleration Efficiency of Solids in a Hybrid Coaxial Magnetoplasma Accelerator

    NASA Astrophysics Data System (ADS)

    Gerasimov, D. Yu.; Sivkov, A. A.

    2018-01-01

    It is shown that in a hybrid coaxial magnetoplasma accelerator with a channel length of 350 mm and a diameter of 23 mm, the acceleration velocity and the energy conversion efficiency increase as the length of the plasma structure formation channel filled with a gas-generating material decreases from 17 to 9 mm. It is found that it is reasonable to use paraffin as the gas-generating material as it has a less significant deionizing effect on the high-current arc discharge and hence causes a less significant decrease in the discharge current intensity and an increase in conductive and inductive electrodynamic forces.

  6. Fractal dimension brain morphometry: a novel approach to quantify white matter in traumatic brain injury.

    PubMed

    Rajagopalan, Venkateswaran; Das, Abhijit; Zhang, Luduan; Hillary, Frank; Wylie, Glenn R; Yue, Guang H

    2018-06-16

    Traumatic brain injury (TBI) is the main cause of disability in people younger than 35 in the United States. The mechanisms of TBI are complex resulting in both focal and diffuse brain damage. Fractal dimension (FD) is a measure that can characterize morphometric complexity and variability of brain structure especially white matter (WM) structure and may provide novel insights into the injuries evident following TBI. FD-based brain morphometry may provide information on WM structural changes after TBI that is more sensitive to subtle structural changes post injury compared to conventional MRI measurements. Anatomical and diffusion tensor imaging (DTI) data were obtained using a 3 T MRI scanner in subjects with moderate to severe TBI and in healthy controls (HC). Whole brain WM volume, grey matter volume, cortical thickness, cortical area, FD and DTI metrics were evaluated globally and for the left and right hemispheres separately. A neuropsychological test battery sensitive to cognitive impairment associated with traumatic brain injury was performed. TBI group showed lower structural complexity (FD) bilaterally (p < 0.05). No significant difference in either grey matter volume, cortical thickness or cortical area was observed in any of the brain regions between TBI and healthy controls. No significant differences in whole brain WM volume or DTI metrics between TBI and HC groups were observed. Behavioral data analysis revealed that WM FD accounted for a significant amount of variance in executive functioning and processing speed beyond demographic and DTI variables. FD therefore, may serve as a sensitive marker of injury and may play a role in outcome prediction in TBI.

  7. Documentation for the Southeast Asia seismic hazard maps

    USGS Publications Warehouse

    Petersen, Mark; Harmsen, Stephen; Mueller, Charles; Haller, Kathleen; Dewey, James; Luco, Nicolas; Crone, Anthony; Lidke, David; Rukstales, Kenneth

    2007-01-01

    The U.S. Geological Survey (USGS) Southeast Asia Seismic Hazard Project originated in response to the 26 December 2004 Sumatra earthquake (M9.2) and the resulting tsunami that caused significant casualties and economic losses in Indonesia, Thailand, Malaysia, India, Sri Lanka, and the Maldives. During the course of this project, several great earthquakes ruptured subduction zones along the southern coast of Indonesia (fig. 1) causing additional structural damage and casualties in nearby communities. Future structural damage and societal losses from large earthquakes can be mitigated by providing an advance warning of tsunamis and introducing seismic hazard provisions in building codes that allow buildings and structures to withstand strong ground shaking associated with anticipated earthquakes. The Southeast Asia Seismic Hazard Project was funded through a United States Agency for International Development (USAID)—Indian Ocean Tsunami Warning System to develop seismic hazard maps that would assist engineers in designing buildings that will resist earthquake strong ground shaking. An important objective of this project was to discuss regional hazard issues with building code officials, scientists, and engineers in Thailand, Malaysia, and Indonesia. The code communities have been receptive to these discussions and are considering updating the Thailand and Indonesia building codes to incorporate new information (for example, see notes from Professor Panitan Lukkunaprasit, Chulalongkorn University in Appendix A).

  8. Dynamic modeling of injection-induced fault reactivation and ground motion and impact on surface structures and human perception

    DOE PAGES

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; ...

    2014-12-31

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about M w = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzedmore » the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic M w = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO 2 leakage, but would certainly be felt by the local population.« less

  9. Structure of glutathione reductase from Escherichia coli at 1.86 A resolution: comparison with the enzyme from human erythrocytes.

    PubMed Central

    Mittl, P. R.; Schulz, G. E.

    1994-01-01

    The crystal structure of the dimeric flavoenzyme glutathione reductase from Escherichia coli was determined and refined to an R-factor of 16.8% at 1.86 A resolution. The molecular 2-fold axis of the dimer is local but very close to a possible crystallographic 2-fold axis; the slight asymmetry could be rationalized from the packing contacts. The 2 crystallographically independent subunits of the dimer are virtually identical, yielding no structural clue on possible cooperativity. The structure was compared with the well-known structure of the homologous enzyme from human erythrocytes with 52% sequence identity. Significant differences were found at the dimer interface, where the human enzyme has a disulfide bridge, whereas the E. coli enzyme has an antiparallel beta-sheet connecting the subunits. The differences at the glutathione binding site and in particular a deformation caused by a Leu-Ile exchange indicate why the E. coli enzyme accepts trypanothione much better than the human enzyme. The reported structure provides a frame for explaining numerous published engineering results in detail and for guiding further ones. PMID:8061609

  10. Origin of the double- and multi-pulse structure of echolocation signals in Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientialis)

    NASA Astrophysics Data System (ADS)

    Li, Songhai; Wang, Kexiong; Wang, Ding; Akamatsu, Tomonari

    2005-12-01

    The signals of dolphins and porpoises often exhibit a multi-pulse structure. Here, echolocation signal recordings were made from four geometrically distinct positions of seven Yangtze finless porpoises temporarily housed in a relatively small, enclosed area. Some clicks demonstrated double-pulse, and others multi-pulse, structure. The interpulse intervals between the first and second pulse of the double- and multi-pulse clicks were significantly different among data from the four different positions (p<0.01, one-way ANOVA). These results indicate that the interpulse interval and structure of the double- and multi-pulse echolocation signals depend on the hydrophone geometry of the animal, and that the double- and multi-pulse structure of echolocation signals in Yangtze finless porpoise is not caused by the phonating porpoise itself, but by the multipath propagation of the signal. Time delays in the 180° phase-shifted surface reflection pulse and the nonphase-shifted bottom reflection pulse of the multi-pulse structures, relative to the direct signal, can be used to calculate the distance to a phonating animal.

  11. Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model

    DOE PAGES

    deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy; ...

    2014-10-10

    In this study, CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase ( DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecularmore » dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.« less

  12. High Capacity of Hard Carbon Anode in Na-Ion Batteries Unlocked by PO x Doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhifei; Ma, Lu; Surta, Todd Wesley

    2016-08-12

    The capacity of hard carbon anodes in Na-ion batteries 2.5 rarely reaches values beyond 300 mAh/g. We report that doping POx into local structures of hard carbon increases its reversible capacity from 283 to 359 mAh/g. We confirm that the doped POx is redox inactive by X-ray adsorption near edge structure measurements, thus not contributing to the higher capacity. We observe two significant changes of hard carbon's local structures caused by doping. First, the (002) d-spacing inside the turbostratic nanodomains is increased, revealed by both laboratory and synchrotron X-ray diffraction. Second, doping turns turbostratic nanodomains more defective along ab planes,more » indicated by neutron total scattering and the associated pair distribution function studies. The local structural changes of hard carbon are correlated to the higher capacity, where both the plateau and slope regions in the potential profiles are enhanced. Our study demonstrates that Na-ion storage in hard carbon heavily depends on carbon local structures, where such structures, despite being disordered, can be tuned toward unusually high capacities.« less

  13. Cytotoxic effects of andiroba oil (Carapa guianensis) in reproductive system of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) semi-engorged females.

    PubMed

    Vendramini, Maria Cláudia Ramalho; Camargo-Mathias, Maria Izabel; de Faria, Adriano Uemura; Bechara, Gervásio Henrique; de Oliveira, Patrícia Rosa; Roma, Gislaine Cristina

    2012-11-01

    The present study performed an analysis about the effects of andiroba seed oil (Carapa guianensis) in the ovary of Rhipicephalus sanguineus semi-engorged females; once, there are few studies about the action of natural products on the reproductive system, a vital organ for the biological success of this animal group. The results showed that andiroba oil is a potent natural agent which causes significant structural changes in the oocytes, such as the emergence of large vacuolated cytoplasmic regions, reduction in the number of yolk granules, changes in the shape of the cells, as well as impairment of genetic material. In addition, the ovary epithelium showed severe morphological changes, such as extreme structural disorganization, with highly vacuolated cells and picnotic nuclei, forming an amorphous mass. This study showed also that oocytes (mainly in the initial stages of development) and the ovary epithelium of R. sanguineus females subjected to different concentrations of andiroba oil presented morphological changes which became more numerous and intense as the concentration of the product increased. Based on the results, it can be inferred that although the defense mechanisms are developed by oocytes to recover the cellular integrity (presence of autophagic vacuoles), these cells are not able to revert the damage caused by this product. Thus, it can be concluded that although the damages caused to the oocytes by andiroba oil are comparatively less severe than the ones caused by synthetic acaricides, this product can be considered a potent natural agent that reduce and/or prevent the reproduction of R. sanguineus females, with the advantage of not causing environmental impact such as synthetic chemical acaricides.

  14. Aeroelasticity of Axially Loaded Aerodynamic Structures for Truss-Braced Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents an aeroelastic finite-element formulation for axially loaded aerodynamic structures. The presence of axial loading causes the bending and torsional sitffnesses to change. For aircraft with axially loaded structures such as the truss-braced wing aircraft, the aeroelastic behaviors of such structures are nonlinear and depend on the aerodynamic loading exerted on these structures. Under axial strain, a tensile force is created which can influence the stiffness of the overall aircraft structure. This tension stiffening is a geometric nonlinear effect that needs to be captured in aeroelastic analyses to better understand the behaviors of these types of aircraft structures. A frequency analysis of a rotating blade structure is performed to demonstrate the analytical method. A flutter analysis of a truss-braced wing aircraft is performed to analyze the effect of geometric nonlinear effect of tension stiffening on the flutter speed. The results show that the geometric nonlinear tension stiffening effect can have a significant impact on the flutter speed prediction. In general, increased wing loading results in an increase in the flutter speed. The study illustrates the importance of accounting for the geometric nonlinear tension stiffening effect in analyzing the truss-braced wing aircraft.

  15. Do Structural Missense Variants in the ATM Gene Found in Women With Breast Cancer Cause Breast Cancer in Knock-in Mouse Strains?

    DTIC Science & Technology

    2006-04-01

    W81XWH-05-1-0282 TITLE: Do Structural Missense Variants in the ATM Gene Found in Women with Breast Cancer Cause Breast Cancer in "Knock-in...5a. CONTRACT NUMBER Do Structural Missense Variants in the ATM Gene Found in Women with Breast Cancer Cause Breast Cancer in "Knock-in" Mouse...human cohort-specific missense mutations will develop breast cancer with dominant inheritance in a subset of animals. It also is hypothesized that

  16. Utilization of protein intrinsic disorder knowledge in structural proteomics

    PubMed Central

    Oldfield, Christopher J.; Xue, Bin; Van, Ya-Yue; Ulrich, Eldon L.; Markley, John L.; Dunker, A. Keith; Uversky, Vladimir N.

    2014-01-01

    Intrinsically disordered proteins (IDPs) and proteins with long disordered regions are highly abundant in various proteomes. Despite their lack of well-defined ordered structure, these proteins and regions are frequently involved in crucial biological processes. Although in recent years these proteins have attracted the attention of many researchers, IDPs represent a significant challenge for structural characterization since these proteins can impact many of the processes in the structure determination pipeline. Here we investigate the effects of IDPs on the structure determination process and the utility of disorder prediction in selecting and improving proteins for structural characterization. Examination of the extent of intrinsic disorder in existing crystal structures found that relatively few protein crystal structures contain extensive regions of intrinsic disorder. Although intrinsic disorder is not the only cause of crystallization failures and many structured proteins cannot be crystallized, filtering out highly disordered proteins from structure-determination target lists is still likely to be cost effective. Therefore it is desirable to avoid highly disordered proteins from structure-determination target lists and we show that disorder prediction can be applied effectively to enrich structure determination pipelines with proteins more likely to yield crystal structures. For structural investigation of specific proteins, disorder prediction can be used to improve targets for structure determination. Finally, a framework for considering intrinsic disorder in the structure determination pipeline is proposed. PMID:23232152

  17. A systematic review of the extent, nature and likely causes of preventable adverse events arising from hospital care.

    PubMed

    Sari, A Akbari; Doshmangir, L; Sheldon, T

    2010-01-01

    Understanding the nature and causes of medical adverse events may help their prevention. This systematic review explores the types, risk factors, and likely causes of preventable adverse events in the hospital sector. MEDLINE (1970-2008), EMBASE, CINAHL (1970-2005) and the reference lists were used to identify the studies and a structured narrative method used to synthesise the data. Operative adverse events were more common but less preventable and diagnostic adverse events less common but more preventable than other adverse events. Preventable adverse events were often associated with more than one contributory factor. The majority of adverse events were linked to individual human error, and a significant proportion of these caused serious patient harm. Equipment failure was involved in a small proportion of adverse events and rarely caused patient harm. The proportion of system failures varied widely ranging from 3% to 85% depending on the data collection and classification methods used. Operative adverse events are more common but less preventable than diagnostic adverse events. Adverse events are usually associated with more than one contributory factor, the majority are linked to individual human error, and a proportion of these with system failure.

  18. Replacement of Asp-162 by Ala prevents the cooperative transition by the substrates while enhancing the effect of the allosteric activator ATP on E. coli aspartate transcarbamoylase

    PubMed Central

    Fetler, L.; Tauc, P.; Baker, D.P.; Macol, C.P.; Kantrowitz, E.R.; Vachette, P.

    2002-01-01

    The available crystal structures of Escherichia coli aspartate transcarbamoylase (ATCase) show that the conserved residue Asp-162 from the catalytic chain interacts with essentially the same residues in both the T- and R-states. To study the role of Asp-162 in the regulatory properties of the enzyme, this residue has been replaced by alanine. The mutant D162A shows a 7700-fold reduction in the maximal observed specific activity, a twofold decrease in the affinity for aspartate, a loss of homotropic cooperativity, and decreased activation by the nucleotide effector adenosine triphosphate (ATP) compared with the wild-type enzyme. Small-angle X-ray scattering (SAXS) measurements reveal that the unliganded mutant enzyme adopts the T-quaternary structure of the wild-type enzyme. Most strikingly, the bisubstrate analog N-phosphonacetyl-L-aspartate (PALA) is unable to induce the T to R quaternary structural transition, causing only a small alteration of the scattering pattern. In contrast, addition of the activator ATP in the presence of PALA causes a significant increase in the scattering amplitude, indicating a large quaternary structural change, although the mutant does not entirely convert to the wild-type R structure. Attempts at modeling this new conformation using rigid body movements of the catalytic trimers and regulatory dimers did not yield a satisfactory solution. This indicates that intra- and/or interchain rearrangements resulting from the mutation bring about domain movements not accounted for in the simple model. Therefore, Asp-162 appears to play a crucial role in the cooperative structural transition and the heterotropic regulatory properties of ATCase. PMID:11967364

  19. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides

    NASA Astrophysics Data System (ADS)

    Todorova, Nevena; Bentvelzen, Alan; English, Niall J.; Yarovsky, Irene

    2016-02-01

    Electromagnetic fields (EMFs) are ever-present, and so is the need to better understand their influence on human health and biological matter in general. The interaction between a molecular system and external EMF can alter the structure, and dynamical behaviour, and, hence, biological function of proteins with uncertain health consequences. This urges a detailed investigation of EMF-induced effects on basic protein biophysics. Here, we used all-atom non-equilibrium molecular dynamics simulations to understand and quantify the response mechanisms of the amyloidogenic apoC-II(60-70) peptides to non-ionising radiation by modelling their behaviour under external electromagnetic and electric fields of different strengths. Our simulations show high strength fields (>0.04 V/nm) cause structural changes in apoC-II(60-70) due to the peptide dipole alignment along the applied field direction, which disrupts the inherent β-hairpin conformation known to be the intermediate state for fibril formation. The intermediate field-strength range (0.04-0.004 V/nm) causes a significant acceleration in peptide dynamics, which leads to the increased population of structures with fibril-inhibiting characteristics, such as the separated N- and C-termini and colocation of the aromatic residues at the same peptide face. In contrast, lower field strengths (<0.004 V/nm) promote the formation of the amyloid-prone hairpin structures relative to the ambient conditions. These findings suggest that intermediate-strength electromagnetic fields could be considered for designing alternative treatments of amyloid diseases, while the very high and low field strengths could be employed for engineering well-ordered fibrillar aggregates for non-medicinal applications.

  20. Al2O3 Passivation Effect in HfO2·Al2O3 Laminate Structures Grown on InP Substrates.

    PubMed

    Kang, Hang-Kyu; Kang, Yu-Seon; Kim, Dae-Kyoung; Baik, Min; Song, Jin-Dong; An, Youngseo; Kim, Hyoungsub; Cho, Mann-Ho

    2017-05-24

    The passivation effect of an Al 2 O 3 layer on the electrical properties was investigated in HfO 2 -Al 2 O 3 laminate structures grown on indium phosphide (InP) substrate by atomic-layer deposition. The chemical state obtained using high-resolution X-ray photoelectron spectroscopy showed that interfacial reactions were dependent on the presence of the Al 2 O 3 passivation layer and its sequence in the HfO 2 -Al 2 O 3 laminate structures. Because of the interfacial reaction, the Al 2 O 3 /HfO 2 /Al 2 O 3 structure showed the best electrical characteristics. The top Al 2 O 3 layer suppressed the interdiffusion of oxidizing species into the HfO 2 films, whereas the bottom Al 2 O 3 layer blocked the outdiffusion of In and P atoms. As a result, the formation of In-O bonds was more effectively suppressed in the Al 2 O 3 /HfO 2 /Al 2 O 3 /InP structure than that in the HfO 2 -on-InP system. Moreover, conductance data revealed that the Al 2 O 3 layer on InP reduces the midgap traps to 2.6 × 10 12 eV -1 cm -2 (compared to that of HfO 2 /InP, that is, 5.4 × 10 12 eV -1 cm -2 ). The suppression of gap states caused by the outdiffusion of In atoms significantly controls the degradation of capacitors caused by leakage current through the stacked oxide layers.

  1. Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions

    NASA Technical Reports Server (NTRS)

    Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Xia, Youlong

    2016-01-01

    Model benchmarking allows us to separate uncertainty in model predictions caused 1 by model inputs from uncertainty due to model structural error. We extend this method with a large-sample approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.

  2. Repair of the DSS-14 Pedestal Concrete

    NASA Technical Reports Server (NTRS)

    Mcclure, D.

    1985-01-01

    About three years after the Goldstone Deep Space Station antenna was dedicated, grout under the hydrostatic bearing runner was found to be interacting with the runner, causing rust to form between the runner and the sole plates upon which it rests. The rust formed unevenly and the runner could not be kept flat so in 1969 the grout was removed and replaced with a Portland cement and sand dry pack grout that was less likely to produce rust. In the years that followed, oil leaking from the runner assembly caused progressive deterioration of the drypack grout. In 1982 over one thousand hours of spacecraft tracking time were lost due to this deterioration. A plan was developed to rehabilitate the bearing. The plan called for raising the rotating structure free from the concrete pedestal and placing it on three pairs of external support columns. With the weight of the structure transferred to the columns, the pads and runner could be removed and the repair started. The very successful repair included the replacement of a significant portion of the antenna pedestal.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about M w = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzedmore » the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic M w = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO 2 leakage, but would certainly be felt by the local population.« less

  4. Studies of chain substitution caused sub-fibril level differences in stiffness and ultrastructure of wildtype and oim/oim collagen fibers using multifrequency-AFM and molecular modeling.

    PubMed

    Li, Tao; Chang, Shu-Wei; Rodriguez-Florez, Naiara; Buehler, Markus J; Shefelbine, Sandra; Dao, Ming; Zeng, Kaiyang

    2016-11-01

    Molecular alteration in type I collagen, i.e., substituting the α2 chain with α1 chain in tropocollagen molecule, can cause osteogenesis imperfecta (OI), a brittle bone disease, which can be represented by a mouse model (oim/oim). In this work, we use dual-frequency Atomic Force Microscopy (AFM) and incorporated with molecular modeling to quantify the ultrastructure and stiffness of the individual native collagen fibers from wildtype (+/+) and oim/oim diseased mice humeri. Our work presents direct experimental evidences that the +/+ fibers have highly organized and compact ultrastructure and corresponding ordered stiffness distribution. In contrast, oim/oim fibers have ordered but loosely packed ultrastructure with uncorrelated stiffness distribution, as well as local defects. The molecular model also demonstrates the structural and molecular packing differences between +/+ and oim/oim collagens. The molecular mutation significantly altered sub-fibril structure and mechanical property of collagen fibers. This study can give the new insight for the mechanisms and treatment of the brittle bone disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Hippocampal dysfunction and cognitive impairment in Fragile-X Syndrome.

    PubMed

    Bostrom, Crystal; Yau, Suk-Yu; Majaess, Namat; Vetrici, Mariana; Gil-Mohapel, Joana; Christie, Brian R

    2016-09-01

    Fragile-X Syndrome (FXS) is the most common form of inherited intellectual disability and the leading genetic cause of autism spectrum disorder. FXS is caused by transcriptional silencing of the Fragile X Mental Retardation 1 (Fmr1) gene due to a CGG repeat expansion, resulting in the loss of Fragile X Mental Retardation Protein (FMRP). FMRP is involved in transcriptional regulation and trafficking of mRNA from the nucleus to the cytoplasm and distal sites both in pre- and post-synaptic terminals. Consequently, FXS is a multifaceted disorder associated with impaired synaptic plasticity. One region of the brain that is significantly impacted by the loss of FMRP is the hippocampus, a structure that plays a critical role in the regulation of mood and cognition. This review provides an overview of the neuropathology of Fragile-X Syndrome, highlighting how structural and synaptic deficits in hippocampal subregions, including the CA1 exhibiting exaggerated metabotropic glutamate receptor dependent long-term depression and the dentate gyrus displaying hypofunction of N-methyl-d-aspartate receptors, contribute to cognitive impairments associated with this neurodevelopmental disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions

    PubMed Central

    Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Xia, Youlong

    2018-01-01

    Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a “large-sample” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances. PMID:29697706

  7. Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions.

    PubMed

    Nearing, Grey S; Mocko, David M; Peters-Lidard, Christa D; Kumar, Sujay V; Xia, Youlong

    2016-03-01

    Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a "large-sample" approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.

  8. Nanoparticles-Based Systems for Osteochondral Tissue Engineering.

    PubMed

    Oliveira, Isabel; Vieira, Sílvia; Oliveira, J Miguel; Reis, Rui L

    2018-01-01

    Osteochondral lesions represent one of the major causes of disabilities in the world. These defects are due to degenerative or inflammatory arthritis, but both affect the articular cartilage and the underlying subchondral bone. Defects from trauma or degenerative pathology frequently cause severe pain, joint deformity, and loss of joint motion. Osteochondral defects are a significant challenge in orthopedic surgery, due to the cartilage complexity and unique structure, as well as its exposure to high pressure and motion. Although there are treatments routinely performed in the clinical practice, they present several limitations. Tissue engineering can be a suitable alternative for osteochondral defects since bone and cartilage engineering had experienced a notable advance over the years. Allied with nanotechnology, osteochondral tissue engineering (OCTE) can be leveled up, being possible to create advanced structures similar to the OC tissue. In this chapter, the current strategies using nanoparticles-based systems are overviewed. The results of the studies herein considered confirm that advanced nanomaterials will undoubtedly play a crucial role in the design of strategies for treatment of osteochondral defects in the near future.

  9. Unusual phonon behavior and ultra-low thermal conductance of monolayer InSe.

    PubMed

    Zhou, Hangbo; Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2017-12-21

    Monolayer indium selenide (InSe) possesses numerous fascinating properties, such as high electron mobility, quantum Hall effect and anomalous optical response. However, its phonon properties, thermal transport properties and the origin of its structural stability remain unexplored. Using first-principles calculations, we show that the atoms in InSe are highly polarized and such polarization causes strong long-range dipole-dipole interaction (DDI). For acoustic modes, DDI is essential for maintaining its structural stability. For optical modes, DDI causes a significant frequency shift of its out-of-phase vibrations. Surprisingly, we observed that there were two isolated frequency regimes, which were completely separated from other frequency regimes with large frequency gaps. Within each frequency regime, only a single phonon mode exists. We further reveal that InSe possesses the lowest thermal conductance among the known two-dimensional materials due to the low cut-off frequency, low phonon group velocities and the presence of large frequency gaps. These unique behaviors of monolayer InSe can enable the fabrication of novel devices, such as thermoelectric module, single-mode phonon channel and phononic laser.

  10. Chromosomal disorders and male infertility

    PubMed Central

    Harton, Gary L; Tempest, Helen G

    2012-01-01

    Infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family. Despite this, the molecular and genetic factors underlying the cause of infertility remain largely undiscovered. Nevertheless, more and more genetic factors associated with infertility are being identified. This review will focus on our current understanding of the chromosomal basis of male infertility specifically: chromosomal aneuploidy, structural and numerical karyotype abnormalities and Y chromosomal microdeletions. Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans. Aneuploidy is predominantly maternal in origin, but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts. Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm. Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed, as well as the application of preimplantation genetic diagnosis (PGD) in such cases. Clinical recommendations where possible will be made, as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility. PMID:22120929

  11. Chromosomal disorders and male infertility.

    PubMed

    Harton, Gary L; Tempest, Helen G

    2012-01-01

    Infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family. Despite this, the molecular and genetic factors underlying the cause of infertility remain largely undiscovered. Nevertheless, more and more genetic factors associated with infertility are being identified. This review will focus on our current understanding of the chromosomal basis of male infertility specifically: chromosomal aneuploidy, structural and numerical karyotype abnormalities and Y chromosomal microdeletions. Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans. Aneuploidy is predominantly maternal in origin, but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts. Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm. Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed, as well as the application of preimplantation genetic diagnosis (PGD) in such cases. Clinical recommendations where possible will be made, as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility.

  12. Mechanical properties of heat-treated organic foams

    NASA Astrophysics Data System (ADS)

    Amaral-Labat, G.; Sahimi, Muhammad; Pizzi, A.; Fierro, V.; Celzard, Alain

    2013-03-01

    The mechanical properties of a class of cellular material were measured. The composition of the material was progressively modified, while its pore structure was kept unchanged. Rigid foam, prepared from a thermoset resin, was gradually converted into reticulated vitreous carbon foam by pyrolysis at increasingly higher heat-treatment temperatures (HHT). The corresponding changes in the Young's modulus Y and the compressive strength σ of the materials were measured over a wide range of porosities. The materials exhibit a percolation behavior with a zero percolation threshold. At very low densities the Young's modulus and the compressive strength appear to follow the power laws predicted by percolation theory near the percolation threshold. But, whereas the exponent τ associated with the power-law behavior of Y appears to vary significantly with the material's density and the HHT, the exponent associated with σ does not change much. The possible cause of the apparent and surprising nonuniversality of τ is discussed in detail, in the light of the fact that only the materials’ composition varies, not the structure of their pore space that could have caused the nonuniversality.

  13. Effects of Coffee Management Intensity on Composition, Structure, and Regeneration Status of Ethiopian Moist Evergreen Afromontane Forests

    NASA Astrophysics Data System (ADS)

    Hundera, Kitessa; Aerts, Raf; Fontaine, Alexandre; Van Mechelen, Maarten; Gijbels, Pieter; Honnay, Olivier; Muys, Bart

    2013-03-01

    The effect of arabica coffee management intensity on composition, structure, and regeneration of moist evergreen Afromontane forests was studied in three traditional coffee-management systems of southwest Ethiopia: semiplantation coffee, semiforest coffee, and forest coffee. Vegetation and environmental data were collected in 84 plots from forests varying in intensity of coffee management. After controlling for environmental variation (altitude, aspect, slope, soil nutrient availability, and soil depth), differences in woody species composition, forest structure, and regeneration potential among management systems were compared using one way analysis of variance. The study showed that intensification of forest coffee cultivation to maximize coffee production negatively affects diversity and structure of Ethiopian moist evergreen Afromontane forests. Intensification of coffee productivity starts with the conversion of forest coffee to semiforest coffee, which has significant negative effects on tree seedling abundance. Further intensification leads to the conversion of semiforest to semiplantation coffee, causing significant diversity losses and the collapse of forest structure (decrease of stem density, basal area, crown closure, crown cover, and dominant tree height). Our study underlines the need for shade certification schemes to include variables other than canopy cover and that the loss of species diversity in intensively managed coffee systems may jeopardize the sustainability of coffee production itself through the decrease of ecosystem resilience and disruption of ecosystem services related to coffee yield, such as pollination and pest control.

  14. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Stephenson, Nathan L.; Knapp, Eric; Keeley, Jon E.

    2011-01-01

    The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.

  15. Waterborne fluoride exposure changed the structure and the expressions of steroidogenic-related genes in gonads of adult zebrafish (Danio rerio).

    PubMed

    Li, MeiYan; Cao, Jinling; Chen, Jianjie; Song, Jie; Zhou, Bingrui; Feng, Cuiping; Wang, Jundong

    2016-02-01

    Excessive fluoride in natural water ecosystem has been demonstrated to have adverse effects on reproductive system in humans and mammals, while the most vulnerable aquatic organisms were ignored. In this study, the effects of waterborne fluoride on growth performance, sex steroid hormone, histological structure, and the transcriptional profiles of sex steroid related genes were examined in both female and male zebrafish exposed to different concentrations of 0.79, 18.60, 36.83 mg L(-1) of fluoride for 30 and 60 d to investigate the effects of fluoride on reproductive system and the underlying toxic mechanisms caused by fluoride. The results showed that the body weight was remarkably decreased, the structure of ovary and testis were serious injured, and the T and E2 levels were significantly reduced in male zebrafish. The transcriptional profiles of steroidogenic related genes displayed phenomenal alterations, the expressions of pgr and cyp19a1a were significantly up-regulated, while the transcriptional levels of er, ar and hsd3β were decreased both in the ovary and testis, and hsd17β8 were down-regulated just in males. Taken together, these results demonstrated that fluoride could significantly inhibit the growth of zebrafish, and notably affect the reproductive system in both sex zebrafish by impairing the structure of ovary and testis, altering steroid hormone levels and steroidogenic genes expression related to the synthesis of sex hormones in zebrafish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Structure-activity relationships of fluorinated dendrimers in DNA and siRNA delivery.

    PubMed

    Wang, Mingming; Cheng, Yiyun

    2016-12-01

    Fluorinated dendrimers have shown great promise in gene delivery due to their high transfection efficacy and low cytotoxicity, however, the structure-activity relationships of these polymers still remain unknown. Herein, we synthesized a library of fluorinated dendrimers with different dendrimer generations and fluorination degrees and investigated their behaviors in both DNA and siRNA delivery. The results show that fluorination significantly improves the transfection efficacy of G4-G7 polyamidoamine dendrimers in DNA and siRNA delivery. Fluorination on generation 5 dendrimer yields the most efficient polymers in gene delivery, and the transfection efficacy of fluorinated dendrimers depends on fluorination degree. All the fluorinated dendrimers cause minimal toxicity on the transfected cells at their optimal transfection conditions. This study provides a general and facile strategy to prepare high efficient and low cytotoxic gene carriers based on fluorinated polymers. The structure-activity relationships of fluorinated dendrimers in gene delivery is still unknown and the behavior of fluorinated dendrimers in siRNA delivery has not yet been investigated. Herein, we synthesized a library of fluorinated PAMAM dendrimers with different dendrimer generations and fluorination degrees and investigated their behaviors in both DNA and siRNA delivery. The results clearly indicate that fluorination significantly improves the transfection efficacy of dendrimers in both DNA and siRNA delivery without causing additional toxicity. G5 PAMAM dendrimer is best scaffold to synthesize fluorinated dendrimers and the transfection efficacy of fluorinated dendrimers depends on fluorination degree. This systematic study provides a general and facile strategy to prepare high efficient and low cytotoxic gene carriers based on fluorinated polymers. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Toxicity of chromated copper arsenate (CCA)-treated wood to non-target marine fouling communities in Langstone Harbour, Portsmouth, UK.

    PubMed

    Brown, C J; Eaton, R A

    2001-04-01

    The effect of the anti-marine-borer timber preservative chromated copper arsenate (CCA) (a pressure impregnated solution of copper, chromium and arsenic compounds) on non-target marine fouling animals was investigated during a subtidal exposure trial. Panels of Scots pine treated to target retentions of 12, 24 and 48 kg CCA per m-3 of wood, plus untreated controls were submerged at a coastal site on the south coast of the UK for 6, 12 and 18 months. After each exposure period the fouling communities that formed on the surface of panels were assessed both qualitatively and quantitatively. Community structure was similar on panels treated to the three CCA loadings, but was significantly different from community structure on untreated panels. The total number of species (species richness) was similar on all panels, although the number of individual organisms attached to the surface of panels was significantly higher on CCA-treated panels than on untreated panels. k-dominance curves revealed that the difference in numbers of individuals between CCA-treated and untreated panels was caused by higher numbers of the dominant species (Elminius modestus, Hydroides ezoensis, and Electra pilosa) on CCA-treated panels. Other species were present in similar numbers on panels of all treatments. Results indicate that there are no detrimental toxic effects to epibiota caused by the presence of CCA preservative within the matrix of the wood at any of the treatment levels. Differences in community structure between CCA-treated and untreated panels may be due to enhanced larval settlement on CCA-treated timber by some species as a result of modifications to the surface properties of the timber by the CCA preservative.

  18. Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration

    PubMed Central

    Wang, Xu; Ma, Wenxin; Gonzalez, Shaimar R.; Kretschmer, Friedrich; Badea, Tudor C.

    2017-01-01

    Photoreceptor degeneration is a cause of irreversible vision loss in incurable blinding retinal diseases including retinitis pigmentosa (RP) and atrophic age-related macular degeneration. We found in two separate mouse models of photoreceptor degeneration that tamoxifen, a selective estrogen receptor modulator and a drug previously linked with retinal toxicity, paradoxically provided potent neuroprotective effects. In a light-induced degeneration model, tamoxifen prevented onset of photoreceptor apoptosis and atrophy and maintained near-normal levels of electroretinographic responses. Rescue effects were correlated with decreased microglial activation and inflammatory cytokine production in the retina in vivo and a reduction of microglia-mediated toxicity to photoreceptors in vitro, indicating a microglia-mediated mechanism of rescue. Tamoxifen also rescued degeneration in a genetic (Pde6brd10) model of RP, significantly improving retinal structure, electrophysiological responses, and visual behavior. These prominent neuroprotective effects warrant the consideration of tamoxifen as a drug suitable for being repurposed to treat photoreceptor degenerative disease. SIGNIFICANCE STATEMENT Photoreceptor degeneration is a cause of irreversible blindness in a number of retinal diseases such as retinitis pigmentosa (RP) and atrophic age-related macular degeneration. Tamoxifen, a selective estrogen receptor modulator approved for the treatment of breast cancer and previously linked to a low incidence of retinal toxicity, was unexpectedly found to exert marked protective effects against photoreceptor degeneration. Structural and functional protective effects were found for an acute model of light-induced photoreceptor injury and for a genetic model for RP. The mechanism of protection involved the modulation of microglial activation and the production of inflammatory cytokines, highlighting the role of inflammatory mechanisms in photoreceptor degeneration. Tamoxifen may be suitable for clinical study as a potential treatment for diseases involving photoreceptor degeneration. PMID:28235894

  19. Nucleus Accumbens Invulnerability to Methamphetamine Neurotoxicity

    PubMed Central

    Kuhn, Donald M.; Angoa-Pérez, Mariana; Thomas, David M.

    2016-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure. PMID:23382149

  20. Nucleus accumbens invulnerability to methamphetamine neurotoxicity.

    PubMed

    Kuhn, Donald M; Angoa-Pérez, Mariana; Thomas, David M

    2011-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.

  1. Untangling the Relationship Between Antiretroviral Therapy Use and Incident Pregnancy: A Marginal Structural Model Analysis Using Data From 47,313 HIV-Positive Women in East Africa.

    PubMed

    Elul, Batya; Wools-Kaloustian, Kara K; Wu, Yingfeng; Musick, Beverly S; Nuwagaba-Biribonwoha, Harriet; Nash, Denis; Ayaya, Samuel; Bukusi, Elizabeth; Okong, Pius; Otieno, Juliana; Wabwire, Deo; Kambugu, Andrew; Yiannoutsos, Constantin T

    2016-07-01

    Scale-up of triple-drug antiretroviral therapy (ART) in Africa has transformed the context of childbearing for HIV-positive women and may impact pregnancy incidence in HIV programs. Using observational data from 47,313 HIV-positive women enrolled at 26 HIV clinics in Kenya and Uganda between 2001 and 2009, we calculated the crude cumulative incidence of pregnancy for the pre-ART and on-ART periods. The causal effect of ART use on incident pregnancy was assessed using inverse probability weighted marginal structural models, and the relationship was further explored in multivariable Cox models. Crude cumulative pregnancy incidence at 1 year after enrollment/ART initiation was 4.0% and 3.9% during the pre-ART and on-ART periods, respectively. In marginal structural models, ART use was not significantly associated with incident pregnancy [hazard ratio = 1.06; 95% confidence interval (CI): 0.99 to 1.12]. Similarly, in Cox models, there was no significant relationship between ART use and incident pregnancy (cause-specific hazard ratio: 0.98; 95% CI: 0.91 to 1.05), but effect modification was observed. Specifically, women who were pregnant at enrollment and on ART had an increased risk of incident pregnancy compared to those not pregnant at enrollment and not on ART (cause-specific hazard ratio: 1.11; 95% CI: 1.01 to 1.23). In this large cohort, ART initiation was not associated with incident pregnancy in the general population of women enrolling in HIV care but rather only among those pregnant at enrollment. This finding further highlights the importance of scaling up access to lifelong treatment for pregnant women.

  2. Untangling the Relationship Between Antiretroviral Therapy Use and Incident Pregnancy: A Marginal Structural Model Analysis Using Data From 47,313 HIV-Positive Women in East Africa

    PubMed Central

    Wools-Kaloustian, Kara K.; Wu, Yingfeng; Musick, Beverly S.; Nuwagaba-Biribonwoha, Harriet; Nash, Denis; Ayaya, Samuel; Bukusi, Elizabeth; Okong, Pius; Otieno, Juliana; Wabwire, Deo; Kambugu, Andrew; Yiannoutsos, Constantin T.

    2016-01-01

    Background: Scale-up of triple-drug antiretroviral therapy (ART) in Africa has transformed the context of childbearing for HIV-positive women and may impact pregnancy incidence in HIV programs. Methods: Using observational data from 47,313 HIV-positive women enrolled at 26 HIV clinics in Kenya and Uganda between 2001 and 2009, we calculated the crude cumulative incidence of pregnancy for the pre-ART and on-ART periods. The causal effect of ART use on incident pregnancy was assessed using inverse probability weighted marginal structural models, and the relationship was further explored in multivariable Cox models. Results: Crude cumulative pregnancy incidence at 1 year after enrollment/ART initiation was 4.0% and 3.9% during the pre-ART and on-ART periods, respectively. In marginal structural models, ART use was not significantly associated with incident pregnancy [hazard ratio = 1.06; 95% confidence interval (CI): 0.99 to 1.12]. Similarly, in Cox models, there was no significant relationship between ART use and incident pregnancy (cause-specific hazard ratio: 0.98; 95% CI: 0.91 to 1.05), but effect modification was observed. Specifically, women who were pregnant at enrollment and on ART had an increased risk of incident pregnancy compared to those not pregnant at enrollment and not on ART (cause-specific hazard ratio: 1.11; 95% CI: 1.01 to 1.23). Conclusions: In this large cohort, ART initiation was not associated with incident pregnancy in the general population of women enrolling in HIV care but rather only among those pregnant at enrollment. This finding further highlights the importance of scaling up access to lifelong treatment for pregnant women. PMID:26910499

  3. Physics and evolution of thermophilic adaptation.

    PubMed

    Berezovsky, Igor N; Shakhnovich, Eugene I

    2005-09-06

    Analysis of structures and sequences of several hyperthermostable proteins from various sources reveals two major physical mechanisms of their thermostabilization. The first mechanism is "structure-based," whereby some hyperthermostable proteins are significantly more compact than their mesophilic homologues, while no particular interaction type appears to cause stabilization; rather, a sheer number of interactions is responsible for thermostability. Other hyperthermostable proteins employ an alternative, "sequence-based" mechanism of their thermal stabilization. They do not show pronounced structural differences from mesophilic homologues. Rather, a small number of apparently strong interactions is responsible for high thermal stability of these proteins. High-throughput comparative analysis of structures and complete genomes of several hyperthermophilic archaea and bacteria revealed that organisms develop diverse strategies of thermophilic adaptation by using, to a varying degree, two fundamental physical mechanisms of thermostability. The choice of a particular strategy depends on the evolutionary history of an organism. Proteins from organisms that originated in an extreme environment, such as hyperthermophilic archaea (Pyrococcus furiosus), are significantly more compact and more hydrophobic than their mesophilic counterparts. Alternatively, organisms that evolved as mesophiles but later recolonized a hot environment (Thermotoga maritima) relied in their evolutionary strategy of thermophilic adaptation on "sequence-based" mechanism of thermostability. We propose an evolutionary explanation of these differences based on physical concepts of protein designability.

  4. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment.

    PubMed

    Wang, Haitao; Gilbert, Jack A; Zhu, Yongguan; Yang, Xiaoru

    2018-08-01

    Coastal ecosystems are hotspots for nitrogen cycling, and specifically for nitrogen removal from water and sediment through the coupled nitrification-denitrification process. Salinity is globally important in structuring bacterial and archaeal communities, but the association between salinity and microbially-mediated nitrification and denitrification remains unclear. The denitrification activity and composition and structure of microbial nitrifiers and denitrifiers were characterized across a gradient of manipulated salinity (0, 10, 20 and 30ppt) in a mangrove sediment. Salinity negatively correlated with both denitrifying activity and the abundance of nirK and nosZ denitrifying genes. Ammonia-oxidizing bacteria (AOB), which dominated nitrification, had significantly greater abundance at intermediate salinity (10 and 20ppt). However, a positive correlation between ammonia concentration and salinity suggested that nitrifying activity might also be inhibited at higher salinity. The community structure of ammonia-oxidizing archaea (AOA) and bacteria (AOB), as well as nirK, nirS and nosZ denitrifying communities, were all significantly correlated with salinity. These changes were also associated with structural shifts in phylogeny. These findings provide a strong evidence that salinity is a key factor that influences the nitrogen transformations in coastal wetlands, indicating that salinity intrusion caused by climate change might have a broader impact on the coastal biospheres. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Soil microbial succession along a chronosequence on a High Arctic glacier foreland, Ny-Ålesund, Svalbard: 10 years' change

    NASA Astrophysics Data System (ADS)

    Yoshitake, Shinpei; Uchida, Masaki; Iimura, Yasuo; Ohtsuka, Toshiyuki; Nakatsubo, Takayuki

    2018-06-01

    Rapid glacial retreat in the High Arctic causes the expansion of new habitats, but the successional trajectories of soil microbial communities are not fully understood. We examined microbial succession along a chronosequence twice with a 10-year interval in a High Arctic glacier foreland. Soil samples were collected from five study sites with different ages and phospholipid fatty acids analysis was conducted to investigate the microbial biomass and community structure. Microbial biomass did not differ significantly between the two sampling times but tended to increase with the chronosequence and showed a significant correlation with soil carbon (C) and nitrogen (N) content. Microbial community structure clearly differed along the chronosequence and was correlated with C and N content. The largest shift in community structure over 10 years was observed in the newly exposed sites after deglaciation. The accumulation of soil organic matter was regarded as an important determinant both of microbial biomass and community structure over the successional period. In contrast, the initial microbial community on the newly exposed soil changed rapidly even in the High Arctic, suggesting that some key soil processes such as C and N cycling can also shift within the relatively short period after rapid glacial retreat.

  6. Helminth parasite communities of allopatric populations of the frog Leptodactylus podicipinus from Pantanal, Brazil.

    PubMed

    Campião, K M; da Silva, R J; Ferreira, V L

    2014-03-01

    Several factors may influence the structure of parasite communities in amphibian hosts. In this study, we describe the helminth parasites of three allopatric populations of the frog Leptodactylus podicipinus and test whether host size and sex were determinants of the structure and composition of the helminth communities. One hundred and twenty-three anurans were collected from three different study sites within the Pantanal wetlands and surveyed for helminth parasites. We found 14 helminth taxa: 7 species of nematodes, 4 species of trematodes, 1 species of cestodes, 1 species of acanthocephalan and one unidentified cyst. Host sex and size did not cause significant differences in helminth abundance or richness. The structure of helminth communities from the three study sites varied in terms of species composition, abundance and diversity. Six out of 14 helminth taxa were found in the three localities. Among those, the nematodes Cosmocerca podicipinus and Rhabdias sp., the trematode Catadiscus propinquus and the helminth cyst showed significant differences in mean abundances. We suggest that such differences found among the three component communities are driven by biotic and abiotic factors operating locally. Moreover, these differences stress the importance of local conditions, such as hydrologic characteristics and landscape composition, on helminth community structure.

  7. A comparison of VRML and animation of rotation for teaching 3-dimensional crystal lattice structures

    NASA Astrophysics Data System (ADS)

    Sauls, Barbara Lynn

    Chemistry students often have difficulty visualizing abstract concepts of molecules and atoms, which may lead to misconceptions. The three-dimensionality of these structures presents a challenge to educators. Typical methods of teaching include text with two-dimensional graphics and structural models. Improved methods to allow visualization of 3D structures may improve learning of these concepts. This research compared the use of Virtual Reality Modeling Language (VRML) and animation of rotation for teaching three-dimensional structures. VRML allows full control of objects by altering angle, size, rotation, and provides the ability to zoom into and through objects. Animations may only be stopped, restarted and replayed. A web-based lesson teaching basic concepts of crystals, which requires comprehension of their three-dimensional structure was given to 100 freshmen chemistry students. Students were stratified by gender then randomly to one of two lessons, which were identical except for the multimedia method used to show the lattices and unit cells. One method required exploration of the structures using VRML, the other provided animations of the same structures rotating. The students worked through an examination as the lesson progressed. A Welch t' test was used to compare differences between groups. No significant difference in mean achievement was found between the two methods, between genders, or within gender. There was no significant difference in mean total SAT in the animation and VRML group. Total time on task had no significant difference nor did enjoyment of the lesson. Students, however, spent 14% less time maneuvering VRML structures than viewing the animations of rotation. Neither method proved superior for presenting three-dimensional information. The students spent less time maneuvering the VRML structures with no difference in mean score so the use of VRML may be more efficient. The investigator noted some manipulation difficulties using VRML to rotate structures. Some students had difficulty obtaining the correct angle required to properly interpret spatial relationships. This led to frustration and caused some students to quit trying before they could answer questions fully. Even though there were some difficulties, outcomes were not affected. Higher scores, however, may have been achieved had the students been proficient in VRML maneuvering.

  8. Lessons learned for composite structures

    NASA Technical Reports Server (NTRS)

    Whitehead, R. S.

    1991-01-01

    Lessons learned for composite structures are presented in three technology areas: materials, manufacturing, and design. In addition, future challenges for composite structures are presented. Composite materials have long gestation periods from the developmental stage to fully matured production status. Many examples exist of unsuccessful attempts to accelerate this gestation period. Experience has shown that technology transition of a new material system to fully matured production status is time consuming, involves risk, is expensive and should not be undertaken lightly. The future challenges for composite materials require an intensification of the science based approach to material development, extension of the vendor/customer interaction process to include all engineering disciplines of the end user, reduced material costs because they are a significant factor in overall part cost, and improved batch-to-batch pre-preg physical property control. Historical manufacturing lessons learned are presented using current in-service production structure as examples. Most producibility problems for these structures can be traced to their sequential engineering design. This caused an excessive emphasis on design-to-weight and schedule at the expense of design-to-cost. This resulted in expensive performance originated designs, which required costly tooling and led to non-producible parts. Historically these problems have been allowed to persist throughout the production run. The current/future approach for the production of affordable composite structures mandates concurrent engineering design where equal emphasis is placed on product and process design. Design for simplified assembly is also emphasized, since assembly costs account for a major portion of total airframe costs. The future challenge for composite manufacturing is, therefore, to utilize concurrent engineering in conjunction with automated manufacturing techniques to build affordable composite structures. Composite design experience has shown that significant weight savings have been achieved, outstanding fatigue and corrosion resistance have been demonstrated, and in-service performance has been very successful. Currently no structural design show stoppers exist for composite structures. A major lesson learned is that the full scale static test is the key test for composites, since it is the primary structural 'hot spot' indicator. The major durability issue is supportability of thin skinned structure. Impact damage has been identified as the most significant issue for the damage tolerance control of composite structures. However, delaminations induced during assembly operations have demonstrated a significant nuisance value. The future challenges for composite structures are threefold. Firstly, composite airframe weight fraction should increase to 60 percent. At the same time, the cost of composite structures must be reduced by 50 percent to attain the goal of affordability. To support these challenges it is essential to develop lower cost materials and processes.

  9. Evaluation of seismic performance of reinforced concrete (RC) buildings under near-field earthquakes

    NASA Astrophysics Data System (ADS)

    Moniri, Hassan

    2017-03-01

    Near-field ground motions are significantly severely affected on seismic response of structure compared with far-field ground motions, and the reason is that the near-source forward directivity ground motions contain pulse-long periods. Therefore, the cumulative effects of far-fault records are minor. The damage and collapse of engineering structures observed in the last decades' earthquakes show the potential of damage in existing structures under near-field ground motions. One important subject studied by earthquake engineers as part of a performance-based approach is the determination of demand and collapse capacity under near-field earthquake. Different methods for evaluating seismic structural performance have been suggested along with and as part of the development of performance-based earthquake engineering. This study investigated the results of illustrious characteristics of near-fault ground motions on the seismic response of reinforced concrete (RC) structures, by the use of Incremental Nonlinear Dynamic Analysis (IDA) method. Due to the fact that various ground motions result in different intensity-versus-response plots, this analysis is done again under various ground motions in order to achieve significant statistical averages. The OpenSees software was used to conduct nonlinear structural evaluations. Numerical modelling showed that near-source outcomes cause most of the seismic energy from the rupture to arrive in a single coherent long-period pulse of motion and permanent ground displacements. Finally, a vulnerability of RC building can be evaluated against pulse-like near-fault ground motions effects.

  10. The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis.

    PubMed

    Ghanbari, Z; Housaindokht, M R; Bozorgmehr, M R; Izadyar, M

    2016-09-07

    Transferrins have been defined by the highly cooperative binding of iron and a carbonate anion to form a Fe-CO3-Tf ternary complex. As such, the layout of the binding site residues affects transferrin function significantly; In contrast to N-lobe, C-lobe binding site of the transferrin structure has been less characterized and little research which surveyed the interaction of carbonate with transferrin in the C-lobe binding site has been found. In the present work, molecular dynamic simulation was employed to gain access into the molecular level understanding of carbonate binding site and their interactions in each lobe. Residues responsible for carbonate binding of transferrin structure were pointed out. In addition, native human transferrin is a glycoprotein that two N-linked complex glycan chains located in the C-lobe. Usually, in the molecular dynamic simulation for simplifying, glycan is removed from the protein structure. Here, we explore the effect of glycosylation on the transferrin structure. Glycosylation appears to have an effect on the layout of the binding site residue and transferrin structure. On the other hand, sometimes the entire transferrin formed by separated lobes that it allows the results to be interpreted in a straightforward manner rather than more parameters required for full length protein. But, it should be noted that there are differences between the separated lobe and full length transferrin, hence, a comparative analysis by the molecular dynamic simulation was performed to investigate such structural variations. Results revealed that separation in C-lobe caused a significant structural variation in comparison to N-lobe. Consequently, the separated lobes and the full length one are different, showing the importance of the interlobe communication and the impact of the lobes on each other in the transferrin structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Thinned crustal structure and tectonic boundary of the Nansha Block, southern South China Sea

    NASA Astrophysics Data System (ADS)

    Dong, Miao; Wu, Shi-Guo; Zhang, Jian

    2016-12-01

    The southern South China Sea margin consists of the thinned crustal Nansha Block and a compressional collision zone. The Nansha Block's deep structure and tectonic evolution contains critical information about the South China Sea's rifting. Multiple geophysical data sets, including regional magnetic, gravity and reflection seismic data, reveal the deep structure and rifting processes. Curie point depth (CPD), estimated from magnetic anomalies using a windowed wavenumber-domain algorithm, enables us to image thermal structures. To derive a 3D Moho topography and crustal thickness model, we apply Oldenburg algorithm to the gravity anomaly, which was extracted from the observed free air gravity anomaly data after removing the gravity effect of density variations of sediments, and temperature and pressure variations of the lithospheric mantle. We found that the Moho depth (20 km) is shallower than the CPD (24 km) in the Northwest Borneo Trough, possibly caused by thinned crust, low heat flow and a low vertical geothermal gradient. The Nansha Block's northern boundary is a narrow continent-ocean transition zone constrained by magnetic anomalies, reflection seismic data, gravity anomalies and an interpretation of Moho depth (about 13 km). The block extends southward beneath a gravity-driven deformed sediment wedge caused by uplift on land after a collision, with a contribution from deep crustal flow. Its southwestern boundary is close to the Lupar Line defined by a significant negative reduction to the pole (RTP) of magnetic anomaly and short-length-scale variation in crustal thickness, increasing from 18 to 26 km.

  12. An exploratory investigation of echocardiographic parameters and the effects of posture on cardiac structure and function in the Livingstone's fruit bat (Pteropus livingstonii).

    PubMed

    Drane, Aimee L; Shave, Robert; Routh, Andrew; Barbon, Alberto

    2018-01-01

    There is growing evidence that dilated cardiomyopathy may be a major cause of death in captive Livingstone's fruit bats (Pteropus livingstonii). Therefore, the primary aim of this prospective, exploratory study was to examine whether a systematic cardiac ultrasound protocol is feasible in this critically endangered species and to report basic measures of cardiac structure and function from a cohort of apparently healthy bats. A secondary aim was to test the effect posture (dorsal recumbency vs. roosting) has upon cardiac function in this species. Transthoracic echocardiograms, including 2D, Doppler, and tissue Doppler measures of cardiac structure and function were completed as part of routine health examinations for bats at a single center (n = 19). Bats were then grouped by age and disease status and the mean and range data reported for each group. In healthy adult bats, with the exception of a reduction in heart rate (P ≤ 0.05), right atrial systolic area (P ≤ 0.05), and right ventricular velocity during atrial contraction, there were no significant changes in cardiac structure or function in response to the roosting position. However, in the bats presenting with dilated cardiomyopathy the current data suggest that left ventricular ejection fraction is improved while roosting. Further work is required to confirm our initial findings, generate diagnostic reference intervals, and explore the causes of dilated cardiomyopathy in this species. © 2017 American College of Veterinary Radiology.

  13. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome.

    PubMed

    Miller, Suzanne L; Huppi, Petra S; Mallard, Carina

    2016-02-15

    Fetal growth restriction (FGR) is a significant complication of pregnancy describing a fetus that does not grow to full potential due to pathological compromise. FGR affects 3-9% of pregnancies in high-income countries, and is a leading cause of perinatal mortality and morbidity. Placental insufficiency is the principal cause of FGR, resulting in chronic fetal hypoxia. This hypoxia induces a fetal adaptive response of cardiac output redistribution to favour vital organs, including the brain, and is in consequence called brain sparing. Despite this, it is now apparent that brain sparing does not ensure normal brain development in growth-restricted fetuses. In this review we have brought together available evidence from human and experimental animal studies to describe the complex changes in brain structure and function that occur as a consequence of FGR. In both humans and animals, neurodevelopmental outcomes are influenced by the timing of the onset of FGR, the severity of FGR, and gestational age at delivery. FGR is broadly associated with reduced total brain volume and altered cortical volume and structure, decreased total number of cells and myelination deficits. Brain connectivity is also impaired, evidenced by neuronal migration deficits, reduced dendritic processes, and less efficient networks with decreased long-range connections. Subsequent to these structural alterations, short- and long-term functional consequences have been described in school children who had FGR, most commonly including problems in motor skills, cognition, memory and neuropsychological dysfunctions. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  14. Structure induction in diagnostic causal reasoning.

    PubMed

    Meder, Björn; Mayrhofer, Ralf; Waldmann, Michael R

    2014-07-01

    Our research examines the normative and descriptive adequacy of alternative computational models of diagnostic reasoning from single effects to single causes. Many theories of diagnostic reasoning are based on the normative assumption that inferences from an effect to its cause should reflect solely the empirically observed conditional probability of cause given effect. We argue against this assumption, as it neglects alternative causal structures that may have generated the sample data. Our structure induction model of diagnostic reasoning takes into account the uncertainty regarding the underlying causal structure. A key prediction of the model is that diagnostic judgments should not only reflect the empirical probability of cause given effect but should also depend on the reasoner's beliefs about the existence and strength of the link between cause and effect. We confirmed this prediction in 2 studies and showed that our theory better accounts for human judgments than alternative theories of diagnostic reasoning. Overall, our findings support the view that in diagnostic reasoning people go "beyond the information given" and use the available data to make inferences on the (unobserved) causal rather than on the (observed) data level. (c) 2014 APA, all rights reserved.

  15. The Impact Of Middle Class Consumption On Democratization In Northeast Asia

    DTIC Science & Technology

    2016-03-01

    middle-class Koreans. This consumption disparity caused the structurally disadvantaged working-class Koreans to join national protests that ultimately...inequality and a mobility-restraining household registration system. There exists a key political tension around structurally disadvantaged Chinese migrant...lower middle-class Koreans. This consumption disparity caused the structurally disadvantaged working-class Koreans to join national protests that

  16. Effect of saffron (Crocus sativus L.) on sodium valporate induced cytogenetic and testicular alterations in albino rats.

    PubMed

    Sakr, Saber A; Zowail, Mohamed E; Marzouk, Amera M

    2014-09-01

    The present study investigated the cytogenetic and testicular damage induced by the antiepileptic drug, sodium valporate (SVP) in albino rats and the effect of saffron aqueous extracts. Treating rats with SVP caused a significant increase in the chromosomal aberrations either structural or numerical and decreased the mitotic index. Besides, animals administered SVP showed DNA damage appeared in the single strand breaks (comet assay). Testis of SVP-treated rats showed many histopathological changes. A significant decrease in seminiferous tubules and their epithelial heights diameters and inhibition of spermatogenesis was recorded. In addition, the number of sperm head abnormalities was increased. Biochemical results revealed an increase in malondialdhyde (MDA) which is lipid peroxidation marker and a significant decrease in the level of serum antioxidant enzyme, catalase (CAT) and reducing antioxidant power (RAP). Animals given SVP and saffron showed an improvement in chromosomal aberrations, mitotic index, DNA damage and testicular alterations caused by SVP. Moreover, MDA decreased and CAT and RAP increased. It is concluded from the present results that the ameliorative effects of saffron extract against SVP-induced cytogenetic and testicular damage in albino rats may be due to the presence of one or more antioxidant components of saffron.

  17. Abdominal macrochaetae of female Hylesia oratex Dyar, 1913 (Insecta: Lepidoptera: Saturniidae): external morphology and medical significance.

    PubMed

    Brito, Rosângela; Specht, Alexandre; Filho, Wilson S A; Fronza, Edegar; Mielke, Carlos G C

    2015-09-01

    The representatives of the genus Hylesia Hübner, [1820] are significant among the medically important Lepidoptera. Adult females use abdominal setae to wrap and protect the eggs that remain for months in nature. These setae, in contact with human skin, may cause allergic reactions including swelling, itching and local erythema, known as lepidopterism. The morphology of the abdominal scales and setae from the female H. oratex Dyar, 1913 is herein described and aspects related to their medical significance are discussed. Portions of each abdominal segment were examined through a scanning electron microscope. Two types of scales without medical importance, and two types of setae with medical importance, classified as "true setae" and "modified setae" were found. The true setae, which are slightly fusiform and have radially arranged lateral projections, are responsible for the allergic reactions caused by skin penetration. The modified setae, which are larger, curved, with the median enlarged and serrated margins, can be responsible for the release of chemical substances. This information provides a better understanding of the structure of the urticating setae, which are responsible for lepidopterism outbreaks in humans, and contributes towards the identification of the moth species involved.

  18. Atrial Fibrillation and Heart Failure - Cause or Effect?

    PubMed

    Prabhu, Sandeep; Voskoboinik, Aleksandr; Kaye, David M; Kistler, Peter M

    2017-09-01

    There are emerging epidemics of atrial fibrillation (AF) and heart failure in most developed countries, with a significant health burden. Due to many shared pathophysiological mechanisms, which facilitate the maintenance of each condition, AF and heart failure co-exist in up to 30% of patients. In the circumstance where known structural causes of heart failure (such as myocardial infarction) are absent, patients presenting with both conditions present a unique challenge, particularly as the temporal relationship of each condition can often remain elusive from the clinical history. The question of whether the AF is driving, or significantly contributing to the left ventricular (LV) dysfunction, rather than merely a consequence of heart failure, has become ever more pertinent, especially as catheter ablation now offers a significant advancement over existing rhythm control strategies. This paper will review the inter-related physiological drivers of AF and heart failure before considering the implications from the outcomes of recent clinical trials in patients with AF and heart failure. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  19. Accelerated fatigue of dentin with exposure to lactic acid.

    PubMed

    Do, D; Orrego, S; Majd, H; Ryou, H; Mutluay, M M; Xu, Hockin H K; Arola, D

    2013-11-01

    Composite restorations accumulate more biofilm than other dental materials. This increases the likelihood for the hard tissues supporting a restoration (i.e. dentin and enamel) to be exposed to acidic conditions beyond that resulting from dietary variations. In this investigation the fatigue strength and fatigue crack growth resistance of human coronal dentin were characterized within a lactic acid solution (with pH = 5) and compared to that of controls evaluated in neutral conditions (pH = 7). A comparison of the fatigue life distributions showed that the lactic acid exposure resulted in a significant reduction in the fatigue strength (p ≤ 0.001), and nearly 30% reduction in the apparent endurance limit (from 44 MPa to 32 MPa). The reduction in pH also caused a significant decrease (p ≤ 0.05) in the threshold stress intensity range required for the initiation of cyclic crack growth, and significant increase in the incremental rate of crack extension. Exposure of tooth structure to lactic acid may cause demineralization, but it also increases the likelihood of restored tooth failures via fatigue, and after short time periods. © 2013 Elsevier Ltd. All rights reserved.

  20. Effects of the functional regulator III on transversal changes: a postero-anterior cephalometric and model study.

    PubMed

    Kilic, Nihat; Celikoglu, Mevlüt; Oktay, Hüsamettin

    2011-12-01

    Studies assessing the transversal treatment changes caused by the functional regulator III (FR-3) are limited in number. This clinical study was planned to analyse the transversal effects of the FR-3 appliance therapy. The treatment group consisted of 17 patients (8 males and 9 females) with Class III malocclusion, who were treated with the FR-3 appliance. The control group consisted of 17 subjects (7 males and 10 females) with a normal occlusion. Mean ages of the subjects were 10.73 and 10.66 years in the treatment and control groups, respectively. Postero-anterior radiographs and stone casts were obtained before (T1) and after (T2) treatment/observation. The results of the Student's t-test comparing initial values showed that maxillary dentoalveolar and skeletal widths are significantly larger in the control group than those in the treatment group. At the end of the treatment, significant transverse increments occurred only at the dentoalveolar level of the maxilla. The transversal changes in the mandible were not statistically significant. Buccal shields of FR-3 did not stimulate the growth of maxillary apical base but caused an enhanced and supplementary widening of maxillary dental and alveolar structures.

  1. Oxidative metabolism of limbic structures after acute administration of diazepam, alprazolam and zolpidem.

    PubMed

    González-Pardo, Héctor; Conejo, Nélida M; Arias, Jorge L

    2006-08-30

    The effects of acute administration of two benzodiazepines and a non-benzodiazepine hypnotic on behavior and brain metabolism were evaluated in rats. After testing the behavioral action of the benzodiazepines on the open field and the elevated plus-maze, the effects of the three drugs on neuronal metabolism of particular limbic regions were measured using cytochrome c oxidase (CO) histochemistry. Diazepam (5 mg/kg i.p.) and alprazolam (0.5 mg/kg i.p.) induced clear anxiolytic effects and a decrease in locomotion, whereas zolpidem (2 mg/kg i.p.) caused an intense hypnotic effect. The anxiolytic effects of alprazolam were distinguishable from diazepam due to the pharmacological and clinical profile of this triazolobenzodiazepine. CO activity decreased significantly in almost all the limbic regions evaluated after zolpidem administration. However, significant prominent decreases in CO activity were found after diazepam treatment in the medial mammillary nucleus, anteroventral thalamus, cingulate cortex, dentate gyrus and basolateral amygdala. Alprazolam caused similar decreases in CO activity, with the exception of the prelimbic and cingulate cortices, where significant increases were detected. In agreement with previous studies using other functional mapping techniques, our results indicate that particular benzodiazepines and non-benzodiazepine hypnotics induce selective changes in brain oxidative metabolism.

  2. Tectonics and volcanism of Eastern Aphrodite Terra: No subduction, no spreading

    NASA Technical Reports Server (NTRS)

    Hansen, Vicki L.; Keep, Myra; Herrick, Robert R.; Phillips, Roger J.

    1992-01-01

    Eastern Aphrodite Terra is approximately equal in size to the western North American Cordillera, from Mexico to Alaska. Its size and unique landforms make it an important area for understanding the tectonics of Venus, yet models for its formation are diametrically opposed. This region is part of the Equatorial Highlands, which was proposed as a region of lithospheric thinning, isostatic uplift, and attendant volcanism. Eastern Aphrodite Terra is dominated by circular structures within which deformation and volcanism are intimately related. These structures are marked by radial and concentric fractures, and volcanic flows that emanate from a central vent, as well as from concentric fracture sets. Cross-cutting relations between flows and concentric fracture sets indicate that outer concentric fracture sets are younger than inner fracture sets. The circular structures are joined by regional northeast- to east-trending fractures that dominantly postdate formation of the circular structures. We propose that the circular structures 'grow' outward with time. Although these structures probably represent addition of crust to the lithosphere, they do not represent significant lithospheric spreading or convergence, and the region does not mark the boundary between two distinct tectonic plates. This region is not easily explained by analogy with either terrestrial midocean rifts or subduction zones. It is perhaps best explained by upwelling of magma diapirs that blister the surface, but do not cause significant lithospheric spreading. Further study of the structural and volcanic evolution of this region using Magellan altimetry and SAR data should lead to better understanding of the tectonic evolution of this region.

  3. Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Richard P.; Gold, Steven H.

    2016-07-01

    The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements inmore » the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.« less

  4. Random single amino acid deletion sampling unveils structural tolerance and the benefits of helical registry shift on GFP folding and structure.

    PubMed

    Arpino, James A J; Reddington, Samuel C; Halliwell, Lisa M; Rizkallah, Pierre J; Jones, D Dafydd

    2014-06-10

    Altering a protein's backbone through amino acid deletion is a common evolutionary mutational mechanism, but is generally ignored during protein engineering primarily because its effect on the folding-structure-function relationship is difficult to predict. Using directed evolution, enhanced green fluorescent protein (EGFP) was observed to tolerate residue deletion across the breadth of the protein, particularly within short and long loops, helical elements, and at the termini of strands. A variant with G4 removed from a helix (EGFP(G4Δ)) conferred significantly higher cellular fluorescence. Folding analysis revealed that EGFP(G4Δ) retained more structure upon unfolding and refolded with almost 100% efficiency but at the expense of thermodynamic stability. The EGFP(G4Δ) structure revealed that G4 deletion caused a beneficial helical registry shift resulting in a new polar interaction network, which potentially stabilizes a cis proline peptide bond and links secondary structure elements. Thus, deletion mutations and registry shifts can enhance proteins through structural rearrangements not possible by substitution mutations alone. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Seismological constraints on the crustal structures generated by continental rejuvenation in northeastern China

    PubMed Central

    Zheng, Tian-Yu; He, Yu-Mei; Yang, Jin-Hui; Zhao, Liang

    2015-01-01

    Crustal rejuvenation is a key process that has shaped the characteristics of current continental structures and components in tectonic active continental regions. Geological and geochemical observations have provided insights into crustal rejuvenation, although the crustal structural fabrics have not been well constrained. Here, we present a seismic image across the North China Craton (NCC) and Central Asian Orogenic Belt (CAOB) using a velocity structure imaging technique for receiver functions from a dense array. The crustal evolution of the eastern NCC was delineated during the Mesozoic by a dominant low seismic wave velocity with velocity inversion, a relatively shallow Moho discontinuity, and a Moho offset beneath the Tanlu Fault Zone. The imaged structures and geochemical evidence, including changes in the components and ages of continental crusts and significant continental crustal growth during the Mesozoic, provide insight into the rejuvenation processes of the evolving crust in the eastern NCC caused by structural, magmatic and metamorphic processes in an extensional setting. The fossil structural fabric of the convergent boundary in the eastern CAOB indicates that the back-arc action of the Paleo-Pacific Plate subduction did not reach the hinterland of Asia. PMID:26443323

  6. Pyramidal dislocation induced strain relaxation in hexagonal structured InGaN/AlGaN/GaN multilayer

    NASA Astrophysics Data System (ADS)

    Yan, P. F.; Du, K.; Sui, M. L.

    2012-10-01

    Due to the special dislocation slip systems in hexagonal lattice, dislocation dominated deformations in hexagonal structured multilayers are significantly different from that in cubic structured systems. In this work, we have studied the strain relaxation mechanism in hexagonal structured InGaN/AlGaN/GaN multilayers with transmission electron microscopy. Due to lattice mismatch, the strain relaxation was found initiated with the formation of pyramidal dislocations. Such dislocations locally lie at only one preferential slip direction in the hexagonal lattice. This preferential slip causes a shear stress along the basal planes and consequently leads to dissociation of pyramidal dislocations and operation of the basal plane slip system. The compressive InGaN layers and "weak" AlGaN/InGaN interfaces stimulate the dissociation of pyramidal dislocations at the interfaces. These results enhance the understanding of interactions between dislocations and layer interfaces and shed new lights on deformation mechanism in hexagonal-lattice multilayers.

  7. Fracture toughness and sliding properties of magnetron sputtered CrBC and CrBCN coatings

    NASA Astrophysics Data System (ADS)

    Wang, Qianzhi; Zhou, Fei; Ma, Qiang; Callisti, Mauro; Polcar, Tomas; Yan, Jiwang

    2018-06-01

    CrBC and CrBCN coatings with low and high B contents were deposited on 316L steel and Si wafers using an unbalanced magnetron sputtering system. Mechanical properties including hardness (H), elastic modulus (E) and fracture toughness (KIc) as well as residual stresses (σ) were quantified. A clear correlation between structural, mechanical and tribological properties of coatings was found. In particular, structural analyses indicated that N incorporation in CrBC coatings with high B content caused a significant structural evolution of the nanocomposite structure (crystalline grains embedded into an amorphous matrix) from nc-CrB2/(a-CrBx, a-BCx) to nc-CrN/(a-BCx, a-BN). As a result, the hardness of CrBC coating with high B content decreased from 23.4 to 16.3 GPa but the fracture toughness was enhanced. Consequently, less cracks initiated on CrBCN coatings during tribological tests, which combined with the shielding effect of a-BN on wear debris, led to a low friction coefficient and wear rate.

  8. Morphological and chemical changes of aerosolized E. coli treated with a dielectric barrier discharge

    DOE PAGES

    Romero-Mangado, Jaione; Nordlund, Dennis; Soberon, Felipe; ...

    2016-02-12

    This paper presents the morphological and chemical modification of the cell structure of aerosolized Escherichia coli treated with a dielectric barrier discharge (DBD). Exposure to DBD results in severe oxidation of the bacteria, leading to the formation of hydroxyl groups and carbonyl groups and a significant reduction in amine functionalities and phosphate groups. Near edge x-ray absorption fine structure(NEXAFS) measurements confirm the presence of additional oxide bonds upon DBD treatment, suggesting oxidation of the outer layer of the cell wall. Electron microscopy images show that the bacteria undergo physical distortion to varying degrees, resulting in deformation of the bacterial structure.more » The electromagnetic field around the DBD coil causes severe damage to the cell structure, possibly resulting in leakage of vital cellular materials. The oxidation and chemical modification of the bacterial components are evident from the Fourier transform infrared spectroscopy and NEXAFS results. The bacterial reculture experiments confirm inactivation of airborne E. coli upon treating with DBD.« less

  9. Raising quality of maintenance and control of metallic structures in large-load technological machines

    NASA Astrophysics Data System (ADS)

    Drygin, M. Yu; Kuryshkin, N. P.

    2018-01-01

    Active growth of coal extraction and underinvestment of coal mining in Russia lead to the fact that technical state of more than 86% of technological machines at opencast coal mines is unacceptable. One of the most significant problems is unacceptable state of supporting metallic structures of excavators and mine dump trucks. The analysis has shown that defects in these metallic structures had been accumulated for a long time. Their removal by the existing method of repair welding was not effective - the flaws reappeared in 2-6 months of technological machines’ service. The authors detected the prime causes that did not allow to make a good repair welding joint. A new technology of repair welding had been tested and endorsed, and this allowed to reduce the number of welded joints’ flaws by 85% without additional raising welders’ qualification. As a result the number of flaws in metallic structures of the equipment had been reduced by 35 % as early as in the first year of using the new technology.

  10. Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Bret D.; Roberts, Adam B.; Pollet, Rebecca M.

    The selective inhibition of bacterial β-glucuronidases was recently shown to alleviate drug-induced gastrointestinal toxicity in mice, including the damage caused by the widely used anticancer drug irinotecan. Here, we report crystal structures of representative β-glucuronidases from the Firmicutes Streptococcus agalactiae and Clostridium perfringens and the Proteobacterium Escherichia coli, and the characterization of a β-glucuronidase from the Bacteroidetes Bacteroides fragilis. While largely similar in structure, these enzymes exhibit marked differences in catalytic properties and propensities for inhibition, indicating that the microbiome maintains functional diversity in orthologous enzymes. Small changes in the structure of designed inhibitors can induce significant conformational changes inmore » the β-glucuronidase active site. Finally, we establish that β-glucuronidase inhibition does not alter the serum pharmacokinetics of irinotecan or its metabolites in mice. Together, the data presented advance our in vitro and in vivo understanding of the microbial β-glucuronidases, a promising new set of targets for controlling drug-induced gastrointestinal toxicity.« less

  11. Molecular and Supermolecular Structure of Commercial Pyrodextrins.

    PubMed

    Le Thanh-Blicharz, Joanna; Błaszczak, Wioletta; Szwengiel, Artur; Paukszta, Dominik; Lewandowicz, Grażyna

    2016-09-01

    Size exclusion chromatography with triple detection as well as infrared spectroscopy studies of commercially available pyrodextrins proved that these molecules are characterized not only by significantly lower molecular mass, in comparison to that of native starch, but also by increased branching. Therefore, pyrodextrins adopt a very compact structure in solution and show Newtonian behavior under shear in spite of their molecular masses of tens of thousands Daltons. The results also indicate that 50% reduction of digestibility of pyrodextrins is, to a minor extent, caused by formation of low-molecular color compounds containing carbonyl functional groups. The main reason is, as postulated in the literature, transglycosidation that leads to decreased occurrence of α-1,4-glycoside bonds in the molecular structure. In the process of dextrinization starch also undergoes changes in supermolecular structure, which, however, have no influence on digestibility. Likewise, the effect of formation of low-molecular colorful compounds containing carbonyl groups is not crucial. © 2016 Institute of Food Technologists®

  12. Multiferroic properties and structural features of M-type Al-substituted barium hexaferrites

    NASA Astrophysics Data System (ADS)

    Trukhanov, A. V.; Trukhanov, S. V.; Kostishin, V. G.; Panina, L. V.; Salem, M. M.; Kazakevich, I. S.; Turchenko, V. A.; Kochervinskii, V. V.; Krivchenya, D. A.

    2017-04-01

    Precise studies of the crystal and magnetic structures of M-type substituted barium hexaferrites BaFe12- x Al x O19 (0.1 ≤ x ≤ 1.2) have been performed by powder neutron diffraction in the temperature range 300-730 K. The electric polarization and the magnetization, and also the magnetoelectric effect of the compositions under study have been studied in electric (to 110 kV/m) and magnetic (to 14 T) fields at room temperature. The spontaneous polarization and significant correlation between the dielectric and magnetic subsystems have been observed at room temperature. The magnetoelectric effect value is, on average, about 5%, and it increases slightly with the aluminum cation concentration. The precise structural studies made it possible to reveal the cause and the mechanism of formation of the spontaneous polarization in M-type substituted barium hexaferrites BaFe12- x Al x O19 ( x ≤ 1.2) with a collinear ferromagnetic structure.

  13. Significance chasing in research practice: causes, consequences and possible solutions.

    PubMed

    Ware, Jennifer J; Munafò, Marcus R

    2015-01-01

    The low reproducibility of findings within the scientific literature is a growing concern. This may be due to many findings being false positives which, in turn, can misdirect research effort and waste money. We review factors that may contribute to poor study reproducibility and an excess of 'significant' findings within the published literature. Specifically, we consider the influence of current incentive structures and the impact of these on research practices. The prevalence of false positives within the literature may be attributable to a number of questionable research practices, ranging from the relatively innocent and minor (e.g. unplanned post-hoc tests) to the calculated and serious (e.g. fabrication of data). These practices may be driven by current incentive structures (e.g. pressure to publish), alongside the preferential emphasis placed by journals on novelty over veracity. There are a number of potential solutions to poor reproducibility, such as new publishing formats that emphasize the research question and study design, rather than the results obtained. This has the potential to minimize significance chasing and non-publication of null findings. Significance chasing, questionable research practices and poor study reproducibility are the unfortunate consequence of a 'publish or perish' culture and a preference among journals for novel findings. It is likely that top-down change implemented by those with the ability to modify current incentive structure (e.g. funders and journals) will be required to address problems of poor reproducibility. © 2014 Society for the Study of Addiction.

  14. Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Minghui; Zhang, Wei K.; Benvin, Nicole M.

    The activities of organellar ion channels are often regulated by Ca2+ and H+, which are present in high concentrations in many organelles. Here we report a structural element critical for dual Ca2+/pH regulation of TRPML1, a Ca2+-release channel crucial for endolysosomal function. TRPML1 mutations cause mucolipidosis type IV (MLIV), a severe lysosomal storage disorder characterized by neurodegeneration, mental retardation and blindness. We obtained crystal structures of the 213-residue luminal domain of human TRPML1 containing three missense MLIV-causing mutations. This domain forms a tetramer with a highly electronegative central pore formed by a novel luminal pore loop. Cysteine cross-linking and cryo-EMmore » analyses confirmed that this architecture occurs in the full-length channel. Structure–function studies demonstrated that Ca2+ and H+ interact with the luminal pore and exert physiologically important regulation. The MLIV-causing mutations disrupt the luminal-domain structure and cause TRPML1 mislocalization. Our study reveals the structural underpinnings of TRPML1's regulation, assembly and pathogenesis.« less

  15. Impact of genetic variation on three dimensional structure and function of proteins

    PubMed Central

    Bhattacharya, Roshni; Rose, Peter W.; Burley, Stephen K.

    2017-01-01

    The Protein Data Bank (PDB; http://wwpdb.org) was established in 1971 as the first open access digital data resource in biology with seven protein structures as its initial holdings. The global PDB archive now contains more than 126,000 experimentally determined atomic level three-dimensional (3D) structures of biological macromolecules (proteins, DNA, RNA), all of which are freely accessible via the Internet. Knowledge of the 3D structure of the gene product can help in understanding its function and role in disease. Of particular interest in the PDB archive are proteins for which 3D structures of genetic variant proteins have been determined, thus revealing atomic-level structural differences caused by the variation at the DNA level. Herein, we present a systematic and qualitative analysis of such cases. We observe a wide range of structural and functional changes caused by single amino acid differences, including changes in enzyme activity, aggregation propensity, structural stability, binding, and dissociation, some in the context of large assemblies. Structural comparison of wild type and mutated proteins, when both are available, provide insights into atomic-level structural differences caused by the genetic variation. PMID:28296894

  16. Effect of tooth-bleaching on the carbonate concentration in dental enamel by Raman spectroscopy.

    PubMed

    Vargas-Koudriavtsev, Tatiana; Herrera-Sancho, Óscar-Andrey

    2017-01-01

    There are not many studies evaluating the effects of surface treatments at the molecular level. The aim of this in vitro study was to analyze the concentration of carbonate molecules in dental enamel by Raman spectroscopy after the application of in-office and home whitening agents. Sixty human teeth were randomly divided into six groups and exposed to three different home bleaching gels (Day White) and three in-office whitening agents (Zoom! Whitespeed and PolaOffice) according to the manufacturer´s instructions. The concentration of carbonate molecules in enamel was measured prior to and during the treatment by means of Raman spectroscopy. Statistical analysis included repeated measures analysis of variance ( p ≤0.05) and Bonferroni pairwise comparisons. At home bleaching agents depicted a decrease in the carbonate molecule. This decrease was statistically significant for the bleaching gel with the highest hydrogen peroxide concentration ( p ≤0,05). In-office whitening agents caused an increase in carbonate, which was significant for all three groups ( p ≤0,05). In-office bleaching gels seem to cause a gain in carbonate of the enamel structure, whilst at-home whitening gels caused a loss in carbonate. Key words: Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, carbonate.

  17. Effect of tooth-bleaching on the carbonate concentration in dental enamel by Raman spectroscopy

    PubMed Central

    Vargas-Koudriavtsev, Tatiana; Herrera-Sancho, Óscar-Andrey

    2017-01-01

    Background There are not many studies evaluating the effects of surface treatments at the molecular level. The aim of this in vitro study was to analyze the concentration of carbonate molecules in dental enamel by Raman spectroscopy after the application of in-office and home whitening agents. Material and Methods Sixty human teeth were randomly divided into six groups and exposed to three different home bleaching gels (Day White) and three in-office whitening agents (Zoom! Whitespeed and PolaOffice) according to the manufacturer´s instructions. The concentration of carbonate molecules in enamel was measured prior to and during the treatment by means of Raman spectroscopy. Statistical analysis included repeated measures analysis of variance (p≤0.05) and Bonferroni pairwise comparisons. Results At home bleaching agents depicted a decrease in the carbonate molecule. This decrease was statistically significant for the bleaching gel with the highest hydrogen peroxide concentration (p≤0,05). In-office whitening agents caused an increase in carbonate, which was significant for all three groups (p≤0,05). Conclusions In-office bleaching gels seem to cause a gain in carbonate of the enamel structure, whilst at-home whitening gels caused a loss in carbonate. Key words:Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, carbonate. PMID:28149472

  18. Comparison of occlusal discomfort in patients with temporomandibular disorders between myofascial pain and disc displacement.

    PubMed

    Shibuya, Toshihisa; Kino, Koji; Sugisaki, Masashi; Sato, Fumiaki; Haketa, Tadasu; Nishiyama, Akira; Takaoka, Michiko; Ota, Takenobu; Ishikawa, Takayuki; Narita, Noriyuki

    2009-12-01

    We compared occlusal discomfort in patients with temporomandibular disorders (TMD) between myofascial pain (MFP) and disc displacement (DD) using a database created from Sep, 2003 to Aug, 2005. We selected 71 patients with MFP and 170 patients with DD to construct a null model of structural equation modeling (SEM) in which anxiety influenced depressive mood, depressive mood aggravated occlusal discomfort and sleep complaints, and sleep complaints or an onset event caused by another person aggravated occlusal discomfort. We performed a simultaneous analysis of patients with MFP and DD. The estimated parameter of the path from depressive mood to occlusal discomfort was significant for patients with MFP, but not for patients with DD. The path from an onset event caused by another person, such as dental treatment to occlusal discomfort was significant in patients with MFP and those with DD. The Goodness of Fit Index (=0.909), The Adjusted Goodness of Fit Index (=0.867), and The Root Mean Square Error of Approximation (=0.039) indicated good acceptability. These results suggested that an increase in depressive mood may aggravate occlusal discomfort in patients with MFP, and an onset event caused by another person, such as dental treatment, also may aggravate occlusal discomfort in patients with MFP and those with DD.

  19. Photosynthetic inhibition and oxidative stress to the toxic Phaeocystis globosa caused by a diketopiperazine isolated from products of algicidal bacterium metabolism.

    PubMed

    Tan, Shuo; Hu, Xiaoli; Yin, Pinghe; Zhao, Ling

    2016-05-01

    Algicidal bacteria have been turned out to be available for inhibiting Phaeocystis globosa which frequently caused harmful algal blooms and threatened to economic development and ecological balance. A marine bacterium Bacillus sp. Ts-12 exhibited significant algicidal activity against P. globosa by indirect attack. In present study, an algicidal compound was isolated by silica gel column, Sephadex G-15 column and HPLC, further identified as hexahydropyrrolo[1,2-a]pyrazine-1,4-dione, cyclo-(Pro-Gly), by GC-MS and (1)H-NMR. Cyclo-(Pro-Gly) significantly increased the level of reactive oxygen species (ROS) within P. globosa cells, further activating the enzymatic and non-enzymatic antioxidant systems, including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and ascorbic acid (AsA). The increase in methane dicarboxylic aldehyde (MDA) content showed that the surplus ROS induced lipid peroxidation on membrane system. Transmission electron microscope (TEM) and flow cytometry (FCM) analysis revealed that cyclo-(Pro-Gly) caused reduction of Chl-a content, destruction of cell membrane integrity, chloroplasts and nuclear structure. Real-time PCR assay showed that the transcriptions of photosynthesis related genes (psbA, psbD, rbcL) were significantly inhibited. This study indicated that cyclo-(Pro-Gly) from marine Bacillus sp. Ts-12 exerted photosynthetic inhibition and oxidative stress to P. globosa and eventually led to the algal cells lysis. This algicidal compound might be potential bio-agent for controlling P. globosa red tide.

  20. Inhibition of interaction between epigallocatechin-3-gallate and myofibrillar protein by cyclodextrin derivatives improves gel quality under oxidative stress.

    PubMed

    Zhang, Yumeng; Chen, Lin; Lv, Yuanqi; Wang, Shuangxi; Suo, Zhiyao; Cheng, Xingguang; Xu, Xinglian; Zhou, Guanghong; Li, Zhixi; Feng, Xianchao

    2018-06-01

    High levels of polyphenols can interact with myofibrillar proteins (MPs), causing damage to a MP emulsion gel. In this study, β-cyclodextrins were used to reduce covalent and non-covalent interaction between epigallocatechin-3-gallate (EGCG) and MPs under oxidative stress. The loss of both thiol and free amine groups and the unfolding of MPs caused by EGCG (80 μM/g protein) were significantly prevented by β-cyclodextrins, and the structural stability and solubility were improved. MP emulsion gel treated with EGCG (80 μM/g protein) had the highest cooking loss (68.64%) and gel strength (0.51 N). Addition of β-cyclodextrins significantly reduced cooking loss (26.24-58.20%) and improved gel strength (0.31-0.41 N) of MP emulsion gel jeopardized by EGCG under oxidative stress. Damage to the emulsifying properties of MPs caused by EGCG was significantly prevented by addition of β-cyclodextrins. β-cyclodextrins reduced interaction between EGCG and MPs in the order Methyl-β-cyclodextrin > (2-Hydroxypropyl)-β-cyclodextrin > β-cyclodextrin. In absence of EGCG, addition of β-cyclodextrins partly protected MPs from oxidative attack and improved its solubility. It is concluded that β-cyclodextrins does not markedly reduce the antioxidant ability of EGCG according to carbonyl analysis, and can effectively increase EGCG loading to potentially provide more durable antioxidant effect for meat products during processing, transportation and storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

Top