Bone formation: roles of genistein and daidzein
USDA-ARS?s Scientific Manuscript database
Bone remodeling consists of a balance between bone formation by osteoblasts and bone resorption by osteoclasts. Osteoporosis is the result of increased bone resorption and decreased bone formation causing a decreased bone mass density, loss of bone microarchitecture, and an increased risk of fractu...
Yovich, S; Seydel, U; Papadimitriou, J M; Nicholson, G C; Wood, D J; Zheng, M H
1998-04-01
Osteoclasts resorb bone by a complex dynamic process that initially involves attachment, polarization and enzyme secretion, followed by their detachment and migration to new sites. In this study, we postulated that mineralized and osteoid bone matrix signal osteoclasts differently, resulting in the resorption of mineralized bone matrix only. We, therefore, compared the cytoplasmic distribution of cytoskeletal proteins F-actin and vinculin using confocal laser-scanning microscopy in osteoclasts cultured on mineralized and demineralized bone slices and correlated the observations with their functional activity. Our results have demonstrated significant differences in F-actin and vinculin staining patterns between osteoclasts cultured on mineralized bone matrix and those on demineralized bone matrix. In addition, the structural variations were accompanied by significant differences in bone resorbing activity between osteoclasts grown on mineralized bone matrix and those on demineralized bone matrix after 24 h of culture --resorption only occurring in mineralized bone but not in demineralized bone. These results indicated that failure of osteoid bone resorption is caused by perturbation of osteoclast polarization.
Xiong, Jinhu; Piemontese, Marilina; Thostenson, Jeff D.; Weinstein, Robert S.; Manolagas, Stavros C.; O’Brien, Charles A.
2014-01-01
Parathyroid hormone (PTH) excess stimulates bone resorption. This effect is associated with increased expression of the osteoclastogenic cytokine receptor activator of nuclear factor кB ligand (RANKL) in bone. However, several different cell types, including bone marrow stromal cells, osteocytes, and T lymphocytes, express both RANKL and the PTH receptor and it is unclear whether RANKL expression by any of these cell types is required for PTH-induced bone loss. Here we have used mice lacking the RANKL gene in osteocytes to determine whether RANKL produced by this cell type is required for the bone loss caused by secondary hyperparathyroidism induced by dietary calcium deficiency in adult mice. Thirty days of dietary calcium deficiency caused bone loss in control mice, but this effect was blunted in mice lacking RANKL in osteocytes. The increase in RANKL expression in bone and the increase in osteoclast number caused by dietary calcium deficiency were also blunted in mice lacking RANKL in osteocytes. These results demonstrate that RANKL produced by osteocytes contributes to the increased bone resorption and the bone loss caused by secondary hyperparathyroidism, strengthening the evidence that osteocytes are an important target cell for hormonal control of bone remodeling. PMID:24933342
Leptin regulation of bone resorption by the sympathetic nervous system and CART.
Elefteriou, Florent; Ahn, Jong Deok; Takeda, Shu; Starbuck, Michael; Yang, Xiangli; Liu, Xiuyun; Kondo, Hisataka; Richards, William G; Bannon, Tony W; Noda, Masaki; Clement, Karine; Vaisse, Christian; Karsenty, Gerard
2005-03-24
Bone remodelling, the mechanism by which vertebrates regulate bone mass, comprises two phases, namely resorption by osteoclasts and formation by osteoblasts; osteoblasts are multifunctional cells also controlling osteoclast differentiation. Sympathetic signalling via beta2-adrenergic receptors (Adrb2) present on osteoblasts controls bone formation downstream of leptin. Here we show, by analysing Adrb2-deficient mice, that the sympathetic nervous system favours bone resorption by increasing expression in osteoblast progenitor cells of the osteoclast differentiation factor Rankl. This sympathetic function requires phosphorylation (by protein kinase A) of ATF4, a cell-specific CREB-related transcription factor essential for osteoblast differentiation and function. That bone resorption cannot increase in gonadectomized Adrb2-deficient mice highlights the biological importance of this regulation, but also contrasts sharply with the increase in bone resorption characterizing another hypogonadic mouse with low sympathetic tone, the ob/ob mouse. This discrepancy is explained, in part, by the fact that CART ('cocaine amphetamine regulated transcript'), a neuropeptide whose expression is controlled by leptin and nearly abolished in ob/ob mice, inhibits bone resorption by modulating Rankl expression. Our study establishes that leptin-regulated neural pathways control both aspects of bone remodelling, and demonstrates that integrity of sympathetic signalling is necessary for the increase in bone resorption caused by gonadal failure.
Kassem, Ali; Lindholm, Catharina; Lerner, Ulf H
2016-01-01
Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing a variety of microbial molecules and structures. S. aureus recognition via TLR2 initiates a signaling cascade resulting in production of various cytokines, but the mechanisms by which S. aureus causes rapid and excessive bone loss are still unclear. We, therefore, investigated how S. aureus regulates periosteal/endosteal osteoclast formation and bone resorption. S. aureus stimulation of neonatal mouse parietal bone induced ex vivo bone resorption and osteoclastic gene expression. This effect was associated with increased mRNA and protein expression of receptor activator of NF-kB ligand (RANKL) without significant change in osteoprotegerin (OPG) expression. Bone resorption induced by S. aureus was abolished by OPG. S. aureus increased the expression of osteoclastogenic cytokines and prostaglandins in the parietal bones but the stimulatory effect of S. aureus on bone resorption and Tnfsf11 mRNA expression was independent of these cytokines and prostaglandins. Stimulation of isolated periosteal osteoblasts with S. aureus also resulted in increased expression of Tnfsf11 mRNA, an effect lost in osteoblasts from Tlr2 knockout mice. S. aureus stimulated osteoclastogenesis in isolated periosteal cells without affecting RANKL-stimulated resorption. In contrast, S. aureus inhibited RANKL-induced osteoclast formation in bone marrow macrophages. These data show that S. aureus enhances bone resorption and periosteal osteoclast formation by increasing osteoblast RANKL production through TLR2. Our study indicates the importance of using different in vitro approaches for studies of how S. aureus regulates osteoclastogenesis to obtain better understanding of the complex mechanisms of S. aureus induced bone destruction in vivo. PMID:27311019
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com; O'Shea, Patrick J.; Fagura, Malbinder
Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitorsmore » caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and mineralisation produced by GSK-3 inhibition. • In rats, 3 GSK-3 inhibitors produced a unique serum bone turnover biomarker profile. • Enhanced bone formation was seen within 7 to 14 days of compound treatment in rats.« less
Baas, Jorgen; Vestermark, Marianne; Jensen, Thomas; Bechtold, Joan; Soballe, Kjeld; Jakobsen, Thomas
2017-04-01
Bone allograft is used in total joint arthroplasties in order to enhance implant fixation. BMPs are known to stimulate new bone formation within allograft, but also known to accelerate graft resorption. Bisphosphonates are strong inhibitor of bone resorption. The aim of this study was to investigate whether the bisphosphonate zoledronate was able to counteract the accelerated graft resorption without interfering with the BMP induced bone formation. In the present study the two drugs alone and in combination were studied in our canine model of impaction bone grafting. We included 10 dogs in this study. Cancellous allograft bone grafts were soaked in either saline or zoledronate solution (0.005mg/mL) and then vehicle or BMP2 (0.15mg rhBMP2) was added. This produced four treatment groups: A) control, B) BMP2, C) zoledronate and D) BMP2+zoledronate. The allograft treated with A, B, C or D was impacted into a circumferential defect of 2.5mm around HA-coated porous Ti implants. Each dog received all four treatment groups with two implants in the distal part of each femur. The group with allograft soaked in zoledronate (C) showed better biomechanical fixation than all other groups (p<0.05). It had less allograft resorption compared to all other groups (p<0.005) without any statistically significant change in new bone formation. The addition of BMP2 to the allograft did not increase new bone formation significantly, but did accelerate allograft resorption. This was also the case where the allograft was treated with BMP2 and zoledronate in combination (D). This caused a decrease in mechanical implant fixation in both these groups compared to the control group, however only statistically significant for the BMP2 group compared to control. The study shows that topical zoledronate can be a valuable tool for augmenting bone grafts when administered optimally. The use of BMP2 in bone grafting procedures seems associated with a high risk of bone resorption and mechanical weakening. Copyright © 2017 Elsevier Inc. All rights reserved.
Baas, Jorgen; Vestermark, Marianne; Jensen, Thomas; Bechtold, Joan; Soballe, Kjeld; Jakobsen, Thomas
2017-01-01
Bone allograft is used in total joint artroplasties in order to enhance implant fixation. BMPs are known to stimulate new bone formation within allograft, but also known to accelerate graft resorption. Bisphosphonates are strong inhibitor of bone resorption. The aim of this study was to investigate whether the bisphosphonate zoledronate was able to counteract the accelerated graft resorption without interfering with the BMP induced bone formation. In the present study the two drugs alone and in combination were studied in our canine model of impaction bone grafting. We included 10 dogs in this study. Cancellous allograft bone grafts were soaked in either saline or zoledronate solution (0.005 mg/mL) and then vehicle or BMP2 (0.15 mg rhBMP2) was added. This produced four treatment groups: A) control B) BMP2 C) zoledronate and D) BMP2+ zoledronate. The allograft treated with A,B,C or D was impacted into a circumferential defect of 2.5 mm around HA-coated porous Ti implants. Each dog received all four treatment groups with two implants in the distal part of each femur. The group with allograft soaked in zoledronate (C) showed better biomechanical fixation than all other groups (p<0.05). It had less allograft resorption compared to all other groups (p<0.005) without any statistically significant change in new bone formation. The addition of BMP2 to the allograft did not increase new bone formation significantly, but did accelerate allograft resorption. This was also the case where the allograft was treated with BMP2 and zoledronate in combination (D). This caused a decrease in mechanical implant fixation in both these groups compared to the control group, however only statistically significant for the BMP2 group compared to control. The study shows that topical zoledronate can be a valuable tool for augmenting bone grafts when administered optimally. The use of BMP2 in bone grafting procedures seems associated with a high risk of bone resorption and mechanical weakening. PMID:28082076
Trisi, Paolo; Berardini, Marco; Falco, Antonello; Podaliri Vulpiani, Michele; Perfetti, Giorgio
2014-06-01
To measure in vivo impact of dense bone overheating on implant osseointegration and peri-implant bone resorption comparing different bur irrigation methods vs. no irrigation. Twenty TI-bone implants were inserted in the inferior edge of mandibles of sheep. Different cooling procedures were used in each group: no irrigation (group A), only internal bur irrigation (group B), both internal and external irrigation (group C), and external irrigation (group D). The histomorphometric parameters calculated for each implant were as follows: %cortical bone-implant contact (%CBIC) and %cortical bone volume (%CBV). Friedman's test was applied to test the statistical differences. In group A, we found a huge resorption of cortical bone with %CBIC and %CBV values extremely low. Groups B and C showed mean %CBIC and %BV values higher than other groups The mean %CBV value was significantly different when comparing group B and group C vs. group A (P < 0.05). Significant differences in %CBIC were found also between group C and group A (P < 0.05). Thermal injury, due to insufficient irrigation, of hard bone caused massive resorption of the cortical bone and implant failure. Drilling procedures on hard bone need an adequate cooling supply because the bone matrix overheating may induce complete resorption of dense bone around implants. Internal-external irrigation and only internal irrigation showed to be more efficient than other types of cooling methods in preventing bone resorption around implants. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Bone formation is not impaired by hibernation (disuse) in black bears Ursus americanus
Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.
2003-01-01
Disuse by bed rest, limb immobilization or space flight causes rapid bone loss by arresting bone formation and accelerating bone resorption. This net bone loss increases the risk of fracture upon remobilization. Bone loss also occurs in hibernating ground squirrels, golden hamsters, and little brown bats by arresting bone formation and accelerating bone resorption. There is some histological evidence to suggest that black bears Ursus americanus do not lose bone mass during hibernation (i.e. disuse). There is also evidence suggesting that muscle mass and strength are preserved in black bears during hibernation. The question of whether bears can prevent bone loss during hibernation has not been conclusively answered. The goal of the current study was to further assess bone metabolism in hibernating black bears. Using the same serum markers of bone remodeling used to evaluate human patients with osteoporosis, we assayed serum from five black bears, collected every 10 days over a 196-day period, for bone resorption and formation markers. Here we show that bone resorption remains elevated over the entire hibernation period compared to the pre-hibernation period, but osteoblastic bone formation is not impaired by hibernation and is rapidly accelerated during remobilization following hibernation.
Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells.
Streicher, Carmen; Heyny, Alexandra; Andrukhova, Olena; Haigl, Barbara; Slavic, Svetlana; Schüler, Christiane; Kollmann, Karoline; Kantner, Ingrid; Sexl, Veronika; Kleiter, Miriam; Hofbauer, Lorenz C; Kostenuik, Paul J; Erben, Reinhold G
2017-07-25
Estrogen is critical for skeletal homeostasis and regulates bone remodeling, in part, by modulating the expression of receptor activator of NF-κB ligand (RANKL), an essential cytokine for bone resorption by osteoclasts. RANKL can be produced by a variety of hematopoietic (e.g. T and B-cell) and mesenchymal (osteoblast lineage, chondrocyte) cell types. The cellular mechanisms by which estrogen acts on bone are still a matter of controversy. By using murine reconstitution models that allow for selective deletion of estrogen receptor-alpha (ERα) or selective inhibition of RANKL in hematopoietic vs. mesenchymal cells, in conjunction with in situ expression profiling in bone cells, we identified bone lining cells as important gatekeepers of estrogen-controlled bone resorption. Our data indicate that the increase in bone resorption observed in states of estrogen deficiency in mice is mainly caused by lack of ERα-mediated suppression of RANKL expression in bone lining cells.
Leshem, Onir; Kashino, Suely S.; Gonçalves, Reginaldo B.; Suzuki, Noriyuki; Onodera, Masao; Fujimura, Akira; Sasaki, Hajime; Stashenko, Philip; Campos-Neto, Antonio
2013-01-01
In previous studies we showed that biasing the immune response to Porphyromonas gingivalis antigens to the Th1 phenotype increases inflammatory bone resorption caused by this organism. Using a T cell screening strategy we identified eight P. gingivalis genes coding for proteins that appear to be involved in T-helper cell responses. In the present study we characterized the protein, encoded by PG_1841 gene and evaluated its relevance in the in bone resorption caused by P. gingivalis because subcutaneous infection of mice with this organism resulted in the induction of Th1 biased response to the recombinant PG1841 antigen molecule. Using an immunization regime that strongly biases toward the Th1 phenotype followed by challenge with P. gingivalis in dental pulp tissue, we demonstrate that mice pre-immunized with rPG1841 developed severe bone loss compared with control immunized mice. Pre-immunization of mice with the antigen using a Th2 biasing regime resulted in no exacerbation of the disease. These results support the notion that selected antigens of P. gingivalis are involved in a biased Th1 host response that leads to the severe bone loss caused by this oral pathogen. PMID:18457976
Junrui, Pei; Bingyun, Li; Yanhui, Gao; Xu, Jiaxun; Darko, Gottfried M; Dianjun, Sun
2016-09-01
Skeletal fluorosis is a metabolic bone disease caused by excessive accumulation of fluoride. Although the cause of this disease is known, the mechanism by which fluoride accumulates on the bone has not been clearly defined, thus there are no markers that can be used for screening skeletal fluorosis in epidemiology. In this study, osteoclasts were formed from bone marrow cells of C57BL/6 mice-treated with macrophage colony stimulating factor and receptor activator of nuclear factor kappa-B ligand. The mRNA expression of tartrate-resistant acid phosphatase 5b (TRAP5b), osteoclast-associated receptor (OSCAR), calcitonin receptor (CTR), matrix metalloproteinase 9 (MMP9) and cathepsin K (CK) were detected using real-time PCR (RT-PCR). Results showed that fluoride between 0.5 and 8mg/l had no effect on osteoclast formation. However fluoride at 0.5mg/l level significantly decreased the activity of osteoclast bone resorption. Fluoride concentration was negatively correlated with the activity of osteoclast bone resorption. On day 5 of osteoclast differentiation maturity, MMP9 and CK mRNA expression were not only negatively correlated with fluoride concentration, but directly correlated with the activity of osteoclast bone resorption. TRAP5b, CTR and OSCAR mRNA expression were positively correlated with the number of osteoclast and they had no correlation with the activity of osteoclast bone resorption. Thus, it can be seen that MMP9 and CK may reflect the change of activity of bone resorption as well the degree of fluoride exposure. TRAP5b, CTR and OSCAR can represent the change of number of osteoclast formed. Copyright © 2016 Elsevier B.V. All rights reserved.
Ping, Zichuan; Wang, Zhirong; Shi, Jiawei; Wang, Liangliang; Guo, Xiaobin; Zhou, Wei; Hu, Xuanyang; Wu, Xiexing; Liu, Yu; Zhang, Wen; Yang, Huilin; Xu, Yaozeng; Gu, Ye; Geng, Dechun
2017-10-15
Wear debris-induced peri-implant osteolysis challenges the longevity of implants. The host response to wear debris causes chronic inflammation, promotes bone resorption, and impairs bone formation. We previously demonstrated that melatonin enhances bone formation and attenuates wear debris-induced bone loss in vivo. However, whether melatonin inhibits chronic inflammation and bone resorption at sites of wear debris-induced osteolysis remains unclear. In this study, we examined the potential inhibitory effects of melatonin on titanium particle-induced inflammatory osteolysis in a murine calvarial model and on RANKL-induced osteoclastic formation in bone marrow-derived macrophages. We found that the exogenous administration of melatonin significantly inhibited wear debris-induced bone resorption and the expression of inflammatory cytokines in vivo. Additionally, melatonin inhibited RANKL-induced osteoclast differentiation, F-actin ring formation, and osteoclastic resorption in a concentration-dependent manner in vitro. We also showed that melatonin blocked the phosphorylation of IκB-α and p65, but not IKKα, and significantly inhibited the expression of NFATc1 and c-Fos. However, melatonin had no effect on MAPK or PI3K/AKT signaling pathways. These results provide novel mechanistic insight into the anti-inflammatory and anti-bone resorptive effects of melatonin on wear debris-induced bone loss and provide an evidence-based rationale for the protective effects of melatonin as a treatment for peri-implant osteolysis. Wear debris-induced chronic inflammation, osteoclastic activation and osteoblastic inhibition have been identified as critical factors of peri-implant bone loss. We previously demonstrated that melatonin, a bioactive indolamine secreted mainly by the pineal gland, activates Wnt/β-catenin signaling pathway and enhances bone regeneration at osteolytic site in vivo. In the current study, we further demonstrated that melatonin significantly suppresses wear debris-induced bone resorption and inflammatory cytokine expression in vivo. In addition, melatonin inhibits receptor activator of nuclear factor kappa-B ligand induced osteoclast formation and osteoclastic bone resorption in vitro. Meanwhile, we found that melatonin mediates its anti-inflammation and anti-bone resorption effects by abrogating nuclear factor kappa-B activation. These results further support the protective effects of melatonin on wear debris-induced peri-implant bone loss, and strongly suggest that melatonin could be considered as a potential candidate for the prevention and treatment of wear debris-induced osteolysis and subsequent aseptic loosening. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ye, Wei-Liang; Zhao, Yi-Pu; Cheng, Ying; Liu, Dao-Zhou; Cui, Han; Liu, Miao; Zhang, Bang-Le; Mei, Qi-Bing; Zhou, Si-Yuan
2018-01-16
In order to inhibit the growth of lung cancer bone metastasis and reduce the bone resorption at bone metastasis sites, a bone metastasis target micelle DOX@DBMs-ALN was prepared. The size and the zeta potential of DOX@DBNs-ALN were about 60 nm and -15 mV, respectively. DOX@DBMs-ALN exhibited high binding affinity with hydroxyapatite and released DOX in redox-responsive manner. DOX@DBMs-ALN was effectively up taken by A549 cells and delivered DOX to the nucleus of A549 cells, which resulted in strong cytotoxicity on A549 cells. The in vivo experimental results indicated that DOX@DBMs-ALN specifically delivered DOX to bone metastasis site and obviously prolonged the retention time of DOX in bone metastasis site. Moreover, DOX@DBMs-ALN not only significantly inhibited the growth of bone metastasis tumour but also obviously reduced the bone resorption at bone metastasis sites without causing marked systemic toxicity. Thus, DOX@DBMs-ALN has great potential in the treatment of lung cancer bone metastasis.
Dried plum diet protects from bone loss caused by ionizing radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreurs, A. -S.; Shirazi-Fard, Y.; Shahnazari, M.
Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or antiinflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss.more » Dried plum was most effective in reducing the expression of genes related to bone resorption ( Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Furthermore, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth.« less
Dried plum diet protects from bone loss caused by ionizing radiation
Schreurs, A. -S.; Shirazi-Fard, Y.; Shahnazari, M.; ...
2016-02-11
Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or antiinflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss.more » Dried plum was most effective in reducing the expression of genes related to bone resorption ( Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Furthermore, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth.« less
Dried plum diet protects from bone loss caused by ionizing radiation
Schreurs, A.-S.; Shirazi-Fard, Y.; Shahnazari, M.; Alwood, J. S.; Truong, T. A.; Tahimic, C. G. T.; Limoli, C. L.; Turner, N. D.; Halloran, B.; Globus, R. K.
2016-01-01
Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or anti-inflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss. Dried plum was most effective in reducing the expression of genes related to bone resorption (Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Thus, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth. PMID:26867002
Kim, Jung-Lye; Kang, Min-Kyung; Gong, Ju-Hyun; Park, Sin-Hye; Han, Seon-Young; Kang, Young-Hee
2012-08-01
Bone-remodeling imbalance resulting in more bone resorption than bone formation is known to cause skeletal diseases such as osteoporosis. Phloretin, a natural dihydrochalcone compound largely present in apple peels, possesses antiphotoaging, and antiinflammatory activity. Phloretin inhibited receptor activator of NF-κB ligand (RANKL)-induced formation of multinucleated osteoclasts and diminished bone resorption area produced during the osteoclast differentiation process. It was also found that ≥ 10 μM phloretin reduced RANKL-enhanced tartrate-resistance acid phosphatase activity and matrix metalloproteinase-9 secretion in a dose-dependent manner. The phloretin treatment retarded RANKL-induced expression of carbonic anhydrase II, vacuolar-type H(+) -ATPase D2 and β3 integrin, all involved in the bone resorption. Furthermore, submicromolar phloretin diminished the expression and secretion of cathepsin K elevated by RANKL, being concurrent with inhibition of TRAF6 induction and NF-κB activation. RANKL-induced activation of nuclear factor of activated T cells c1 (NFATc1) and microphthalmia-associated transcription factor was also suppressed by phloretin. These results demonstrate that the inhibition of osteoclast differentiation and bone resorption by phloretin entail a disturbance of TRAF6-NFATc1-NF-κB pathway triggered by RANKL. Therefore, phloretin may be a potential therapeutic agent targeting osteoclast differentiation and bone resorption in skeletal diseases such as osteoporosis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Calcitonin as an alternative treatment for root resorption].
Pierce, A; Berg, J O; Lindskog, S
1989-01-01
Inflammatory root resorption is a common finding following trauma and will cause eventual destruction of the tooth root if left untreated. This study examined the effects of intrapulpal application of calcitonin, a hormone known to inhibit osteoclastic bone resorption, on experimental inflammatory root resorption induced in monkeys. Results were histologically evaluated using a morphometric technique and revealed that calcitonin was an effective medicament for the treatment of inflammatory root resorption. It was concluded that this hormone could be a useful therapeutic adjunct in difficult cases of external root resorption.
McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W
2009-12-01
Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.
McGee-Lawrence, Meghan E.; Wojda, Samantha J.; Barlow, Lindsay N.; Drummer, Thomas D.; Castillo, Alesha B.; Kennedy, Oran; Condon, Keith W.; Auger, Janene; Black, Hal L.; Nelson, O. Lynne; Robbins, Charles T.; Donahue, Seth W.
2009-01-01
Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse induced bone loss in bears into novel treatments for osteoporosis. PMID:19703606
ASSOCIATION BETWEEN NON-ENZYMATIC GLYCATION, RESORPTION, AND MICRODAMAGE IN HUMAN TIBIAL CORTICES
Karim, Lamya; Diab, Tamim; Vashishth, Deepak
2015-01-01
Purpose/Introduction Changes in the quality of bone material contribute significantly to bone fragility. In order to establish a better understanding of the interaction of the different components of bone quality and their influence on bone fragility we investigated the relationship between non-enzymatic glycation, resorption, and microdamage generated in vivo in cortical bone using bone specimens from the same donors. Methods Total fluorescent advanced glycation end-products (AGEs) were measured in 96 human cortical bone samples from 83 donors. Resorption pit density, average resorption pit area, and percent resorption area were quantified in samples from 48 common donors with AGE measurements. Linear microcrack density and diffuse damage were measured in 21 common donors with AGE and resorption measurements. Correlation analyses were performed between all measured variables to establish the relationships among them and their variation with age. Results We found that average resorption pit area and percent resorption area decreased with increasing AGEs independently of age. Resorption pit density and percent resorption area demonstrated negative age-adjusted correlation with diffuse damage. Furthermore, average resorption pit area, resorption pit density, and percent resorption area were found to decrease significantly with age. Conclusions The current study demonstrated the in vivo interrelationship between the organic constituents, remodeling, and damage formation in cortical bone. In addition to the age-related reduction in resorption, there is a negative correlation between AGEs and resorption independent of age. This inverse relationship indicates that AGEs alter the resorption process and/or accumulate in the tissue as a result of reduced resorption and may lead to bone fragility by adversely affecting fracture resistance through altered bone matrix properties. PMID:25326375
Kresnoadi, Utari; Ariani, Maretaningtias Dwi; Djulaeha, Eha; Hendrijantini, Nike
2017-01-01
Following the extraction of a tooth, bone resorption can cause significant problems for a subsequent denture implant and restorative dentistry. Thus, the tooth extraction socket needs to be maintained to reduce the chance of any alveolar ridge bone resorption. The objective of this study is to determine whether the administration of mangosteen peel extracts (MPEs), combined with demineralized freeze-dried bovine bone xenograft (DFBBX) materials for tooth extraction socket preservation, could potentially reduce inflammation by decreased the expression of nuclear factor κβ (NfKb) and receptor activator of nuclear factor-κβ ligand (RANKL), to inhibit alveolar bone resorption, and increased of bone morphogenetic protein-2 (BMP2) expressions to accelerate alveolar bone regeneration. This study consists of several stages. First, a dosage of MPE combined with graft materials was applied to a preserved tooth extraction socket of a Cavia cobaya . Second, the C. cobaya was examined using immune histochemical expression of NfKb, RANKL, BMP2, as well as histology of osteoblasts and osteoclasts. The research was statistically analyzed, using an analysis of variance test and Tukey honest significant difference test. The results of this research were that it was determined that MPEs combined with graft materials on a preserved tooth extraction socket can reduce NfKb, RANK, and osteoclasts also increase of BMP2 and osteoblast. The induction of MPEs and DFBBX is effective in reducing inflammation, lowering osteoclasts, decreasing alveolar bone resorption, and also increasing BMP2 expression and alveolar bone regeneration.
Increased bone density in mice lacking the proton receptor, OGR1
Krieger, Nancy S.; Yao, Zhenqiang; Kyker-Snowman, Kelly; Kim, Min Ho; Boyce, Brendan F.; Bushinsky, David A.
2016-01-01
Chronic metabolic acidosis stimulates cell-mediated calcium efflux from bone through osteoblastic prostaglandin E2-induced stimulation of RANKL leading to increased osteoclastic bone resorption. Osteoblasts express the proton-sensing G-protein coupled receptor, OGR1, which activates IP3-mediated intracellular calcium. Proton-induced osteoblastic intracellular calcium signaling requires OGR1, suggesting OGR1 is the sensor activated during acidosis to cause bone resorption. Growing mice produce large amounts of metabolic acids which must be buffered, primarily by bone, prior to excretion by the kidney. Here we tested whether lack of OGR1 inhibits proton-induced bone resorption by measuring bone mineral density by μCT and histomorphometry in 8 week old male OGR1−/− and C57/Bl6 wild type mice. OGR1−/− mice have normal skeletal development with no atypical gross phenotype. Trabecular and cortical bone volume was increased in tibiae and vertebrae from OGR1−/−. There were increased osteoblast numbers on the cortical and trabecular surfaces of tibiae from OGR1−/− mice, increased endocortical and trabecular bone formation rates, and osteoblastic gene expression. Osteoclast numbers and surface were increased in tibiae of OGR1−/− mice. Thus, in rapidly growing mice, lack of OGR1 leads to increased bone mass with increased bone turnover and a greater increase in bone formation than resorption. This supports the important role of the proton receptor, OGR1, in the response of bone to protons. PMID:26880453
Responds of Bone Cells to Microgravity: Ground-Based Research
NASA Astrophysics Data System (ADS)
Zhang, Jian; Li, Jingbao; Xu, Huiyun; Yang, Pengfei; Xie, Li; Qian, Airong; Zhao, Yong; Shang, Peng
2015-11-01
Severe loss of bone occurs due to long-duration spaceflight. Mechanical loading stimulates bone formation, while bone degradation happens under mechanical unloading. Bone remodeling is a dynamic process in which bone formation and bone resorption are tightly coupled. Increased bone resorption and decreased bone formation caused by reduced mechanical loading, generally result in disrupted bone remodeling. Bone remodeling is orchestrated by multiple bone cells including osteoblast, osteocyte, osteoclast and mesenchymal stem cell. It is yet not clear that how these bone cells sense altered gravity, translate physical stimulus into biochemical signals, and then regulate themselves structurally and functionally. In this paper, studies elucidating the bioeffects of microgravity on bone cells (osteoblast, osteocyte, osteoclast, mesenchymal stem cell) using various platforms including spaceflight and ground-based simulated microgravity were summarized. Promising gravity-sensitive signaling pathways and protein molecules were proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurmio, Mirja, E-mail: Mirja.Nurmio@utu.fi; Department of Pediatrics, University of Turku; Joki, Henna, E-mail: Henna.Joki@utu.fi
During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered)) . Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bonemore » physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research Highlights: > 3-Day imatinib treatment. > Causes growth plate anomalies in young rats. > Causes biomechanical changes and significant bone loss at distal trabecular bone. > Results in loss of osteoclasts at osteochondral junction.« less
Loss of trabeculae by mechano-biological means may explain rapid bone loss in osteoporosis.
Mulvihill, Brianne M; McNamara, Laoise M; Prendergast, Patrick J
2008-10-06
Osteoporosis is characterized by rapid and irreversible loss of trabecular bone tissue leading to increased bone fragility. In this study, we hypothesize two causes for rapid loss of bone trabeculae; firstly, the perforation of trabeculae is caused by osteoclasts resorbing a cavity so deep that it cannot be refilled and, secondly, the increases in bone tissue elastic modulus lead to increased propensity for trabecular perforation. These hypotheses were tested using an algorithm that was based on two premises: (i) bone remodelling is a turnover process that repairs damaged bone tissue by resorbing and returning it to a homeostatic strain level and (ii) osteoblast attachment is under biochemical control. It was found that a mechano-biological algorithm based on these premises can simulate the remodelling cycle in a trabecular strut where damaged bone is resorbed to form a pit that is subsequently refilled with new bone. Furthermore, the simulation predicts that there is a depth of resorption cavity deeper than which refilling of the resorption pits is impossible and perforation inevitably occurs. However, perforation does not occur by a single fracture event but by continual removal of microdamage after it forms beneath the resorption pit. The simulation also predicts that perforations would occur more easily in trabeculae that are more highly mineralized (stiffer). Since both increased osteoclast activation rates and increased mineralization have been measured in osteoporotic bone, either or both may contribute to the rapid loss of trabecular bone mass observed in osteoporotic patients.
Doherty, Alison H; Roteliuk, Danielle M; Gookin, Sara E; McGrew, Ashley K; Broccardo, Carolyn J; Condon, Keith W; Prenni, Jessica E; Wojda, Samantha J; Florant, Gregory L; Donahue, Seth W
2016-01-01
Periods of physical inactivity increase bone resorption and cause bone loss and increased fracture risk. However, hibernating bears, marmots, and woodchucks maintain bone structure and strength, despite being physically inactive for prolonged periods annually. We tested the hypothesis that bone turnover rates would decrease and bone structural and mechanical properties would be preserved in hibernating marmots (Marmota flaviventris). Femurs and tibias were collected from marmots during hibernation and in the summer following hibernation. Bone remodeling was significantly altered in cortical and trabecular bone during hibernation with suppressed formation and no change in resorption, unlike the increased bone resorption that occurs during disuse in humans and other animals. Trabecular bone architecture and cortical bone geometrical and mechanical properties were not different between hibernating and active marmots, but bone marrow adiposity was significantly greater in hibernators. Of the 506 proteins identified in marmot bone, 40 were significantly different in abundance between active and hibernating marmots. Monoaglycerol lipase, which plays an important role in fatty acid metabolism and the endocannabinoid system, was 98-fold higher in hibernating marmots compared with summer marmots and may play a role in regulating the changes in bone and fat metabolism that occur during hibernation.
Evidence that Resorption of Bone by Rat Peritoneal Macrophages Occurs in an Acidic Environment
NASA Technical Reports Server (NTRS)
Blair, H. C.
1985-01-01
Skeletal loss in space, like any form of osteoporosis, reflects a relative imbalance of the activities of cells resorbing (degrading) or forming bone. Consequently, prevention of weightlessness induced bone loss may theoretically be accomplished by (1) stimulating bone formation or (2) inhibiting bone resorption. This approach, however, requires fundamental understanding of the mechanisms by which cells form or degrade bone, information not yet at hand. An issue central to bone resorption is the pH at which resorption takes place. The pH dependent spectral shift of a fluorescent dye (fluorescein isothiocyanate) conjugated to bone matrix was used to determine the pH at the resorptive cell bone matrix interface. Devitalized rat bone was used as the substrate, and rat peritoneal macrophages were used as the bone resorbing cells. The results suggest that bone resorption is the result of generation of an acidic microenvironment at the cell matrix junction.
Gennari, C; Martini, G; Nuti, R
1998-06-01
Generalized osteoporosis currently represents a heterogeneous group of conditions with many different causes and pathogenetic mechanisms, that often are variably associated. The term "secondary" is applied to all patients with osteoporosis in whom the identifiable causal factors are other than menopause and aging. In this heterogeneous group of conditions, produced by many different pathogenetic mechanisms, a negative bone balance may be variably associated with low, normal or increased bone remodeling states. A consistent group of secondary osteoporosis is related to endocrinological or iatrogenic causes. Exogenous hypercortisolism may be considered an important risk factor for secondary osteoporosis in the community, and probably glucocorticoid-induced osteoporosis is the most common type of secondary osteoporosis. Supraphysiological doses of corticosteroids cause two abnormalities in bone metabolism: a relative increase in bone resorption, and a relative reduction in bone formation. Bone loss, mostly of trabecular bone, with its resultant fractures is the most incapacitating consequence of osteoporosis. The estimated incidence of fractures in patients prescribed corticosteroid is 30% to 50%. Osteoporosis is considered one of the potentially serious side effects of heparin therapy. The occurrence of heparin-induced osteoporosis appeared to be strictly related to the length of treatment (over 4-5 months), and the dosage (15,000 U or more daily), but the pathogenesis is poorly understood. It has been suggested that heparin could cause an increase in bone resorption by increasing the number of differentiated osteoclasts, and by enhancing the activity of individual osteoclasts. Hyperthyroidism is frequently associated with loss of trabecular and cortical bone; the enhanced bone turnover that develops in thyrotoxicosis is characterized by an increase in the number of osteoclasts and resorption sites, and an increase in the ratio of resorptive to formative bone surfaces, with the net result of bone loss. Despite these findings, the occurrence of pathological fractures in patients with hyperthyroidism is relatively low, and probably due to the fact that deficiencies in bone mass may be reversed by treatment of the thyroid disease. Most, but not all, studies on insulin-dependent diabetes mellitus (IDDM) report an association with osteopenia. In IDDM, the extent of bone loss is usually slight, which helps explain the discrepancy between the frequency of decreased bone mineral density, and the frequency of osteoporotic fractures in long-standing diabetes. Contradictory results have been obtained in non-insulin-dependent diabetes mellitus (NIDDM) patients. Increased rates of bone loss at the radius and lumbar spine were demonstrated either in patients with two-thirds gastric resection and Billroth II reconstruction, or in those with one-third resection and Billroth I anastomosis, and the metabolic bone disease following gastrectomy may consist also of osteomalacia or mixed pattern of osteoporosis-osteomalacia, with secondary hyperparathyroidism. Miscellaneous causes of secondary osteoporosis are also immobilization, pregnancy and lactation, and alcohol abuse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolstykh, E I; Shagina, N B; Degteva, M O
2011-08-01
The Mayak Production Association released large amounts of 90Sr into the Techa River (Southern Urals, Russia) with peak amounts in 1950-1951. Techa Riverside residents ingested an average of about 3,000 kBq of 90Sr. The 90Sr-body burden of approximately 15,000 individuals has been measured in the Urals Research Center for Radiation Medicine in 1974-1997 with use of a special whole-body counter (WBC). Strontium-90 had mainly deposited in the cortical part of the skeleton by 25 years following intake, and 90Sr elimination occurs as a result of cortical bone resorption. The effect of 90Sr-radiation exposure on the rate of cortical bone resorptionmore » was studied. Data on 2,022 WBC measurements were selected for 207 adult persons, who were measured three or more times before they were 50-55 years old. The individual-resorption rates were calculated with the rate of strontium recirculation evaluated as 0.0018 year -1. Individual absorbed doses in red bone marrow (RBM) and bone surface (BS) were also calculated. Statistically significant negative relationships of cortical bone resorption rate were discovered related to 90Sr-body burden and dose absorbed in the RBM or the BS. The response appears to have a threshold of about 1.5-Gy RBM dose. The radiation induced decrease in bone resorption rate may not be significant in terms of health. However, a decrease in bone remodeling rate can be among several causes of an increased level of degenerative dystrophic bone pathology in exposed persons.« less
Liu, X. Sherry; Huang, Angela H.; Zhang, X. Henry; Sajda, Paul; Ji, Baohua; Guo, X. Edward
2008-01-01
A three dimensional (3D) computational simulation of dynamic process of trabecular bone remodeling was developed with all the parameters derived from physiological and clinical data. Contributions of the microstructural bone formation deficits: trabecular plate perforations, trabecular rod breakages, and isolated bone fragments, to the rapid bone loss and disruption of trabecular microarchitecture during menopause were studied. Eighteen human trabecular bone samples from femoral neck (FN) and spine were scanned using a micro computed tomography (μCT) system. Bone resorption and formation were simulated as a computational cycle corresponding to 40-day resorption/160-day formation. Resorption cavities were randomly created over the bone surface according to the activation frequency, which was strictly based on clinical data. Every resorption cavity was refilled during formation unless it caused trabecular plate perforation, trabecular rod breakage or isolated fragments. A 20-year-period starting 5 years before and ending 15 years after menopause was simulated for each specimen. Elastic moduli, standard and individual trabeculae segmentation (ITS)-based morphological parameters were evaluated for each simulated 3D image. For both spine and FN groups, the time courses of predicted bone loss pattern by microstructural bone formation deficits were fairly consistent with the clinical measurements. The percentage of bone loss due to trabecular plate perforation, trabecular rod breakage, and isolated bone fragments were 73.2%, 18.9% and 7.9% at the simulated 15 years after menopause. The ITS-based plate fraction (pBV/BV), mean plate surface area (pTb.S), plate number density (pTb.N), and mean rod thickness (rTb.Th) decreased while rod fraction (rBV/BV) and rod number density (rTb.N) increased after the simulated menopause. The dynamic bone remodeling simulation based on microstructural bone formation deficits predicted the time course of menopausal bone loss pattern of spine and FN. Microstructural plate perforation could be the primary cause of menopausal trabecular bone loss. The combined effect of trabeculae perforation, breakage, and isolated fragments resulted in fewer and smaller trabecular plates and more but thinner trabecular rods. PMID:18550463
Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu
2015-12-01
Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.
PLEKHM1/DEF8/RAB7 complex regulates lysosome positioning and bone homeostasis
Fujiwara, Toshifumi; Ye, Shiqiao; Winchell, Caylin G.; Andrews, Norma W.; Voth, Daniel E.; Varughese, Kottayil I.; Mackintosh, Samuel G.; Feng, Yunfeng; Nakamura, Takashi; Manolagas, Stavros C.
2016-01-01
Mutations of the Plekhm1 gene in humans and rats cause osteopetrosis, an inherited bone disease characterized by diminished bone resorption by osteoclasts. PLEKHM1 binds to RAB7 and is critical for lysosome trafficking. However, the molecular mechanisms by which PLEKHM1 regulates lysosomal pathways remain unknown. Here, we generated germline and conditional Plekhm1-deficient mice. These mice displayed no overt abnormalities in major organs, except for an increase in trabecular bone mass. Furthermore, loss of PLEKHM1 abrogated the peripheral distribution of lysosomes and bone resorption in osteoclasts. Mechanistically, we indicated that DEF8 interacts with PLEKHM1 and promotes its binding to RAB7, whereas the binding of FAM98A and NDEL1 with PLEKHM1 connects lysosomes to microtubules. Importantly, suppression of these proteins results in lysosome positioning and bone resorption defects similar to those of Plekhm1-null osteoclasts. Thus, PLHKEM1, DEF8, FAM98A, and NDEL1 constitute a molecular complex that regulates lysosome positioning and secretion through RAB7. PMID:27777970
[Mechanism of "crescent sign" formation in avascular necrosis of femoral head].
Zhang, Nianfei; Qi, Shengwen; Chai, Jianfeng
2008-03-01
To investigate corresponding relation between structure change of the femoral head with "crescent sign" and stress exerted on the avascular necrosis of femoral head, to explore the mechanism of the "crescent sign" formation. From March 1998 to April 2003, the femoral heads of 18 hips in 16 cases having osteonecrosis and "crescent sign" in X-ray film before total hip arthroplasty, were collected. General and coronal section plane morphology of the femoral heads were observed. The principle of effective stress and stress concentration theory were used to explain the phenomena and structure changes in osteonecrosis of the femoral head. Cancellous bone existed as a three-dimensional, interconnected network of trabeculae rods and plates, with 50%-90% of porosity and 20-30 mmHg bone marrow pressure. According to the definition of porous media, bones especially cancellous bone was a kind of solid and liquid two phases porous media. Cross-sectional structure changes in the junction between subchondral plate and cancellous were the place where stress concentrated. The principle of effective stress and stress concentration theory could explain the phenomena and their relationship that occurred in avascular necrosis of the femoral head. The "crescent sign" starts in an area of very focal resorption in the subchondral plate laterally and peripherally. The focal resorption in the subchondral plate breaks the continuity of subchondral plate and causes stress concentration in the resorption region. The concentrated stress accumulates in the junction between subchondral plate and unrepaired necrotic cancellous bone brings on the fracture right below the subchondral plate. The focal resorption of the subchondral plate also provides a pathway for the pore water in the unrepaired necrotic bone skeleton to outflow, therefore cause effective stress increase and unrepaired necrotic bone skeleton be compacted by increased effective stress applied on unrepaired necrotic cancellous bone skeleton, and results in the volume decrease of unrepaired necrotic cancellous bone and the formation of cavum below the subchondral plate. The cavum shows "crescent sign" in the X-ray film.
Simulation of bone resorption-repair coupling in vitro.
Jones, S J; Gray, C; Boyde, A
1994-10-01
In the normal adult human skeleton, new bone formation by osteoblasts restores the contours of bone surfaces following osteoclastic bone resorption, but the evidence for resorption-repair coupling remains circumstantial. To investigate whether sites of prior resorption, more than the surrounding unresorbed surface, attract osteoblasts or stimulate them to proliferate or make new matrix, we developed a simple in vitro system in which resorption-repair coupling occurs. Resorption pits were produced in mammalian dentine or bone slabs by culturing chick bone-derived cells on them for 2-3 days. The chick cells were swept off and the substrata reseeded with rat calvarial osteoblastic cells, which make bone nodules in vitro, for periods of up to 8 weeks. Cell positions and new bone formation were investigated by ordinary light microscopy, fluorescence and reflection confocal laser microscopy, and SEM, in stained and unstained samples. There was no evidence that the osteoblasts were especially attracted to, or influenced by, the sites of resorption in dentine or bone before cell confluence was reached. Bone formation was identified by light microscopy by the accumulation of matrix, staining with alizarin and calcein and by von Kossa's method, and confirmed by scanning electron microscopy (SEM) by using backscattered electron (BSE) and transmitted electron imaging of unembedded samples and BSE imaging of micro-milled embedded material. These new bone patches were located initially in the resorption pits. The model in vitro system may throw new light on the factors that control resorption-repair coupling in the mineralised tissues in vivo.
Ren, Zhaozhou; Yang, Liqing; Xue, Feng; Meng, Qingjie; Wang, Kejia; Wu, Xian; Ji, Chao; Jiang, Teng; Liu, Da; Zhou, Long; Zhang, Jing; Fu, Qin
2013-06-01
Glucocorticoids (GC) are potent anti-inflammatory agents and widely used for the treatment of many immune-mediated and inflammatory diseases, whereas GC-induced osteoporosis (GIOP) is the most common cause of secondary osteoporosis and significantly increases the patients' morbidity and mortality. GIOP is characterized as diminished osteogenesis and accelerated bone resorption. Yeast-incorporated gallium (YG) as an organic compound not only reduces elements-associated toxicity, but also maintains its therapeutic effect on improving bone loss or promoting fracture healing in ovariectomized female rats. The aim of this study was to examine whether YG could prevent GC-induced bone loss. Five-month-old male Sprague-Dawley rats were randomly divided into three groups (n = 6): two groups were administered dexamethasone (0.1 mg/kg/day) or vehicle (PBS) subcutaneously for 5 weeks; one other group was received dexamethasone subcutaneously and YG (120 μg/kg/day) orally. Trabecular bone microarchitectural parameters, bone mineral density (BMD), bone strength, body weight, and serum biochemical markers of bone resorption and formation were examined. Compared to the GC alone group, treatment with YG not only prevented microarchitectural deterioration of trabecular bone volume relative to tissue volume, trabecular number, and trabecular separation, but also significantly improved BMD, mechanical strength, and body weight in GC-treated rats. Moreover, YG decreased tartrate-resistant acid phosphatase 5b level but failed to change alkaline phosphatase level in GC-treated rats. This is the first study to show that YG prominently attenuates bone loss and microarchitectural deterioration and inhibits the increased bone resorption in GIOP. It implies that YG might be an alternative therapy for prevention of GC-induced bone loss in humans.
Strontium ranelate: a novel mode of action leading to renewed bone quality.
Ammann, Patrick
2005-01-01
Various bone resorption inhibitors and bone stimulators have been shown to decrease the risk of osteoporotic fractures. However, there is still a need for agents promoting bone formation by inducing positive uncoupling between bone formation and bone resorption. In vitro studies have suggested that strontium ranelate enhances osteoblast cell replication and activity. Simultaneously, strontium ranelate dose-dependently inhibits osteoclast activity. In vivo studies indicate that strontium ranelate stimulates bone formation and inhibits bone resorption and prevents bone loss and/or promotes bone gain. This positive uncoupling between bone formation and bone resorption results in bone gain and improvement in bone geometry and microarchitecture, without affecting the intrinsic bone tissue quality. Thus, all the determinants of bone strength are positively influenced. In conclusion, strontium ranelate, a new treatment of postmenopausal osteoporosis, acts through an innovative mode of action, both stimulating bone formation and inhibiting bone resorption, resulting in the rebalancing of bone turnover in favor of bone formation. Strontium ranelate increases bone mass while preserving the bone mineralization process, resulting in improvement in bone strength and bone quality.
NASA Astrophysics Data System (ADS)
Jung, Duk-Young; Kang, Yu-Bong; Tsutsumi, Sadami; Nakai, Ryusuke; Ikeuchi, Ken; Sekel, Ron
In this study, we simulated a wide cortex separation from a cementless hip prosthesis using the bone resorption remodeling method that is based on the generation of high compressive stress around the distal cortical bone. Thereafter, we estimated the effect on late migration quantities of the hip prosthesis produced by the interface state arising from bone ingrowth. This was accomplished using cortical bone remodeling over a long period of time. Two-dimensional natural hip and implanted hip FEM models were constructed with each of the following interface statements between the bone and prosthesis: (1) non-fixation, (2) proximal 1/3, (3) proximal 2/3 and (4) full-fixation. The fixation interfaces in the fully and partially porous coated regions were rigidly fixed by bony ingrowth. The non-fixation model was constructed as a critical situation, with the fibrous or bony tissue not integrated at all into the implant surface. The daily load history was generated using the three loading cases of a one-legged stance as well as abduction and adduction motions. With the natural hip and one-legged stance, the peak compressive principal stresses were found to be under the criteria value for causing bone resorption, while no implant movement occurred. The migration magnitude of the stem of the proximal 1/3 fixation model with adduction motion was much higher, reaching 6%, 11%and 21%greater than those of the non-fixation, proximal 2/3 fixation and all-fixation models, respectively. The full-fixation model showed the lowest compressive principal stress and implant movement. Thus, we concluded that the late loosening and subsequent movement of the stem in the long term could be estimated with the cortical bone remodeling method based on a high compressive stress at the bone-implant interface. The change caused at the bone-prosthesis interface by bony or fibrous tissue ingrowth constituted the major factor in determining the extent of cortical bone resorption occurring with clinical loosening and subsequent implant movement.
de Bakker, Chantal M J; Altman, Allison R; Tseng, Wei-Ju; Tribble, Mary Beth; Li, Connie; Chandra, Abhishek; Qin, Ling; Liu, X Sherry
2015-04-01
Current osteoporosis treatments improve bone mass by increasing net bone formation: anti-resorptive drugs such as bisphosphonates block osteoclast activity, while anabolic agents such as parathyroid hormone (PTH) increase bone remodeling, with a greater effect on formation. Although these drugs are widely used, their role in modulating formation and resorption is not fully understood, due in part to technical limitations in the ability to longitudinally assess bone remodeling. Importantly, it is not known whether or not PTH-induced bone formation is independent of resorption, resulting in controversy over the effectiveness of combination therapies that use both PTH and an anti-resorptive. In this study, we developed a μCT-based, in vivo dynamic bone histomorphometry technique for rat tibiae, and applied this method to longitudinally track changes in bone resorption and formation as a result of treatment with alendronate (ALN), PTH, or combination therapy of both PTH and ALN (PTH+ALN). Correlations between our μCT-based measures of bone formation and measures of bone formation based on calcein-labeled histology (r=0.72-0.83) confirm the accuracy of this method. Bone remodeling parameters measured through μCT-based in vivo dynamic bone histomorphometry indicate an increased rate of bone formation in rats treated with PTH and PTH+ALN, together with a decrease in bone resorption measures in rats treated with ALN and PTH+ALN. These results were further supported by traditional histology-based measurements, suggesting that PTH was able to induce bone formation while bone resorption was suppressed. Copyright © 2014 Elsevier Inc. All rights reserved.
Song, Dezhi; Cao, Zhen; Tickner, Jennifer; Qiu, Heng; Wang, Chao; Chen, Kai; Wang, Ziyi; Guo, Chunyu; Dong, Shiwu; Xu, Jiake
2018-06-01
Pathological fractures caused by osteolytic lesions seriously threaten the health of patients. Osteoclasts play important roles in bone resorption whose hyperfunction are closely related to osteolytic lesions. Studies on osteoclast differentiation and function assist in the prevention of excessive bone loss associated diseases. We screened a variety of natural compounds with anti-inflammatory effect and found that poria cocos polysaccharide (PCP) inhibited RANKL-induced osteoclast formation and bone resorption via TRAcP staining, immunofluorescence, RT-PCR and western blot. PCP down-regulated phosphorylation of STAT3, P38, ERK and JNK, and thus repressed the expression of NFAcT1 and c-Fos during RANKL-induced osteoclastogenesis. Besides, the expression of bone resorption related genes such as TRAcP and CTSK was suppressed by PCP. The results suggest that PCP can be invoked as a candidate for the treatment of osteolytic diseases by inhibiting osteoclastogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.
Adenosine A2A Receptor Activation Prevents Wear Particle-Induced Osteolysis
Mediero, Aránzazu; Frenkel, Sally R.; Wilder, Tuere; He, Wenjie; Mazumder, Amitabha; Cronstein, Bruce N.
2012-01-01
Prosthesis loosening, associated with wear-particle–induced inflammation and osteoclast-mediated bone destruction, is a common cause for joint implant failure, leading to revision surgery. Adenosine A2A receptors (A2AR) mediate potent anti-inflammatory effects in many tissues and prevent osteoclast differentiation. We tested the hypothesis that an A2AR agonist could reduce osteoclast-mediated bone resorption in a murine calvaria model of wear-particle–induced bone resorption. C57Bl/6 and A2A knockout (A2ARKO) mice received ultrahigh-molecular weight polyethylene particles (UHMWPE) and were treated daily with either saline or the A2AR agonist CGS21680. After 2 weeks, micro-computed tomography of calvaria demonstrated that CGS21680 reduced particle-induced bone pitting and porosity in a dose-dependent manner, increasing cortical bone and bone volume compared to control mice. Histological examination demonstrated diminished inflammation after treatment with CGS21680. In A2AKO mice, CGS21680 did not affect osteoclast-mediated bone resorption or inflammation. Levels of bone-resorption markers receptor activator of nuclear factor-kB (RANK), RANK ligand (RANKL), cathepsin K, CD163, and osteopontin were reduced following CGS21680 treatment, together with a reduction in osteoclasts. Secretion of interleukin 1β (IL-1β) and TNFα was significantly decreased, whereas IL-10 was markedly increased in bone by CGS21680. These results in mice suggest that site-specific delivery of an adenosine A2AR agonist could enhance implant survival, delaying or eliminating the need for revision arthroplastic surgery. PMID:22623741
IFN-γ stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation
Gao, Yuhao; Grassi, Francesco; Ryan, Michaela Robbie; Terauchi, Masakazu; Page, Karen; Yang, Xiaoying; Weitzmann, M. Neale; Pacifici, Roberto
2006-01-01
T cell–produced cytokines play a pivotal role in the bone loss caused by inflammation, infection, and estrogen deficiency. IFN-γ is a major product of activated T helper cells that can function as a pro- or antiresorptive cytokine, but the reason why IFN-γ has variable effects in bone is unknown. Here we show that IFN-γ blunts osteoclast formation through direct targeting of osteoclast precursors but indirectly stimulates osteoclast formation and promotes bone resorption by stimulating antigen-dependent T cell activation and T cell secretion of the osteoclastogenic factors RANKL and TNF-α. Analysis of the in vivo effects of IFN-γ in 3 mouse models of bone loss — ovariectomy, LPS injection, and inflammation via silencing of TGF-β signaling in T cells — reveals that the net effect of IFN-γ in these conditions is that of stimulating bone resorption and bone loss. In summary, IFN-γ has both direct anti-osteoclastogenic and indirect pro-osteoclastogenic properties in vivo. Under conditions of estrogen deficiency, infection, and inflammation, the net balance of these 2 opposing forces is biased toward bone resorption. Inhibition of IFN-γ signaling may thus represent a novel strategy to simultaneously reduce inflammation and bone loss in common forms of osteoporosis. PMID:17173138
FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation
Bartell, Shoshana M.; Kim, Ha-Neui; Ambrogini, Elena; Han, Li; Iyer, Srividhya; Serra Ucer, S.; Rabinovitch, Peter; Jilka, Robert L.; Weinstein, Robert S.; Zhao, Haibo; O’Brien, Charles A.; Manolagas, Stavros C.; Almeida, Maria
2014-01-01
Besides their cell-damaging effects in the setting of oxidative stress, reactive oxygen species (ROS) play an important role in physiological intracellular signalling by triggering proliferation and survival. FoxO transcription factors counteract ROS generation by upregulating antioxidant enzymes. Here we show that intracellular H2O2 accumulation is a critical and purposeful adaptation for the differentiation and survival of osteoclasts, the bone cells responsible for the resorption of mineralized bone matrix. Using mice with conditional loss or gain of FoxO transcription factor function, or mitochondria-targeted catalase in osteoclasts, we demonstrate this is achieved, at least in part, by downregulating the H2O2-inactivating enzyme catalase. Catalase downregulation results from the repression of the transcriptional activity of FoxO1, 3 and 4 by RANKL, the indispensable signal for the generation of osteoclasts, via an Akt-mediated mechanism. Notably, mitochondria-targeted catalase prevented the loss of bone caused by loss of oestrogens, suggesting that decreasing H2O2 production in mitochondria may represent a rational pharmacotherapeutic approach to diseases with increased bone resorption. PMID:24781012
Tominari, Tsukasa; Hirata, Michiko; Matsumoto, Chiho; Inada, Masaki; Miyaura, Chisato
2012-01-01
Nobiletin, a polymethoxy flavonoid (PMF), inhibits systemic bone resorption and maintains bone mass in estrogen-deficient ovariectomized mice. This study examined the anti-inflammatory effects of PMFs, nobiletin, and tangeretin on lipopolysaccharide (LPS)-induced bone resorption. Nobiletin and tangeretin suppressed LPS-induced osteoclast formation and bone resorption and suppressed the receptor activator of NFκB ligand-induced osteoclastogenesis in RAW264.7 macrophages. Nobiletin clearly restored the alveolar bone mass in a mouse experimental model for periodontitis by inhibiting LPS-induced bone resorption. PMFs may therefore provide a new therapeutic approach for periodontal bone loss.
Klijn, R J; van den Beucken, J J J P; Bronkhorst, E M; Berge, S J; Meijer, G J; Jansen, J A
2012-04-01
No studies are available that provide predictive parameters regarding the expected amount of resorption after maxillary sinus augmentation surgery using autologous bone grafts. Therefore, the aim of this study was to determine parameters influencing the outcome of the bone graft resorption process. In 20 patients, three-dimensional analysis of alveolar ridge dimensions and bone graft volume change in the atrophic posterior maxilla was performed by Cone-Beam Computerized Tomography imaging. Ridge dimensions were assessed before maxillary sinus augmentation surgery. Bone graft volumes were compared after maxillary sinus floor augmentation surgery and a graft healing interval of several months. To analyze the relation between bone volume changes with the independent variables, patients' gender, age, alveolar crest height and width, and graft healing time interval, a multi-level extension of linear regression was applied. A residual bone height of 6.0 mm (SD = 3.6 mm) and 6.2 mm (SD = 3.6 mm) was found at the left and right sides, respectively. Moreover, alveolar bone widths of 6.5 mm (SD = 2.2 mm) and 7.0 mm (SD = 2.3 mm) at the premolars, and 8.8 mm (SD = 2.2 mm) and 8.9 mm (SD = 2.5 mm) at the molars regions were found at the left and right site, respectively. Bone graft volume decreased by 25.0% (SD = 21.0%) after 4.7 months (SD = 2.7, median = 4.0 months) of healing time. The variables "age" (P = 0.009) and mean alveolar crest "bone height" (P = 0.043), showed a significant influence on bone graft resorption. A decrease of 1.0% (SE = 0.3%) of bone graft resorption was found for each year the patient grew older, and an increase in bone graft resorption of 1.8% (SE = 0.8%) was found for each mm of original bone height before sinus floor augmentation. Graft resorption occurs when using autologous bone grafts for maxillary sinus augmentation. Alveolar crest bone height and patient age have a significant effect on graft resorption, with increased resorption for higher alveolar crest bone height and decreased resorption for older patients. Consequently, patient characteristics that affect the process of bone graft resorption should be given full consideration, when performing sinus augmentation surgery. © 2011 John Wiley & Sons A/S.
Modulation of bone resorption by phosphorylation state of bone sialoprotein.
Curtin, Paul; McHugh, Kevin P; Zhou, Hai-Yan; Flückiger, Rudolf; Goldhaber, Paul; Oppenheim, Frank G; Salih, Erdjan
2009-07-28
We have determined transmembrane protein tyrosine phosphorylation (outside-in signaling) in cultured osteoclasts and macrophages in response to added native purified bone sialoprotein (nBSP) and its dephosphorylated form (dBSP). There were selective/differential and potent inhibitory effects by dBSP and minimal effect by nBSP on intracellular tyrosine phosphorylation in macrophages and osteoclasts. Further studies on the downstream gene expression effects led to identification of a large number of differentially expressed genes in response to nBSP relative to dBSP in both macrophages and osteoclasts. These studies were extended to a bone resorption model using live mouse neonatal calvarial bone organ cultures stimulated by parathyroid hormone (PTH) to undergo bone resorption. Inclusion of nBSP in such cultures showed no effect on type I collagen telopeptide fragment release, hence overall bone resorption, whereas addition of dBSP abolished the PTH-induced bone resorption. The inhibition of bone resorption by dBSP was shown to be unique since in complementary experiments use of integrin receptor binding ligand, GRGDS peptide, offered only partial reduction on overall bone resorption. Quantitative RANKL analysis indicated that mechanistically the PTH-induced bone resorption was inhibited by dBSP via down-regulation of the osteoblastic RANKL production. This conclusion was supported by the RANKL analysis in cultured MC3T3-E1 osteoblast cells. Overall, these studies provided direct evidence for the involvement of covalently bound phosphates on BSP in receptor mediated "outside-in" signaling via transmembrane tyrosine phosphorylation with concurrent effects on downstream gene expressions. The use of a live bone organ culture system augmented these results with further evidence that links the observed in vivo variable state of phosphorylation with bone remodeling.
Duan, Xiaohong; Liu, Jin; Zheng, Xueni; Wang, Zhe; Zhang, Yanli; Hao, Ying; Yang, Tielin; Deng, Hongwen
2016-01-01
Vacuolar-type H +-ATPase (V-ATPase) is a highly conserved, ancient enzyme that couples the energy of ATP hydrolysis to proton transport across vesicular and plasma membranes of eukaryotic cells. Previously reported mutations of various V-ATPase subunits are associated with increased bone density. We now show that haploinsufficiency for the H subunit of the V1 domain (ATP6V1H) is associated with osteoporosis in humans and mice. A genome-wide SNP array analysis of 1625 Han Chinese found that 4 of 15 tag SNPs (26.7%) within ATP6V1H were significantly associated with low spine bone mineral density. Atp6v1h+/- knockout mice generated by the CRISPR/Cas9 technique had decreased bone remodeling and a net bone matrix loss. Atp6v1h+/- osteoclasts showed impaired bone formation and increased bone resorption. The increased intracellular pH of Atp6v1h+/- osteoclasts downregulated TGF-β1 activation, thereby reducing induction of osteoblast formation but the bone mineralization was not altered. However, bone formation was reduced more than bone resorption. Our data provide evidence that partial loss of ATP6V1H function results in osteoporosis/osteopenia. We propose that defective osteoclast formation triggers impaired bone formation by altering bone remodeling. In the future, ATP6V1H might, therefore, serve as a target for the therapy of osteoporosis. PMID:27924156
Resorption of Autogenous Bone Graft in Cranioplasty: Resorption and Reintegration Failure
Lee, Si Hoon; Lee, Uhn; Park, Cheol Wan; Lee, Sang Gu; Kim, Woo Kyung
2014-01-01
Objective Re-implantation of autologous skull bone has been known to be difficult because of its propensity for resorption. Moreover, the structural characteristics of the area of the defect cannot tolerate physiologic loading, which is an important factor for graft healing. This paper describes our experiences and results with cranioplasty following decompressive craniectomy using autologous bone flaps. Methods In an institutional review, the authors identified 18 patients (11 male and 7 female) in whom autologous cranioplasty was performed after decompressive craniectomy from January 2008 to December 2011. We examined the age, reasons for craniectomy, size of the skull defect, presence of bony resorption, and postoperative complications. Results Postoperative bone resorption occurred in eight cases (44.4%). Among them, two experienced symptomatic breakdown of the autologous bone graft that required a second operation to reconstruct the skull contour using porous polyethylene implant (Medpor®). The incidence of bone resorption was more common in the pediatric group and in those with large cranial defects (>120 cm2). No significant correlation was found with sex, reasons for craniectomy, and cryopreservation period. Conclusion The use of autologous bone flap for reconstruction of a skull defect after decompressive craniectomy is a quick and cost-effective method. But, the resorption rate was greater in children and in patients with large skull defects. As a result, we suggest compressive force of the tightened scalp, young age, large skull defect, the gap between bone flap and bone edge and heat sterilization of autologous bone as risk factors for bone resorption. PMID:27169026
[Clinical usefulness of bone turnover markers in the management of osteoporosis].
Yano, Shozo
2013-09-01
Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future.
Busse, Björn; Schilling, Arndt F.; Schinke, Thorsten; Amling, Michael; Lange, Tobias
2012-01-01
Bioactive bone substitute materials are a valuable alternative to autologous bone transplantations in the repair of skeletal defects. However, clinical studies have reported varying success rates for many commonly used biomaterials. While osteoblasts have traditionally been regarded as key players mediating osseointegration, increasing evidence suggests that bone-resorbing osteoclasts are of crucial importance for the longevity of applied biomaterials. As no standardized data on the resorbability of biomaterials exists, we applied an in vitro-assay to compare ten commonly used bone substitutes. Human peripheral blood mononuclear cells (PBMCs) were differentiated into osteoclasts in the co-presence of dentin chips and biomaterials or dentin alone (control) for a period of 28 days. Osteoclast maturation was monitored on day 0 and 14 by light microscopy, and material-dependent changes in extracellular pH were assessed twice weekly. Mature osteoclasts were quantified using TRAP stainings on day 28 and their resorptive activity was determined on dentin (toluidin blue staining) and biomaterials (scanning electron microscopy, SEM). The analyzed biomaterials caused specific changes in the pH, which were correlated with osteoclast multinuclearity (r = 0.942; p = 0.034) and activity on biomaterials (r = 0.594; p = 0.041). Perossal led to a significant reduction of pH, nuclei per osteoclast and dentin resorption, whereas Tutogen bovine and Tutobone human strikingly increased all three parameters. Furthermore, natural biomaterials were resorbed more rapidly than synthetic biomaterials leading to differential relative resorption coefficients, which indicate whether bone substitutes lead to a balanced resorption or preferential resorption of either the biomaterial or the surrounding bone. Taken together, this study for the first time compares the effects of widely used biomaterials on osteoclast formation and resorbability in an unbiased approach that may now aid in improving the preclinical evaluation of bone substitute materials. PMID:23071629
Henriksen, K; Leeming, D J; Byrjalsen, I; Nielsen, R H; Sorensen, M G; Dziegiel, M H; Martin, T John; Christiansen, C; Qvist, P; Karsdal, M A
2007-06-01
We investigated whether the age of the bones endogenously exerts control over the bone resorption ability of the osteoclasts, and found that osteoclasts preferentially develop and resorb bone on aged bone. These findings indicate that the bone matrix itself plays a role in targeted remodeling of aged bones. Osteoclasts resorb aging bone in order to repair damage and maintain the quality of bone. The mechanism behind the targeting of aged bone for remodeling is not clear. We investigated whether bones endogenously possess the ability to control osteoclastic resorption. To biochemically distinguish aged and young bones; we measured the ratio between the age-isomerized betaCTX fragment and the non-isomerized alphaCTX fragment. By measurement of TRACP activity, CTX release, number of TRACP positive cells and pit area/pit number, we evaluated osteoclastogenesis as well as osteoclast resorption on aged and young bones. We found that the alphaCTX/betaCTX ratio is 3:1 in young compared to aged bones, and we found that both alpha and betaCTX are released by osteoclasts during resorption. Osteoclastogenesis was augmented on aged compared to young bones, and the difference was enhanced under low serum conditions. We found that mature osteoclasts resorb more on aged than on young bone, despite unchanged adhesion and morphology. These data indicate that the age of the bone plays an important role in controlling osteoclast-mediated resorption, with significantly higher levels of osteoclast differentiation and resorption on aged bones when compared to young bones.
Role of carbonic anhydrase in bone resorption induced by prostaglandin E2 in vitro
NASA Technical Reports Server (NTRS)
Hall, G. E.; Kenny, A. D.
1985-01-01
The possible role of carbonic anhydrase in bone resorption induced by prostaglandin E2 (PGE2) was studied using an in vitro neonatal mouse calvarial culture system. PGE2 (10 to the -6th M) was effective in stimulating resorption, as assessed by calcium release into culture media. This enhanced resorption was accompanied by significant increases in calvarial carbonic anhydrase activity over control values at 48 and 96 h. At 48 h, bones treated with PGE2 had 20 percent more carbonic anhydrase activity than controls. By 96 h, treated bones contained 79 percent more carbonic anhydrase activity than controls. PGE2-induced bone resorption was inhibited by the carbonic anhydrase inhibitor acetazolamide in a dose-dependent fashion from 10 to the -5th to 10 to the -4th M with 77 percent inhibition observed at 10 to the -4th M. The acetazolamide analogue CL 13,850 (N-t-butylacetazolamide), which does not inhibit carbonic anhydrase, failed to inhibit PGE2-induced resorption. These results are consistent with the hypothesis that carbonic anhydrase is a necessary component of the osteoclastic bone resorptive mechanism.
Buckling and bone modeling as factors in the development of idiopathic scoliosis.
Goto, Manabu; Kawakami, Noriaki; Azegami, Hideyuki; Matsuyama, Yukihiro; Takeuchi, Kenzen; Sasaoka, Ryu
2003-02-15
Computational analysis using the finite-element method was used to examine a possible etiology of idiopathic scoliosis. To compare changes in the coronal and the transverse planes of idiopathic thoracic scoliosis with changes produced in a finite-element buckling model, and to investigate the influence of bone modeling on the buckling spine. Although it is now widely accepted that growth is related strongly to the onset and progression of scoliosis, the pathomechanism or etiology of idiopathic scoliosis still is not clear. A previous study showed that a buckling phenomenon caused by anterior spinal overgrowth can produce scoliosis, and that the fourth buckling mode matched the clinical characteristics associated with the thoracic type of idiopathic scoliosis. The fourth buckling mode occurs when the first, second, and third buckling modes are prevented. The spinal finite-element model used in this study consisted of 68,582 elements and 84,603 nodes. The transverse changes seen in the computed tomography images of 41 patients with idiopathic thoracic scoliosis (apex, T8; average Cobb angle, 52.5 degrees) were compared with those produced in the fourth buckling mode. Bone modeling (bone formation and resorption) was simulated as heat deformation caused by changes in temperature. The bone formation and resorption were simulated, respectively, by positive and negative volume changes in proportion to the stress that occurred in the buckling spine. Computed tomography images of scoliosis show that as the scoliosis becomes more severe, the thoracic cage decreases on the convex side of the curve and increases on the concave side. The opposite thoracic cage deformation was obtained in the fourth buckling mode. In patients with scoliosis, the sternum essentially remains in its original position with respect to the vertebrae, but in the linear buckling model, it shifted in the direction of vertebral body rotation. In contrast to clinical data, the incremental deformation resulting from bone formation corrected the original curve, and the thoracic cage distorted. On the other hand, incremental deformation resulting from bone resorption worsened the original curve, and the thoracic cage distorted in a manner similar to that described by the clinical data. This computational investigation suggests that scoliotic changes in the spinal column triggered by the buckling phenomenon are counteracted by bone formation, but worsened by bone resorption. The authors hypothesized that scoliosis progressed with resorption of loaded bone. However, it is unclear whether this hypothesis applies to a living body in practice because of the effects from additional factors.
Long-term parenteral administration of 2-hydroxypropyl-β-cyclodextrin causes bone loss.
Kantner, Ingrid; Erben, Reinhold G
2012-07-01
Cyclodextrins are oligosaccharides which are used in the pharmaceutical industry and research as vehicles for application of apolar substances such as steroids. The aim of this study was to examine the long-term effects of parenteral administration of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) on bone. Sham-operated (SHAM) or ovariectomized (OVX) adult rats were subcutaneously injected with physiological saline, 50, or 200 mg/kg HP-β-CD daily. After 4 months, body weight in OVX rats and uterine weight in SHAM rats were significantly lower after administration of 200 mg/kg HP-β-CD, relative to vehicle controls. At 200 mg/kg, HP-β-CD was hepatotoxic as measured by increased serum transaminases, and reduced serum albumin. Moreover, 200 mg/kg HP-β-CD led to decreased vertebral and tibial bone mineral density (BMD), and to cortical thinning at the tibial shaft. Bone loss in HP-β-CD-treated rats was associated with increased bone resorption as measured by increased renal deoxypyridinoline excretion. Although 50 mg/kg HP-β-CD was devoid of overt signs of organ toxicity and did not impair BMD, bone resorption was already increased. In summary, subcutaneous long-term administration of HP-β-CD at a daily dose of 200 mg/kg led to increased bone resorption and subsequent bone loss. Minor alterations in bone metabolism were also seen at 50 mg/kg.
Tominari, Tsukasa; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki
2015-01-01
Epigallocatechin gallate (EGCG), a major polyphenol in green tea, possesses antioxidant properties and regulates various cell functions. Here, we examined the function of EGCG in inflammatory bone resorption. In calvarial organ cultures, lipopolysaccharide (LPS)-induced bone resorption was clearly suppressed by EGCG. In osteoblasts, EGCG suppressed the LPS-induced expression of COX-2 and mPGES-1 mRNAs, as well as prostaglandin E2 production, and also suppressed RANKL expression, which is essential for osteoclast differentiation. LPS-induced bone resorption of mandibular alveolar bones was attenuated by EGCG in vitro, and the loss of mouse alveolar bone mass was inhibited by the catechin in vivo.
NASA Astrophysics Data System (ADS)
Tang, Anming; Qian, Yu; Liu, Shuang; Wang, Weijuan; Xu, Bing; Qin, An; Liang, Gaolin
2016-05-01
Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators Pami-D and Alen-D which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both Pami-D and Alen-D have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs Pami-D and Alen-D could ``smartly'' self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently.Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators Pami-D and Alen-D which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both Pami-D and Alen-D have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs Pami-D and Alen-D could ``smartly'' self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently. Electronic supplementary information (ESI) available: Experiment methods and details; syntheses and characterization of Pami-D and Alen-D; HPLC conditions; Fig. S1-S15, Schemes S1 and S2, Tables S1 and S2. See DOI: 10.1039/c6nr00843g
Kurohama, Takeshi; Hotokezaka, Hitoshi; Hashimoto, Megumi; Tajima, Takako; Arita, Kotaro; Kondo, Takanobu; Ino, Airi; Yoshida, Noriaki
2017-06-01
The purpose of this study was to evaluate the relationships among the volume of bone cut during corticotomy, amount of tooth movement, volume of root resorption, and volume of the resultant alveolar bone resorption after tooth movement. Ten-week-old female Wistar rats were distributed into the corticotomy groups and a control group that underwent sham corticotomy. Two experiments employing two different orthodontic forces (10 or 25g) and experimental periods (14 or 21 days) were performed. The volumes of the bone cut by corticotomy were 0.1, 1.0, and 1.7mm3 in the 25g groups, and 1.0 and 1.7mm3 in the 10g groups. Nickel-titanium closed-coil springs were set on the maxillary left first molars to induce mesial movement. After orthodontic tooth movement, the amount of tooth movement, volume of root resorption, and volume of alveolar bone resorption were measured. Despite differences in the volume of bone cut among the different corticotomy groups, there were not significant differences in the amount of tooth movement and volume of root resorption between the control group and any of the corticotomy groups. However, higher volume of bone cut during corticotomy was significantly related to the decreased alveolar bone volume-in particular, to the reduced height of the alveolar bone crest after tooth movement. The volume of the alveolar bone cut during corticotomy does not affect tooth movement or root resorption in 10-week-old female Wistar rats; however, it may increase alveolar bone loss after tooth movement. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com
3H-tetracycline as a proxy for 41Ca for measuring dietary perturbations of bone resorption
NASA Astrophysics Data System (ADS)
Weaver, Connie; Cheong, Jennifer; Jackson, George; Elmore, David; McCabe, George; Martin, Berdine
2007-06-01
Our group is interested in evaluating early effects of dietary interventions on bone loss. Postmenopausal women lose bone following reduction in estrogen which leads to increased risk of fracture. Traditional means of monitoring bone loss and effectiveness of treatments include changes in bone density, which takes 6 months to years to observe effects, and changes in biochemical markers of bone turnover, which are highly variable and lack specificity. Prelabeling bone with 41Ca and measuring urinary 41Ca excretion with accelerator mass spectrometry provides a sensitive, specific, and rapid approach to evaluating effectiveness of treatment. To better understand 41Ca technology as a tool for measuring effective treatments on reducing bone resorption, we perturbed bone resorption by manipulating dietary calcium in rats. We used 3H-tetracycline (3H-TC) as a proxy for 41Ca and found that a single dose is feasible to study bone resorption. Suppression of bone resorption, as measured by urinary 3H-TC, by dietary calcium was observed in rats stabilized after ovariectomy, but not in recently ovariectomized rats.
Schmalzried, T P; Jasty, M; Harris, W H
1992-07-01
Thirty-four hips in which there had been prosthetic replacement were selected for study because of the presence of linear (diffuse) or lytic (localized) areas of periprosthetic bone loss. In all hips, there was careful documentation of the anatomical location of the material that had been obtained for histological analysis, and the specific purpose of the removal of the tissue was for examination to determine the cause of the resorption of bone. Specimens from twenty-three hips were retrieved during an operation and from eleven hips, at autopsy. The area of bone loss was linear only in sixteen hips, lytic only in thirteen, and both linear and lytic in five. In all thirty-four hips, intracellular particulate debris was found in the macrophages that were present in the area of bone resorption. All thirty-four had intracellular particles of polyethylene, many of which were less than one micrometer in size. Thirty-one hips had extracellular particles of polyethylene as well. Twenty-two of the thirty-four hips had intracellular metallic debris; in ten, metallic debris was found extracellularly as well. Ten of the sixteen cemented specimens had intracellular and extracellular polymethylmethacrylate debris. In the mechanically stable prostheses--cemented and uncemented--polyethylene wear debris was identified in areas of bone resorption far from the articular surfaces. The number of macrophages in a microscopic field was directly related to the amount of particulate polyethylene debris that was visible by light microscopy. Although the gross radiographic appearances of linear bone loss and lytic bone loss were different, the histological appearance of the regions in which there was active bone resorption was similar. Regardless of the radiographic appearance and anatomical origin of the specimen, bone resorption was found to occur in association with macrophages that were laden with polyethylene debris. In general, the number of macrophages present had a direct relationship to the degree of bone resorption that was seen. We believe that these findings indicate that joint fluid penetrates far more extensively than previously thought, even in a well fixed component, along the interface between the prosthesis and bone and in the periprosthetic tissues; it is often more extensive than is shown by arthrography. We therefore suggest the concept of the effective joint space to include all periprosthetic regions that are accessible to joint fluid and thus accessible to particulate debris.(ABSTRACT TRUNCATED AT 400 WORDS)
[Symptomatic hypocalcaemia on denosumab use].
Baptista Lopes, Vania; Robbrecht, Debbie; van Thiel, Sjoerd; van Guldener, Coen
2013-01-01
Bone resorption inhibitors such as denosumab may induce symptomatic hypocalcaemia if a vitamin D deficiency is present. Amongst other causes, this type of deficiency may arise following bariatric surgery. We describe a 51-year-old woman who, a few years after undergoing bariatric surgery, developed symptomatic hypocalcaemia after she started taking denosumab. An adequate calcium and vitamin D status is a general condition before prescribing medication to treat osteoporosis. Therefore we recommend that before starting treatment with a bone resorption inhibitor that not only the calcium but also the vitamin D status should be determined, and if necessary, optimised.
Mohanty, Sindhu T.; Seckinger, Anja; Terry, Rachael L.; Pettitt, Jessica A.; Simic, Marija K.; Le, Lawrence M. T.; Kramer, Ina; Falank, Carolyne; Fairfield, Heather; Ghobrial, Irene M.; Baldock, Paul A.; Little, David G.; Kneissel, Michaela; Vanderkerken, Karin; Bassett, J. H. Duncan; Williams, Graham R.; Oyajobi, Babatunde O.; Hose, Dirk
2017-01-01
Multiple myeloma (MM) is a plasma cell cancer that develops in the skeleton causing profound bone destruction and fractures. The bone disease is mediated by increased osteoclastic bone resorption and suppressed bone formation. Bisphosphonates used for treatment inhibit bone resorption and prevent bone loss but fail to influence bone formation and do not replace lost bone, so patients continue to fracture. Stimulating bone formation to increase bone mass and fracture resistance is a priority; however, targeting tumor-derived modulators of bone formation has had limited success. Sclerostin is an osteocyte-specific Wnt antagonist that inhibits bone formation. We hypothesized that inhibiting sclerostin would prevent development of bone disease and increase resistance to fracture in MM. Sclerostin was expressed in osteocytes from bones from naive and myeloma-bearing mice. In contrast, sclerostin was not expressed by plasma cells from 630 patients with myeloma or 54 myeloma cell lines. Mice injected with 5TGM1-eGFP, 5T2MM, or MM1.S myeloma cells demonstrated significant bone loss, which was associated with a decrease in fracture resistance in the vertebrae. Treatment with anti-sclerostin antibody increased osteoblast numbers and bone formation rate but did not inhibit bone resorption or reduce tumor burden. Treatment with anti-sclerostin antibody prevented myeloma-induced bone loss, reduced osteolytic bone lesions, and increased fracture resistance. Treatment with anti-sclerostin antibody and zoledronic acid combined increased bone mass and fracture resistance when compared with treatment with zoledronic acid alone. This study defines a therapeutic strategy superior to the current standard of care that will reduce fractures for patients with MM. PMID:28515094
Presentation and management of osteoporosis presenting in association with pregnancy or lactation.
Kovacs, C S; Ralston, S H
2015-09-01
In this review, we summarize our current understanding of the pathophysiology of fragility fractures that occur for the first time during pregnancy and lactation, and provide guidance on appropriate investigations and treatment strategies. Most affected women will have had no prior bone density reading, and so the extent of bone loss that may have occurred during pregnancy or lactation is uncertain. During pregnancy, intestinal calcium absorption doubles in order to meet the fetal demand for calcium, but if maternal intake of calcium is insufficient to meet the combined needs of the mother and baby, the maternal skeleton will undergo resorption during the third trimester. During lactation, several hormonal changes, independent of maternal calcium intake, program a 5-10 % loss of trabecular mineral content in order to provide calcium to milk. After weaning the baby, the maternal skeleton is normally restored to its prior mineral content and strength. This physiological bone resorption during reproduction does not normally cause fractures; instead, women who do fracture are more likely to have additional secondary causes of bone loss and fragility. Transient osteoporosis of the hip may affect one or both femoral heads during pregnancy but it involves localized edema and not skeletal resorption. Case reports have described the use of calcitonin, bisphosphonates, strontium ranelate, teriparatide, vertebroplasty, and kyphoplasty to treat post-partum vertebral fractures. However, the need for such treatments is uncertain given that a progressive increase in bone mass subsequently occurs in most women who present with a fracture during pregnancy or lactation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.
2012-06-01
The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based onmore » the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.« less
Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.
Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B
2015-04-01
Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.
Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu
2017-01-01
Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity. PMID:28098768
Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu
2017-01-13
Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats ( n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.
NASA Astrophysics Data System (ADS)
Zhang, Min; Katsumata, Akitoshi; Muramatsu, Chisako; Hara, Takeshi; Suzuki, Hiroki; Fujita, Hiroshi
2014-03-01
Periodontal disease is a kind of typical dental diseases, which affects many adults. The presence of alveolar bone resorption, which can be observed from dental panoramic radiographs, is one of the most important signs of the progression of periodontal disease. Automatically evaluating alveolar-bone resorption is of important clinic meaning in dental radiology. The purpose of this study was to propose a novel system for automated alveolar-bone-resorption evaluation from digital dental panoramic radiographs for the first time. The proposed system enables visualization and quantitative evaluation of alveolar bone resorption degree surrounding the teeth. It has the following procedures: (1) pre-processing for a test image; (2) detection of tooth root apices with Gabor filter and curve fitting for the root apex line; (3) detection of features related with alveolar bone by using image phase congruency map and template matching and curving fitting for the alveolar line; (4) detection of occlusion line with selected Gabor filter; (5) finally, evaluation of the quantitative alveolar-bone-resorption degree in the area surrounding teeth by simply computing the average ratio of the height of the alveolar bone and the height of the teeth. The proposed scheme was applied to 30 patient cases of digital panoramic radiographs, with alveolar bone resorption of different stages. Our initial trial on these test cases indicates that the quantitative evaluation results are correlated with the alveolar-boneresorption degree, although the performance still needs further improvement. Therefore it has potential clinical practicability.
Ru, Nan; Liu, Sean Shih-Yao; Zhuang, Li; Li, Song; Bai, Yuxing
2013-05-01
To observe the real-time microarchitecture changes of the alveolar bone and root resorption during orthodontic treatment. A 10 g force was delivered to move the maxillary left first molars mesially in twenty 10-week-old rats for 14 days. The first molar and adjacent alveolar bone were scanned using in vivo microcomputed tomography at the following time points: days 0, 3, 7, and 14. Microarchitecture parameters, including bone volume fraction, structure model index, trabecular thickness, trabecular number, and trabecular separation of alveolar bone, were measured on the compression and tension side. The total root volume was measured, and the resorption crater volume at each time point was calculated. Univariate repeated measures analysis of variance with Bonferroni corrections were performed to compare the differences in each parameter between time points with significance level at P < .05. From day 3 to day 7, bone volume fraction, structure model index, trabecular thickness, and trabecular separation decreased significantly on the compression side, but the same parameters increased significantly on the tension side from day 7 to day 14. Root resorption volume of the mesial root increased significantly on day 7 of orthodontic loading. Real-time root and bone resorption during orthodontic movement can be observed in 3 dimensions using in vivo micro-CT. Alveolar bone resorption and root resorption were observed mostly in the apical third on day 7 on the compression side; bone formation was observed on day 14 on the tension side during orthodontic tooth movement.
Aoki, Motokuni; Kawahata, Hirohisa; Sotobayashi, Daisuke; Yu, Hisahiro; Moriguchi, Atsushi; Nakagami, Hironori; Ogihara, Toshio; Morishita, Ryuichi
2015-08-01
Although recent studies suggest that several antihypertensive drugs could reduce the risk of bone fracture, it is still unclear how these drugs act on bone remodeling, especially in elderly women with severe osteoporosis with disuse syndrome. In the present study, we investigated the effects of a calcium channel blocker (CCB) and an angiotensin II receptor blocker (ARB) on bone metabolism in elderly bedridden women with hypertension and disuse syndrome. Elderly bedridden women (aged >75 years) receiving antihypertensive therapy treated with CCB were recruited in the present study. The participants were divided into two groups--CCB group and ARB group--and followed up to 12 months. Markers of bone resorption were markedly increased, suggesting accelerated bone resorption in the participants of the present study. In the follow-up period, the patients treated with a CCB showed a significant decrease in bone mineral density in a time-dependent manner, accompanied by a significant increase in bone resorption markers, whereas treatment with olmesartan inhibited bone loss, associated with attenuation of increased bone resorption markers. Bone mineral density of femoral neck in the CCB group was significantly lower than that in the ARB group at 6 months. The present study showed inhibitory effects of an ARB on bone resorption in hypertensive patients with accelerated bone resorption, such as elderly bedridden women, and indicated an important role of the renin-angiotensin system in bone metabolism. In elderly hypertensive patients, ARB might be expected to have additional beneficial potential to maintain bone health in bedridden patients. © 2014 Japan Geriatrics Society.
Ionizing radiation stimulates expression of pro-osteoclastogenic genes in marrow and skeletal tissue
Alwood, Joshua S.; Shahnazari, Mohammad; Chicana, Betsabel; ...
2015-03-03
Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically active, cancellous bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16 week), male C57BL/6J mice were exposed to either 2 Gy gamma rays ( 137Cs, 0.8 Gy/min) or heavy ions ( 56Fe, 600MeV, 0.50–1.1 Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is ≥10 Gy) ormore » accumulates over long-duration interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4 h—7 days later. Gamma irradiation caused a prompt (2.6-fold within 4 h) and persistent (peaking at 4.1-fold within 1 day) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappa-B ligand ( Rankl), within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3 days of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (eg, monocyte chemotactic protein-1 increased by 11.9-fold, and tumor necrosis factor-alpha increased by 1.7-fold over controls). The ratio, Rankl/ Opg, in marrow increased by 1.8-fold, a net pro-resorption balance. In the marrow, expression of the antioxidant transcription factor, Nfe2l2, strongly correlated with expression levels of Nfatc1, Csf1, Tnf, and Rankl. Radiation exposure increased a serum marker of bone resorption (tartrate-resistant acid phosphatase) and led to cancellous bone loss (16% decrement after 1 week). Finally, we conclude that total body irradiation (gamma or heavy-ion) caused temporal elevations in the concentrations of specific genes expressed within marrow and mineralized tissue related to bone resorption, including select cytokines that lead to osteoclastogenesis and elevated resorption; this is likely to account for rapid and progressive deterioration of cancellous microarchitecture following exposure to ionizing radiation.« less
Ionizing radiation stimulates expression of pro-osteoclastogenic genes in marrow and skeletal tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alwood, Joshua S.; Shahnazari, Mohammad; Chicana, Betsabel
Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically active, cancellous bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16 week), male C57BL/6J mice were exposed to either 2 Gy gamma rays ( 137Cs, 0.8 Gy/min) or heavy ions ( 56Fe, 600MeV, 0.50–1.1 Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is ≥10 Gy) ormore » accumulates over long-duration interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4 h—7 days later. Gamma irradiation caused a prompt (2.6-fold within 4 h) and persistent (peaking at 4.1-fold within 1 day) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappa-B ligand ( Rankl), within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3 days of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (eg, monocyte chemotactic protein-1 increased by 11.9-fold, and tumor necrosis factor-alpha increased by 1.7-fold over controls). The ratio, Rankl/ Opg, in marrow increased by 1.8-fold, a net pro-resorption balance. In the marrow, expression of the antioxidant transcription factor, Nfe2l2, strongly correlated with expression levels of Nfatc1, Csf1, Tnf, and Rankl. Radiation exposure increased a serum marker of bone resorption (tartrate-resistant acid phosphatase) and led to cancellous bone loss (16% decrement after 1 week). Finally, we conclude that total body irradiation (gamma or heavy-ion) caused temporal elevations in the concentrations of specific genes expressed within marrow and mineralized tissue related to bone resorption, including select cytokines that lead to osteoclastogenesis and elevated resorption; this is likely to account for rapid and progressive deterioration of cancellous microarchitecture following exposure to ionizing radiation.« less
Qin, Weiping; Sun, Li; Cao, Jay; Peng, Yuanzhen; Collier, Lauren; Wu, Yong; Creasey, Graham; Li, Jianhua; Qin, Yiwen; Jarvis, Jonathan; Bauman, William A; Zaidi, Mone; Cardozo, Christopher
2013-05-10
Mechanisms by which muscle regulates bone are poorly understood. Electrically stimulated muscle contraction reversed elevations in bone resorption and increased Wnt signaling in bone-derived cells after spinal cord transection. Muscle contraction reduced resorption of unloaded bone independently of the CNS, through mechanical effects and, potentially, nonmechanical signals (e.g. myokines). The study provides new insights regarding muscle-bone interactions. Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in mRNA levels for the Wnt inhibitors DKK1, sFRP2, and sclerostin in ex vivo cultured osteoblasts. Our results demonstrate an anti-bone-resorptive activity of muscle contraction by ES that develops rapidly and is independent of the CNS. The pathways involved, particularly Wnt signaling, suggest future strategies to minimize bone loss after immobilization.
NASA Technical Reports Server (NTRS)
Globus, Ruth K.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Terada, Masahiro; Alwood, Joshua; Halloran, Bernard; Tahimic, Candice
2016-01-01
Future long-duration space exploration beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure causes progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility.
Hypercalcaemia and hypocalcaemia: finding the balance.
Body, Jean-Jacques; Niepel, Daniela; Tonini, Giuseppe
2017-05-01
The balance between bone formation and resorption may be disrupted in patients with cancer, leading either to increased bone resorption, calcium release, and possibly hypercalcaemia, or to increased bone formation, sequestration of calcium, and possibly hypocalcaemia. In adults, hypercalcaemia of malignancy is most common in patients with tumours that produce factors that induce osteoclast activation and enhance bone resorption. Impaired renal function and increased renal tubular calcium resorption may further affect calcium levels. Inhibitors of bone resorption, first the bisphosphonates and, later, denosumab, have been shown to be effective in hypercalcaemia treatment. Bisphosphonates (which are administered intravenously) are approved for hypercalcaemia of malignancy and are the current mainstay of treatment, whereas denosumab (which is administered subcutaneously) may offer an option for patients who do not respond to bisphosphonates or suffer from renal insufficiency. TREATMENT AND PREVENTION: Hypocalcaemia is most common in patients with prostate cancer and osteoblastic bone metastases, but can occur in patients with a variety of tumour types who are receiving inhibitors of bone resorption. While patients often respond to calcium and vitamin D supplementation, prevention should be the aim; at-risk patients should be identified before starting treatment with inhibitors of bone resorption, be closely monitored during at least the first few months of treatment, and receive concomitant calcium and vitamin D supplementation unless hypercalcaemia is present. Both hypercalcaemia and hypocalcaemia can be serious if left untreated. It is therefore important that patients with cancer are closely monitored and receive adequate prevention and treatment measures to maintain normal blood calcium levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodges, Y.; Maser, M.R.; Britton, M.C.
1986-03-01
RAST, maintained in organ culture, releases two distinct types of bone resorptive factors and one co-resorptive factor. The first is prostaglandin E/sub 2/ (PGE/sub 2/), while the second is a protein with properties of IL-1. The co-resorptive factor collagenase, cannot induce bone resorption by itself, but augments the bone resorptive activity initiated by either PGE/sub 2/ or the IL-l-like factor. Bone resorptive activity was assessed by measuring the release of /sup 45/Ca from prelabelled rat fetal bones. We investigated the effects of five non-steroidal anti-inflammatory drugs (NSAIDs) and two disease-modifying anti-rheumatic drugs (DMARDs), (I) and (II), on bone degradation mediatedmore » by the IL-l-like factor. None of the NSAIDs tested inhibited bone degradation at 5 x 10/sup -5/ M. On the other hand, both (I) and (II) inhibited bone degradation 60 to 100% at 1 x 10/sup -6/ M and 8 x 10/sup -6/ M respectively. They can inhibit the action of IL-l-like factor on bone at therapeutically attainable concentrations. Additionally, both (I) and (II) block the release of collagenase from the organ culture of RAST with IC/sub 50/s of 5 x 10/sup -6/ M. This unique ability to inhibit collagenase release may contribute to their effectiveness is preventing bone loss in this test model.« less
Suzuki, Selly Sayuri; Garcez, Aguinaldo Silva; Suzuki, Hideo; Ervolino, Edilson; Moon, Won; Ribeiro, Martha Simões
2016-12-01
This study evaluated the biological effects of low-level laser therapy (LLLT) on bone remodeling, tooth displacement and root resorption, occurred during the orthodontic tooth movement. Upper first molars of a total of sixty-eight male rats were subjected to orthodontic tooth movement and euthanized on days 3, 6, 9, 14 and 21 days and divided as negative control, control and LLLT group. Tooth displacement and histomorphometric analysis were performed in all animals; scanning electron microscopy analysis was done on days 3, 6 and 9, as well as the immunohistochemistry analysis of RANKL/OPG and TRAP markers. Volumetric changes in alveolar bone were analyzed using MicroCT images on days 14 and 21. LLLT influenced bone resorption by increasing the number of TRAP-positive osteoclasts and the RANKL expression at the compression side. This resulted in less alveolar bone and hyalinization areas on days 6, 9 and 14. LLLT also induced less bone volume and density, facilitating significant acceleration of tooth movement and potential reduction in root resorption besides stimulating bone formation at the tension side by enhancing OPG expression, increasing trabecular thickness and bone volume on day 21. Taken together, our results indicate that LLLT can stimulate bone remodeling reducing root resorption in a rat model. LLLT improves tooth movement via bone formation and bone resorption in a rat model. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells
Florencio-Silva, Rinaldo; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio
2015-01-01
Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020
Traumatic bone cyst resembling apical periodontitis.
Rosen, D J; Ardekian, L; Machtei, E E; Peled, M; Manor, R; Laufer, D
1997-10-01
Among the pseudocysts of the jaws, the traumatic bone cyst is known as an asymptomatic lesion often noted unintentionally during routine radiographic examinations. The lesion neither devitalizes the teeth within its borders, nor does it cause resorption of their roots. The well-demarcated traumatic bone cyst often projects into the intraradicular septa and hence has been described as having scalloped borders. The following presentation is of a traumatic bone cyst that resembled periodontal pathology in its appearance.
The biodegradation of hydroxyapatite bone graft substitutes in vivo.
Rumpel, E; Wolf, E; Kauschke, E; Bienengräber, V; Bayerlein, T; Gedrange, T; Proff, P
2006-02-01
Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss consists of sintered bovine bone and NanoBone is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling.
Inhibition of Osteoclast Differentiation and Bone Resorption by N-Methylpyrrolidone*
Ghayor, Chafik; Correro, Rita M.; Lange, Katrin; Karfeld-Sulzer, Lindsay S.; Grätz, Klaus W.; Weber, Franz E.
2011-01-01
Regulation of RANKL (receptor activator of nuclear factor κB ligand)-induced osteoclast differentiation is of current interest in the development of antiresorptive agents. Osteoclasts are multinucleated cells that play a crucial role in bone resorption. In this study, we investigated the effects of N-methylpyrrolidone (NMP) on the regulation of RANKL-induced osteoclastogenesis. NMP inhibited RANKL-induced tartrate-resistant acid phosphatase activity and the formation of tartrate-resistant acid phosphatase-positive multinucleated cells. The RANKL-induced expression of NFATc1 (nuclear factor of activated T cells, cytoplasmic 1) and c-Fos, which are key transcription factors for osteoclastogenesis, was also reduced by treatment with NMP. Furthermore, NMP induced disruption of the actin rings and decreased the mRNAs of cathepsin K and MMP-9 (matrix metalloproteinase-9), both involved in bone resorption. Taken together, these results suggest that NMP inhibits osteoclast differentiation and attenuates bone resorption. Therefore, NMP could prove useful for the treatment of osteoporosis or other bone diseases associated with excessive bone resorption. PMID:21613210
[Osteoporosis treatment in patients with hyperthyroidism].
Saito, Jun; Nishikawa, Tetsuo
2009-05-01
Childhood thyroid hormone (T3) is essential for the normal development of endochondral and intramembranous bone and plays an important role in the linear growth and maintenance of bone mass. In adult, T3 stimulates osteoclastic bone resorption mediated primarily by TR alpha and local conversion by deiodinase D2 may play a role in local activation. TSH seems to be an inhibitor of bone resorption and formation. In thyrotoxicosis patients with Graves' disease, there is increased bone remodelling, characterized by an imbalance between bone resorption and formation, which results in a decrease of bone mineral density (BMD) and an increased risk for osteoporotic fracture. Antithyroid treatment is able to reduce dramatically the bone resorption and to normalize BMD reduction. But previous hyperthyroidism is independently associated with an increased risk for fracture. Although further studies relating to the mechanism for possible impaired bone strength in these patients will be needed, bisphosphonates may be beneficial treatment for prevention of bone fractures in patients with severe risk for fractures, such as post-menopausal women.
Three-dimensional analysis of alveolar bone resorption by image processing of 3-D dental CT images
NASA Astrophysics Data System (ADS)
Nagao, Jiro; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Yamada, Shohzoh; Naitoh, Munetaka
2006-03-01
We have developed a novel system that provides total support for assessment of alveolar bone resorption, caused by periodontitis, based on three-dimensional (3-D) dental CT images. In spite of the difficulty in perceiving the complex 3-D shape of resorption, dentists assessing resorption location and severity have been relying on two-dimensional radiography and probing, which merely provides one-dimensional information (depth) about resorption shape. However, there has been little work on assisting assessment of the disease by 3-D image processing and visualization techniques. This work provides quantitative evaluation results and figures for our system that measures the three-dimensional shape and spread of resorption. It has the following functions: (1) measures the depth of resorption by virtually simulating probing in the 3-D CT images, taking advantage of image processing of not suffering obstruction by teeth on the inter-proximal sides and much smaller measurement intervals than the conventional examination; (2) visualizes the disposition of the depth by movies and graphs; (3) produces a quantitative index and intuitive visual representation of the spread of resorption in the inter-radicular region in terms of area; and (4) calculates the volume of resorption as another severity index in the inter-radicular region and the region outside it. Experimental results in two cases of 3-D dental CT images and a comparison of the results with the clinical examination results and experts' measurements of the corresponding patients confirmed that the proposed system gives satisfying results, including 0.1 to 0.6mm of resorption measurement (probing) error and fairly intuitive presentation of measurement and calculation results.
Collin-Osdoby, P; Rothe, L; Bekker, S; Anderson, F; Osdoby, P
2000-03-01
High nitric oxide (NO) levels inhibit osteoclast (OC)-mediated bone resorption in vivo and in vitro, and nitrate donors protect against estrogen-deficient bone loss in postmenopausal women. Conversely, decreased NO production potentiates OC bone resorption in vitro and is associated with in vivo bone loss in rats and humans. Previously, we reported that bone sections from rats administered aminoguanidine (AG), a selective inhibitor of NO production via inducible NO synthase, exhibited both increased OC resorptive activity as well as greater numbers of OC. Here, we investigated further whether AG promoted osteoclastogenesis, in addition to stimulating mature OC function, using a modified in vivo chick chorioallantoic membrane (CAM) system and an in vitro chick bone marrow OC-like cell developmental model. AG, focally administered in small agarose plugs placed directly adjacent to a bone chip implanted on the CAM, dose-dependently elicited neoangiogenesis while stimulating the number, size, and bone pit resorptive activity of individual OC ectopically formed in vivo. In addition to enhancing OC precursor recruitment via neoangiogenesis, AG also exerted other vascular-independent effects on osteoclastogenesis. Thus, AG promoted the in vitro fusion and formation from bone marrow precursor cells of larger OC-like cells that contained more nuclei per cell and exhibited multiple OC differentiation markers. AG stimulated development was inversely correlated with declining medium nitrite levels. In contrast, three different NO donors each dose-dependently inhibited in vitro OC-like cell development while raising medium nitrite levels. Therefore, NO sensitively regulates OC-mediated bone resorption through affecting OC recruitment (angiogenesis), formation (fusion and differentiation), and bone resorptive activity in vitro and in vivo. Possibly, the stimulation of neoangiogenesis and OC-mediated bone remodeling via AG or other pro-angiogenic agents may find clinical applications in reconstructive surgery, fracture repair, or the treatment of avascular necrosis.
Jin, Zixue; Wei, Wei; Yang, Marie; Du, Yang; Wan, Yihong
2014-01-01
SUMMARY Mitochondrial complex I (CI) deficiency is associated with multiple neurological and metabolic disorders. However, its effect on innate immunity and bone remodeling is unclear. Using deletion of the essential CI subunit Ndufs4 as a model for mitochondrial dysfunction, we report that mitochondria suppress macrophage activation and inflammation while promoting osteoclast differentiation and bone resorption via both cell-autonomous and systemic regulation. Global Ndufs4 deletion causes systemic inflammation and osteopetrosis. Hematopoietic Ndufs4 deletion causes an intrinsic lineage shift from osteoclast to macrophage. Liver Ndufs4 deletion causes a metabolic shift from fatty acid oxidation to glycolysis, accumulating fatty acids and lactate (FA/LAC) in circulation. FA/LAC further activates Ndufs4−/− macrophages via ROS induction, and diminishes osteoclast lineage commitment in Ndufs4−/− progenitors; both inflammation and osteopetrosis in Ndufs4−/− mice are attenuated by TLR4/2 deletion. Together, these findings reveal mitochondrial CI as a critical rheostat of innate immunity and skeletal homeostasis. PMID:25130399
Bone cell communication factors and Semaphorins
Negishi-Koga, Takako; Takayanagi, Hiroshi
2012-01-01
Bone tissue is continuously renewed throughout adult life by a process called 'remodeling', which involves a dynamic interplay among bone cells including osteoclasts, osteoblasts and osteocytes. For example, a tight coupling between bone resorption and formation is essential for the homeostasis of the skeletal system. Studies on the coupling mechanism in physiological and pathological settings have revealed that osteoclasts or osteoclastic bone resorption promote bone formation through the production of diverse coupling factors. The classical coupling factors are the molecules that promote bone formation after resorption, but there may be distinct mechanisms at work in various phases of bone remodeling. A recent study revealed that the Semaphorin 4D expressed by osteoclasts inhibits bone formation, which represents a mechanism by which coupling is dissociated. Furthermore, it has been demonstrated that osteoblastic expression of Semaphorin 3A exerts an osteoprotective effect by both suppressing bone resorption and increasing bone formation. Thus, recent advances have made it increasingly clear that bone remodeling is regulated by not only classical coupling factors, but also molecules that mediate cell–cell communication among bone cells. We propose that such factors be called bone cell communication factors, which control the delicate balance of the interaction of bone cells so as to maintain bone homeostasis. PMID:24171101
Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis.
Langdahl, Bente; Ferrari, Serge; Dempster, David W
2016-12-01
The adult skeleton is renewed by remodeling throughout life. Bone remodeling is a process where osteoclasts and osteoblasts work sequentially in the same bone remodeling unit. After the attainment of peak bone mass, bone remodeling is balanced and bone mass is stable for one or two decades until age-related bone loss begins. Age-related bone loss is caused by increases in resorptive activity and reduced bone formation. The relative importance of cortical remodeling increases with age as cancellous bone is lost and remodeling activity in both compartments increases. Bone modeling describes the process whereby bones are shaped or reshaped by the independent action of osteoblast and osteoclasts. The activities of osteoblasts and osteoclasts are not necessarily coupled anatomically or temporally. Bone modeling defines skeletal development and growth but continues throughout life. Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at the long bones with aging. Existing and upcoming treatments affect remodeling as well as modeling. Teriparatide stimulates bone formation, 70% of which is remodeling based and 20-30% is modeling based. The vast majority of modeling represents overflow from remodeling units rather than de novo modeling. Denosumab inhibits bone remodeling but is permissive for modeling at cortex. Odanacatib inhibits bone resorption by inhibiting cathepsin K activity, whereas modeling-based bone formation is stimulated at periosteal surfaces. Inhibition of sclerostin stimulates bone formation and histomorphometric analysis demonstrated that bone formation is predominantly modeling based. The bone-mass response to some osteoporosis treatments in humans certainly suggests that nonremodeling mechanisms contribute to this response and bone modeling may be such a mechanism. To date, this has only been demonstrated for teriparatide, however, it is clear that rediscovering a phenomenon that was first observed more half a century ago will have an important impact on our understanding of how new antifracture treatments work.
Impairment of osteoclastic bone resorption in rapidly growing female p47phox knockout mice
USDA-ARS?s Scientific Manuscript database
Bone formation is dependent on the activity and differentiation of osteoblasts; whereas resorption of preexisting mineralized bone matrix by osteoclasts is necessary not only for bone development but also for regeneration and remodeling. Bone remodeling is a process in which osteoblasts and osteocla...
Effects of Vitamin K2 on the Development of Osteopenia in Rats as the Models of Osteoporosis
Takeda, Tsuyoshi; Sato, Yoshihiro
2006-01-01
Vitamin K2 is widely used for the treatment of osteoporosis in Japan. To understand the effects of vitamin K2 on bone mass and bone metabolism, we reviewed its effects on the development of osteopenia in rats, which characterizes models of osteoporosis. Vitamin K2 was found to attenuate the increase in bone resorption and/or maintain bone formation, reduce bone loss, protect against the loss of trabecular bone mass and its connectivity, and prevent the decrease in strength of the long bone in ovariectomized rats. However, combined treatment of bisphosphonates and vitamin K2 had an additive effect in preventing the deterioration of the trabecular bone architecture in ovariectomized rats, while the combined treatment of raloxifene and vitamin K2 improved the bone strength of the femoral neck. The use of vitamin K2 alone suppressed the increase in trabecular bone turnover and endocortical bone resorption, which attenuated the development of cancellous and cortical osteopenia in orchidectomized rats. In addition, vitamin K2 inhibited the decrease in bone formation in prednisolone-treated rats, thereby preventing cancellous and cortical osteopenia. In sciatic neurectomized rats, vitamin K2 suppressed endocortical bone resorption and stimulated bone formation, delaying the reduction of the trabecular thickness and retarding the development of cortical osteopenia. Vitamin K2 also prevented the acceleration of bone resorption and the reduction in bone formation in tail-suspended rats, which counteracted cancellous bone loss. Concomitant use of vitamin K2 with a bisphosphonate ameliorated the suppression of bone formation and more effectively prevented cancellous bone loss in tail-suspended rats. Vitamin K2 stimulated renal calcium reabsorption, retarded the increase in serum parathyroid hormone levels, and attenuated cortical bone loss primarily by suppressing bone resorption in calcium-deficient rats while maintaining the strength of the long bone in rats with magnesium deficiency. These findings suggest that vitamin K2 may not only stimulate bone formation, but may also suppress bone resorption. Thus, vitamin K2 could regulate bone metabolism in rats, which represented the various models of osteoporosis. However, the effects of vitamin K2 on bone mass and bone metabolism seem to be modest. PMID:16642543
NASA Technical Reports Server (NTRS)
Partridge, N. C.; Bloch, S. R.; Pearman, A. T.
1994-01-01
Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.
Tominari, Tsukasa; Ichimaru, Ryota; Yoshinouchi, Shosei; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Inada, Masaki; Miyaura, Chisato
2017-12-01
(-)-Epigallocatechin-3- O -gallate (EGCG), present in green tea, exhibits antioxidant and antiallergy effects. EGCG3″Me, a 3- O -methylated derivative of EGCG, has been reported to show similar biological functions; the inhibitory activity of EGCG3″Me in a mouse allergy model was more potent than that of EGCG, probably due to the efficiency of absorption from the intestine. However, the functional potency of these EGCGs is controversial in each disease model. We previously observed that EGCG suppressed inflammatory bone resorption and prevented alveolar bone loss in a mouse model of periodontosis. In this study, we examined the role of EGCG3″Me in bone resorption using a mouse model of periodontitis. Lipopolysaccharide (LPS)-induced osteoclast formation was suppressed by adding EGCG3″Me to cocultures of osteoblasts and bone marrow cells, and LPS-induced bone resorption was also inhibited by EGCG3″Me in calvarial organ cultures. EGCG3″Me acted on osteoblasts and suppressed prostaglandin E (PGE) production, which is critical for inflammatory bone resorption, by inhibiting the expression of COX-2 and mPGES-1, key enzymes for PGE synthesis. In osteoclast precursor macrophages, EGCG3″Me suppressed RANKL-dependent differentiation into mature osteoclasts. In a mouse model of periodontitis, LPS-induced bone resorption was suppressed by EGCG3″Me in organ culture of mouse alveolar bone, and the alveolar bone loss was further attenuated by the treatment of EGCG3″Me in the lower gingiva in vivo . EGCG3″Me may be a potential natural compound for the protection of inflammatory bone loss in periodontitis.
Tanaka, Shinya; Yoshida, Akira; Kono, Shinjiro; Ito, Manabu
2017-05-01
Evidence related to the effectiveness of combination drug therapy for the treatment of osteoporosis is currently considered insufficient. Therefore, this study was performed to clarify the effects of monotherapy, and combination therapy, with a bisphosphonate (minodronic acid hydrate), a bone resorption inhibitor, and calcitonin (elcatonin), which is effective for the alleviation of pain due to vertebral fractures in osteoporotic patients. Study participants comprised of 51 female subjects with post-menopausal osteoporosis, whose main complaint was acute lower back pain caused by vertebral fractures. Subjects were randomly allocated into three groups and then administered with either intramuscular injections of elcatonin at a dose of 20 units weekly, minodronic acid hydrate at a dose of 1 mg daily, or a combination of these two drugs. As primary endpoints, time-dependent changes in levels of pain were assessed using a visual analog scale from baseline to 6 months of duration. In addition, we examined the effects of monotherapies, and a combination therapy on bone resorption, with changes in bone mineral density at 4 sites and advanced hip assessment parameters from baseline to 6 months. A two-tailed significance level of 5% was used for hypothesis testing. Elcatonin monotherapy showed some alleviation of pain immediately after any vertebral fractures, which was more than in the minodronic acid hydrate monotherapy group. In addition, the minodronic acid hydrate monotherapy group experienced more effective inhibited bone resorption than the elcatonin monotherapy group. In the combination therapy, the efficacy for alleviating pain and inhibiting bone resorption was equivalent to the effect observed in the elcatonin and minodronic acid hydrate monotherapy groups respectively, with further improved values of bone mineral density observed in the femoral neck and lumbar vertebrae, and in parameters of advanced hip assessment compared with both monotherapy groups. Combination therapy with elcatonin and minodronic acid hydrate appears to be an effective treatment for osteoporosis patients with lower back pain, caused by fresh vertebral fractures. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Hong, Seong-Eun; Lee, Jiae; Seo, Dong-Hyun; In Lee, Hye; Ri Park, Doo; Lee, Gong-Rak; Jo, You-Jin; Kim, Narae; Kwon, Minjung; Shon, Hansem; Kyoung Seo, Eun; Kim, Han-Sung; Young Lee, Soo; Jeong, Woojin
2017-11-01
Excessive bone resorption caused by increased osteoclast number or activity leads to a variety of bone diseases including osteoporosis, rheumatoid arthritis and periodontitis. Thus, the therapeutic strategy for these diseases has been focused primarily on the inhibition of osteoclast formation and function. This study shows that euphorbia factor L1 (EFL1), a diterpenoid isolated from Euphorbia lathyris, inhibited osteoclastogenesis and induced osteoclast apoptosis. EFL1 suppressed osteoclast formation and bone resorption at both initial and terminal differentiation stages. EFL1 inhibited receptor activator of NF-κB ligand (RANKL)-induced NFATc1 induction with attenuated NF-κB activation and c-Fos expression. EFL1 decreased the level of reactive oxygen species by scavenging them or activating Nrf2, and inhibited PGC-1β that regulates mitochondria biogenesis. In addition, EFL1 induced apoptosis in differentiated osteoclasts by increasing Fas ligand expression followed by caspase activation. Moreover, EFL1 inhibited inflammation-induced bone erosion and ovariectomy-induced bone loss in mice. These findings suggest that EFL1 inhibits osteoclast differentiation by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast, and may provide therapeutic potential for preventing or treating bone-related diseases caused by excessive osteoclast. Copyright © 2017 Elsevier Inc. All rights reserved.
Ryan, B M; Russel, M G V M; Schurgers, L; Wichers, M; Sijbrandij, J; Stockbrugger, R W; Schoon, E
2004-10-15
Patients with Crohn's disease are at increased risk of osteoporosis. Disease activity and circulating proinflammatory cytokines are thought to play a role in this process. Infliximab, a chimaeric antitumour necrosis factor-alpha antibody is effective in the treatment of Crohn's disease. The aim of this study was to investigate the impact of treatment with infliximab on bone turnover in Crohn's disease patients. This was a prospective trial. Twenty-four patients with active Crohn's disease were treated with infliximab (5 mg/kg). Bone markers were assayed pre- and post-treatment. Bone formation was measured using serum bone-specific alkaline phosphatase and total osteocalcin and bone resorption using serum N-telopeptide cross-linked type 1 collagen. Infliximab therapy caused a significant increase in both markers of bone formation in patients with active Crohn's disease. No significant change in the bone resorption marker serum N-telopeptide cross-linked type 1 was found. Infliximab therapy had a significant beneficial effect on bone metabolism in patients with active Crohn's disease. These findings further support the theory that active ongoing inflammation and high levels of circulating cytokines play a pivotal role in the pathogenesis of bone loss in patients with Crohn's disease.
Ping, Zichuan; Hu, Xuanyang; Wang, Liangliang; Shi, Jiawei; Tao, Yunxia; Wu, Xiexing; Hou, Zhenyang; Guo, Xiaobin; Zhang, Wen; Yang, Huilin; Xu, Yaozeng; Wang, Zhirong; Geng, Dechun
2017-03-15
Wear debris-induced inhibition of bone regeneration and extensive bone resorption were common features in peri-prosthetic osteolysis (PPO). Here, we investigated the effect of melatonin on titanium particle-stimulated osteolysis in a murine calvariae model and mouse-mesenchymal-stem cells (mMSCs) culture system. Melatonin inhibited titanium particle-induced osteolysis and increased bone formation at osteolytic sites, confirmed by radiological and histomorphometric data. Furthermore, osteoclast numbers decreased dramatically in the low- and high-melatonin administration mice, as respectively, compared with the untreated animals. Melatonin alleviated titanium particle-induced depression of osteoblastic differentiation and mineralization in mMSCs. Mechanistically, melatonin was found to reduce the degradation of β-catenin, levels of which were decreased in presence of titanium particles both in vivo and in vitro. To further ensure whether the protective effect of melatonin was mediated by the Wnt/β-catenin signaling pathway, ICG-001, a selective β-catenin inhibitor, was added to the melatonin-treated groups and was found to attenuate the effect of melatonin on mMSC mineralization. We also demonstrated that melatonin modulated the balance between receptor activator of nuclear factor kappa-B ligand and osteoprotegerin via activation of Wnt/β-catenin signaling pathway. These findings strongly suggest that melatonin represents a promising candidate in the treatment of PPO. Peri-prosthetic osteolysis, initiated by wear debris-induced inhibition of bone regeneration and extensive bone resorption, is the leading cause for implant failure and reason for revision surgery. In the current study, we demonstrated for the first time that melatonin can induce bone regeneration and reduce bone resorption at osteolytic sites caused by titanium-particle stimulation. These effects might be mediated by activating Wnt/β-catenin signaling pathway and enhancing osteogenic differentiation. Meanwhile, the ability of melatonin to modulate the balance between receptor activator of nuclear factor kappa-B ligand and osteoprotegerin mediated by Wnt/β-catenin signaling pathway, thereby suppressing osteoclastogenesis, may be implicated in the protective effects of melatonin on titanium-particle-induced bone resorption. These results suggested that melatonin can be considered as a promising therapeutic agent for the prevention and treatment of peri-prosthetic osteolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Yamamoto, Shoko; Matsushima, Yuta; Kanayama, Yoshitaka; Seki, Azusa; Honda, Haruya; Unuma, Hidero; Sakai, Yasuo
2017-03-01
Calcium phosphate cements (CPCs), consisting of a mixture of calcium phosphate powders and setting liquid, have been widely used in orthopedic applications. One of the drawbacks of CPCs is their poor resorbability in the living body, which hinders substitution with natural bones. One of the strategies to facilitate the resorption of CPCs is the incorporation of bioresorbable or water-soluble pore-generating particles (porogens), such as gelatin, in the CPC matrices. In spite of numerous reports, however, little is known about the effect of the dissolution/resorption rate of the porogens on concomitant bone regeneration. In the present study, we prepared preset CPCs dispersed with 10 mass% of low-endotoxin gelatin particles 200-500 μm in diameter having different heat-treatment histories, therefore exhibiting different dissolution rate, and then the obtained CPC/gelatin composites were evaluated for in vivo resorption and concomitant in vivo bone formation behaviors. As the results, the dispersion of gelatin particles markedly promoted in vivo resorption of CPC, and enhanced concomitant bone formation, connective tissue formation, osteoblast proliferation, and vascularization. The dissolution/resorption rate was able to be controlled by changing the up-front heat-treatment temperature. In particular, when CPC/gelatin composites were implanted in distal metaphysis of rabbits, the optimum dissolution/resorption was attained by heat-treating gelatin particles at 383 K for 24 h before dispersing in CPC. Quick resorption of calcium phosphate cement and concomitant bone formation by dispersing properly heat-treated with gelatin particles.
Phenotypic research on senile osteoporosis caused by SIRT6 deficiency
Zhang, De-Mao; Cui, Di-Xin; Xu, Ruo-Shi; Zhou, Ya-Chuan; Zheng, Li-Wei; Liu, Peng; Zhou, Xue-Dong
2016-01-01
Osteoporosis is a serious public bone metabolic disease. However, the mechanisms underlying bone loss combined with ageing, which is known as senile osteoporosis, remains unknown. Here we show the detailed phenotype of this disease caused by SIRT6 knock out (KO) in mice. To the best of our knowledge, this is the first study to reveal that SIRT6 is expressed in both bone marrow stroma cells and bone-related cells in both mouse and human models, which suggests that SIRT6 is an important regulator in bone metabolism. SIRT6-KO mice exhibit a significant decrease in body weight and remarkable dwarfism. The skeleton of the SIRT6-KO mouse is deficient in cartilage and mineralized bone tissue. Moreover, the osteocalcin concentration in blood is lower, which suggests that bone mass is markedly lost. Besides, the tartrate-resistant acid phosphatase 5b (TRAP5b) concentration is much higher, which suggests that bone resorption is overactive. Both trabecular and cortical bones exhibit severe osteopenia, and the bone mineral density is decreased. Moreover, double-labelling analysis shows that bone formation is much slower. To determine whether SIRT6 directly regulates bone metabolism, we cultured primary bone marrow stromal cells for osteogenesis and osteoclastogenesis separately to avoid indirect interference in vivo responses such as inflammation. Taken together, these results show that SIRT6 can directly regulate osteoblast proliferation and differentiation, resulting in attenuation in mineralization. Furthermore, SIRT6 can directly regulate osteoclast differentiation and results in a higher number of small osteoclasts, which may be related to overactive bone resorption. PMID:27357320
Severe hypocalcemia following bisphosphonate treatment in a patient with Paget's disease of bone.
Whitson, Heather E; Lobaugh, Bruce; Lyles, Kenneth W
2006-10-01
Bisphosphonate therapy is a common and effective treatment for Paget's disease of bone, osteoporosis, hypercalcemia of malignancy and cancer metastatic to bone. Clinically significant hypocalcemia has not been reported in patients with Paget's disease of bone and normal parathyroid function treated with an aminobisphosphonate. We treated a 52-year-old woman with polyostotic Paget's disease of bone (serum alkaline phosphatase level-1971 IU/L [normal 31-110 IU/L]), who had not previously received bisphosphonates, with daily oral 30 mg risedronate, oral 1000 mg elemental calcium and oral 400 IU cholecalciferol. After 10 days of treatment, she developed severe hypocalcemia (5.4 mg/dL [normal 8.7-10.2 mg/dL]), requiring hospitalization and support with 5 days of intravenous calcium gluconate. On the day risedronate treatment began, her PTH was low normal at 14 pg/mL (normal 12-72 pg/mL), consistent with a relatively suppressed PTH axis due to high bone turnover. Her vitamin D level was within normal limits (serum 25(OH)D 19 ng/mL [normal 8-38 ng/mL]), although possibly not optimally repleted. We hypothesize that this case represents an example of hungry bone syndrome in a patient with extensive Paget's disease of bone who received risedronate, causing acute suppression of bone resorption while elevated bone formation rates continued. In the year following her recovery, the patient was successfully treated with slowly titrated anti-resorptive therapy (subcutaneous calcitonin followed by titrated doses of risedronate), and is now clinically well. Physicians should be aware of the potential for hypocalcemia when patients with polyostotic Paget's disease and markedly elevated indicators of bone remodeling are initiated on powerful anti-resorptive therapy.
Muller, Joséphine; Bolomsky, Arnold; Dubois, Sophie; Duray, Elodie; Stangelberger, Kathrin; Plougonven, Erwan; Lejeune, Margaux; Léonard, Angélique; Marty, Caroline; Hempel, Ute; Baron, Frédéric; Beguin, Yves; Cohen-Solal, Martine; Ludwig, Heinz; Heusschen, Roy; Caers, Jo
2018-05-10
Multiple myeloma bone disease is characterized by an uncoupling of bone remodeling in the multiple myeloma microenvironment, resulting in the development of lytic bone lesions. Most myeloma patients suffer from these bone lesions, which not only causes morbidity but also negatively impacts survival. The development of novel therapies, ideally with a combined anti-resorptive and bone-anabolic effect, is of great interest because lesions persist with the current standard of care, even in patients in complete remission. We have previously shown that MELK plays a central role in proliferation-associated high-risk multiple myeloma and its inhibition with OTSSP167 resulted in decreased tumor load. MELK inhibition in bone cells has not yet been explored, although some reports suggest factors downstream of MELK stimulate osteoclast activity and inhibit osteoblast activity, which makes MELK inhibition a promising therapeutic approach. Therefore, we assessed the effect of OTSSP167 on bone cell activity and the development of myeloma-induced bone disease. OTSSP167 inhibited osteoclast activity in vitro by decreasing progenitor viability as well as via a direct anti-resorptive effect on mature osteoclasts. In addition, OTSSP167 stimulated matrix deposition and mineralization by osteoblasts in vitro. This combined anti-resorptive and osteoblast-stimulating effect of OTSSP167 resulted in the complete prevention of lytic lesions and bone loss in myeloma-bearing mice. Immunohistomorphometric analyses corroborated our in vitro findings. In conclusion, we show that OTSSP167 has a direct effect on myeloma-induced bone disease in addition to its anti-multiple myeloma effect, which warrants further clinical development of MELK inhibition in multiple myeloma. Copyright © 2018, Ferrata Storti Foundation.
Bone remodeling and calcium homeostasis in patients with spinal cord injury: a review.
Maïmoun, Laurent; Fattal, Charles; Sultan, Charles
2011-12-01
Patients with spinal cord injury exhibit early and acute bone loss with the major functional consequence being a high incidence of pathological fractures. The bone status of these patients is generally investigated by dual-energy x-ray absorptiometry, but this technique does not reveal the pathophysiological mechanism underlying the bone loss. Bone cell activity can be indirectly evaluated by noninvasive techniques, including measurement of specific biochemical markers of bone formation (such as osteocalcin or bone-alkaline phosphatase) and resorption (such as procollagen type I N- or C-terminal propeptide). The bone loss in spinal cord injury is clearly due to an uncoupling of bone remodeling in favor of bone resorption, which starts just after the injury and peaks at about 1 to 4 months. Beyond 6 months, bone resorption activity decreases progressively but remains elevated for many years after injury. Conversely, bone formation is less affected. Antiresorptive treatment induces an early and acute reduction in bone resorption markers. Level of injury and health-related complications do not seem to be implicated in the intensity of bone resorption. During the acute phase, the hypercalcemic status is associated with the suppression of parathyroid hormone and vitamin D metabolites. The high sensitivity of these markers after treatment suggests that they can be used for monitoring treatment efficacy and patient compliance. The concomitant use of bone markers and dual-energy x-ray absorptiometry may improve the physician's ability to detect patients at risk of severe bone loss and subsequent fractures. Copyright © 2011 Elsevier Inc. All rights reserved.
Biochemical Bone Turnover Markers and Osteoporosis in Older Men: Where Are We?
Szulc, Pawel
2011-01-01
In men aged less than 60, the association of serum and urinary levels of biochemical bone turnover markers (BTMs) and bone mineral density (BMD) is weak or not significant. After this age, higher BTM levels are correlated weakly, but significantly, with lower BMD and faster bone loss. Limited data from the cohort studies suggest that BTM measurement does not improve the prediction of fragility fractures in older men in comparison with age, BMD, history of falls and fragility fractures. Testosterone replacement therapy (TRT) decreases bone resorption. During TRT, bone formation markers slightly increase (direct effect on osteoblasts), then decrease (slowdown of bone turnover). Bisphosphonates (alendronate, risedronate, ibandronate, zoledronate) induce a rapid decrease in bone resorption followed by a milder decrease in bone formation. In men receiving antiresorptive therapy for prostate cancer, zoledronate, denosumab and toremifene decrease significantly levels of bone resorption and bone formation markers. Teriparatide induced a rapid increase in serum concentrations of bone formation markers followed by an increase in bone resorption. We need more studies on the utility of BTM measurement for the improvement of the persistence and adherence to the anti-osteoporotic treatment in men. PMID:22220284
Hussein, H; Dulin, J; Smanik, L; Drost, W T; Russell, D; Wellman, M; Bertone, A
2017-08-01
Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses. Twelve young exercising horses were randomized in a prospective, controlled clinical trial and received 4 weekly doses of a CatKI or vehicle. Baseline and poststudy nuclear scintigraphy, blood sampling and analysis of plasma bone biomarkers (CTX-1 and osteocalcin), poststudy bone fluorescent labeling, and bone biopsy were performed. Bone specimens were further processed for microcomputed tomography and bone histomorphometry. Each dose of this CatKI transiently inhibited plasma CTX-1 (reflecting inhibition of bone collagen resorption) and increased bone plasma osteocalcin concentrations, with no detectable adverse effect on normal bone turnover in the face of exercise. Bone morphology, density, and formation rate were not different between control and treated group. Further investigation of CatK inhibition in abnormal bone turnover is required in animals with bone diseases. © 2016 John Wiley & Sons Ltd.
Experiment K-317: Bone resorption in rats during spaceflight
NASA Technical Reports Server (NTRS)
Cann, C. E.; Adachi, R. R.
1981-01-01
Direct measurement of bone resorption in flight and synchronous control rats is described. Continuous tracer administration techniques were used, with replacement of dietary calcium with isotopically enriched Ca40 and measurement by neutron activation analysis of the Ca48 released by the skeleton. There is no large change in bone resorption in rats. Based on the time course of changes, the measured 20-25% decrease in resorption is probably secondary to a decrease in total body calcium turnover. The excretion of sodium, potassium and zinc all increase during flight, sodium and potassium to a level 4-5 times control values.
Takeuchi, Yasuhiro
Disorders in bone and calcium metabolism associated with aging are based on secondary hyperparathyroidism due to impaired intestinal calcium absorption caused by insufficient vitamin D actions and augmented bone resorption due to sex hormone deficiency. Both of them are involved in the development of osteoporosis that increases risk of fractures. Therefore, the most important thing for management of disorders in bone and calcium metabolism associated with aging is to prevent fractures with appropriate drugs for osteoporosis.
Wang, Chiachien J.; Chen, I-Ping; Koczon-Jaremko, Boguslawa; Boskey, Adele L.; Ueki, Yasuyoshi; Kuhn, Liisa; Reichenberger, Ernst J.
2010-01-01
Cherubism is an autosomal dominant disorder in children characterized by unwarranted symmetrical bone resorption of the jaws with fibrous tissue deposition. Mutations causing cherubism have been identified in the adaptor protein SH3BP2. Knock-in mice with a Pro416Arg mutation in Sh3bp2 exhibit a generalized osteoporotic bone phenotype. In this study, we examined the effects of this “cherubism” mutation on spectroscopic indices of “bone quality” and on osteoblast differentiation. Fourier-transform infrared imaging (FTIRI) analysis of femurs from wild-type and Sh3bp2 knock-in mice showed decreased mineral content, decreased mineral crystallinity/crystal size, and increased collagen maturity in homozygous mutants. To assess osteoblast maturation in vivo, knock-in mice were crossed with transgenic mice over-expressing GFP driven by 3.6-kb or 2.3-kb Col1a1 promoter fragments. Reduced numbers of mature osteoblasts were observed in homozygous mice. Neonatal calvarial cultures, which were enriched for osteoblasts by depletion of hematopoietic cells (negative selection for Ter119- and CD45-positive cells) were investigated for osteoblast-specific gene expression and differentiation, which demonstrated that differentiation and mineralization in homozygous osteoblast cultures was impaired. Co-cultures with calvarial osteoblasts and bone marrow macrophages showed that mutant osteoblasts appear to increase osteoclastogenesis resulting in increased bone resorption on bone chips. In summary, the Sh3bp2 mutation in cherubism mice alters bone quality, reduces osteoblast function, and may contribute to excessive bone resorption by osteoclasts. Our data, together with previous osteoclast studies, demonstrate a critical role of Sh3bp2 in bone remodeling and osteoblast differentiation. PMID:20117257
Cardiotonic agent milrinone stimulates resorption in rodent bone organ culture.
Krieger, N S; Stappenbeck, T S; Stern, P H
1987-01-01
The cardiotonic agent amrinone inhibits bone resorption in vitro. Milrinone, an amrinone analog, is a more potent cardiotonic agent with lower toxicity. In contrast to amrinone, milrinone stimulated resorption in cultures of neonatal mouse calvaria and fetal rat limb bones. Threshold doses were 0.1 microM in calvaria and 0.1 mM in limb bones; maximal stimulation occurred in calvaria at 0.1 mM. Maximal responses to milrinone and parathyroid hormone were comparable. Milrinone concentrations below 0.1 mM did not affect calvarial cyclic AMP. 0.5 microM indomethacin inhibited milrinone effects in calvaria but usually not in limb bones. 3 nM calcitonin inhibited milrinone-stimulated resorption and there was no escape from this inhibition. Structural homology between milrinone and thyroxine has been reported. We find similarities between milrinone and thyroxine actions on bone, because prostaglandin production was crucial for the effects of both agents in calvaria but not in limb bones, and neither agent exhibited escape from calcitonin inhibition. PMID:3027124
Mukherjee, Kakoli; Chattopadhyay, Naibedya
2016-10-01
Osteoporosis is a metabolic bone disease that is characterized by heightened state of bone resorption accompanied by diminished bone formation, leading to a reduction of bone mineral density (BMD) and deterioration of bone quality, thus increasing the risk of developing fractures. Molecular insight into bone biology identified cathepsin K (CatK) as a novel therapeutic target. CatK is a lysosomal cysteine protease secreted by activated osteoclasts during bone resorption, whose primary substrate is type I collagen, the major component of organic bone matrix. Available anti-resorptive drugs affect osteoclast survival and influence both resorption and formation of bone. CatK inhibitors are distinct from the existing anti-resorptives as they only target the resorption process itself without impairing osteoclast differentiation and do not interfere with bone formation. An inhibitor of CatK, odanacatib, robustly increased both trabecular and cortical BMD in postmenopausal osteoporosis patients. The phase III fracture prevention trial with odanacatib ended early due to good efficacy and a favorable benefit/risk profile, thus, enhancing the opportunity for CatK as a pharmacological target for osteoporosis. So far, all the inhibitors that reached to the stage of clinical trial targeted active site of CatK to abrogate the entire proteolytic activity of the enzyme in addition to the desired blockage of excessive elastin and collagen degradation, and could thus pose safety concerns with long term use. Identification of selective exosite inhibitors that inhibit CatK's elastase and/or collagenase activity but do not affect the hydrolysis of other physiologically relevant substrates of CatK would be an improved strategy to inhibit this enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Lotinun, Sutada; Sibonga, Jean D.; Turner, Russell T.
2003-01-01
Parathyroid bone disease in humans is caused by chronic hyperparathyroidism (HPT). Continuous infusion of PTH into rats results in histological changes similar to parathyroid bone disease, including increased bone formation, focal bone resorption, and severe peritrabecular fibrosis, whereas pulsatile PTH increases bone formation without skeletal abnormalities. Using a cDNA microarray with over 5000 genes, we identified an association between increased platelet-derived growth factor-A (PDGF-A) signaling and PTH-induced bone disease in rats. Verification of PDGF-A overexpression was accomplished with a ribonuclease protection assay. Using immunohistochemistry, PDGF-A peptide was localized to mast cells in PTH-treated rats. We also report a novel strategy for prevention of parathyroid bone disease using triazolopyrimidine (trapidil). Trapidil, an inhibitor of PDGF signaling, did not have any effect on indexes of bone turnover in normal rats. However, dramatic reductions in marrow fibrosis and bone resorption, but not bone formation, were observed in PTH-treated rats given trapidil. Also, trapidil antagonized the PTH-induced increases in mRNA levels for PDGF-A. These results suggest that PDGF signaling is important for the detrimental skeletal effects of HPT, and drugs that target the cytokine or its receptor might be useful in reducing or preventing parathyroid bone disease.
Arabnejad Khanoki, Sajad; Pasini, Damiano
2012-03-01
Revision surgeries of total hip arthroplasty are often caused by a deficient structural compatibility of the implant. Two main culprits, among others, are bone-implant interface instability and bone resorption. To address these issues, in this paper we propose a novel type of implant, which, in contrast to current hip replacement implants made of either a fully solid or a foam material, consists of a lattice microstructure with nonhomogeneous distribution of material properties. A methodology based on multiscale mechanics and design optimization is introduced to synthesize a graded cellular implant that can minimize concurrently bone resorption and implant interface failure. The procedure is applied to the design of a 2D left implanted femur with optimized gradients of relative density. To assess the manufacturability of the graded cellular microstructure, a proof-of-concept is fabricated by using rapid prototyping. The results from the analysis are used to compare the optimized cellular implant with a fully dense titanium implant and a homogeneous foam implant with a relative density of 50%. The bone resorption and the maximum value of interface stress of the cellular implant are found to be over 70% and 50% less than the titanium implant while being 53% and 65% less than the foam implant.
Leukemia inhibitory factor: a novel bone-active cytokine.
Reid, L R; Lowe, C; Cornish, J; Skinner, S J; Hilton, D J; Willson, T A; Gearing, D P; Martin, T J
1990-03-01
A number of cytokines have been found to be potent regulators of bone resorption and to share the properties originally attributed to osteoclast-activating factor. One such activity, differentiation-inducing factor (DIF, D-factor) from mouse spleen cells, shares a number of biological and biochemical properties with the recently characterized and cloned leukemia inhibitory factor (LIF). We have assessed the effects of recombinant LIF on bone resorption and other parameters in neonatal mouse calvaria. Both recombinant murine and human (h) LIFs stimulated 45Ca release from prelabeled calvaria in a dose-dependent manner. The increase in bone resorption was associated with an increase in the number of osteoclasts per mm2 bone. The osteolytic effect of hLIF were blocked by 10(-7) M indomethacin. hLIF also stimulated incorporation of [3H] thymidine into calvaria, but the dose-response relationship was distinct from that for bone resorption, and this effect was not blocked by indomethacin. Similarly, hLIF increased [3H]phenylalanine incorporation into calvaria, and this was also not inhibited by indomethacin. It is concluded that LIF stimulates bone resorption by a mechanism involving prostaglandin production, but that a distinct mechanism is responsible for its stimulation of DNA and protein synthesis. The primary structure of LIF differs from that of other fully characterized, bone-active cytokines, and it, thus, represents a novel factor which may be involved in the normal regulation of bone cell function.
Novel Radiomitigator for Radiation-Induced Bone Loss
NASA Technical Reports Server (NTRS)
Schreurs, A-S; Shirazi-fard, Y.; Terada, M.; Alwood, J. S.; Steczina, S.; Medina, C.; Tahimic, C. G. T.; Globus, R. K.
2016-01-01
Radiation-induced bone loss can occur with radiotherapy patients, accidental radiation exposure and during long-term spaceflight. Bone loss due to radiation is due to an early increase in oxidative stress, inflammation and bone resorption, resulting in an imbalance in bone remodeling. Furthermore, exposure to high-Linear Energy Transfer (LET) radiation will impair the bone forming progenitors and reduce bone formation. Radiation can be classified as high-LET or low-LET based on the amount of energy released. Dried Plum (DP) diet prevents bone loss in mice exposed to total body irradiation with both low-LET and high-LET radiation. DP prevents the early radiation-induced bone resorption, but furthermore, we show that DP protects the bone forming osteoblast progenitors from high-LET radiation. These results provide insight that DP re-balances the bone remodeling by preventing resorption and protecting the bone formation capacity. This data is important considering that most of the current osteoporosis treatments only block the bone resorption but do not protect bone formation. In addition, DP seems to act on both the oxidative stress and inflammation pathways. Finally, we have preliminary data showing the potential of DP to be radio-protective at a systemic effect and could possible protect other tissues at risk of total body-irradiation such as skin, brain and heart.
Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo
2016-01-01
Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893
Contribution of dietary and loading changes to the effects of suspension on mouse femora
NASA Technical Reports Server (NTRS)
Simske, S. J.; Broz, J. J.; Fleet, M. L.; Schmeister, T. A.; Gayles, E. C.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)
1994-01-01
The present study assessed the contributions of feeding changes and unloading to the overall measured effects of 2-wk hindlimb (Tail) suspension on the mouse femora. Feeding changes were addressed by considering the effects of matched feeding among suspended and control mice. The effects of hind limb unloading were considered by comparing suspended mice to mice equipped identically (though not suspended) and matched-fed. The feeding and unloading aspects of suspension appear to cause distinctly differing effects on the stereotypic modeling of the femora. Matched-feeding was accompanied by increased resorption surface in comparison to suspended mice, while unloading led to reduced bone formation at the mid-diaphysis of the femora. Reduced mineral content was observed in the bones of suspended mice when compared to the other mice groups, but without increased resorption surface. Thus, the unloading aspects of the antiorthostatic suspension protocol apparently causes reduced formation and mineralization in the femur.
A concise review of testosterone and bone health
Mohamad, Nur-Vaizura; Soelaiman, Ima-Nirwana; Chin, Kok-Yong
2016-01-01
Osteoporosis is a condition causing significant morbidity and mortality in the elderly population worldwide. Age-related testosterone deficiency is the most important factor of bone loss in elderly men. Androgen can influence bone health by binding to androgen receptors directly or to estrogen receptors (ERs) indirectly via aromatization to estrogen. This review summarized the direct and indirect effects of androgens on bone derived from in vitro, in vivo, and human studies. Cellular studies showed that androgen stimulated the proliferation of preosteoblasts and differentiation of osteoblasts. The converted estrogen suppressed osteoclast formation and resorption activity by blocking the receptor activator of nuclear factor k-B ligand pathway. In animal studies, activation of androgen and ERα, but not ERβ, was shown to be important in acquisition and maintenance of bone mass. Human epidemiological studies demonstrated a significant relationship between estrogen and testosterone in bone mineral density and fracture risk, but the relative significance between the two remained debatable. Human experimental studies showed that estrogen was needed in suppressing bone resorption, but both androgen and estrogen were indispensable for bone formation. As a conclusion, maintaining optimal level of androgen is essential in preventing osteoporosis and its complications in elderly men. PMID:27703340
Rumpler, M; Würger, T; Roschger, P; Zwettler, E; Sturmlechner, I; Altmann, P; Fratzl, P; Rogers, M J; Klaushofer, K
2013-12-01
The main function of osteoclasts in vivo is the resorption of bone matrix, leaving behind typical resorption traces consisting of pits and trails. The mechanism of pit formation is well described, but less is known about trail formation. Pit-forming osteoclasts possess round actin rings. In this study we show that trail-forming osteoclasts have crescent-shaped actin rings and provide a model that describes the detailed mechanism. To generate a trail, the actin ring of the resorption organelle attaches with one side outside the existing trail margin. The other side of the ring attaches to the wall inside the trail, thus sealing that narrow part to be resorbed next (3–21 lm). This 3D configuration allows vertical resorption layer-by-layer from the surface to a depth in combination with horizontal cell movement. Thus, trails are not just traces of a horizontal translation of osteoclasts during resorption. Additionally, we compared osteoclastic resorption on bone and dentin since the latter is the most frequently used in vitro model and data are extrapolated to bone. Histomorphometric analyses revealed a material-dependent effect reflected by an 11-fold higher resorption area and a sevenfold higher number of pits per square centimeter on dentin compared to bone. An important material-independent aspect was reflected by comparable mean pit area (μm²) and podosome patterns. Hence, dentin promotes the generation of resorbing osteoclasts, but once resorption has started, it proceeds independently of material properties. Thus, dentin is a suitable model substrate for data acquisition as long as osteoclast generation is not part of the analyses.
Laitala, T; Väänänen, H K
1994-01-01
The bone resorbing cells, osteoclasts, express high levels of carbonic anhydrase II (CA II) and vacuolar H(+)-ATPase (V-ATPase) during bone resorption. We have used antisense RNA and DNA molecules targeted against CA II, and against 16- and 60-kD subunits of vacuolar H(+)-ATPase (V-ATPase), to block the expression of these proteins in vitro. Osteoclastic bone resorption was studied in two in vitro culture systems: release of 45Calcium from prelabeled newborn mouse calvaria cultures, and resorption pit assays performed with rat osteoclasts cultured on bovine bone slices. Both antisense RNA and DNA against CA II and the V-ATPase were used to compare their specificities as regards inhibiting bone resorption in vitro. The antisense molecules inhibited the synthesis of these proteins by decreasing the amounts of mRNA in the cells in a highly specific manner. In osteoclast cultures treated with the 16-kD V-ATPase antisense RNA, acidification of an unknown population of intracellular vesicles was highly stimulated. The acidification of these vesicles was not sensitive to amiloride or bafilomycin A1. This suggests the existence of a back-up system for acidification of intracellular vesicles, when the expression of the V-ATPase is blocked. Our results further indicate that blocking the expression of CA II and V-ATPase with antisense RNA or DNA leads to decreased bone resorption. Images PMID:8200964
Buchwald, Zachary S.; Yang, Chang; Nellore, Suman; Shashkova, Elena V.; Davis, Jennifer L.; Cline, Anna; Ko, Je; Novack, Deborah V.; DiPaolo, Richard; Aurora, Rajeev
2015-01-01
TNFα and IL-17 secreted by proinflammatory T-cells (TEFF) promote bone erosion by activating osteoclasts. We previously demonstrated that in addition to bone resorption, osteoclasts act as antigen presenting cells to induce FoxP3 in CD8 T-cells (TcREG). The osteoclast-induced regulatory CD8 T-cells limit bone resorption in ovariectomized mice (a murine model of postmenopausal osteoporosis). Here we show that while low-dose RANKL maximally induces TcREG via Notch signaling pathway to limit bone resorption, high-dose RANKL promotes bone resorption. In vitro, both TNFα and IL-17, cytokines that are abundant in ovariectomized animals, suppress TcREG induction by osteoclasts by repressing Notch ligand expression in osteoclasts but this effect can be counteracted by addition of RANKL. Ovariectomized mice treated with low-dose RANKL induced TcREG that suppressed bone resorption, decreased TEFF levels and increased bone formation. High dose RANKL had the expected osteolytic effect. Low dose RANKL administration in ovariectomized mice lacking CD8 T-cells was also osteolytic, confirming that TcREG mediate this bone anabolic effect. Our results show that while RANKL directly stimulates osteoclasts to resorb bone, it also controls the osteoclasts’ ability to induce regulatory T-cells, engaging an important negative feedback loop. In addition to the conceivable clinical relevance to treatment of osteoporosis, these observations have potential relevance to induction of tolerance and autoimmune diseases. PMID:25656537
Morimoto, Yoshitaka; Hoshino, Hironobu; Sakurai, Takashi; Terakawa, Susumu; Nagano, Akira
2009-04-01
Quantitative evaluation of the ability of bone resorption activity in live osteoclast-like cells (OCLs) has not yet been reported on. In this study, we observed the sequential morphological change of OCLs and measured the resorbing calcium phosphate (CP) area made by OCLs alone and with the addition of elcatonin utilizing incubator facilitated video-enhanced microscopy. OCLs, which were obtained from a coculture of ddy-mouse osteoblastic cells and bone marrow cells, were cultured on CP-coated quartz cover slips. The CP-free area increased constantly in the OCLs alone, whereas it did not increase after the addition of elcatonin. This study showed that analysis of the resorbed areas under the OCL body using this method enables the sequential quantitative evaluation of the bone resorption activity and the effect of several therapeutic agents on bone resorption in vitro.
Plasma fluctuation in estradiol-17β and bone resorption markers around parturition in dairy cows
DEVKOTA, Bhuminad; TAKAHASHI, Masahiro; SATO, Saori; SASAKI, Kouya; UEKI, Atsushi; OSAWA, Takeshi; TAKAHASHI, Masahiro; YAMAGISHI, Norio
2015-01-01
Blood samples were obtained sequentially from 10 dairy cows around the time of parturition to assess plasma fluctuations in estradiol-17β (E2) levels in association with those of several bone resorption markers. Plasma E2 concentration increased sharply a few days prepartum and decreased quickly after parturition. In terms of bone resorption markers, the plasma level of tartrate-resistant acid phosphatase isoform 5b (TRAP5b) rose significantly, commencing 1 week prepartum, and was maintained at this level to a few days postpartum. The plasma concentration of carboxyterminal collagen cross-links of type-I collagen (CTx) increased significantly after parturition. These observations suggest that osteoclast-mediated bone resorption was activated after parturition when plasma E2 concentrations decreased. PMID:25755022
Plasma fluctuation in estradiol-17β and bone resorption markers around parturition in dairy cows.
Devkota, Bhuminad; Takahashi, Masahiro; Sato, Saori; Sasaki, Kouya; Ueki, Atsushi; Osawa, Takeshi; Takahashi, Masahiro; Yamagishi, Norio
2015-07-01
Blood samples were obtained sequentially from 10 dairy cows around the time of parturition to assess plasma fluctuations in estradiol-17β (E2) levels in association with those of several bone resorption markers. Plasma E2 concentration increased sharply a few days prepartum and decreased quickly after parturition. In terms of bone resorption markers, the plasma level of tartrate-resistant acid phosphatase isoform 5b (TRAP5b) rose significantly, commencing 1 week prepartum, and was maintained at this level to a few days postpartum. The plasma concentration of carboxyterminal collagen cross-links of type-I collagen (CTx) increased significantly after parturition. These observations suggest that osteoclast-mediated bone resorption was activated after parturition when plasma E2 concentrations decreased.
Inhibitory effects of a bisphosphonate (risedronate) on experimental periodontitis in rats.
Shoji, K; Horiuchi, H; Shinoda, H
1995-07-01
The present study was designed to examine whether systemic administration of a bisphosphonate, risedronate, could prevent alveolar bone resorption in rats with experimental periodontitis. On Day 1, an elastic ring was placed around the neck of the right mandibular 1st molar to induce inflammatory periodontitis. The animals were given daily injections of either 0.9% NaCl (control group), or 0.8, 1.6 or 3.2 mumoles/kg (s.c.) of risedronate (experimental groups) from Days 1 to 7, and were killed on Day 8. Histological examinations and determination of bone mineral density in the interdental area between the 1st and 2nd molars with an image analyzer revealed that the presence of the elastic ring induced a loss of attachment and bone resorption in the control group. Vigorous bone resorption, with appearance of a large number of osteoclasts, was observed in the interdental and bifurcation areas. In the experimental groups, however, the resorption of alveolar bone and the loss of bone mineral content in these areas were prevented in a dose-dependent fashion, especially at doses of 1.6 and 3.2 mumoles/kg. Many osteoclasts were detached from the surface of the alveolar bone and had degenerated appearances, such as rounded shapes, loss of polarity and pyknosis. These results suggest that administration of risedronate is effective in preventing bone resorption in periodontitis.
Lymphatic Endothelial Cells Produce M-CSF, Causing Massive Bone Loss in Mice.
Wang, Wensheng; Wang, Hua; Zhou, Xichao; Li, Xing; Sun, Wen; Dellinger, Michael; Boyce, Brendan F; Xing, Lianping
2017-05-01
Gorham-Stout disease (GSD) is a rare bone disorder characterized by aggressive osteolysis associated with lymphatic vessel invasion within bone marrow cavities. The etiology of GSD is not known, and there is no effective therapy or animal model for the disease. Here, we investigated if lymphatic endothelial cells (LECs) affect osteoclasts (OCs) to cause a GSD osteolytic phenotype in mice. We examined the effect of a mouse LEC line on osteoclastogenesis in co-cultures. LECs significantly increased receptor activator of NF-κB ligand (RANKL)-mediated OC formation and bone resorption. LECs expressed high levels of macrophage colony-stimulating factor (M-CSF), but not RANKL, interleukin-6 (IL-6), and tumor necrosis factor (TNF). LEC-mediated OC formation and bone resorption were blocked by an M-CSF neutralizing antibody or Ki20227, an inhibitor of the M-CSF receptor, c-Fms. We injected LECs into the tibias of wild-type (WT) mice and observed massive osteolysis on X-ray and micro-CT scans. Histology showed that LEC-injected tibias had significant trabecular and cortical bone loss and increased OC numbers. M-CSF protein levels were significantly higher in serum and bone marrow plasma of mice given intra-tibial LEC injections. Immunofluorescence staining showed extensive replacement of bone and marrow by podoplanin+ LECs. Treatment of LEC-injected mice with Ki20227 significantly decreased tibial bone destruction. In addition, lymphatic vessels in a GSD bone sample were stained positively for M-CSF. Thus, LECs cause bone destruction in vivo in mice by secreting M-CSF, which promotes OC formation and activation. Blocking M-CSF signaling may represent a new therapeutic approach for treatment of patients with GSD. Furthermore, tibial injection of LECs is a useful mouse model to study GSD. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
WAIF1 Is a Cell-Surface CTHRC1 Binding Protein Coupling Bone Resorption and Formation.
Matsuoka, Kazuhiko; Kohara, Yukihiro; Naoe, Yoshinori; Watanabe, Atsushi; Ito, Masako; Ikeda, Kyoji; Takeshita, Sunao
2018-04-06
The osteoclast-derived collagen triple helix repeat containing 1 (CTHRC1) protein stimulates osteoblast differentiation, but the underlying mechanism remains unclear. Here, we identified Wnt-activated inhibitory factor 1 (WAIF1)/5T4 as a cell-surface protein binding CTHRC1. The WAIF1-encoding Trophoblast glycoprotein (Tpbg) gene, which is abundantly expressed in the brain and bone but not in other tissues, showed the same expression pattern as Cthrc1. Tpbg downregulation in marrow stromal cells reduced CTHRC1 binding and CTHRC1-stimulated alkaline phosphatase activity through PKCδ activation of MEK/ERK, suggesting a novel WAIF1/PKCδ/ERK pathway triggered by CTHRC1. Unexpectedly, osteoblast lineage-specific deletion of Tpbg downregulated Rankl expression in mouse bones and reduced both bone formation and resorption; importantly, it impaired bone mass recovery following RANKL-induced resorption, reproducing the phenotype of osteoclast-specific Cthrc1 deficiency. Thus, the binding of osteoclast-derived CTHRC1 to WAIF1 in stromal cells activates PKCδ-ERK osteoblastogenic signaling and serves as a key molecular link between bone resorption and formation during bone remodeling. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral Research.
Ru, Nan; Liu, Sean Shih-Yao; Bai, Yuxing; Li, Song; Liu, Yunfeng; Wei, Xiaoxia
2016-04-01
BoneCeramic (Straumann, Basel, Switzerland) can regenerate bone in alveolar defects after tooth extraction, but it is unknown whether it is feasible to move a tooth through BoneCeramic grafting sites. The objective of this study was to investigate 3-dimensional real-time root resorption and bone responses in grafted sites during orthodontic tooth movement. Sixty 5-week-old rats were randomly assigned to 3 groups to receive BoneCeramic, natural bovine cancellous bone particles (Bio-Oss; Geistlich Pharma, Wolhusen, Switzerland), or no graft, after the extraction of the maxillary left first molar. After 4 weeks, the maxillary left second molar was moved into the extraction site for 28 days. Dynamic bone microstructures and root resorption were evaluated using in-vivo microcomputed tomography. Stress distribution and corresponding tissue responses were examined by the finite element method and histology. Mixed model analysis of variance was performed to compare the differences among time points with Bonferroni post-hoc tests at the significance level of P <0.05. The BoneCeramic group had the least amount of tooth movement and root resorption volumes and craters, and the highest bone volume fraction, trabecular number, and mean trabecular thickness, followed by the Bio-Oss and the control groups. The highest stress accumulated in the cervical region of the mesial roots. BoneCeramic has better osteoconductive potential and induces less root resorption compared with Bio-Oss grafting and naturally recovered extraction sites. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Uzawa, Toyonobu
2007-01-01
The parathyroid hormone (PTH) that is marketed outside Japan is for daily administration. It has been proven to increase bone mass and prevent fractures, and the effects are very strong. However, data suggest that daily administration of PTH increases bone resorption. By contrast, weekly administration of PTH, which is being developed in Japan, actually decreases bone resorption, and data suggest that this regimen maintains a good balance between bone formation (predominant) and bone resorption. Furthermore, it has been reported that weekly administration of PTH increases bone mass as much as every day administration of PTH, and as such, weekly administration of PTH has the potential to be a useful regimen with characteristics that are different from those of daily administration of PTH.
Sanbe, Toshihiro; Tomofuji, Takaaki; Ekuni, Daisuke; Azuma, Tetsuji; Tamaki, Naofumi; Yamamoto, Tatsuo
2007-11-01
A high-cholesterol diet stimulates alveolar bone resorption, which may be induced via tissue oxidative damage. Vitamin C reduces tissue oxidative damage by neutralizing free radicals and scavenging hydroxyl radicals, and its antioxidant effect may offer the clinical benefit of preventing alveolar bone resorption in cases of hyperlipidemia. We examined whether vitamin C could suppress alveolar bone resorption in rats fed a high-cholesterol diet. In this 12-week study, rats were divided into four groups: a control group (fed a regular diet) and three experimental groups (fed a high-cholesterol diet supplemented with 0, 1, or 2 g/l vitamin C). Vitamin C was provided by adding it to the drinking water. The bone mineral density of the alveolar bone was analyzed by microcomputerized tomography. As an index of tissue oxidative damage, the 8-hydroxydeoxyguanosine level in the periodontal tissue was determined using a competitive enzyme-linked immunosorbent assay. Hyperlipidemia, induced by a high-cholesterol diet, decreased rat alveolar bone density and increased the number of tartrate-resistant acid phosphatase-positive osteoclasts. The expression of 8-hydroxydeoxyguanosine was upregulated in the periodontal tissues. Intake of vitamin C reduced the effect of a high-cholesterol diet on alveolar bone density and osteoclast differentiation and decreased periodontal 8-hydroxydeoxyguanosine expression. In the rat model, vitamin C suppressed alveolar bone resorption, induced by high dietary cholesterol, by decreasing the oxidative damage of periodontal tissue.
Boix, D; Weiss, P; Gauthier, O; Guicheux, J; Bouler, J-M; Pilet, P; Daculsi, G; Grimandi, G
2006-11-01
The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute on the prevention of alveolar ridge resorption after tooth extraction. Maxillary and mandibular premolars were extracted from 3 Beagle dogs with preservation of alveolar bone. Thereafter, distal sockets were filled with an injectable bone substitute (IBS), obtained by combining a polymer solution and granules of a biphasic calcium phosphate (BCP) ceramic. As a control, the mesial sockets were left unfilled. After a 3 months healing period, specimens were removed and prepared for histomorphometric evaluation with image analysis. Histomorphometric study allowed to measure the mean and the maximal heights of alveolar crest modifications. Results always showed an alveolar bone resorption in unfilled sockets. Resorption in filled maxillary sites was significantly lower than in control sites. Interestingly, an alveolar ridge augmentation was measured in mandibular filled sockets including 30% of newly-formed bone. It was concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate can significantly increase alveolar ridge preservation after tooth extraction.
Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue
NASA Technical Reports Server (NTRS)
Alwood, J. S.; Shahnazari, M.; Chicana, B.; Schreurs, A. S.; Kumar, A.; Bartolini, A.; Shirazi-Fard, Y.; Globus, R. K.
2015-01-01
Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically-active, cancellous-bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total-body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16wk), male C57BL/6J mice were exposed to either 2Gy gamma rays (137Cs, 0.8Gy/min) or heavy ions (56Fe, 600MeV, 0.50-1.1Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is =10Gy) or accumulates over long-duration, interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4hrs-7d later. Gamma irradiation caused a prompt (2.6-fold within 4hrs) and persistent (peaking at 4.1-fold within 1d) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappaB-ligand (Rankl) within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3d of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (e.g., monocyte chemotactic protein-1 increased 11.9-fold, tumor necrosis factor-alpha increased 1.7- fold over controls). Marrow expression of the RANKL decoy receptor, osteoprotegerin (Opg), also rose after irradiation (11.3-fold). The ratio Rankl/Opg in marrow was increased 1.8-fold, a net pro-resorption balance. As expected, radiation increased a serum marker of resorption (tartrate resistant acid phosphatase) and led to cancellous bone loss (16% decrease in bone volume/total volume) through reduced trabecular struts. We conclude that total-body irradiation (gamma or heavy-ion) caused temporal, concerted regulation of gene expression within marrow and mineralized tissue for select cytokines which are responsible for osteoclastogenesis and elevated resorption; this is likely to account for rapid and progressive 52 deterioration of cancellous microarchitecture following exposure to ionizing radiation.
Metabolic bone disease in chronic renal failure. II. Renal transplant patients.
Huffer, W. E.; Kuzela, D.; Popovtzer, M. M.; Starzl, T. E.
1975-01-01
Trabecular vertebral bone of renal transplant patients was quantitatively compared with bone from normal individuals and dialyzed and nondialyzed patienets with chronic renal failure reported in detail in an earlier study. Long- and short-term transplant patients have increased bone resorption and mineralization defects similar to renal osteodystrophy in dialyzed and nondialyzed patients. However, in transplant patients the magnitude of resorption is greater, and bone volume tends to decrease rather than increase. Resorptive activity in transplant patients is maximal during the first year after transplantation. Bone volume decreases continuously for at least 96 months after transplantation. Only decreased bone volume correlated with success or failure of the renal transplant. Morphologic findings in this study correlate with other clinical and morphologic data to suggest that reduction in bone volume in transplant patients results from a combination of persistent hyperparathyroidism and suppression of bone formation by steroid therapy. Images Fig 1 PMID:1091152
Myricetin Prevents Alveolar Bone Loss in an Experimental Ovariectomized Mouse Model of Periodontitis
Huang, Jialiang; Wu, Chuanlong; Tian, Bo; Zhou, Xiao; Ma, Nian; Qian, Yufen
2016-01-01
Periodontitis is a common chronic inflammatory disease, which leads to alveolar bone resorption. Healthy and functional alveolar bone, which can support the teeth and enable their movement, is very important for orthodontic treatment. Myricetin inhibited osteoclastogenesis by suppressing the expression of some genes, signaling pathways, and cytokines. This study aimed to investigate the effects of myricetin on alveolar bone loss in an ovariectomized (OVX) mouse model of periodontitis as well as in vitro osteoclast formation and bone resorption. Twenty-four healthy eight-week-old C57BL/J6 female mice were assigned randomly to four groups: phosphate-buffered saline (PBS) control (sham) OVX + ligature + PBS (vehicle), and OVX + ligature + low or high (2 or 5 mg∙kg−1∙day−1, respectively) doses of myricetin. Myricetin or PBS was injected intraperitoneally (i.p.) every other day for 30 days. The maxillae were collected and subjected to further examination, including micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, and tartrate-resistant acid phosphatase (TRAP) staining; a resorption pit assay was also performed in vitro to evaluate the effects of myricetin on receptor activator of nuclear factor κ-B ligand (RANKL)-induced osteoclastogenesis. Myricetin, at both high and low doses, prevented alveolar bone resorption and increased alveolar crest height in the mouse model and inhibited osteoclast formation and bone resorption in vitro. However, myricetin was more effective at high dose than at low dose. Our study demonstrated that myricetin had a positive effect on alveolar bone resorption in an OVX mouse model of periodontitis and, therefore, may be a potential agent for the treatment of periodontitis and osteoporosis. PMID:27011174
Sowers, MaryFran R; Zheng, Huiyong; Greendale, Gail A; Neer, Robert M; Cauley, Jane A; Ellis, Jayne; Johnson, Sarah; Finkelstein, Joel S
2013-07-01
Our objective was to characterize changes in bone resorption in relation to the final menstrual period (FMP), reproductive hormones, body mass index (BMI), and ethnicity. Urinary type I collagen N-telopeptide (NTX), estradiol, and FSH levels were measured annually for up to 8 years spanning the menopause transition in 918 African American, Chinese, Japanese, or Caucasian women. Urinary NTX began to increase sharply about 2 years before the FMP, reaching its peak level about 1 to 1.5 years after the FMP. NTX levels declined modestly from 2 to 6 years after the FMP but remained about 20% higher than before the menopause transition. The sharp rise in FSH occurred in conjunction with a sharp decline in estradiol and shortly after FSH levels began increasing rapidly. The mean increase in urinary NTX across the menopause transition was greatest in women with BMI <25 kg/m² and smallest in women with BMI >30 kg/m². Increases in NTX were greatest in Japanese women and smallest in African Americans. These differences were attenuated, but not eliminated, when analyses were adjusted for covariates, particularly BMI. During the menopause transition, a decline in ovarian function beginning about 2 years before the FMP is followed by an increase in bone resorption and subsequently by bone loss. The magnitude of the increase in bone resorption is inversely associated with BMI. Ethnic differences in changes in bone resorption are attenuated, but not eliminated, by adjustment for BMI. Ethnic differences in BMI, and corresponding ethnic differences in bone resorption, appear to account for much of the ethnic variation in perimenopausal bone loss.
McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W
2008-02-01
Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.
Long-term effects of local pretreatment with alendronate on healing of replanted rat teeth.
Komatsu, K; Shimada, A; Shibata, T; Shimoda, S; Oida, S; Kawasaki, K; Nifuji, A
2008-04-01
Our previous study showed that topical alendronate, an inhibitor of bone resorption, reduces root resorption and ankylosis for 21 d after replantation of rat teeth. The aim of the present study was to evaluate the long-term inhibitory effects of topical alendronate in the replanted teeth. The rat maxillary first molars were extracted, placed in saline containing 1 mm alendronate (alendronate group) or saline (saline group) for 5 min and then replanted. The maxillae were dissected at 60 and 120 d. Microcomputed tomography horizontal sections at three root levels were analyzed for root and bone resorption, ankylosis and pulp mineralization. In the alendronate group at 60 and 120 d, the frequencies of resorption of roots and bone were lower than those in the saline group. The p values show statistical significances of lower frequencies in the alendronate group than in the saline group by chi-square test (see Table 1). Ankylosis and pulp mineralization occurred in the alendronate and saline groups. Bone marrow spaces were narrowed in conjunction with bone tissue expansion around the replanted teeth in the alendronate group. The inhibitory effects of topical alendronate were retained on root and bone resorption, but not on ankylosis and pulp mineralization, in the replanted teeth for 4 mo. Alendronate might also stimulate bone formation around the rat replanted teeth.
Osteoclast inhibition impairs chondrosarcoma growth and bone destruction.
Otero, Jesse E; Stevens, Jeff W; Malandra, Allison E; Fredericks, Douglas C; Odgren, Paul R; Buckwalter, Joseph A; Morcuende, Jose
2014-12-01
Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis.
Yamaguchi, Masayoshi
2006-11-01
Aging induces a decrease in bone mass, and osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Bone loss with increasing age may be due to decreased bone formation and increased bone resorption. Pharmacologic and nutritional factors may prevent bone loss with aging, although chemical compounds in food and plants which act on bone metabolism are poorly understood. We have found that isoflavones (including genistein and daidzein), which are contained in soybeans, have a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption, thereby increasing bone mass. Menaquinone-7, an analogue of vitamin K(2) which is abundant in fermented soybeans, has been demonstrated to stimulate osteoblastic bone formation and to inhibit osteoclastic bone resorption. Of various carotenoids, beta-cryptoxanthin, which is abundant in Satsuma mandarin (Citrus unchiu MARC), has a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption. The supplementation of these factors has a preventive effect on bone loss induced by ovariectomy in rats, which are an animal model of osteoporosis, and their intake has been shown to have a stimulatory effect on bone mass in humans. Factors with an anabolic effect on bone metabolism were found in extracts obtained from wasabi leafstalk (Wasabi japonica MATSUM), the marine alga Sargassum horneri, and bee pollen Cistus ladaniferus. Phytocomponent p-hydroxycinnamic acid was also found to have an anabolic effect on bone metabolism. Food chemical factors thus play a role in bone health and may be important in the prevention of bone loss with increasing age.
Sakai, Eiko; Aoki, Yuri; Yoshimatsu, Masako; Nishishita, Kazuhisa; Iwatake, Mayumi; Fukuma, Yutaka; Okamoto, Kuniaki; Tanaka, Takashi; Tsukuba, Takayuki
2016-07-15
Osteoclasts are multinucleated bone-resorbing cells that differentiate in response to receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). Enhanced osteoclastogenesis contributes to bone diseases, such as osteoporosis and rheumatoid arthritis. Rubus parvifolius L. is traditionally used as an herbal medicine for rheumatism; however, its detailed chemical composition and the molecular mechanisms responsible for its biological action have not been elucidated. To investigate the mechanisms by which R. parvifolius L. extract and its major constituent sanguiin H-6, inhibit osteoclastogenesis and bone resorption. Cell proliferation, cell differentiation, and bone resorption were detected in vitro. Inhibition of signaling pathways, marker protein expression, and protein nuclear translocation were evaluated by western blot analysis. Tumor necrosis factor-α (TNF-α)-mediated osteoclastogenesis was examined in vivo. R. parvifolius L. extract inhibited the bone-resorption activity of osteoclasts. In addition, sanguiin H-6 markedly inhibited RANKL-induced osteoclast differentiation and bone resorption, reduced reactive oxygen species production, and inhibited the phosphorylation of inhibitor of NF-κB alpha (IκBα) and p38 mitogen-activated protein kinase. Sanguiin H-6 also decreased the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), cathepsin K, and c-Src. Moreover, sanguiin H-6 inhibited the nuclear translocation of NFATc1, c-Fos, and NF-κB in vitro, as well as TNF-α-mediated osteoclastogenesis in vivo. Our data revealed that R. parvifolius L. has anti-bone resorption activity and suggest that its constituent, sanguiin H-6, can potentially be used for the prevention and treatment of bone diseases associated with excessive osteoclast formation and subsequent bone destruction. Copyright © 2016 Elsevier GmbH. All rights reserved.
A study of changes in bone metabolism in cases of gender identity disorder.
Miyajima, Tsuyoshi; Kim, Yoon Taek; Oda, Hiromi
2012-07-01
The aim of this study was to determine the effect of increasing estrogen and decreasing androgen in males and increasing androgen and decreasing estrogen in females on bone metabolism in patients with gender identity disorder (GID). We measured and examined bone mineral density (BMD) and bone metabolism markers retrospectively in GID patients who were treated in our hospital. In addition, we studied the effects of treatment on those who had osteoporosis. Patients who underwent a change from male to female (MtF) showed inhibition of bone resorption and increased L2-4 BMD whereas those who underwent a change from female to male (FtM) had increased bone resorption and decreased L2-4 BMD. Six months after administration of risedronate to FtM patients with osteoporosis, L2-4 BMD increased and bone resorption markers decreased. These results indicate that estrogen is an important element with regard to bone metabolism in males.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chackalaparampil, I.; Mukherjee, B.B.; Peri, A.
1994-09-01
Osteopetrosis, affecting mice and humans alike, arises from reduced or impaired bone resorption, causing abnormally dense bone formation. Normal bone differentiation requires continuous resorption and remodeling by osteoclasts which are derived from monocyte/macrophage lineage in the bone marrow. It has been reported that targeted homozygous disruption of c-src proto-oncogene in mice results in the development of osteopetrosis due to impaired bone-resorbing function of osteoclast cells. However, the molecular mechanism(s) which leads to osteoclast dysfunction in c-src deficient (src{sup -/-}) mice remains unclear. Here, we report that in embryonic fibroblasts derived from homozygous Src{sup -/-} mice, the expression of the genemore » coding for osteopontin (OP), a phosphorylated glycoprotein involved in bone differentiation, is drastically repressed. OP gene expression is not, however, affected in the heterozygous (Src{sup +/-}) mutant cells of identical origin, or in the c-src expression and OP production. Moreover, OP expression in c-src-deficient cells could be rescued upon treatment with 12-0-tetradecanoyl phorbol-13-myristate-acetate or okadaic acid. These observations indicate that OP expression is regulated via an src-mediated protein kinase C signaling pathway. Since it is known that OP mediates osteoclast adherence to the bone matrix, a key event in bone differentiation, our data is most significant in that they strongly suggest that drastic inhibition of synthesis of OP prevents osteoclasts in Src{sup -/-} mice from anchoring to the bone matrix. Consequently, this disruption of osteoclast adherence impairs their ability to form bone-resorbing ruffled border, causing osteopetrosis.« less
Segura-Castillo, José L; Aguirre-Camacho, Humberto; González-Ojeda, Alejandro; Michel-Perez, Jorge
2005-01-01
A major complication in 30% to 75% of cases of surgical treatment of alveolar cleft is resorption of the bone graft. A treatment alternative is the application of fibrin glue, which has the capacity to favor the integration of the graft. The main objective of the study was to evaluate if the use of the fibrin glue reduces bone resorption when it is applied locally. The authors designed a randomized clinical trial. Patients were divided into two groups: group 1, fibrin glue; and group 2, control. Pre- and postoperative graft volume, bone density, bone quality (Lekholm and Zarb, and Norton and Gamble classifications), and postoperative complications were evaluated. The follow-up for all patients was 3 months after discharge. Twenty-seven patients were surgically treated, 13 in group 1 and 14 in group 2. Group 1 had increased graft volume compared with group 2 (64.32 cm v 21.70 cm; P < 0.0001). Bone density was higher in group 1 than in group 2 (396.57 v 245.68; P > 0.076). Bone quality was type 1, 2 and 3 and 4 in group 1. Resorption in group 2 was 62.26%; in group 1, it was 29.72% (P > 0.081). The observed complications were infection and dehiscence of sutures (P > 0.537). The authors conclude that the fibrin glue significantly diminishes bone resorption, allowing improved graft integration and quality.
NASA Technical Reports Server (NTRS)
Globus, Ruth; Schreurs, Ann-Sofie; Tahimic, Candice; Shirazi-Fard, Yasaman; Alwood, Joshua; Shahnazari, Mohammed; Halloran, Bernard
2015-01-01
Our central hypothesis is that oxidative stress plays a key role in cell dysfunction and progressive bone loss caused by radiation exposure during spaceflight. In animal studies, excess free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. We previously reported that exposure to low or high-LET radiation rapidly increases expression levels of pro-osteoclastogenic and oxidative stress-related genes in bone and marrow, followed by pathological changes in skeletal structure. To screen various antioxidants for radioprotective effects on bone, 4 month old, male C57Bl6/J mice were treated with a dietary antioxidant cocktail, injectable alpha-lipoic acid, or a dried plum-enriched diet (DP). Mice were then exposed to 2Gy 137Cs total body radiation and one day later marrow cells were collected and the relevant genes analyzed for expression levels. Of the candidates tested, DP was most effective in reducing bone resorption-related gene expression. Microcomputed tomography revealed that DP also prevented the radiation-induced deterioration of skeletal microarchitecture, as indicated by percent bone volume, trabecular spacing and trabecular number. DP had similar protective effects on skeletal structure after sequential exposure to protons (0.5 Gy, 150MeV/n) and 56Fe 0.5Gy, 600 MeV/n). When cultured ex vivo under osteogenic conditions, bone marrow-derived cells from DP-fed animals exhibited increased colony numbers compared to control diet-fed animals. These findings suggest that DP exerted pro-osteogenic effects apart from previously identified anti-resorptive actions, which may contribute to radioprotection of skeletal tissue. In conclusion, a diet enriched in certain types of antioxidants and polyphenols such as DP may be useful as an intervention to protect tissues from degenerative effects of ionizing radiation.
The clinical utility of bone marker measurements in osteoporosis
2013-01-01
Osteoporosis is characterised by low bone mass and structural deterioration of bone tissue, resulting in increased fragility and susceptibility to fracture. Osteoporotic fractures are a significant cause of morbidity and mortality. Direct medical costs from such fractures in the UK are currently estimated at over two billion pounds per year, resulting in a substantial healthcare burden that is expected to rise exponentially due to increasing life expectancy. Currently bone mineral density is the WHO standard for diagnosis of osteoporosis, but poor sensitivity means that potential fractures will be missed if it is used alone. During the past decade considerable progress has been made in the identification and characterisation of specific biomarkers to aid the management of metabolic bone disease. Technological developments have greatly enhanced assay performance producing reliable, rapid, non-invasive cost effective assays with improved sensitivity and specificity. We now have a greater understanding of the need to regulate pre-analytical sample collection to minimise the effects of biological variation. However, bone turnover markers (BTMs) still have limited clinical utility. It is not routinely recommended to use BTMs to select those at risk of fractures, but baseline measurements of resorption markers are useful before commencement of anti-resorptive treatment and can be checked 3–6 months later to monitor response and adherence to treatment. Similarly, formation markers can be used to monitor bone forming agents. BTMs may also be useful when monitoring patients during treatment holidays and aid in the decision as to when therapy should be recommenced. Recent recommendations by the Bone Marker Standards Working Group propose to standardise research and include a specific marker of bone resorption (CTX) and bone formation (P1NP) in all future studies. It is hoped that improved research in turn will lead to optimised markers for the clinical management of osteoporosis and other bone diseases. PMID:23984630
Evenepoel, Pieter; Behets, Geert J; Viaene, Liesbeth; D'Haese, Patrick C
2017-02-01
Renal transplantation is believed to have a major impact on bone health. The present prospective observational bone biopsy study aimed to define the natural history of bone histomorphometry parameters in contemporaneous de novo renal transplant recipients. Paired bone biopsies were performed at the time of transplantation and at one-year posttransplantation in an unselected cohort of 36 patients referred for deceased kidney replacement. Parameters of mineral metabolism and circulating bone turnover markers were monitored as well. Static parameters of bone formation and especially bone resorption being already low-normal in the majority of patients at the time of renal transplantation, further declined during the first posttransplant year. However, interindividual variation was substantial, and significance was reached only for bone resorption parameters. Bone mineralization and trabecular bone volume were within the normal range at the time of transplantation (83.3% and 91.7% of graft recipients, respectively) and showed little change one-year posttransplantation. Changes in osteoclast number were paralleled by changes in circulating tartrate-resistant acid phosphatase 5b levels. Finally, cumulative glucocorticoid dose, but not the posttransplantation parathyroid hormone level, associated with trabecular bone loss. Thus, the impact of renal transplantation on bone histomorphometry is limited with only bone resorption, being already low at the time of transplantation, showing a further decline. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
The Triple Functions of D2 Silencing in Treatment of Periapical Disease.
Pan, Jie; Wang, Jue; Hao, Liang; Zhu, Guochun; Nguyen, Diep N; Li, Qian; Liu, Yuehua; Zhao, Zhihe; Li, Yi-Ping; Chen, Wei
2017-02-01
Dental caries is the most widespread chronic infectious disease. Inflammation in pulp tissues caused by dental caries will lead to periapical granulomas, bone erosion, loss of the tooth, and severe pain. Despite numerous efforts in recent studies to develop effective treatments for dental caries, the need for a potent therapy is still urgent. In this study, we applied a gene-based therapy approach by administering recombinant adeno-associated virus (AAV)-mediated Atp6v0d2 (d2) RNA interference knockdown of d2 gene expression to prevent periapical bone loss and suppress periapical inflammation simultaneously. The results showed that d2 depletion is simultaneously capable of reducing bone resorption with 75% protection through reducing osteoclasts, enhancing bone formation by increasing osterix expression, and inhibiting inflammation by decreasing T-cell infiltration. Notably, AAV-mediated gene therapy of d2 knockdown significantly reduced proinflammatory cytokine expression, including tumor necrosis factor α, interferon-γ, interleukin-1α, and interleukin 6 levels in periapical diseases caused by bacterial infection. Quantitative real-time polymerase chain reaction revealed that d2 knockdown reduced osteoclast-specific functional genes (ie, Acp5 and Ctsk) and increased osteoblast marker genes (ie, Osx and Opg) in periapical tissues. Collectively, our results showed that AAV-mediated d2 depletion in the periapical lesion area can prevent the progression of endodontic disease and bone erosion while significantly reducing the inflammatory over-response. These findings show that the depletion of d2 simultaneously reduces bone resorption, enhances bone formation, and inhibits inflammation caused by periapical diseases and provide significant insights into the potential effectiveness of AAV-sh-d2-mediated d2 silencing gene therapy as a major endodontic treatment. Copyright © 2016. Published by Elsevier Inc.
Two implants for all edentulous mandibles.
Wright, P S
2006-04-22
Complete dentures have always been a poor substitute for natural teeth. Mandibular complete dentures frequently cause pain and discomfort, accelerated residual bone resorption, while failing to restore effective chewing. The provision of two implants to stabilise the mandibular complete denture can result in significant improvements.
Excessive dietary intake of vitamin A reduces skull bone thickness in mice
Öhman, Caroline; Calounova, Gabriela; Rasmusson, Annica; Andersson, Göran; Pejler, Gunnar; Melhus, Håkan
2017-01-01
Calvarial thinning and skull bone defects have been reported in infants with hypervitaminosis A. These findings have also been described in humans, mice and zebrafish with loss-of-function mutations in the enzyme CYP26B1 that degrades retinoic acid (RA), the active metabolite of vitamin A, indicating that these effects are indeed caused by too high levels of vitamin A and that evolutionary conserved mechanisms are involved. To explore these mechanisms, we have fed young mice excessive doses of vitamin A for one week and then analyzed the skull bones using micro computed tomography, histomorphometry, histology and immunohistochemistry. In addition, we have examined the effect of RA on gene expression in osteoblasts in vitro. Compared to a standard diet, a high dietary intake of vitamin A resulted in a rapid and significant reduction in calvarial bone density and suture diastasis. The bone formation rate was almost halved. There was also increased staining of tartrate resistant acid phosphatase in osteocytes and an increased perilacunar matrix area, indicating osteocytic osteolysis. Consistent with this, RA induced genes associated with bone degradation in osteoblasts in vitro. Moreover, and in contrast to other known bone resorption stimulators, vitamin A induced osteoclastic bone resorption on the endocranial surfaces. PMID:28426756
Zhao, Ji-Jun; Wu, Zhao-Feng; Yu, Ying-Hao; Wang, Ling; Cheng, Li
2018-09-01
To explore the effects of IL-7/IL-7R on the RANKL-mediated osteoclast differentiation in vitro and OVX-induced bone loss in vivo. BMMs and RAW264.7 were transfected with IL-7, IL-7R siRNA, c-Fos siRNA, and c-jun siRNA and later stimulated by RANKL. TRAP and toluidine blue staining were used to observe osteoclast formation and bone resorption, respectively. HE and TRAP staining were used to detect trabecular bone microstructure and osteoclasts of mice, respectively. qRT-PCR and Western blot analysis were used to examine expression. IL-7 unregulated the expression of CTSK, NFATc1, MMP9, and the phosphorylation of p38 and Akt by activating the c-Fos/c-Jun pathway, which increased osteoclast numbers and bone resorption in RANKL-stimulated macrophages. While IL-7R siRNA and c-Fos siRNA decreased the expression, as well as and the phosphorylation of p38 and Akt.IL-7 decreased the BMD and OPG expression in OVX-induced mice and increased the TRAP positive cells, the mRNA expression of c-fos, c-jun, and RANKL, which was contradictory to IL-7R siRNA, and c-Fos siRNA. Furthermore, IL-7R siRNA and c-Fos siRNA caused thicker trabeculae, increased trabecular number, and decreased osteolysis in OVX mice. IL-7/IL-7R can promote RANKL-mediated osteoclast formation and bone resorption by activating the c-Fos/c-Jun pathway, as well as inducing bone loss in OVX mice. © 2018 Wiley Periodicals, Inc.
Basic research and clinical application of beta-tricalcium phosphate (β-TCP).
Tanaka, T; Komaki, H; Chazono, M; Kitasato, S; Kakuta, A; Akiyama, S; Marumo, K
2017-09-01
The mechanism of bone substitute resorption involves two processes: solution-mediated and cell-mediated disintegration. In our previous animal studies, the main resorption process of beta-tricalcium phosphate (β-TCP) was considered to be cell-mediated disintegration by TRAP-positive cells. Thus, osteoclast-mediated resorption of β-TCP is important for enabling bone formation. We also report the results of treatment with β-TCP graft in patients since 1989. Two to three weeks after implantation, resorption of β-TCP occurred from the periphery, and then continued toward the center over time. Complete or nearly complete bone healing was achieved in most cases within a few years and was dependent upon the amount of implanted material, the patient's age, and the type of bone (cortical or cancellous). We have previously reported that an injectable complex of β-TCP granules and collagen supplemented with rhFGF-2 enabled cortical bone regeneration of rabbit tibiae. Based on the experimental results, we applied this technique to the patients with femoral and humeral fractures in elderly patients, and obtained bone union. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Postmenopausal Osteoporosis: The Role of Immune System Cells
Faienza, Maria Felicia; Ventura, Annamaria; Marzano, Flaviana; Cavallo, Luciano
2013-01-01
In the last years, new evidences of the relationship between immune system and bone have been accumulated both in animal models and in humans affected by bone disease, such as rheumatoid arthritis, bone metastasis, periodontitis, and osteoporosis. Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone tissue with a subsequent increase in bone fragility and susceptibility to fractures. The combined effects of estrogen deprivation and raising of FSH production occurring in menopause cause a marked stimulation of bone resorption and a rapid bone loss which is central for the onset of postmenopausal osteoporosis. This review focuses on the role of immune system in postmenopausal osteoporosis and on therapeutic strategies targeting osteoimmunology pathways. PMID:23762093
Hydroxychloroquine affects bone resorption both in vitro and in vivo.
Both, Tim; Zillikens, M Carola; Schreuders-Koedam, Marijke; Vis, Marijn; Lam, Wai-Kwan; Weel, Angelique E A M; van Leeuwen, Johannes P T M; van Hagen, P Martin; van der Eerden, Bram C J; van Daele, Paul L A
2018-02-01
We recently showed that patients with primary Sjögren syndrome (pSS) have significantly higher bone mineral density (BMD) compared to healthy controls. The majority of those patients (69%) was using hydroxychloroquine (HCQ), which may have favorable effects on BMD. The aim of the study was to evaluate whether HCQ modulates osteoclast function. Osteoclasts were cultured from PBMC-sorted monocytes for 14 days and treated with different HCQ doses (controls 1 and 5 μg/ml). TRAP staining and resorption assays were performed to evaluate osteoclast differentiation and activity, respectively. Staining with an acidification marker (acridine orange) was performed to evaluate intracellular pH at multiple timepoints. Additionally, a fluorescent cholesterol uptake assay was performed to evaluate cholesterol trafficking. Serum bone resorption marker β-CTx was evaluated in rheumatoid arthritis patients. HCQ inhibits the formation of multinuclear osteoclasts and leads to decreased bone resorption. Continuous HCQ treatment significantly decreases intracellular pH and significantly enhanced cholesterol uptake in mature osteoclasts along with increased expression of the lowdensity lipoprotein receptor. Serum β-CTx was significantly decreased after 6 months of HCQ treatment. In agreement with our clinical data, we demonstrate that HCQ suppresses bone resorption in vitro and decreases the resorption marker β-CTx in vivo. We also showed that HCQ decreases the intracellular pH in mature osteoclasts and stimulates cholesterol uptake, suggesting that HCQ induces osteoclastic lysosomal membrane permeabilization (LMP) leading to decreased resorption without changes in apoptosis. We hypothesize that skeletal health of patients with increased risk of osteoporosis and fractures may benefit from HCQ by preventing BMD loss. © 2017 Wiley Periodicals, Inc.
Wei, X X; Chu, J P; Zou, Y Z; Ru, N; Cui, S X; Bai, Y X
2015-12-22
The aim of this study was to investigate the effect of local administration of odanacatib (ODN) on orthodontic root resorption and the status of alveolar bone metabolism in rat molars. All specimens were scanned using microcomputed tomography and then the raw images were reconstructed. The total volume of the root resorption craters of the 60 g-NS (normal saline) group was higher than in the 60 g-ODN group and the control group. In the 60 g-NS group, the bone volume fraction values of alveolar bone were significantly decreased compared with the other 2 groups. There were no significant differences in the bone volume fraction values of the tibiae among the 3 groups. The results of tartrate-resistant acid phosphatase-positive (TRAP+) numbers showed that there was no difference between the 60 g-NS group and the 60 g-ODN group. The expression of cathepsin K was decreased significantly in the 60 g-ODN group. These results indicate that ODN reduces orthodontics-induced external root resorption and increases alveolar bone metabolism. This may be because ODN inhibits the activity of odontoclasts, but maintains the quantity of odontoclasts and enhances bone formation. ODN promotes local alveolar bone metabolism, but does not affect systemic bone metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang
Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiationmore » and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.« less
Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation
McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth
2015-01-01
ABSTRACT Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. PMID:26157160
Matthews, Brya G; Roeder, Emilie; Wang, Xi; Aguila, Hector Leonardo; Lee, Sun-Kyeong; Grcevic, Danka; Kalajzic, Ivo
2017-10-01
Osteogenesis imperfecta (OI) is a disease caused by defects in type I collagen production that results in brittle bones. While the pathology is mainly caused by defects in the osteoblast lineage, there is also elevated bone resorption by osteoclasts resulting in high bone turnover in severe forms of the disease. Osteoclasts originate from hematopoietic myeloid cells, however changes in hematopoiesis have not been previously documented in OI. In this study, we evaluated hematopoietic lineage distribution and osteoclast progenitor cell frequency in bone marrow, spleen and peripheral blood of osteogenesis imperfecta murine (OIM) mice, a model of severe OI. We found splenomegaly in all ages examined, and expansion of myeloid lineage cells (CD11b + ) in bone marrow and spleen of 7-9week old male OIM animals. OIM spleens also showed an increased frequency of purified osteoclast progenitors. This phenotype is suggestive of chronic inflammation. Isolated osteoclast precursors from both spleen and bone marrow formed osteoclasts more rapidly than wild-type controls. We found that serum TNFα levels were increased in OIM, as was IL1α in OIM females. We targeted inflammation therapeutically by treating growing animals with murine TNFR2:Fc, a compound that blocks TNFα activity. Anti-TNFα treatment marginally decreased spleen mass in OIM females, but failed to reduce bone resorption, or improve bone parameters or fracture rate in OIM animals. We have demonstrated that OIM mice have changes in their hematopoietic system, and form osteoclasts more rapidly even in the absence of OI osteoblast signals, however therapy targeting TNFα did not improve disease parameters. Copyright © 2017 Elsevier Inc. All rights reserved.
Rapidly Assessing Changes in Bone Mineral Balance Using Natural Stable Calcium Isotopes
NASA Technical Reports Server (NTRS)
Morgan, J. L. L.; Gordon, G. W.; Romaniello, S. J.; Skulan, J. L.; Smith, S. M.; Anbar, A. D.
2011-01-01
We demonstrate that variations in the Ca isotope ratios in urine rapidly and quantitatively reflect changes in bone mineral balance. This variation occurs because bone formation depletes soft tissue of light Ca isotopes, while bone resorption releases that isotopically light Ca back into soft tissue. In a study of 12 individuals confined to bed rest, a condition known to induce bone resorption, we show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker, while bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged. Ca isotopes can in principle be used to quantify net changes in bone mass. Ca isotopes indicate an average loss of 0.62 +/- 0.16 % in bone mass over the course of this 30-day study. The Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.
Emerging treatments for postmenopausal osteoporosis – focus on denosumab
Geusens, Piet
2009-01-01
The pathway of the receptor activator of the nuclear factor κB ligand (RANKL), RANK and osteoprotegerin (OPG) plays a central role in coupling bone formation and resorption during normal bone turnover and in a wide spectrum of diseases characterized by disturbed bone remodeling, increased bone resorption and bone destruction (osteoporosis, Paget’s disease of bone, rheumatoid arthritis [RA], metastatic bone disease). Clinical trials indicate that denosumab, a RANKL-specific recombinant humanized monoclonal antibody, is effective in suppressing bone resorption, resulting in increase in bone mineral density (BMD) in post-menopausal women with low BMD, and has the potential to prevent progression of erosions in RA and of skeletal-related events in metastatic bone disease. The effects on fracture reduction in postmenopausal osteoporosis are awaited from the recently finished FREEDOM study. In clinical trials with denosumab, overall adverse events were similar to placebo or comparators, indicating a favorable safety profile in these diseases, which until now have been available up to 4 years, but data on long-term safety will be needed. PMID:19554095
Smad4 is required to inhibit osteoclastogenesis and maintain bone mass.
Morita, Mayu; Yoshida, Shigeyuki; Iwasaki, Ryotaro; Yasui, Tetsuro; Sato, Yuiko; Kobayashi, Tami; Watanabe, Ryuichi; Oike, Takatsugu; Miyamoto, Kana; Takami, Masamichi; Ozato, Keiko; Deng, Chu-Xia; Aburatani, Hiroyuki; Tanaka, Sakae; Yoshimura, Akihiko; Toyama, Yoshiaki; Matsumoto, Morio; Nakamura, Masaya; Kawana, Hiromasa; Nakagawa, Taneaki; Miyamoto, Takeshi
2016-10-12
Bone homeostasis is maintained as a delicate balance between bone-resorption and bone-formation, which are coupled to maintain appropriate bone mass. A critical question is how bone-resorption is terminated to allow bone-formation to occur. Here, we show that TGFβs inhibit osteoclastogenesis and maintain bone-mass through Smad4 activity in osteoclasts. We found that latent-TGFβ1 was activated by osteoclasts to inhibit osteoclastogenesis. Osteoclast-specific Smad4 conditional knockout mice (Smad4-cKO) exhibited significantly reduced bone-mass and elevated osteoclast formation relative to controls. TGFβ1-activation induced expression of Irf8 and Bcl6, both of which encode factors inhibiting osteoclastogenesis, by blocking their negative regulator, Prdm1, in osteoclasts in a Smad4-dependent manner. Reduced bone-mass and accelerated osteoclastogenesis seen in Smad4-cKO were abrogated by Prdm1 deletion. Administration of latent-TGFβ1-Fc to wild-type mice antagonized LPS-induced bone destruction in a model of activated osteoclast-mediated bone destruction. Thus, latent-TGFβ1-Fc could serve as a promising new therapeutic agent in bone diseases marked by excessive resorption.
Song, Ruilong; Gu, Jianhong; Liu, Xuezhong; Zhu, Jiaqiao; Wang, Qichao; Gao, Qian; Zhang, Jiaming; Cheng, Laiyang; Tong, Xishuai; Qi, Xinyi; Yuan, Yan; Liu, Zongping
2014-09-01
Bone remodeling is dependent on the dynamic equilibrium between osteoclast-mediated bone resorption and osteoblast-mediated osteogenesis. The sealing zone is an osteoclast-specific cytoskeletal structure, the integrity of which is critical for osteoclast-mediated bone resorption. To date, studies have focused mainly on the osteoprotegerin (OPG)‑induced inhibition of osteoclast differentiation through the OPG/receptor activator of the nuclear factor kappa-B ligand (RANKL)/RANK system, which affects the bone resorption of osteoclasts. However, the effects of OPG on the sealing zone have not been reported to date. In this study, the formation of the sealing zone was observed by Hoffman modulation contrast (HMC) microscopy and confocal laser scanning microscopy. The effects of OPG on the existing sealing zone and osteoclast-mediated bone resorption activity, as well as the regulatory role of genes involved in the formation of the sealing zone were examined by immunofluorescence staining, HMC microscopy, quantitative reverse transcription polymerase chain reaction (RT-qPCR), western blot analysis and scanning electron microscopy. The sealing zone was formed on day 5, with belt-like protuberances at the cell edge and scattered distribution of cell nuclei, but no filopodia. The sealing zone was intact in the untreated control group. However, defects in the sealing zone were observed in the OPG-treated group (20 ng/ml) and the structure was absent in the groups treated with 40 and 80 ng/ml OPG. The podosomes showed a scattered or clustered distribution between the basal surface of the osteoclasts and the well surface. Furthermore, resorption lacunae were not detected in the 20 ng/ml OPG-treated group, indicating the loss of osteoclast-mediated bone resorption activity. Treatment with OPG resulted in a significant decrease in the expression of Arhgef8/Net1 and DOCK5 Rho guanine nucleotide exchange factors (RhoGEFs), 10 of 18 RhoGTPases (RhoA, RhoB, cdc42v1, cdc42v2, RhoU/Wrch1, RhoF/Rif, Rac2, RhoG, Rnd1 and RhoBTB1), ROCK1 and ROCK2. In conclusion, podosome distribution was affected by the OPG-induced inhibition of the expression of genes in the RhoGTPase signaling pathway. This resulted in damage to or destruction of the sealing zone, thus inhibiting osteoclast-mediated bone resorption activity.
Bone augmentation of the osteo-odonto alveolar lamina in MOOKP--will it delay laminar resorption?
Iyer, Geetha; Srinivasan, Bhaskar; Agarwal, Shweta; Rishi, Ekta; Rishi, Pukhraj; Rajan, Gunaseelan; Shanmugasundaram, Shanmugasundaram
2015-07-01
We aimed to describe a new technique and analyse the early outcomes of augmenting the canine tooth using a mandibular bone graft in an attempt to delay or retard the process of laminar resorption following the modified osteo odonto keratoprosthesis (MOOKP) procedure. This was a retrospective case series. Eyes that underwent the bone augmentation procedure between December 2012 and February 2014 were retrospectively analysed. The procedure, performed by the oromaxillofacial surgeon, involved securing a mandibular bone graft beneath the periosteum on the labial aspect of the canine tooth chosen to be harvested for the MOOKP procedure. This procedure was performed simultaneously with the Stage 1 A of the MOOKP. Three months later, the tooth was harvested and fashioned into the osteo-odonto alveolar lamina similar to the method described in the Rome-Vienna Protocol. The bone augmentation procedure was performed in 11 eyes (five SJS/ six chemical injuries). The mean follow-up after Stage 2 of MOOKP procedure in these eyes was 7.45 months (2 to 20 months). Complications noted were peripheral laminar exposure (three eyes-SJS) and bone graft exposure and necrosis in the mouth (nine-SJS). No evidence of clinical laminar resorption was noted in any of the eyes. Laminar resorption in MOOKP can lead to vision and globe threatening complications due to the consequent cylinder instability and chances of extrusion. Augmenting the bone on the labial aspect of the canine tooth might have a role to play in delaying or preventing laminar resorption.
Thaunat, Mathieu; Nourissat, Geoffroy; Gaudin, Pascal; Beaufils, Philippe
2006-06-01
We report a case of tibial plateau fracture after previous anterior cruciate ligament (ACL) reconstruction using patellar tendon autograft and bioabsorbable screws 4 years previously. The fracture occurred through the tibial tunnel. The interference screw had undergone complete resorption and the tunnel widening had increased. The resorption of the interference screw did not simultaneously promote and foster the growth of surrounding bone tissue. Therefore, the area of reactive tissue left by the screw resorption in an enlarged bone tunnel may lead to vulnerability of the tibial plateau. Stress risers would occur following ACL reconstruction if either resorption is not complete or bony integration is not complete.
Sakuma, Yoko; Tanaka, Kiyoshi; Suda, Michio; Komatsu, Yasato; Yasoda, Akihiro; Miura, Masako; Ozasa, Ami; Narumiya, Shuh; Sugimoto, Yukihiko; Ichikawa, Atsushi; Ushikubi, Fumitaka; Nakao, Kazuwa
2000-01-01
In a previous study we showed that the involvement of EP4 subtype of the prostaglandin E (PGE) receptor is crucial for lipopolysaccharide (LPS)-induced osteoclast formation in vitro. The present study was undertaken to test whether EP4 is actually associated with LPS-induced bone resorption in vivo. In wild-type (WT) mice, osteoclast formation in vertebrae and tibiae increased 5 days after systemic LPS injection, and urinary excretion of deoxypyridinoline, a sensitive marker for bone resorption, statistically increased 10 days after injection. In EP4 knockout (KO) mice, however, LPS injection caused no significant changes in these parameters throughout the experiment. LPS exposure for 4 h strongly induced osteoclast differentiation factor (ODF) mRNA expression in primary osteoblastic cells (POB) both from WT and EP4 KO mice, and this expression was not inhibited by indomethacin, suggesting prostaglandin (PG) independence. LPS exposure for 24 h further induced ODF expression in WT POB, but not in EP4 KO POB. Indomethacin partially inhibited ODF expression in WT POB, but not in EP4 KO POB. These data suggest that ODF is induced both PG dependently and PG independently. LPS exposure for 24 h induced slightly greater osteoclastgenesis inhibitory factor (OCIF) mRNA expression in EP4 KO than in WT POB. These findings suggest that the reduced ODF expression and apparently increased OCIF expression also are responsible for the markedly reduced LPS-induced osteoclast formation in EP4 KO mice. Our results show that the EP4 subtype of the PGE receptor is involved in LPS-induced bone resorption in vivo also. Since LPS is considered to be largely involved in bacterially induced bone loss, such as in periodontitis and osteomyelitis, our study is expected to help broaden our understanding of the pathophysiology of these conditions. PMID:11083800
Matsumoto, Shigeru; Tominari, Tsukasa; Matsumoto, Chiho; Yoshinouchi, Shosei; Ichimaru, Ryota; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki
2018-01-20
Polymethoxyflavonoids (PMFs) are a family of the natural compounds that mainly compise nobiletin, tangeretin, heptamethoxyflavone (HMF), and tetramethoxyflavone (TMF) in citrus fruits. PMFs have shown various biological functions, including anti-oxidative effects. We previously showed that nobiletin, tangeretin, and HMF all inhibited interleukin (IL)-1-mediated osteoclast differentiation via the inhibition of prostaglandin E2 synthesis. In this study, we created an original mixture of PMFs (nobiletin, tangeretin, HMF, and TMF) and examined whether or not PMFs exhibit co-operative inhibitory effects on osteoclastogenesis and bone resorption. In a coculture of bone marrow cells and osteoblasts, PMFs dose-dependently inhibited IL-1-induced osteoclast differentiation and bone resorption. The optimum concentration of PMFs was lower than that of nobiletin alone in the suppression of osteoclast differentiation, suggesting that the potency of PMFs was stronger than that of nobiletin in vitro. The oral administration of PMFs recovered the femoral bone loss induced by estrogen deficiency in ovariectomized mice. We further tested the effects of PMFs on lipopolysaccharide-induced bone resorption in mouse alveolar bone. In an ex vivo experimental model for periodontitis, PMFs significantly suppressed the bone-resorbing activity in organ cultures of mouse alveolar bone. These results indicate that a mixture of purified nobiletin, tangeretin, HMF, and TMF exhibits a co-operative inhibitory effect for the protection against bone loss in a mouse model of bone disease, suggesting that PMFs may be potential candidates for the prevention of bone resorption diseases, such as osteoporosis and periodontitis.
NASA Technical Reports Server (NTRS)
Zwart, S. R.; Watts, S. M.; Sams, C. F.; Whitson, P. A.; Smith, S. M.
2006-01-01
In several studies we tested the concepts that diet can alter acid-base balance and that reducing the dietary acid load has a positive effect on maintenance of bone. In study 1, (n = 11, 60-90 d bed rest), the renal acid load of the diet was estimated from its chemical composition, and was positively correlated with urinary markers of bone resorption (P less than 0.05); that is, the greater the acid load, the greater the excretion of bone resorption markers. In study 2, in males (n = 8, 30 d bed rest), an estimate of the ratio of nonvolatile acid precursors to base precursors in the diet was positively correlated (P less than 0.05) with markers of bone resorption. In study 3, for 28 d subjects received either a placebo (n = 6) or an essential amino acid supplement (n = 7) that included methionine, a known acid precursor. During bed rest (28 d), urinary calcium was greater than baseline levels in the supplemented group but not the control group (P less than 0.05), and in the supplemented group, urinary pH decreased (P less than 0.05). In study 4, less bone resorption occurred in space crew members who received potassium citrate (n = 6) during spaceflight of 4-6 months than in crew members who received placebo or were not in the study (n = 8) (P less than 0.05). Reducing acid load has the potential to mitigate increased bone resorption during spaceflight, and may serve as a bone loss countermeasure.
Darton, Yves
2014-03-01
Bone resorption within the cervical spine due to vertebral arterial tortuosities is rarely observed in medical practice because the condition often lacks clinical symptoms. Traumatic complications involving the vertebral arteries are relatively common and occasionally very serious, but very few affect bone, appearing only when survival has been sufficiently long for a pseudoaneurysm to form. CT scans and MRI screening, practised increasingly today following traffic and sports accidents, incidentally show that arterial tortuosities that had stimulated bone resorption are relatively frequent. Only rarely do such tortuosities cause nerve compression or trigger orthopaedic problems, while large pseudoaneurysms and congenital absence of a vertebral pedicle may require surgery to stabilize the spine. There are few publications by palaeopathologists reporting such conditions of the cervical vertebrae. This contribution reports a case of a tiered bilateral tortuosity of the vertebral artery dating from the Early Middle Ages; it provides a basis by which to recognize this type of lesion in osteoarchaeology, and it attests to the fact that multiple tortuosities may lead to spinal instability in the form of spine sprain. Copyright © 2013 Elsevier Inc. All rights reserved.
Design of Composite Hip Prostheses Considering the Long-Term Behavior of the Femur
NASA Astrophysics Data System (ADS)
Lim, Jong Wan; Jeong, Jae Youn; Ha, Sung Kyu
A design method for the hip prosthesis is proposed which can alleviate problems associated with stress shielding, proximal loosening and the high stress of bone-implant interfaces after total hip replacement. The stress shielding which may lead to bone resorption, can cause a loosening of the stem and a fracture of femoral bone. Generally the composites were more suitable for hip prosthesis material in the long-term stability than metallic alloy because design cases of composite materials produced less stress shielding than titanium alloy. A bone remodeling algorithm was implemented in a nonlinear finite element program to predict the long-term performance of the hip prosthesis. The three neck shapes and three cross sections of composite hip were examined. It was found that the stress concentration in the distal region of the titanium stem which may cause the patient's thigh pains was reduced using composite material. The head neck shape was closely related with the cortical bone resorption and the cancellous bone apposition at proximal region whereas the cross-section was closely related with the relative micromotion between interfaces. The convex head neck type with the quadrangle cross-section produced less subsidence at proximal region on the medial side than the others. For all composite material cases, the cancellous bone apposition occurred at partial interfaces, which may result in a stable bio-fixation. The design performances of the convex neck head type with the hexagonal cross-section designed to insure the long-term stability were found to be more suitable than the others.
Peculiarities of the bone tissue resorption under microgravity conditions
NASA Astrophysics Data System (ADS)
Rodionova, N.; Oganov, V.; Polkovenko, O.; Nitsevich, T.
The actual problem - peculiarities of resorptive processes in the spongiose of thingbones - we studied with the use of tranmissive electron microscopy in experiments on rats (American space station SLS-2) and on monkeys Macaca mulatt? (BION-11). Animals were onboard during 2 weeks. There was established, that the resorption happen with osteoclasts participation. They can create groups of cells. In the osteoclasts population we indicated not typical for the control (ground experiment) "giant" cells, which have on ultrathin sections 5-6 nuclei, many lysosomes, well developed "light" zone and "brush-border". The destruction of minera lized matrix in bone lacunas also happens by the way of osteolytic activity of osteocytes. Lysosome ferments of osteocytes are secreted by the eczocytosis. The osteocytic osteolysis, as well as the osteoclastic one can be seen as a physiological, gormon-dependent mechanism of resorption. The presence of a considerable number of neutrophiles, which enter in some zones of resorption is also typical. When these neutrophiles destruct, they release lysosomic ferments that dissolve the bone matrix. In some zones of resorption we noted the presence of the row from collagen fibrils, which loosed crystals , on mineralized matrix borders. The cell detritus is noted in zones of surface dissolving among crystallic conglomerates. It certificates the processes of osteogenic cells destruction that happen here. So, under the microgravity conditions in zones of adaptive remodeling of the spongiose the processes of the bone tissue resorption happen by some ways, namely: by the functional activization of osteoclasts; by the osteocytic osteolysis increasing; as a result of hydrolytic activity of neutrophiles, entering in these zones, and also by the local demineralization and further destruction of bone matrix surface zones.
Hypergravity suppresses bone resorption in ovariectomized rats
NASA Astrophysics Data System (ADS)
Ikawa, Tesshu; Kawaguchi, Amu; Okabe, Takahiro; Ninomiya, Tadashi; Nakamichi, Yuko; Nakamura, Midori; Uehara, Shunsuke; Nakamura, Hiroaki; Udagawa, Nobuyuki; Takahashi, Naoyuki; Nakamura, Hiroaki; Wakitani, Shigeyuki
2011-04-01
The effects of gravity on bone metabolism are unclear, and little has been reported about the effects of hypergravity on the mature skeleton. Since low gravity has been shown to decrease bone volume, we hypothesized that hypergravity increases bone volume. To clarify this hypothesis, adult female rats were ovariectomized and exposed to hypergravity (2.9G) using a centrifugation system. The rats were killed 28 days after the start of loading, and the distal femoral metaphysis of the rats was studied. Bone architecture was assessed by micro-computed tomography (micro-CT) and bone mineral density was measured using peripheral quantitative CT (pQCT). Hypergravity increased the trabecular bone volume of ovariectomized rats. Histomorphometric analyses revealed that hypergravity suppressed both bone formation and resorption and increased bone volume in ovariectomized rats. Further, the cell morphology, activity, proliferation, and differentiation of osteoclasts and osteoblasts exposed to hypergravity were evaluated in vitro. Hypergravity inhibited actin ring formation in mature osteoclasts, which suggested that the osteoclast activity was suppressed. However, hypergravity had no effect on osteoblasts. These results suggest that hypergravity can stimulate an increase in bone volume by suppressing bone resorption in ovariectomized rats.
Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair.
Paiva, Katiucia B S; Granjeiro, José M
2017-01-01
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering. © 2017 Elsevier Inc. All rights reserved.
Arabnejad, Sajad; Johnston, Burnett; Tanzer, Michael; Pasini, Damiano
2017-08-01
Current hip replacement femoral implants are made of fully solid materials which all have stiffness considerably higher than that of bone. This mechanical mismatch can cause significant bone resorption secondary to stress shielding, which can lead to serious complications such as peri-prosthetic fracture during or after revision surgery. In this work, a high strength fully porous material with tunable mechanical properties is introduced for use in hip replacement design. The implant macro geometry is based off of a short stem taper-wedge implant compatible with minimally invasive hip replacement surgery. The implant micro-architecture is fine-tuned to locally mimic bone tissue properties which results in minimum bone resorption secondary to stress shielding. We present a systematic approach for the design of a 3D printed fully porous hip implant that encompasses the whole activity spectrum of implant development, from concept generation, multiscale mechanics of porous materials, material architecture tailoring, to additive manufacturing, and performance assessment via in vitro experiments in composite femurs. We show that the fully porous implant with an optimized material micro-structure can reduce the amount of bone loss secondary to stress shielding by 75% compared to a fully solid implant. This result also agrees with those of the in vitro quasi-physiological experimental model and the corresponding finite element model for both the optimized fully porous and fully solid implant. These studies demonstrate the merit and the potential of tuning material architecture to achieve a substantial reduction of bone resorption secondary to stress shielding. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1774-1783, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Impact of bone lead and bone resorption on plasma and whole blood lead levels during pregnancy.
Téllez-Rojo, Martha María; Hernández-Avila, Mauricio; Lamadrid-Figueroa, Héctor; Smith, Donald; Hernández-Cadena, Leticia; Mercado, Adriana; Aro, Antonio; Schwartz, Joel; Hu, Howard
2004-10-01
The authors tested the hypotheses that maternal bone lead burden is associated with increasing maternal whole blood and plasma lead levels over the course of pregnancy and that this association is modified by rates of maternal bone resorption. A total of 193 Mexican women were evaluated (1997-1999) in the first, second, and third trimesters of pregnancy. Whole blood lead and plasma lead levels were measured in each trimester. Urine was analyzed for cross-linked N-telopeptides (NTx) of type I collagen, a biomarker of bone resorption. Patella and tibia lead levels were measured at 4 weeks postpartum. The relation between whole blood, plasma, and bone lead and NTx was assessed using mixed models. Plasma lead concentrations followed a U-shape, while NTx levels increased significantly during pregnancy. In a multivariate model, the authors observed a significant and positive interaction between NTx and bone lead when plasma lead was used as the outcome variable. Dietary calcium intake was inversely associated with plasma lead. Results for whole blood lead were similar but less pronounced. These results confirm previous evidence that bone resorption increases during pregnancy, with a consequential significant release of lead from bone, constituting an endogenous source of prenatal exposure. They also provide a rationale for testing strategies (e.g., nutritional supplementation with calcium) aimed at decreasing prenatal lead exposure.
Spinal Cord Injury-Induced Osteoporosis: Pathogenesis and Emerging Therapies
Battaglino, Ricardo A.; Lazzari, Antonio A.; Garshick, Eric; Morse, Leslie R.
2012-01-01
Spinal cord injury causes rapid, severe osteoporosis with increased fracture risk. Mechanical unloading after paralysis results in increased osteocyte expression of sclerostin, suppressed bone formation, and indirect stimulation of bone resorption. At this time there are no clinical guidelines to prevent bone loss after SCI and fractures are common. More research is required to define the pathophysiology and epidemiology of SCI-induced osteoporosis. This review summarizes emerging therapeutics including anti-sclerostin antibodies, mechanical loading of the lower extremity with electrical stimulation, and mechanical stimulation via vibration therapy. PMID:22983921
A Case of Teriparatide on Pregnancy-Induced Osteoporosis
Lee, Seok Hong; Hong, Moon-Ki; Park, Seung Won; Park, Hyoung-Moo; Kim, Jaetaek
2013-01-01
Pregnancy-induced osteoporosis is a rare disorder characterized by fragility fracture and low bone mineral density (BMD) during or shortly after pregnancy, and its etiology is still unclear. We experienced a case of a 39-year-old woman who suffered from lumbago 3 months after delivery. Biochemical evidence of increased bone resorption is observed without secondary causes of osteoporosis. Radiologic examination showed multiple compression fractures on her lumbar vertebrae. We report a case of patient with pregnancy-induced osteoporosis improved her clinical symptom, BMD and bone turnover marker after teriparatide therapy. PMID:24524067
Osteoinductive effect of bone bank allografts on human osteoblasts in culture.
de la Piedra, Concepción; Vicario, Carlos; de Acuña, Lucrecia Rodríguez; García-Moreno, Carmen; Traba, Maria Luisa; Arlandis, Santiago; Marco, Fernando; López-Durán, Luis
2008-02-01
Incorporation of a human bone allograft requires osteoclast activity and growth of recipient osteoblasts. The aim of this work was to study the effects produced by autoclavated and -80 degrees C frozen bone allografts on osteoblast proliferation and synthesis of interleukin 6 (IL6), activator of bone resorption, aminoterminal propeptide of procollagen I (PINP), marker of bone matrix formation, and osteoprotegerin (OPG), inhibitor of osteoclast activity and differentiation. Allografts were obtained from human femoral heads. Human osteoblasts were cultured in the presence (problem group) or in the absence (control group) of allografts during 15 days. Allografts produced a decrease in osteoblast proliferation in the first week of the experiment, and an increase in IL6 mRNA, both at 3 h and 2 days, and an increase in the IL6 released to the culture medium the second day of the experiment. We found a decrease in OPG released to the culture on the 2nd and fourth days. These results suggest an increase in bone resorption and a decrease in bone formation in the first week of the experiment. In the second week, allografts produced an increase in osteoblast proliferation and PINP release to the culture medium, indicating an increase in bone formation; an increase in OPG released to the culture medium, which would indicate a decrease in bone resorption; and a decrease in IL6, indicating a decrease in bone resorption stimulation. These results demonstrate that autoclavated and -80 degrees C frozen bone allografts produce in bone environment changes that regulate their own incorporation to the recipient bone.
Pharmacological management of osteogenesis
Nardone, Valeria; D'Asta, Federica; Brandi, Maria Luisa
2014-01-01
Osteogenesis and bone remodeling are complex biological processes that are essential for the formation of new bone tissue and its correct functioning. When the balance between bone resorption and formation is disrupted, bone diseases and disorders such as Paget's disease, fibrous dysplasia, osteoporosis and fragility fractures may result. Recent advances in bone cell biology have revealed new specific targets for the treatment of bone loss that are based on the inhibition of bone resorption by osteoclasts or the stimulation of bone formation by osteoblasts. Bisphosphonates, antiresorptive agents that reduce bone resorption, are usually recommended as first-line therapy in women with postmenopausal osteoporosis. Numerous studies have shown that bisphosphonates are able to significantly reduce the risk of femoral and vertebral fractures. Other antiresorptive agents indicated for the treatment of osteoporosis include selective estrogen receptor modulators, such as raloxifene. Denosumab, a human monoclonal antibody, is another antiresorptive agent that has been approved in Europe and the USA. This agent blocks the RANK/RANKL/OPG system, which is responsible for osteoclastic activation, thus reducing bone resorption. Other approved agents include bone anabolic agents, such as teriparatide, a recombinant parathyroid hormone that improves bone microarchitecture and strength, and strontium ranelate, considered to be a dual-action drug that acts by both osteoclastic inhibition and osteoblastic stimulation. Currently, anti-catabolic drugs that act through the Wnt-β catenin signaling pathway, serving as Dickkopf-related protein 1 inhibitors and sclerostin antagonists, are also in development. This concise review provides an overview of the drugs most commonly used for the control of osteogenesis in bone diseases. PMID:24964310
Fumoto, Toshio; Ishii, Kiyo-Aki; Ito, Masako; Berger, Stefan; Schütz, Günther; Ikeda, Kyoji
2014-05-09
Although the mineralocorticoid receptor (MR) is expressed in osteoblasts and osteocytes and frequently co-localizes with the glucocorticoid receptors (GR), its pathophysiological functions in bone remain elusive. We report here that pharmacologic inhibition of MR function with eplerenone resulted in increased bone mass, with stimulation of bone formation and suppression of resorption, while specific genetic deletion of MR in osteoblast lineage cells had no effect. Further, treatment with eplerenone as well as specific deletion of MR in osteocytes ameliorated the cortical bone thinning caused by slow-release prednisolone pellets. Thus, MR may be involved in the deleterious effects of glucocorticoid excess on cortical bone. Copyright © 2014 Elsevier Inc. All rights reserved.
Role of RANKL in bone diseases.
Anandarajah, Allen P
2009-03-01
Bone remodeling is a tightly regulated process of osteoclast-mediated bone resorption, balanced by osteoblast-mediated bone formation. Disruption of this balance can lead to increased bone turnover, resulting in excessive bone loss or extra bone formation and consequent skeletal disease. The receptor activator of nuclear factor kappaB ligand (RANKL) (along with its receptor), the receptor activator of nuclear factor kappaB and its natural decoy receptor, osteoprotegerin, are the final effector proteins of osteoclastic bone resorption. Here, I provide an overview of recent studies that highlight the key role of RANKL in the pathophysiology of several bone diseases and discuss the novel therapeutic approaches afforded by the modulation of RANKL.
Nagaie, Maya; Nishiura, Aki; Honda, Yoshitomo; Fujiwara, Shin-Ichi; Matsumoto, Naoyuki
2014-01-01
Tobacco smoke is a complex mixture of numerous components. Nevertheless, most experiments have examined the effects of individual chemicals in tobacco smoke. The comprehensive effects of components on tooth movement and bone resorption remain unexplored. Here, we have shown that a comprehensive mixture of tobacco smoke components (TSCs) attenuated bone resorption through osteoclastogenesis inhibition, thereby retarding experimental tooth movement in a rat model. An elastic power chain (PC) inserted between the first and second maxillary molars robustly yielded experimental tooth movement within 10 days. TSC administration effectively retarded tooth movement since day 4. Histological evaluation disclosed that tooth movement induced bone resorption at two sites: in the bone marrow and the peripheral bone near the root. TSC administration significantly reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclastic cells in the bone marrow cavity of the PC-treated dentition. An in vitro study indicated that the inhibitory effects of TSCs on osteoclastogenesis seemed directed more toward preosteoclasts than osteoblasts. These results indicate that the comprehensive mixture of TSCs might be a useful tool for detailed verification of the adverse effects of tobacco smoke, possibly contributing to the development of reliable treatments in various fields associated with bone resorption. PMID:25322153
Denosumab is effective in the treatment of bone marrow oedema syndrome.
Rolvien, Tim; Schmidt, Tobias; Butscheidt, Sebastian; Amling, Michael; Barvencik, Florian
2017-04-01
Bone marrow oedema (BMO) syndrome describes a painful condition with increase of interstitial fluid within bone and is often lately diagnosed due to unspecific symptoms. The underlying causes are diverse while it is widely assumed that in cases of BMO local bone resorption is increased. Denosumab, a human monoclonal antibody that binds to the receptor activator of nuclear factor kappa-B ligand (RANKL) inhibits osteoclastic bone resorption and is commonly administered in the treatment of osteoporosis. Besides one previous case report, its clinical effectiveness in the treatment of bone marrow oedema has not been elucidated. We treated 14 patients with primary (idiopathic) bone marrow oedema of the lower extremity with single dose denosumab application. Mean time between onset of pain and therapy was 155days. MRI scans were performed for initial diagnosis, and 6-12 weeks after denosumab injection. Vitamin D and calcium homeostasis were strived to be balanced before initiation of therapy. Furthermore bone status was analysed using Dual-energy X-ray absorptiometry (DXA) and extended bone turnover serum markers. After 6-12 weeks, BMO dissolved partly or completely in 93%, while a complete recovery was observed in 50% of the individuals. Visual analogue scale (VAS) evaluation revealed a significant decrease in pain level. Furthermore, bone turnover decreased significantly after treatment. No adverse reactions were reported. In conclusion, our retrospective analysis shows that denosumab is highly effective in the treatment of bone marrow oedema and therefore represents an alternative treatment option. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wan Hasan, Wan Nuraini; Chin, Kok-Yong; Jolly, James Jam; Abd Ghafar, Norzana; Soelaiman, Ima Nirwana
2018-04-23
Osteoporosis is a silent skeletal disease characterized by low bone mass and destruction of skeletal microarchitecture, leading to an increased fracture risk. This occurs due to an imbalance in bone remodelling, whereby the rate of bone resorption is greater than bone formation. Mevalonate pathway, previously known to involve in cholesterol synthesis, is an important regulatory pathway for bone remodelling. This review aimed to provide an overview of the relationship between mevalonate pathway and bone metabolism, as well as agents which act through this pathway to achieve their therapeutic potential. Mevalonate pathway produces farnesyl pyrophosphate and geranylgeranyl pyrophosphate essential in protein prenylation. An increase in protein prenylation favours bone resorption over bone formation. Non-nitrogen containing bisphosphonates inhibit farnesyl diphosphate synthase which produces farnesyl pyrophosphate. They are used as the first line therapy for osteoporosis. Statins, a well-known class of cholesterol-lowering agents, inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-determining enzyme in the mevalonate pathway. It was shown to increase bone mineral density and prevent fracture in humans. Tocotrienol is a group of vitamin E commonly found in palm oil, rice bran and annatto bean. It causes degradation of HMG-CoA reductase. Many studies demonstrated that tocotrienol prevented bone loss in animal studies but its efficacy has not been tested in humans. mevalonate pathway can be exploited to develop effective antiosteoporosis agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
On Orbit Osteobiology Experiments: from "STROMA" to "MDS" -from in vitro to in vivo
NASA Astrophysics Data System (ADS)
Liu, Yi; Cancedda, Ranieri
Spaceflight causes profound changes in the skeleton, in particular, in the weight-loading bones. Uncoupling of bone remodeling equilibrium between bone formation and resorption is con-sidered responsible for the microgravity-induced bone loss. These changes result in weak-ened and brittle bones prone to fracture on re-entry and in accelerated osteoporosis, making bone deterioration a major problem obstructing the prospects of long-duration manned space flight. Osteoblasts (bone forming cells) and osteocytes (bone resorption cells) are known to be mechano-sensors. Short-exposure of osteoblasts to simulated microgravity ensnarled cell adhe-sion and cytoskeleton. Also osteoblast precursors such as bone marrow stroma cells (BMSC) were shown to be sensitive to mechanical loading. We performed a series of STROMA space-flight experiments by culturing BMSC or co-culturing osteoblasts and osteoclast precursors in automated bioreactors on orbit. Genechip analysis revealed an inhibition of cell proliferation and an unexpected activation of nervous system development genes by spaceflight. To unravel effects of microgravity on genes governing bone mass, transgenic mice with a higher bone mass were flown to orbit inside the Mice Drawer System (MDS) payload. The MDS experiment was launched inside Shuttle Discovery in STS-128 on August 28 2009 at 23:58 EST, and returned to earth by Shuttle Atlantis in STS129 on November 27 2009 at 9:47 EST, marking it as the first long duration animal experiment on the International Space Station (ISS).
Mishina, Yuji; Starbuck, Michael W; Gentile, Michael A; Fukuda, Tomokazu; Kasparcova, Viera; Seedor, J Gregory; Hanks, Mark C; Amling, Michael; Pinero, Gerald J; Harada, Shun-ichi; Behringer, Richard R
2004-06-25
Bone morphogenetic proteins (BMPs) function during various aspects of embryonic development including skeletogenesis. However, their biological functions after birth are less understood. To investigate the role of BMPs during bone remodeling, we generated a postnatal osteoblast-specific disruption of Bmpr1a that encodes the type IA receptor for BMPs in mice. Mutant mice were smaller than controls up to 6 months after birth. Irregular calcification and low bone mass were observed, but there were normal numbers of osteoblasts. The ability of the mutant osteoblasts to form mineralized nodules in culture was severely reduced. Interestingly, bone mass was increased in aged mutant mice due to reduced bone resorption evidenced by reduced bone turnover. The mutant mice lost more bone after ovariectomy likely resulting from decreased osteoblast function which could not overcome ovariectomy-induced bone resorption. In organ culture of bones from aged mice, ablation of the Bmpr1a gene by adenoviral Cre recombinase abolished the stimulatory effects of BMP4 on the expression of lysosomal enzymes essential for osteoclastic bone resorption. These results demonstrate essential and age-dependent roles for BMP signaling mediated by BMPRIA (a type IA receptor for BMP) in osteoblasts for bone remodeling.
The cell biology and role of resorptive cells in diseases: A review.
Babaji, Prashant; Devanna, Raghu; Jagtap, Kiran; Chaurasia, Vishwajit Rampratap; Jerry, Jeethu John; Choudhury, Basanta Kumar; Duhan, Dinesh
2017-01-01
Resorptive cells are responsible for the resorption of mineralized matrix of hard tissues. Bone-resorbing cells are called osteoclasts; however, they can resorb mineralized dental tissues or calcified cartilage and then they are called odontoclasts and chondroclasts, respectively. Resorptive cells form when mononuclear precursors derived from a monocyte-macrophage cell lineage are attracted to certain mineralized surfaces and subsequently fuse and adhere onto them for exerting their resorbing activity. These cells are responsible for degradation of calcified extracellular matrix composed of organic molecules and hydroxyapatite. The activity of these cells can be observed in both physiological and pathological processes throughout life and their activity is mainly required in bone turnover and growth, spontaneous and induced (orthodontic) tooth movement, tooth eruption, and bone fracture healing, as well as in pathological conditions such as osteoporosis, osteoarthritis, and bone metastasis. In addition, they are responsible for daily control of calcium homeostasis. Clastic cells also resorb the primary teeth for shedding before the permanent teeth erupt into the oral cavity.
Zwart, Sara R; Hargens, Alan R; Lee, Stuart M C; Macias, Brandon R; Watenpaugh, Donald E; Tse, Kevin; Smith, Scott M
2007-02-01
Supine weight-bearing exercise within lower body negative pressure (LBNP) alleviates some of the skeletal deconditioning induced by simulated weightlessness in men. We examined this potential beneficial effect in women. Because dietary acid load affected the degree of bone resorption in men during bed rest, we also investigated this variable in women. Subjects were 7 pairs of female identical twins assigned at random to 2 groups, sedentary bed rest (control) or bed rest with supine treadmill exercise within LBNP. Dietary intake was controlled and monitored. Urinary calcium and markers of bone resorption were measured before bed rest and on bed rest days 5/6, 12/13, 19/20, and 26/27. Bone mineral content was assessed by dual-energy X-ray absorptiometry before and after bed rest. Data were analyzed by repeated-measures two-way analysis of variance. Pearson correlation coefficients were used to define the relationships between diet and markers of bone metabolism and to estimate heritability of markers. During bed rest, all markers of bone resorption and urinary calcium and phosphorus increased (P<0.001); parathyroid hormone (P=0.06), bone-specific alkaline phosphatase (P=0.06), and 1,25-dihydroxyvitamin D (P=0.09) tended to decrease. LBNP exercise tended to mitigate bone density loss. The ratio of dietary animal protein to potassium was positively correlated with urinary calcium excretion for all weeks of bed rest in the control group, but only during weeks 1 and 3 in the exercise group. Pre-bed rest data suggested that many markers of bone metabolism have strong genetic determinants. Treadmill exercise within LBNP had less of a protective effect on bone resorption during bed rest in women than previously published results had shown for its effect in men, but the same trends were observed for both sexes. Dietary acid load of these female subjects was significantly correlated with calcium excretion but not with other bone resorption markers.
Zwart, Sara R.; Hargens, Alan R.; Lee, Stuart M. C.; Macias, Brandon R.; Watenpaugh, Donald E.; Tse, Kevin; Smith, Scott M.
2007-01-01
Supine weight-bearing exercise within lower body negative pressure (LBNP) alleviates some of the skeletal deconditioning induced by simulated weightlessness in men. We examined the potential beneficial effect in women. Because dietary acid load affected the degree of bone resorption in men during bed rest, we also investigated this variable in women. Subjects were 7 pairs of female identical twins assigned at random to 2 groups, sedentary bed rest (control) or bed rest with supine treadmill exercise within LBNP. Dietary intake was controlled and monitored. Urinary calcium and markers of bone resorption were measured before bed rest (BR) and on BR days 5/6, 12/13, 19/20, and 26/27. Bone mineral content was assessed by dual-energy X-ray absorptiometry before and after bed rest. Data were analyzed by repeated measures two-way analysis of variance. Pearson correlation coefficients were used to define the relationships between diet and markers of bone metabolism, and to estimate heritability of markers. During bed rest, all markers of bone resorption and urinary calcium and phosphorus increased (P < 0.001); parathyroid hormone (P = 0.06), bone-specific alkaline phosphatase (P = 0.06), and 1,25-dihydroxyvitamin D (P = 0.09) tended to decrease. LBNP exercise tended to mitigate bone density loss. The ratio of dietary animal protein to potassium was positively correlated with urinary calcium excretion for all weeks of bed rest in the control group, but only during weeks 1 and 3 for the exercise group. Pre-bed rest data suggested that many markers of bone metabolism have strong genetic determinants. Treadmill exercise within LBNP had less of a protective effect on bone resorption during bed rest in women than previously-published results had shown for its effect in men, but the same trends were observed for both sexes. Dietary acid load of these female subjects was significantly correlated with calcium excretion but not with other bone resorption markers. PMID:17070743
Hajdu Cheney Mouse Mutants Exhibit Osteopenia, Increased Osteoclastogenesis, and Bone Resorption.
Canalis, Ernesto; Schilling, Lauren; Yee, Siu-Pok; Lee, Sun-Kyeong; Zanotti, Stefano
2016-01-22
Notch receptors are determinants of cell fate and function and play a central role in skeletal development and bone remodeling. Hajdu Cheney syndrome, a disease characterized by osteoporosis and fractures, is associated with NOTCH2 mutations resulting in a truncated stable protein and gain-of-function. We created a mouse model reproducing the Hajdu Cheney syndrome by introducing a 6955C→T mutation in the Notch2 locus leading to a Q2319X change at the amino acid level. Notch2(Q2319X) heterozygous mutants were smaller and had shorter femurs than controls; and at 1 month of age they exhibited cancellous and cortical bone osteopenia. As the mice matured, cancellous bone volume was restored partially in male but not female mice, whereas cortical osteopenia persisted in both sexes. Cancellous bone histomorphometry revealed an increased number of osteoclasts and bone resorption, without a decrease in osteoblast number or bone formation. Osteoblast differentiation and function were not affected in Notch2(Q2319X) cells. The pre-osteoclast cell pool, osteoclast differentiation, and bone resorption in response to receptor activator of nuclear factor κB ligand in vitro were increased in Notch2(Q2319X) mutants. These effects were suppressed by the γ-secretase inhibitor LY450139. In conclusion, Notch2(Q2319X) mice exhibit cancellous and cortical bone osteopenia, enhanced osteoclastogenesis, and increased bone resorption. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.
2000-01-01
Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFκB and in NFκB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFκB in osteoclast precursors. PMID:10869429
Koide, M; Okahashi, N; Tanaka, R; Kazuno, K; Shibasaki, K; Yamazaki, Y; Kaneko, K; Ueda, N; Ohguchi, M; Ishihara, Y; Noguchi, T; Nishihara, T
1999-09-01
It is known that bone resorption is mediated by osteoclasts, and lipopolysaccharide (LPS) and inflammatory mediators such as interleukin-1 (IL-1) and prostaglandin E2 (PGE2) induce osteoclast differentiation from haemopoietic cells, 2-aminoethanesulphonic acid, which is known as taurine, is an important nutrient and is added to most synthetic human infant milk formulas. In this study, it was found that 2-aminoethanesulphonic acid inhibits the stimulation of bone resorption mediated by LPS of the periodontopathic microorganism Actinobacillus actinomycetemcomitans Y4 in organ cultures of newborn mouse calvaria. The effect of 2-aminoethanesulphonic acid on the development and survival of osteoclast-like multinucleated cells produced in a mouse bone-marrow culture system was also examined. 2-aminoethanesulphonic acid (100 microg/ml) suppressed the formation of these osteoclast-like cells in the presence of LPS of A. actinomycetemcomitans Y4, IL-1alpha or PGE2 in mouse marrow cultures. On the other hand, 2-aminoethanesulphonic acid did not inhibit 1alpha, 25-dihydroxyvitamin D3-mediated osteoclast differentiation. Although IL-1alpha elongated the survival of the osteoclast-like cells, 2-aminoethanesulphonic acid blocked the supportive effect of IL-1alpha on osteoclast survival. 2-aminoethanesulphonic acid showed no effect on the growth of mouse osteoblasts. Finally, it was found that 2-aminoethanesulphonic acid inhibited alveolar bone resorption in experimental periodontitis in hamsters. These results suggest that 2-aminoethanesulphonic acid is an effective agent in preventing inflammatory bone resorption in periodontal diseases.
Sakakura, Yasunori; Tsuruga, Eichi; Irie, Kazuharu; Hosokawa, Yoichiro; Nakamura, Hiroaki; Yajima, Toshiniko
2005-01-01
We examined the immunolocalization of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) in areas of resorption caused by osteoclasts/chondroclasts on embryonic days 14–16 (E14–16) in Meckel's cartilage, and compared the results with those in endochondral bones in mice. Intense RANKL and OPG immunoreactivity was detected in the chondrocytes in Meckel's cartilage. On E15, when the incisor teeth were closest to the middle portion of Meckel's cartilage, tartrate-resistant acid phosphatase (TRAP)-positive cells appeared on the lateral side of the cartilage. Furthermore, the dental follicle showed moderate immunoreactivity for RANKL and OPG, whereas osteoblasts derived from perichondral cells were immunonegative for RANKL and OPG in that area. On E16, cartilage resorption by TRAP-positive cells had progressed at the differential position, and intensely immunoreactive products of RANKL were overlapped on and found to exist next to TRAP-positive cells in the resorption area. In developing metatarsal tissue, OPG immunoreactivity was intense in periosteal osteoblasts, whereas RANKL was only faintly seen in some of the periosteal cells. In epiphyseal chondrocytes of the developing femur, RANKL immunoreactivity was moderate, and OPG scarcely detected. These results indicate a peculiarity of RANKL and OPG immunolocalization in resorption of Meckel's cartilage. Growth of the incisor teeth may be involved in the time- and position-specific resorption of Meckel's cartilage through local regulation of the RANKL/OPG system in dental follicular cells and periosteal osteoblasts, whereas RANKL and OPG in chondrocytes seem to contribute to resorption through regulation of the chondroclast function. PMID:16191162
Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass
NASA Technical Reports Server (NTRS)
Elefteriou, Florent; Takeda, Shu; Liu, Xiuyun; Armstrong, Dawna; Karsenty, Gerard
2003-01-01
Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.
Serum markers of bone metabolism show bone loss in hibernating bears
Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.
2003-01-01
Disuse osteopenia was studied in hibernating black bears (Ursus americanus) using serum markers of bone metabolism. Blood samples were collected from male and female, wild black bears during winter denning and active summer periods. Radioimmunoassays were done to determine serum concentrations of cortisol, the carboxy-terminal cross-linked telopeptide, and the carboxy-terminal propeptide of Type I procollagen, which are markers of hone resorption and formation, respectively. The bone resorption marker was significantly higher during winter hibernation than it was in the active summer months, but the bone formation marker was unchanged, suggesting an imbalance in bone remodeling and a net bone loss during disuse. Serum cortisol was significantly correlated with the bone resorption marker, but not with the bone formation marker. The bone formation marker was four- to fivefold higher in an adolescent and a 17-year-old bear early in the remobilization period compared with the later summer months. These findings raise the possibility that hibernating black bears may minimize bone loss during disuse by maintaining osteoblastic function and have a more efficient compensatory mechanism for recovering immobilization-induced bone loss than that of humans or other animals.
Na Ayudthaya, Wanitcha Chatkun; Kritpet, Thanomwong
2015-09-01
To investigate the effects of low impact aerobic dance and fitball training on bone resorption in Thai working women. The samples of this study consisted of 47 females at the age from 35-45. The subjects were divided into two groups: A) 23 females in a low impact aerobic dance (20 min) and fitball (15 min) training group, and B) 24 females in a low impact aerobic dance training group (35 min). Both groups wore a heart rate monitor during the exercise training. The sessions in the training program over 12 weeks were performed a 3-day a week, 35-minute for work out per session at an intensity of 60-80% of maximum heart rate. Before and after the 12-week training program, bone resorption (Telopeptidecrosslinked: β-CrossLaps) and bone formation (N-terminal propeptine of procollagen type 1: P1NP) including physiological and fitness data were assessed. The data of pre and post trainings within and between the groups as well as the data of changes in dependent variables were compared and analyzed by using paired t-test and independent-test. The statistically significant difference was set at the 0.05 level. Both the low impact aerobic dance and fitball training group and the low impact aerobic dance training group revealed their lower level of bone resorption (β-CrossLaps) while the first group showed statistically significant change (p < 0.05). In addition, there were no significant changes of bone resorption (β-CrossLaps) and bone formation (P1NP) between these two groups. However; both groups had not only a significant decrease in resting heart rate, systolic and diastolic pressure, but also an increase in muscular strength and endurance and maximum oxygen uptake when the training was completed. Flexibility ofthe group withfitball was increased significantly (p < 0.05). Low impact aerobic dance and fitball training has the positive effect of slowing down bone resorption and is beneficial to healthy bones. They concurrently increase lower back flexibility.
Keune, Jessica A; Philbrick, Kenneth A; Branscum, Adam J; Iwaniec, Urszula T; Turner, Russell T
2016-01-01
There is often a reciprocal relationship between bone marrow adipocytes and osteoblasts, suggesting that marrow adipose tissue (MAT) antagonizes osteoblast differentiation. MAT is increased in rodents during spaceflight but a causal relationship between MAT and bone loss remains unclear. In the present study, we evaluated the effects of a 14-day spaceflight on bone mass, bone resorption, bone formation, and MAT in lumbar vertebrae of ovariectomized (OVX) rats. Twelve-week-old OVX Fischer 344 rats were randomly assigned to a ground control or flight group. Following flight, histological sections of the second lumbar vertebrae (n=11/group) were stained using a technique that allowed simultaneous quantification of cells and preflight fluorochrome label. Compared with ground controls, rats flown in space had 32% lower cancellous bone area and 306% higher MAT. The increased adiposity was due to an increase in adipocyte number (224%) and size (26%). Mineral apposition rate and osteoblast turnover were unchanged during spaceflight. In contrast, resorption of a preflight fluorochrome and osteoclast-lined bone perimeter were increased (16% and 229%, respectively). The present findings indicate that cancellous bone loss in rat lumbar vertebrae during spaceflight is accompanied by increased bone resorption and MAT but no change in bone formation. These findings do not support the hypothesis that increased MAT during spaceflight reduces osteoblast activity or lifespan. However, in the context of ovarian hormone deficiency, bone formation during spaceflight was insufficient to balance increased resorption, indicating defective coupling. The results are therefore consistent with the hypothesis that during spaceflight mesenchymal stem cells are diverted to adipocytes at the expense of forming osteoblasts. PMID:28725730
Łukaszkiewicz, Jacek; Karczmarewicz, Elzbieta; Płudowski, Paweł; Jaworski, Maciej; Czerwiński, Edward; Lewiński, Andrzej; Marcinowska-Suchowierska, Ewa; Milewicz, Andrzej; Spaczyński, Marek; Lorenc, Roman S
2008-12-01
One of the most important risk factors for osteoporotic fractures in postmenopausal women is elevated bone turnover (EBT), occurring in 25-30% of this population. This study's aim was to find a correlation between bone resorption and bone formation markers to assess bone turnover rate and qualify an individual postmenopausal woman as a possible EBT subject. Three hundred twenty postmenopausal women (> or = one year after the last menstruation, < or = 70 years old) were enrolled at seven clinical sites in this cross-sectional observational study conducted within the EPOLOS. The group was a random sample of the population. The study was performed in a referral center involved in the diagnosis and treatment of osteoporosis. The exclusion criteria included pregnancy, cancer, fracture in the last year, and overweight (> 100 kg). Bone mineral density (BMD) measurements of the lumbar spine, total hip, trochanter, and femoral neck regions were performed. Bone resorption and formation rates were evaluated by serum levels of C-terminal telopeptide of type I collagen (CTX) and osteocalcin (OC), respectively. Using logistic regression to correlate the concentrations of CTX and OC it was possible not only to distinguish the EBT subgroup, but also to construct a simple nomogram for easy classification of individual patients as possible EBT subjects. EBT patients showed generally decreased BMD values and increased bone formation and resorption rates. Evaluation of both CTX and OC levels enables a more proper indication for EBT. The proposed nomogram may assist in evaluating outcome from the two markers of bone turnover.
Fee, L
2017-04-21
Socket preservation maintains bone volume post-extraction in anticipation of an implant placement or fixed partial denture pontic site. This procedure helps compensate for the resorption of the facial bone wall. Socket preservation should be considered when implant placement needs to be delayed for patient or site-related reasons. The ideal healing time before implant placement is six months. Socket preservation can reduce the need for later bone augmentation. By reducing bone resorption and accelerating bone formation it increases implant success and survival. Biomaterials for socket grafting including autograft, allograft, xenograft and alloplast. A bone substitute with a low substitution rate is recommended.
NASA Technical Reports Server (NTRS)
Bikle, D. D.; Morey-Holton, E. R.; Doty, S. B.; Currier, P. A.; Tanner, S. J.; Halloran, B. P.
1994-01-01
Loss of bone mass during periods of skeletal unloading remains an important clinical problem. To determine the extent to which resorption contributes to the relative loss of bone during skeletal unloading of the growing rat and to explore potential means of preventing such bone loss, 0.1 mg P/kg alendronate was administered to rats before unloading of the hindquarters. Skeletal unloading markedly reduced the normal increase in tibial mass and calcium content during the 9 day period of observation, primarily by decreasing bone formation, although bone resorption was also modestly stimulated. Alendronate not only prevented the relative loss of skeletal mass during unloading but led to a dramatic increase in calcified tissue in the proximal tibia compared with the vehicle-treated unloaded or normally loaded controls. Bone formation, however, assessed both by tetracycline labeling and by [3H]proline and 45Ca incorporation, was suppressed by alendronate treatment and further decreased by skeletal unloading. Total osteoclast number increased in alendronate-treated animals, but values were similar to those in controls when corrected for the increased bone area. However, the osteoclasts had poorly developed brush borders and appeared not to engage the bone surface when examined at the ultrastructural level. We conclude that alendronate prevents the relative loss of mineralized tissue in growing rats subjected to skeletal unloading, but it does so primarily by inhibiting the resorption of the primary and secondary spongiosa, leading to altered bone modeling in the metaphysis.
Mineral trioxide aggregate repair of a perforating internal resorption in a mandibular molar.
Meire, Maarten; De Moor, Roeland
2008-02-01
Internal resorption is a rare condition in permanent teeth that poses difficulties for treatment. The challenge is complicated further if the resorption extends beyond the confines of the root. This article describes treatment of a perforating internal resorption in the mesial root of a second lower molar, with adjacent destruction of the alveolar bone. After cleaning the root canal space and the resorption lacuna by mechanical instrumentation, irrigation, and interim calcium hydroxide dressing, the defect was filled with mineral trioxide aggregate, and the canals were obturated conventionally with gutta percha and epoxy resin sealer. At a 2-year follow-up examination, no clinical abnormalities were found, and complete resolution of the alveolar bone lesion and establishment of a new periodontal ligament were observed.
Dong, X Neil; Qin, An; Xu, Jiake; Wang, Xiaodu
2011-08-01
Advanced glycation end products (AGEs) have been observed to accumulate in bone with increasing age and may impose effects on bone resorption activities. However, the underlying mechanism of AGEs accumulation in bone is still poorly understood. In this study, human cortical bone specimens from young (31±6years old), middle-aged (51±3years old) and elderly (76±4years old) groups were examined to determine the spatial-temporal distribution of AGEs in bone matrix and its effect on bone resorption activities by directly culturing osteoclastic cells on bone slices. The results of this study indicated that the fluorescence intensity (excitation wave length 360nm and emission wave length 470±40nm) could be used to estimate the relative distribution of AGEs in bone (pentosidine as its marker) under an epifluorescence microscope. Using the fluorescence intensity as the relative measure of AGEs concentration, it was found that the concentration of AGEs varied with biological tissue ages, showing the greatest amount in the interstitial tissue, followed by the old osteons, and the least amount in newly formed osteons. In addition, AGEs accumulation was found to be dependent on donor ages, suggesting that the younger the donor the less AGEs were accumulated in the tissue. Most interestingly, AGEs accumulation appeared to initiate from the region of cement lines, and spread diffusively to the other parts as the tissue aged. Finally, it was observed that the bone resorption activities of osteoclasts were positively correlated with the in situ concentration of AGEs and such an effect was enhanced with increasing donor age. These findings may help elucidate the mechanism of AGEs accumulation in bone and its association with bone remodeling process. Copyright © 2011 Elsevier Inc. All rights reserved.
Dong, X. Neil; Qin, An; Xu, Jiake; Wang, Xiaodu
2011-01-01
Advanced glycation end products (AGEs) have been observed to accumulate in bone with increasing age and may impose effects on bone resorption activities. However, the underlying mechanism of AGEs accumulation in bone is still poorly understood. In this study, human cortical bone specimens from young (31±6 years old), middle-aged (51±3 years old) and elderly (76±4 years old) groups were examined to determine the spatial-temporal distribution of AGEs in bone matrix and its effect on bone resorption activities by directly culturing osteoclastic cells on bone slices. The results of this study indicated that the fluorescence intensity (excitation wave length 360 nm and emission wave length 470±40 nm) could be used to estimate the relative distribution of AGEs in bone (pentosidine as its marker) under an epifluorescence microscope. Using the fluorescence intensity as the relative measure of AGEs concentration, it was found that the concentration of AGEs varied with biological tissue ages, showing the greatest amount in the interstitial tissue, followed by the old osteons, and the least amount in newly formed osteons. In addition, AGEs accumulation was found to be dependent on donor ages, suggesting that the younger the donor the less AGEs were accumulated in the tissue. Most interestingly, AGEs accumulation appeared to initiate from the region of cement lines, and spread diffusively to the other parts as the tissue aged. Finally, it was observed that the bone resorption activities of osteoclasts were positively correlated with the in situ concentration of AGEs and such an effect was enhanced with increasing donor age. These findings may help elucidate the mechanism of AGEs accumulation in bone and its association with bone remodeling process. PMID:21530698
Conservative Socket Regeneration with Buccal Wall Defect Using Guided Tissue.
Al-Juboori, Mohammed Jasim
2016-01-01
Progressive alveolar bone resorption after tooth extraction may lead to surgical and prosthetic-driven difficulties, especially when deciding to use a dental implant to replace the extracted tooth. This case report discusses an irreparable lower left second premolar tooth with a periodontal lesion on the buccal side. A preservative tooth extraction was performed. Then, the socket was grafted with bovine bone, a collagen membrane was placed between the buccal bone and the attached gingiva, covering the bone dehiscence buccally, and the socket without a flap was raised. After a 6-month healing period, there was minimal socket width resorption and a shallow buccal vestibule. The implant was placed with high primary stability and sufficient buccal plate thickness. In conclusion, this guided tissue regeneration technique can minimize alveolar bone resorption in a socket with buccal dehiscence, but technical difficulties and shallowing of the buccal vestibule still exist.
Effects of lead and cadmium exposure from electronic waste on child physical growth.
Yang, Hui; Huo, Xia; Yekeen, Taofeek Akangbe; Zheng, Qiujian; Zheng, Minghao; Xu, Xijin
2013-07-01
Many studies indicate that lead (Pb) and cadmium (Cd) exposure may alter bone development through both direct and indirect mechanisms, increasing the risk of osteoporosis later in life. The aim of this study was to investigate the association between Pb and Cd exposure, physical growth, and bone and calcium metabolism in children of an electronic waste (e-waste) processing area. We recruited 246 children (3-8 years) in a kindergarten located in Guiyu, China. Blood lead levels (BLLs) and blood cadmium levels (BCLs) of recruited children were measured as biomarkers for exposure. Serum calcium, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline were used as biomarkers for bone and calcium metabolism. Physical indexes such as height, weight, and head and chest circumference were also measured. The mean values of BLLs and BCLs obtained were 7.30 μg/dL and 0.69 μg/L, respectively. The average of BCLs increased with age. In multiple linear regression analysis, BLLs were negatively correlated with both height and weight, and positively correlated with bone resorption biomarkers. Neither bone nor calcium metabolic biomarkers showed significant correlation with cadmium. Childhood lead exposure affected both physical development and increased bone resorption of children in Guiyu. Primitive e-waste recycling may threaten the health of children with elevated BLL which may eventually cause adult osteoporosis.
NASA Technical Reports Server (NTRS)
Heer, Martina; Smith, Scott M.; Frings-Meuthen, Petra; Zwart, Sara R.; Baecker, Natalie
2012-01-01
Inactivity, like bed rest (BR), causes insulin resistance (IR) and bone loss even in healthy subjects. High protein intake seems to mitigate this IR but might exacerbate bone loss. We hypothesized that high protein intake (animal:vegetable protein ratio: 60:40), isocaloric, compared to the control group plus high potassium intake would prevent IR without affecting bone turnover. After a 20-day ambulatory adaptation to controlled confinement and diet, 16 women participated in a 60-day, 6 deg head-down-tilt BR and were assigned randomly to one of the two groups. Control subjects (CON, n=8) received 1g/kg body mass/d dietary protein. Nutrition subjects (NUT, n=8) received 1.45g/kg body mass/d dietary protein plus 7.2g branched chain amino acids per day during BR. All subjects received 1670 kcal/d. Bed rest decreased glucose disposal by 35% (p<0.05) in CON. Isocaloric high protein intake prevented insulin resistance, but exacerbated bed rest induced increase in bone resorption markers C-telopeptide (> 30%) and Ntelopeptide (>20%) (both: p<0.001). Bone formation markers were unaffected by high protein intake. We conclude from these results that high protein intake might positively affect glucose tolerance, but might also foster bone loss. Further long-duration studies are mandatory before high protein intake for diabetic patients, who have an increased fracture risk, might be recommended.
Risedronate Prevents Early Radiation-Induced Osteoporosis in Mice at Multiple Skeletal Locations
Willey, Jeffrey S.; Livingston, Eric W.; Robbins, Michael E.; Bourland, J. Daniel; Tirado-Lee, Leidamarie; Smith-Sielicki, Hope; Bateman, Ted A.
2009-01-01
Introduction Irradiation of normal, non-malignant bone during cancer therapy can lead to atrophy and increased risk of fracture at several skeletal sites, particularly the hip. This bone loss has been largely attributed to damaged osteoblasts. Little attention has been given to increased bone resorption as a contributor to radiation-induced osteoporosis. Our aims were to identify if radiation increases bone resorption resulting in acute bone loss, and if bone loss could be prevented by administering risedronate. Methods Twenty-week old female C57BL/6 mice were either: not irradiated and treated with placebo (NR+PL); whole-body irradiated with 2 Gy X-rays and treated with placebo (IR+PL); or irradiated and treated with risedronate (IR+RIS; 30μg/kg every other day). Calcein injections were administered 7 and 2 days before sacrifice. Bones were collected 1, 2, and 3 weeks after exposure. MicroCT analysis was performed at 3 sites: proximal tibial metaphysis; distal femoral metaphysis; and the body of the 5th lumbar vertebra (L5). Osteoclasts were identified from TRAP-stained histological sections. Dynamic histomorphometry of cortical and trabecular bone was performed. Circulating TRAP5b and osteocalcin concentrations were quantified. Results In animals receiving IR+PL, significant (P < 0.05) reduction in trabecular volume fraction relative to non-irradiated controls was observed at all three skeletal sites and time points. Likewise, radiation-induced loss of connectivity and trabecular number relative to NR+PL were observed at all skeletal sites throughout the study. Bone loss primarily occurred during the first week post-exposure. Trabecular and endocortical bone formation was not reduced until Week 2. Loss of bone volume was absent in animals receiving IR+RIS. Histology indicated greater osteoclast numbers at Week 1 within IR+PL mice. Serum TRAP5b concentration was increased in IR+PL mice only at Week 1 compared to NR+PL (P = 0.05). Risedronate treatment prevented the radiation-induced increase in osteoclast number, surface, and TRAP5b. Conclusion This study demonstrated a rapid loss of trabecular bone at several skeletal sites after whole-body irradiation. Changes were accompanied by an increase in osteoclast number and serum markers of bone loss. Risedronate entirely prevented bone loss, providing further evidence that an increase in bone resorption likely caused this radiation-induced bone loss. PMID:19747571
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Wastney, Meryl E.; O'Brien, Kimberly O.; Morukov, Boris V.; Larina, Irina M.; Abrams, Steven A.; Davis-Street, Janis E.; Oganov, Victor; Shackelford, Linda C.
2005-01-01
Bone loss is a current limitation for long-term space exploration. Bone markers, calcitropic hormones, and calcium kinetics of crew members on space missions of 4-6 months were evaluated. Spaceflight-induced bone loss was associated with increased bone resorption and decreased calcium absorption. INTRODUCTION: Bone loss is a significant concern for the health of astronauts on long-duration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract these losses during space flight and will have relevance for other clinical situations that impair weight-bearing activity. MATERIALS AND METHODS: We report here results from two studies conducted during the Shuttle-Mir Science Program. Study 1 was an evaluation of bone and calcium biochemical markers of 13 subjects before and after long-duration (4-6 months) space missions. In study 2, stable calcium isotopes were used to evaluate calcium metabolism in six subjects before, during, and after flight. Relationships between measures of bone turnover, biochemical markers, and calcium kinetics were examined. RESULTS: Pre- and postflight study results confirmed that, after landing, bone resorption was increased, as indicated by increases in urinary calcium (p < 0.05) and collagen cross-links (N-telopeptide, pyridinoline, and deoxypyridinoline were all increased >55% above preflight levels, p < 0.001). Parathyroid hormone and vitamin D metabolites were unchanged at landing. Biochemical markers of bone formation were unchanged at landing, but 2-3 weeks later, both bone-specific alkaline phosphatase and osteocalcin were significantly (p < 0.01) increased above preflight levels. In studies conducted during flight, bone resorption markers were also significantly higher than before flight. The calcium kinetic data also validated that bone resorption was increased during flight compared with preflight values (668 +/- 130 versus 427 +/- 153 mg/day; p < 0.001) and clearly documented that true intestinal calcium absorption was significantly lower during flight compared with preflight values (233 +/- 87 versus 460 +/- 47 mg/day; p < 0.01). Weightlessness had a detrimental effect on the balance in bone turnover such that the daily difference in calcium retention during flight compared with preflight values approached 300 mg/day (-234 +/- 102 versus 63 +/- 75 mg/day; p < 0.01). CONCLUSIONS: These bone marker and calcium kinetic studies indicated that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption.
Goff, M.G.; Slyfield, C.R.; Kummari, S.R.; Tkachenko, E.V.; Fischer, S. E.; Yi, Y.H.; Jekir, M.; Keaveny, T.M.; Hernandez, C.J.
2012-01-01
The number and size of resorption cavities in cancellous bone are believed to influence rates of bone loss, local tissue stress and strain and potentially whole bone strength. Traditional two-dimensional approaches to measuring resorption cavities in cancellous bone report the percent of the bone surface covered by cavities or osteoclasts, but cannot measure cavity number or size. Here we use three-dimensional imaging (voxel size 0.7 × 0.7 × 5.0 μm) to characterize resorption cavity location, number and size in human vertebral cancellous bone from nine elderly donors (7 male, 2 female, ages 47–80 years). Cavities were 30.10 ± 8.56 μm in maximum depth, 80.60 ± 22.23 *103 μm2 in surface area and 614.16 ± 311.93 *103 μm3 in volume (mean ± SD). The average number of cavities per unit tissue volume (N.Cv/TV) was 1.25 ± 0.77 mm−3. The ratio of maximum cavity depth to local trabecular thickness was 30.46 ± 7.03 % and maximum cavity depth was greater on thicker trabeculae (p < 0.05, r2 = 0.14). Half of the resorption cavities were located entirely on nodes (the intersection of two or more trabeculae) within the trabecular structure. Cavities that were not entirely on nodes were predominately on plate-like trabeculae oriented in the cranial-caudal (longitudinal) direction. Cavities on plate-like trabeculae were larger in maximum cavity depth, cavity surface area and cavity volume than cavities on rod-like trabeculae (p < 0.05). We conclude from these findings that cavity size and location are related to local trabecular microarchitecture. PMID:22507299
O'Brien, Eileen C; Kilbane, Mark T; McKenna, Malachi J; Segurado, Ricardo; Geraghty, Aisling A; McAuliffe, Fionnuala M
2018-04-01
Pregnancy is characterised by increased bone turnover, but high bone turnover with resorption exceeding formation may lead to negative maternal bone remodelling. Recent studies are conflicting regarding the effect of calcium on skeletal health in pregnancy. The aim of this study was to examine the seasonal effect of serum 25-hydroxyvitamin D (25OHD) and dietary calcium on a marker of bone resorption. This was prospective study of 205 pregnant women [two cohorts; early pregnancy at 13 weeks (n = 96), and late pregnancy at 28 weeks (n = 109)]. Serum 25OHD and urine cross-linked N-telopeptides of type I collagen (uNTX) were measured at both time points. Intakes of vitamin D and calcium were recorded using 3-day food diaries at each trimester. Compared to summer pregnancies, winter pregnancies had significantly lower 25OHD and significantly higher uNTX. Higher calcium intakes were negatively correlated with uNTX in winter, but not summer. In late pregnancy, compared to those reporting calcium intakes ≥1000 mg/day, intakes of <1000 mg/day were associated with a greater increase in uNTX in winter pregnancies than in summer (41.8 vs. 0.9%). Increasing calcium intake in winter by 200 mg/day predicted a 13.3% reduction in late pregnancy uNTX. In late pregnancy, during winter months when 25OHD is inadequate, intakes of dietary calcium <1000 mg/day were associated with significantly increased bone resorption (uNTX). Additional dietary calcium is associated with reduced bone resorption in late pregnancy, with greater effect observed in winter. Further research regarding optimal dietary calcium and 25OHD in pregnancy is required, particularly for women gestating through winter.
Efficacy of Oral Etidronate for Skeletal Diseases in Japan
Takeda, Tsuyoshi; Sato, Yoshihiro
2005-01-01
Etidronate is an oral bisphosphonate compound that is known to reduce bone resorption through the inhibition of osteoclastic activity. The efficacy of etidronate for involutional (postmenopausal and senile) and glucocorticoid-induced osteoporosis, as well as that for other skeletal diseases, was reviewed in Japanese patients. Cyclical etidronate treatment (200 mg or 400 mg/day for 2 weeks about every 3 months) increases the lumbar bone mineral density (BMD) in patients with involutional osteoporosis and prevents incident vertebral fractures in patients with glucocorticoid-induced osteoporosis. The losses of the lumbar BMD in patients with liver cirrhosis and the metacarpal BMD in hemiplegic patients after stroke are prevented, and the lumbar BMD is possibly increased, preventing fragile fractures in adult patients with osteogenesis imperfecta type I. Furthermore, proximal bone resorption around the femoral stem is reduced and some complications may be prevented in patients who undergo cementless total hip arthroplasty. Oral etidronate treatment may also help to transiently relieve metastatic cancer bone pain followed by a decrease in abnormally raised bone resorption in patients with painful bone metastases from primary cancer sites, such as the lung, breast and prostate. Thus, oral etidronate treatment is suggested to be efficacious for osteoporosis, as well as other skeletal diseases associated with increased bone resorption, in Japanese patients. Randomized controlled trials needed to be conducted on a large number of patients to confirm these effects. PMID:15988801
Laminar resorption in modified osteo-odonto-keratoprosthesis procedure: a cause for concern.
Iyer, Geetha; Srinivasan, Bhaskar; Agarwal, Shweta; Rachapalle, Sudhir Reddi
2014-08-01
To analyze the cases of lamina resorption following the modified osteo-odonto-keratoprosthesis (MOOKP) procedure. Retrospective case series. Case records of 18 eyes (20 laminae) of 17 patients who showed evidence of lamina resorption out of the 85 eyes (87 laminae) of 82 patients that underwent MOOKP procedure between March 2003 and March 2013 were analyzed. Of the 17 patients (20 laminae), 1 underwent MOOKP procedure following multiple graft failures, 6 (7 laminae) belonged to the chemical injury group, and 10 (12 laminae) to the Stevens-Johnson syndrome (SJS) group. Resorption was noted in 20 out of 87 laminae (22.98%). The need for removal of lamina/extrusion was noted in 3 out of the 7 laminae in the chemical injury group and 8 out of the 12 laminae in the SJS group. The mean duration to the first sign suggestive of resorption among patients of SJS was 36.7 months and among patients of chemical injury was 43 months. Vitritis was the presenting feature (7 of 20 laminae, 35%) indicative of early resorption, and the occurrence of the same in eyes with lamina resorption was noted to be statistically significant in comparison to controls (P<.001). Sixteen out of 20 laminae showed evidence of resorption superiorly. Vitritis was the most common presenting feature of lamina resorption and could be an indicator of lamina resorption. Resorption of the laminae was noted to occur along the aspect with thinner bone support in all eyes. Incidence of severe resorption with extrusion of cylinder/requiring lamina removal was noted to be higher among patients with SJS. Copyright © 2014 Elsevier Inc. All rights reserved.
Improved bone metabolism in female elite athletes after vitamin K supplementation.
Craciun, A M; Wolf, J; Knapen, M H; Brouns, F; Vermeer, C
1998-10-01
In female elite athletes strenuous exercise may result in hypoestrogenism and amenorrhoea. As a consequence a low peak bone mass and rapid bone loss are often seen in relatively young athletes. In postmenopausal women, increased intake of vitamin K may result in an increase of serum markers for bone formation, a decrease of urinary markers for bone resorption, and a decrease in urinary calcium loss. In the present paper we report an intervention study among eight female athletes, four of whom had been amenorrhoeic for more than one year, whereas the others had been using oral contraceptives. All participants received vitamin K supplementation (10 mg/day) during one month, and various bone markers were measured before and after treatment. At baseline the athletes not using oral contraceptives were biochemically vitamin K-deficient as deduced from the calcium binding capacity of the circulating bone protein osteocalcin. In all subjects increased vitamin K was associated with an increased calcium-binding capacity of osteocalcin. In the low-estrogen group vitamin K supplementation induced a 15-20% increase of bone formation markers and a parallel 20-25% decrease of bone resorption markers. This shift is suggestive for an improved balance between bone formation and resorption.
The Role of Hedgehog Signaling in Tumor Induced Bone Disease
Cannonier, Shellese A.; Sterling, Julie A.
2015-01-01
Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors. PMID:26343726
Bone Balance within a Cortical BMU: Local Controls of Bone Resorption and Formation
Smith, David W.; Gardiner, Bruce S.; Dunstan, Colin
2012-01-01
Maintaining bone volume during bone turnover by a BMU is known as bone balance. Balance is required to maintain structural integrity of the bone and is often dysregulated in disease. Consequently, understanding how a BMU controls bone balance is of considerable interest. This paper develops a methodology for identifying potential balance controls within a single cortical BMU. The theoretical framework developed offers the possibility of a directed search for biological processes compatible with the constraints of balance control. We first derive general control constraint equations and then introduce constitutive equations to identify potential control processes that link key variables that describe the state of the BMU. The paper describes specific local bone volume balance controls that may be associated with bone resorption and bone formation. Because bone resorption and formation both involve averaging over time, short-term fluctuations in the environment are removed, leaving the control systems to manage deviations in longer-term trends back towards their desired values. The length of time for averaging is much greater for bone formation than for bone resorption, which enables more filtering of variability in the bone formation environment. Remarkably, the duration for averaging of bone formation may also grow to control deviations in long-term trends of bone formation. Providing there is sufficient bone formation capacity by osteoblasts, this leads to an extraordinarily robust control mechanism that is independent of either osteoblast number or the cellular osteoid formation rate. A complex picture begins to emerge for the control of bone volume. Different control relationships may achieve the same objective, and the ‘integration of information’ occurring within a BMU may be interpreted as different sets of BMU control systems coming to the fore as different information is supplied to the BMU, which in turn leads to different observable BMU behaviors. PMID:22844401
Ramaglia, Luca; Toti, Paolo; Sbordone, Carolina; Guidetti, Franco; Martuscelli, Ranieri; Sbordone, Ludovico
2015-05-01
The purpose of this study was to determine the existence of correlations between marginal peri-implant linear bone loss and the angulation of implants in maxillary and mandibular augmented areas over the course of a 2-year survey. Dependent variables described the sample of the present retrospective chart review. By using three-dimensional radiographs, input variables, describing the implant angulation (buccal-lingual angle [φ] and mesial-distal angle [θ]) were measured; outcome variables described survival rate and marginal bone resorption (MBR) around dental implants in autogenous grafts (10 maxillae and 14 mandibles). Pairwise comparisons and linear correlation coefficient were computed. The peri-implant MBR in maxillary buccal and palatal areas appeared less intensive in the presence of an increased angulation of an implant towards the palatal side. Minor MBR was recorded around mandibular dental implants positioned at a right angle and slightly angulated towards the mesial. Resorption in buccal areas may be less intensive as the angulation of placed implants increases towards the palatal area in the maxilla, whereas for the mandible, a greater inclination towards the lingual area could be negative. In the mandibular group, when the implant was slightly angulated in the direction of the distal area, bone resorption seemed to be more marked in the buccal area. In the planning of dental implant placement in reconstructed alveolar bone with autograft, the extremely unfavourable resorption at the buccal aspect should be considered; this marginal bone loss seemed to be very sensitive to the angulation of the dental implant.
Foldes, J; Balena, R; Ho, A; Parfitt, A M; Kleerekoper, M
1991-01-01
We present what we believe is the first case of rickets following prolonged treatment with aluminum containing antacids that bind phosphate, in an 18-year-old mentally retarded boy with cerebral palsy and spastic quadriplegia. As expected, serum calcitriol was increased and urinary phosphate excretion was very low. However, in contrast to all published cases of antacid induced hypophosphatemic osteomalacia in adults, despite a substantial increase in bone resorption reflected by urinary total hydroxyproline excretion, urinary calcium excretion was low rather than high, and significant hypocalcemia occurred after antacids were ceased and a phosphate salt administered. We suggest that the skeleton was so under-mineralized because of growth during prolonged phosphate deficiency, possibly augmented by anticonvulsant administration and immobilization, that increased bone resorption did not release enough calcium to cause hypercalciuria, or to prevent hypocalcemia during resumption of normal mineralization.
Jacome-Galarza, Christian E; Lee, Sun-Kyeong; Lorenzo, Joseph A; Aguila, Hector Leonardo
2011-01-01
Parathyroid hormone (PTH) increases both the number of osteoclast in bone and the number of early hematopoietic stem cells (HSCs) in bone marrow. We previously characterized the phenotype of multiple populations of bone marrow cells with in vitro osteoclastogenic potential in mice. Here we examined whether intermittent administration of PTH influences these osteoclast progenitor (OCP) populations. C57BL/6 mice were treated with daily injections of bPTH(1–34) (80 μg/kg/day) for 7 or 14 days. We found that PTH caused a significant increase in the percentage of TN/CD115+CD117high and TN/CD115+CD117int cells ( p <.05) in bone marrow on day 7. In contrast, PTH decreased the absolute number of TN/CD115+CD117low cells by 39% on day 7 ( p <.05). On day 14, there was no effect of PTH on osteoclast progenitor distribution in vivo. However, PTH treatment for 7 and 14 days did increase receptor activator of NF-κB ligand (RANKL)– and macrophage colony-stimulating factor (M-CSF)–stimulated in vitro osteoclastogenesis and bone resorption in TN/CD115+ cells. In the periphery, 14 days of treatment increased the percentage and absolute numbers of HSCs (Lin−CD117+Sca-1+) in the spleen ( p <.05). These data correlated with an increase in the percent and absolute numbers of HSCs in bone marrow on day 14 ( p <.05). Interestingly, the effects on hematopoietic progenitors do not depend on osteoclast resorption activity. These results suggest that in vivo PTH treatment increased in vitro osteoclastogenesis and resorption without altering the number of osteoclast precursors. This implies that in vivo PTH induces sustained changes, possibly through an epigenetic mechanism, in the in vitro responsiveness of the cells to M-CSF and RANKL. PMID:21611963
Krieger, Nancy S; Bushinsky, David A
2017-10-01
Serum fibroblast growth factor 23 (FGF23) increases progressively in chronic kidney disease (CKD) and is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the factors regulating its production are not clear. Patients with CKD have decreased renal acid excretion leading to metabolic acidosis (MET). During MET, acid is buffered by bone with release of mineral calcium (Ca) and phosphate (P). MET increases intracellular Ca signaling and cyclooxygenase 2 (COX2)-induced prostaglandin production in the osteoblast, leading to decreased bone formation and increased bone resorption. We found that MET directly stimulates FGF23 in mouse bone organ cultures and primary osteoblasts. We hypothesized that MET increases FGF23 through similar pathways that lead to bone resorption. Neonatal mouse calvariae were incubated in neutral (NTL, pH = 7.44, Pco 2 = 38 mmHg, [HCO 3 - ] = 27 mM) or acid (MET, pH = 7.18, Pco 2 = 37 mmHg, [HCO 3 - ] = 13 mM) medium without or with 2-APB (50 μM), an inhibitor of intracellular Ca signaling or NS-398 (1 μM), an inhibitor of COX2. Each agent significantly inhibited MET stimulation of medium FGF23 protein and calvarial FGF23 RNA as well as bone resorption at 48 h. To exclude the potential contribution of MET-induced bone P release, we utilized primary calvarial osteoblasts. In these cells each agent inhibited MET stimulation of FGF23 RNA expression at 6 h. Thus stimulation of FGF23 by MET in mouse osteoblasts utilizes the same initial signaling pathways as MET-induced bone resorption. Therapeutic interventions directed toward correction of MET, especially in CKD, have the potential to not only prevent bone resorption but also lower FGF23 and perhaps decrease mortality. Copyright © 2017 the American Physiological Society.
[Osteostimulating effect of bone xenograft on bone tissue regeneration].
Balin, V N; Balin, D V; Iordanishvili, A K; Musikin, M I
2015-01-01
The aim of experimental case-control study performed in 28 dogs divided in 2 groups was to assess local tissue reactions on bone xenograft transplantation; dynamics of bone remodeling and formation at the site of bone defect wall contacting with bone xenograft; dynamics and mechanisms of xenograft remodeling. Transplantation of xenograft in conventional bone defects did not cause inflammatory of destructive reactions because of high biocompatibility of the material. At transplantation site active fibrous bone trabeculae formation filling the spaces between xenograft participles was observed. On the 90th day newly formed bone showed lammelar structure. Simultaneously from the 42d day the invasion of cell elements from recipient bed into the material was seen leading to xenograft resorption. The observed dynamics may be assessed as gradual substitution of xenograft with newly formed host bone structures.
Volejnikova, S.; Laskari, M.; Marks, S. C.; Graves, D. T.
1997-01-01
Tooth eruption is defined as the movement of a tooth from its site of development within the alveolar bone to its position of function in the oral cavity. It represents an excellent model to examine osseous metabolism as bone resorption and bone formation occur simultaneously and are spatially separated. Bone resorption occurs in the coronal (occlusal) area, whereas bone formation occurs in the basal area. Monocytes are thought to have a significant role in the regulation of osseous metabolism. The goal of this study was to examine the recruitment of monocytes to bone in C57BL/6J mice that are undergoing developmentally regulated bone remodeling. Monocytes were detected by immunohistochemistry and osteoclasts were counted as bone-associated multi-nucleated, tartrate-resistant acid phosphatase (TRAP)-positive cells. Cell numbers were obtained from histological sections of animals sacrificed daily for 14 days after birth; an image analysis system was used for quantification. The results demonstrated that, immediately after birth, there were relatively few monocytic cells. In the area of bone resorption, the number of monocytes increased with time, reaching peaks at 5 and 9 days, and decreased thereafter. A similar pattern was observed for osteoclasts. In the area of bone formation, there was a time-dependent increase in the number of monocytes. In contrast, the number of osteoclasts in this area was highest at the earliest time points and decreased after day 3. To investigate potential mechanisms for the recruitment of monocytes, expression of monocyte chemoattractant protein (MCP)-1 was assessed. The number of MCP-1-positive cells increased with time and was generally proportional to the recruitment of mononuclear phagocytes. Osteoblasts were the principal bone cell type expressing MCP-1. The results demonstrate that the recruitment of mononuclear cells in the occlusal area is associated with bone resorption. In contrast, recruitment of monocytes in the basal area is associated with bone formation and a decrease in the number of osteoclasts. These results suggest that monocytes have different functional roles in areas of bone formation compared with bone resorption. Furthermore, the expression of MCP-1 is developmentally regulated and may provide a mechanistic basis to explain the recruitment of monocytic cells. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9137095
Heervä, Eetu; Alanne, Maria H; Peltonen, Sirkku; Kuorilehto, Tommi; Hentunen, Teuvo; Väänänen, Kalervo; Peltonen, Juha
2010-09-01
Neurofibromatosis 1 syndrome (NF1) presents with skeletal involvement suggesting that altered bone dynamics is associated with NF1. Histological analysis of three cases of NF1-related pseudarthrosis revealed numerous osteoclasts in contact with adjacent bone, and within the pseudarthrosis tissue itself. These findings prompted us to evaluate the differentiation and resorption capacity of NF1-osteoclast like cells (OLCs) in vitro. Osteoclast progenitors were isolated from peripheral blood of 17 patients with NF1 and allowed to differentiate into OLCs on bone slices. The following differences were found between NF1 and control samples: samples from NF1 patients resulted in a higher number of resorbing OLCs; NF1 OLCs were larger in size; their nuclei were more numerous; actin rings were more frequent; and the resorption pits in NF1 samples were more numerous and larger. Bone resorption markers revealed that the resorption activity in NF1 OLC cultures was approximately two times higher than in controls. Following deprivation from serum, the number of NF1 OLCs remained essentially the same during 24h, whereas the number of control OLCs was dramatically reduced during the same time. Three patients had NF1-related lytic bone lesions, and their in vitro results differed from those of other patients. Our results demonstrate that OLCs derived from blood of patients with NF1 display elevated resorption activity under conditions isolated from microenvironment operative in vivo. Thus, increased osteoclast activity may be a phenotypic property of the NF1 syndrome, and at least in part explain selected skeletal findings in NF1, such as osteoporosis/osteopenia. Copyright 2010 Elsevier Inc. All rights reserved.
Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts
Verron, Elise; Masson, Martial; Khoshniat, Solmaz; Duplomb, Laurence; Wittrant, Yohann; Baud'huin, Marc; Badran, Zahi; Bujoli, Bruno; Janvier, Pascal; Scimeca, Jean-Claude; Bouler, Jean-Michel; Guicheux, Jérôme
2010-01-01
Background and purpose: Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. Experimental approach: In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3-E1) and primary mouse osteoblasts. Key results: Gallium dose-dependently (0–100 µM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP-positive multinucleated cells. Ga down-regulated in a dose-dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3-E1 osteoblasts. Conclusions and implications: Gallium exhibits a dose-dependent anti-osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down-regulation of NFATc1 expression, a master regulator of RANK-induced osteoclastic differentiation. PMID:20397300
Seifi, Massoud; Asefi, Sohrab; Hatamifard, Ghazal; Lotfi, Ali
2017-01-01
Background. Anchorage control is an essential part of orthodontic treatment planning, especially in adult patients who demand a more convenient treatment. Zoledronic acid (ZA) is an effective choice to address this problem. It is the most potent member of the bisphosphonates family that has an inhibitory effect on bone resorption by suppressing osteoclast function. Therefore, ZA might be a good option for orthodontic anchorage control. The current study evaluated the effect of local administration of Zolena (ZA made in Iran) on orthodontic tooth movement (OTM) and root and bone resorption. Methods. The experimental group consisted of 30 rats in 3 subgroups (n=10). Anesthesia was induced, and one closed NiTi coil spring was installed between the first molar and central incisor unilaterally, except for the negative control group. The positive control group received vestibular injection of 0.01 mL of saline next to the maxillary first molar, and 0.01 mL of the solution was injected at the same site in the ZA group. After 21 days, the rats were sacrificed and the distance between the first and second molars was measured with a leaf gauge. Histological analysis was conducted by a blind pathologist for the number of Howship's lacunae, blood vessels, osteoclast-like cells and root resorption lacunae. Data were analyzed with ANOVA, Tukey test and t-test. Results. There were no significant differences in OTM between the force-applied groups. ZA significantly inhibited bone/root resorption and angiogenesis compared to the positive control group. Conclusion. Zolena did not decrease OTM but significantly inhibited bone and root resorption. Zolena might be less potent than its foreign counterparts.
Farinola, N; Kanjanapan, Y
2013-11-01
Denosumab, an anti-resorptive treatment for osteoporosis and skeletal metastases from solid tumours, can cause hypocalcaemia. The incidence may be higher than previously reported due to varying serum calcium cut-off and timing of measurement. The following cases illustrate patients at risk of hypocalcaemia despite supplementation. These populations, with underlying high bone turnover from metastatic bone disease or secondary hyperparathyroidism due to renal failure, may require closer monitoring of calcium levels post-denosumab administration. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.
Calcium and Bone Metabolism Indices.
Song, Lu
2017-01-01
Calcium and inorganic phosphate are of critical importance for many body functions, thus the regulations of their plasma concentrations are tightly controlled by the concerted actions of reabsorption/excretion in the kidney, absorption in the intestines, and exchange from bone, the major reservoir for calcium and phosphate in the body. Parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1,25(OH) 2 D) control calcium homeostasis, whereas PTH, 1,25(OH) 2 D, and bone-derived fibroblast growth factor 23 (FGF 23) control phosphate homeostasis. Hypoparathyroidism can cause hypocalcemia and hyperphosphatemia, whereas deficient vitamin D actions can cause osteomalacia in adults and rickets in children. Hyperparathyroidism, alternatively, can cause hypercalcemia and hypophosphatemia. Laboratory tests of calcium, phosphate, PTH, and 25-hydroxyvitamin D are very useful in the diagnosis of abnormalities associated with calcium and/or phosphate metabolisms. Bone is constantly remodeled throughout life in response to mechanical stress and a need for calcium in extracellular fluids. Metabolic bone diseases such as osteoporosis, osteomalacia in adults or rickets in children, and renal osteodystrophy develop when bone resorption exceeds bone formation. Bone turnover markers (BTM) such as serum N-terminal propeptide of type I procollagen (P1NP) and C-terminal collagen cross-link (CTX) may be useful in predicting future fracture risk or monitoring the response to anti-resorptive therapy. There is a need to standardize sample collection protocols because certain BTMs exhibit large circadian variations and tend to be influenced by food intakes. In the United States, a project to standardize BTM sample collection protocols and to establish the reference intervals for serum P1NP and serum CTX is ongoing. We anticipate the outcome of this project to shine lights on the standardization of BTM assays, sample collection protocols, reference intervals in relation to age, sex, and ethnic origins, and clinical utilities of BTMs. This review will briefly discuss the regulations of calcium and phosphate homeostasis, laboratory's role in the diagnosis, and monitoring of bone and calcium metabolism, as well as the usefulness and controversies of the utilities of BTMs in the diagnosis and monitoring of metabolic bone diseases. © 2017 Elsevier Inc. All rights reserved.
New mechanisms and targets in the treatment of bone fragility.
Martin, T John; Seeman, Ego
2007-01-01
Bone modelling and remodelling are cell-mediated processes responsible for the construction and reconstruction of the skeleton throughout life. These processes are chiefly mediated by locally generated cytokines and growth factors that regulate the differentiation, activation, work and life span of osteoblasts and osteoclasts, the cells that co-ordinate the volumes of bone resorbed and formed. In this way, the material composition and structural design of bone is regulated in accordance with its loading requirements. Abnormalities in this regulatory system compromise the material and structural determinants of bone strength producing bone fragility. Understanding the intercellular control processes that regulate bone modelling and remodelling is essential in planning therapeutic approaches to prevention and treatment of bone fragility. A great deal has been learnt in the last decade. Clinical trials carried out exclusively with drugs that inhibit bone resorption have identified the importance of reducing the rate of bone remodelling and so the progression of bone fragility to achieved fracture reductions of approx. 50%. These trials have also identified limitations that should be placed upon interpretation of bone mineral density changes in relation to treatment. New resorption inhibitors are being developed, based on mechanisms of action that are different from existing drugs. Some of these might offer resorption inhibition without reducing bone formation. More recent research has provided the first effective anabolic therapy for bone reconstruction. Daily injections of PTH (parathyroid hormone)-(1-34) have been shown in preclinical studies and in a large clinical trial to increase bone tissue mass and reduce the risk of fractures. The action of PTH differs from that of the resorption inhibitors, but whether it is more effective in fracture reduction is not known. Understanding the cellular and molecular mechanisms of PTH action, particularly its interactions with other pathways in determining bone formation, is likely to lead to new therapeutic developments. The recent discovery through mouse genetics that PTHrP (PTH-related protein) is a crucial bone-derived paracrine regulator of remodelling offers new and interesting therapeutic targets.
Osteoporosis presenting in pregnancy, puerperium, and lactation.
Kovacs, Christopher S
2014-12-01
To describe our current state of knowledge about the pathophysiology, incidence, and treatment of osteoporosis that presents during pregnancy, puerperium, and lactation. When vertebral fractures occur in pregnant or lactating women, it is usually unknown whether the skeleton was normal before pregnancy. Maternal adaptations increase bone resorption modestly during pregnancy but markedly during lactation. The net bone loss may occasionally precipitate fractures, especially in women who have underlying low bone mass or skeletal fragility prior to pregnancy. Bone mass and strength are normally restored postweaning. Transient osteoporosis of the hip is a sporadic disorder localized to one or both femoral heads; it is not due to generalized skeletal resorption. Anecdotal reports have used bisphosphonates, strontium ranelate, teriparatide, or vertebroplasty/kyphoplasty to treat postpartum vertebral fractures, but it is unclear whether these therapies had any added benefit over the spontaneous skeletal recovery that normally occurs after weaning. These relatively rare fragility fractures result from multifactorial causes, including skeletal disorders that precede pregnancy, and structural and metabolic stresses that can compromise skeletal strength during pregnancy and lactation. Further study is needed to determine when pharmacological or surgical therapy is warranted instead of conservative or expectant management.
Tani-Ishii, Nobuyuki; Minamida, Genshi; Saitoh, Daisuke; Chieda, Keiko; Omuro, Hiromasa; Sugaya, Akira; Hamada, Nobushiro; Takahashi, Yusuke; Kiyohara, Shiro; Kashima, Isamu; Teranaka, Toshio; Umemotot, Toshio
2003-05-01
Incadronate (YM175, disodium cycloheptylaminomethylenediphosphonate monohydrate), a bisphosphonate, has been suggested to prevent the bone resorption associated with periodontitis by inhibiting osteoclast activity. The purpose of this study was to investigate the effect of incadronate in preventing periodontal destruction in rats with Porphyromonas gingivalis-induced periodontitis. Periodontitis was induced in 35 Wister rats by inoculating P. gingivalis into the oral cavity and feeding the rats a soft diet for 4 weeks. Incadronate or placebo was administered to the oral cavity of the rats 2 days per week for 2, 4, or 8 weeks. P. gingivalis infection resulted in destruction of the periodontal ligament, reduced bone density, and caused inflammatory cell migration. Radiographic, morphometric, and histological results showed that incadronate had the ability to increase the bone mineral density (quantum level score; cortex 518.9 [placebo 612.8]; sponge 579.8 [placebo 672.0]) and to prevent periodontal ligament destruction (width 0.16 mm [placebo 0.20 mm]; area 0.36 mm2 [placebo 0.54 mm2]) after 8 weeks' administration. Furthermore, the polymorphonuclear leukocyte (PMN) infiltration in gingival tissue was significantly decreased. These results showed that incadronate inhibits bone resorption and PMN migration in P. gingivalis-induced periodontitis.
Klein, Gordon L; Xie, Yixia; Qin, Yi-Xian; Lin, Liangjun; Hu, Minyi; Enkhbaatar, Perenlei; Bonewald, Lynda F
2014-03-01
Treatment with bisphosphonates within the first 10 days of severe burn injury completely prevents bone loss. We therefore postulated that bone resorption occurs early post burn and is the primary explanation for acute bone loss in these patients. Our objective was to assess bone for histological and biomechanical evidence of early resorption post burn. We designed a randomized controlled study utilizing a sheep model of burn injury. Three sheep received a 40 % total body surface area burn under isoflurane anesthesia, and three other sheep received cotton-smoke inhalation and served as control. Burned sheep were killed 5 days post procedure and controls were killed 2 days post procedure. Backscatter scanning electron microscopy was performed on iliac crests obtained immediately postmortem along with quantitative histomorphometry and compression testing to determine bone strength (Young's modulus). Blood ionized Ca was also determined in the first 24 h post procedure as was urinary CTx. Three of three sheep killed at 5 days had evidence of scalloping of the bone surface, an effect of bone resorption, whereas none of the three sheep killed at 2 days post procedure had scalloping. One of the three burned sheep killed at 5 days showed quantitative doubling of the eroded surface and halving of the bone volume compared to sham controls. Mean values of Young's modulus were approximately one third lower in the burned sheep killed at 5 days compared to controls, p = 0.08 by unpaired t test, suggesting weaker bone. These data suggest early post-burn bone resorption. Urine CTx normalized to creatinine did not differ between groups at 24 h post procedure because the large amounts of fluids received by the burned sheep may have diluted urine creatinine and CTx and because the urine volume produced by the burned sheep was threefold that of the controls. We calculated 24 h urinary CTx excretion, and with this calculation CTx excretion/24 h in the burned sheep was nearly twice that of the controls. Moreover, whole blood ionized Ca measured at 3- to 6-h intervals over the first 24 h in both burn and control sheep showed a 6 % reduction versus baseline in the burned sheep with <1 % reduction in the control animals. This sheep model was previously used to demonstrate upregulation of the parathyroid calcium-sensing receptor within the timeframe of the present study. Because both early bone resorption, supported by this study, and calcium-sensing receptor upregulation, consistent with the observed reduction in blood ionized Ca, are mediated by proinflammatory cytokines that are present as part of the post-burn systemic inflammatory response, we may postulate that post-burn upregulation of the parathyroid calcium-sensing receptor may be an adaptive response to clear the blood of excess calcium liberated by cytokine-mediated bone resorption.
Kierdorf, Uwe; Meng, Stefan; Kahlke, Ralf-Dietrich
2016-12-01
This report describes an isolated right horn core of a fossil steppe bison (Bison priscus) recovered from Late Pleistocene deposits near Langsdorf in the federal state of Mecklenburg-Vorpommern (Germany). AMS radiocarbon dating provided an age of 45353±2894cal yr BP for the specimen. The horn core, which by morphological criteria belonged to a female, has two depressions in its basal portion that differ in size, shape, and depth. While depressions are known from horn cores of domestic cattle, sheep, and goats, this is the first case reported from a wild bovid. Formation of the depressions on the steppe bison's horn core likely was caused by localized bone resorption during periods of increased demand for mineral elements that could not be met by dietary uptake. Such situations may have occurred in relation to pregnancy and/or lactation. Pronounced bone resorption as a means to mobilize skeletally stored mineral elements was observed in other mammals, too. Since horn cores are recovered frequently among skeletal remains of fossil bison, a systematic inspection of fossil collections for similar horn core depressions is encouraged. Copyright © 2016 Elsevier Inc. All rights reserved.
The role of lipopolysaccharide in infectious bone resorption of periapical lesion.
Hong, Chi-Yuan; Lin, Sze-Kwan; Kok, Sang-Heng; Cheng, Shih-Jung; Lee, Ming-Shu; Wang, Tong-Mei; Chen, Chuan-Shuo; Lin, Li-Deh; Wang, Juo-Song
2004-03-01
The role of lipopolysaccharide (LPS) in periapical lesion-induced bone resorption was investigated. Polymyxin B (PMB), a specific inhibitor of LPS, was evaluated to treat the apical lesion. Lipopolysaccharide isolated from two common endodontic pathogens, Fusobacterium nucleatum and Porphyromonas endodontalis, stimulated mouse macrophage (J774) to release interleukin-1alpha (IL-1 alpha) and tumor necrosis factor-alpha (TNF-alpha) in a time-dependent manner. Combination of LPS further enhanced the stimulation. PMB inhibited these effects significantly. LPS also stimulated matrix metalloproteinase-1 (MMP-1) gene expression in J774, whereas anti-IL-1 alpha and anti-TNF-alpha antibodies, as well as PMB, diminished this effect. A disease model of periapical lesion was established in Wistar rat. Administration of PMB reduced the extent of lesion-associated bone resorption by 76% to approximately 80%, and simultaneously reduced the numbers of MMP-1-producing macrophages. It is suggested that LPS released from the infected root canal triggers the synthesis of IL-1 alpha and TNF-alpha from macrophages. These pro-inflammatory cytokines up-regulate the production of MMP-1 by macrophages to promote periapical bone resorption.
Barger, Anne M; Fan, Timothy M; de Lorimier, Louis-Philippe; Sprandel, Ian T; O'Dell-Anderson, Kristen
2007-01-01
Receptor activator of nuclear factor kappa-B (RANK), RANK-ligand (RANKL), and the soluble decoy receptor osteoprotegerin (OPG) form a key axis modulating osteoclastogenesis. In health, RANKL-expressing bone stromal cells and osteoblasts activate osteoclasts through RANK ligation, resulting in homeostatic bone resorption. Skeletal tumors of dogs and cats, whether primary or metastatic, may express RANKL and directly induce malignant osteolysis. Bone malignancies of dogs and cats may express RANKL, thereby contributing to pathologic bone resorption and pain. Furthermore, relative RANKL expression in bone tumors may correlate with radiographic characteristics of bone pathology. Forty-two dogs and 6 cats with spontaneously-occurring tumors involving bones or soft tissues were evaluated. A polyclonal anti-human RANKL antibody was validated for use in canine and feline cells by flow cytometry and immunocytochemistry. Fifty cytologic specimens were collected from bone and soft tissue tumors of 48 tumor-bearing animals and assessed for RANKL expression. In 15 canine osteosarcoma (OSA) samples, relative RANKL expression was correlated with radiographic characteristics of bone pathology. Expression of RANKL by neoplastic cells was identified in 32/44 canine and 5/6 feline tumor samples. In 15 dogs with OSA, relative RANKL expression did not correlate with either radiographic osteolysis or bone mineral density as assessed by dual energy x-ray absorptiometry. In dogs and cats, tumors classically involving bone and causing pain, often may express RANKL. Confirming RANKL expression in tumors is a necessary step toward the rational institution of novel therapies targeting malignant osteolysis via RANKL antagonism.
Trabecular bone adaptation to low-magnitude high-frequency loading in microgravity.
Torcasio, Antonia; Jähn, Katharina; Van Guyse, Maarten; Spaepen, Pieter; Tami, Andrea E; Vander Sloten, Jos; Stoddart, Martin J; van Lenthe, G Harry
2014-01-01
Exposure to microgravity causes loss of lower body bone mass in some astronauts. Low-magnitude high-frequency loading can stimulate bone formation on earth. Here we hypothesized that low-magnitude high-frequency loading will also stimulate bone formation under microgravity conditions. Two groups of six bovine cancellous bone explants were cultured at microgravity on a Russian Foton-M3 spacecraft and were either loaded dynamically using a sinusoidal curve or experienced only a static load. Comparable reference groups were investigated at normal gravity. Bone structure was assessed by histology, and mechanical competence was quantified using μCT and FE modelling; bone remodelling was assessed by fluorescent labelling and secreted bone turnover markers. Statistical analyses on morphometric parameters and apparent stiffness did not reveal significant differences between the treatment groups. The release of bone formation marker from the groups cultured at normal gravity increased significantly from the first to the second week of the experiment by 90.4% and 82.5% in response to static and dynamic loading, respectively. Bone resorption markers decreased significantly for the groups cultured at microgravity by 7.5% and 8.0% in response to static and dynamic loading, respectively. We found low strain magnitudes to drive bone turnover when applied at high frequency, and this to be valid at normal as well as at microgravity. In conclusion, we found the effect of mechanical loading on trabecular bone to be regulated mainly by an increase of bone formation at normal gravity and by a decrease in bone resorption at microgravity. Additional studies with extended experimental time and increased samples number appear necessary for a further understanding of the anabolic potential of dynamic loading on bone quality and mechanical competence.
Osteopetroses, emphasizing potential approaches to treatment.
Teti, Anna; Econs, Michael J
2017-09-01
Osteopetroses are a heterogeneous group of rare genetic bone diseases sharing the common hallmarks of reduced osteoclast activity, increased bone mass and high bone fragility. Osteoclasts are bone resorbing cells that contribute to bone growth and renewal through the erosion of the mineralized matrix. Alongside the bone forming activity by osteoblasts, osteoclasts allow the skeleton to grow harmonically and maintain a healthy balance between bone resorption and formation. Osteoclast impairment in osteopetroses prevents bone renewal and deteriorates bone quality, causing atraumatic fractures. Osteopetroses vary in severity and are caused by mutations in a variety of genes involved in bone resorption or in osteoclastogenesis. Frequent signs and symptoms include osteosclerosis, deformity, dwarfism and narrowing of the bony canals, including the nerve foramina, leading to hematological and neural failures. The disease is autosomal, with only one extremely rare form associated so far to the X-chromosome, and can have either recessive or dominant inheritance. Recessive ostepetroses are generally lethal in infancy or childhood, with a few milder forms clinically denominated intermediate osteopetroses. Dominant osteopetrosis is so far associated only with mutations in the CLCN7 gene and, although described as a benign form, it can be severely debilitating, although not at the same level as recessive forms, and can rarely result in reduced life expectancy. Severe osteopetroses due to osteoclast autonomous defects can be treated by Hematopoietic Stem Cell Transplant (HSCT), but those due to deficiency of the pro-osteoclastogenic cytokine, RANKL, are not suitable for this procedure. Likewise, it is unclear as to whether HSCT, which has high intrinsic risks, results in clinical improvement in autosomal dominant osteopetrosis. Therefore, there is an unmet medical need to identify new therapies and studies are currently in progress to test gene and cell therapies, small interfering RNA approach and novel pharmacologic treatments. Copyright © 2017 Elsevier Inc. All rights reserved.
Reduced proliferation and osteocalcin expression in osteoblasts of male idiopathic osteoporosis.
Ruiz-Gaspà, Sílvia; Blanch-Rubió, Josep; Ciria-Recasens, Manuel; Monfort, Jordi; Tío, Laura; Garcia-Giralt, Natàlia; Nogués, Xavier; Monllau, Joan C; Carbonell-Abelló, Jordi; Pérez-Edo, Lluis
2010-03-01
Osteoporosis is characterized by low bone mineral density (BMD), resulting in increasing susceptibility to bone fractures. In men, it has been related to some diseases and toxic habits, but in some instances the cause of the primary--or idiopathic--osteoporosis is not apparent. In a previous study, our group compared histomorphometric measurements in cortical and cancellous bones from male idiopathic osteoporosis (MIO) patients to those of control subjects and found reduced bone formation without major differences in bone resorption. To confirm these results, this study analyzed the etiology of this pathology, examining the osteoblast behavior in vitro. We compared two parameters of osteoblast activity in MIO patients and controls: osteoblastic proliferation and gene expression of COL1A1 and osteocalcin, in basal conditions and with vitamin D(3) added. All these experiments were performed from a first-passage osteoblastic culture, obtained from osteoblasts that had migrated from the transiliac explants to the plate. The results suggested that the MIO osteoblast has a slower proliferation rate and decreased expression of genes related to matrix formation, probably due to a lesser or slower response to some stimulus. We concluded that, contrary to female osteoporosis, in which loss of BMD is predominantly due to increased resorption, low BMD in MIO seems to be due to an osteoblastic defect.
Amiable, Nathalie; Tat, Steeve Kwan; Lajeunesse, Daniel; Duval, Nicolas; Pelletier, Jean-Pierre; Martel-Pelletier, Johanne; Boileau, Christelle
2009-06-01
In osteoarthritis (OA), the subchondral bone undergoes a remodelling process involving several factors synthesized by osteoblasts. In this study, we investigated the expression, production, modulation, and role of PAR-2 in human OA subchondral bone osteoblasts. PAR-2 expression and production were determined by real-time PCR and flow cytometry, respectively. PAR-2 modulation was investigated in OA subchondral bone osteoblasts treated with IL-1 beta (100 pg/ml), TNF-alpha (5 ng/ml), TGF-beta1 (10 ng/ml), PGE(2) (500 nM), IL-6 (10 ng/ml) and IL-17 (10 ng/ml). Membranous RANKL protein was assessed by flow cytometry, and OPG, MMP-1, MMP-9, MMP-13, IL-6 and intracellular signalling pathways by specific ELISAs. Bone resorptive activity was measured by using a co-culture model of human PBMC and OA subchondral bone osteoblasts. PAR-2 expression and production (p<0.05) were markedly increased when human OA subchondral bone osteoblasts were compared to normal. On OA osteoblasts, PAR-2 production was significantly increased by IL-1 beta, TNF-alpha and PGE(2). Activation of PAR-2 with a specific agonist, SLIGKV-NH(2), induced a significant up-regulation of MMP-1, MMP-9, IL-6, and membranous RANKL, but had no effect on MMP-13 or OPG production. Interestingly, bone resorptive activity was also significantly enhanced following PAR-2 activation. The PAR-2 effect was mediated by activation of the MAP kinases Erk1/2 and JNK. This study is the first to demonstrate that PAR-2 activation plays a role in OA subchondral bone resorption via an up-regulation of major bone remodelling factors. These results shed new light on the potential of PAR-2 as a therapeutic target in OA.
Aromatization of androgens is important for skeletal maintenance of aged male rats.
Vanderschueren, D; Van Herck, E; De Coster, R; Bouillon, R
1996-09-01
A nonsteroidal aromatase inhibitor vorozole (VOR) was administered to aged (12 months old) male Wistar rats and its effect was compared with the effect of androgen deficiency. The rats were either sham-operated (SHAM) or orchidectomized (ORCH) and treated with or without VOR. Thus, four experimental groups were created (SHAM, ORCH, SHAM + VOR, ORCH + VOR). The follow-up period was 4 months. At the end of the experimental period, bone mineral density (BMD) of the first four lumbar vertebrae and right femur was measured ex vivo with dual-energy X-ray absorptiometry, bone formation was evaluated by serum osteocalcin, and bone resorption by urinary excretion of (deoxy)pyridinoline. Orchidectomy increased bone resorption 2- to 3-fold whereas bone formation was only slightly increased. Treatment of intact male rats with VOR also increased bone resorption (+30% increase) whereas bone formation was not increased in this SHAM + VOR group. Their BMD was 7% lower in the femur (P < 0.01) and 6% lower in the lumbar vertebrae (P < 0.01) compared with the SHAM group that had not received VOR. Moreover, this decrease of bone mineral density was not significantly different from the expected decrease of bone density observed in the ORCH groups (6-10%). This was also reflected by a decrease of calcium content of the first four lumbar vertebrae of 15% (P < 0.001) in the SHAM + VOR group and 9-14% (P < 0.05) in the ORCH groups compared with the SHAM group, respectively. These data therefore suggest that inhibition of aromatization of androgens into estrogens increases bone resorption and bone loss similar to that observed after complete removal of androgens. Aromatization of androgens into estrogens may therefore, at least partly, explain the effects of androgens on skeletal maintenance.
Khawaja, Naveed Ahmad; Khalil, Hesham; Parveen, Kauser; Al-Mutiri, Abdulmajeed; Al-Mutiri, Saif; Al-Saawi, Abdullah
2015-04-01
The purpose of this study is to determine the type and frequency of pathological conditions around third molar teeth among randomly selected patient's records in Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh. Totally, 281 patient panoramic radiographs were selected with detectable pathology among 570 files of patients seen in oral and maxillofacial surgery clinics 2 years retrospectively. Almost 17-55 years age (mean age 25.43) was selected. The following radiographs were analyzed for all pathology associated impacted teeth; dental caries, bone resorption, periodontitis, and apical pathology. The study found caries, external bone resorption and periodontitis are highly frequent to mesioangular and horizontal in mandibular impacted third molar compared to maxillary impacted third molar. Overall result evaluated that tooth #28 related periodontitis is significant (P = 0.021), and tooth #38 related bone resorption, tooth #48 related root caries, bone resorption and apical pathology are highly significant (P = 0.000) comparing to others. This study also concluded the high frequency of root caries, bone resorption and apical pathology reported in relation to mandibular impacted third teeth. Significant results were also achieved with periodontitis in relation to mesiangular and vertical angulation of left impacted maxillary third molars. Prophylactic removal of impacted third molars is recommended in many studies to avoid future risk of associated pathology. Retained asymptomatic impacted third molars imply pathology that could be difficult in later ages as less morbidity in younger ages.
Otosclerosis: Temporal Bone Pathology.
Quesnel, Alicia M; Ishai, Reuven; McKenna, Michael J
2018-04-01
Otosclerosis is pathologically characterized by abnormal bony remodeling, which includes bone resorption, new bone deposition, and vascular proliferation in the temporal bone. Sensorineural hearing loss in otosclerosis is associated with extension of otosclerosis to the cochlear endosteum and deposition of collagen throughout the spiral ligament. Persistent or recurrent conductive hearing loss after stapedectomy has been associated with incomplete footplate fenestration, poor incus-prosthesis connection, and incus resorption in temporal bone specimens. Human temporal bone pathology has helped to define the role of computed tomography imaging for otosclerosis, confirming that computed tomography is highly sensitive for diagnosis, yet limited in assessing cochlear endosteal involvement. Copyright © 2017 Elsevier Inc. All rights reserved.
Bone metabolism and renal stone risk during International Space Station missions.
Smith, Scott M; Heer, Martina; Shackelford, Linda C; Sibonga, Jean D; Spatz, Jordan; Pietrzyk, Robert A; Hudson, Edgar K; Zwart, Sara R
2015-12-01
Bone loss and renal stone risk are longstanding concerns for astronauts. Bone resorption brought on by spaceflight elevates urinary calcium and the risk of renal stone formation. Loss of bone calcium leads to concerns about fracture risk and increased long-term risk of osteoporosis. Bone metabolism involves many factors and is interconnected with muscle metabolism and diet. We report here bone biochemistry and renal stone risk data from astronauts on 4- to 6-month International Space Station missions. All had access to a type of resistive exercise countermeasure hardware, either the Advanced Resistance Exercise Device (ARED) or the Interim Resistance Exercise Device (iRED). A subset of the ARED group also tested the bisphosphonate alendronate as a potential anti-resorptive countermeasure (Bis+ARED). While some of the basic bone marker data have been published, we provide here a more comprehensive evaluation of bone biochemistry with a larger group of astronauts. Regardless of exercise, the risk of renal stone formation increased during spaceflight. A key factor in this increase was urine volume, which was lower during flight in all groups at all time points. Thus, the easiest way to mitigate renal stone risk is to increase fluid consumption. ARED use increased bone formation without changing bone resorption, and mitigated a drop in parathyroid hormone in iRED astronauts. Sclerostin, an osteocyte-derived negative regulator of bone formation, increased 10-15% in both groups of astronauts who used the ARED (p<0.06). IGF-1, which regulates bone growth and formation, increased during flight in all 3 groups (p<0.001). Our results are consistent with the growing body of literature showing that the hyper-resorptive state of bone that is brought on by spaceflight can be countered pharmacologically or mitigated through an exercise-induced increase in bone formation, with nutritional support. Key questions remain about the effect of exercise-induced alterations in bone metabolism on bone strength and fracture risk. Published by Elsevier Inc.
A bone-resorption surface-targeting nanoparticle to deliver anti-miR214 for osteoporosis therapy
Zhang, Shufan; Liu, Jiafan; Sun, Yao; Wang, Xiaogang
2017-01-01
With increasing fracture risks due to fragility, osteoporosis is a global health problem threatening postmenopausal women. In these patients, osteoclasts play leading roles in bone loss and fracture. How to inhibit osteoclast activity is the key issue for osteoporosis treatment. In recent years, miRNA-based gene therapy through gene regulation has been considered a potential therapeutic method. However, in light of the side effects, the use of therapeutic miRNAs in osteoporosis treatment is still limited by the lack of tissue/cell-specific delivery systems. Here, we developed polyurethane (PU) nanomicelles modified by the acidic peptide Asp8. Our data showed that without overt toxicity or eliciting an immune response, this delivery system encapsulated and selectively deliver miRNAs to OSCAR+ osteoclasts at bone-resorption surface in vivo. With the Asp8-PU delivery system, anti-miR214 was delivered to osteoclasts, and bone microarchitecture and bone mass were improved in ovariectomized osteoporosis mice. Therefore, Asp8-PU could be a useful bone-resorption surface-targeting delivery system for treatment of osteoclast-induced bone diseases and aging-related osteoporosis. PMID:29075114
Stensby, J Derek; Kaliney, Ryan W; Alford, Bennett; Shen, Francis H; Patrie, James T; Fox, Michael G
2016-03-01
The purpose of this study is to determine whether recombinant human morphogenetic protein-2 (rhBMP-2) alters the findings on routine radiographs performed after transforaminal lumbar interbody fusion (TLIF). A retrospective review of 256 TLIF procedures in 200 patients was performed over a 4-year period. The rhBMP-2 group included 204 TLIFs in 160 patients, and the control group included 52 TLIFs in 40 patients. Two musculoskeletal radiologists reviewed the postoperative radiographs for endplate resorption, resorption resolution, new bone formation, bridging bone, and allograft migration. Statistical analysis was performed using logistic regression. The median age was 53 years in the rhBMP-2 group and 54 years in the control group (p = 0.182). The groups were similar with regard to sex (p = 0.517), single or multilevel TLIF (p = 0.921), specific TLIF levels (p = 0.53), and median radiographic follow-up (373 vs 366 days; p = 0.34). Findings that were more common in the rhBMP-2 group than in the control group included endplate resorption (38% [78/204] vs 12% [6/52]; odds ratio [OR], 4.67; 95% CI, 1.99-12.54; p < 0.001), resorption resolution (59% [46/78] vs 0% [0/6]; OR, 8.09; 95% CI, 1.41 to ∞; p = 0.022), new bone formation (84% [171/204] vs 67% [35/52]; OR, 2.51; 95% CI, 1.24-4.99; p = 0.011), bridging bone (55% [112/204] vs 31% [16/52]; OR, 2.73; 95% CI, 1.43-5.34; p = 0.002), and allograft migration (17% [35/204] vs 2% [1/52]; OR, 6.30; 95% CI, 0.91-151.41; p = 0.065). A statistically significant higher frequency of endplate resorption, new bone formation, and bone bridging is present in TLIF augmented by rhBMP-2 compared with TLIF performed without rhBMP-2. Endplate resorption resolves without treatment in most cases after rhBMP-2 use.
Liu, Jess; Czernick, Drew; Lin, Shih-Chun; Alasmari, Abeer; Serge, Dibart; Salih, Erdjan
2013-09-01
Egg yolk phosvitin is one of the most highly phosphorylated extracellular matrix proteins known in nature with unique physico-chemical properties deemed to be critical during ex-vivo egg embryo development. We have utilized our unique live mouse calvarial bone organ culture models under conditions which dissociates the two bone remodeling stages, viz., resorption by osteoclasts and formation by osteoblasts, to highlight important and to date unknown critical biological functions of egg phosvitin. In our resorption model live bone cultures were grown in the absence of ascorbate and were stimulated by parathyroid hormone (PTH) to undergo rapid osteoclast formation/differentiation with bone resorption. In this resorption model native phosvitin potently inhibited PTH-induced osteoclastic bone resorption with simultaneous new osteoid/bone formation in the absence of ascorbate (vitamin C). These surprising and critical observations were extended using the bone formation model in the absence of ascorbate and in the presence of phosvitin which supported the above results. The results were corroborated by analyses for calcium release or uptake, tartrate-resistant acid phosphatase activity (marker for osteoclasts), alkaline phosphatase activity (marker for osteoblasts), collagen and hydroxyproline composition, and histological and quantitative histomorphometric evaluations. The data revealed that the discovered bioactivity of phosvitin mirrors that of ascorbate during collagen synthesis and the formation of new osteoid/bone. Complementing those studies use of the synthetic collagen peptide analog and cultured calvarial osteoblasts in conjunction with mass spectrometric analysis provided results that augmented the bone organ culture work and confirmed the capacity of phosvitin to stimulate differentiation of osteoblasts, collagen synthesis, hydroxyproline formation, and biomineralization. There are striking implications and interrelationships of this affect that relates to the evolutionary inactivation of the gene of an enzyme L-gulono-γ-lactone oxidase, which is involved in the final step of ascorbate biosynthesis, in many vertebrate species including passeriform birds, reptiles and teleost fish whose egg yolk contain phosvitin. These represent examples of how developing ex-vivo embryos of such species can achieve connective tissue and skeletal system formation in the absence of ascorbate. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Liang; Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai; Kang, Hui
Wear particles liberated from the surface of prostheses are considered to be main reason for osteoclast bone resorption and that extensive osteoclastogenesis leads to peri-implant osteolysis and subsequent prosthetic loosening. The aim of this study was to assess the effect of rifampin on osteoclastogenesis and titanium (Ti) particle-induced osteolysis. The Ti particle-induced osteolysis mouse calvarial model and bone marrow-derived macrophages (BMMs) were used. Rifampin, at dose of 10 or 50 mg/kg/day, was respectively given intraperitoneally for 14 days in vivo. The calvariae were removed and processed for Further histological analysis. In vitro, osteoclasts were generated from mouse BMMs with receptor activator of nuclearmore » factor-κB ligand (RANKL) and the macrophage colony stimulating factor. Rifampin at different concentrations was added to the medium. The cell viability, tartrate-resistant acid phosphatase (TRAP) staining, TRAP activity and resorption on bone slices were analysis. Osteoclast-specific genes and RANKL-induced MAPKs signaling were tested for further study of the mechanism. Rifampin inhibited Ti-induced osteolysis and osteoclastogenesis in vivo. In vitro data indicated that rifampin suppressed osteoclast differentiation and bone resorption in a dose-dependent manner. Moreover, rifampin significantly reduced the expression of osteoclast-specific markers, including TRAP, cathepsin K, V-ATPase d2, V-ATPase a3, c-Fos, and nuclear factor of activated T cells (NFAT) c1. Further investigation revealed that rifampin inhibited osteoclast formation by specifically abrogating RANKL-induced p38 and NF-κB signaling. Rifampin had significant potential for the treatment of particle-induced peri-implant osteolysis and other diseases caused by excessive osteoclast formation and function. - Highlights: • Rifampin inhibited Ti-induced osteolysis and osteoclastogenesis in vivo. • Rifampin suppressed osteoclast differentiation and bone resorption in a dose-dependent manner. • Rifampin significantly reduced the expression of osteoclast-specific markers in vitro. • RANKL-induced p38 and NF-κB signaling may be involved behind the effects of rifampin treatment on osteoclastogenesis.« less
Correlating the nanoscale mechanical and chemical properties of knockout mice bones
NASA Astrophysics Data System (ADS)
Kavukcuoglu, Nadire Beril
Bone is a mineral-organic composite where the organic matrix is mainly type I collagen plus small amounts of non-collagenous proteins including osteopontin (OPN), osteocalcin (OC) and fibrillin 2 (Fbn2). Mature bone undergoes remodeling continually so new bone is formed and old bone resorbed. Uncoupling between the bone resorption and bone formation causes an overall loss of bone mass and leads to diseases like osteoporosis and osteopenia. These are characterized by structural deterioration of the bone tissue and an increased risk of fracture. The non-collagenous bone proteins are known to have a role in regulating bone turnover and to affect the structural integrity of bone. OPN and OC play a key role in bone resorption and formation, while absence of Fbn-2 causes a connective tissue disorder (congenital contractural arachnodactyly) and has been associated with decreased bone mass. In this thesis nanoindentation and Raman-microspectroscopy techniques were used to investigate and correlate the mechanical and chemical properties of cortical femoral bones from OPN deficient (OPN-/-), OC deficient (OC-/-) and Fbn-2 deficient (Fbn2-/-) mice and their age, sex and background matched wild-type controls (OPN+/+, OC+/+ and Fbn2+/+). For OPN the hardness (H) and elastic modulus (E) of under 12 week OPN-/- bones were significantly lower than for OPN+/+ bones, but Raman showed no significant difference. Mechanical properties of bones from mice older than 12 weeks were not significantly different with genotype. However, mineralization and crystallinity from >50 week OPN-/- bones were significantly higher than for OPN+/+ bones. Mechanical properties of OPN-/- bones showed no variation with age, but mineralization, crystallinity and type-B carbonate substitution increased for both genotypes. For OC-/- intra-bone analyses showed that the hardness and crystallinity of the bones were significantly higher, especially in the mid-cortical sections, compared to OC+/+ bones. Fbn2-/- bones had significantly lower hardness and elastic modulus compared to Fbn2+/+ bones, but the crystallinity was higher. Type-B carbonate substitution decreased significantly in OC-/- and Fbn2-/- bones compared to their wild-type controls. The thesis has provided new insight into how non-collagenous proteins affect the nanomechanics and chemistry of bone tissue. This information will assist in the development of new treatments for osteopenia/osteoporosis.
Su, Nan; Sun, Qidi; Li, Can; Lu, Xiumin; Qi, Huabing; Chen, Siyu; Yang, Jing; Du, Xiaolan; Zhao, Ling; He, Qifen; Jin, Min; Shen, Yue; Chen, Di; Chen, Lin
2010-01-01
Achondroplasia (ACH) is a short-limbed dwarfism resulting from gain-of-function mutations in fibroblast growth factor receptor 3 (FGFR3). Previous studies have shown that ACH patients have impaired chondrogenesis, but the effects of FGFR3 on bone formation and bone remodeling at adult stages of ACH have not been fully investigated. Using micro-computed tomography and histomorphometric analyses, we found that 2-month-old Fgfr3G369C/+ mice (mouse model mimicking human ACH) showed decreased bone mass due to reduced trabecular bone volume and bone mineral density, defect in bone mineralization and increased osteoclast numbers and activity. Compared with primary cultures of bone marrow stromal cells (BMSCs) from wild-type mice, Fgfr3G369C/+ cultures showed decreased cell proliferation, increased osteogenic differentiation including up-regulation of alkaline phosphatase activity and expressions of osteoblast marker genes, and reduced bone matrix mineralization. Furthermore, our studies also suggest that decreased cell proliferation and enhanced osteogenic differentiation observed in Fgfr3G369C/+ BMSCs are caused by up-regulation of p38 phosphorylation and that enhanced Erk1/2 activity is responsible for the impaired bone matrix mineralization. In addition, in vitro osteoclast formation and bone resorption assays demonstrated that osteoclast numbers and bone resorption area were increased in cultured bone marrow cells derived from Fgfr3G369C/+ mice. These findings demonstrate that gain-of-function mutation in FGFR3 leads to decreased bone mass by regulating both osteoblast and osteoclast activities. Our studies provide new insight into the mechanism underlying the development of ACH. PMID:20053668
Quint, Patrick; Ruan, Ming; Pederson, Larry; Kassem, Moustapha; Westendorf, Jennifer J.; Khosla, Sundeep; Oursler, Merry Jo
2013-01-01
Normal bone turnover requires tight coupling of bone resorption and bone formation to preserve bone quantity and structure. With aging and during several pathological conditions, this coupling breaks down, leading to either net bone loss or excess bone formation. To preserve or restore normal bone metabolism, it is crucial to determine the mechanisms by which osteoclasts and osteoblast precursors interact and contribute to coupling. We showed that osteoclasts produce the chemokine sphingosine 1-phosphate (S1P), which stimulates osteoblast migration. Thus, osteoclast-derived S1P may recruit osteoblasts to sites of bone resorption as an initial step in replacing lost bone. In this study we investigated the mechanisms by which S1P stimulates mesenchymal (skeletal) cell chemotaxis. S1P treatment of mesenchymal (skeletal) cells activated RhoA GTPase, but this small G protein did not contribute to migration. Rather, two S1P receptors, S1PR1 and S1PR2, coordinately promoted migration through activation of the JAK/STAT3 and FAK/PI3K/AKT signaling pathways, respectively. These data demonstrate that the chemokine S1P couples bone formation to bone resorption through activation of kinase signaling pathways. PMID:23300082
A 7-day continuous infusion of PTH or PTHrP suppresses bone formation and uncouples bone turnover.
Horwitz, Mara J; Tedesco, Mary Beth; Sereika, Susan M; Prebehala, Linda; Gundberg, Caren M; Hollis, Bruce W; Bisello, Alessandro; Garcia-Ocaña, Adolfo; Carneiro, Raquel M; Stewart, Andrew F
2011-09-01
Human in vivo models of primary hyperparathyroidism (HPT), humoral hypercalcemia of malignancy (HHM), or lactational bone mobilization for more than 48 hours have not been described previously. We therefore developed 7-day continuous-infusion models using human parathyroid hormone(1-34) [hPTH(1-34)] and human parathyroid hormone-related protein(1-36) [hPTHrP(1-36)] in healthy human adult volunteers. Study subjects developed sustained mild increases in serum calcium (10.0 mg/dL), with marked suppression of endogenous PTH(1-84). The maximal tolerated infused doses over a 7-day period (2 and 4 pmol/kg/h for PTH and PTHrP, respectively) were far lower than in prior, briefer human studies (8 to 28 pmol/kg/h). In contrast to prior reports using higher PTH and PTHrP doses, both 1,25-dihydroxyvitamin D(3) [1,25(OH)(2) D(3) ] and tubular maximum for phosphorus (TmP/GFR) remained unaltered with these low doses despite achievement of hypercalcemia and hypercalciuria. As expected, bone resorption increased rapidly and reversed promptly with cessation of the infusion. However, in contrast to events in primary HPT, bone formation was suppressed by 30% to 40% for the 7 days of the infusions. With cessation of PTH and PTHrP infusion, bone-formation markers abruptly rebounded upward, confirming that bone formation is suppressed by continuous PTH or PTHrP infusion. These studies demonstrate that continuous exposure of the human skeleton to PTH or PTHrP in vivo recruits and activates the bone-resorption program but causes sustained arrest in the osteoblast maturation program. These events would most closely mimic and model events in HHM. Although not a perfect model for lactation, the increase in resorption and the rebound increase in formation with cessation of the infusions are reminiscent of the maternal skeletal calcium mobilization and reversal that occur following lactation. The findings also highlight similarities and differences between the model and HPT. Copyright © 2011 American Society for Bone and Mineral Research.
Bone mineral density and metabolic indices in hyperthyroidism.
Al-Nuaim, A; El-Desouki, M; Sulimani, R; Mohammadiah, M
1991-09-01
Hyperthyroidism can alter bone metabolism by increasing both bone resorption and formation. The increase in bone resorption predominates, leading to a decrease in bone mass. To assess the effect of hyperthyroidism on bone and mineral metabolism, we measured bone density using single photon absorptiometry in 30 untreated hyperthyroid patients. Patients were categorized into three groups based on sex and alkaline phosphatase levels: 44 sex- and age-matched subjects were used as controls. Bone densities were significanlty lower in all patient groups compared with controls. Alkaline phosphatase was found to be a useful marker for assessing severity of bone disease in hyperthyroid patients as there is significant bone density among patients with higher alkaline phosphatase value. Hyperthyroidism should be considered in the differential diagnosis of unexplained alkaline phophatase activity.
Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki
2014-10-01
Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (p<0.001) and the ALF 0.2μg/kg group (p<0.05) evaluated by 3-point bending test. The cortical area of the mid-femur in the ELD 0.05μg/kg group but not the ALF 0.2μg/kg group was significantly higher than those of the vehicle control group (p<0.001). Bone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (p<0.05, p<0.01, respectively), whereas ALF 0.2μg/kg did not alter these parameters. These results indicate that ELD improved the biomechanical properties of femoral cortical bone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of bisphosphonates on root resorption after tooth replantation - a systematic review.
Najeeb, Shariq; Siddiqui, Fahad; Khurshid, Zohaib; Zohaib, Sana; Zafar, Muhammad Sohail; Ansari, Shazia Akbar
2017-04-01
Replantation of avulsed teeth may lead to root resorption. Bisphosphonates (BPs), a class of drugs of used to treat resorptive diseases of the bone such as osteoporosis and Paget's disease, have been observed to exert an antiresorptive effect on periodontal bone as well. The antiresorptive properties of BPs could prove them useful in preventing root resorption of replanted avulsed teeth. The aim of this systematic review was to analyze and summarize the currently available literature concerning the use of BPs in preventing root resorption of avulsed teeth. PubMed/MEDLINE, Google Scholar, ISI Web of Knowledge, and Embase databases were searched using keywords 'bisphosphonate', 'replantation', and 'tooth'. Quality assessment of each study was carried out. In addition, general characteristics and outcomes of each study were summarized. After exclusion of 116 irrelevant articles, 10 animal studies were included in this review. The majority of the studies suggest that surface application of zoledronate or alendronate reduces root resorption of replanted teeth in animal models. Surface treatment with etidronate had no significant effect on root resorption, and intracanal etidronate accelerated resorption. Surface application of zoledronate and alendronate reduces root resorption of replanted teeth in animal models. However, the efficacy of intracanal usage of BPs is still debatable. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events.
Feller, Liviu; Khammissa, Razia A G; Thomadakis, George; Fourie, Jeanine; Lemmer, Johan
2016-01-01
Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption.
2011-01-01
Background and purpose The remodeling of morselized bone grafts in revision surgery can be enhanced by an anabolic substance such as a bone morphogenetic protein (BMP). On the other hand, BMPs boost catabolism and might cause a premature resorption, both of the graft and of the new-formed bone. Bisphosphonates inactivate osteoclasts and can be used to control the resorption. We studied a combination of both drugs as a local admix to a cancellous allograft. Methods Cancellous bone allografts were harvested and freeze-dried. Either saline, BMP-7, the bisphosphonate zoledronate, or a combination of BMP-7 and zoledronate were added in solution. The grafts were placed in bone conduction chambers and implanted in the proximal tibia of 34 rats. The grafts were harvested after 6 weeks and evaluated by histomorphometry. Results Bone volume/total volume (BV/TV) was 50% in the grafts treated with the combination of BMP-7 and zoledronate and 16% in the saline controls (p < 0.001). In the zoledronate group BV/TV was 56%, and in the BMP group it was 14%. The ingrowth distance of new bone into the graft was 3.5 mm for the combination of BMP-7 and zoledronate and 2.6 mm in the saline control (p = 0.002). The net amount of retained remodeled bone was more than 4 times higher when BMP-7 and zoledronate were combined than in the controls. Interpretation An anabolic drug like BMP-7 can be combined with an anti-catabolic bisphosphonate as local bone graft adjunct, and the combination increases the amount of remaining bone after remodeling is complete. PMID:21434769
In vivo osteoprotegerin gene therapy preventing bone loss induced by periodontitis.
Tang, H; Mattheos, N; Yao, Y; Jia, Y; Ma, L; Gong, P
2015-08-01
The objective of this study was to investigate the effects of osteoprotegerin (OPG) gene therapy on alveolar bone resorption caused by experimental periodontitis in rats, thus forming a foundation for potential clinical applications of OPG gene therapy in the treatment of periodontitis and peri-implantitis. To study the effects of OPG on alveolar bone protection, an experimental periodontitis model was used by placing a bacterial plaque retentive silk ligature in the gingival sulcus around the maxillary second molar tooth, injection of Porphyromonas gingivalis and high carbohydrate diet. A total of 30 Sprague-Dawley rats were randomly divided into three groups, with 10 rats in each group: group I (control) was treated with 10 μL normal saline injection; group II with 10 μL mock vector; and group III with 10 μL local OPG gene transfer by transfection with in vitro constructed pcDNA3.1-human OPG (pcDNA3.1-hOPG). A subperiosteal injection was done adjacent to the second molars on days 0, 7, 14 and 21. Four weeks later, all animals were killed and radiographic, histological and immunohistochemical examinations were performed. Statistical analysis included ANOVA and LSD-Bonferroni test. Group III (OPG gene therapy) had significantly enhanced (p < 0.05) integrated optical density of OPG, had significantly decreased alveolar bone resorption volume and active osteoclast number (p < 0.05) through descriptive histological examination when compared with the other two groups at week 4. Local recombinant OPG plasmid-mediated gene therapy suppresses osteoclastogenesis in vivo and inhibits alveolar bone height reduction caused by experimental periodontitis in rats. OPG gene therapy may be beneficial in preventing progressive periodontal bone loss. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Miodowska, Justyna; Bielski, Jan; Kromka-Szydek, Magdalena
2018-01-01
The objective of this paper is to investigate the healing process of the callus using bone remodelling approach. A new mathematical model of bone remodelling is proposed including both underload and overload resorption, as well as equilibrium and bone growth states. The created model is used to predict the stress-stimulated change in the callus density. The permanent and intermittent loading programs are considered. The analyses indicate that obtaining a sufficiently high values of the callus density (and hence the elasticity) modulus is only possible using time-varying load parameters. The model predictions also show that intermittent loading program causes delayed callus healing. Understanding how mechanical conditions influence callus remodelling process may be relevant in the bone fracture treatment and initial bone loading during rehabilitation.
Effects of Condensation on Peri-implant Bone Density and Remodeling
Wang, L.; Wu, Y.; Perez, K.C.; Hyman, S.; Brunski, J.B.; Tulu, U.; Bao, C.; Salmon, B.; Helms, J.A.
2017-01-01
Bone condensation is thought to densify interfacial bone and thus improve implant primary stability, but scant data substantiate either claim. We developed a murine oral implant model to test these hypotheses. Osteotomies were created in healed maxillary extraction sites 1) by drilling or 2) by drilling followed by stepwise condensation with tapered osteotomes. Condensation increased interfacial bone density, as measured by a significant change in bone volume/total volume and trabecular spacing, but it simultaneously damaged the bone. On postimplant day 1, the condensed bone interface exhibited microfractures and osteoclast activity. Finite element modeling, mechanical testing, and immunohistochemical analyses at multiple time points throughout the osseointegration period demonstrated that condensation caused very high interfacial strains, marginal bone resorption, and no improvement in implant stability. Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability. PMID:28048963
Effects of Condensation on Peri-implant Bone Density and Remodeling.
Wang, L; Wu, Y; Perez, K C; Hyman, S; Brunski, J B; Tulu, U; Bao, C; Salmon, B; Helms, J A
2017-04-01
Bone condensation is thought to densify interfacial bone and thus improve implant primary stability, but scant data substantiate either claim. We developed a murine oral implant model to test these hypotheses. Osteotomies were created in healed maxillary extraction sites 1) by drilling or 2) by drilling followed by stepwise condensation with tapered osteotomes. Condensation increased interfacial bone density, as measured by a significant change in bone volume/total volume and trabecular spacing, but it simultaneously damaged the bone. On postimplant day 1, the condensed bone interface exhibited microfractures and osteoclast activity. Finite element modeling, mechanical testing, and immunohistochemical analyses at multiple time points throughout the osseointegration period demonstrated that condensation caused very high interfacial strains, marginal bone resorption, and no improvement in implant stability. Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability.
Sato, M; Grasser, W; Endo, N; Akins, R; Simmons, H; Thompson, D D; Golub, E; Rodan, G A
1991-01-01
Studies of the mode of action of the bisphosphonate alendronate showed that 1 d after the injection of 0.4 mg/kg [3H]alendronate to newborn rats, 72% of the osteoclastic surface, 2% of the bone forming, and 13% of all other surfaces were densely labeled. Silver grains were seen above the osteoclasts and no other cells. 6 d later the label was 600-1,000 microns away from the epiphyseal plate and buried inside the bone, indicating normal growth and matrix deposition on top of alendronate-containing bone. Osteoclasts from adult animals, infused with parathyroid hormone-related peptide (1-34) and treated with 0.4 mg/kg alendronate subcutaneously for 2 d, all lacked ruffled border but not clear zone. In vitro alendronate bound to bone particles with a Kd of approximately 1 mM and a capacity of 100 nmol/mg at pH 7. At pH 3.5 binding was reduced by 50%. Alendronate inhibited bone resorption by isolated chicken or rat osteoclasts when the amount on the bone surface was around 1.3 x 10(-3) fmol/microns 2, which would produce a concentration of 0.1-1 mM in the resorption space if 50% were released. At these concentrations membrane leakiness to calcium was observed. These findings suggest that alendronate binds to resorption surfaces, is locally released during acidification, the rise in concentration stops resorption and membrane ruffling, without destroying the osteoclasts. Images PMID:1661297
Probiotics Protect Mice from Ovariectomy-Induced Cortical Bone Loss
Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H.; Farman, Helen H.; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara
2014-01-01
The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice. PMID:24637895
Probiotics protect mice from ovariectomy-induced cortical bone loss.
Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara
2014-01-01
The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.
SLP-76 couples Syk to the osteoclast cytoskeleton.
Reeve, Jennifer L; Zou, Wei; Liu, Yuli; Maltzman, Jonathan S; Ross, F Patrick; Teitelbaum, Steven L
2009-08-01
The capacity of the osteoclast (OC) to resorb bone is dictated by cytoskeletal organization, which in turn emanates from signals derived from the alpha(v)beta(3) integrin and c-Fms. Syk is key to these signals and, in other cells, this tyrosine kinase exerts its effects via intermediaries including the SLP adaptors, SLP-76 and BLNK (B cell linker). Thus, we asked whether these two SLP proteins regulate OC function. We find BLNK-deficient OCs are normal, whereas cytoskeletal organization of those lacking SLP-76 is delayed, thus modestly reducing bone resorption in vitro. Cytoskeletal organization and bone resorption are more profoundly arrested in cultured OCs deficient in BLNK and SLP-76 double knockout (DKO) phenotypes. In contrast, stimulated bone resorption in vivo is inhibited approximately 40% in either SLP-76(-/-) or DKO mice. This observation, taken with the fact that DKO OCs are rescued by retroviral transduction of only SLP-76, indicates that SLP-76 is the dominant SLP family member in the resorptive process. We also find SLP-76 is phosphorylated in a Syk-dependent manner. Furthermore, in the absence of the adaptor protein, integrin-mediated phosphorylation of Vav3, the OC cytoskeleton-organizing guanine nucleotide exchange factor, is abrogated. In keeping with a central role of SLP-76/Vav3 association in osteoclastic resorption, retroviral transduction of SLP-76, in which the Vav binding site is disrupted (3YF), fails to normalize the cytoskeleton of DKO OCs and the resorptive capacity of the cells. Finally, c-Fms-activated Syk also exerts its OC cytoskeleton-organizing effect in a SLP-76/Vav3-dependent manner.
de Souza Tesch, Ricardo; Takamori, Esther Rieko; Menezes, Karla; Carias, Rosana Bizon Vieira; Dutra, Cláudio Leonardo Milione; de Freitas Aguiar, Marcelo; Torraca, Tânia Salgado de Sousa; Senegaglia, Alexandra Cristina; Rebelatto, Cármen Lúcia Kuniyoshi; Daga, Debora Regina; Brofman, Paulo Roberto Slud; Borojevic, Radovan
2018-04-07
Upon orthognathic mandibular advancement surgery the adjacent soft tissues can displace the distal bone segment and increase the load on the temporomandibular joint causing loss of its integrity. Remodeling of the condyle and temporal fossa with destruction of condylar cartilage and subchondral bone leads to postsurgical condylar resorption, with arthralgia and functional limitations. Patients with severe lesions are refractory to conservative treatments, leading to more invasive therapies that range from simple arthrocentesis to open surgery and prosthesis. Although aggressive and with a high risk for the patient, surgical invasive treatments are not always efficient in managing the degenerative lesions. We propose a regenerative medicine approach using in-vitro expanded autologous cells from nasal septum applied to the first proof-of-concept patient. After the required quality controls, the cells were injected into each joint by arthrocentesis. Results were monitored by functional assays and image analysis using computed tomography. The cell injection fully reverted the condylar resorption, leading to functional and structural regeneration after 6 months. Computed tomography images showed new cortical bone formation filling the former cavity space, and a partial recovery of condylar and temporal bones. The superposition of the condyle models showed the regeneration of the bone defect, reconstructing the condyle original form. We propose a new treatment of condylar resorption subsequent to orthognathic surgery, presently treated only by alloplastic total joint replacement. We propose an intra-articular injection of autologous in-vitro expanded cells from the nasal septum. The proof-of-concept treatment of a selected patient that had no alternative therapeutic proposal has given promising results, reaching full regeneration of both the condylar cartilage and bone at 6 months after the therapy, which was fully maintained after 1 year. This first case is being followed by inclusion of new patients with a similar pathological profile to complete an ongoing stage I/II study. This clinical trial is approved by the National Commission of Ethics in Medical Research (CONEP), Brazil, CAAE 12484813.0.0000.5245, and retrospectively registered in the Brazilian National Clinical Trials Registry and in the USA Clinical Trials Registry under the Universal Trial Number (UTN) U1111-1194-6997 .
Bone Metabolism on ISS Missions
NASA Technical Reports Server (NTRS)
Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.
2014-01-01
Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those that existed before space flight. Studies to assess bone strength after flight are underway at NASA, to better understand the results of bone remodeling. Studies are also underway to evaluate optimized exercise protocols and nutritional countermeasures. Regardless, there is clear evidence of progress being made to protect bone during spaceflight.
Feng, Xu; McDonald, Jay M.
2013-01-01
The skeleton provides mechanical support for stature and locomotion, protects vital organs, and controls mineral homeostasis. A healthy skeleton must be maintained by constant bone modeling to carry out these crucial functions throughout life. Bone remodeling involves the removal of old or damaged bone by osteoclasts (bone resorption) and the subsequent replacement of new bone formed by osteoblasts (bone formation). Normal bone remodeling requires a tight coupling of bone resorption to bone formation to guarantee no alteration in bone mass or quality after each remodeling cycle. However, this important physiological process can be derailed by a variety of factors, including menopause-associated hormonal changes, age-related factors, changes in physical activity, drugs, and secondary diseases, which lead to the development of various bone disorders in both women and men. We review the major diseases of bone remodeling, emphasizing our current understanding of the underlying pathophysiological mechanisms. PMID:20936937
Takano, H; Takahashi, T; Nakata, A; Nogami, S; Yusa, K; Kuwajima, S; Yamazaki, M; Fukuda, M
2016-05-01
The aim of this study was to investigate the bone resorption effect of the mediators delivered in joint cavity of patients with mandibular condyle fractures by detecting osteoclast markers using cellular biochemistry methods, and by analysing bone resorption activities via inducing osteoclast differentiation of the infiltrated cells from arthrocentesis. Sixteen joints in 10 patients with mandibular condyle fractures were evaluated. The control group consisted of synovial fluid (SF) samples from seven joints of four volunteers who had no clinical signs or symptoms involving the temporomandibular joint (TMJ) or disc displacement. We collected SF cells from all patients during therapeutic arthrocentesis. The infiltrating cells from TMJ SF were cultured, differentiated into tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and examined bone resorption activities. We also investigated factors related to osteoclast induction of SF, using ELISA procedures. Osteoclast-like cells were induced from the SF cells obtained from all patients with condylar fractures. These multinucleated giant cells were positive for TRAP and actin, and had the ability to absorb dentin slices. The levels of macrophage colony-stimulating factor (M-CSF), prostaglandin E2 (PGE2), soluble form of receptor activator of nuclear factor kappa-B ligand (sRANKL) and osteoprotegerin (OPG), in SF samples from the patients, were significantly higher than in the controls. These findings indicate that bone resorption activities in SF from patients with mandibular condyle fractures were upregulated and may participate in the pathogenesis and wound healing. © 2016 The Authors. Journal of Oral Rehabilitation Published by John Wiley & Sons Ltd.
Seifi, Massoud; Ghoraishian, Seyed Ahmad
2012-01-01
Background: Socket preservation after tooth extraction is one of the indications of bone grafting to enhance preorthodontic condition. The aim of this study is to determine the effects of socket preservation on the immediate tooth movement, alveolar ridge height preservation and orthodontic root resorption. Materials and Methods: In a split-mouth technique, twelve sites in three dogs were investigated as an experimental study. Crushed demineralized freeze-dried bone allograft (DFDBA) (CenoBone®) was used as the graft material. The defects were made by the extraction of 3rd premolar. On one side of each jaw, the defects were preserved by DFDBA and defects of the other side left opened as the control group. Simultaneously the teeth adjacent to the defects were pulled together by a NiTi coil spring. After eight weeks, the amount of (OTM), alveolar height, and root resorption were measured. Analysis of variance was used for purpose of comparison. Results: There was a slight increase in OTM at grafted sites as they were compared to the control sites (P<0.05). Also a significant bone resorption in control site and successful socket preservation in experimental site were observed. Reduction of root resorption at the augmented site was significant compared to the normal healing site (P<0.05). Conclusion: Using socket preservation, tooth movement can be immediately started without waiting for the healing of the recipient site. This can provide some advantages like enhanced rate of OTM, its approved effects on ridge preservation that reduces the chance of dehiscence and the reduction of root resorption. PMID:22623939
Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya
2015-01-01
Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10(-4)mm(2) in the maxilla and 21.41 ± 11.25×10(-4)mm(2) in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®.
Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya
2015-01-01
Objective Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. Materials and Methods This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. Results The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10-4mm2 in the maxilla and 21.41 ± 11.25×10-4mm2 in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). Conclusion The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®. PMID:25685742
Three-Dimensional Dynamic Bone Histomorphometry
Slyfield, C.R.; Tkachenko, E.V.; Wilson, D.L.; Hernandez, C.J.
2011-01-01
Dynamic bone histomorphometry is the standard method for measuring bone remodeling at the level of individual events. While dynamic bone histomorphometry is an invaluable tool for understanding osteoporosis and other metabolic bone diseases, the technique’s two-dimensional nature requires the use of stereology and prevents measures of individual remodeling event number and size. Here, we use a novel three-dimensional fluorescence imaging technique to achieve measures of individual resorption cavities and formation events. We perform this three-dimensional histomorphometry approach using a common model of postmenopausal osteoporosis, the ovariectomized rat. The three-dimensional images demonstrate the spatial relationship between resorption cavities and formation events consistent with the hemi-osteonal model of cancellous bone remodeling. Established ovariectomy was associated with significant increases in the number of resorption cavities per unit bone surface (2.38 ± 0.24 mm−2 SHAM v. 3.86 ± 0.35 mm−2 OVX, mean ± SD, p < 0.05) and total volume occupied by cavities per unit bone volume (0.38 ± 0.06% SHAM v. 1.12 ± 0.18% OVX, p < 0.001), but no difference in surface area per resorption cavity, maximum cavity depth, or cavity volume. Additionally, we find that established ovariectomy is associated with increased size of bone formation events due to merging of formation events (23,700 ± 6,890 μm2 SHAM v. 33,300 ± 7,950 μm2 OVX). No differences in mineral apposition rate (determined in 3D) were associated with established ovariectomy. That established estrogen depletion is associated with increased number of remodeling events with only subtle changes in remodeling event size suggests that circulating estrogens may have their primary effect on the origination of new basic multicellular units with relatively little effect on the progression and termination of active remodeling events. PMID:22028195
Immobilization-associated osteoporosis in primates
NASA Technical Reports Server (NTRS)
Young, D. R.; Niklowitz, W. J.; Brown, R. J.; Jee, W. S. S.
1986-01-01
Osteopenic changes in the tibial compact bone of fifteen adult male monkeys immobilized for up to 7 months are examined histologically. Osteonal formation in the proximal tibia is analyzed. The analysis reveals the loss of haversian bone in the proximal tibia, increased activation with excessive depth of penetration of osteoclastic activity, rapid bone loss, and resorption cavities of irregular size and orientation. Osteonal formation following reambulation is examined; the recovery of cortical is a repair and rejuvenation process characterized by refilling of resorption cavities and remodeling activities.
Li, Haoyan; Liang, Yongqiang; Zheng, Qiang
2015-01-01
To evaluate correlations between marginal bone resorption and high insertion torque value (> 50 Ncm) of dental implants and to assess the significance of immediate and early/conventional loading of implants under a certain range torque value. Specific inclusion and exclusion criteria were used to retrieve eligible articles from Ovid, PubMed, and EBSCO up to December 2013. Screening of eligible studies, quality assessment, and data extraction were conducted in duplicate. The results were expressed as random/fixed-effects models using weighted mean differences for continuous outcomes with 95% confidence intervals. Initially, 154 articles were selected (11 from Ovid, 112 from PubMed, and 31 from EBSCO). After exclusion of duplicate articles and articles that did not meet the inclusion criteria, six clinical studies were selected. Assessment of P values revealed that correlations between marginal bone resorption and high insertion torque were not statistically significant and that there was no difference between immediately versus early/conventionally loaded implants under a certain range of torque. None of the meta-analyses revealed any statistically significant differences between high insertion torque and conventional insertion torque in terms of effects on marginal bone resorption.
Bone and Calcium Metabolism During Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2004-01-01
Understanding bone loss during space flight is one of the most critical challenges for maintaining astronaut health on space exploration missions. Flight and ground-based studies have been conducted to better understand the nature and mechanisms of weightlessness-induced bone loss, and to identify a means to counteract the loss. Maintenance of bone health requires a balance between bone formation and bone resorption. Early space research identified bone loss as a critical health issue, but could not provide a distinction between the bone formation and breakdown processes. The recent identification of collagen crosslinks as markers of bone resorption has made possible a clear understanding that a decrease in bone resorption is an important effect of space flight, with bone formation being unchanged or only slightly decreased. Calcium regulatory factors have also been studied, in an attempt to understand their role in bone loss. The lack of ultraviolet light exposure and insufficient dietary sources of vitamin D often lead to reduced vitamin D stores on long-duration flights. Serum parathyroid hormone (PTH) concentrations are decreased during flight compared to before flight, although small subject numbers often make this hard to document statistically. As expected, reduced PTH concentrations are accompanied by reduced 1,25-dihydroxyvitamin D concentrations. Calcium kinetic studies during space flight confirm and extend the information gained from biochemical markers of bone metabolism. Calcium kinetic studies demonstrate that bone resorption is increased, bone formation is unchanged or decreased, and dietary calcium absorption is reduced during space flight. Evaluations have also been conducted of countermeasures, including dietary, exercise, and pharmacological treatments. In recent studies, many potential countermeasures show promise at mitigating bone loss in ground-based analogs of weightlessness (e.g., bed rest), but require further ground and flight testing to ensure that the beneficial effects are seen in space flight. As we begin to plan for missions to go back to the Moon, and even off to Mars, many questions are yet to be answered. Maintaining bone is one of the greatest challenges, but with a better understanding of the mechanical processes of bone loss, countermeasures can be designed more efficiently, and the solution (or solutions) may be just over the horizon.
Saito, Mitsuru; Grynpas, Marc D; Burr, David B; Allen, Matthew R; Smith, Susan Y; Doyle, Nancy; Amizuka, Norio; Hasegawa, Tomoka; Kida, Yoshikuni; Marumo, Keishi; Saito, Hitoshi
2015-04-01
Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6 months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0 mg/mL) and low-density (<2.0 mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage, and non-enzymatic collagen crosslinks all increase. Bone anabolic agents such as parathyroid hormone decrease bone mineralization and bone microdamage by stimulating bone remodeling. ELD did not fit into either category. Histological analysis indicated that the ELD treatment strongly suppressed bone resorption by reducing the number of osteoclasts, while also stimulating focal bone formation without prior bone resorption (bone minimodeling). These bidirectional activities of ELD may account for its unique effects on bone quality. Copyright © 2014. Published by Elsevier Inc.
Korhonen, Tommi K; Salokorpi, Niina; Niinimäki, Jaakko; Serlo, Willy; Lehenkari, Petri; Tetri, Sami
2018-02-23
OBJECTIVE Autologous bone cranioplasty after decompressive craniectomy entails a notable burden of difficult postoperative complications, such as infection and bone flap resorption (BFR), leading to mechanical failure. The prevalence and significance of asymptomatic BFR is currently unclear. The aim of this study was to radiologically monitor the long-term bone flap survival and bone quality change in patients undergoing autologous cranioplasty. METHODS The authors identified all 45 patients who underwent autologous cranioplasty at Oulu University Hospital, Finland, between January 2004 and December 2014. Using perioperative and follow-up CT scans, the volumes and radiodensities of the intact bone flap prior to surgery and at follow-up were calculated. Relative changes in bone flap volume and radiodensity were then determined to assess cranioplasty survival. Sufficient CT scans were obtainable from 41 (91.1%) of the 45 patients. RESULTS The 41 patients were followed up for a median duration of 3.79 years (25th and 75th percentiles = 1.55 and 6.66). Thirty-seven (90.2%) of the 41 patients had some degree of BFR and 13 (31.7%) had a remaining bone flap volume of less than 80%. Patients younger than 30 years of age had a mean decrease of 15.8% in bone flap volume compared with the rest of the cohort. Bone flap volume was not found to decrease linearly with the passing of time, however. The effects of lifestyle factors and comorbidities on BFR were nonsignificant. CONCLUSIONS In this study BFR was a very common phenomenon, occurring at least to some degree in 90% of the patients. Decreases in bone volume were especially prominent in patients younger than 30 years of age. Because the progression of resorption during follow-up was nonlinear, routine follow-up CT scans appear unnecessary in monitoring the progression of BFR; instead, clinical follow-up with mechanical stability assessment is advised. Partial resorption is most likely a normal physiological phenomenon during the bone revitalization process.
Jin, Gu; Wang, Fang-Fang; Li, Tao; Jia, Dong-Dong; Shen, Yong; Xu, Hai-Chao
2018-04-26
BACKGROUND Neogambogic acid (NGA) is used in traditional Chinese medicine. The aim of this study was to investigate the effects of NGA on gene signaling pathways involved in osteoclastogenesis in mouse bone marrow-derived monocyte/macrophages (BMMs) and on bone resorption in vitro. MATERIAL AND METHODS Primary mouse BMMs were cultured with increasing concentrations of NGA. Real-time polymerase chain reaction was used to study the expression of mRNAs corresponding to gene products specific to receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation, including tartrate-resistant acid phosphatase (TRAP), calcitonin receptor (CTR), cathepsin K (CTSK), and nuclear factor of activated T cells c1 (NFATc1). A cell counting kit-8 assay was used to evaluate cell proliferation. Western blotting and confocal immunofluorescence microscopy were used to investigate the signaling pathways. A bone resorption model was used to quantify bone resorption. RESULTS An NGA dose of ≤0.4 μg/ml had no significant effect on the proliferation of mouse BMMs in vitro (P>0.05); concentrations of between 0.1-0.4 μg/ml significantly inhibited RANKL-induced osteoclastogenesis (P<0.01) in a dose-dependent manner. Compared with the control group, NGA significantly reduced RANKL-induced bone resorption in vitro (P <0.01), and downregulated the expression of osteoclast-related mRNAs of TRAP, CTR, CTSK, and NFATc1. NGA suppressed the activation of JNK but not the p38 signaling pathway and significantly reduced NF-κB p65 phosphorylation and the nuclear transport of NF-κB molecules, which inhibited NFATc1 expression. CONCLUSIONS NGA suppressed RANKL-induced osteoclastogenesis by inhibiting the JNK and NF-κB pathways in mouse BMMs in vitro and reduced osteoclastic bone resorption.
Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events
Thomadakis, George; Fourie, Jeanine; Lemmer, Johan
2016-01-01
Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption. PMID:27119080
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wezeman, F.H.; Dungan, D.D.
1986-08-01
Newborn mouse calvaria prelabeled with /sup 45/Ca and cryopreserved at -196 degrees C in serum-free medium containing dimethylsulfoxide were compared to unpreserved explants for response to parathyroid hormone during subsequent culture. After short-term cryopreservation followed by rapid thawing, the viable explants continued to release /sup 45/Ca to the culture medium but additions of parathyroid hormone to the medium did not cause increased bone resorption. The data suggest that cryopreservation and thawing impairs mechanisms responsible for parathyroid hormone action on bone cells.
Yamaguchi, Masayoshi
2016-10-01
Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Bone loss with aging is induced by decreasing in osteoblastic bone formation and increasing in osteoclastic bone resorption, thereby leading to osteoporosis. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public heath problem. Pharmacologic and nutritional factors may play a role in the prevention and treatment of bone loss with aging. p-Hydroxycinnamic acid (HCA), which stimulates bone mineralization in mouse bone tissues in vitro, has been found to be present in the leafstalk of wasabi (Wasabi japonica MATSUM) among various food and plants. Other phenolic acids including cinnamic acid, ferulic acid, caffeic acid and 3,4-dimethoxycinnamic acid did not have osteogenic effects. HCA was demonstrated to stimulate osteoblastic bone formation and suppresses osteoclastic bone resorption in vitro by antagonizing activation of the nuclear factor kappa B. Oral administration of HCA was found to exhibit restorative effects on bone loss induced by ovariectomy and diabetic states, supporting a role in the treatment of osteoporosis. Moreover, HCA was demonstrated to prevent the suppressed osteoblastic mineralization and the enhanced osteoclastogenesis in mouse bone marrow cells cocultured with bone metastatic MDA-MB-231 human breast cancer cells in vitro. The botanical molecule HCA, as a new osteogenic agent, is suggested to play a role in the treatment of cancer bone metastases. This review will discuss an advanced recent finding that HCA may be a useful agent to treat bone metabolic disorder.
Osteocyte apoptosis and control of bone resorption following ovariectomy in mice.
Emerton, K B; Hu, B; Woo, A A; Sinofsky, A; Hernandez, C; Majeska, R J; Jepsen, K J; Schaffler, M B
2010-03-01
Osteocyte apoptosis has been linked to bone resorption resulting from estrogen depletion and other resorptive stimuli; however, precise spatial and temporal relationships between the two events have not been clearly established. The purpose of this study was to characterize the patterns of osteocyte apoptosis in relation to bone resorption following ovariectomy to test whether osteocyte apoptosis occurs preferentially in areas known to activate resorption. Moreover, we report that osteocyte apoptosis is necessary to initiate endocortical remodeling in response to estrogen withdrawal. Adult female C57BL/6J mice (17 weeks old) underwent either bilateral ovariectomy (OVX), or sham surgery (SHAM) and were euthanized on days 3, 7, 14, or 21 days after OVX. Diaphyseal cross-sections were stained by immunohistochemistry for activated caspase-3 as a marker of apoptosis. The percentages of caspase-positive stained osteocytes (Casp+Ot.) were measured along major and minor anatomical axes around the femoral diaphysis to evaluate the distribution of osteocyte apoptosis after estrogen loss; resorption surface was measured at the adjacent endocortical regions. In a second study to test whether osteocyte apoptosis plays a regulatory role in the initiation of bone resorption, a group of OVX mice received the pan-caspase inhibitor, QVDOPh, to inhibit osteocyte apoptosis. Remaining experimental and sham groups received either QVD or Vehicle. OVX increased osteocyte apoptosis in a non-uniform distribution throughout the femoral diaphyses. Increases in Casp+osteocytes were predominantly located in the posterior diaphyseal cortex. Here, the number of apoptotic osteocytes 4- to 7-fold higher than sham controls (p<0.005) by day 3 post-OVX and remained elevated. Increases in resorption post-OVX also occurred along the posterior endocortical surface overlying the region of osteocyte apoptosis, but these increases occurred only at 14 and 21 days post-OVX (p<0.002) well after the increases in osteocyte apoptosis. Treatment with QVD in OVX animals suppressed osteocyte apoptosis, with levels in QVD-treated samples equivalent to baseline. Moreover, the increases in osteoclastic resorption normally observed after estrogen loss did not occur in OVX mice treated with QVD. The results of this study demonstrate that osteocyte apoptosis following estrogen loss occur regionally, rather than uniformly throughout the cortex. We also showed that estrogen loss increased osteocyte apoptosis. Apoptotic osteocytes were overwhelmingly localized within the posterior cortical region, the location where endocortical resorption was subsequently activated in ovariectomized mice. Finally, the increases in osteoclastic resorption normally observed after estrogen withdrawal did not occur in the absence of osteocyte apoptosis indicating that this apoptosis is necessary to activate endocortical remodeling following estrogen loss.
Schropp, Lars; Spin-Neto, Rubens; Wenzel, Ann
2017-01-01
Objectives: To (1) compare pathological findings related to the mandibular third molar in panoramic images (PAN) and CBCT; (2) estimate the frequency of removals if pathological findings were indicative; and (3) assess factors in PAN associated with resorption and marginal bone loss at the second molar as observed in CBCT. Methods: 379 mandibular third molars were examined with PAN and CBCT. Four observers registered resorption and marginal bone loss at the second molar and increased periodontal space at the third molar in both imaging modalities. Agreement between PAN and CBCT, frequency of removals based on pathological findings in either of the two modalities and interobserver reproducibility was calculated. Logistic regression analyses assessed factors in PAN, which could predict marginal bone loss and resorption observed in CBCT. Results: Agreement between PAN and CBCT: resorption 54–74%; marginal bone loss 66–85%; and increased periodontal space 92–97%. Removals based on CBCT and PAN: 58–71% and 36–65%. Interobserver percentage accordance and kappa values ranged from 57 to 98% and 0.10–0.91 for PAN and 61–97% and 0.22–0.78 for CBCT, respectively. Mesioangulated/horizontally positioned third molars were associated with marginal bone loss [odds ratio (OR) = 7.0–31.3; p < 0.001] and resorption (OR = 2.9–35.6; p < 0.001) in CBCT. Overprojection between the third and the second molars in PAN predicted resorption observed in CBCT (OR = 5.6–21.2; p < 0.001). Conclusions: Pathology associated with the third molar is more often observed in CBCT than in PAN. More third molars would be removed if pathological findings are based on CBCT. Mesioangulated/horizontally positioned third molars overprojecting the cervical/root part of the second molar in PAN are strongly associated with pathology observed in CBCT. PMID:27681861
Matzen, Louise H; Schropp, Lars; Spin-Neto, Rubens; Wenzel, Ann
2017-01-01
To (1) compare pathological findings related to the mandibular third molar in panoramic images (PAN) and CBCT; (2) estimate the frequency of removals if pathological findings were indicative; and (3) assess factors in PAN associated with resorption and marginal bone loss at the second molar as observed in CBCT. 379 mandibular third molars were examined with PAN and CBCT. Four observers registered resorption and marginal bone loss at the second molar and increased periodontal space at the third molar in both imaging modalities. Agreement between PAN and CBCT, frequency of removals based on pathological findings in either of the two modalities and interobserver reproducibility was calculated. Logistic regression analyses assessed factors in PAN, which could predict marginal bone loss and resorption observed in CBCT. Agreement between PAN and CBCT: resorption 54-74%; marginal bone loss 66-85%; and increased periodontal space 92-97%. Removals based on CBCT and PAN: 58-71% and 36-65%. Interobserver percentage accordance and kappa values ranged from 57 to 98% and 0.10-0.91 for PAN and 61-97% and 0.22-0.78 for CBCT, respectively. Mesioangulated/horizontally positioned third molars were associated with marginal bone loss [odds ratio (OR) = 7.0-31.3; p < 0.001] and resorption (OR = 2.9-35.6; p < 0.001) in CBCT. Overprojection between the third and the second molars in PAN predicted resorption observed in CBCT (OR = 5.6-21.2; p < 0.001). Pathology associated with the third molar is more often observed in CBCT than in PAN. More third molars would be removed if pathological findings are based on CBCT. Mesioangulated/horizontally positioned third molars overprojecting the cervical/root part of the second molar in PAN are strongly associated with pathology observed in CBCT.
Bis-enoxacin Inhibits Bone Resorption and Orthodontic Tooth Movement
Toro, E.J.; Zuo, J.; Guiterrez, A.; La Rosa, R.L.; Gawron, A.J.; Bradaschia-Correa, V.; Arana-Chavez, V.; Dolce, C.; Rivera, M.F.; Kesavalu, L.; Bhattacharyya, I.; Neubert, J.K.; Holliday, L.S.
2013-01-01
Enoxacin inhibits binding between the B-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments, and also between osteoclast formation and bone resorption in vitro. We hypothesized that a bisphosphonate derivative of enoxacin, bis-enoxacin (BE), which was previously studied as a bone-directed antibiotic, might have similar activities. BE shared a number of characteristics with enoxacin: It blocked binding between the recombinant B-subunit and microfilaments and inhibited osteoclastogenesis in cell culture with IC50s of about 10 µM in each case. BE did not alter the relative expression levels of various osteoclast-specific proteins. Even though tartrate-resistant acid phosphatase 5b was expressed, proteolytic activation of the latent pro-enzyme was inhibited. However, unlike enoxacin, BE stimulated caspase-3 activity. BE bound to bone slices and inhibited bone resorption by osteoclasts on BE-coated bone slices in cell culture. BE reduced the amount of orthodontic tooth movement achieved in rats after 28 days. Analysis of these data suggests that BE is a novel anti-resorptive molecule that is active both in vitro and in vivo and may have clinical uses. Abbreviations: BE, bis-enoxacin; V-ATPase, vacuolar H+-ATPase; TRAP, tartrate-resistant acid phosphatase; αMEM D10, minimal essential media, alpha modification with 10% fetal bovine serum; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; RANKL, receptor activator of nuclear factor kappa B-ligand; NFATc1, nuclear factor of activated T-cells; ADAM, a disintegrin and metalloprotease domain; OTM, orthodontic tooth movement. PMID:23958763
Qiu, Zuo-Cheng; Dong, Xiao-Li; Dai, Yi; Xiao, Gao-Keng; Wang, Xin-Luan; Wong, Ka-Chun; Wong, Man-Sau; Yao, Xin-Sheng
2016-01-01
Rhizoma Drynariae (RD), as one of the most common clinically used folk medicines, has been reported to exert potent anti-osteoporotic activity. The bioactive ingredients and mechanisms that account for its bone protective effects are under active investigation. Here we adopt a novel in silico target fishing method to reveal the target profile of RD. Cathepsin K (Ctsk) is one of the cysteine proteases that is over-expressed in osteoclasts and accounts for the increase in bone resorption in metabolic bone disorders such as postmenopausal osteoporosis. It has been the focus of target based drug discovery in recent years. We have identified two components in RD, Kushennol F and Sophoraflavanone G, that can potentially interact with Ctsk. Biological studies were performed to verify the effects of these compounds on Ctsk and its related bone resorption process, which include the use of in vitro fluorescence-based Ctsk enzyme assay, bone resorption pit formation assay, as well as Receptor Activator of Nuclear factor κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis using murine RAW264.7 cells. Finally, the binding mode and stability of these two compounds that interact with Ctsk were determined by molecular docking and dynamics methods. The results showed that the in silico target fishing method could successfully identify two components from RD that show inhibitory effects on the bone resorption process related to protease Ctsk. PMID:27999266
Alasmari, Abeer; Lin, Shih-Chun; Dibart, Serge; Salih, Erdjan
2016-08-01
Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is "uncharted territory". This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be "independent of bone remodeling stages". In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a "live or in vivo" bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix.
Diabetes mellitus and inflammatory pulpal and periapical disease: a review.
Lima, S M F; Grisi, D C; Kogawa, E M; Franco, O L; Peixoto, V C; Gonçalves-Júnior, J F; Arruda, M P; Rezende, T M B
2013-08-01
Diabetes mellitus (DM) is one of the most common metabolic disorders. DM is characterized by hyperglycaemia, resulting in wound healing difficulties and systemic and oral manifestations, which have a direct effect on dental pulp integrity. Experimental and clinical studies have demonstrated a higher prevalence of periapical lesions in patients with uncontrolled diabetes. The influence of DM on periapical bone resorption and its impact on dental intervention of such patients are reviewed, and its aetiology and pathogenesis are analysed at molecular level. Pulps from patients with diabetes have the tendency to present limited dental collateral circulation, impaired immune response, increased risk of acquiring pulp infection (especially anaerobic ones) or necrosis, besides toothache and occasional tendency towards pulp necrosis caused by ischaemia. In regard to molecular pathology, hyperglycaemia is a stimulus for bone resorption, inhibiting osteoblastic differentiation and reducing bone recovery. The relationship between poorly controlled diabetes and bone metabolism is not clearly understood. Molecular knowledge about pulp alterations in patients with diabetes could offer new therapeutic directions. Knowledge about how diabetes affects systemic and oral health has an enduring importance, because it may imply not only systemic complications but also a higher risk of oral diseases with a significant effect on pulp and periapical tissue. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Tanaka, Hideki; Tanabe, Natsuko; Kawato, Takayuki; Nakai, Kumiko; Kariya, Taro; Matsumoto, Sakurako; Zhao, Ning; Motohashi, Masafumi; Maeno, Masao
2013-01-01
Tobacco smoking is an important risk factor for the development of several cancers, osteoporosis, and inflammatory diseases such as periodontitis. Nicotine is one of the major components of tobacco. In previous study, we showed that nicotine inhibits mineralized nodule formation by osteoblasts, and the culture medium from osteoblasts containing nicotine and lipopolysaccharide increases osteoclast differentiation. However, the direct effect of nicotine on the differentiation and function of osteoclasts is poorly understood. Thus, we examined the direct effects of nicotine on the expression of nicotine receptors and bone resorption-related enzymes, mineral resorption, actin organization, and bone resorption using RAW264.7 cells and bone marrow cells as osteoclast precursors. Cells were cultured with 10−5, 10−4, or 10−3 M nicotine and/or 50 µM α-bungarotoxin (btx), an 7 nicotine receptor antagonist, in differentiation medium containing the soluble RANKL for up 7 days. 1–5, 7, 9, and 10 nicotine receptors were expressed on RAW264.7 cells. The expression of 7 nicotine receptor was increased by the addition of nicotine. Nicotine suppressed the number of tartrate-resistant acid phosphatase positive multinuclear osteoclasts with large nuclei(≥10 nuclei), and decreased the planar area of each cell. Nicotine decreased expression of cathepsin K, MMP-9, and V-ATPase d2. Btx inhibited nicotine effects. Nicotine increased CA II expression although decreased the expression of V-ATPase d2 and the distribution of F-actin. Nicotine suppressed the planar area of resorption pit by osteoclasts, but did not affect mineral resorption. These results suggest that nicotine increased the number of osteoclasts with small nuclei, but suppressed the number of osteoclasts with large nuclei. Moreover, nicotine reduced the planar area of resorption pit by suppressing the number of osteoclasts with large nuclei, V-ATPase d2, cathepsin K and MMP-9 expression and actin organization. PMID:23555029
Kettenberger, Ulrike; Luginbuehl, Vera; Procter, Philip; Pioletti, Dominique P
2017-07-01
Locally applied bisphosphonates, such as zoledronate, have been shown in several studies to inhibit peri-implant bone resorption and recently to enhance peri-implant bone formation. Studies have also demonstrated positive effects of hydroxyapatite (HA) particles on peri-implant bone regeneration and an enhancement of the anti-resorptive effect of bisphosphonates in the presence of calcium. In the present study, both hydroxyapatite nanoparticles (nHA) and zoledronate were combined to achieve a strong reinforcing effect on peri-implant bone. The nHA-zoledronate combination was first investigated in vitro with a pre-osteoclastic cell assay (RAW 264.7) and then in vivo in a rat model of postmenopausal osteoporosis. The in vitro study confirmed that the inhibitory effect of zoledronate on murine osteoclast precursor cells was enhanced by loading the drug on nHA. For the in vivo investigation, either zoledronate-loaded or pure nHA were integrated in hyaluronic acid hydrogel. The gels were injected in screw holes that had been predrilled in rat femoral condyles before the insertion of miniature screws. Micro-CT-based dynamic histomorphometry and histology revealed an unexpected rapid mineralization of the hydrogel in vivo through formation of granules, which served as scaffold for new bone formation. The delivery of zoledronate-loaded nHA further inhibited a degradation of the mineralized hydrogel as well as a resorption of the peri-implant bone as effectively as unbound zoledronate. Hyaluronic acid with zoledronate-loaded nHA, thanks to its dual effect on inducing a rapid mineralization and preventing resorption, is a promising versatile material for bone repair and augmentation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Misiorowski, Waldemar
2011-01-01
Most medical agents currently applied in osteoporosis therapy act by inhibiting bone resorption and reducing bone remodelling, i.e. they inhibit the process of bone mass loss by suppressing bone resorption processes. These drugs provide an ideal therapeutic option to prevent osteoporosis progression. They however have a rather limited usefulness when the disease has already reached its advanced stages with distinctive bone architecture lesions. The fracture risk reduction rate, achieved in the course of anti-resorptive therapy, is insufficient for patients with severe osteoporosis to stop the downward spiral of their quality of life (QoL) with a simultaneously increasing threat of premature death. The activity of the N-terminal fragment of 1-34 human parathormone (teriparatide - 1-34 rhPTH), a parathyroid hormone (PTH) analogue obtained via genetic engineering , is expressed by increased bone metabolism, while promoting new bone tissue formation by stimulating the activity of osteoblasts more than that of osteoclasts. The anabolic activity of PTH includes both its direct effect on the osteoblast cell line, and its indirect actions exerted via its regulatory effects on selected growth factors, e.g. IGF-1 or sclerostin. However, the molecular mechanisms responsible for the actual anabolic effects of PTH remain mostly still unclear. Clinical studies have demonstrated that therapeutic protocols with the application of PTH analogues provide an effective protection against all osteoporotic fracture types in post-menopausal women and in elderly men with advanced osteoporosis. Particular hopes are pinned on the possibility of applying PTH in the therapy of post-steroid osteoporosis, mainly to suppress bone formation, the most important pathological process in this regard. The relatively short therapy period with a PTH analogue (24 months) should then be replaced and continued by anti-resorptive treatment.
Misiorowski, Waldemar
2011-01-01
Most medical agents currently applied in osteoporosis therapy act by inhibiting bone resorption and reducing bone remodelling, i.e. they inhibit the process of bone mass loss by suppressing bone resorption processes. These drugs provide an ideal therapeutic option to prevent osteoporosis progression. They however have a rather limited usefulness when the disease has already reached its advanced stages with distinctive bone architecture lesions. The fracture risk reduction rate, achieved in the course of anti-resorptive therapy, is insufficient for patients with severe osteoporosis to stop the downward spiral of their quality of life (QoL) with a simultaneously increasing threat of premature death. The activity of the N-terminal fragment of 1-34 human parathormone (teriparatide - 1-34 rhPTH), a parathyroid hormone (PTH) analogue obtained via genetic engineering , is expressed by increased bone metabolism, while promoting new bone tissue formation by stimulating the activity of osteoblasts more than that of osteoclasts. The anabolic activity of PTH includes both its direct effect on the osteoblast cell line, and its indirect actions exerted via its regulatory effects on selected growth factors, e.g. IGF-1 or sclerostin. However, the molecular mechanisms responsible for the actual anabolic effects of PTH remain mostly still unclear. Clinical studies have demonstrated that therapeutic protocols with the application of PTH analogues provide an effective protection against all osteoporotic fracture types in post-menopausal women and in elderly men with advanced osteoporosis. Particular hopes are pinned on the possibility of applying PTH in the therapy of post-steroid osteoporosis, mainly to suppress bone formation, the most important pathological process in this regard. The relatively short therapy period with a PTH analogue (24 months) should then be replaced and continued by anti-resorptive treatment.
Liel, Yair; Plakht, Ygal; Tailakh, Muhammad Abu
2017-07-01
Little data exist to support concerns over bone turnover suppression during prolonged oral bisphosphonate treatment and on consequences of the recommended "drug holiday." This study was performed to assess bone resorption rates in postmenopausal osteoporotic women on prolonged oral bisphosphonate treatment and in response to switching to "drug holiday" intravenous bisphosphonate, or continuation of oral bisphosphonates. The frequency distribution of the bone resorption marker urinary deoxypyridinoline crosslinks (uDPD), was obtained retrospectively from 211 osteoporotic women attended at an academic hospital endocrine clinic, treated for >2 years with oral bisphosphonates. In some patients, uDPD was re-assessed following modification or continuation of treatment. The mean duration of oral bisphosphonates treatment was 7.2 ± 3.1 years. uDPD was within reference range for premenopausal women in 61.6% of the patients, below in 7.6% of the patients, and above upper limit in 30.8%. uDPD decreased significantly following intravenous zoledronic acid, increased significantly during "drug holiday," and slightly decreased in those continued on oral bisphosphonate treatment. In this real-world study, the majority of women on prolonged oral bisphosphonates maintained bone resorption rates within the normal reference range for premenopausal women. The likelihood for inadequate suppression was considerably greater than that of over-suppression. Implementing a "drug holiday" resulted in a marked increase in bone resorption rates. Additional studies should explore the potential role of bone turnover markers in the evaluation of patients on prolonged oral bisphosphonates and during "drug holiday" in different settings and using additional markers. BMD = bone mineral density; IQR = interquartile range; uDPD = urinary deoxypyridinoline crosslinks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Feng; Shen, Yi; Liu, Bo
Bone is a rigid yet dynamic organ, and this dynamism is mediated by the delicate balance between osteoclastic bone resorption and osteoblastic bone formation. However, excessive activation of osteoclasts is responsible for many bone diseases such as osteoporosis, Paget disease, and tumor bone metastasis. Agents that could inhibit osteoclast formation or function are regarded as promising alternatives to treat osteoclast-related diseases. Recently, traditional Chinese medicine has attracted attention because of its multiple activities in bone metabolism. Among them, gastrodin has been reported as an anti-osteoporosis agent that reduces reactive oxygen species. However, the direct action of gastrodin on osteoclast differentiationmore » and bone resorption, and its underlying molecular mechanism, remain unknown. In this study, we investigated the effects of gastrodin on receptor activator NF-κB ligand (RANKL)-activated osteoclasts formation and bone resorption. Our results showed that gastrodin retarded RANKL-induced osteoclast differentiation efficiently by downregulating transcriptional and translational expression of nuclear factor of activated T cells cl (NFATc1), a major factor in RANKL-mediated osteoclastogenesis. Meanwhile, gastrodin prevented osteoclast maturation and migration by inhibiting the gene expression of dendrocyte expressed seven transmembrane protein (DC-STAMP), an osteoclastic-specific gene that controls cells fusion and movement. And gastrodin prevented RANKL-induced osteoclastic bone erosion in vitro. In addition, gastrodin also stimulated bone mesenchymal stem cell (BMSC) spreading and osseointegration in titanium plate. In summary, gastrodin could prevent osteoclasts formation and bone resorption via blockage of NFATc1 activity, and stimulate osseointegration in vitro. Gastrodin could be developed as a potent phytochemical candidate to treat osteolytic diseases. - Highlights: • Gastrodin suppresses osteoclasts formation and function in vitro. • Gastrodin impairs NFATc1 activation. • Gastrodin stimulates osseointegration in vitro. • Gastrodin may be used for treating osteoclast related diseases.« less
Gauthier, O; Bouler, J M; Weiss, P; Bosco, J; Aguado, E; Daculsi, G
1999-08-01
This in vivo study investigated the influence of two calcium phosphate particle sizes (40-80 microm and 200-500 microm) on the cellular degradation activity associated with the bone substitution process of two injectable bone substitutes (IBS). The tested biomaterials were obtained by associating a biphasic calcium phosphate (BCP) ceramic mineral phase and a 3% aqueous solution of a cellulosic polymer (hydroxypropylmethylcellulose). Both were injected into osseous defects at the distal end of rabbit femurs for 2- and 3-week periods. Quantitative results for tartrate-resistant acid phosphatase (TRAP) cellular activity, new bone formation, and ceramic resorption were studied for statistical purposes. Positive TRAP-stained degradation cells were significantly more numerous for IBS 40-80 than IBS 200-500, regardless of implantation time. BCP degradation was quite marked during the first 2 weeks for IBS 40-80, and bone colonization occurred more extensively for IBS 40-80 than for IBS 200-500. The resorption-bone substitution process occurred earlier and faster for IBS 40-80 than IBS 200-500. Both tested IBS displayed similar biological efficiency, with conserved in vivo bioactivity and bone-filling ability. Differences in calcium phosphate particle sizes influenced cellular degradation activity and ceramic resorption but were compatible with efficient bone substitution.
Mirković, Sinisa; Budak, Igor; Puskar, Tatjana; Tadić, Ana; Sokac, Mario; Santosi, Zeljko; Djurdjević-Mirković, Tatjana
2015-12-01
An autologous bone (bone derived from the patient himself) is considered to be a "golden standard" in the treatment of bone defects and partial atrophic alveolar ridge. However, large defects and bone losses are difficult to restore in this manner, because extraction of large amounts of autologous tissue can cause donor-site problems. Alternatively, data from computed tomographic (CT) scan can be used to shape a precise 3D homologous bone block using a computer-aided design-computer-aided manufacturing (CAD-CAM) system. A 63-year old male patient referred to the Clinic of Dentistry of Vojvodina in Novi Sad, because of teeth loss in the right lateral region of the lower jaw. Clinical examination revealed a pronounced resorption of the residual ridge of the lower jaw in the aforementioned region, both horizontal and vertical. After clinical examination, the patient was referred for 3D cone beam (CB)CT scan that enables visualization of bony structures and accurate measurement of dimensions of the residual alveolar ridge. Considering the large extent of bone resorption, the required ridge augmentation was more than 3 mm in height and 2 mm in width along the length of some 2 cm, thus the use of granular material was excluded. After consulting prosthodontists and engineers from the Faculty of Technical Sciences in Novi Sad we decided to fabricate an individual (custom) bovine-derived bone graft designed according to the obtained-3D CBCT scan. Application of 3D CBCT images, computer-aided systems and software in manufacturing custom bone grafts represents the most recent method of guided bone regeneration. This method substantially reduces time of recovery and carries minimum risk of postoperative complications, yet the results fully satisfy the requirements of both the patient and the therapist.
Kawada, Etsuo; Moridaira, Kazuaki; Itoh, Katsuhiko; Hoshino, Ayami; Tamura, Jun'ichi; Morita, Toyoho
2006-01-01
Although the effect of copper on bone has been tested in animals and healthy subjects, no studies concerning the effect of copper supplementation on bone metabolism in patients with copper deficiency have been reported because of the rarity of these patients. This study was conducted to investigate the effect of copper supplementation on bone metabolism in copper-deficient patients. This study included 10 patients (83.7 +/- 8.3 years) with dietary copper deficiency under long-term bed rest for more than 12 months. They had their diets supplemented with copper sulfate (3 mg/day) over 12 weeks in addition to their diet of only one kind of enteral food with a low concentration of copper. Serum copper and ceruloplasmin, urinary deoxypyridinoline (DPD) and collagen-type 1 N-telopeptide (NTX) (biomarkers of bone resorption), serum osteocalcin (OC) and bone-specific alkaline phosphatase (Bone ALP) (biomarkers of bone formation) were analyzed at baseline, 4 and 12 weeks after copper supplementation. DPD and NTX excretion were significantly increased 4 weeks after copper supplementation (p = 0.009 and p = 0.013, respectively). Serum bone ALP and OC were not significantly changed 12 weeks after copper supplementation (p = 0.051 and p = 0.594). In patients with nutritional copper deficiency, bone resorption markers are increased with copper supplementation. Copyright (c) 2006 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Shaobo; Xu, Jiawei; Zhang, Chenghua
Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retardedmore » IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.« less
Manolagas, Stavros C.; Parfitt, A. Michael
2012-01-01
Osteocytes are long-lived and far more numerous than the short-lived osteoblasts and osteoclasts. Immured within the lacunar-canalicular system and mineralized matrix, osteocytes are ideally located throughout bone to detect the need for, and accordingly choreograph, the bone regeneration process by independently controlling rate limiting steps of bone resorption and formation. Consistent with this role, emerging evidence indicates that signals arising from apoptotic and old/or dysfunctional osteocytes are seminal culprits in the pathogenesis of involutional, post-menopausal, steroid-, and immobilization-induced osteoporosis. Osteocyte-originated signals may also contribute to the increased bone fragility associated with bone matrix disorders like osteogenesis imperfecta, and perhaps the rapid reversal of bone turnover above baseline following discontinuation of anti-resorptive treatments, like denosumab. PMID:23010104
Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II
Kollmann, Katrin; Pestka, Jan Malte; Kühn, Sonja Christin; Schöne, Elisabeth; Schweizer, Michaela; Karkmann, Kathrin; Otomo, Takanobu; Catala-Lehnen, Philip; Failla, Antonio Virgilio; Marshall, Robert Percy; Krause, Matthias; Santer, Rene; Amling, Michael; Braulke, Thomas; Schinke, Thorsten
2013-01-01
Mucolipidosis type II (MLII) is a severe multi-systemic genetic disorder caused by missorting of lysosomal proteins and the subsequent lysosomal storage of undegraded macromolecules. Although affected children develop disabling skeletal abnormalities, their pathogenesis is not understood. Here we report that MLII knock-in mice, recapitulating the human storage disease, are runted with accompanying growth plate widening, low trabecular bone mass and cortical porosity. Intralysosomal deficiency of numerous acid hydrolases results in accumulation of storage material in chondrocytes and osteoblasts, and impaired bone formation. In osteoclasts, no morphological or functional abnormalities are detected whereas osteoclastogenesis is dramatically increased in MLII mice. The high number of osteoclasts in MLII is associated with enhanced osteoblastic expression of the pro-osteoclastogenic cytokine interleukin-6, and pharmacological inhibition of bone resorption prevented the osteoporotic phenotype of MLII mice. Our findings show that progressive bone loss in MLII is due to the presence of dysfunctional osteoblasts combined with excessive osteoclastogenesis. They further underscore the importance of a deep skeletal phenotyping approach for other lysosomal diseases in which bone loss is a prominent feature. PMID:24127423
Involvement of Cot/Tp12 in bone loss during periodontitis.
Ohnishi, T; Okamoto, A; Kakimoto, K; Bandow, K; Chiba, N; Matsuguchi, T
2010-02-01
Periodontitis causes resorption of alveolar bone, in which RANKL induces osteoclastogenesis. The binding of lipopolysaccharide to Toll-like receptors causes phosphorylation of Cot/Tp12 to activate the MAPK cascade. Previous in vitro studies showed that Cot/Tp12 was essential for the induction of RANKL expression by lipopolysaccharide. In this study, we examined whether Cot/Tp12 deficiency reduced the progression of alveolar bone loss and osteoclastogenesis during experimental periodontitis. We found that the extent of alveolar bone loss and osteoclastogenesis induced by ligature-induced periodontitis was decreased in Cot/Tp12-deficient mice. In addition, reduction of RANKL expression was observed in periodontal tissues of Cot/Tp12-deficient mice with experimental periodontitis. Furthermore, we found that Cot/Tp12 was involved in the induction of TNF-alpha mRNA expression in gingiva of mice with experimental periodontitis. Our observations suggested that Cot/Tp12 is essential for the progression of alveolar bone loss and osteoclastogenesis in periodontal tissue during experimental periodontitis mediated through increased RANKL expression.
Barak, Meir Max; Black, Margaret Arielle
2018-02-01
Trabecular bone structure is crucial to normal mechanical behavior of bones. Studies have shown that osteoporosis negatively affects trabecular bone structure, mainly by reducing bone volume fraction (BV/TV) and thus increasing fracture risk. One major limitation in assessing and quantifying the effect of this structural deterioration is that no two trabecular structures are identical. Thus, when we compare a group of healthy bones against a different group of bones that experienced resorption (i.e. decreased BV/TV) we only discover an "average" mechanical effect. It is impossible to quantify the mechanical effect of individual structural deterioration for each sample, simply because we never have the same sample in both states (intact and deteriorated structure). 3D printing is a new technology that can assist in overcoming this issue. Here we report a preliminary study that compares a healthy 3D printed trabecular bone model with the same model after bone resorption was simulated. Since the deteriorated structural bone model is derived from the healthy one, it is possible to directly estimate (percentage wise) the decrease of tissue stiffness and strength as a result of bone resorption for this specific structure. Our results demonstrate that a relatively small decrease in BV/TV (about 8%) leads to a dramatic decrease in structural strength (24%) and structural stiffness (17%), (P < 0.01). Structural strength decreased from an average of 9.14 ± 2.85MPa to 6.97 ± 2.44MPa, while structural stiffness decreased from an average of 282.5 ± 63.4N/mm to 233.8 ± 51.2N/mm. This study demonstrates that 3D printing is a novel and valuable tool for quantifying the effect of structural deterioration on the mechanical properties of trabecular bone. In the future, this approach may help us attain better personal fracture risk assessments by CT scanning, 3D printing and mechanically testing individual bone replicas from patients suffering excessive bone resorption. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cellular and Molecular Changes in Orthodontic Tooth Movement
Zainal Ariffin, Shahrul Hisham; Yamamoto, Zulham; Zainol Abidin, lntan Zarina; Megat Abdul Wahab, Rohaya; Zainal Ariffin, Zaidah
2011-01-01
Tooth movement induced by orthodontic treatment can cause sequential reactions involving the periodontal tissue and alveolar bone, resulting in the release of numerous substances from the dental tissues and surrounding structures. To better understand the biological processes involved in orthodontic treatment, improve treatment, and reduce adverse side effects, several of these substances have been proposed as biomarkers. Potential biological markers can be collected from different tissue samples, and suitable sampling is important to accurately reflect biological processes. This paper covers the tissue changes that are involved during orthodontic tooth movement such as at compression region (involving osteoblasts), tension region (involving osteoclasts), dental root, and pulp tissues. Besides, the involvement of stem cells and their development towards osteoblasts and osteoclasts during orthodontic treatment have also been explained. Several possible biomarkers representing these biological changes during specific phenomenon, that is, bone remodelling (formation and resorption), inflammation, and root resorption have also been proposed. The knowledge of these biomarkers could be used in accelerating orthodontic treatment. PMID:22125437
Function of Matrix IGF-1 in Coupling Bone Resorption and Formation
Crane, Janet L.; Cao, Xu
2013-01-01
Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space and time dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of MSCs and HSCs and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis. PMID:24068256
Function of matrix IGF-1 in coupling bone resorption and formation.
Crane, Janet L; Cao, Xu
2014-02-01
Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore, understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space- and time-dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of mesenchymal stem cells and hematopoietic stem cells and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis.
Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice.
Jähn, Katharina; Saito, Hiroaki; Taipaleenmäki, Hanna; Gasser, Andreas; Hort, Norbert; Feyerabend, Frank; Schlüter, Hartmut; Rueger, Johannes M; Lehmann, Wolfgang; Willumeit-Römer, Regine; Hesse, Eric
2016-05-01
Intramedullary stabilization is frequently used to treat long bone fractures. Implants usually remain unless complications arise. Since implant removal can become technically very challenging with the potential to cause further tissue damage, biodegradable materials are emerging as alternative options. Magnesium (Mg)-based biodegradable implants have a controllable degradation rate and good tissue compatibility, which makes them attractive for musculoskeletal research. Here we report for the first time the implantation of intramedullary nails made of an Mg alloy containing 2% silver (Mg2Ag) into intact and fractured femora of mice. Prior in vitro analyses revealed an inhibitory effect of Mg2Ag degradation products on osteoclast differentiation and function with no impair of osteoblast function. In vivo, Mg2Ag implants degraded under non-fracture and fracture conditions within 210days and 133days, respectively. During fracture repair, osteoblast function and subsequent bone formation were enhanced, while osteoclast activity and bone resorption were decreased, leading to an augmented callus formation. We observed a widening of the femoral shaft under steady state and regenerating conditions, which was at least in part due to an uncoupled bone remodeling. However, Mg2Ag implants did not cause any systemic adverse effects. These data suggest that Mg2Ag implants might be promising for intramedullary fixation of long bone fractures, a novel concept that has to be further investigated in future studies. Biodegradable implants are promising alternatives to standard steel or titanium implants to avoid implant removal after fracture healing. We therefore developed an intramedullary nail using a novel biodegradable magnesium-silver-alloy (Mg2Ag) and investigated the in vitro and in vivo effects of the implants on bone remodeling under steady state and fracture healing conditions in mice. Our results demonstrate that intramedullary Mg2Ag nails degrade in vivo over time without causing adverse effects. Importantly, radiographs, μCT and bone histomorphometry revealed a significant increase in callus size due to an augmented bone formation rate and a reduced bone resorption in fractures supported by Mg2Ag nails, thereby improving bone healing. Thus, intramedullary Mg2Ag nails are promising biomaterials for fracture healing to circumvent implant removal. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zhang, Hengwei; Recker, Robert; Lee, Wai-Nang Paul; Xiao, Gary Guishan
2010-01-01
Osteoporosis is prevalent among the elderly and is a major cause of bone fracture in this population. Bone integrity is maintained by the dynamic processes of bone resorption and bone formation (bone remodeling). Osteoporosis results when there is an imbalance of the two counteracting processes. Bone mineral density, measured by dual-energy x-ray absorptiometry has been the primary method to assess fracture risk for decades. Recent studies demonstrated that measurement of bone turnover markers allows for a dynamic assessment of bone remodeling, while imaging techniques, such as dual-energy x-ray absorptiometry, do not. The application of proteomics has permitted discoveries of new, sensitive, bone turnover markers, which provide unique information for clinical diagnosis and treatment of patients with bone diseases. This review summarizes the recent findings of proteomic studies on bone diseases, properties of mesenchymal stem cells with high expansion rates and osteoblast and osteoclast differentiation, with emphasis on the role of quantitative proteomics in the study of signaling dynamics, biomarkers and discovery of therapeutic targets. PMID:20121480
[Effects of calcitonin on osteoclast].
Suzuki, H; Takahashi, N
2001-09-01
Osteoclasts are cells that resorb bone, and calcitonin potently inhibits this bone resorptive activity. While calcitonin does not affect primary osteoclastic differentiation, it does manifest an inhibitory effect on the bone resorptive activity of osteoclasts. It is believed that calcitonin, acting upon calcitonin receptors and through PKA and PKC signal transduction pathways, destroys cytoskeleton components such as podosomes. The "escape phenomenon" seen with osteoclasts is a known issue occurring with the use of calcitonin, and is also believed to arise due to calcitonin receptors and the PKA and PKC signal transduction pathways.
Oz, A Z; Ciger, S
2018-03-01
The aim of the present study was to evaluate the changes of incisor root resorption associated with impacted maxillary canines and health of periodontal tissues around maxillary canines erupted with orthodontic treatment. Twenty patients with a unilateral palatally impacted maxillary canine were included in the study. Cone-beam computed tomography images taken before and after orthodontic treatment were compared with the contralateral canines serving as control teeth. Root resorption was present in 10% of central and 40% of lateral incisors before treatment. After treatment, the incidence of resorption decreased. The thickness of the buccal bone surrounding the impacted canines was similar to that surrounding the contralateral canines, except in the apical area. Periodontal pocket depth and alveolar bone loss were greater for the impacted canine teeth than for the contralateral canines. Incisor root resorption associated with impacted canine teeth showed signs of repair after orthodontic treatment. Slight differences related to periodontal health were found between the previously impacted teeth and contralateral canine teeth.
NASA Technical Reports Server (NTRS)
Schreurs, A.-S.; Tran, L.; Alwood, J. S.; Tahimic, C. G.; Globus, R. K.
2016-01-01
Ionizing radiation-induced bone loss appears to be a two-stage process: first an early increase in pro-resorption cytokines and increased bone resorption by osteoclasts, followed by a decrease in bone formation by osteoblasts. This results in a net loss of mass in mineralized bone tissue. The molecular mechanisms underlying the imbalance in bone remodeling caused by exposure to radiation are not fully understood. We hypothesized that the radiation-induced rise in reactive oxygen species (ROS) damages osteoblast progenitors, leading to a decrease in number and activity of differentiated progeny. We have shown that a diet high in antioxidant capacity prevents radiation-induced bone loss in adult mice (Schreurs et al. 2016) by reducing the early increase in pro-resotption cytokines. Here, we investigated the damaging effects of radiation exposure on cells in the osteoblast lineage, testing if addition of the exogenous antioxidant enzyme, superoxide dismutase (SOD) can mitigate radiation damage. Osteoprogenitors were grown in vitro from the marrow of 16wk old, male C57Bl/6 mice. Cells were irradiated 3 days after plating (day 0) with either gamma (Cs-137, 0.1-5Gy) or iron (Fe-56, 600 MeV/n, 0.5-2Gy), and then grown until day 10. SOD or vehicle was added 2 hours before irradiation (SOD at 200U/ml), twice a day and up to day 5, for a total of 2 days treatment. Cell behavior was assessed by: (a) colony number (counted on day 7), (b) DNA content (surrogate for cell number) to assess cell growth (percent change between day 3 and day 10) and (c) alkaline phosphatase activity (osteoblast differentiation marker). Results show that SOD protected cells from the adverse effects of low-LET ionizing radiation, but not high-LET radiation. These novel results provide an interesting platform to explore further diverse effects and damages caused by low-LET and high-LET, pointing toward different mechanisms and possible intervention strategies for radiation-induced bone loss.
Melorheostosis and its treatment with intravenous zoledronic acid
Hollick, Rosemary Jane; Black, Alison; Reid, David
2010-01-01
We report a case of melorheostosis, a rare bone disorder characterised by mesodermal dysplasia, and its successful and prolonged treatment with the intravenous bisphosphonate zoledronic acid. The middle-aged man presented with pain and swelling of his tibia, which was diagnosed by imaging and bone biopsy as being due to melorheostosis. There was early symptom control after a single infusion of intravenous zoledronic acid. Prolonged symptom relief was accompanied by long-term suppression of the bone resorption marker β cross-laps. We suggest that melorheostosis can be treated with intravenous zoledronic acid and that treatment can be monitored by the use of a specific bone resorption marker. PMID:22479293
Impact of Dietary Intake on Bone Turnover in Patients with Phenylalanine Hydroxylase Deficiency.
Coakley, Kathryn E; Felner, Eric I; Tangpricha, Vin; Wilson, Peter W F; Singh, Rani H
2017-01-01
Phenylalanine hydroxylase (PAH) deficiency is a genetic disorder characterized by deficiency of the PAH enzyme. Patients follow a phenylalanine-restricted diet low in intact protein, and must consume synthetic medical food (MF) to supply phenylalanine-free protein. We assessed relationships between dietary intake and nutrient source (food or MF) on bone mineral density (BMD) and bone turnover markers (BTM) in PAH deficiency. Blood from 44 fasted females 11-52 years of age was analyzed for plasma phenylalanine, serum BTM [CTx (resorption), P1NP (formation)], vitamin D, and parathyroid hormone (PTH). BTM ratios were calculated to assess resorption relative to formation (CTx/P1NP). Dual energy X-ray absorptiometry measured total BMD and age-matched Z-scores. Three-day food records were analyzed for total nutrient intake, nutrients by source (food, MF), and compliance with MF prescription. Spearman's partial coefficients (adjusted for age, BMI, energy intake, blood phenylalanine) assessed correlations. All had normal BMD for age (Z-score >-2). Sixty-four percent had high resorption and normal formation indicating uncoupled bone turnover. CTx/P1NP was positively associated with food phenylalanine (r 2 = 0.39; p-value = 0.017), energy (r 2 = 0.41; p-value = 0.011) and zinc (r 2 = 0.41; p-value = 0.014). CTx/P1NP was negatively associated with MF fat (r 2 = -0.44; p-value = 0.008), MF compliance (r 2 = -0.34; p-value = 0.056), and positively with food sodium (r 2 = 0.43; p-value = 0.014). CTx/P1NP decreased significantly with age (p-value = 0.002) and higher PTH (p-value = 0.0002). Phenylalanine was not correlated with any bone indicator. Females with PAH deficiency had normal BMD but elevated BTM, particularly resorption. More favorable ratios were associated with nutrients from MF and compliance. Younger females had less favorable BTM ratios. Promoting micronutrient intake through compliance with MF may impact bone metabolism in patients with PAH deficiency. Bone mineral density was normal in 44 females with PAH deficiency; however, bone turnover markers suggested uncoupling of bone resorption and formation, particularly in younger patients. Adequate nutrient intake from medical food and overall medical food compliance may positively impact bone turnover.
Al-Sebaei, Maisa O; Daukss, Dana M; Belkina, Anna C; Kakar, Sanjeev; Wigner, Nathan A; Cusher, Daniel; Graves, Dana; Einhorn, Thomas; Morgan, Elise; Gerstenfeld, Louis C
2014-01-01
Previous studies showed that loss of tumor necrosis factor α (TNFα) signaling delayed fracture healing by delaying chondrocyte apoptosis and cartilage resorption. Mechanistic studies showed that TNFα induced Fas expression within chondrocytes; however, the degree to which chondrocyte apoptosis is mediated by TNFα alone or dependent on the induction of Fas is unclear. This question was addressed by assessing fracture healing in Fas-deficient B6.MRL/Faslpr/J mice. Loss of Fas delayed cartilage resorption but also lowered bone fraction in the calluses. The reduced bone fraction was related to elevated rates of coupled bone turnover in the B6.MRL/Faslpr/J calluses, as evidenced by higher osteoclast numbers and increased osteogenesis. Analysis of the apoptotic marker caspase 3 showed fewer positive chondrocytes and osteoclasts in calluses of B6.MRL/Faslpr/J mice. To determine if an active autoimmune state contributed to increased bone turnover, the levels of activated T cells and Treg cells were assessed. B6.MRL/Faslpr/J mice had elevated Treg cells in both spleens and bones of B6.MRL/Faslpr/J but decreased percentage of activated T cells in bone tissues. Fracture led to ∼30% to 60% systemic increase in Treg cells in both wild-type and B6.MRL/Faslpr/J bone tissues during the period of cartilage formation and resorption but either decreased (wild type) or left unchanged (B6.MRL/Faslpr/J) the numbers of activated T cells in bone. These results show that an active autoimmune state is inhibited during the period of cartilage resorption and suggest that iTreg cells play a functional role in this process. These data show that loss of Fas activity specifically in chondrocytes prolonged the life span of chondrocytes and that Fas synergized with TNFα signaling to mediate chondrocyte apoptosis. Conversely, loss of Fas systemically led to increased osteoclast numbers during later periods of fracture healing and increased osteogenesis. These findings suggest that retention of viable chondrocytes locally inhibits osteoclast activity or matrix proteolysis during cartilage resorption. © 2014 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research. PMID:24677136
An enhanced version of a bone-remodelling model based on the continuum damage mechanics theory.
Mengoni, M; Ponthot, J P
2015-01-01
The purpose of this work was to propose an enhancement of Doblaré and García's internal bone remodelling model based on the continuum damage mechanics (CDM) theory. In their paper, they stated that the evolution of the internal variables of the bone microstructure, and its incidence on the modification of the elastic constitutive parameters, may be formulated following the principles of CDM, although no actual damage was considered. The resorption and apposition criteria (similar to the damage criterion) were expressed in terms of a mechanical stimulus. However, the resorption criterion is lacking a dimensional consistency with the remodelling rate. We propose here an enhancement to this resorption criterion, insuring the dimensional consistency while retaining the physical properties of the original remodelling model. We then analyse the change in the resorption criterion hypersurface in the stress space for a two-dimensional (2D) analysis. We finally apply the new formulation to analyse the structural evolution of a 2D femur. This analysis gives results consistent with the original model but with a faster and more stable convergence rate.
Reddy, G Thirumal; Kumar, T M Pramod; Veena
2005-01-01
Alendronate sodium is formulated into gels and evaluated for the treatment of bone resorptive lesions in periodontitis. Carbopol 934P was used for the preparation of gels in three different concentrations. The prepared gel was evaluated for various properties such as preformulation, content uniformity, viscosity, compatibility, sterility, in vitro diffusion, and in vivo studies. The drug and the polymer were found to be compatible and confirmed by Fourier transform infrared spectroscopy. Viscosity of the gels increased with the increase in the polymer concentration. The formulations were found to be sterile. In vitro release study revealed that drug released from the gel follows non-Fickian diffusion followed by first-order release. In vivo studies were carried out for 6 months in patients. The results revealed a significant improvement in the clinical parameters such as gingival index, probing pocket depth, clinical attachment level, and potent inhibitory effect on bone resorption by inhibition of osteoclasts. In addition, there was increase in the new bone formation.
The Relevance of Mouse Models for Investigating Age-Related Bone Loss in Humans
2013-01-01
Mice are increasingly used for investigation of the pathophysiology of osteoporosis because their genome is easily manipulated, and their skeleton is similar to that of humans. Unlike the human skeleton, however, the murine skeleton continues to grow slowly after puberty and lacks osteonal remodeling of cortical bone. Yet, like humans, mice exhibit loss of cancellous bone, thinning of cortical bone, and increased cortical porosity with advancing age. Histologic evidence in mice and humans alike indicates that inadequate osteoblast-mediated refilling of resorption cavities created during bone remodeling is responsible. Mouse models of progeria also show bone loss and skeletal defects associated with senescence of early osteoblast progenitors. Additionally, mouse models of atherosclerosis, which often occurs in osteoporotic participants, also suffer bone loss, suggesting that common diseases of aging share pathophysiological pathways. Knowledge of the causes of skeletal fragility in mice should therefore be applicable to humans if inherent limitations are recognized. PMID:23689830
Kim, Chang-Sung; Choi, Seong-Ho; Cho, Kyoo-Sung; Chai, Jung-Kiu; Wikesjö, Ulf M E; Kim, Chong-Kwan
2005-06-01
Autogenous bone grafts and bone biomaterials are being used as part of protocols aiming at reconstruction of periodontal defects. There is a limited biologic information on the effect of such materials on periodontal healing, in particular aberrant healing events that may prevent their general use. The objective of this study was, using histological techniques, to evaluate periodontal healing with focus on root resorption and ankylosis following implantation of autogenous bone and a coral-derived biomaterial into intra-bony defects in dogs. One-wall intra-bony periodontal defects were surgically created at the distal aspect of the second and the mesial aspect of the fourth mandibular premolars in either right or left jaw quadrants in four Beagle dogs. Each animal received particulated autogenous bone and the resorbable calcium carbonate biomaterial into discrete one-wall intra-bony defects. The mucoperiosteal flaps were positioned and sutured to their pre-surgery position. The animals were euthanized 8 weeks post-surgery when block sections of the defect sites were collected and prepared for qualitative histological analysis. There were no significant differences in periodontal healing between sites receiving autograft bone and the coral-derived biomaterial. A well-organized periodontal ligament bridging new bone and cementum regeneration was observed extending coronal to a notch prepared to delineate the apical extent of the defect. Osteoid and bone with enclosed osteocytes were formed onto the surface of both autograft and coral particles. Although small resorption pits were evident in most teeth, importantly none of the biomaterials provoked marked root resorption. Ankylosis was not observed. Particulated autogenous bone and the coral-derived biomaterial may be implanted into periodontal defects without significant healing aberrations such as root resorption and ankylosis. The histopathological evaluation suggests that the autogenous bone graft has a limited osteogenic potential as demonstrated in this study model.
[Impact of thyroid diseases on bone].
Tsourdi, E; Lademann, F; Siggelkow, H
2018-05-09
Thyroid hormones are key regulators of skeletal development in childhood and bone homeostasis in adulthood, and thyroid diseases have been associated with increased osteoporotic fractures. Hypothyroidism in children leads to an impaired skeletal maturation and mineralization, but an adequate and timely substitution with thyroid hormones stimulates bone growth. Conversely, hyperthyroidism at a young age accelerates skeletal development, but may also cause short stature because of a premature fusion of the growth plates. Hypothyroidism in adults causes an increase in the duration of the remodeling cycle and, thus, leads to low bone turnover and enhanced mineralization, but an association with a higher fracture risk is less well established. In adults, a surplus of thyroid hormones enhances bone turnover, mostly due to an increased bone resorption driven by osteoclasts. Thus, hyperthyroidism is a well-recognized cause of high-bone turnover secondary osteoporosis, resulting in an increased susceptibility to fragility fractures. Subclinical hyperthyroidism, especially resulting from endogenous disease, also has an adverse effect on bone mineral density and is associated with fractures. In most patients with overt or subclinical hyperthyroidism restoration of the euthyroid status reverses bone loss. In postmenopausal women who receive thyroid-stimulating hormone suppression therapy because of thyroid cancer, antiresorptive treatments may be indicated. Overall, extensive data support the importance of a euthyroid status for bone mineral accrual and growth in childhood as well as maintenance of bone health in adulthood.
Herford, Alan Scott; Cicciù, Marco
2012-01-01
Purpose: The aim of this investigation was to evaluate whether the addition of the platelet derived growth factor type BB (PDGF-BB) to a collagen matrix applied on a titanium mesh would favor healing and resorption onto the grafted bone. A histologic and radiographic study of two different groups (test and control) was performed. Designs: A surgical procedure was performed on 8 pigs to obtain 16 bilateral mandibular alveolar defects. All the defects were then reconstructed with a mixture of autogenous bovine bone using titanium mesh positioning. Two groups, with a total of 16 defects were created: The first to study collagen sponge and PDGF-BB and the second to control collagen only. The collagen matrix was positioned directly over the mesh and soft tissue was closed without tensions onto both groups without attempting to obtain primary closure. Possible exposure of the titanium mesh as well as the height and volume of the new bone was recorded. Results: New bone formation averaged about 6.68 mm in the test group studied; the control group had less regenerated bone at 4.62 mm. Conclusion: PDGF-BB addition to the collagen matrix induced a strong increase in hard and soft tissue healing and favored bone formation, reducing bone resorption even if the mesh was exposed. PMID:23833493
Cong, Qian; Jia, Hao; Li, Ping; Qiu, Shoutao; Yeh, James; Wang, Yibin; Zhang, Zhen-Lin; Ao, Junping; Li, Baojie; Liu, Huijuan
2017-01-01
Bone mass is determined by the balance between bone formation, carried out by mesenchymal stem cell-derived osteoblasts, and bone resorption, carried out by monocyte-derived osteoclasts. Here we investigated the potential roles of p38 MAPKs, which are activated by growth factors and cytokines including RANKL and BMPs, in osteoclastogenesis and bone resorption by ablating p38α MAPK in LysM+monocytes. p38α deficiency promoted monocyte proliferation but regulated monocyte osteoclastic differentiation in a cell-density dependent manner, with proliferating p38α−/− cultures showing increased differentiation. While young mutant mice showed minor increase in bone mass, 6-month-old mutant mice developed osteoporosis, associated with an increase in osteoclastogenesis and bone resorption and an increase in the pool of monocytes. Moreover, monocyte-specific p38α ablation resulted in a decrease in bone formation and the number of bone marrow mesenchymal stem/stromal cells, likely due to decreased expression of PDGF-AA and BMP2. The expression of PDGF-AA and BMP2 was positively regulated by the p38 MAPK-Creb axis in osteoclasts, with the promoters of PDGF-AA and BMP2 having Creb binding sites. These findings uncovered the molecular mechanisms by which p38α MAPK regulates osteoclastogenesis and coordinates osteoclastogenesis and osteoblastogenesis. PMID:28382965
Morse taper dental implants and platform switching: The new paradigm in oral implantology
Macedo, José Paulo; Pereira, Jorge; Vahey, Brendan R.; Henriques, Bruno; Benfatti, Cesar A. M.; Magini, Ricardo S.; López-López, José; Souza, Júlio C. M.
2016-01-01
The aim of this study was to conduct a literature review on the potential benefits with the use of Morse taper dental implant connections associated with small diameter platform switching abutments. A Medline bibliographical search (from 1961 to 2014) was carried out. The following search items were explored: “Bone loss and platform switching,” “bone loss and implant-abutment joint,” “bone resorption and platform switching,” “bone resorption and implant-abutment joint,” “Morse taper and platform switching.” “Morse taper and implant-abutment joint,” Morse taper and bone resorption,” “crestal bone remodeling and implant-abutment joint,” “crestal bone remodeling and platform switching.” The selection criteria used for the article were: meta-analysis; randomized controlled trials; prospective cohort studies; as well as reviews written in English, Portuguese, or Spanish languages. Within the 287 studies identified, 81 relevant and recent studies were selected. Results indicated a reduced occurrence of peri-implantitis and bone loss at the abutment/implant level associated with Morse taper implants and a reduced-diameter platform switching abutment. Extrapolation of data from previous studies indicates that Morse taper connections associated with platform switching have shown less inflammation and possible bone loss with the peri-implant soft tissues. However, more long-term studies are needed to confirm these trends. PMID:27011755
Inhibition of Prostate Cancer Skeletal Metastases by Targeting Cathepsin K
2009-05-01
micro synthetic calcium phosphate thin films coated onto the culture vessels. As a parallel study, a 96-well plate which contained dentin slice...bone resorption in vitro. (A) Representative images of resorption pits on dentin slices or synthetic calcium phosphate thin films are shown. Left...Osteologic Bone cell culture system (BD Bioscience) that consist of sub-micro synthetic calcium phosphate thin films coated on to the culture vessels and
Eubacterium brachy - Reactivity in In Vitro Bone Resorptive Bioassay,
1983-02-10
Center Washington, D. C . 20307 If Eubacterium brachy - Reactivity in In Vitro Bone Resorptive Bioassay 1. ABSTRACT Recent studies have demonstrated an...Relative distribution of bacteria at clinically healthy and periodontally diseased sites in humans. J Clin Periodontal 5:115, 1978. 3. Evian, C ...applied foreign protein into rat gingiva. J Periodont Res 6:89, 1971. 21. Gaffer, A., Coleman, E.J., and Marcussen, H.W.: Penetration of dental plaque
Vitamin K, bone turnover, and bone mass in girls.
Kalkwarf, Heidi J; Khoury, Jane C; Bean, Judy; Elliot, James G
2004-10-01
Vitamin K has been suggested to have a role in bone metabolism, and low vitamin K intake has been related to low bone density and increased risk of osteoporotic fracture. The objective of this study was to determine whether phylloquinone (vitamin K(1)) intake and biochemical indicators of vitamin K status are related to bone mineral content (BMC) and markers of bone formation and bone resorption in girls. Vitamin K status [plasma phylloquinone concentration and percentage of undercarboxylated osteocalcin (%ucOC)] was measured at baseline in a study of 245 healthy girls aged 3-16 y. Cross-linked N-telopeptide of type 1 collagen (NTx) breakdown, osteocalcin, and bone-specific alkaline phosphatase were measured to reflect bone resorption and formation. BMC of the total body, lumbar spine, and hip and dietary phylloquinone intake were measured annually for 4 y. Phylloquinone intake (median: 45 microg/d) was not consistently associated with bone turnover markers or BMC. Better vitamin K status (high plasma phylloquinone and low %ucOC) was associated with lower bone resorption and formation. Plasma phylloquinone was inversely associated with NTx and osteocalcin concentrations (P < 0.05), and %ucOC was positively associated with NTx and bone-specific alkaline phosphatase concentrations (P < 0.05). Indicators of vitamin K status were not consistently associated with current BMC or gain in BMC over the 4-y study period. Better vitamin K status was associated with decreased bone turnover in healthy girls consuming a typical US diet. Randomized phylloquinone supplementation trials are needed to further understand the potential benefits of phylloquinone on bone acquisition in growing children.
Facial Morphogenesis of the Earliest Europeans
Lacruz, Rodrigo S.; de Castro, José María Bermúdez; Martinón-Torres, María; O’Higgins, Paul; Paine, Michael L.; Carbonell, Eudald; Arsuaga, Juan Luis; Bromage, Timothy G.
2013-01-01
The modern human face differs from that of our early ancestors in that the facial profile is relatively retracted (orthognathic). This change in facial profile is associated with a characteristic spatial distribution of bone deposition and resorption: growth remodeling. For humans, surface resorption commonly dominates on anteriorly-facing areas of the subnasal region of the maxilla and mandible during development. We mapped the distribution of facial growth remodeling activities on the 900–800 ky maxilla ATD6-69 assigned to H. antecessor, and on the 1.5 My cranium KNM-WT 15000, part of an associated skeleton assigned to African H. erectus. We show that, as in H. sapiens, H. antecessor shows bone resorption over most of the subnasal region. This pattern contrasts with that seen in KNM-WT 15000 where evidence of bone deposition, not resorption, was identified. KNM-WT 15000 is similar to Australopithecus and the extant African apes in this localized area of bone deposition. These new data point to diversity of patterns of facial growth in fossil Homo. The similarities in facial growth in H. antecessor and H. sapiens suggest that one key developmental change responsible for the characteristic facial morphology of modern humans can be traced back at least to H. antecessor. PMID:23762314
Spirlandeli, Adriano L.; Dick-de-Paula, Ingrid; Zamarioli, Ariane; Jorgetti, Vanda; Ramalho, Leandra N.Z.; Nogueira-Barbosa, Marcello H.; Volpon, Jose B.; Jordão, Alceu A.; Cunha, Fernando Q.; Fukada, Sandra Y.; de Paula, Francisco J.A.
2017-01-01
OBJECTIVES: The present study was designed to evaluate the bone phenotypes and mechanisms involved in bone disorders associated with hepatic osteodystrophy. Hepatocellular disease was induced by carbon tetrachloride (CCl4). In addition, the effects of disodium pamidronate on bone tissue were evaluated. METHODS: The study included 4 groups of 15 mice: a) C = mice subjected to vehicle injections; b) C+P = mice subjected to vehicle and pamidronate injections; c) CCl4+V = mice subjected to CCl4 and vehicle injections; and d) CCl4+P = mice subjected to CCl4 and pamidronate injections. CCl4 or vehicle was administered for 8 weeks, while pamidronate or vehicle was injected at the end of the fourth week. Bone histomorphometry and biomechanical analysis were performed in tibiae, while femora were used for micro-computed tomography and gene expression. RESULTS: CCl4 mice exhibited decreased bone volume/trabecular volume and trabecular numbers, as well as increased trabecular separation, as determined by bone histomorphometry and micro-computed tomography, but these changes were not detected in the group treated with pamidronate. CCl4 mice showed increased numbers of osteoclasts and resorption surface. High serum levels of receptor activator of nuclear factor-κB ligand and the increased expression of tartrate-resistant acid phosphatase in the bones of CCl4 mice supported the enhancement of bone resorption in these mice. CONCLUSION: Taken together, these results suggest that bone resorption is the main mechanism of bone loss in chronic hepatocellular disease in mice. PMID:28492723
Spirlandeli, Adriano L; Dick-de-Paula, Ingrid; Zamarioli, Ariane; Jorgetti, Vanda; Ramalho, Leandra N Z; Nogueira-Barbosa, Marcello H; Volpon, Jose B; Jordão, Alceu A; Cunha, Fernando Q; Fukada, Sandra Y; de Paula, Francisco J A
2017-04-01
The present study was designed to evaluate the bone phenotypes and mechanisms involved in bone disorders associated with hepatic osteodystrophy. Hepatocellular disease was induced by carbon tetrachloride (CCl4). In addition, the effects of disodium pamidronate on bone tissue were evaluated. The study included 4 groups of 15 mice: a) C = mice subjected to vehicle injections; b) C+P = mice subjected to vehicle and pamidronate injections; c) CCl4+V = mice subjected to CCl4 and vehicle injections; and d) CCl4+P = mice subjected to CCl4 and pamidronate injections. CCl4 or vehicle was administered for 8 weeks, while pamidronate or vehicle was injected at the end of the fourth week. Bone histomorphometry and biomechanical analysis were performed in tibiae, while femora were used for micro-computed tomography and gene expression. CCl4 mice exhibited decreased bone volume/trabecular volume and trabecular numbers, as well as increased trabecular separation, as determined by bone histomorphometry and micro-computed tomography, but these changes were not detected in the group treated with pamidronate. CCl4 mice showed increased numbers of osteoclasts and resorption surface. High serum levels of receptor activator of nuclear factor-κB ligand and the increased expression of tartrate-resistant acid phosphatase in the bones of CCl4 mice supported the enhancement of bone resorption in these mice. Taken together, these results suggest that bone resorption is the main mechanism of bone loss in chronic hepatocellular disease in mice.
Manolagas, Stavros C; Parfitt, A Michael
2013-06-01
Osteocytes are long-lived and far more numerous than the short-lived osteoblasts and osteoclasts. Immured within the lacunar-canalicular system and mineralized matrix, osteocytes are ideally located throughout the bone to detect the need for, and accordingly choreograph, the bone regeneration process by independently controlling rate limiting steps of bone resorption and formation. Consistent with this role, emerging evidence indicates that signals arising from apoptotic and old/or dysfunctional osteocytes are seminal culprits in the pathogenesis of involutional, post-menopausal, steroid-, and immobilization-induced osteoporosis. Osteocyte-originated signals may also contribute to the increased bone fragility associated with bone matrix disorders like osteogenesis imperfecta, and perhaps the rapid reversal of bone turnover above baseline following discontinuation of anti-resorptive treatments, like denosumab. Published by Elsevier Inc.
Astronaut Bones: Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance
NASA Astrophysics Data System (ADS)
Skulan, J.; Gordon, G. W.; Romaniello, S. J.; Anbar, A. D.; Smith, S. M.; Zwart, S.
2016-12-01
Bone loss is a common health concern, in conditions ranging from osteoporosis to cancer. Bone loss due to unloading is also an important health issue for astronauts. We demonstrate stable calcium isotopes, a tool developed in geochemistry, are capable of detecting real-time quantitative changes in net bone mineral balance (BMB) using serum and urine [1]. We validated this technique by comparing with DEXA and biomarker data in subjects during bed rest, a ground-based analog of space flight effects [2-4]. We now apply this tool to assess changes in astronauts' BMB before, during and after 4-6 month space missions. There is stable isotope fractionation asymmetry between bone formation and resorption. During bone formation there is a mass-dependent preference for "lighter" calcium isotopes to be removed from serum and incorporated into bone mineral. During bone resorption, there is no measurable isotopic discrimination between serum and bone. Hence, when bone formation rates exceed that of resorption, serum and urine become isotopically "heavy" due to the sequestration of "light" calcium in bone. Conversely, when bone resorption exceeds bone formation, serum and urine become isotopically "light" due to the release of the sequestered light calcium from bone. We measured Ca isotopes in urine of thirty International Space Station astronauts. Average Ca isotope values in astronauts' urine shift isotopically lighter during microgravity, consistent with negative net BMB. Within a month of return to Earth, astronauts returned to within error of their δ44Ca value prior to departure. Urine samples from astronauts testing bone loss countermeasures showed bisphosphonates provide a viable pharmacological countermeasure. Some, but not all, individuals appear able to resist bone loss through diet and intensive resistive exercise alone. This is a promising new technique for monitoring BMB in astronauts, and hopefully someday on the way to/from Mars, this also has important clinical applications for human health and terrestrial medicine [5]. REFERENCES [1] Morgan, J.L. et al (2011) Anal Chem 83, 6956-6962. [2] Skulan, J.L. et al. (2007) Clin Chem 53, 1155-1158. [3] Morgan, J.L. et al (2012) PNAS 109, 9989-9994. [4] Channon, M.B. et al (2015) Bone 77, 69-74. [5] Gordon, G.W. et al (2014) Leukemia 28, 2112-2115.
Identification of Prevotella in pedal osteomyelitis of a diabetic patient.
Dominiak, Barbara J; Oxberry, William; Chen, Patrick C
2003-01-01
Osteomyelitis in a diabetic patient with a nonhealing foot ulcer, multiple medical conditions, and recurrent hospitalization for antibiotic therapy was found to be associated with gram-negative bacteria Prevotella melanginoganica and Prevotella melaninoganica hemagglutinating variant. Those organisms were identified due to the morphologically distinct features in electron microscopy and sequencing of the genes after Polymerase chain reaction amplification from the pathological material. The bacteria invaded the bone and resided in osteocyte, osteoblast, and endothelial cells. The bacteria are usually associated with periodontal plaques, causing inflammation and destruction of gingival tissue and resorption of the alveolar bone. This is the first ultrastructural and molecular study of a diabetic bone lesion with anaerobic bacterial infection.
Denosumab for bone diseases: translating bone biology into targeted therapy.
Tsourdi, Elena; Rachner, Tilman D; Rauner, Martina; Hamann, Christine; Hofbauer, Lorenz C
2011-12-01
Signalling of receptor activator of nuclear factor-κB (RANK) ligand (RANKL) through RANK is a critical pathway to regulate the differentiation and activity of osteoclasts and, hence, a master regulator of bone resorption. Increased RANKL activity has been demonstrated in diseases characterised by excessive bone loss such as osteoporosis, rheumatoid arthritis and osteolytic bone metastases. The development and approval of denosumab, a fully MAB against RANKL, has heralded a new era in the treatment of bone diseases by providing a potent, targeted and reversible inhibitor of bone resorption. This article summarises the molecular and cellular biology of the RANKL/RANK system and critically reviews preclinical and clinical studies that have established denosumab as a promising novel therapy for metabolic and malignant bone diseases. We will discuss the potential indications for denosumab along with a critical review of safety and analyse its potential within the concert of established therapies.
Bone Density and Dental External Apical Root Resorption
Iglesias-Linares, Alejandro; Morford, Lorri Ann
2016-01-01
When orthodontic patients desire shorter treatment times with aesthetic results and long-term stability, it is important for the orthodontist to understand the potential limitations and problems that may arise during standard and/or technology-assisted accelerated treatment. Bone density plays an important role in facilitating orthodontic tooth movement (OTM), such that reductions in bone density can significantly increase movement velocity. Lifestyle, genetic background, environmental factors and disease status all can influence a patients’ overall health and bone density. In some individuals, these factors may create specific conditions that influence systemic-wide bone metabolism. Both genetic variation and the onset of a bone-related disease can influence systemic bone density and local bone density, such as is observed in the mandible and maxilla. These types of localized density changes can affect the rate of OTM and may also influence the risk of unwanted outcomes, i.e., the occurrence of dental external apical root resorption (EARR). PMID:27766484
Walker, Emma C.; McGregor, Narelle E.; Poulton, Ingrid J.; Solano, Melissa; Pompolo, Sueli; Fernandes, Tania J.; Constable, Matthew J.; Nicholson, Geoff C.; Zhang, Jian-Guo; Nicola, Nicos A.; Gillespie, Matthew T.; Martin, T. John; Sims, Natalie A.
2010-01-01
Effective osteoporosis therapy requires agents that increase the amount and/or quality of bone. Any modification of osteoclast-mediated bone resorption by disease or drug treatment, however, elicits a parallel change in osteoblast-mediated bone formation because the processes are tightly coupled. Anabolic approaches now focus on uncoupling osteoblast action from osteoclast formation, for example, by inhibiting sclerostin, an inhibitor of bone formation that does not influence osteoclast differentiation. Here, we report that oncostatin M (OSM) is produced by osteoblasts and osteocytes in mouse bone and that it has distinct effects when acting through 2 different receptors, OSM receptor (OSMR) and leukemia inhibitory factor receptor (LIFR). Specifically, mouse OSM (mOSM) inhibited sclerostin production in a stromal cell line and in primary murine osteoblast cultures by acting through LIFR. In contrast, when acting through OSMR, mOSM stimulated RANKL production and osteoclast formation. A key role for OSMR in bone turnover was confirmed by the osteopetrotic phenotype of mice lacking OSMR. Furthermore, in contrast to the accepted model, in which mOSM acts only through OSMR, mOSM inhibited sclerostin expression in Osmr–/– osteoblasts and enhanced bone formation in vivo. These data reveal what we believe to be a novel pathway by which bone formation can be stimulated independently of bone resorption and provide new insights into OSMR and LIFR signaling that are relevant to other medical conditions, including cardiovascular and neurodegenerative diseases and cancer. PMID:20051625
Kimoto, Aishi; Tanaka, Makoto; Nozaki, Kazutoshi; Mori, Masamichi; Fukushima, Shinji; Mori, Hiroshi; Shiroya, Tsutomu; Nakamura, Toshitaka
2013-07-01
This study examined and compared the effects of four-week intermittent and daily administrations of minodronic acid, a highly potent nitrogen-containing bisphosphonate, on bone mineral density (BMD), bone strength, bone turnover, and histomorphometry on established osteopenia in ovariectomized (OVX) rats. Fourteen-week-old female F344 rats were OVX or sham-operated. At 12 weeks post surgery, minodronic acid was orally administered once every 4 weeks at 0.2, 1, and 5 mg/kg and once daily at 0.006, 0.03, and 0.15 mg/kg for 12 months. The total dosing amount was comparable between the two dosing regimens. The levels of urinary deoxypyridinoline and serum osteocalcin were measured to assess bone turnover. BMD as assessed via dual-energy X-ray absorptiometry, bone structure and dynamical changes in vertebral trabecula and biomechanical properties were measured ex vivo at 12 months to assess bone content and material properties. Minodronic acid dose-dependently ameliorated the decrease in BMD of lumbar vertebrae and the femur in both treatment regimens similarly. Minodronic acid suppressed elevated urinary levels of deoxypyridinoline, a bone resorption marker, and reduced the serum levels of osteocalcin, a bone formation marker. In the mechanical test at 12 months of treatment, minodronic acid dose-dependently ameliorated the reduction in bone strength in femur and vertebral body. There is no significant difference in parameters between the two regimens except maximal load of lower doses in lumbar vertebral body and absorption energy of middle doses in femur. With these parameters with significant differences, values of the intermittent regimen were significantly lower than that of daily repeated regimen. Bone histomorphometric analysis of the lumbar vertebral body showed that minodronic acid significantly ameliorated the decrease in bone mass, trabecular thickness and number, and the increase in trabecular separation, bone resorption indices (Oc.S/BS and N.Oc/BS), and bone formation indices (BFR/BS, MAR and OV/BV) in both regimens. Minodronic acid suppressed OVX-induced increases in bone turnover at the tissue level and ameliorated all structural indices, thereby improving the deterioration of bone quality under osteoporotic disease conditions regardless of the regimen. In conclusion, a four-week intermittent treatment of minodronic acid suppressed increased bone resorption as daily treatment when considering the total administered dose in OVX rats with established osteopenia. The improvement of microarchitectural destruction in low dose of intermittent treatment was weaker than that observed in a daily repeated regimen; however the effects of high and middle doses of intermittent treatment were equivalent to that observed in daily repeated regimen accompanied by sufficient bone resorption inhibition in rats. These findings suggest that minodronic acid at an appropriate dose in an intermittent regimen may be as clinically useful in osteoporosis therapy as in daily treatment. Copyright © 2013 Elsevier Inc. All rights reserved.
Iacobini, Carla; Fantauzzi, Claudia Blasetti; Bedini, Rossella; Pecci, Raffaella; Bartolazzi, Armando; Amadio, Bruno; Pesce, Carlo; Pugliese, Giuseppe; Menini, Stefano
2018-02-09
Galectin-3 is constitutively expressed in bone cells and was recently shown to modulate osteogenic transdifferentiation of vascular smooth muscle cells and atherosclerotic calcification. However, the role of galectin-3 in bone physiology is largely undefined. To address this issue, we analyzed (1) the skeletal features of 1-, 3- and 6-month-old galectin-3 null (Lgals3 -/- ) and wild type (WT) mice and (2) the differentiation and function of osteoblasts and osteoclasts derived from these animals. Long bone phenotype, gene expression profile, and remodeling were investigated by micro-computed tomography, real time-PCR, static and dynamic histomorphometry, and assessment of biochemical markers of bone resorption and formation. Bone competence was also evaluated by biomechanical testing at 3 months. In vitro, the effects of galectin-3 deficiency on bone cell differentiation and function were investigated by assessing (a) gene expression of osteoblast markers, alkaline phosphatase activity, mineralization assay, and WNT/β-catenin signaling (of which galectin-3 is a known regulator) in osteoblasts; and (b) tartrate-resistant acid phosphatase activity and bone resorption activity in osteoclasts. Lgals3 -/- mice revealed a wide range of age-dependent alterations including lower bone formation and higher bone resorption, accelerated age-dependent trabecular bone loss (p < 0.01 vs. WT at 3 months) and reduced bone strength (p < 0.01 vs. WT at 3 months). These abnormalities were accompanied by a steady inflammatory state, as revealed by higher bone expression of the pro-inflammatory cytokines interleukin (IL)-1β and IL-6 (p < 0.001 vs. WT at 3 months), increased content of osteal macrophages (p < 0.01 vs. WT at 3 months), and reduced expression of markers of alternative (M2) macrophage activation. Lgals3 -/- osteoblasts and osteoclasts showed impaired terminal differentiation, reduced mineralization capacity (p < 0.01 vs. WT cells) and resorption activity (p < 0.01 vs. WT cells). Mechanistically, impaired differentiation and function of Lgals3 -/- osteoblasts was associated with altered WNT/β-catenin signaling (p < 0.01 vs. WT cells). These data provide evidence for a contribution of galectin-3 to bone cell maturation and function, bone remodeling, and biomechanical competence, thus identifying galectin-3 as a promising therapeutic target for age-related disorders of bone remodeling. Copyright © 2018. Published by Elsevier Inc.
2011-01-01
Introduction Glucosamine is an amino-monosaccharide and precursor of glycosaminoglycans, major components of joint cartilage. Glucosamine has been clinically introduced for the treatment of osteoarthritis but the data about its protective role in disease are insufficient. The goal of this study was to investigate the effect of long term administration of glucosamine on bone resorption and remodeling. Methods The effect of glucosamine on bone resorption and remodeling was studied in a model of collagenase-induced osteoarthritis (CIOA). The levels of macrophage-inflammatory protein (MIP)-1α, protein regulated upon activation, normal T-cell expressed, and secreted (RANTES), soluble receptor activator of nuclear factor kappa-B ligand (RANKL), tumor necrosis factor (TNF)-α, and interleukin (IL)-6, 4 and 10 in synovial fluid were measured by enzyme-linked immunosorbent assay (ELISA). Cell populations in synovial extracts and the expression of RANKL, of receptors for TNF-α (TNF-αR) and interferon γ (IFN-γR) on clusters of differentiation (CD) three positive T cells were analyzed by flow cytometry. Transforming growth factor (TGF)-β3, bone morphogenetic protein (BMP)-2, phosphorylated protein mothers against decapentaplegic homolog 2 (pSMAD-2), RANKL and Dickkopf-1 protein (DKK-1) positive staining in CIOA joints were determined by immunohistochemistry. Results The administration of glucosamine hydrochloride in CIOA mice inhibited loss of glycosaminoglycans (GAGs) and proteoglycans (PGs) in cartilage, bone erosion and osteophyte formation. It decreased the levels of soluble RANKL and IL-6 and induced IL-10 increase in the CIOA joint fluids. Glucosamine limited the number of CD11b positive Ly6G neutrophils and RANKL positive CD3 T cells in the joint extracts. It suppressed bone resorption via down-regulation of RANKL expression and affected bone remodeling in CIOA by decreasing BMP-2, TGF-β3 and pSMAD-2 expression and up-regulating DKK-1 joint levels. Conclusions Our data suggest that glucosamine hydrochloride inhibits bone resorption through down-regulation of RANKL expression in the joints, via reduction of the number of RANKL positive CD3 T cells and the level of sRANKL in the joints extracts. These effects of glucosamine appear to be critical for the progression of CIOA and result in limited bone remodeling of the joints. PMID:21410959
Tat, Steeve Kwan; Pelletier, Jean-Pierre; Vergés, Josep; Lajeunesse, Daniel; Montell, Eulàlia; Fahmi, Hassan; Lavigne, Martin; Martel-Pelletier, Johanne
2007-01-01
Early in the pathological process of osteoarthritis (OA), subchondral bone remodelling, which is related to altered osteoblast metabolism, takes place. In the present study, we explored in human OA subchondral bone whether chondroitin sulfate (CS), glucosamine sulfate (GS), or both together affect the major bone biomarkers, osteoprotegerin (OPG), receptor activator of nuclear factor-kappa B ligand (RANKL), and the pro-resorptive activity of OA osteoblasts. The effect of CS (200 μg/mL), GS (50 and 200 μg/mL), or both together on human OA subchondral bone osteoblasts, in the presence or absence of 1,25(OH)2D3 (vitamin D3) (50 nM), was determined on the bone biomarkers alkaline phosphatase and osteocalcin, on the expression (mRNA) and production (enzyme-linked immunosorbent assay) of bone remodelling factors OPG and RANKL, and on the pro-resorptive activity of these cells. For the latter experiments, human OA osteoblasts were incubated with differentiated peripheral blood mononuclear cells on a sub-micron synthetic calcium phosphate thin film. Data showed that CS and GS affected neither basal nor vitamin D3-induced alkaline phosphatase or osteocalcin release. Interestingly, OPG expression and production under basal conditions or vitamin D3 treatment were upregulated by CS and by both CS and GS incubated together. Under basal conditions, RANKL expression was significantly reduced by CS and by both drugs incubated together. Under vitamin D3, these drugs also showed a decrease in RANKL level, which, however, did not reach statistical significance. Importantly, under basal conditions, CS and both compounds combined significantly upregulated the expression ratio of OPG/RANKL. Vitamin D3 decreased this ratio, and GS further decreased it. Both drugs reduced the resorption activity, and statistical significance was reached for GS and when CS and GS were incubated together. Our data indicate that CS and GS do not overly affect cell integrity or bone biomarkers. Yet CS and both compounds together increase the expression ratio of OPG/RANKL, suggesting a positive effect on OA subchondral bone structural changes. This was confirmed by the decreased resorptive activity for the combination of CS and GS. These data are of major significance and may help to explain how these two drugs exert a positive effect on OA pathophysiology. PMID:17996099
Gerbaix, Maude; Gnyubkin, Vasily; Farlay, Delphine; Olivier, Cécile; Ammann, Patrick; Courbon, Guillaume; Laroche, Norbert; Genthial, Rachel; Follet, Hélène; Peyrin, Françoise; Shenkman, Boris; Gauquelin-Koch, Guillemette; Vico, Laurence
2017-06-01
The weightless environment during spaceflight induces site-specific bone loss. The 30-day Bion-M1 mission offered a unique opportunity to characterize the skeletal changes after spaceflight and an 8-day recovery period in mature male C57/BL6 mice. In the femur metaphysis, spaceflight decreased the trabecular bone volume (-64% vs. Habitat Control), dramatically increased the bone resorption (+140% vs. Habitat Control) and induced marrow adiposity invasion. At the diaphysis, cortical thinning associated with periosteal resorption was observed. In the Flight animal group, the osteocyte lacunae displayed a reduced volume and a more spherical shape (synchrotron radiation analyses), and empty lacunae were highly increased (+344% vs. Habitat Control). Tissue-level mechanical cortical properties (i.e., hardness and modulus) were locally decreased by spaceflight, whereas the mineral characteristics and collagen maturity were unaffected. In the vertebrae, spaceflight decreased the overall bone volume and altered the modulus in the periphery of the trabecular struts. Despite normalized osteoclastic activity and an increased osteoblast number, bone recovery was not observed 8 days after landing. In conclusion, spaceflight induces osteocyte death, which may trigger bone resorption and result in bone mass and microstructural deterioration. Moreover, osteocyte cell death, lacunae mineralization and fatty marrow, which are hallmarks of ageing, may impede tissue maintenance and repair.
Rignon-Bret, Christophe; Hadida, Alain; Aidan, Alexis; Nguyen, Thien-Huong; Pasquet, Gerard; Fron-Chabouis, Helene; Wulfman, Claudine
2016-05-20
Bone preservation is an essential issue in the context of last teeth extraction and complete edentulism. The intended treatment, whether a complete denture or an implant placement, is facilitated with a voluminous residual ridge. Bone resorption after multiple extractions has not been as well studied as the bone resorption that occurs after the extraction of a single tooth. Recent advances in bone substitute materials have revived this issue. The purpose of this study is to evaluate the interest in using bone substitute material to fill the socket after last teeth extraction in a maxillary immediate complete denture procedure compared with the conventional protocol without socket filling. A randomized, controlled, clinical trial was designed. The 34 participants eligible for maxillary immediate complete denture were divided into two groups. Complete dentures were prepared despite persistence of the last anterior teeth. The control group received a conventional treatment including denture placement immediately after extractions. In the experimental group, in addition to the immediate denture placement, a xenograft bone-substitute material (Bio-Oss Collagen®) was placed in the fresh sockets. The primary outcome of the study is to compare mean bone ridge height loss 1 year after maxillary immediate complete denture placement, with or without bone-substitute material, in incisor and canine sockets. The secondary outcomes are to compare the average bone ridge height and width loss for each extraction site. An original quantitative evaluation method using cone beam computed tomography was designed for reproducible measurements, with a radio-opaque denture duplicate. Two independent operators perform the radiologic measurements. The immediate complete denture technique limits bone resorption in multiple extraction situations and thus allows better denture retention and better options for implant placement. To compare the benefit of using any bone socket-filling material, we proposed a quantitative evaluation protocol of resorption in the specific case of the last anterior maxillary teeth extraction with immediate denture placement. ClinicalTrials.gov, NCT02120053 . Registered on 18 April 2014.
Advances in the discovery of cathepsin K inhibitors on bone resorption.
Lu, Jun; Wang, Maolin; Wang, Ziyue; Fu, Zhongqi; Lu, Aiping; Zhang, Ge
2018-12-01
Cathepsin K (Cat K), highly expressed in osteoclasts, is a cysteine protease member of the cathepsin lysosomal protease family and has been of increasing interest as a target of medicinal chemistry efforts for its role in bone matrix degradation. Inhibition of the Cat K enzyme reduces bone resorption and thus, has rendered the enzyme as an attractive target for anti-resorptive osteoporosis therapy. Over the past decades, considerable efforts have been made to design and develop highly potent, excellently selective and orally applicable Cat K inhibitors. These inhibitors are derived from synthetic compounds or natural products, some of which have passed preclinical studies and are presently in clinical trials at different stages of advancement. In this review, we briefly summarised the historic development of Cat K inhibitors and discussed the relationship between structures of inhibitors and active sites in Cat K for the purpose of guiding future development of inhibitors.
Ikegami, Hiroko; Kawawa, Rie; Ichi, Ikuyo; Ishikawa, Tomoko; Koike, Taisuke; Aoki, Yoshinori; Fujiwara, Yoko
2017-10-01
Background: Animal studies on the effects of vitamin E on bone health have yielded conflicting and inconclusive results, and to our knowledge, no studies have addressed the effect of vitamin E on bone in animals consuming a high-fat diet (HFD). Objective: This study aimed to evaluate the effect of excessive vitamin E on bone metabolism in normal male mice and ovariectomized female mice fed a normal diet (ND) or HFD. Methods: In the first 2 experiments, 7-wk-old male mice were fed an ND (16% energy from fat) containing 75 (control), 0 (vitamin E-free), or 1000 (high vitamin E) mg vitamin E/kg (experiment 1) or an HFD (46% energy from fat) containing 0, 200, 500, or 1000 mg vitamin E/kg (experiment 2) for 18 wk. In the third experiment, 7-wk-old sham-operated or ovariectomized female mice were fed the ND (75 mg vitamin E/kg) or HFD containing 0 or 1000 mg vitamin E/kg for 8 wk. At the end of the feeding period, blood and femurs were collected to measure bone turnover markers and analyze histology and microcomputed tomography. Results: In experiments 1 and 2, vitamin E intake had no effect on plasma alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activity, or bone formation, resorption, or volume in femurs in mice fed the ND or HFDs. In experiment 3, bone volume was significantly reduced (85%) in ovariectomized mice compared with that in sham-operated mice ( P < 0.05), but it did not differ among mice fed the 3 diets. Plasma ALP and TRAP activities and bone formation and resorption in femur were similar among ovariectomized mice fed the HFD containing 0 or 1000 mg vitamin E/kg. Conclusions: The results suggest that excess vitamin E intake does not cause bone loss in normal male mice or in ovariectomized or sham-operated female mice, regardless of dietary fat content. © 2017 American Society for Nutrition.
Karsdal, Morten A; Qvist, Per; Christiansen, Claus; Tankó, László B
2006-01-01
Accelerated bone turnover with bone resorption exceeding bone formation is a major mechanism underlying postmenopausal bone loss and hence the development of osteoporosis. Accordingly, inhibition of bone resorption is a rational approach for the prevention of osteoporosis. In this context, the most logical option, hormone replacement therapy, reverses the rate of bone turnover to premenopausal levels, whereas the magnitude of inhibition by amino-bisphosphonates and the recently introduced anti-receptor activator of NFkappaB ligand (RANKL) antibody often exceeds this. As bone turnover has crucial implications for the continuous renewal of bone tissue, the over-suppression of bone turnover has potential consequences for bone quality and strength. Long-term treatment with potent bisphosphonates has recently been associated with osteonecrosis of the jaw and dose-dependent increases in micro-crack accumulation in animals. Although these observations are the subject of ongoing discussions, it is timely to discuss whether the over-suppression of bone turnover below premenopausal levels is really our ultimate goal when defining the success criteria for antiresorptive agents. In this review, the implications of high and excessively low bone turnover of endogenous origin for bone quality, fracture risk and integrity of the jaw are discussed. In addition, animal and clinical research revealing initial findings regarding the potential adverse effects of drug-induced suppression of bone remodeling are summarised. The inhibition of bone resorption, which is either transient between doses (e.g. with calcitonin) or does not exceed premenopausal levels (with hormone replacement therapy or selective estrogen receptor modulators), is preferable because it not only provides similar antifracture efficacy but can also assist in the maintenance of the dynamic repair of micro-cracks/micro-fractures.
Xie, Wenjun; Zhang, Yu; Qin, Xiaodong; Song, Lijun; Chen, Qun
2018-03-01
High fibular osteotomy has been preliminarily proved to be an effective treatment of knee osteoarthritis by excising a segment of bone at the proximal part of fibula. This imaginative procedure is clinical validated by its instant and explicit knee pain resorption and eventually deformity correction. The rationale of this treatment is named non-uniform settlement of the tibial plateau and used to elucidate the cause of knee joint degeneration, but cannot illuminate the reason of prompt postoperative pain resorption faithfully. To assist in better understanding of this therapeutic method and raising alert to possible unexpected complications, we proposed a new theory to elucidate the pain relief mechanism.
Electromagnetic irradiation may be a new approach to therapy for peri-implantitis.
Cao, Zhensheng; Chen, Yijia; Chen, Yuxue; Zhao, Qing; Xu, Xiaomei; Chen, Yangxi
2012-03-01
Peri-implantitis can lead to bone destruction around a dental implant through inflammation and immune reactions caused by bacteria adhering to the surface of the implant abutment. Electromagnetic irradiation can inhibit bacterial growth, increase bone formation, decrease bone resorption and reduce the inflammatory response. Our hypothesis is that electromagnetic irradiation may be a new treatment approach for peri-implantitis and may simultaneously maintain bone mass around the dental implant. The results would be more significant when combined with other agents, because the effect of some antibiotics and anti-inflammatory drugs is strengthened by electromagnetic irradiation. This non-invasive therapy is expected to be conducted in a convenient manner, and even by patients at home, thereby facilitating the prevention and treatment of peri-implantitis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Calcineurin/NFAT signaling in osteoblasts regulates bone mass.
Winslow, Monte M; Pan, Minggui; Starbuck, Michael; Gallo, Elena M; Deng, Lei; Karsenty, Gerard; Crabtree, Gerald R
2006-06-01
Development and repair of the vertebrate skeleton requires the precise coordination of bone-forming osteoblasts and bone-resorbing osteoclasts. In diseases such as osteoporosis, bone resorption dominates over bone formation, suggesting a failure to harmonize osteoclast and osteoblast function. Here, we show that mice expressing a constitutively nuclear NFATc1 variant (NFATc1(nuc)) in osteoblasts develop high bone mass. NFATc1(nuc) mice have massive osteoblast overgrowth, enhanced osteoblast proliferation, and coordinated changes in the expression of Wnt signaling components. In contrast, viable NFATc1-deficient mice have defects in skull bone formation in addition to impaired osteoclast development. NFATc1(nuc) mice have increased osteoclastogenesis despite normal levels of RANKL and OPG, indicating that an additional NFAT-regulated mechanism influences osteoclastogenesis in vivo. Calcineurin/NFATc signaling in osteoblasts controls the expression of chemoattractants that attract monocytic osteoclast precursors, thereby coupling bone formation and bone resorption. Our results indicate that NFATc1 regulates bone mass by functioning in both osteoblasts and osteoclasts.
Roy, Mangal; Bose, Susmita
2012-01-01
Bone substitute materials are required to support the remodeling process, which consists of osteoclastic resorption and osteoblastic synthesis. Osteoclasts, the bone resorbing cells, generate from differentiation of hemopoietic mononuclear cells. In the present study we have evaluated the effects of 1.0 wt% strontium (Sr) and 1.0 wt% magnesium (Mg) doping in beta-tricalcium phosphate (β-TCP) on the differentiation of mononuclear cells into osteoclast-like cells and its resorptive activity. In vitro osteoclast-like cell formation, adhesion, and resorption were studied using osteoclast precursor RAW 264.7 cell, supplemented with receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast-like cell formation was noticed on pure and Sr doped β-TCP samples at day 8 which was absent on Mg doped β-TCP samples indicating decrease in initial osteoclast differentiation due to Mg doping. After 21 days of culture, osteoclast-like cell formation was evident on all samples with osteoclastic markers such as actin ring, multiple nuclei, and presence of vitronectin receptor αvβ3 integrin. After osteoclast differentiation, all substrates showed osteoclast-like cell mediated degradation, however; significantly restricted for Mg doped β-TCP samples. Our present results indicated substrate chemistry controlled osteoclast differentiation and resorptive activity which can be used in designing TCP based resorbable bone substitutes with controlled degradation properties. PMID:22566212
Roy, Mangal; Bose, Susmita
2012-09-01
Bone substitute materials are required to support the remodeling process, which consists of osteoclastic resorption and osteoblastic synthesis. Osteoclasts, the bone-resorbing cells, generate from differentiation of hemopoietic mononuclear cells. In the present study, we have evaluated the effects of 1.0 wt % strontium (Sr) and 1.0 wt % magnesium (Mg) doping in beta-tricalcium phosphate (β-TCP) on the differentiation of mononuclear cells into osteoclast-like cells and its resorptive activity. In vitro osteoclast-like cell formation, adhesion, and resorption were studied using osteoclast precursor RAW 264.7 cell, supplemented with receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast-like cell formation was noticed on pure and Sr-doped β-TCP samples at day 8, which was absent on Mg-doped β-TCP samples indicating decrease in initial osteoclast differentiation due to Mg doping. After 21 days of culture, osteoclast-like cell formation was evident on all samples with osteoclastic markers such as actin ring, multiple nuclei, and presence of vitronectin receptor α(v)β(3) integrin. After osteoclast differentiation, all substrates showed osteoclast-like cell-mediated degradation, however, significantly restricted for Mg-doped β-TCP samples. Our present results indicated that substrate chemistry controlled osteoclast differentiation and resorptive activity, which can be used in designing TCP-based resorbable bone substitutes with controlled degradation properties. Copyright © 2012 Wiley Periodicals, Inc.
Calcium Kinetics During Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Wastney, Meryl E.; OBrien, Kimberly O.; Lane, Helen W.
1999-01-01
Bone loss is one of the most detrimental effects of space flight, threatening to limit the duration of human space missions. The ability to understand and counteract this loss will be critical for crew health and safety during and after extended-duration missions. The hypotheses to be tested in this project are that space flight alters calcium homeostasis and bone mineral metabolism, and that calcium homeostasis and bone mineral metabolism will return to baseline within days to weeks of return to Earth. These hypotheses will be evidenced by elevated rates of bone mineral resorption and decreased bone mineral deposition, decreased absorption of dietary calcium, altered calcitropic endocrine profiles, elevated excretion of calcium in urine and feces, and elevated excretion of markers of bone resorption. The second hypothesis will be evidenced by return of indices of calcium homeostasis and bone metabolism to preflight levels within days to weeks of return to Earth. Studies will be conducted on International Space Station astronauts before, during, and after extended-duration flights. Measurements of calcium kinetics, bone mass, and endocrine/biochemical markers of bone and calcium homeostasis will be conducted. Kinetic studies utilizing dual isotope tracer kinetic studies and mathematical modeling techniques will allow for determination of bone calcium deposition, bone calcium resorption, dietary calcium absorption and calcium excretion (both urinary and endogenous fecal excretion). These studies will build upon preliminary work conducted on the Russian Mir space station. The results from this project will be critical for clarifying how microgravity affects bone and calcium homeostasis, and will provide an important control point for assessment of countermeasure efficacy. These results are expected to aid in developing countermeasures for bone loss, both for space crews and for individuals on Earth who have metabolic bone diseases.
NASA Technical Reports Server (NTRS)
Foucar, Charlie; Goldberg, Leslie; Hon, Bodin; Moore, Shannon; Williams, Evan
2009-01-01
The impact of bone loss due to different mechanical loadings in microgravity is a major concern for astronauts upon reintroduction to gravitational forces in exploration missions to the Moon and Mars. it has been shown that astronauts not only lose bone at differing rates, with levels up to 2% per month, but each astronaut will respond to bone loss treatments differently. Pre- and post-flight imaging techniques and frozen urine samples for post-flight laboratory immunoassays To develop a novel, non-invasive, highly . sensitive, portable, intuitive, and low-powered device to measure bone resorption levels in 'real time' to provide rapid and Individualized feedback to maximize the efficacy of bone loss countermeasures 1. Collect urine specimen and analyze the level of bone resorption marker, DPD (deoxypridinoline) excreted. 2. Antibodies specific to DPD conjugated with nanoshells and mixed with specimen, the change in absorbance from agglutination is measured by an optical device. 3. The concentration of DPD is displayed and recorded on a PDA
Mousa, Aisha; Cui, Cui; Song, Aimei; Myneni, Vamsee D; Sun, Huifang; Li, Jin Jin; Murshed, Monzur; Melino, Gerry; Kaartinen, Mari T
2017-01-01
Appropriate bone mass is maintained by bone-forming osteoblast and bone-resorbing osteoclasts. Mesenchymal stem cell (MSC) lineage cells control osteoclastogenesis via expression of RANKL and OPG (receptor activator of nuclear factor κB ligand and osteoprotegerin), which promote and inhibit bone resorption, respectively. Protein crosslinking enzymes transglutaminase 2 (TG2) and Factor XIII-A (FXIII-A) have been linked to activity of myeloid and MSC lineage cells; however, in vivo evidence has been lacking to support their function. In this study, we show in mice that TG2 and FXIII-A control monocyte-macrophage cell differentiation into osteoclasts as well as RANKL production in MSCs and in adipocytes. Long bones of mice lacking TG2 and FXIII-A transglutaminases, show compromised biomechanical properties and trabecular bone loss in axial and appendicular skeleton. This was caused by increased osteoclastogenesis, a cellular phenotype that persists in vitro. The increased potential of TG2 and FXIII-A deficient monocytes to form osteoclasts was reversed by chemical inhibition of TG activity, which revealed the presence of TG1 in osteoclasts and assigned different roles for the TGs as regulators of osteoclastogenesis. TG2- and FXIII-A-deficient mice had normal osteoblast activity, but increased bone marrow adipogenesis, MSCs lacking TG2 and FXIII-A showed high adipogenic potential and significantly increased RANKL expression as well as upregulated TG1 expression. Chemical inhibition of TG activity in the null cells further increased adipogenic potential and RANKL production. Altered differentiation of TG2 and FXIII-A null MSCs was associated with plasma fibronectin (FN) assembly defect in cultures and FN retention in serum and marrow in vivo instead of assembly into bone. Our findings provide new functions for TG2, FXIII-A and TG1 in bone cells and identify them as novel regulators of bone mass, plasma FN homeostasis, RANKL production and myeloid and MSC cell differentiation. PMID:28387755
Panwar, Preety; Lamour, Guillaume; Mackenzie, Neil C. W.; Yang, Heejae; Ko, Frank; Li, Hongbin; Brömme, Dieter
2015-01-01
During aging, changes occur in the collagen network that contribute to various pathological phenotypes in the skeletal, vascular, and pulmonary systems. The aim of this study was to investigate the consequences of age-related modifications on the mechanical stability and in vitro proteolytic degradation of type I collagen. Analyzing mouse tail and bovine bone collagen, we found that collagen at both fibril and fiber levels varies in rigidity and Young's modulus due to different physiological changes, which correlate with changes in cathepsin K (CatK)-mediated degradation. A decreased susceptibility to CatK-mediated hydrolysis of fibrillar collagen was observed following mineralization and advanced glycation end product-associated modification. However, aging of bone increased CatK-mediated osteoclastic resorption by ∼27%, and negligible resorption was observed when osteoclasts were cultured on mineral-deficient bone. We observed significant differences in the excavations generated by osteoclasts and C-terminal telopeptide release during bone resorption under distinct conditions. Our data indicate that modification of collagen compromises its biomechanical integrity and affects CatK-mediated degradation both in bone and tissue, thus contributing to our understanding of extracellular matrix aging. PMID:26224630
The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption.
Wu, Wei-Jie; Kim, Min Seuk; Ahn, Byung-Yong
2015-10-01
To further understand the correlation between vitamin K and bone metabolism, the effects of vitamins K1, menaquinone-4 (MK-4), and menaquinone-7 (MK-7) on RANKL-induced osteoclast differentiation and bone resorption were comparatively investigated. Vitamin K2 groups (MK-4 and MK-7) were found to significantly inhibit RANKL-medicated osteoclast cell formation of bone marrow macrophages (BMMs) in a dose-dependent manner, without any evidence of cytotoxicity. The mRNA expression of specific osteoclast differentiation markers, such as c-Fos, NFATc1, OSCAR, and TRAP, as well as NFATc1 protein expression and TRAP activity in RANKL-treated BMMs were inhibited by vitamin K2, although MK-4 exhibited a significantly greater efficiency compared to MK-7. In contrast, the same dose of vitamin K1 had no inhibitory effect on RANKL-induced osteoclast cell formation, but increased the expression of major osteoclastogenic genes. Interestingly, vitamins K1, MK-4 and MK-7 all strongly inhibited osteoclastic bone resorption (p < 0.01) in a dose dependent manner. These results suggest that vitamins K1, MK-4 and MK-7 have anti-osteoporotic properties, while their regulation effects on osteoclastogenesis are somewhat different.
NASA Technical Reports Server (NTRS)
Zerwekh, J. E.; Ruml, L. A.; Gottschalk, F.; Pak, C. Y.; Blomqvist, C. G. (Principal Investigator)
1998-01-01
This study was undertaken to examine the effects of 12 weeks of skeletal unloading on parameters of calcium homeostasis, calcitropic hormones, bone histology, and biochemical markers of bone turnover in 11 normal subjects (9 men, 2 women; 34 +/- 11 years of age). Following an ambulatory control evaluation, all subjects underwent 12 weeks of bed rest. An additional metabolic evaluation was performed after 12 days of reambulation. Bone mineral density declined at the spine (-2.9%, p = 0.092) and at the hip (-3.8%, p = 0.002 for the trochanter). Bed rest prompted a rapid, sustained, significant increase in urinary calcium and phosphorus as well as a significant increase in serum calcium. Urinary calcium increased from a pre-bed rest value of 5.3 mmol/day to values as high as 73 mmol/day during bed rest. Immunoreactive parathyroid hormone and serum 1,25-dihydroxyvitamin D declined significantly during bed rest, although the mean values remained within normal limits. Significant changes in bone histology included a suppression of osteoblastic surface for cancellous bone (3.1 +/- 1.3% to 1.9 +/- 1.5%, p = 0.0142) and increased bone resorption for both cancellous and cortical bone. Cortical eroded surface increased from 3.5 +/- 1.1% to 7.3 +/- 4.0% (p = 0.018) as did active osteoclastic surface (0.2 +/- 0.3% to 0.7 +/- 0.7%, p = 0.021). Cancellous eroded surface increased from 2.1 +/- 1.1% to 4.7 +/- 2.2% (p = 0.002), while mean active osteoclastic surface doubled (0.2 +/- 0.2% to 0.4 +/- 0.3%, p = 0.020). Serum biochemical markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, and type I procollagen extension peptide) did not change significantly during bed rest. Urinary biochemical markers of bone resorption (hydroxyproline, deoxypyridinoline, and N-telopeptide of type I collagen) as well as a serum marker of bone resorption (type I collagen carboxytelopeptide) all demonstrated significant increases during bed rest which declined toward normal during reambulation. Thus, under the conditions of this study, the human skeleton appears to respond to unloading by a rapid and sustained increase in bone resorption and a more subtle decrease in bone formation.
Development, validation and characterization of a novel mouse model of Adynamic Bone Disease (ABD).
Ng, Adeline H; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D
2014-11-01
The etiology of Adynamic Bone Disease (ABD) is poorly understood but the hallmark of ABD is a lack of bone turnover. ABD occurs in renal osteodystrophy (ROD) and is suspected to occur in elderly patients on long-term anti-resorptive therapy. A major clinical concern of ABD is diminished bone quality and an increased fracture risk. To our knowledge, experimental animal models for ABD other than ROD-ABD have not been developed or studied. The objectives of this study were to develop a mouse model of ABD without the complications of renal ablation, and to characterize changes in bone quality in ABD relative to controls. To re-create the adynamic bone condition, 4-month old female Col2.3Δtk mice were treated with ganciclovir to specifically ablate osteoblasts, and pamidronate was used to inhibit osteoclastic resorption. Four groups of animals were used to characterize bone quality in ABD: Normal bone controls, No Formation controls, No Resorption controls, and an Adynamic group. After a 6-week treatment period, the animals were sacrificed and the bones were harvested for analyses. Bone quality assessments were conducted using established techniques including bone histology, quantitative backscattered electron imaging (qBEI), dual energy X-ray absorptiometry (DXA), microcomputed tomography (microCT), and biomechanical testing. Histomorphometry confirmed osteoblast-related hallmarks of ABD in our mouse model. Bone formation was near complete suppression in the No Formation and Adynamic specimens. Inhibition of bone resorption in the Adynamic group was confirmed by tartrate-resistant acid phosphatase (TRAP) stain. Normal bone mineral density and architecture were maintained in the Adynamic group, whereas the No Formation group showed a reduction in bone mineral content and trabecular thickness relative to the Adynamic group. As expected, the No Formation group had a more hypomineralized profile and the Adynamic group had a higher mean mineralization profile that is similar to suppressed bone turnover in human. This data confirms successful replication of the adynamic bone condition in a mouse without the complication of renal ablation. Our approach is the first model of ABD that uses pharmacological manipulation in a transgenic mouse to mimic the bone cellular dynamics observed in the human ABD condition. We plan to use our mouse model to investigate the adynamic bone condition in aging and to study changes to bone quality and fracture risk as a consequence of over-suppressed bone turnover. Copyright © 2014 Elsevier Inc. All rights reserved.
Antiinflammatory effect of BPC 157 on experimental periodontitis in rats.
Keremi, B; Lohinai, Z; Komora, P; Duhaj, S; Borsi, K; Jobbagy-Ovari, G; Kallo, K; Szekely, A D; Fazekas, A; Dobo-Nagy, C; Sikiric, P; Varga, G
2009-12-01
The pentadecapeptide BPC 157 has been shown to have anti-inflammatory and wound healing effects on multiple target tissues and organs. The purpose of the present study was to investigate the effect of BPC 157 on inflammation and bone resorption in experimental periodontitis in rats. First the acute effect of BPC was tested on gingival blood flow by laser doppler flowmetry. Then periodontitis was produced by a silk ligature placed around the lower left first molar. Rats were treated with BPC 157 (once daily for 12 days) or vehicle. At day 13, the gingivomucosal tissues encircling the molars were removed on both sides. Inflammation was assessed by Evans blue plasma extravasation technique and by histology. Alveolar bone loss was analyzed by microCT. BPC 157 had no effect on gingivomucosal blood flow. Twelve day ligature caused a significantly increased Evans blue extravasation in the gingivomucosal tissue, histological signs of inflammation, and alveolar bone destruction. BPC 157 treatment significantly reduced both plasma extravasation, histological alterations and alveolar bone resorption. In conclusion, systemic application of BPC 157 does not alter blood circulation in healthy gingiva. Chronic application of the peptide has potent antiinflammatory effects on periodontal tissues in ligature induced periodontitis in rats. Taken together, this proof of concept study suggests that BPC 157 may represent a new peptide candidate in the treatment of periodontal disease.
Pereira, Eugénio; Messias, Ana; Dias, Ricardo; Judas, Fernando; Salvoni, Alexander; Guerra, Fernando
2015-01-01
Background Reliable implant-supported rehabilitation of an alveolar ridge needs sufficient volume of bone. In order to achieve a prosthetic-driven positioning, bone graft techniques may be required. Purpose This prospective cohort study aims to clinically evaluate the amount of resorption of corticocancellous fresh-frozen allografts bone blocks used in the reconstruction of the severe atrophic maxilla. Materials and Methods Twenty-two partial and totally edentulous patients underwent bone augmentation procedures with fresh-frozen allogenous blocks from the iliac crest under local anesthesia. Implants were inserted into the grafted sites after a healing period of 5 months. Final fixed prosthesis was delivered ± 4 months later. Ridge width analysis and measurements were performed with a caliper before and after grafting and at implant insertion. Bone biopsies were performed in 16 patients. Results A total of 98 onlay block allografts were used in 22 patients with an initial mean alveolar ridge width of 3.41 ± 1.36 mm. Early exposure of blocks was observed in four situations and one of these completely resorbed. Mean horizontal bone gain was 3.63 ± 1.28 mm (p < .01). Mean buccal bone resorption between allograph placement and the reopening stage was 0.49 ± 0.54 mm, meaning approximately 7.1% (95% confidence interval: [5.6%, 8.6%]) of total ridge width loss during the integration period. One hundred thirty dental implants were placed with good primary stability (≥ 30 Ncm). Four implants presented early failure before the prosthetic delivery (96.7% implant survival). All patients were successfully rehabilitated. Histomorphometric analysis revealed 20.9 ± 5.8% of vital bone in close contact to the remaining grafted bone. A positive strong correlation (adjusted R2 = 0.44, p = .003) was found between healing time and vital bone percentage. Conclusions Augmentation procedures performed using fresh-frozen allografts from the iliac crest are a suitable alternative in the reconstruction of the atrophic maxilla with low resorption rate at 5 months, allowing proper stability of dental implants followed by fixed prosthetic rehabilitation. PMID:25346211
Vignoletti, Fabio; Discepoli, Nicola; Müller, Anna; de Sanctis, Massimo; Muñoz, Fernando; Sanz, Mariano
2012-01-01
The purpose of this investigation is to describe histologically the undisturbed healing of fresh extraction sockets when compared to immediate implant placement. In eight beagle dogs, after extraction of the 3P3 and 4P4, implants were inserted into the distal sockets of the premolars, while the mesial sockets were left to heal spontaneously. Each animal provided four socket sites (control) and four implant sites (test). After 6 weeks, animals were sacrificed and tissue blocks were dissected, prepared for ground sectioning. The relative vertical buccal bone resorption in relation to the lingual bone was similar in both test and control groups. At immediate implant sites, however, the absolute buccal bone loss observed was 2.32 (SD 0.36) mm, what may indicate that while an apical shift of both the buccal and lingual bone crest occurred at the implant sites, this may not happen in naturally healing sockets. The results from this investigation showed that after tooth extraction the buccal socket wall underwent bone resorption at both test and control sites. This resorption appeared to be more pronounced at the implant sites, although the limitations of the histological evaluation method utilized preclude a definite conclusion. © 2011 John Wiley & Sons A/S.
Aoki, Kazuhiro; Saito, Hiroaki; Itzstein, Cecile; Ishiguro, Masaji; Shibata, Tatsuya; Blanque, Roland; Mian, Anower Hussain; Takahashi, Mariko; Suzuki, Yoshifumi; Yoshimatsu, Masako; Yamaguchi, Akira; Deprez, Pierre; Mollat, Patrick; Murali, Ramachandran; Ohya, Keiichi; Horne, William C.; Baron, Roland
2006-01-01
Activating receptor activator of NF-κB (RANK) and TNF receptor (TNFR) promote osteoclast differentiation. A critical ligand contact site on the TNFR is partly conserved in RANK. Surface plasmon resonance studies showed that a peptide (WP9QY) that mimics this TNFR contact site and inhibits TNF-α–induced activity bound to RANK ligand (RANKL). Changing a single residue predicted to play an important role in the interaction reduced the binding significantly. WP9QY, but not the altered control peptide, inhibited the RANKL-induced activation of RANK-dependent signaling in RAW 264.7 cells but had no effect on M-CSF–induced activation of some of the same signaling events. WP9QY but not the control peptide also prevented RANKL-induced bone resorption and osteoclastogenesis, even when TNFRs were absent or blocked. In vivo, where both RANKL and TNF-α promote osteoclastogenesis, osteoclast activity, and bone loss, WP9QY prevented the increased osteoclastogenesis and bone loss induced in mice by ovariectomy or low dietary calcium, in the latter case in both wild-type and TNFR double-knockout mice. These results suggest that a peptide that mimics a TNFR ligand contact site blocks bone resorption by interfering with recruitment and activation of osteoclasts by both RANKL and TNF. PMID:16680194
RANKL, Osteopontin, and Osteoclast Homeostasis in a Hyper-Occlusion Mouse Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit
2010-11-15
The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression ofmore » receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.« less
RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit
2009-10-21
The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression ofmore » receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.« less
Predisposing factors to severe external root resorption associated to orthodontic treatment.
Picanço, Gracemia Vasconcelos; de Freitas, Karina Maria Salvatore; Cançado, Rodrigo Hermont; Valarelli, Fabricio Pinelli; Picanço, Paulo Roberto Barroso; Feijão, Camila Pontes
2013-01-01
The aim of this study was to evaluate predisposing factors among patients who developed moderate or severe external root resorption (Malmgren's grades 3 and 4), on the maxillary incisors, during fixed orthodontic treatment in the permanent dentition. Ninety-nine patients who underwent orthodontic treatment with fixed edgewise appliances were selected. Patients were divided into two groups: G1 - 50 patients with no root resorption or presenting only apical irregularities (Malmgren's grades 0 and 1) at the end of the treatment, with mean initial age of 16.79 years and mean treatment time of 3.21 years; G2 - 49 patients presenting moderate or severe root resorption (Malmgren's grades 3 and 4) at the end of treatment on the maxillary incisors, with mean initial age of 19.92 years and mean treatment time of 3.98 years. Periapical radiographs and lateral cephalograms were evaluated. Factors that could influence the occurrence of severe root resorption were also recorded. Statistical analysis included chi-square tests, Fisher's exact test and independent t tests. The results demonstrated significant difference between the groups for the variables: Extractions, initial degree of root resorption, root length and crown/root ratio at the beginning, and cortical thickness of the alveolar bone. It can be concluded that: Presence of root resorption before the beginning of treatment, extractions, reduced root length, decreased crown/root ratio and thin alveolar bone represent risk factors for severe root resorption in maxillary incisors during orthodontic treatment.
Decoronation followed by dental implants placement: fundamentals, applications and explanations
Consolaro, Alberto; Ribeiro, Paulo Domingos; Cardoso, Maurício A.; Miranda, Dario A. Oliveira; Salfatis, Monica
2018-01-01
ABSTRACT Dental arches areas with teeth presenting dentoalveolar ankylosis and replacement root resorption can be considered as presenting normal bone, in full physiological remodeling process; and osseointegrated implants can be successfully placed. Bone remodeling will promote osseointegration, regardless of presenting ankylosis and/or replacement root resorption. After 1 to 10 years, all dental tissues will have been replaced by bone. The site, angulation and ideal positioning in the space to place the implant should be dictated exclusively by the clinical convenience, associated with previous planning. One of the advantages of decoronation followed by dental implants placement in ankylosed teeth with replacement resorption is the maintenance of bone volume in the region, both vertical and horizontal. If possible, the buccal part of the root, even if thin, should be preserved in the preparation of the cavity for the implant, as this will maintain gingival tissues looking fully normal for long periods. In the selection of cases for decoronation, the absence of microbial contamination in the region - represented by chronic periapical lesions, presence of fistula, old unconsolidated root fractures and active advanced periodontal disease - is important. Such situations are contraindications to decoronation. However, the occurrence of dentoalveolar ankylosis and replacement resorption without contamination should neither change the planning for implant installation, nor the criteria for choosing the type and brand of dental implant to be used. Failure to decoronate and use dental implants has never been reported. PMID:29791693
Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H
2014-09-01
Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity exercised a positive effect in healthy control joints, which increased cartilage sGAG content. More research on this topic might lead to novel insights as to improve cartilage quality. Copyright © 2014 Elsevier Inc. All rights reserved.
Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake
2008-11-01
The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP.
Yeh, Kuang-Dah; Popowics, Tracy
2011-01-01
Summary The development of alveolar bone adjacent to the tooth root during tooth eruption is not well understood. This study tested the hypothesis that predominantly woven bone forms adjacent to tooth roots during tooth eruption, but that this immature structure transitions to lamellar bone when the tooth comes into function. Additionally, bone resorption was predicted to play a key role in transitioning immature bone to more mature, load-bearing tissue. Miniature pigs were compared at two occlusal stages, 13 weeks (n=3), corresponding with the mucosal penetration stage of M1 tooth eruption, and 23 weeks (n=3), corresponding with early occlusion of M1/M1. Bone samples for RNA extraction and qRT-PCR analysis were harvested from the diastema and adjacent to M1 roots on one side. Following euthanasia, bone samples for hematoxylin and eosin and TRAP staining were harvested from these regions on the other side. In contrast to expectations, both erupting and functioning molars had reticular fibrolamellar structure in alveolar bone adjacent to M1. However, the woven bone matrix in older pigs was thicker and had denser primary osteons. Gene expression data and osteoclast cell counts showed a tendency for more bone resorptive activity near the molars than at distant sites, but no differences between eruptive stages. Thus, although resorption does occur, it is not a primary mechanism in the transition in alveolar bone from eruption to function. Incremental growth of existing woven bone and filling in of primary osteons within the mineralized scaffold generated the fortification necessary to support an erupted and functioning tooth. PMID:21434979
Modeling Calcium Loss from Bones During Space Flight
NASA Technical Reports Server (NTRS)
Wastney, Meryl E.; Morukov, Boris V.; Larina, Irina M.; Abrams, Steven A.; Nillen, Jeannie L.; Davis-Street, Janis E.; Lane, Helen W.; Smith, Scott M.; Paloski, W. H. (Technical Monitor)
1999-01-01
Calcium loss from bones during space flight creates a risk for astronauts who travel into space, and may prohibit space flights to other planets. The problem of calcium loss during space flight has been studied using animal models, bed rest (as a ground-based model), and humans in-flight. In-flight studies have typically documented bone loss by comparing bone mass before and after flight. To identify changes in metabolism leading to bone loss, we have performed kinetic studies using stable isotopes of calcium. Oral (Ca-43) and intravenous (Ca-46) tracers were administered to subjects (n=3), three-times before flight, once in-flight (after 110 days), and three times post-flight (on landing day, and 9 days and 3 months after flight). Samples of blood, saliva, urine, and feces were collected for up to 5 days after isotope administration, and were analyzed for tracer enrichment. Tracer data in tissues were analyzed using a compartmental model for calcium metabolism and the WinSAAM software. The model was used to: account for carryover of tracer between studies, fit data for all studies using the minimal number of changes between studies, and calculate calcium absorption, excretion, bone calcium deposition and bone calcium resorption. Results showed that fractional absorption decreased by 50% during flight and that bone resorption and urinary excretion increased by 50%. Results were supported by changes in biochemical markers of bone metabolism. Inflight bone loss of approximately 250 mg Ca/d resulted from decreased calcium absorption combined with increased bone resorption and excretion. Further studies will assess the time course of these changes during flight, and the effectiveness of countermeasures to mitigate flight-induced bone loss. The overall goal is to enable human travel beyond low-Earth orbit, and to allow for better understanding and treatment of bone diseases on Earth.
Osteopenia in anorexia nervosa: specific mechanisms of bone loss.
Lennkh, C; de Zwaan, M; Bailer, U; Strnad, A; Nagy, C; el-Giamal, N; Wiesnagrotzki, S; Vytiska, E; Huber, J; Kasper, S
1999-01-01
Osteopenia is a well recognized medical complication of anorexia nervosa (AN). The mechanism of bone loss is not fully understood and there is uncertainty about its management. New markers of bone turnover have been developed. C-terminal type 1 propeptide (PICP) is a measure of bone formation and urinary pyridinolines such as deoxypyridinoline (DPYRX) and serum carboxyterminal crosslinked telopeptide (ICTP) are markers of bone resorption. The aim of this study was to examine these bone markers in patients with AN. Twenty female patients with AN and 12 healthy controls were included in the study. Bone mineral density (BMD) of AN patients was measured by dual energy X-ray absorptiometry (DEXA). Lumbar bone density was significantly reduced in the AN group compared to standardised values of thirty year old adults (t-score 83.2%, S.D. 12.1). Femoral neck bone density showed an even greater reduction (t-score 79.4%, S.D. 13.5). We found a significant negative correlation between femoral BMD and the duration of the illness. Femoral BMD correlated significantly with minimal body weight (r(16) = 0.504, p = 0.033). The markers of bone resorption were significantly higher in the patients with AN compared to the values of the control group (ICTP t(30) = -2.15, p = 0.04, DPYRX t(25) = -2.26, p = 0.033), whereas the markers of bone formation did not differ significantly between the groups. AN appears to be a low turn over state associated with increased bone resorption without concomitant bone formation. This pattern differs from osteopenia in menopausal women and should, therefore, lead to the development of specific therapeutic strategies in AN associated osteopenia. Hormone replacement therapy as well as calcium and vitamine D-supplementation are so far discussed controversially. Long-term treatment studies are warranted.
Bone Formation Rate in Experimental Disuse Osteoporosis in Monkeys
NASA Technical Reports Server (NTRS)
Cann, Christopher; Young, Donald R.
1976-01-01
Specific mechanisms underlying weightless and hypodynamic bone loss are obscure. A principal relationship which must be affected is the balance between bone formation and bone resorption rates. In order to better define the influence of those parameters on bone loss, and also to develop measurements in other species as a useful adjunct to human research, studies were undertaken with experimental monkeys. Tests were conducted with a total of 6 adult male monkeys, weighing 10-13 kg, and approximately 10-12 yrs. of age to evaluate specifically bone formation rate during the development of disuse osteoporosis and osteopenia. Three animals were restrained in a semi-recumbent position for six months; three animals served as normal caged controls. Food intake (Purina) was held relatively constant at 200g/day for each animal. Using a Norland Bone Mineral Analyzer, bone mineral losses of 3.5 to 6% were seen in the mid-shaft of the tibia and in the distal radius. Bone loss was confirmed radiographically, with observation of thinning of the proximal tibial cortex and trabeculae in the calcaneus. Bone formation rate was determined using standard Ca-47 kinetics under metabolic balance conditions. After six months of restraint, accretion was 7.2-13.2 mg Ca/kg/day, compared to 3.2-4.1 mg Ca/kg/day in caged controls and 3-8 mg Ca/kg/day in normal adult humans. Fecal and urine calcium was 25-40% higher in restrained animals than in controls. Dietary calcium absorption decreases during restraint, and calcium turnover increases, implying a rise in bone resorption rate concommitant with the observed rise in bone accretion rate. Further studies dealing specifically with bone resorption are underway to define this more fully.
Li, Nianhu; Xu, Zhanwang; Wooley, Paul H; Zhang, Jianxin; Yang, Shang-You
2014-01-01
Wear debris associated periprosthetic osteolysis represents a major pathological process associated with the aseptic loosening of joint prostheses. Naringin is a major flavonoid identified in grapefruit. Studies have shown that naringin possesses many pharmacological properties including effects on bone metabolism. The current study evaluated the influence of naringin on wear debris induced osteoclastic bone resorption both in vitro and in vivo. The osteoclast precursor cell line RAW 264.7 was cultured and stimulated with polymethylmethacrylate (PMMA) particles followed by treatment with naringin at several doses. Tartrate resistant acid phosphatase (TRAP), calcium release, and gene expression profiles of TRAP, cathepsin K, and receptor activator of nuclear factor-kappa B were sequentially evaluated. PMMA challenged murine air pouch and the load bearing tibia titanium pin-implantation mouse models were used to evaluate the effects of naringin in controlling PMMA induced bone resorption. Histological analyses and biomechanical pullout tests were performed following the animal experimentation. The in vitro data clearly demonstrated the inhibitory effects of naringin in PMMA induced osteoclastogenesis. The naringin dose of 10 μg/mL exhibited the most significant influence on the suppression of TRAP activities. Naringin treatment also markedly decreased calcium release in the stimulated cell culture medium. The short-term air pouch mouse study revealed that local injection of naringin ameliorated the PMMA induced inflammatory tissue response and subsequent bone resorption. The long-term tibia pin-implantation mouse model study suggested that daily oral gavage of naringin at 300 mg/kg dosage for 30 days significantly alleviated the periprosthetic bone resorption. A significant increase of periprosthetic bone volume and regaining of the pin stability were found in naringin treated mice. Overall, this study suggests that naringin may serve as a potential therapeutic agent to treat wear debris associated osteolysis. PMID:24376342
Changes in markers of bone formation and resorption in a bed rest model of weightlessness
NASA Technical Reports Server (NTRS)
Lueken, S. A.; Arnaud, S. B.; Taylor, A. K.; Baylink, D. J.
1993-01-01
To study the mechanism of bone loss in physical unloading, we examined indices of bone formation and bone resorption in the serum and urine of eight healthy men during a 7 day -6 degrees head-down tilt bed rest. Prompt increases in markers of resorption--pyridinoline (PD), deoxypyridinoline (DPD), and hydroxyproline (Hyp)/g creatinine--during the first few days of inactivity were paralleled by tartrate-resistant acid phosphatase (TRAP) with significant increases in all these markers by day 4 of bed rest. An index of formation, skeletal alkaline phosphatase (SALP), did not change during bed rest and showed a moderate 15% increase 1 week after reambulation. In contrast to SALP, serum osteocalcin (OC) began increasing the day preceding the increase in Hyp, remained elevated for the duration of the bed rest, and returned to pre-bed rest values within 5 days of reambulation. Similarly, DPD increased significantly at the onset of bed rest, remained elevated for the duration of bed rest, and returned to pre-bed rest levels upon reambulation. On the other hand, the other three indices of resorption, Hyp, PD, and TRAP, remained elevated for 2 weeks after reambulation. The most sensitive indices of the levels of physical activity proved to be the noncollagenous protein, OC, and the collagen crosslinker, DPD. The bed rest values of both these markers were significantly elevated compared to both the pre-bed rest values and the post-bed rest values. The sequence of changes in the circulating markers of bone metabolism indicated that increases in serum OC are the earliest responses of bone to head-down tilt bed rest.
Cathepsin K expression and activity in canine osteosarcoma.
Schmit, J M; Pondenis, H C; Barger, A M; Borst, L B; Garrett, L D; Wypij, J M; Neumann, Z L; Fan, T M
2012-01-01
Cathepsin K (CatK) is a lysosomal protease with collagenolytic activity, and its secretion by osteoclasts is responsible for degrading organic bone matrix. People with pathologic bone resorption have higher circulating CatK concentrations. Canine osteosarcoma (OS) cells will possess CatK, and its secretion will be cytokine inducible. Circulating CatK concentrations will be increased in dogs with OS, and will be a surrogate marker of bone resorption. Fifty-one dogs with appendicular OS and 18 age- and weight-matched healthy control dogs. In a prospective study, expressions of CatK mRNA and protein were investigated in OS cells. The inducible secretion and proteolytic activity of CatK from OS cells was assessed in vitro. Serum CatK concentrations were quantified in normal dogs and dogs with OS and its utility as a bone resorption marker was evaluated in dogs with OS treated with palliative radiation and antiresorptive agents. Canine OS cells contain preformed CatK within cytoplasmic vesicles. In OS cells, TGFβ1 induced the secretion of CatK, which degraded bone-derived type I collagen in vitro. CatK concentrations were higher in dogs with OS than healthy dogs (11.3 ± 5.2 pmol/L versus 8.1 ± 5.0 pmol/L, P = .03). In a subset of dogs with OS, pretreatment CatK concentrations gradually decreased after palliative radiation and antiresorptive treatment, from 9.3 ± 3.2 pmol/L to 5.0 ± 3.1 pmol/L, P = .03. Canine OS is associated with pathologic bone resorption, and CatK inhibitors might aid in the management of canine OS-related malignant osteolysis. Copyright © 2011 by the American College of Veterinary Internal Medicine.
2016-01-01
Introduction. This study aimed to evaluate the effects of resorbable blasting media (RBM) treatment on early stability of orthodontic mini-implants by mechanical, histomorphometric, and histological analyses. Methods. Ninety-six (64 for mechanical study and 32 for histological study and histomorphometric analysis) titanium orthodontic mini-implants (OMIs) with machined (machined group) or RBM-treated (CaP) surface (RBM group) were implanted in the tibiae of 24 rabbits. Maximum initial torque (MIT) was measured during insertion, and maximum removal torque (MRT) and removal angular momentum (RAM) were measured at 2 and 4 weeks after implantation. Bone-to-implant contact (BIC) and bone area (BA) were analyzed at 4 weeks after implantation. Results. RBM group exhibited significantly lower MIT and significantly higher MRT and RAM at 2 weeks than machined group. No significant difference in MRT, RAM, and BIC between the two groups was noted at 4 weeks, although BA was significantly higher in RBM group than in machined group. RBM group showed little bone resorption, whereas machined group showed new bone formation after bone resorption. Conclusions. RBM surface treatment can provide early stability of OMIs around 2 weeks after insertion, whereas stability of machined surface OMIs may decrease in early stages because of bone resorption, although it can subsequently recover by new bone apposition. PMID:26942200
Gao, Jianjun; Tiwari-Pandey, Rashmi; Samadfam, Rana; Yang, Yinzhi; Miao, Dengshun; Karaplis, Andrew C; Sairam, M Ram; Goltzman, David
2007-06-01
Osteoporosis is a leading public health problem. Although a major cause in women is thought to be a decline in estrogen, it has recently been proposed that FSH or follitropin is required for osteoporotic bone loss. We examined the FSH receptor null mouse (FORKO mouse) to determine whether altered ovarian function could induce bone loss independent of FSH action. By 3 months of age, FORKO mice developed age-dependent declines in bone mineral density and trabecular bone volume of the lumbar spine and femur, which could be partly reversed by ovarian transplantation. Bilateral ovariectomy reduced elevated circulating testosterone levels in FORKO mice and decreased bone mass to levels indistinguishable from those in ovariectomized wild-type controls. Androgen receptor blockade and especially aromatase inhibition each produced bone volume reductions in the FORKO mouse. The results indicate that ovarian secretory products, notably estrogen, and peripheral conversion of ovarian androgen to estrogen can alter bone homeostasis independent of any bone resorptive action of FSH.
Kittaka, Mizuho; Mayahara, Kotoe; Mukai, Tomoyuki; Yoshimoto, Tetsuya; Yoshitaka, Teruhito; Gorski, Jeffrey P; Ueki, Yasuyoshi
2018-01-01
Currently, it is believed that osteoclasts positive for tartrate-resistant acid phosphatase (TRAP+) are the exclusive bone-resorbing cells responsible for focal bone destruction in inflammatory arthritis. Recently, a mouse model of cherubism (Sh3bp2 KI/KI ) with a homozygous gain-of-function mutation in the SH3-domain binding protein 2 (SH3BP2) was shown to develop auto-inflammatory joint destruction. Here, we demonstrate that Sh3bp2 KI/KI mice also deficient in the FBJ osteosarcoma oncogene (c-Fos) still exhibit noticeable bone erosion at the distal tibia even in the absence of osteoclasts at 12 weeks old. Levels of serum collagen I C-terminal telopeptide (ICTP), a marker of bone resorption generated by matrix metalloproteinases (MMPs), were elevated, whereas levels of serum cross-linked C-telopeptide (CTX), another resorption marker produced by cathepsin K, were not increased. Collagenolytic MMP levels were increased in the inflamed joints of the Sh3bp2 KI/KI mice deficient in c-Fos. Resorption pits contained a large number of F4/80+ macrophages and genetic depletion of macrophages rescued these erosive changes. Importantly, administration of NSC405020, an MMP14 inhibitor targeted to the hemopexin (PEX) domain, suppressed bone erosion in c-Fos-deficient Sh3bp2 KI/KI mice. After activation of the NF-κB pathway, macrophage colony-stimulating factor (M-CSF)-dependent macrophages from c-Fos-deficient Sh3bp2 KI/KI mice expressed increased amounts of MMP14 compared with wild-type macrophages. Interestingly, receptor activator of NF-κB ligand (RANKL)-deficient Sh3bp2 KI/KI mice failed to show notable bone erosion, whereas c-Fos deletion did restore bone erosion to the RANKL-deficient Sh3bp2 KI/KI mice, suggesting that osteolytic transformation of macrophages requires both loss-of-function of c-Fos and gain-of-function of SH3BP2 in this model. These data provide the first genetic evidence that cells other than osteoclasts can cause focal bone destruction in inflammatory bone disease and suggest that MMP14 is a key mediator conferring pathological bone-resorbing capacity on c-Fos-deficient Sh3bp2 KI/KI macrophages. In summary, the paradigm that osteoclasts are the exclusive cells executing inflammatory bone destruction may need to be reevaluated based on our findings with c-Fos-deficient cherubism mice lacking osteoclasts. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Qin, Weiping; Sun, Li; Cao, Jay; Peng, Yuanzhen; Collier, Lauren; Wu, Yong; Creasey, Graham; Li, Jianhua; Qin, Yiwen; Jarvis, Jonathan; Bauman, William A.; Zaidi, Mone; Cardozo, Christopher
2013-01-01
Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in mRNA levels for the Wnt inhibitors DKK1, sFRP2, and sclerostin in ex vivo cultured osteoblasts. Our results demonstrate an anti-bone-resorptive activity of muscle contraction by ES that develops rapidly and is independent of the CNS. The pathways involved, particularly Wnt signaling, suggest future strategies to minimize bone loss after immobilization. PMID:23530032
Keller, Johannes; Catala-Lehnen, Philip; Huebner, Antje K.; Jeschke, Anke; Heckt, Timo; Lueth, Anja; Krause, Matthias; Koehne, Till; Albers, Joachim; Schulze, Jochen; Schilling, Sarah; Haberland, Michael; Denninger, Hannah; Neven, Mona; Hermans-Borgmeyer, Irm; Streichert, Thomas; Breer, Stefan; Barvencik, Florian; Levkau, Bodo; Rathkolb, Birgit; Wolf, Eckhard; Calzada-Wack, Julia; Neff, Frauke; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabĕ; Klutmann, Susanne; Tsourdi, Elena; Hofbauer, Lorenz C.; Kleuser, Burkhard; Chun, Jerold; Schinke, Thorsten; Amling, Michael
2014-01-01
The hormone calcitonin (CT) is primarily known for its pharmacologic action as an inhibitor of bone resorption, yet CT-deficient mice display increased bone formation. These findings raised the question about the underlying cellular and molecular mechanism of CT action. Here we show that either ubiquitous or osteoclast-specific inactivation of the murine CT receptor (CTR) causes increased bone formation. CT negatively regulates the osteoclast expression of Spns2 gene, which encodes a transporter for the signalling lipid sphingosine 1-phosphate (S1P). CTR-deficient mice show increased S1P levels, and their skeletal phenotype is normalized by deletion of the S1P receptor S1P3. Finally, pharmacologic treatment with the nonselective S1P receptor agonist FTY720 causes increased bone formation in wild-type, but not in S1P3-deficient mice. This study redefines the role of CT in skeletal biology, confirms that S1P acts as an osteoanabolic molecule in vivo and provides evidence for a pharmacologically exploitable crosstalk between osteoclasts and osteoblasts. PMID:25333900
Wei, Wei; Zeve, Daniel; Wang, Xueqian; Du, Yang; Tang, Wei; Dechow, Paul C.; Graff, Jonathan M.; Wan, Yihong
2011-01-01
Osteoclasts are bone-resorbing cells essential for skeletal development, homeostasis, and regeneration. They derive from hematopoietic progenitors in the monocyte/macrophage lineage and differentiate in response to RANKL. However, the precise nature of osteoclast progenitors is a longstanding and important question. Using inducible peroxisome proliferator-activated receptor γ (PPARγ)-tTA TRE-GFP (green fluorescent protein) reporter mice, we show that osteoclast progenitors reside specifically in the PPARγ-expressing hematopoietic bone marrow population and identify the quiescent PPARγ+ cells as osteoclast progenitors. Importantly, two PPARγ-tTA TRE-Cre-controlled genetic models provide compelling functional evidence. First, Notch activation in PPARγ+ cells causes high bone mass due to impaired osteoclast precursor proliferation. Second, selective ablation of PPARγ+ cells by diphtheria toxin also causes high bone mass due to decreased osteoclast numbers. Furthermore, PPARγ+ cells respond to both pathological and pharmacological resorption-enhancing stimuli. Mechanistically, PPARγ promotes osteoclast progenitors by activating GATA2 transcription. These findings not only identify the long-sought-after osteoclast progenitors but also establish unprecedented tools for their visualization, isolation, characterization, and genetic manipulation. PMID:21947280
Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells.
Sun, Yu-Long; Chen, Zhi-Hao; Chen, Xiao-Hu; Yin, Chong; Li, Di-Jie; Ma, Xiao-Li; Zhao, Fan; Zhang, Ge; Shang, Peng; Qian, Ai-Rong
2015-03-01
The superconducting magnet with a high magnetic force field can levitate diamagnetic materials. In this study, a specially designed superconducting magnet with large gradient high magnetic field (LGHMF), which provides three apparent gravity levels (μg, 1 g, and 2 g), was used to study its influence on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation from preosteoclast cell line RAW264.7. The effects of LGHMF on the viability, nitric oxide (NO) production, morphology in RAW264.7 cells were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, the Griess method, and the immunofluorescence staining, respectively. The changes induced by LGHMF in osteoclast formation, mRNA expression, and bone resorption were determined by tartrate-resistant acid phosphatase staining, semiquantity PCR, and bone resorption test, respectively. The results showed that: 1) LGHMF had no lethal effect on osteoclast precursors but attenuated NO release in RAW264.7 cells. 2) Diamagnetic levitation (μg) enhanced both the formation and bone resorption capacity of osteoclast. Moreover, diamagnetic levitation up-regulated mRNA expression of RANK, Cathepsin K, MMP-9, and NFATc1, while down-regulated RunX2 in comparison with controls. Furthermore, diamagnetic levitation induced obvious morphological alterations in osteoclast, including active cytoplasmic peripheral pseudopodial expansion, formation of pedosome belt, and aggregation of actin ring. 3) Magnetic field produced by LGHMF attenuated osteoclast resorption activity. Collectively, LGHMF with combined effects has multiple effects on osteoclast, which attenuated osteoclast resorption with magnetic field, whereas promoted osteoclast differentiation with diamagnetic levitation. Therefore, these findings indicate that diamagnetic levitation could be used as a novel ground-based microgravity simulator, which facilitates bone cell research of weightlessness condition.
USDA-ARS?s Scientific Manuscript database
Osteoporosis is characterized by destruction of bone architecture, resulting in decreased bone mass density (BMD) and increased fracture susceptibility. While current therapies focus on reducing bone resorption, the development of therapies to regenerate bone may also be beneficial. Promising anabol...
Expression of extracellular calcium (Ca2+o)-sensing receptor in human peripheral blood monocytes
NASA Technical Reports Server (NTRS)
Yamaguchi, T.; Olozak, I.; Chattopadhyay, N.; Butters, R. R.; Kifor, O.; Scadden, D. T.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)
1998-01-01
The calcium-sensing receptor (CaR) is a G protein-coupled receptor playing key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Macrophage-like mononuclear cells appear at sites of osteoclastic bone resorption during bone turnover and may play a role in the "reversal" phase of skeletal remodeling that follows osteoclastic resorption and precedes osteoblastic bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for such mononuclear cells present locally within the bone marrow microenvironment. Indeed, previous studies by other investigators have shown that raising Ca2+o either in vivo or in vitro stimulated the release of interleukin-6 (IL-6) from human peripheral blood monocytes, suggesting that these cells express a Ca2+o-sensing mechanism. In these earlier studies, however, the use of reverse transcription-polymerase chain reaction (RT-PCR) failed to detect transcripts for the CaR previously cloned from parathyroid and kidney in peripheral blood monocytes. Since we recently found that non-specific esterase-positive, putative monocytes isolated from murine bone marrow express the CaR, we reevaluated the expression of this receptor in human peripheral blood monocytes. Immunocytochemistry, flow cytometry, and Western blot analysis, performed using a polyclonal antiserum specific for the CaR, detected CaR protein in human monocytes. In addition, the use of RT-PCR with CaR-specific primers, followed by nucleotide sequencing of the amplified products, identified CaR transcripts in the cells. Therefore, taken together, our data show that human peripheral blood monocytes possess both CaR protein and mRNA very similar if not identical to those expressed in parathyroid and kidney that could mediate the previously described, direct effects of Ca2+o on these cells. Furthermore, since mononuclear cells isolated from bone marrow also express the CaR, the latter might play some role in the "reversal" phase of bone remodeling, sensing local changes in Ca2+o resulting from osteoclastic bone resorption and secreting osteotropic cytokines or performing other Ca2+o-regulated functions that contribute to the control of bone turnover.
Bonjour, Jean-Philippe; Benoit, Valérie; Pourchaire, Olivier; Ferry, Monique; Rousseau, Brigitte; Souberbielle, Jean-Claude
2009-10-01
Acceleration of bone remodelling increases the risk of fragility fractures. The objective of the present study was to explore in elderly women whether a vitamin D and Ca-fortified dairy product providing about 17-25 % of the recommended intakes in vitamin D, Ca and proteins would reduce secondary hyperparathyroidism and bone remodelling in a way that may attenuate age-related bone loss in the long term. Thirty-seven institutionalised women, aged 84.8 (sd 8.1) years, with low serum 25-hydroxyvitamin D (5.5 (sd 1.7) ng/ml) were enrolled into a multicentre open trial to consume during 1 month two servings of soft plain cheese made of semi-skimmed milk providing daily 686 kJ (164 kcal), 2.5 microg vitamin D, 302 mg Ca and 14.2 g proteins. The primary endpoint was the change in serum carboxy terminal cross-linked telopeptide of type I collagen (CTX), selected as a marker of bone resorption. Thirty-five subjects remained compliant. Mean serum changes were: 25-hydroyvitamin D, +14.5 % (P = 0.0051); parathyroid hormone (PTH), - 12.3 % (P = 0.0011); CTX, - 7.5 % (P = 0.01); tartrate-resistant acid phosphatase isoform 5b (TRAP 5b), - 9.9 % (P < 0.0001); albumin, +6.2 % (P < 0.0001); insulin-like growth factor-I (IGF-I),+16.9 % (P < 0.0001); osteocalcin, +8.3 % (P = 0.0166); amino-terminal propeptide of type 1 procollagen (P1NP),+19.3 % (P = 0.0031). The present open trial suggests that fortified soft plain cheese consumed by elderly women with vitamin D insufficiency can reduce bone resorption markers by positively influencing Ca and protein economy, as expressed by decreased PTH and increased IGF-I, respectively. The rise in the bone formation marker P1NP could be explained by a protein-mediated increase in IGF-I. Thus, such a dietary intervention might uncouple, at least transiently, bone resorption from bone formation and thereby attenuate age-related bone loss.
Merolli, Antonio; Fung, Stephanie; Murthy, N Sanjeeva; Pashuck, E Thomas; Mao, Yong; Wu, Xiaohuan; Steele, Joseph A M; Martin, Daniel; Moghe, Prabhas V; Bromage, Timothy; Kohn, Joachim
2018-03-21
Osteoclasts are large multinucleated giant cells that actively resorb bone during the physiological bone turnover (BTO), which is the continuous cycle of bone resorption (by osteoclasts) followed by new bone formation (by osteoblasts). Osteoclasts secrete chemotactic signals to recruit cells for regeneration of vasculature and bone. We hypothesize that a biomaterial that attracts osteoclasts and re-establishes BTO will induce a better healing response than currently used bone graft materials. While the majority of bone regeneration efforts have focused on maximizing bone deposition, the novelty in this approach is the focus on stimulating osteoclastic resorption as the starter for BTO and its concurrent new vascularized bone formation. A biodegradable tyrosine-derived polycarbonate, E1001(1k), was chosen as the polymer base due to its ability to support bone regeneration in vivo. The polymer was functionalized with a RGD peptide or collagen I, or blended with β-tricalcium phosphate. Osteoclast attachment and early stages of active resorption were observed on all substrates. The transparency of E1001(1k) in combination with high resolution confocal imaging enabled visualization of morphological features of osteoclast activation such as the formation of the "actin ring" and the "ruffled border", which previously required destructive forms of imaging such as transmission electron microscopy. The significance of these results is twofold: (1) E1001(1k) is suitable for osteoclast attachment and supports osteoclast maturation, making it a base polymer that can be further modified to optimize stimulation of BTO and (2) the transparency of this polymer makes it a suitable analytical tool for studying osteoclast behavior.
Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans
Rufo, Anna; Del Fattore, Andrea; Capulli, Mattia; Carvello, Francesco; De Pasquale, Loredana; Ferrari, Serge; Pierroz, Dominique; Morandi, Lucia; De Simone, Michele; Rucci, Nadia; Bertini, Enrico; Bianchi, Maria Luisa; De Benedetti, Fabrizio; Teti, Anna
2011-01-01
Patients affected by Duchenne muscular dystrophy (DMD) and dystrophic MDX mice were investigated in this study for their bone phenotype and systemic regulators of bone turnover. Micro–computed tomographic (µCT) and histomorphometric analyses showed reduced bone mass and higher osteoclast and bone resorption parameters in MDX mice compared with wild-type mice, whereas osteoblast parameters and mineral apposition rate were lower. In a panel of circulating pro-osteoclastogenic cytokines evaluated in the MDX sera, interleukin 6 (IL-6) was increased compared with wild-type mice. Likewise, DMD patients showed low bone mineral density (BMD) Z-scores and high bone-resorption marker and serum IL-6. Human primary osteoblasts from healthy donors incubated with 10% sera from DMD patients showed decreased nodule mineralization. Many osteogenic genes were downregulated in these cultures, including osterix and osteocalcin, by a mechanism blunted by an IL-6-neutralizing antibody. In contrast, the mRNAs of osteoclastogenic cytokines IL6, IL11, inhibin-βA, and TGFβ2 were increased, although only IL-6 was found to be high in the circulation. Consistently, enhancement of osteoclastogenesis was noted in cultures of circulating mononuclear precursors from DMD patients or from healthy donors cultured in the presence of DMD sera or IL-6. Circulating IL-6 also played a dominant role in osteoclast formation because ex vivo wild-type calvarial bones cultured with 10% sera of MDX mice showed increase osteoclast and bone-resorption parameters that were dampen by treatment with an IL-6 antibody. These results point to IL-6 as an important mediator of bone loss in DMD and suggest that targeted anti-IL-6 therapy may have a positive impact on the bone phenotype in these patients. © 2011 American Society for Bone and Mineral Research PMID:21509823
ADRA2A is involved in neuro-endocrine regulation of bone resorption
Mlakar, Vid; Jurkovic Mlakar, Simona; Zupan, Janja; Komadina, Radko; Prezelj, Janez; Marc, Janja
2015-01-01
Adrenergic stimulation is important for osteoclast differentiation and bone resorption. Previous research shows that this happens through β2-adrenergic receptor (AR), but there are conflicting evidence on presence and role of α2A-AR in bone. The aim of this study was to investigate the presence of α2A-AR and its involvement in neuro-endocrine signalling of bone remodelling in humans. Real-time polymerase chain reaction (PCR) and immunohistochemistry were used to investigate α2A-AR receptor presence and localization in bone cells. Functionality of rs553668 and rs1800544 single nucleotide polymorphism SNPs located in α2A-AR gene was analysed by qPCR expression on bone samples and luciferase reporter assay in human osteosarcoma HOS cells. Using real-time PCR, genetic association study between rs553668 A>G and rs1800544 C>G SNPs and major bone markers was performed on 661 Slovenian patients with osteoporosis. α2A-AR is expressed in osteoblasts and lining cells but not in osteocytes. SNP rs553668 has a significant influence on α2A-AR mRNA level in human bone samples through the stability of mRNA. α2A-AR gene locus associates with important bone remodelling markers (BMD, CTX, Cathepsin K and pOC). The results of this study are providing comprehensive new evidence that α2A-AR is involved in neuro-endocrine signalling of bone turnover and development of osteoporosis. As shown by our results the neurological signalling is mediated through osteoblasts and result in bone resorption. Genetic study showed association of SNPs in α2A-AR gene locus with bone remodelling markers, identifying the individuals with higher risk of development of osteoporosis. PMID:25818344
[In vitro study on bone resorption of odontogenic cysts and ameloblastomas].
Gao, Li; Li, Tie-jun
2005-05-01
To investigate the effect of bone resorption by odontogenic cysts and ameloblastomas in vitro. Fragments of odontogenic cysts (14 odontogenic keratocysts, 6 inflamed odontogenic keratocysts, 5 dentigerous cysts) and ameloblastomas (n = 7) were incubated in vitro for 24 h. The supernatant was then removed into the culture system of SD rat calvaria. After incubation (48 h), the calcium contents of the media were measured by atom spectrophotometer. The supernatant of odontogenic cysts and ameloblastomas was measured for the bone resorption related factors such as IL-6, TNF-alpha, PGE(2), bone Gla-containing protein (BGP) and calcitonin (CT) by a radioimmunoassay system. The calcium released in the calvaria culture media by all the odontogenic lesions was significantly higher than that in the blank controls (P < 0.01). The inflamed odontogenic keratocyst group had a significantly higher calcium concentration than odontogenic keratocyst and ameloblastoma groups (P < 0.05). In addition, the concentration of IL-6, TNF-alpha, PGE(2) and CT in the culture media of all odontogenic lesions were significantly higher than that of the blank controls (P < 0.05). IL-6 concentration in the inflamed and non-inflamed odontogenic keratocyst groups were significantly higher than that of ameloblastoma group (P < 0.05). CT concentration in the inflamed odontogenic keratocyst was significantly higher than those of odontogenic keratocyst and dentigerous cyst groups (P < 0.05). Correlation and regression analysis showed that IL-6 was significantly correlated with the calcium content (P < 0.01). The odontogenic lesions could promote bone resorption in vitro and it is likely to be related to some of the cytokines secreted by the lesions.
Tani-Ishii, N; Wang, C Y; Stashenko, P
1995-08-01
The bone-resorptive cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) have been implicated in the pathogenesis of many chronic inflammatory diseases, including pulpitis and apical periodontitis.To further elucidate their role in these disorders, we have identified cells that express IL-1 alpha and TNF alpha in infected pulps and in developing rat periapical lesions after surgical pulp exposure. As detected by immunohistochemistry, IL-1 alpha- and TNF alpha-positive cells were present as early as 2 days after pulp exposure in both the pulp and periapical region. The numbers of cytokine-expressing cells increased up to day 4 in the pulp and up to day 30 in the periapex. In contrast, cells expressing IL-1 beta and TNF beta, the homologous forms of these mediators, were not found in pulp or periapical lesions during this period. Cells expressing IL-1 alpha and TNF alpha were identified primarily as macrophages and fibroblasts, with occasional staining of polymorphonuclear leukocytes. Osteoblasts and osteoclasts were also positive, whereas lymphocytes were negative. In general, cytokine-expressing cells were located proximal to abscesses and the root apex. These findings demonstrate that cells that express bone-resorptive cytokines IL-1 alpha and TNF alpha are present immediately after pulp exposure in this model, which supports the hypothesis that these mediators play a key role in pulpal and periapical pathogenesis, including the concomitant bone destruction. They also indicate that both resident connective tissue cells as well as infiltrating cells express bone-resorptive cytokines in response to infection in these lesions.
Strategy for prevention of hip fractures in patients with Parkinson's disease.
Iwamoto, Jun; Sato, Yoshihiro; Takeda, Tsuyoshi; Matsumoto, Hideo
2012-09-18
Hypovitaminosis D and K due to malnutrition or sunlight deprivation, increased bone resorption due to immobilization, low bone mineral density (BMD) and an increased risk of falls may contribute to an increased risk of hip fractures in patients with Parkinson's disease. The purpose of the present study was to clarify the efficacy of interventions intended to prevent hip fractures in elderly patients with Parkinson's disease. PubMed was used to search the literature for randomized controlled trials (RCTs) regarding Parkinson's disease and hip fractures. The inclusion criteria were 50 or more subjects per group and a study period of 1 year or longer. Five RCTs were identified and the relative risk and 95% confidence interval were calculated for individual RCTs. Sunlight exposure increased serum hydroxyvitamin D [25(OH)D] concentration, improved motor function, decreased bone resorption and increased BMD. Alendronate or risedronate with vitamin D supplementation increased serum 25(OH)D concentration, strongly decreased bone resorption and increased BMD. Menatetrenone (vitamin K(2)) decreased serum undercarboxylated osteocalcin concentration, decreased bone resorption and increased BMD. Sunlight exposure (men and women), menatetrenone (women), alendronate and risedronate with vitamin D supplementation (women) significantly reduced the incidence of hip fractures. The respective RRs (95% confidence intervals) according to the intention-to-treat analysis were 0.27 (0.08, 0.96), 0.13 (0.02, 0.97), 0.29 (0.10, 0.85) and 0.20 (0.06, 0.68). Interventions, including sunlight exposure, menatetrenone and oral bisphosphonates with vitamin D supplementation, have a protective effect against hip fractures elderly patients with Parkinson's disease.
Arlot, M; Edouard, C; Meunier, P J; Neer, R M; Reeve, J
1984-09-01
Osteoblast function was investigated in 27 patients with idiopathic osteoporosis. Transiliac bone biopsy specimens were taken after double labelling with tetracycline, and metabolic calcium balance was studied almost simultaneously. Many of the patients showed poor double labelling of their otherwise unremarkable trabecular osteoid, suggesting impaired formation of bone at many of these surfaces. This phenomenon was not accompanied by increased width of osteoid seams (as seen in osteomalacia), indicating that formation of the matrix and its mineralisation were in equilibrium. For the first time, highly significant positive correlations (p less than 0.01) were found between indices of bone formation, determined by labelling with tetracycline, and calcium balance. Thus some patients with osteoporosis who are rapidly losing bone have low rates of formation of trabecular bone both by individual osteoblasts and in relation to available bone surfaces. As histological indices of bone resorption also independently correlated strongly and inversely (p less than 0.01) with calcium balance the rate of initiation of new basic multicellular units by osteoclastic resorption of trabecular surfaces (or the depth of resorption at these surfaces) also appears to be an important determinant of mineral balance. The mechanisms that regulate the effective life span of mature osteoblasts require further investigation, particularly as some promising treatments that can increase trabecular bone volume in osteoporosis, such as parathyroid peptide hPTH (1-34) and sodium fluoride, must work through a reversal of osteoblastic depression.
Growth-Associated Changes in the Periodontal Bone and Molar Teeth of Male Rats
García, María F; Moreno, Hilda; Rigalli, Alfredo; Puche, Rodolfo C
2009-01-01
Here we report quantitative data associating periodontal bone variables of young conventional rats with the growth process. The hemimandibles of male rats (IIM/Fm stock, 2 to 15 wk of age.) were excised and submitted to conventional morphologic, radiologic, and histologic evaluation. The length, area, or X-ray absorbance of various regions or structures was measured on digital images of radiographs by using an image-analysis program. The sum of periodontal bone areas undergoing resorption (interproximal + intraradicular) increased until 9 or 10 wk of age and decreased thereafter. Mineral accretion rates and mineral density asymptotes were not significantly different among molars. The mineral density of resorption areas in alveolar bone fitted sinusoidal kinetics, indicative of the ‘instability’ of the tissue due to its high metabolic activity. Mineral accretion rates and mineral density asymptotes were not significantly different among molars. The proportion of root length within alveolar bone exhibited a biphasic curve (minimum at 5 wk of age), due to differences in the growth rates of variables involved in its calculation (distance between the cementoenamel junction to the apex and height of the resorption areas). The distance between the cementoenamel junction and alveolar bone crest over time fitted a sigmoidal function with a point of inflection that did not differ significantly from that of body or mandible dry weight. In summary, the growth process appears to affect periodontal bone support and the distance between the cementoenamel junction and alveolar bone crest in male rats. PMID:19807966
Schnitzler, C M; Pieczkowski, W M; Fredlund, V; Mesquita, J M; Sweet, M B; Smit, A E
1988-01-01
Mseleni Joint Disease (MJD), a polyarticular osteoarthritis of uncertain etiology is endemic among the Tonga-Zulu tribe. The traditional diet is deficient in calcium, and palm wine (2-4% alcohol) is drunk widely. Patients with MJD are reported to be more osteopenic than those without. Iliac bone biopsies of 19 arthritic patients were examined by routine histomorphometry and revealed decreased trabecular bone volume (p less than 0.0005), increased resorption surfaces (p less than 0.01), decreased bone formation rate at the BMU (p less than 0.01) level and increased mineralization lag time (p less than 0.01). Six of the 19 patients (31.6%) had features of osteomalacia and six (31.6%) signs of osteoblast failure. The most likely cause of the bone disorder is calcium deficiency, but inanition, inactivity and alcohol abuse may have contributed. Although the joint disorder may have contributed to the bone disorder, the converse is unlikely the case.
1988-11-01
apical abscessing, and/or when the alveolar bone displayed minimal resorption or other bony changes which accompany periodontal disease. All other cases... periodontal resorption while the opposite was true for those individuals with excessive deposits. Apical abscessing, another common dental pathology...similar to those seen in other northern Plains populations. Periodontal disease as measured by alveolar resorption ranged from mild to severe. Apical
2005-08-01
osteoclastic bone resorption, respectively. Despite formidable difficulties in drug design due to the lability and poor cell permeability of negatively...with LysO?,D6, generally been treated with two categories of drugs : bone displacing water molecules found in the previous X-ray resorption inhibitors...and Dpp [236-238]. cancer drugs , of which only 12 were shown to have survival Researchers from Aventis reported the superimposition benefit in
Investigation of strontium accumulation on ovariectomized Sprague-Dawley rat tibia by micro-PIXE
NASA Astrophysics Data System (ADS)
Li, X.; Li, Y.; Jin, W.; Zheng, Y.; Rong, C.; Lyu, H.; Shen, H.
2014-08-01
Strontium ranelate is a newly developed drug effective in osteoporosis treatment by depressing bone resorption and maintaining bone formation. Strontium accumulation and distribution are determined in bones of rat after strontium ranelate administration by using micro-PIXE. The investigated rats are divided into four groups: (A) control, (B) ovariectomized, (C) ovariectomized followed with strontium chloride, (D) ovariectomized followed with strontium ranelate. It was found that strontium ranelate would result in increasing trabecular volume and decreasing bone resorption to treat osteoporosis. There are similar contours of calcium and strontium in two-dimensional images, while the strontium is not evenly distributed in the bone. It supports the conclusion that strontium has an affinity for bone and it is capable of replacing calcium atoms as a part of the strontium mechanism in the osteoporosis treatment. The results related to biochemistry are also discussed.
Reichert, Christoph; Götz, Werner; Reimann, Susanne; Keilig, Ludger; Hagner, Martin; Bourauel, Christoph; Jäger, Andreas
2013-03-01
To develop an in vitro assay for quantitative analysis of the degradation to which a bone substitute is exposed by osteoclasts. The aim of establishing this method was to improve the predictability of carrying out tooth movements via bone substitutes and to provide a basis for verification in exemplary clinical cases. After populating a bone substitute (NanoBone®; ArtOss, Germany) with osteoclastic cells, inductively-coupled mass spectrometry was used to evaluate changing calcium levels in the culture medium as a marker of resorption activity. It was observed that calcium levels increased substantially in the culture medium with the cells populating the bone substitute. This in vitro assay is a valid method that can assist clinicians in selecting the appropriate materials for certain patients. While tooth movements occurring through this material were successful, uncertainty about the approach will remain as long-term results are not available.
Gao, Aichao; Wang, Xichao; Yu, Haiyan; Li, Na; Hou, Yubo; Yu, Weixian
2016-02-01
Porphyromonas gingivalis (Pg) as the major pathogenic bacterium of chronic periodontitis can cause alveolar bone resorption. Lipopolysaccharide (LPS) is its main virulence factor. The Eph family plays an important role in maintaining bone homeostasis. In this study, the effects of P. gingivalis lipopolysaccharide (Pg-LPS) on the expression of EphA2 in osteoblasts and osteoclasts were investigated. MC3T3-E1 cells and RAW264.7 cells were separately cultured in osteoblast-conditioned medium and osteoclast-conditioned medium to induce their differentiation into osteoblasts and osteoclasts, respectively. MC3T3-E1 cells were treated with 1 μg/mL of Pg-LPS 3, 7, and 14 d later, while RAW264.7 cells were treated with 10 μg/mL of Pg-LPS 1, 3, and 5 d later. The results have shown that Pg-LPS increased the expression of EphA2 both in osteoblasts and osteoclasts, decreased the expression of osteogenic-related genes (ALP, Sp7), and increased the expression of osteoclast-related genes (MMP9, c-fos, ACP5, CtsK, and NFATc1). Tartrate-resistant acid phosphatase (TRAP) staining illustrated that Pg-LPS promoted osteoclast differentiation and decreased the activity of alkaline phosphatase. Therefore, analysis indicates that, when treated with Pg-LPS, the expression of EphA2 is upregulated while the activity of osteoblasts and osteoclasts was reduced and increased, respectively. Our data suggest that EphA2 is closely related to the formation of osteoblasts and resorption of osteoclast and is likely to play an role in bone resorption induced in chronic periodontitis. These findings may provide information on new targets for prevention and treatment of chronic periodontitis.
Non-canonical Wnt4 prevents skeletal aging and inflammation by inhibiting NF-κB
Yu, Bo; Chang, Jia; Liu, Yunsong; Li, Jiong; Kevork, Kareena; Al-Hezaimi, Khalid; Graves, Dana T; Park, No-Hee; Wang, Cun-Yu
2014-01-01
Aging-related bone loss and osteoporosis affect millions of patients worldwide. Chronic inflammation associated with aging and arthritis promotes bone resorption and impairs bone formation. Here we show that Wnt4 attenuated bone loss in osteoporosis and skeletal aging by inhibiting nuclear factor-kappa B (NF-κB) via non-canonical Wnt signaling. Transgenic mice expressing Wnt4 from osteoblasts were significantly protected from bone loss and chronic inflammation induced by ovariectomy, tumor necrosis factor or natural aging. In addition to promoting bone formation, Wnt4 could inhibit osteoclast formation and bone resorption. Mechanistically, Wnt4 inhibited transforming growth factor beta-activated kinase 1-mediated NF-κB activation in macrophages and osteoclast precursors independent of β-catenin. Moreover, recombinant Wnt4 proteins were able to alleviate osteoporotic bone loss and inflammation by inhibiting NF-κB in vivo. Taken together, our results suggest that Wnt4 might be used as a therapeutic agent for treating osteoporosis by attenuating NF-κB. PMID:25108526
Bonjour, Jean-Philippe; Benoit, Valérie; Payen, Flore; Kraenzlin, Marius
2013-07-01
Nutritional prevention of bone deterioration with fortified foods seems particularly suitable in institutionalized elderly women at risk of vitamin D deficiency, secondary hyperparathyroidism, increased bone resorption, and osteoporotic fracture. The objective was to evaluate whether fortification of yogurts with vitamin D and calcium exerts an additional lowering effect on serum PTH and bone resorption markers as compared with isocaloric and isoprotein dairy products in elderly women. A randomized double-blind controlled-trial, 56-day intervention was conducted in institutionalized women (mean age 85.5 years) consuming 2 125-g servings of either vitamin D- and calcium-fortified yogurt (FY) at supplemental levels of 10 μg/d vitamin D₃ and 800 mg/d calcium or nonfortified control yogurt (CY) providing 280 mg/d calcium. The endpoints were serum changes from baseline (day 0) to day 28 and day 56 in 25-hydroxyvitamin-D (25OHD), PTH, and bone resorption markers tartrate-resistant acid phosphatase isoform-5b (TRAP5b), the primary outcome, and carboxyl-terminal cross-linked telopeptide of type I collagen (CTX). At day 56, serum 25OHD increased (mean ± SEM) by 25.3 ± 1.8 vs 5.2 ± 2.5 nmol/L in FY (n = 29) and CY (n = 27), respectively (P < .0001). The corresponding changes in PTH were -28.6% ± 7.2% vs -8.0% ± 4.3% (P = .0003); in TRAP5b, -21.9% ± 4.3% vs 3.0% ± 3.2% (P < .0001); and in CTX, -11.0% ± 9.7% vs -3.0% ± 4.1% (P = .0146), in FY and CY, respectively. At day 28, these differences were less pronounced but already significant for 25OHD, PTH, and TRAP5b. This study in institutionalized elderly at high risk for osteoporotic fracture suggests that fortification of dairy products with vitamin D₃ and calcium provides a greater prevention of accelerated bone resorption as compared with nonfortified equivalent foods.
Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma
Liu, Huan; Liu, Zhiqiang; Du, Juan; He, Jin; Lin, Pei; Amini, Behrang; Starbuck, Michael W.; Novane, Nora; Shah, Jatin J.; Davis, Richard E.; Hou, Jian; Gagel, Robert F.; Yang, Jing
2016-01-01
Myelomatous bone disease is characterized by the development of lytic bone lesions and a concomitant reduction in bone formation, leading to chronic bone pain and fractures. To understand the underlying mechanism, we investigated the contribution of myeloma-expressed thymidine phosphorylase (TP) to bone lesions. In osteoblast progenitors, TP upregulated the methylation of RUNX2 and osterix, leading to decreased bone formation. In osteoclast progenitors, TP upregulated the methylation of IRF8, thereby enhanced expression of NFATc1, leading to increased bone resorption. TP reversibly catalyzes thymidine into thymine and 2DDR. Myeloma-secreted 2DDR bound to integrin αVβ3/α5β1 in the progenitors, activated PI3K/Akt signaling, and increased DNMT3A expression, resulting in hypermethylation of RUNX2, osterix, and IRF8. This study elucidates an important mechanism for myeloma-induced bone lesions, suggesting that targeting TP may be a viable approach to healing resorbed bone in patients. As TP overexpression is common in bone-metastatic tumors, our findings could have additional mechanistic implications. PMID:27559096
[Pathological and metabolic bone diseases: Clinical importance for fracture treatment].
Oheim, R
2015-12-01
Pathological and metabolic bone diseases are common and relevant occurrences in orthopedics and trauma surgery; however, fractures are often treated as being the illness itself and not seen as the symptom of an underlying bone disease. This is why further diagnostics and systemic treatment options are often insufficiently considered in the routine treatment of fractures. This review focuses on osteoporosis, osteopetrosis, hypophosphatasia and Paget's disease of bone.In patients with osteoporotic vertebral or proximal femur fractures, pharmaceutical treatment to prevent subsequent fractures is an integral part of fracture therapy together with surgical treatment. Osteopetrosis is caused by compromised osteoclastic bone resorption; therefore, even in the face of an elevated bone mass, vitamin D3 supplementation is crucial to avoid clinically relevant hypocalcemia. Unspecific symptoms of the musculoskeletal system, especially together with stress fractures, are typically found in patients suffering from hypophosphatasia. In these patients measurement of alkaline phosphatase shows reduced enzyme activity. Elevated levels of alkaline phosphatase are found in Paget's disease of bone where bisphosphonates are still the treatment of choice.
Doustimotlagh, Amir Hossein; Dehpour, Ahmad Reza; Etemad-Moghadam, Shahroo; Alaeddini, Mojgan; Ostadhadi, Sattar; Golestani, Abolfazl
2018-06-01
Chronic liver disease (CLD) affects millions of people and its impact on bone loss has become a subject of interest. Nitric oxide and endogenous opioids are suggested to increase during cholestasis/cirrhosis and may impact bone resorption by different mechanisms. The receptor activator of nuclear factor-κB (RANK)/RANK-ligand (RANKL)/osteoprotegerin (OPG) signaling pathway regulates bone resorption, but its role in metabolic bone disease subsequent to CLD is unknown. We aimed to investigate the involvement of nitrergic and opioidergic systems in bone loss relative to the RANK/RANKL/OPG pathway, in bile duct-ligated (BDL) rats. Eighty BDL/sham-operated (SO) rats received injections of 3 mg/kg/day Nω-Nitro-L-arginine methyl ester ± naltrexone (10 mg/kg/day) or saline for 28 days. Plasma bone turnover markers, OPG, RANK, and RANKL along with mRNA expression levels of the latter three were assessed. Plasma bone turnover markers and OPG level increased, but RANKL decreased in the BDL group compared with their SO controls (both: P ≤ 0.05). Administration of naltrexone reduced bone turnover markers and OPG level while increased RANKL content in comparison to BDL rats ( P ≤ 0.05). As compared to untreated BDL rats, nitric oxide inhibition showed no effect on bone turnover marker i.e. OPG, RANK, and RANKL levels. BDL significantly increased RANK mRNA, but had no significant effect on RANKL and OPG mRNA expression. The lack of association between plasma levels and quantitative gene expression of RANKL and OPG suggests an indirect function of these markers in BDL rats. Considering that opioid receptor blockage by naltrexone in BDL animals caused a significant decrease in OPG and an increase in RANKL plasma contents, it could be postulated that the opioidergic system may have a regulatory effect on these bone markers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koskela, A., E-mail: antti.koskela@oulu.fi
Perfluorooctanoic acid (PFOA) is a ubiquitous and persistent environmental chemical, which has been used extensively due to its stability and surface tension-lowering properties. Toxicological effects include induction of neonatal mortality and reproductive toxicity. In this study, pregnant C57BL/6 mice were exposed orally to 0.3 mg PFOA/kg/day throughout pregnancy, and female offspring were studied at the age of 13 or 17 months. Morphometrical and biomechanical properties of femurs and tibias were analyzed with micro-computed tomography and 3-point bending, and bone PFOA concentrations were determined by mass spectrometry. The effects of PFOA on bone cell differentiation were studied in osteoclasts from C57BL/6more » mice and in the MC3T3 pre-osteoblast cell line. PFOA exposed mice showed increased femoral periosteal area as well as decreased mineral density of tibias. Biomechanical properties of these bones were not affected. Bone PFOA concentrations were clearly elevated even at the age of 17 months. In osteoblasts, low concentrations of PFOA increased osteocalcin (OCN) expression and calcium secretion, but at PFOA concentrations of 100 μM and above osteocalcin (OCN) expression and calcium secretion were decreased. The number of osteoclasts was increased at all PFOA concentrations tested and resorption activity dose-dependently increased from 0.1–1.0 μM, but decreased at higher concentrations. The results show that PFOA accumulates in bone and is present in bones until the old age. PFOA has the potential to influence bone turnover over a long period of time. Therefore bone is a target tissue for PFOA, and altered bone geometry and mineral density seem to persist throughout the life of the animal. - Highlights: • Bone is a target tissue for PFOA both in vivo and in vitro. • Maternal exposure during pregnancy results in PFOA accumulation in bone of the offspring. • PFOA is present in bones until the old age. • PFOA causes mild alterations in bone morphometry and decreases bone mineral density. • Low PFOA concentrations stimulate the resorption activity of osteoclasts.« less
Denosumab: an investigational drug for the management of postmenopausal osteoporosis
Lewiecki, E Michael
2008-01-01
Denosumab (AMG 162) is an investigational fully human monoclonal antibody with a high affinity and specificity for receptor activator of nuclear factor-κB ligand (RANKL), a cytokine member of the tumor necrosis factor family. RANKL, the principal mediator of osteoclastic bone resorption, plays a major role in the pathogenesis of postmenopausal osteoporosis and other skeletal disorders associated with bone loss. Denosumab inhibits the action of RANKL, thereby reducing the differentiation, activity, and survival of osteoclasts, and lowering the rate of bone resorption. Clinical trials have shown that denosumab increases bone mineral density (BMD) and reduces bone turnover in postmenopausal women with low BMD. Studies to evaluate the fracture risk benefit and long-term safety of denosumab in women with postmenopausal osteoporosis (PMO) are ongoing. Denosumab is a potential treatment for PMO and other skeletal disorders. PMID:19707445
Jeyapalina, Sujee; Beck, James Peter; Bachus, Kent N; Chalayon, Ornusa; Bloebaum, Roy D
2014-10-01
Percutaneous osseointegrated prostheses (POPs) are being investigated as an alternative to conventional socket suspension and require a radiographic followup in translational studies to confirm that design objectives are being met. In this 12-month animal study, we determined (1) radiographic signs of osseointegration and (2) radiographic signs of periprosthetic bone hypertrophy and resorption (adaptation) and (3) confirmed them with the histologic evidence of host bone osseointegration and adaptation around a novel, distally porous-coated titanium POP with a collar. A POP device was designed to fit the right metacarpal bone of sheep. Amputation and implantation surgeries (n = 14) were performed, and plane-film radiographs were collected quarterly for 12 months. Radiographs were assessed for osseointegration (fixation) and bone adaptation (resorption and hypertrophy). The cortical wall and medullary canal widths were used to compute the cortical index and expressed as a percentage. Based on the cortical index changes and histologic evaluations, bone adaptation was quantified. Radiographic data showed signs of osseointegration including those with incomplete seating against the collar attachment. Cortical index data indicated distal cortical wall thinning if the collar was not seated distally. When implants were bound proximally, bone resorbed distally and the diaphyseal cortex hypertrophied. Histopathologic evidence and cortical index measurements confirmed the radiographic indications of adaptation and osseointegration. Distal bone loading, through collar attachment and porous coating, limited the distal bone resorption. Serial radiographic studies, in either animal models or preclinical trials for new POP devices, will help to determine which designs are likely to be safe over time and avoid implant failures.
Choi, Josefina; Baek, Seung-Hak; Lee, Jae-Il; Chang, Young-Il
2010-11-01
The objective of this study was to evaluate the short-term effects of clodronate, a first-generation bisphosphonate, on early alveolar bone remodeling and root resorption related to orthodontic tooth movement. The samples consisted of 54 sex-matched Wistar rats (weight, 180-230 g) allocated to the 2.5 mmol/L clodronate, 10 mmol/L clodronate, and control groups (n = 18 for each group). After application of a nickel-titanium closed-coil spring (force, 60 g) between the maxillary central incisor and first molar, 2.5 mmol/L of clodronate, 10 mmol/L of clodronate, or saline solution was injected into the subperiosteum adjacent to the maxillary first molar every third day. All animals received tetracycline, calcein, and alizarin red by intraperitoneal injection at 1, 6, and 14 days, respectively. The amounts of tooth movement were measured at 3, 6, 9, 12, and 15 days. The animals were killed at 4, 7, and 17 days. Histomorphometric analyses of bone mineral appositional rate, labeled surface, percentage of root resorption area, and number of root resorption lacunae of the mesiobuccal root of the maxillary first molar at 4, 7, and 17 days were done. One-way analysis of variance (ANOVA) with the post-hoc test were done for statistical analyses. Rats in the 10 mmol/L clodronate group had significant decreases of tooth movement (12 and 15 days, P <0.05) and percentages of root resorption area and numbers of root resorption lacunae (7 day, P <0.05), and increases of labeled surface and mineral appositional rates (17 day, P <0.05) over those of the 2.5 mmol/L clodronate and control groups. Although clodronate might decrease root resorption related to orthodontic tooth movement, patients should be informed about a possible decrease in the amount of tooth movement and a prolonged period of orthodontic treatment. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Tan, Zhen; Kang, Jian; Liu, Wenjia; Wang, Hang
2018-06-01
To date only a few studies have been done on the use of the socket-shield technique for preserving the resorption of the buccal bone in aesthetically sensitive sites. Besides, there have been no further studies on the effect of the heights and thicknesses of the remaining root segments on buccal bone resorption when using this method. The aim of this study was to evaluate the effect of different heights and thicknesses of the remaining root segments on bone resorption in the socket-shield technique. Four healthy female beagle dogs were used in this study. The third premolar (P3) and the fourth premolar (P4) on both sides of the mandible were hemisected in the buccal-lingual direction, and the clinical crown of the distal root was beheaded. In the experimental groups, the roots were worn down in the apical direction until they were located at the buccal crestal level (Group A) or 1 mm higher than that level (Group B). In the control group, the distal root segments were extracted. Then, implant placement was performed into the distal root. After 3 months of healing, the specimens were prepared for histological diagnosis. There was no difference between Group A and Group B when using the socket-shield technique, but the results of both groups were better than those of the control group. The height of the root segments has little effect on the bone absorption of alveolar bone, while the bone absorption was strongly influenced by the thickness of the root segments. More precisely, the absorption may decrease if the thickness of the root fragment increases, when the thickness of the root plate is in the 0.5-1.5 mm range. © 2018 Wiley Periodicals, Inc.
Monasterio, G; Castillo, F; Rojas, L; Cafferata, E A; Alvarez, C; Carvajal, P; Núñez, C; Flores, G; Díaz, W; Vernal, R
2018-05-15
It is well accepted that the presence of cytokines belonging to the Th1/Th17/Th22 axis of immuno-inflammatory response in the joint environment, such as IL-1β, IL-17 and IL-22, respectively, are associated with pathogenesis of several synovial joint degenerative disorders. During temporomandibular joint osteoarthritis (TMJ-OA), IL-1β and IL-17 have been implicated in the inflammation and resorption of sub-chondral bone; however, the role of Th22 response in the TMJ-OA pathophysiology has not been established. This study aimed to compare the expression of Th1/Th17/Th22-type cytokines, chemokines and chemokine receptors in synovial fluid samples obtained from TMJ-OA or disk displacement with reduction (DDWR) patients. In addition, it aimed to associate these levels with joint pain, imagenological signs of bone degeneration, RANKL production, osteoclastogenesis and osteoclast-induced bone resorption. Higher levels of IL-1β, IL-17 and IL-22 were expressed in TMJ-OA compared with DDWR subjects, and these increased levels significantly correlated with RANKL expression, joint pain and articular bone degeneration. Higher levels of CCR5, CCR6 and CCR7, as well as their respective ligands CCL5 and CCL20, responsible for recruitment of IL-1β, IL-17 and IL-22-producing cells, were over-expressed in TMJ-OA compared with DDWR subjects. Osteoclastogenesis and osteoclast-induced bone resorption were significantly greater in presence of synovial fluid from TMJ-OA compared with DDWR subjects. These data demonstrate that cytokines, CCLs and CCRs associated with the Th1/Th17/Th22 axis of immuno-inflammatory response are involved in TMJ-OA pathogenesis. These findings suggest that IL-22 is involved in the RANKL expression in TMJ-OA, which in turn induces differentiation of osteoclasts and subsequent resorption of sub-chondral bone. © 2018 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Chronic alcohol consumption results in bone loss through increased bone resorption and decreased bone formation. These effects can be reversed by estradiol (E2) supplementation. Soy diets are suggested to have protective effects on bone loss in men and women, as a result of the presence of soy prote...
Calcium Kinetics During Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.; OBrien, K. O.; Abrams, S. A.; Wastney, M. E.
2005-01-01
Bone loss during space flight is one of the most critical challenges to astronaut health on space exploration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract bone loss during space flight, and will have relevance for other clinical situations that impair weight-bearing activity. Bone health is a product of the balance between bone formation and bone resorption. Early space research could not clearly identify which of these was the main process altered in bone loss, but identification of the collagen crosslinks in the 1990s made possible a clear understanding that the impact of space flight was greater on bone resorption, with bone formation being unchanged or only slightly decreased. Calcium kinetics data showed that bone resorption was greater during flight than before flight (668 plus or minus 130 vs. 427 plus or minus 153 mg/d, p less than 0.001), and clearly documented that true intestinal calcium absorption was lower during flight than before flight (233 plus or minus 87 vs. 460 plus or minus 47 mg/d, p less than 0.01). Weightlessness had a detrimental effect on the balance in bone turnover: the difference between daily calcium balance during flight (-234 plus or minus 102 mg/d) and calcium balance before flight (63 plus or minus 75 mg/d) approached 300 mg/d (p less than 0.01). These data demonstrate that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption. Examining the changes in bone and calcium homeostasis in the initial days and weeks of space flight, as well as at later times on missions longer than 6 months, is critical to understanding the nature of bone adaptation to weightlessness. To increase knowledge of these changes, we studied bone adaptation to space flight on the 16-day Space Shuttle Columbia (STS-107) mission. When the brave and talented crew of Columbia were lost during reentry on the tragic morning of February 1, 2003, in a much smaller matter, the scientific products of this experiment, successfully obtained on orbit, were lost as well. As we begin to plan for missions back to the Moon, and even off to Mars, many questions remain to be answered. Counteracting bone loss is one of the greatest challenges. Calcium kinetics studies provide a valuable tool for assessing this loss, and evaluating countermeasures.
Differences in responses to X-ray exposure between osteoclast and osteoblast cells
Zhang, Jian; Wang, Ziyang; Wu, Anqing; Nie, Jing; Pei, Hailong; Hu, Wentao; Wang, Bing; Shang, Peng; Li, Bingyan
2017-01-01
Abstract Radiation-induced bone loss is a potential health concern for cancer patients undergoing radiotherapy. Enhanced bone resorption by osteoclasts and decreased bone formation by osteoblasts were thought to be the main reasons. In this study, we showed that both pre-differentiating and differentiating osteoclasts were relatively sensitive to X-rays compared with osteoblasts. X-rays decreased cell viability to a greater degree in RAW264.7 cells and in differentiating cells than than in osteoblastic MC3T3-E1 cells. X-rays at up to 8 Gy had little effects on osteoblast mineralization. In contrast, X-rays at 1 Gy induced enhanced osteoclastogenesis by enhanced cell fusion, but had no effects on bone resorption. A higher dose of X-rays at 8 Gy, however, had an inhibitory effect on bone resorption. In addition, actin ring formation was disrupted by 8 Gy of X-rays and reorganized into clusters. An increased activity of Caspase 3 was found after X-ray exposure. Actin disorganization and increased apoptosis may be the potential effects of X-rays at high doses, by inhibiting osteoclast differentiation. Taken together, our data indicate high radiosensitivity of osteoclasts. X-ray irradiation at relatively low doses can activate osteoclastogenesis, but not osteogenic differentiation. The radiosensitive osteoclasts are the potentially responsive cells for X-ray-induced bone loss. PMID:28541506
Water extract of the fruits of Alpinia oxyphylla inhibits osteoclast differentiation and bone loss.
Ha, Hyunil; Shim, Ki-Shuk; Kim, Taesoo; Lee, Chung-Jo; Park, Ji Hyung; Kim, Han Sung; Ma, Jin Yeul
2014-09-23
Excessive bone resorption by osteoclasts causes pathological bone destruction, seen in various bone diseases. There is accumulating evidence that certain herbal extracts have beneficial effects on bone metabolism. The fruits of Alpinia oxyphylla has been traditionally used for the treatment of diarrhea and enuresis. In this study, we investigated the effects of water extract of the fruits of Alpinia oxyphylla (WEAO) on osteoclast differentiation and osteoclast-mediated bone destruction. For osteoclast differentiation assay, mouse bone marrow-derived macrophages (BMMs) were cultured in the presence of RANKL and M-CSF. RANKL signaling pathways and gene expression of transcription factors regulating osteoclast differentiation were investigated by real-time PCR and Western blotting. A constitutively active form of NFATc1 was retrovirally transduced into BMMs. Bone resorbing activity of mature osteoclast was examined on a plate coated with an inorganic crystalline calcium phosphate. The in vivo effect against bone destruction was assessed in a murine model of RANKL-induced osteoporosis by micro-computed tomography and bone metabolism marker analyses. WEAO dose-dependently inhibited RANKL-induced osteoclast differentiation from BMMs by targeting the early stages of osteoclast differentiation. WEAO inhibited RANKL-induced expression of NFATc1, the master regulator of osteoclast differentiation. Overexpression of a constitutively active form of NFATc1 blunted the inhibitory effect of WEAO on osteoclast differentiation, suggesting that NFATc1 is a critical target of the inhibitory action of WEAO. WEAO inhibited RANKL-induced expression of c-Fos, an upstream activator of NFATc1, by suppressing the classical NF-κB signaling pathway. WEAO also inhibited RANKL-induced down-regulation of Id2 and MafB, negative regulators of NFATc1. WEAO does not directly affect bone resorbing activity of mature osteoclasts. In accordance with the in vitro results, WEAO attenuated RANKL-induced bone destruction in mice by inhibiting osteoclast differentiation. This study demonstrates that WEAO exhibits a protective effect against bone loss by inhibiting RANKL-induced osteoclast differentiation. These findings suggest that WEAO might be useful for the prevention and treatment of bone diseases associated with excessive bone resorption.
Allografts with autogenous platelet-rich plasma for tibial defect reconstruction: a rabbit study.
Nather, Aziz; Wong, Keng Lin; David, Vikram; Pereira, Barry P
2012-12-01
To evaluate the effect of autogenous platelet-rich plasma (PRP) for fresh-frozen allografts in tibial defect reconstruction in rabbits. 40 adult New Zealand white rabbits underwent tibial defect reconstruction with autografts (n=12), allografts without PRP (n=12), or allografts with PRP (n=12) and were observed for 12, 16, and 24 weeks (4 for each period). Tibias of the remaining 4 rabbits were used as donor allografts, and the remaining allografts were procured from recipient rabbits. A 1.5- cm cortical segment of the tibia was osteotomised, and then fixed with a 9-hole mini-compression plate and 2 cerclage wires. Allografts were stripped off the periosteum and soft tissues and medullary contents, and then stored in a freezer at -80 ºC. All allografts were deep frozen for at least 4 weeks before transplantation. 7 ml of whole blood was drawn to prepare 1 ml of PRP. The PRP was then mixed with 1.0 ml of human thrombin to form a platelet gel. The PRP gel was then packed into the medullary canal of the allograft and applied on the cortical surface before tibial defect reconstruction. Rabbits were sacrificed at 12, 16, and 24 weeks. The specimens were assessed for bone union at host-graft junctions and for bone resorption, new bone formation, callus encasement, and viable osteocyte counts. There were 4 specimens in each group at each observation period. Osteoid bridging the gap at host-graft junctions was noted in all specimens in the autograft and allograft-with-PRP groups at week 12 and in the allograft-without-PRP group at week 24. Bone union in allografts without PRP was delayed. All indices for biological incorporation (resorption index, new bone formation index, callus encasement index, and viable osteocyte count) were significantly greater in the autograft than allograft-without-PRP groups, except for the resorption index at week 24, whereas the differences were not significant between the autograft and allograft-with-PRP groups. The differences between the 2 allograft groups were usually not significant, except for the resorption index. PRP-augmented allografts behaved similarly to autografts for tibial defect reconstruction in rabbits. PRP increased bone union and bone resorption.
Effects of epidermal growth factor on bone formation and resorption in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marie, P.J.; Hott, M.; Perheentupa, J.
1990-02-01
The effects of mouse epidermal growth factor (EGF) on bone formation and resorption were examined in male mice. EGF administration (2-200 ng.g-1.day-1 ip for 7 days) induced a dose-dependent rise in plasma EGF levels that remained within physiological range. Histomorphometric analysis of caudal vertebrae showed that EGF (20 and 200 ng.g-1.day-1) reduced the endosteal matrix and mineral appositional rates after 5 days of treatment as measured by double (3H)proline labeling and double tetracycline labeling, respectively. This effect was transitory and was not observed after 7 days of EGF administration. EGF administered for 7 days induced a dose-dependent increase in themore » periosteal osteoblastic and tetracycline double-labeled surfaces. At high dosage (200 ng.g-1.day-1) EGF administration increased the osteoclastic surface and the number of acid phosphatase-stained osteoclasts, although plasma calcium remained normal. The results show that EGF administration at physiological doses induces distinct effects on endosteal and periosteal bone formation and that the effects are dependent on EGF dosage and duration of treatment. This study indicates that EGF at physiological dosage stimulates periosteal bone formation and increases endosteal bone resorption in the growing mouse.« less
High dietary calcium intake does not counteract disuse-induced bone loss
NASA Astrophysics Data System (ADS)
Baecker, N.; Boese, A.; Smith, S. M.; Heer, M.
Reduction of mechanical stress on bone inhibits osteoblast-mediated bone formation, increases osteoclast-mediated bone resorption, and leads to what has been called disuse osteoporosis. Prolonged therapeutic bed rest, immobilization and space flight are common causes of disuse osteoporosis. There are sufficient data supporting the use of calcium in combination with vitamin D in the prevention and treatment of postmenopausal osteoporosis. In our study we examined the potential of high dietary calcium intake as a nutrition therapy for disuse-induced bone loss during head-down bed rest in healthy young men. In 2 identical metabolic ward, head-down bed rest (HDBR) experiments (crossover design), we studied the effect of high dietary calcium intake (2000 mg/d) in comparison to the recommended calcium intake of 1000 mg/d on markers of bone turnover. Experiment A (EA) was a 6-day randomized, controlled HDBR study. Experiment B (EB) was a 14-day randomized, controlled HDBR study. In both experiments, the test subjects stayed under well-controlled environmental conditions in our metabolic ward. Subjects' diets in the relevant study phases (HDBR versus Ambulatory Control) of EA and EB were identical except for the calcium intake. The subjects obtained 2000 mg/d Calcium in EA and 2000 mg/d in EB. Blood was drawn at baseline, before entering the relevant intervention period, on day 5 in study EA, and on days 6, 11 and 14 in study EB. Serum calcium, bone formation markers - Procollagen-I-C-Propeptide (PICP) and bone alkaline phosphatase (bAP) were analyzed in serum. 24h-urine was collected throughout the studies for determination of the excretion of calcium (UCaV) and a bone resorption marker, C-terminal telopeptide of collagen type I (UCTX). In both studies, serum calcium levels were unchanged. PICP tended to decrease in EA (p=0.08). In EB PICP decreased significantly over time (p=0.003) in both the control and HDBR periods, and tended to further decrease in the HDBR period (p=0.06). While HDBR did not affect bAP in both EA and EB, bAP decreased significantly over time in both groups of EB (p<0.001). UCaV significantly increased during HDBR in EA (p=0.002) and EB (p=0.004) compared to the ambulatory controls. UCTX significantly increased on the second day of HDBR by 18% (p<0.001) in EA and by 27% (p=0.03) in EB. We conclude from these results that doubling dietary calcium intake from the recommended level of 1000 mg/d to 2000 mg/d does not prevent the decrease in bone formation activity and the increase of bone resorption activity in disuse-induced bone loss.
A crucial role for thiol antioxidants in estrogen-deficiency bone loss
Lean, Jenny M.; Davies, Julie T.; Fuller, Karen; Jagger, Christopher J.; Kirstein, Barrie; Partington, Geoffrey A.; Urry, Zoë L.; Chambers, Timothy J.
2003-01-01
The mechanisms through which estrogen prevents bone loss are uncertain. Elsewhere, estrogen exerts beneficial actions by suppression of reactive oxygen species (ROS). ROS stimulate osteoclasts, the cells that resorb bone. Thus, estrogen might prevent bone loss by enhancing oxidant defenses in bone. We found that glutathione and thioredoxin, the major thiol antioxidants, and glutathione and thioredoxin reductases, the enzymes responsible for maintaining them in a reduced state, fell substantially in rodent bone marrow after ovariectomy and were rapidly normalized by exogenous 17-β estradiol. Moreover, administration of N-acetyl cysteine (NAC) or ascorbate, antioxidants that increase tissue glutathione levels, abolished ovariectomy-induced bone loss, while L-buthionine-(S,R)-sulphoximine (BSO), a specific inhibitor of glutathione synthesis, caused substantial bone loss. The 17-β estradiol increased glutathione and glutathione and thioredoxin reductases in osteoclast-like cells in vitro. Furthermore, in vitro NAC prevented osteoclast formation and NF-κB activation. BSO and hydrogen peroxide did the opposite. Expression of TNF-α, a target for NF-κB and a cytokine strongly implicated in estrogen-deficiency bone loss, was suppressed in osteoclasts by 17-β estradiol and NAC. These observations strongly suggest that estrogen deficiency causes bone loss by lowering thiol antioxidants in osteoclasts. This directly sensitizes osteoclasts to osteoclastogenic signals and entrains ROS-enhanced expression of cytokines that promote osteoclastic bone resorption. PMID:12975476
Li, Wen; Chen, Fei; Zhang, Feng; Ding, Wanghui; Ye, Qingsong; Shi, Jiejun; Fu, Baiping
2013-01-01
Molar intrusion by mini-screw implantation can cause different degrees of root resorption. However, most methods (2-D and 3-D) used for evaluating root resorption have focused on the root length without considering 3-D resorption. The purpose of this study was to volumetrically evaluate root resorption using cone beam computed tomography(CBCT) after mini-screw implant intrusion. 1. The volumes of 32 teeth were measured using CBCT and laser scanning to verify the accuracy of CBCT. 2. Twelve overerupted molars from adult patients were investigated in this study. After mini-screw implants were inserted into the buccal and palatal alveolar bones, 150 g of force was applied to the mini-screw implants on each side to intrude the molars. CBCT images of all patients were taken immediately prior to intrusion and after intrusion. The volumes of the roots were calculated using the Mimics software program. The differences between the pre-intrusion and post-intrusion root volumes were statistically evaluated with a paired-samples t-test. In addition, the losses of the roots were statistically compared with each other using one-way analysis of variance at the P<0.05 level. No statistically significant volume differences were observed between the physical (laser scanning) and CBCT measurements (P>0.05). The overerupted molars were significantly intruded (P<0.05), and the average intrusion was 3.30±1.60 mm. The differences between the pre-intrusion and post-intrusion root volumes were statistically significant for all of the roots investigated (P<0.05). The roots were sorted by volume loss in descending order as follows: mesiobuccal, palatal, and distobuccal. Statistical significance was achieved among the three roots. The average total resorption for each tooth was 58.39±1.54 mm(3). Volume measurement using CBCT was able to effectively evaluate root resorption caused by mini-screw intrusion. The highest volume loss was observed in the mesiobuccal root among the three roots of the investigated first molar teeth.
Li, Wen; Chen, Fei; Zhang, Feng; Ding, Wanghui; Ye, Qingsong; Shi, Jiejun; Fu, Baiping
2013-01-01
Objective Molar intrusion by mini-screw implantation can cause different degrees of root resorption. However, most methods (2-D and 3-D) used for evaluating root resorption have focused on the root length without considering 3-D resorption. The purpose of this study was to volumetrically evaluate root resorption using cone beam computed tomography(CBCT) after mini-screw implant intrusion. Materials and Methods 1. The volumes of 32 teeth were measured using CBCT and laser scanning to verify the accuracy of CBCT. 2. Twelve overerupted molars from adult patients were investigated in this study. After mini-screw implants were inserted into the buccal and palatal alveolar bones, 150 g of force was applied to the mini-screw implants on each side to intrude the molars. CBCT images of all patients were taken immediately prior to intrusion and after intrusion. The volumes of the roots were calculated using the Mimics software program. The differences between the pre-intrusion and post-intrusion root volumes were statistically evaluated with a paired-samples t-test. In addition, the losses of the roots were statistically compared with each other using one-way analysis of variance at the P<0.05 level. Results No statistically significant volume differences were observed between the physical (laser scanning) and CBCT measurements (P>0.05). The overerupted molars were significantly intruded (P<0.05), and the average intrusion was 3.30±1.60 mm. The differences between the pre-intrusion and post-intrusion root volumes were statistically significant for all of the roots investigated (P<0.05). The roots were sorted by volume loss in descending order as follows: mesiobuccal, palatal, and distobuccal. Statistical significance was achieved among the three roots. The average total resorption for each tooth was 58.39±1.54 mm3. Conclusion Volume measurement using CBCT was able to effectively evaluate root resorption caused by mini-screw intrusion. The highest volume loss was observed in the mesiobuccal root among the three roots of the investigated first molar teeth. PMID:23585866
Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption.
Wilson, Susan R; Peters, Christoph; Saftig, Paul; Brömme, Dieter
2009-01-23
Cathepsin K is responsible for the degradation of type I collagen in osteoclast-mediated bone resorption. Collagen fragments are known to be biologically active in a number of cell types. Here, we investigate their potential to regulate osteoclast activity. Mature murine osteoclasts were seeded on type I collagen for actin ring assays or dentine discs for resorption assays. Cells were treated with cathepsins K-, L-, or MMP-1-predigested type I collagen or soluble bone fragments for 24 h. The presence of actin rings was determined fluorescently by staining for actin. We found that the percentage of osteoclasts displaying actin rings and the area of resorbed dentine decreased significantly on addition of cathepsin K-digested type I collagen or bone fragments, but not with cathepsin L or MMP-1 digests. Counterintuitively, actin ring formation was found to decrease in the presence of the cysteine proteinase inhibitor LHVS and in cathepsin K-deficient osteoclasts. However, cathepsin L deficiency or the general MMP inhibitor GM6001 had no effect on the presence of actin rings. Predigestion of the collagen matrix with cathepsin K, but not by cathepsin L or MMP-1 resulted in an increased actin ring presence in cathepsin K-deficient osteoclasts. These studies suggest that cathepsin K interaction with type I collagen is required for 1) the release of cryptic Arg-Gly-Asp motifs during the initial attachment of osteoclasts and 2) termination of resorption via the creation of autocrine signals originating from type I collagen degradation.
Petrova, Nina L; Petrov, Peter K; Edmonds, Michael E; Shanahan, Catherine M
2014-04-01
We hypothesized that newly formed osteoclasts from patients with acute Charcot osteoarthropathy can resorb surfaces of bone more extensively compared with controls. Peripheral blood monocytes, isolated from eight Charcot patients and nine controls, were cultured in vitro on 24-well plates and bovine bone discs in duplicate with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast formation was assessed by tartrate-resistant acid phosphatase staining (TRAcP) at day 17. Resorption was measured at day 21 after toluidine blue staining by two methods: (1) area of resorption at the surface by image analysis (%) and (2) area of resorption under the surface (μm(2)) measured by a Dektak 150 Surface Profiler. Ten 1,000 μm-long scans were performed per disc. Pits were classified as unidented, bidented, and multidented according to their shape. Although the number of newly formed TRAcP positive multinucleated cells (>3 nuclei) was similar in M-CSF + RANKL-treated cultures between controls and Charcot patients, the latter exhibited increased resorbing activity. The area of resorption on the surface by image analysis was significantly greater in Charcot patients compared with controls (21.1 % [14.5-26.2] vs. 40.8 % [35.4-46.0], median [25-75th percentile], p < 0.01), as was the area of resorption under the surface (2.7 x 10(3) μm(2) [1.6 x 10(3)- 3.9 x 10(3)] vs. 8.3 x 10(3) μm (2) [5.6 x 10(3)- 10.6 x 10(3), [corrected] p < 0.01) after profilometry. In Charcot patients pits were deeper and wider and more frequently presented as multidented pits. This application of the Dektak 150 Surface Profiler revealed novel differences in resorption pit profile from osteoclasts derived from Charcot patients compared with controls. Resorption in Charcot patients was mediated by highly aggressive newly formed osteoclasts from monocytes eroding large and deep areas of bone.
Wade-Gueye, Ndéye Marième; Boudiffa, Maya; Laroche, Norbert; Vanden-Bossche, Arnaud; Fournier, Carole; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie-Hélène; Malaval, Luc
2010-11-01
Bone sialoprotein (BSP) belongs to the small integrin-binding ligand, N-linked glycoprotein (SIBLING) family, whose members play multiple and distinct roles in the development, turnover, and mineralization of bone and dentin. The functions of BSP in bone remodeling are not yet well established. We previously showed that BSP knockout (BSP(-/-)) mice exhibit a higher trabecular bone volume, concomitant with lower bone remodeling, than wild-type (BSP(+/+)) mice. To determine whether bone turnover can be stimulated in the absence of BSP, we subjected BSP(+/+) and BSP(-/-) mice to catabolic [ovariectomy (OVX)] or anabolic (intermittent PTH administration) hormonal challenges. BSP(-/-) mice progressively develop hypocalcemia and high serum PTH between 2 and 4 months of age. Fifteen and 30 d after OVX, microtomography analysis showed a significant decrease of trabecular bone volume in tibiae of both genotypes. Histomorphometric parameters of bone formation and resorption were significantly increased by OVX. PTH treatment resulted in an increase of trabecular thickness and both bone formation and resorption parameters at all skeletal sites in both genotypes and a decrease of trabecular bone volume in tibiae of BSP(+/+) but not BSP(-/-) mice. PTH increased cortical thickness and bone area in BSP(+/+) but not BSP(-/-) mice and stimulated the bone formation rate specifically in the endosteum of BSP(+/+) mice and the periosteum of BSP(-/-) mice. PTH enhanced the expression of RANKL, MEPE, and DMP1 in both genotypes but increased OPG and OPN expression only in BSP(-/-) mice. In conclusion, despite the low basal turnover, both catabolic and anabolic challenges increase bone formation and resorption in BSP(-/-) mice, suggesting that compensatory pathways are operative in the skeleton of BSP-deficient mice. Although up-regulation of one or several other SIBLINGs is a possible mechanism, further studies are needed to analyze the interplay and cross-regulation involved in compensating for the absence of BSP.
Impaired rib bone mass and quality in end-stage cystic fibrosis patients.
Mailhot, Geneviève; Dion, Natalie; Farlay, Delphine; Rizzo, Sébastien; Bureau, Nathalie J; Jomphe, Valérie; Sankhe, Safiétou; Boivin, Georges; Lands, Larry C; Ferraro, Pasquale; Ste-Marie, Louis-Georges
2017-05-01
Advancements in research and clinical care have considerably extended the life expectancy of cystic fibrosis (CF) patients. However, with this extended survival come comorbidities. One of the leading co-morbidities is CF-related bone disease (CFBD), which progresses with disease severity and places patients at high risk for fractures, particularly of the ribs and vertebrae. Evidence that CF patients with vertebral fractures had higher bone mineral density (BMD) than the nonfracture group led us to postulate that bone quality is impaired in these patients. We therefore examined rib specimens resected at the time of lung transplant in CF patients to measure parameters of bone quantity and quality. In this exploratory study, we analysed 19 end-stage CF and 13 control rib specimens resected from otherwise healthy lung donors. BMD, bone microarchitecture, static parameters of bone formation and resorption and microcrack density of rib specimens were quantified by imaging, histomorphometric and histological methods. Variables reflecting the mineralization of ribs were assessed by digitized microradiography. The degree of bone mineralization (g/cm 3 ) and the heterogeneity index of the mineralization (g/cm 3 ) were calculated for trabecular and cortical bone. Compared to controls, CF ribs exhibited lower areal and trabecular volumetric BMD, decreased trabecular thickness and osteoid parameters, and increased microcrack density, that was particularly pronounced in specimens from patients with CF-related diabetes. Static parameters of bone resorption were similar in both groups. Degree of mineralization of total bone, but not heterogeneity index, was increased in CF specimens. The combination of reduced bone mass, altered microarchitecture, imbalanced bone remodeling (maintained bone resorption but decreased formation), increased microdamage and a small increase of the degree of mineralization, may lead to decreased bone strength, which, when coupled with chronic coughing and chest physical therapy, may provide an explanation for the increased incidence of rib fractures previously reported in this population. Copyright © 2017 Elsevier Inc. All rights reserved.
Scanning electron microscopy of bone: instrument, specimen, and issues.
Boyde, A; Jones, S J
1996-02-01
There are many ways available now to maximise and analyse the information that can be obtained on the structure and constitution of bone using SEM. This paper considers a range of methods and the problems that arise relating to instrumentation and methodology as they apply to the use of SEM in the study of bone. In addition to the review content, some novel technical approaches to the SEM of bone are considered here for the first time; these include low kV imaging for the detection of new surface bone packets (and residual demineralized matrix after resorption), low kV BSE imaging of uncoated, embedded, and unembedded samples, environmental SEM for the study of wet tissue, low distortion, very low magnification imaging for the study of cancellous bone architecture, the use of multiple detectors for fast electrons in improving the imaging of porous samples, and high resolution, low voltage imaging for the study of collagen degradation during bone resorption.
2015-01-01
Bone remodeling relies on the coordinated functioning of osteoblasts, bone-forming cells, and osteoclasts, bone-resorbing cells. The effects of specific chemical and physical bone features on the osteoclast adhesive apparatus, the sealing zone ring, and their relation to resorption functionality are still not well-understood. We designed and implemented a correlative imaging method that enables monitoring of the same area of bone surface by time-lapse light microscopy, electron microscopy, and atomic force microscopy before, during, and after exposure to osteoclasts. We show that sealing zone rings preferentially develop around surface protrusions, with lateral dimensions of several micrometers, and ∼1 μm height. Direct overlay of sealing zone rings onto resorption pits on the bone surface shows that the rings adapt to pit morphology. The correlative procedure presented here is noninvasive and performed under ambient conditions, without the need for sample labeling. It can potentially be applied to study various aspects of cell-matrix interactions. PMID:26682493
NASA Astrophysics Data System (ADS)
Li, Wei; Rungsiyakull, Chaiy; Field, Clarice; Lin, Daniel; Zhang, Leo; Li, Qing; Swain, Michael
2010-06-01
Clinical and experimental studies showed that human bone has the ability to remodel itself to better adapt to its biomechanical environment by changing both its material properties and geometry. As a consequence of the rapid development and extensive applications of major dental restorations such as implantation and fixed partial denture (FPD), the effect of bone remodeling on the success of a dental restorative surgery is becoming critical for prosthetic design and pre-surgical assessment. This paper aims to provide a computational biomechanics framework to address dental bone's responses as a result of dental restoration. It explored three important issues of resorption, apposition and osseointegration in terms of remodeling simulation. The published remodeling data in long bones were regulated to drive the computational remodeling prediction for the dental bones by correlating the results to clinical data. It is anticipated that the study will provide a more predictive model of dental bone response and help develop a new design methodology for patient-specific dental prosthetic restoration.
Broeren, Mathijs G A; Di Ceglie, Irene; Bennink, Miranda B; van Lent, Peter L E M; van den Berg, Wim B; Koenders, Marije I; Blaney Davidson, Esmeralda N; van der Kraan, Peter M; van de Loo, Fons A J
2018-01-01
Tumor necrosis factor-inducible gene 6 (TSG-6) has anti-inflammatory and chondroprotective effects in mouse models of inflammatory arthritis. Because cartilage damage and inflammation are also observed in osteoarthritis (OA), we determined the effect of viral overexpression of TSG-6 in experimental osteoarthritis. Bone marrow-derived cells were differentiated to multinucleated osteoclasts in the presence of recombinant TSG-6 or after transduction with a lentiviral TSG-6 expression vector. Multi-nucleated osteoclasts were analyzed after tartrate resistant acid phosphatase staining and resorption activity was determined on dentin slices. Collagenase-induced osteoarthritis (CIOA) was induced in C57BL/6 mice after intra-articular injection of an adenoviral TSG-6 or control luciferase expression vector. Inflammation-related protease activity was measured using bioluminescent Prosense probes. After a second adenovirus injection, cartilage damage was assessed in histological sections stained with Safranin-O. Ectopic bone formation was scored in X-ray images of the affected knees. TSG-6 did not inhibit the formation of multi-nucleated osteoclasts, but caused a significant reduction in the resorption activity on dentin slices. Adenoviral TSG-6 gene therapy in CIOA could not reduce the cartilage damage compared to the luciferase control virus and no significant difference in inflammation-related protease activity was noted between the TSG-6 and control treated group. Instead, X-ray analysis and histological analysis revealed the presence of ectopic bone formation in the TSG-6 treated group. Gene therapy based on the expression of TSG-6 could not provide cartilage protection in experimental osteoarthritis, but instead resulted in increased ectopic bone formation.
Lee, Eun-Jung; Kim, Jung-Lye; Kim, Yun-Ho; Kang, Min-Kyung; Gong, Ju-Hyun; Kang, Young-Hee
2014-09-15
Bone-remodeling imbalance induced by increased osteoclast formation and bone resorption is known to cause skeletal diseases such as osteoporosis. The reduction of estrogen levels at menopause is one of the strongest risk factors developing postmenopausal osteoporosis. This study investigated osteoprotective effects of the dihydrochalcone phloretin found in apple tree leaves on bone loss in ovariectomized (OVX) C57BL/6 female mice as a model for postmenopausal osteoporosis. OVX demoted bone mineral density (BMD) of mouse femurs, reduced serum 17β-estradiol level and enhanced serum receptor activator of NF-κB ligand (RANKL)/osteoprotegerin ratio with uterine atrophy. Oral administration of 10 mg/kg phloretin to OVX mice for 8 weeks improved such effects, compared to sham-operated mice. Phloretin attenuated TRAP activity and cellular expression of β3 integrin and carbonic anhydrase II augmented in femoral bone tissues of OVX mice. This study further examined that osteogenic activity of phloretin in RANKL-differentiated Raw 264.7 macrophages into mature osteoclasts. Phloretin at 1-20 μM stimulated Smac expression and capase-3 activation concurrently with nuclear fragmentation of multi-nucleated osteoclasts, indicating that this compound promoted osteoclast apoptosis. Consistently, phloretin enhanced bcl-2 induction but diminished bax expression. Furthermore, phloretin activated ASK-1-diverged JNK and p38 MAPK signaling pathways in mature osteoclasts, whereas it dose-dependently inhibited the RANKL-stimulated activation of ERK. Therefore, phloretin manipulated ASK-1-MAPK signal transduction leading to transcription of apoptotic genes. Phloretin was effective in preventing estrogen deficiency-induced osteoclastogenic resorption. Copyright © 2014 Elsevier GmbH. All rights reserved.
Dietary protein, calcium metabolism, and skeletal homeostasis revisited.
Kerstetter, Jane E; O'Brien, Kimberly O; Insogna, Karl L
2003-09-01
High dietary protein intakes are known to increase urinary calcium excretion and, if maintained, will result in sustained hypercalciuria. To date, the majority of calcium balance studies in humans have not detected an effect of dietary protein on intestinal calcium absorption or serum parathyroid hormone. Therefore, it is commonly concluded that the source of the excess urinary calcium is increased bone resorption. Recent studies from our laboratory indicate that alterations in dietary protein can, in fact, profoundly affect intestinal calcium absorption. In short-term dietary trials in healthy adults, we fixed calcium intake at 20 mmol/d while dietary protein was increased from 0.7 to 2.1 g/kg. Increasing dietary protein induced hypercalciuria in 20 women [from 3.4 +/- 0.3 ( +/- SE) during the low-protein to 5.4 +/- 0.4 mmol/d during the high-protein diet]. The increased dietary protein was accompanied by a significant increase in intestinal calcium absorption from 18.4 +/- 1.3% to 26.3 +/- 1.5% (as determined by dual stable isotopic methodology). Dietary protein intakes at and below 0.8 g/kg were associated with a probable reduction in intestinal calcium absorption sufficient to cause secondary hyperparathyroidism. The long-term consequences of these low-protein diet-induced changes in mineral metabolism are not known, but the diet could be detrimental to skeletal health. Of concern are several recent epidemiologic studies that demonstrate reduced bone density and increased rates of bone loss in individuals habitually consuming low-protein diets. Studies are needed to determine whether low protein intakes directly affect rates of bone resorption, bone formation, or both.
Triiodothyronine increases calcium loss in a bed rest antigravity model for space flight.
Smith, Steven R; Lovejoy, Jennifer C; Bray, George A; Rood, Jennifer; Most, Marlene M; Ryan, Donna H
2008-12-01
Bed rest has been used as a model to simulate the effects of space flight on bone metabolism. Thyroid hormones accelerate bone metabolism. Thus, supraphysiologic doses of this hormone might be used as a model to accelerate bone metabolism during bed rest and potentially simulate space flight. The objective of the study was to quantitate the changes in bone turnover after low doses of triiodothyronine (T(3)) added to short-term bed rest. Nine men and 5 women were restricted to bed rest for 28 days with their heads positioned 6 degrees below their feet. Subjects were randomly assigned to receive either placebo or oral T(3) at doses of 50 to 75 microg/d in a single-blind fashion. Calcium balance was measured over 5-day periods; and T(3), thyroxine, thyroid-stimulating hormone, immunoreactive parathyroid hormone, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline were measured weekly. Triiodothyronine increased 2-fold in the men and 5-fold in the women during treatment, suppressing both thyroxine and thyroid-stimulating hormone. Calcium balance was negative by 300 to 400 mg/d in the T(3)-treated volunteers, primarily because of the increased fecal loss that was not present in the placebo group. Urinary deoxypyridinoline to creatinine ratio, a marker of bone resorption, increased 60% in the placebo group during bed rest, but more than doubled in the T(3)-treated subjects (P < .01), suggesting that bone resorption was enhanced by treatment with T(3). Changes in serum osteocalcin and bone-specific alkaline phosphatase, markers of bone formation, were similar in T(3)- and placebo-treated subjects. Triiodothyronine increases bone resorption and fecal calcium loss in subjects at bed rest.
Gauthier, O; Bouler, J M; Weiss, P; Bosco, J; Daculsi, G; Aguado, E
1999-10-01
This study investigated the in vivo performance of two composite injectable bone substitutes (IBS), each with different calcium-phosphate particles granulometries [40-80 (IBS 40-80) and 200-500 microm (IBS 200-500)]. These biomaterials were obtained by associating a biphasic calcium-phosphate (BCP) ceramic mineral phase with a 3% aqueous solution of a cellulosic polymer (hydroxy-propyl-methyl-cellulose). Both materials were injected for periods of 2, 3, 8, or 12 weeks into bone defects at the distal end of rabbit femurs. Quantitative results on new bone formation, BCP resorption, and staining for tartrate-resistant acid phosphatase (TRAP) activity were studied for statistical purposes. Measurements with scanning electron microscopy and image analysis showed that the final rates of newly formed bone were similar for both tested IBS after 12 weeks of implantation. Bone colonization occurred more extensively during early implantation times for IBS 40-80 than for IBS 200-500. For the latter, BCP degradation occurred regularly throughout the implantation period, whereas it was very intensive during the first 2 weeks for IBS 40-80. Positive TRAP-stained degradation cells were significantly more numerous for IBS 40-80 than for IBS 200-500 regardless of implantation time. With the granulometry of either mineral phase, both tested IBS supported extensive bone colonization, which was greater than that previously reported for an equivalent block of macroporous BCP. The resorption-bone substitution process seemed to occur earlier and faster for IBS 40-80 than for IBS 200-500. Both tested IBS expressed similar biological efficiency, with conserved in vivo bioactivity and bone-filling ability. Copyright 1999 John Wiley & Sons, Inc.
Hayami, Tadashi; Pickarski, Maureen; Wesolowski, Gregg A; McLane, Julia; Bone, Ashleigh; Destefano, James; Rodan, Gideon A; Duong, Le T
2004-04-01
It has been suggested that subchondral bone remodeling plays a role in the progression of osteoarthritis (OA). To test this hypothesis, we characterized the changes in the rat anterior cruciate ligament transection (ACLT) model of OA and evaluated the effects of alendronate (ALN), a potent inhibitor of bone resorption, on cartilage degradation and on osteophyte formation. Male Sprague-Dawley rats underwent ACLT or sham operation of the right knee. Animals were then treated with ALN (0.03 and 0.24 microg/kg/week subcutaneously) and necropsied at 2 or 10 weeks postsurgery. OA changes were evaluated. Subchondral bone volume and osteophyte area were measured by histomorphometric analysis. Coimmunostaining for transforming growth factor beta (TGF beta), matrix metalloproteinase 9 (MMP-9), and MMP-13 was performed to investigate the effect of ALN on local activation of TGF beta. ALN was chondroprotective at both dosages, as determined by histologic criteria and collagen degradation markers. ALN suppressed subchondral bone resorption, which was markedly increased 2 weeks postsurgery, and prevented the subsequent increase in bone formation 10 weeks postsurgery, in the untreated tibial plateau of ACLT joints. Furthermore, ALN reduced the incidence and area of osteophytes in a dose-dependent manner. ALN also inhibited vascular invasion into the calcified cartilage in rats with OA and blocked osteoclast recruitment to subchondral bone and osteophytes. ALN treatment reduced the local release of active TGF beta, possibly via inhibition of MMP-13 expression in articular cartilage and MMP-9 expression in subchondral bone. Subchondral bone remodeling plays an important role in the pathogenesis of OA. ALN or other inhibitors of bone resorption could potentially be used as disease-modifying agents in the treatment of OA.
USDA-ARS?s Scientific Manuscript database
Studies have demonstrated that obesity induced by high-fat diets increases bone resorption, decreases trabecular bone mass, and reduces bone strength in various animal models. This study investigated whether N-acetylcysteine (NAC), an antioxidant and a glutathione precursor, alters glutathione statu...
Increased physical activity ameliorates high fat diet-induced bone resorption in mice
USDA-ARS?s Scientific Manuscript database
It has been recognized that mechanical stresses associated with physical activity (PA) have beneficial effects on increasing bone mineral density (BMD) and improving bone quality. On the other hand, high fat diet (HFD) and obesity increase bone marrow adiposity leading to increased excretion of pro-...
Binkley, N; Krueger, D
2000-05-01
Animal, human, and in vitro data all indicate that excess vitamin A stimulates bone resorption and inhibits bone formation. This combination would be expected to produce bone loss and to contribute to osteoporosis development and may occur with relatively low vitamin A intake. It is possible that unappreciated hypervitaminosis A contributes to osteoporosis pathogenesis.
Fifty years of human space travel: implications for bone and calcium research
USDA-ARS?s Scientific Manuscript database
Calcium and bone metabolism remain key concerns for space travelers, and ground-based models of space flight have provided a vast literature to complement the smaller set of reports from flight studies. Increased bone resorption and largely unchanged bone formation result in the loss of calcium and ...
Suzuki, Selly Sayuri; Garcez, Aguinaldo Silva; Reese, Patricia Oblitas; Suzuki, Hideo; Ribeiro, Martha Simões; Moon, Won
2018-05-01
The aim of this study was to compare the rate of tooth displacement, quantity of root resorption, and alveolar bone changes in five groups: corticopuncture (CP), low-level laser therapy (LLLT), CP combined with LLLT (CP + LLLT), control (C), and negative control (NC). A total of 60 half-maxilla from 30 male Wistar rats (10 weeks old) were divided randomly into five groups: three (CP, LLLT, and CP + LLLT) test groups with different stimulation for accelerated-tooth-movement (ATM), one control (C) group, and one negative control (NC) group with no tooth movement. Nickel-titanium coil springs with 50 g of force were tied from the upper left and right first molars to micro-implants placed behind the maxillary incisors. For the CP and CP + LLLT groups, two perforations in the palate and one mesially to the molars were performed. For the LLLT and CP + LLLT groups, GaAlAs diode laser was applied every other day for 14 days (810 nm, 100 mW, 15 s). The tooth displacements were measured directly from the rat's mouth and indirectly from microcomputer (micro-CT) tomographic images. Bone responses at the tension and compression sites and root resorption were analyzed from micro-CT images. The resulting alveolar bone responses were evaluated by measuring bone mineral density (BMD), bone volume fraction (BV/TV), and trabecular thickness (TbTh). Root resorption crater volumes were measured on both compression and tension sides of mesial and distal buccal roots. The tooth displacement in the CP + LLLT group was the greatest when measured clinically, followed by the CP, LLLT, and control groups (C and NC), respectively (p <0.05). The tooth movements measured from micro-CT images showed statistically higher displacement in the CP and CP + LLLT groups compared to the LLLT and control groups. The BMD, BV/TV, and TbTh values were lower at the compression side and higher at the tension side for all three test groups compared to the control group. The root resorption crater volume of the distal buccal root was higher in the control group, followed by CP, LLLT, and CP + LLLT, mostly at the compression site. Combining corticopuncture and low-level laser therapy (CP + LLLT) produced more tooth displacement and less root resorption at the compression side. The combined technique also promoted higher alveolar bone formation at the tension side.
Pathophysiology and new strategies for the treatment of Legg-Calvé-Perthes disease.
Kim, Harry K W
2012-04-04
Legg-Calvé-Perthes disease is a juvenile form of idiopathic osteonecrosis of the femoral head that can lead to permanent femoral head deformity and premature osteoarthritis. According to two recent multicenter, prospective cohort studies, current nonoperative and operative treatments have modest success rates of producing a good outcome with a spherical femoral head in older children with Legg-Calvé-Perthes disease. Experimental studies have revealed that the immature femoral head is mechanically weakened following ischemic necrosis. Increased bone resorption and delayed new bone formation, in combination with continued mechanical loading of the hip, contribute to the pathogenesis of the femoral head deformity. Biological treatment strategies to improve the healing process by decreasing bone resorption and stimulating bone formation appear promising in nonhuman preclinical studies.
Bone Resorption Increases as Early as the Second Day in Head- Down Bed Rest
NASA Astrophysics Data System (ADS)
Heer, M.; Kamps, N.; Mika, C.; Boese, A.; Gerzer, R.
Long-term bed rest and space mission studies have shown that immobilization as well as microgravity induce increased bone resorption while bone formation tends to decrease. In order to analyze the kinetics of short-term changes in bone turnover we studied in a randomized, strictly controlled crossover design the effects of 6 days 6° head-down tilt bed rest (HDT) in 8 male healthy subjects (mean body weight (BW): 70.1 +/- 1.88 kg; mean age: 25.5 +/- 1.04 years) in our metabolic ward. Two days before arriving in the metabolic ward the subjects started with a diet consisting of an energy content of 10 MJ/d, 2000 mg Calcium/d, 400 i.U. Vitamin D, 200 mEq Na+ and 50 ml water/kg BW/d. The diet was continued in the metabolic ward. The metabolic ward period (11days) was divided into 3 parts: 4 ambulatory days, 6 days either HDT or control and 1 recovery day. Continuous urine collection started on the first day in the metabolic ward to analyze calcium excretion and bone resorption markers, namely C-telopeptide (CTX) and N-telopeptide (NTX). On the 2nd ambulatory day in the metabolic ward and on the 5th day in HDT or control blood was drawn to analyze serum calcium, parathyroid hormone, and bone formation markers (bone Alkaline Phosphatase (bAP), Procollagen-I-Propeptide (P-I-CP). Both study phases were identical with respect to environmental conditions, study protocol and diet. Urinary calcium excretion was as early as the first day in immobilization increased (p<0.01). CTX- and NTX-excretion stayed unchanged the first 24 hours in HDT compared to the control. But, already on the 2nd day of immobilization both bone resorption markers significantly increased. NTX-excretion was increased by 28.7 +/- 14.0% (p<0.05), while CTX-excretion rose by 17.8 +/- 8.3% (p<0.01). Both, the CTX- excretion as well as the calcium excretion keep the significantly higher level during the HDT period, and even continued through the first day of recovery. However, NTX excretion, descended from day three until the end of HDT. But, the level of NTX excretion during HDT was always higher than during control. In contrast to the bone resorption markers, the formation marker P-I-CP tended to decrease as early as the fifth day of immobilization (p<0.10). Serum calcium-, parathyroid hormone-, as well as bAP concentrations were unchanged. We conclude from these results of a pronounced rise of bone resorption markers that already 24 hours of immobilization induce a significant rise in osteoclast activity in healthy subjects. Thus, it appears possible to use short-term bed rest studies for the development of countermeasures to immobilization osteoporosis and to avoid long-term studies, which presently impose major detectable changes on the health status of healthy human subjects. Further studies are mandatory to investigate the underlying mechanisms and respective countermeasures.
Darling, A L; Hart, K H; Gossiel, F; Robertson, F; Hunt, J; Hill, T R; Johnsen, S; Berry, J L; Eastell, R; Vieth, R; Lanham-New, S A
2017-05-01
Few data exist on bone turnover in South Asian women and it is not well elucidated as to whether Western dwelling South Asian women have different bone resorption levels to that of women from European ethnic backgrounds. This study assessed bone resorption levels in UK dwelling South Asian and Caucasian women as well as evaluating whether seasonal variation in 25-hydroxyvitamin D [25(OH)D] is associated with bone resorption in either ethnic group. Data for seasonal measures of urinary N-telopeptide of collagen (uNTX) and serum 25(OH)D were analysed from n=373 women (four groups; South Asian postmenopausal n=44, South Asian premenopausal n=50, Caucasian postmenopausal n=144, Caucasian premenopausal n=135) (mean (±SD) age 48 (14) years; age range 18-79years) who participated in the longitudinal D-FINES (Diet, Food Intake, Nutrition and Exposure to the Sun in Southern England) cohort study (2006-2007). A mixed between-within subjects ANOVA (n=192) showed a between subjects effect of the four groups (P<0.001) on uNTX concentration, but no significant main effect of season (P=0.163). Bonferroni adjusted Post hoc tests (P≤0.008) suggested that there was no significant difference between the postmenopausal Asian and premenopausal Asian groups. Season specific age-matched-pairs analyses showed that in winter (P=0.04) and spring (P=0.007), premenopausal Asian women had a 16 to 20nmolBCE/mmol Cr higher uNTX than premenopausal Caucasian women. The (amplitude/mesor) ratio (i.e. seasonal change) for 25(OH)D was predictive of uNTX, with estimate (SD)=0.213 (0.015) and 95% CI (0.182, 0.245; P<0.001) in a non-linear mixed model (n=154). This showed that individuals with a higher seasonal change in 25(OH)D, adjusted for overall 25(OH)D concentration, showed increased levels of uNTX. Although the effect size was smaller than for the amplitude/mesor ratio, the mesor for 25(OH)D concentration was also predictive of uNTX, with estimate (SD)=-0.035 (0.004), and 95% CI (-0.043, -0.028; P<0.001). This study demonstrates higher levels of uNTX in premenopausal South Asian women than would be expected for their age, being greater than same-age Caucasian women, and similar to postmenopausal Asian women. This highlights potentially higher than expected bone resorption levels in premenopausal South Asian women which, if not offset by concurrent increased bone formation, may have future clinical and public health implications which warrant further investigation. Individuals with a larger seasonal change in 25(OH)D concentration showed an increased bone resorption, an association which was larger than that of the 25(OH)D yearly average, suggesting it may be as important clinically to ensure a stable and steady 25(OH)D concentration, as well as one that is high enough to be optimal for bone health. Copyright © 2017 Elsevier Inc. All rights reserved.
Decursin from Angelica gigas suppresses RANKL-induced osteoclast formation and bone loss.
Wang, Xin; Zheng, Ting; Kang, Ju-Hee; Li, Hua; Cho, Hyewon; Jeon, Raok; Ryu, Jae-Ha; Yim, Mijung
2016-03-05
Osteoclasts are the only cells capable of breaking down bone matrix, and excessive activation of osteoclasts is responsible for bone-destructive diseases. In this study, we investigated the effects of decursin from extract of Angelica gigas root on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation using mouse bone marrow-derived macrophages (BMMs). Decursin inhibited RANKL-induced osteoclast formation without cytotoxicity. In particular, decursin maintains the characteristics of macrophages by blocking osteoclast differentiation by RANKL. Furthermore, the RANKL-stimulated bone resorption was diminished by decursin. Mechanistically, decursin blocked the RANKL-triggered ERK mitogen-activated protein kinases (MAPK) phosphorylation, which results in suppression of c-Fos and the nuclear factor of activated T cells (NFATc1) expression. In accordance with the in vitro study, decursin reduced lipopolysaccharide (LPS)- or ovariectomy (OVX)-induced bone loss in vivo. Therefore, decursin exerted an inhibitory effect on osteoclast formation and bone loss in vitro and in vivo. Decursin could be useful for the treatment of bone diseases associated with excessive bone resorption. Copyright © 2016 Elsevier B.V. All rights reserved.
The Effect of Rosiglitazone on Bone Quality in a Rat Model of Insulin Resistance and Osteoporosis
NASA Astrophysics Data System (ADS)
Sardone, Laura Donata
Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat Type 2 Diabetes Mellitus (T2DM). Clinical trials show that women taking RSG experience more limb fractures than patients taking other T2DM drugs. The purpose of this study is to understand how RSG (3mg/kg/day and 10mg/kg/day) and the bisphosphonate alendronate (0.7mg/kg/week) alter bone quality in the male, female and female ovariectomized (OVX) Zucker fatty rat model over a 12 week period. Bone quality was evaluated by mechanical testing of cortical and trabecular bone. Microarchitecture, bone mineral density (BMD), cortical bone porosity, bone formation/resorption and mineralization were also measured. Female OVX RSG10mg/kg rats had significantly lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented these negative effects in the OVX RSG model. Evidence of reduced bone formation and excess bone resorption was detected in female RSG-treated rats.
Popoff, S N; Osier, L K; Zerwekh, J E; Marks, S C
1994-01-01
Osteopetrosis describes a heterogeneous group of inherited, metabolic bone disorders characterized by reduced bone resorption which coexists with elevated circulating levels of 1,25-dihydroxyvitamin D [1,25(OH)2D]. To determine whether or not skeletal sclerosis and high concentrations of 1,25(OH)2D are interdependent, this study used two distinct, nonallelic osteopetrotic mutations in the rat, osteopetrosis (op) and toothless (tl). The op rat is a mutation in which skeletal sclerosis can be cured (mutant) or induced (normal) following the transfer of normal or mutant osteoclast progenitors, respectively. Although these procedures are ineffective in rats of tl stock, infusions of pharmacological doses of macrophage colony-stimulating factor (CSF-1) can stimulate bone resorption and eliminate most of the excess skeletal matrix in tl mutants. This study examined the effects of cure/induction in neonatal mutant/normal rats of op stock and CSF-1 infusions in mutant rats of tl stock on skeletal (bone resorption) and serum [1,25(OH)2D] parameters as a function of time after treatment. Osteopetrotic mutants transplanted (cured) with normal spleen cells demonstrated cellular changes in osteoclast phenotype within 2-3 days followed by histologic and radiographic evidence for increased bone resorption that culminated in a normal appearance of the skeleton by 4 weeks. The markedly elevated serum levels of 1,25(OH)2D observed in untreated mutants fell significantly in transplanted mutants by the end of the first week and were similar to those in normal littermates at 3 and 4 weeks. Normal littermates transplanted (induced) with mutant spleen cells showed a progressive increase in skeletal sclerosis paralleled by significant increases in circulating levels of 1,25(OH)2D.(ABSTRACT TRUNCATED AT 250 WORDS)
Various selected vegetables, fruits, mushrooms and red wine residue inhibit bone resorption in rats.
Mühlbauer, Roman C; Lozano, Annemarie; Reinli, Andreas; Wetli, Herbert
2003-11-01
To make a broad survey of the effect of components of the human diet on bone resorption, a few items from the following categories were added to rat diets: vegetables, fruits, beans, nuts and seeds, mushrooms, carbohydrate sources and beverages. The effect on bone resorption was measured by the urinary excretion of tritium released from bones of 9-wk-old rats prelabeled with tritiated tetracycline from weeks 1 to 6. The number of rats per experiment was 26--6, 5, 5, 5 and 5 in the untreated control group fed the plain semipurified diet, the positive control group fed onions and three groups fed one of the newly investigated items, respectively. New experiments were added until 10 rats were fed each item in each of two separate experiments. The results for each item were compared to those for the untreated control group (n = 12) investigated simultaneously. We found that feeding rats 1 g/d of dry fennel, celeriac, oranges, prunes, French beans and farmed and wild mushrooms (Agaricus hortensis and Boletus edulis) as well as the freeze-dried residue from red wine significantly (P < 0.05 or lower) inhibited bone resorption. Eighteen items had no significant effect. To date we have found 25/53 items that exhibit inhibitory activity. Activity appears to be restricted to the following categories: vegetables, salads, herbs, mushrooms, fruits and red wine residue (25/36 items effective). Furthermore, as assessed in a similar experimental design with various doses of a mixture of active items, we determined the minimum effective dose of the dry items to be 170 mg/d. These results open the possibility for targeted interventions in humans.
NASA Technical Reports Server (NTRS)
Miyauchi, A.; Hruska, K. A.; Greenfield, E. M.; Duncan, R.; Alvarez, J.; Barattolo, R.; Colucci, S.; Zambonin-Zallone, A.; Teitelbaum, S. L.; Teti, A.
1990-01-01
The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose-dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.
Gil-Albarova, Jorge; Salinas, Antonio J; Bueno-Lozano, Antonio L; Román, Jesus; Aldini-Nicolo, Nicolo; García-Barea, Agustina; Giavaresi, Gianluca; Fini, Milena; Giardino, Roberto; Vallet-Regí, Maria
2005-07-01
The in vivo evaluation, in New Zealand rabbits, of a sol-gel glass 70% CaO-30% SiO2 (in mol%) and a glass-ceramic obtained from thermal treatment of the glass, both bioactive in Kokubo's simulated body fluid (SBF), is presented. Femoral bone diaphyseal critical defects were filled with: (i) sol-gel glass cylinders, (ii) glass-ceramic cylinders, or (iii) no material (control group). Osteosynthesis was done by means of anterior screwed plates with an associate intramedullar Kirschner wire. Each group included 10 mature rabbits, 9 months old. Follow-up was 6 months. After sacrifice, macroscopic study showed healing of bone defects, with bone coating over the cylinders, but without evidence of satisfactory repair in control group. Radiographic study showed good implant stability and periosteal growth and bone remodelling around and over the filled bone defect. The morphometric study showed minimum evidences of degradation or resorption in glass-ceramic cylinders, maintaining its original shape, but sol-gel glass cylinders showed abundant fragmentation and surface resorption. An intimate union of the new-formed bone to both materials was observed. Mechanical study showed the higher results in the glass-ceramic group, whereas sol-gel glass and control group showed no differences. The minimum degradation of glass-ceramic cylinders suggests their application in critical bone defects locations of transmission forces or load bearing. The performance of sol-gel glass cylinders suggests their usefulness in locations where a quick resorption should be preferable, considering the possibility of serving as drug or cells vehicle for both of them.
Schipmann, S; Metzler, P; Rössle, M; Zemann, W; von Jackowski, J; Obwegeser, J A; Grätz, K W; Jacobsen, C
2013-09-01
Bone resorption inhibitor-related osteopathology of the jaw (BRIOJ) is a severe complication in patients treated with bisphosphonates or denosumab. However, the precise pathogenesis of BRIOJ is not yet fully understood. Recent studies discovered the presence of Actinomyces colonies in biopsy material from BRIOJ patients. The aim of this study was to analyze current knowledge concerning the impact of Actinomyces on the pathogenesis of this condition and to present data from our own patients. Data from 51 patients with histopathological diagnoses of BRIOJ were retrospectively analyzed. In addition, a systematic literature search for studies describing the presence of Actinomyces was performed. Actinomyces was present in 86% of our cases and 63.3% of 371 cases presented in the literature. All of our patients and 85% of patients described in the literature had a clearly defined local focus in association with osteopathology. A clear picture of whether Actinomyces colonizes the previously necrotic bone or contributes to inflammation causing subsequent bone necrosis is lacking in the literature. The pathogenesis of BRIOJ remains unknown; however, there seems to be a role for Actinomyces, and possibly other pathogens, in the development of osteopathology of the jaws, which is not exclusive to bisphosphonate therapy. This study supports the hypothesis that an infectious component is of utmost importance for the pathogenesis of BRIOJ. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Veldhuijzen, Jean Paul; Vanloon, Jack J. W. A.
1994-01-01
An experiment using isolated skeletal tissues under microgravity, is reported. Fetal mouse long bones (metatarsals) were cultured for 4 days in the Biorack facility of Spacelab during the IML-1 (International Microgravity Laboratory) mission of the Space Shuttle. Overall growth was not affected, however glucose consumption was significantly reduced under microgravity. Mineralization of the diaphysis was also strongly reduced under microgravity as compared to the on-board 1 g group. In contrast, mineral resorption by osteoclasts was signficantly increased. These results indicate that these fetal mouse long bones are a sensitive and useful model to further study the cellular mechanisms involved in the changed mineral metabolism of skeletal tissues under microgravity.
The effect of antiresorptives on bone quality.
Recker, Robert R; Armas, Laura
2011-08-01
Currently, antiresorptive therapy in the treatment and prevention of osteoporosis includes bisphosphonates, estrogen replacement, selective estrogen receptor modulators (raloxifene), and denosumab (a human antibody that inactivates RANKL). The original paradigm driving the development of antiresorptive therapy was that inhibition of bone resorption would allow bone formation to continue and correct the defect. However, it is now clear increases in bone density account for little of the antifracture effect of these treatments. We examined the antifracture benefit of antiresorptives deriving from bone quality changes. We searched the archive of nearly 30,000 articles accumulated over more than 40 years in our research center library using a software program (Refman™). Approximately 250 publications were identified in locating the 69 cited here. The findings document antiresorptive agents are not primarily anabolic. All cause a modest increase in bone density due to a reduction in the bone remodeling space; however, the majority of their efficacy is due to suppression of the primary cause of osteoporosis, ie, excessive bone remodeling not driven by mechanical need. All of them improve some element(s) of bone quality. Antiresorptive therapy reduces risk of fracture by improving bone quality through halting removal of bone tissue and the resultant destruction of microarchitecture of bone and, perhaps to some extent, by improving the intrinsic material properties of bone tissue. Information presented here may help clinicians to improve selection of patients for antiresorptive therapy by avoiding them in cases clearly not due to excessive bone remodeling.
Callaway, Danielle A; Jiang, Jean X
2015-07-01
Osteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. However, there are still many unanswered questions that remain. This review will examine the mechanisms by which ROS can be produced in osteoclasts as well as how it may affect osteoclast differentiation and activity through its actions on osteoclastogenesis signaling pathways. In addition, the contribution of ROS to the aging-associated disease of osteoporosis will be addressed and how targeting ROS may lead to the development of novel therapeutic treatment options.
Kondo, Hisataka; Searby, Nancy D; Mojarrab, Rose; Phillips, Jonathan; Alwood, Joshua; Yumoto, Kenji; Almeida, Eduardo A C; Limoli, Charles L; Globus, Ruth K
2009-03-01
Ionizing radiation can cause substantial tissue degeneration, which may threaten the long-term health of astronauts and radiotherapy patients. To determine whether a single dose of radiation acutely compromises structural integrity in the postpubertal skeleton, 18-week-old male mice were exposed to (137)Cs gamma radiation (1 or 2 Gy). The structure of high-turnover, cancellous bone was analyzed by microcomputed tomography (microCT) 3 or 10 days after irradiation and in basal controls (tissues harvested at the time of irradiation) and age-matched controls. Irradiation (2 Gy) caused a 20% decline in tibial cancellous bone volume fraction (BV/TV) within 3 days and a 43% decline within 10 days, while 1 Gy caused a 28% reduction 10 days later. The BV/TV decrement was due to increased spacing and decreased thickness of trabeculae. Radiation also increased ( approximately 150%) cancellous surfaces lined with tartrate-resistant, acid phosphatase-positive osteoclasts, an index of increased bone resorption. Radiation decreased lumbar vertebral BV/TV 1 month after irradiation, showing the persistence of cancellous bone loss, although mechanical properties in compression were unaffected. In sum, a single dose of gamma radiation rapidly increased osteoclast surface in cancellous tissue and compromised cancellous microarchitecture in the remodeling appendicular and axial skeleton of postpubertal mice.
Zhao, Yinghua; Wang, Lei; Liu, Yi; Akiyama, Kentaro; Chen, Chider; Atsuta, Ikiru; Zhou, Tao; Duan, Xiaohong; Jin, Yan; Shi, Songtao
2012-12-01
Technetium-99 conjugated with methylene diphosphonate ((99)Tc-MDP) is a novel bisphosphonate derivative without radioactivity and has been successfully used to treat arthritis in China for years. Since bisphosphonate therapy has the potential to induce bisphosphonate-related osteonecrosis of the jaw (BRONJ), we examined whether (99)Tc-MDP represents a new class of bisphosphonate for antiresorptive therapy to ameliorate estrogen deficiency-induced bone resorption with less risk of causing BRONJ. We showed that (99)Tc-MDP-treated, ovariectomized (OVX) mice had significantly improved bone mineral density and trabecular bone volume in comparison to the untreated OVX group by inhibiting osteoclasts and enhancing osteogenic differentiation of bone marrow mesenchymal stem cells. To determine the potential of inducing BRONJ, (99)Tc-MDP/dexamethasone (Dex) or zoledronate/Dex was administered into C57BL/6J mice via the tail vein, followed by extraction of maxillary first molars. Interestingly, (99)Tc-MDP treatment showed less risk to induce osteonecrosis in the maxillary bones compared to zoledronate treatment group, partially because (99)Tc-MDP neither suppressed adaptive regulatory T cells nor activated the inflammatory T-helper-producing interleukin-17 cells. Taken together, our findings demonstrate that (99)Tc-MDP therapy may be a promising approach in the treatment of osteoporosis with less risk of causing BRONJ.
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Davis-Street, Janis E.; Fesperman, J. Vernell; Calkins, D. S.; Bawa, Maneesh; Macias, Brandon R.; Meyer, R. Scott; Hargens, Alan R.
2003-01-01
Counteracting bone loss is required for future space exploration. We evaluated the ability of treadmill exercise in a LBNP chamber to counteract bone loss in a 30-day bed rest study. Eight pairs of identical twins were randomly assigned to sedentary control or exercise groups. Exercise within LBNP decreased the bone resorption caused by bed rest and may provide a countermeasure for spaceflight. INTRODUCTION: Bone loss is one of the greatest physiological challenges for extended-duration space missions. The ability of exercise to counteract weightlessness-induced bone loss has been studied extensively, but to date, it has proven ineffective. We evaluated the effectiveness of a combination of two countermeasures-treadmill exercise while inside a lower body negative pressure (LBNP) chamber-on bone loss during a 30-day bed rest study. MATERIALS AND METHODS: Eight pairs of identical twins were randomized into sedentary (SED) or exercise/LBNP (EX/LBNP) groups. Blood and urine samples were collected before, several times during, and after the 30-day bed rest period. These samples were analyzed for markers of bone and calcium metabolism. Repeated measures ANOVA was used to determine statistical significance. Because identical twins were used, both time and group were treated as repeated variables. RESULTS: Markers of bone resorption were increased during bed rest in samples from sedentary subjects, including the collagen cross-links and serum and urinary calcium concentrations. For N-telopeptide and deoxypyridinoline, there were significant (p < 0.05) interactions between group (SED versus EX/LBNP) and phase of the study (sample collection point). Pyridinium cross-links were increased above pre-bed rest levels in both groups, but the EX/LBNP group had a smaller increase than the SED group. Markers of bone formation were unchanged by bed rest in both groups. CONCLUSIONS: These data show that this weight-bearing exercise combined with LBNP ameliorates some of the negative effects of simulated weightlessness on bone metabolism. This protocol may pave the way to counteracting bone loss during spaceflight and may provide valuable information about normal and abnormal bone physiology here on Earth.
NASA Technical Reports Server (NTRS)
Ke, Hua Zhu; Jee, Webster S.S.; Zeng, Qing Qiang; Li, Mei; Lin, Bai Yun
1993-01-01
To investigate the effects of ovariectomy and the simultaneous administration of prostaglandin E2 (PGE2) on rat tibial shaft cortical bone histomorphometry, thirty-five 3 month-old female Sprague-Dawley rats were either ovariectomized (OVX), or sham ovariectomy (sham-OVX). The OVX rats were divided into three groups and treated with 0, 1 and 6 mg PGE2/kg/day for 90 days. The double fluorescent labeled undecalcified tibial shaft cross sections (proximal to the tibiofibular junction) of all the subjects were used for histomorphometry analysis. No differences in cross-sectional area and cortical bone area were found between sham-OVX and OVX controls, but OVX increased marrow area, intracortical porosity area and endocortical eroded perimeter. Periosteal and endocortical bone formation rates decreased with aging yet OVX prevented these changes. These OVX-induced increases in marrow area and endocortical eroded perimeter were prevented by 1 mg PGE2/kg/day treatment and added bone to periosteal and endocortical surfaces and to the marrow cavity. At the 6 mg/kg/day dose level, PGE2-treated OVX rats increased total tissue area, cortical bone area, marrow trabmular bone area, minimal cortical width and intracortical porosity area, and decreased marrow area compared to basal, sham-OVX and OVX controls. In addition, periosteal bone formation was elevated in the 6 mg PGE2/kg/day-treated OVX rats compared to OVX controls. Endocortical eroded perimeter increased from basal and sham-OVX control levels, but decreased from OVX control levels in the 6 mg PGE2/kg/day-treated OVX rats. Our study confirmed that ovariectomy does not cause osteopenia in tibial shaft cortical bone in rats, but it does stimulate endocortical bone resorption and enlarges marrow area. The new findings from the present study demonstrate that PGE2 prevents the OVX-induced increases in endocortical bone resorption and marrow area and adds additional bone to periosteal and endocortical surfaces and to marrow cavity to increase total bone mass in the tibial shaft of OVX rats when given immediately following ovafiectomy.
Grünewald, T A; Ogier, A; Akbarzadeh, J; Meischel, M; Peterlik, H; Stanzl-Tschegg, S; Löffler, J F; Weinberg, A M; Lichtenegger, H C
2016-02-01
Understanding the implant-bone interaction is of prime interest for the development of novel biodegrading implants. Magnesium is a very promising material in the class of biodegrading metallic implants, owing to its mechanical properties and excellent immunologic response during healing. However, the influence of degrading Mg implants on the bone nanostructure is still an open question of crucial importance for the design of novel Mg implant alloys. This study investigates the changes in the nanostructure of bone following the application of a degrading WZ21 Mg implant (2wt% Y, 1wt% Zn, 0.25wt% Ca and 0.15wt% Mn) in a murine model system over the course of 15months by small angle X-ray scattering. Our investigations showed a direct response of the bone nanostructure after as little as 1month with a realignment of nano-sized bone mineral platelets along the bone-implant interface. The growth of new bone tissue after implant resorption is characterized by zones of lower mineral platelet thickness and slightly decreased order in the stacking of the platelets. The preferential orientation of the mineral platelets strongly deviates from the normal orientation along the shaft and still roughly follows the implant direction after 15months. We explain our findings by considering geometrical, mechanical and chemical factors during the process of implant resorption. The advancement of surgical techniques and the increased life expectancy have caused a growing demand for improved bone implants. Ideally, they should be bio-resorbable, support bone as long as necessary and then be replaced by healthy bone tissue. Magnesium is a promising candidate for this purpose. Various studies have demonstrated its excellent mechanical performance, degradation behaviour and immunologic properties. The structural response of bone, however, is not well known. On the nanometer scale, the arrangement of collagen fibers and calcium mineral platelets is an important indicator of structural integrity. The present study provides insight into nanostructural changes in rat bone at different times after implant placement and different implant degradation states. The results are useful for further improved magnesium alloys. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The Lyme Disease Pathogen Borrelia burgdorferi Infects Murine Bone and Induces Trabecular Bone Loss.
Tang, Tian Tian; Zhang, Lucia; Bansal, Anil; Grynpas, Marc; Moriarty, Tara J
2017-02-01
Lyme disease is caused by members of the Borrelia burgdorferi sensu lato species complex. Arthritis is a well-known late-stage pathology of Lyme disease, but the effects of B. burgdorferi infection on bone at sites other than articular surfaces are largely unknown. In this study, we investigated whether B. burgdorferi infection affects bone health in mice. In mice inoculated with B. burgdorferi or vehicle (mock infection), we measured the presence of B. burgdorferi DNA in bones, bone mineral density (BMD), bone formation rates, biomechanical properties, cellular composition, and two- and three-dimensional features of bone microarchitecture. B. burgdorferi DNA was detected in bone. In the long bones, increasing B. burgdorferi DNA copy number correlated with reductions in areal and trabecular volumetric BMDs. Trabecular regions of femora exhibited significant, copy number-correlated microarchitectural disruption, but BMD, microarchitectural, and biomechanical properties of cortical bone were not affected. Bone loss in tibiae was not due to increased osteoclast numbers or bone-resorbing surface area, but it was associated with reduced osteoblast numbers, implying that bone loss in long bones was due to impaired bone building. Osteoid-producing and mineralization activities of existing osteoblasts were unaffected by infection. Therefore, deterioration of trabecular bone was not dependent on inhibition of osteoblast function but was more likely caused by blockade of osteoblastogenesis, reduced osteoblast survival, and/or induction of osteoblast death. Together, these data represent the first evidence that B. burgdorferi infection induces bone loss in mice and suggest that this phenotype results from inhibition of bone building rather than increased bone resorption. Copyright © 2017 Tang et al.
Reduced energy availability: implications for bone health in physically active populations.
Papageorgiou, Maria; Dolan, Eimear; Elliott-Sale, Kirsty J; Sale, Craig
2018-04-01
The present review critically evaluates existing literature on the effects of short- and long-term low energy availability (EA) on bone metabolism and health in physically active individuals. We reviewed the literature on the short-term effects of low EA on markers of bone metabolism and the long-term effects of low EA on outcomes relating to bone health (bone mass, microarchitecture and strength, bone metabolic markers and stress fracture injury risk) in physically active individuals. Available evidence indicates that short-term low EA may increase markers of bone resorption and decrease markers of bone formation in physically active women. Bone metabolic marker responses to low EA are less well known in physically active men. Cross-sectional studies investigating the effects of long-term low EA suggest that physically active individuals who have low EA present with lower bone mass, altered bone metabolism (favouring bone resorption), reduced bone strength and increased risk for stress fracture injuries. Reduced EA has a negative influence on bone in both the short- and long-term, and every effort should be made to reduce its occurrence in physically active individuals. Future interventions are needed to explore the effects of long-term reduced EA on bone health outcomes, while short-term low EA studies are also required to give insight into the pathophysiology of bone alterations.
Sclerostin Antibody Improves Skeletal Parameters in a Brtl/+ Mouse Model of Osteogenesis Imperfecta†
Sinder, Benjamin P.; Eddy, Mary M.; Ominsky, Michael S; Caird, Michelle S.; Marini, Joan C.; Kozloff, Kenneth M.
2012-01-01
Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by osteopenia and easy susceptibility to fracture. Symptoms are most prominent during childhood. Although anti-resorptive bisphosphonates have been widely used to treat pediatric OI, controlled trials showed improved vertebral parameters but equivocal effects on long-bone fracture rates. New treatments for OI are needed to increase bone mass throughout the skeleton. Sclerostin antibody (Scl-Ab) therapy is potently anabolic in the skeleton by stimulating osteoblasts via the canonical wnt signaling pathway, and may be beneficial for treating OI. In this study, Scl-Ab therapy was investigated in mice heterozygous for a typical OI-causing Gly->Cys substitution in col1a1. Two weeks of Scl-Ab successfully stimulated osteoblast bone formation in Brtl/+ and WT mice, leading to improved bone mass and reduced long-bone fragility. Image-guided nanoindentation revealed no alteration in local tissue mineralization dynamics with Scl-Ab. These results contrast with previous findings of antiresorptive efficacy in OI both in mechanism and potency of effects on fragility. In conclusion, short-term Scl-Ab was successfully anabolic in osteoblasts harboring a typical OI-causing collagen mutation and represents a potential new therapy to improve bone mass and reduce fractures in pediatric OI. PMID:22836659
Herrera, Bruno S.; Martins-Porto, Rodrigo; Maia-Dantas, Aline; Campi, Paula; Spolidorio, Luis C.; Costa, Soraia K.P.; Van Dyke, Thomas E.; Gyurko, Robert; Muscara, Marcelo N.
2012-01-01
Background Inflammatory stimuli activate inducible nitric oxide synthase (iNOS) in a variety of cell types, including osteoclasts (OC) and osteoblasts, resulting in sustained NO production. In this study, we evaluate the alveolar bone loss in rats with periodontitis under long-term iNOS inhibition, and the differentiation and activity of OC from iNOS-knockout (KO) mice in vitro. Methods Oral aminoguanidine (an iNOS inhibitor) or water treatment was started 2 weeks before induction of periodontitis. Rats were sacrificed 3, 7, or 14 days after ligature placement, and alveolar bone loss was evaluated. In vitro OC culture experiments were also performed to study the differentiation of freshly isolated bone marrow cells from both iNOS KO and wild-type C57BL/6 mice. OC were counted 6 days later after tartrate-resistant acid phosphatase staining (a marker of osteoclast identity), and bone resorption activity was assessed by counting the number of resorption pits on dentin disks. Results Rats with ligature showed progressive and significant alveolar bone loss compared to sham animals, and aminoguanidine treatment significantly inhibited ligature-induced bone loss at 7 and 14 days after the induction. In comparison to bone marrow cells from wild-type mice, cells from iNOS KO mice showed decreased OC growth and the resulting OC covered a smaller culture dish area and generated fewer resorption pit counts. Conclusion Our results demonstrate that iNOS inhibition prevents alveolar bone loss in a rat model of ligature-induced periodontitis, thus confirming that iNOS-derived NO plays a crucial role in the pathogenesis of periodontitis, probably by stimulating OC differentiation and activity. PMID:21417589
Zhang, Jian; Lazarenko, Oxana P.; Kang, Jie; Blackburn, Michael L.; Ronis, Martin J. J.; Badger, Thomas M.; Chen, Jin-Ran
2013-01-01
Previous studies have demonstrated that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for two weeks beginning on postnatal day 21 (PND21) significantly increased bone formation at PND35. However, the minimal level of dietary BB needed to produce these effects is, as yet, unknown. The current study examined the effects of three different levels of BB diet supplementation (1, 3, and 5%) for 35 days beginning on PND25 on bone quality, and osteoclastic bone resorption in female rats. Peripheral quantitative CT scan (pQCT) of tibia, demonstrated that bone mineral density (BMD) and content (BMC) were dose-dependently increased in BB-fed rats compared to controls (P<0.05). Significantly increased bone mass after feeding 5% BB extracts was also observed in a TEN (total enteral nutrition) rat model in which daily caloric and food intake was precisely controlled. Expression of RANKL (receptor activator of nuclear factor-κB ligand) a protein essential for osteoclast formation was dose-dependently decreased in the femur of BB animals. In addition, expression of PPARγ (peroxisome proliferator-activated receptor γ) which regulates bone marrow adipogenesis was suppressed in BB diet rats compared to non-BB diet controls. Finally, a set of in vitro cell cultures revealed that the inhibitory effect of BB diet rat serum on RANKL expression was more profound in mesenchymal stromal cells compared to its effect on mature osteoblasts, pre-adipocytes and osteocytes. These results suggest that inhibition of bone resorption may contribute to increased bone mass during early development after BB consumption. PMID:23936431
Sbordone, Carolina; Toti, Paolo; Guidetti, Franco; Califano, Luigi; Bufo, Pantaleo; Sbordone, Ludovico
2013-04-01
To evaluate long-term bone remodelling of autografts over time (annually, for 6 years), comparing the block and particulate bone procedures for sinus floor elevation, as well as to evaluate the survival of positioned dental implants. Twenty-three sinus lift procedures with autogenous bone were performed: seven sinus lift procedures using particulate graft and 10 with block autogenous bone were performed in 17 patients. Employing a software program, pre- and post-surgical computerized tomography (CT) scans were used to compare the volume (V) and density (D) of inlay grafts over time (up to 6 years), and to determine the percentage of remaining bone (%R). All variable (V, D and %R) measurements were then compared statistically. At the 6-year survey for block form, a resorption of 21.5% was seen, whereas for particulate grafts there was a resorption of 39.2%. Both groups exhibited bone remodelling between the first and second follow-up which was significant regarding volume for the block form and regarding density for the particulate group. During the initial period of healing, the cortico-cancellous block bone grafted into the maxillary sinus underwent a negative remodelling of the volume, which is most probably due to graft cortex resorption, coupled with, primarily, an increase in density in the spongious area; for the particulate grafts, significant augmentations in density were obtained. The lack of significant differences among volumes was due to the wide degree of dispersion of the data. The rough data presented in this paper seem to support the use of a bone-block grafting procedure in maxillary sinus augmentation. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake
2008-01-01
The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP. PMID:18597627
Local vs. systemic administration of bisphosphonates in rat cleft bone graft: A comparative study
Lin, Lawrence; Olson, Jeffrey; Kwon, Taewoo; Bezouglaia, Olga; Tran, Jaime; Hoang, Michael; Bui, Kimberly; Kim, Reuben H.; Tetradis, Sotirios
2018-01-01
A majority of patients with orofacial cleft deformity requires cleft repair through a bone graft. However, elevated amount of bone resorption and subsequent bone graft failure remains a significant clinical challenge. Bisphosphonates (BPs), a class of anti-resorptive drugs, may offer great promise in enhancing the clinical success of bone grafting. In this study, we compared the effects of systemic and local delivery of BPs in an intraoral bone graft model in rats. We randomly divided 34 female 20-week-old Fischer F344 Inbred rats into four groups to repair an intraoral critical-sized defect (CSD): (1) Control: CSD without graft (n = 4); (2) Graft/Saline: bone graft with systemic administration of saline 1 week post-operatively (n = 10); (3) Graft/Systemic: bone graft with systemic administration of zoledronic acid 1 week post-operatively (n = 10); and (4) Graft/Local: bone graft pre-treated with zoledronic acid (n = 10). At 6-weeks post-operatively, microCT volumetric analysis showed a significant increase in bone fraction volume (BV/TV) in the Graft/Systemic (62.99 ±14.31%) and Graft/Local (69.35 ±13.18%) groups compared to the Graft/Saline (39.18±10.18%). Similarly, histological analysis demonstrated a significant increase in bone volume in the Graft/Systemic (78.76 ±18.00%) and Graft/Local (89.95 ±4.93%) groups compared to the Graft/Saline (19.74±18.89%). The local delivery approach resulted in the clinical success of bone grafts, with reduced graft resorption and enhanced osteogenesis and bony integration with defect margins while avoiding the effects of BPs on peripheral osteoclastic function. In addition, local delivery of BPs may be superior to systemic delivery with its ease of procedure as it involves simple soaking of bone graft materials in BP solution prior to graft placement into the defect. This new approach may provide convenient and promising clinical applications towards effectively managing cleft patients. PMID:29304080
Shaarawy, Mohamed; Abassi, Asmaa Farid; Hassan, Hany; Salem, Mahmoud E
2003-04-01
To determine whether leptin is involved in bone remodeling in patients with postmenopausal osteoporosis. Cross-sectional study. Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University. Ninety postmenopausal osteoporotic women (37 obese and 53 nonobese) and 30 healthy premenopausal women from the same clinic served as controls. Lumbar spine bone mineral density (LS-BMD) of osteoporotic patients was more than 2.5 SD below the normal mean of healthy premenopausal women. Serum levels of leptin, osteocalcin (OC), bone alkaline phosphatase (B-ALP), urinary deoxypyridinoline (DPyr), and N-telopeptide of type 1 collagen (NTX) as well as LS-BMD using dual energy X-ray absorptiometry (DEXA). The serum leptin level in obese postmenopausal osteoporotic patients was significantly increased compared with nonobese osteoporotic patients. There were no significant differences of bone formation markers (B-ALP, OC), bone resorption markers (DPyr, NTX), or LS-BMD between the obese and nonobese groups. There were no significant correlations between serum leptin and any biomarkers of bone turnover and BMD. In postmenopausal osteoporotic patients with increased bone turnover, serum leptin concentration is not correlated with BMD or with the biomarkers of bone formation or bone resorption.
Inchingolo, F; Paracchini, L; DE Angelis, F; Cielo, A; Orefici, A; Spitaleri, D; Santacroce, L; Gheno, E; Palermo, A
2016-01-01
Modern implantology is based on the use of endosseous dental implants and on the study of osseointegration processes. The loss of marginal bone around a dental implant can be caused by many factors; the proper distribution of the masticatory loads is important and is closely dependent on the quality and quantity of bone tissue surrounding the implant. In fact, bone has the ability to adapt its microstructure, through processes of resorption and neoformation of new bone matrix, as a result of the mechanical stimuli that are generated during the chewing cycles. The purpose of this article is to redefine in a modern key and in light of current industrial and engineering technology, clinical and biomechanical concepts that characterize the monophasic implants, in order to assess proper use by evaluating the biomechanical differences with the biphasic implants.
Pereira, M; Jeyabalan, J; Jørgensen, C S; Hopkinson, M; Al-Jazzar, A; Roux, J P; Chavassieux, P; Orriss, I R; Cleasby, M E; Chenu, C
2015-12-01
Some anti-diabetic therapies can have adverse effects on bone health and increase fracture risk. In this study, we tested the skeletal effects of chronic administration of two Glucagon-like peptide-1 receptor agonists (GLP-1RA), increasingly used for type 2 diabetes treatment, in a model of osteoporosis associated bone loss and examined the expression and activation of GLP-1R in bone cells. Mice were ovariectomised (OVX) to induce bone loss and four weeks later they were treated with Liraglutide (LIR) 0.3mg/kg/day, Exenatide (Ex-4) 10 μg/kg/day or saline for four weeks. Mice were injected with calcein and alizarin red prior to euthanasia, to label bone-mineralising surfaces. Tibial micro-architecture was determined by micro-CT and bone formation and resorption parameters measured by histomorphometric analysis. Serum was collected to measure calcitonin and sclerostin levels, inhibitors of bone resorption and formation, respectively. GLP-1R mRNA and protein expression were evaluated in the bone, bone marrow and bone cells using RT-PCR and immunohistochemistry. Primary osteoclasts and osteoblasts were cultured to evaluate the effect of GLP-1RA on bone resorption and formation in vitro. GLP-1RA significantly increased trabecular bone mass, connectivity and structure parameters but had no effect on cortical bone. There was no effect of GLP-1RA on bone formation in vivo but an increase in osteoclast number and osteoclast surfaces was observed with Ex-4. GLP-1R was expressed in bone marrow cells, primary osteoclasts and osteoblasts and in late osteocytic cell line. Both Ex-4 and LIR stimulated osteoclastic differentiation in vitro but slightly reduced the area resorbed per osteoclast. They had no effect on bone nodule formation in vitro. Serum calcitonin levels were increased and sclerostin levels decreased by Ex-4 but not by LIR. Thus, GLP-1RA can have beneficial effects on bone and the expression of GLP-1R in bone cells may imply that these effects are exerted directly on the tissue. Copyright © 2015 Elsevier Inc. All rights reserved.
OSTEOCLAST-INDUCED FOXP3+ CD8 T-CELLS LIMIT BONE LOSS IN MICE
Buchwald, Zachary S.; Kiesel, Jennifer R.; Yang, Chang; DiPaolo, Richard; Novack, Deborah V.; Aurora, Rajeev
2014-01-01
Osteoimmunology is the crosstalk between the skeletal and immune system. We have previously shown in vitro that osteoclasts (OC) crosspresent antigens to induce FoxP3 in CD8 T-cells (OCiTcREG), which then suppress osteoclast activity. Here we assessed the ability of OC-iTcREG to limit bone resorption in vivo. Mice lacking CD8 T-cells lose more bone in response to RANKL (Tnfsf11) administration. Using adoptive transfer experiments we demonstrate that FoxP3+ CD8 T-cells limit bone loss by RANKL administration. In ovariectomized mice, a murine model of postmenopausal osteoporosis, OC-iTcREG limited bone loss and increased bone density as assessed by serum markers, micro computed tomography (μCT) and histomorphometry. Indeed, OC-iTcREG—treated ovariectomized mice had decreased levels of effector T-cells in the bone marrow compared to untreated mice, and increased bone formation rates relative to bisphosphonate-treated mice. Our results provide the first in vivo evidence that OC-iTcREG have anti-resorptive activity and repress the immune system, thus extending the purview of osteoimmunology. PMID:23756229
Tibial changes in experimental disuse osteoporosis in the monkey
NASA Technical Reports Server (NTRS)
Young, D. R.; Niklowitz, W. J.; Steele, C. R.
1983-01-01
The mechanical properties and structural changes in the monkey tibia with disuse osteoporosis and during subsequent recovery are investigated. Bone mending stiffness is evaluated in relation to microscopic changes in cortical bone and Norland bone mineral analysis. Restraint in the semireclined position is found to produce regional losses of bone most obviously in the anterior-proximal tibiae. After six months of restraint, the greatest losses of bone mineral in the proximal tibiae range from 23 percent to 31 percent; the largest changes in bone stiffness range from 36 percent to 40 percent. Approximately eight and one-half months of recovery are required to restore the normal bending properties. Even after 15 months of recovery, however, the bone mineral content does not necessarily return to normal levels. Histologically, resorption cavities in cortical bone are seen within one month of restraint; by two and one-half months of restraint there are large resorption cavities subperiosteally, endosteally, and intracortically. After 15 months of recovery, the cortex consists mainly of first-generation haversian systems. After 40 months, the cortex appears normal, with numerous secondary and tertiary generations of haversian systems.
Tella, E; Aldahlawi, S; Eldeeb, A; El Gazaerly, H
2014-07-01
Aminoguanidine (guanylhydrazinehydrochloride) is a drug that prevents many of the classical systemic complications of diabetes including diabetic osteopenia through its inhibitory activity on the accumulation of advanced glycation end -products (AGEs). The aim of the present study was to evaluate the effectiveness of aminoguanidine versus doxycycline in reducing alveolar bone resorption following mucoperiosteal flap in diabetic rats, using the conventional histopathology and scanning electron microscope (SEM). Twenty-seven male albino rats were used in this study. Periodontal defects were induced experimentally on lower anterior teeth. All rats were subjected to induction of diabetes, by IV injection of the pancreatic B-cells toxin alloxan monohydrate. After eight weeks following the establishment of periodontal defects in all rats, the ligation was removed and 3 rats were scarified as negative control (group 1). The remaining animals were divided into three group based on treatment applied following mucoperiosteal flap surgery. Group 2 received saline treatment only, group 3 received doxycycline periostat (1.5 mg/kg/day) for 3 weeks, and group 4 received aminoguanidine (7.3 mmol/kg) for 3 weeks. The fasting glucose level was measured weekly post operatively. After 21 days all rats were sacrificed. Three anterior parts of the mandible of each group was prepared for histopathological examination and two parts were prepared for SEM. Aminoguanidine treated group (group 4) showed statistically significant increased new bone formation, higher number of osteoblasts and decrease osteoclasts number, resorptive lacunae and existing inflammatory cell infiltration as compared to positive control group (group 2) (P<0.05). Doxycycline was also effective in reducing bone loss as documental by histopathological study. The present study showed that aminoguanidine was significantly effective in reducing alveolar bone loss and can modify the detrimental effects of diabetes in alveolar bone resorption.
NASA Technical Reports Server (NTRS)
Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Butters, R. R. Jr; Sugimoto, T.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)
1998-01-01
The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Osteoblasts appear at sites of osteoclastic bone resorption during bone remodeling in the "reversal" phase following osteoclastic resorption and preceding bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for osteoblasts in the vicinity, leading us to determine whether such osteoblasts express the CaR. In this study, we used the mouse osteoblastic, clonal cell line MC3T3-E1. Both immunocytochemistry and Western blot analysis, using an antiserum specific for the CaR, detected CaR protein in MC3T3-E1 cells. We also identified CaR transcripts in MC3T3-E1 cells by Northern analysis using a CaR-specific riboprobe and by reverse transcription-polymerase chain reaction with CaR-specific primers, followed by nucleotide sequencing of the amplified products. Exposure of MC3T3-E1 cells to high Ca2+o (up to 4.8 mM) or the polycationic CaR agonists, neomycin and gadolinium (Gd3+), stimulated both chemotaxis and DNA synthesis in MC3T3-E1 cells. Therefore, taken together, our data strongly suggest that the osteoblastic cell line MC3T3-E1 possesses both CaR protein and mRNA very similar, if not identical, to those in parathyroid and kidney. Furthermore, the CaR in these osteoblasts could play a key role in regulating bone turnover by stimulating the proliferation and migration of such cells to sites of bone resorption as a result of local release of Ca2+o.
[Naringin reduced polymethylmethacrylate-induced osteolysis in the mouse air sacs model].
Li, Nian-Hu; Xu, Zhan-wang
2015-04-01
To evaluate the influence of naringin on PMMA-induced osteoclastic bone resorption using the mouse air sacs model. Total 48 female Balb/c mices with the age of 8 to 10 weeks were chosen in the study. Air were injected into the back in 32 mices and formed the air sacs, 6 d later, the skulls (originated from other 16 mices) were implanted to the air sacs. Thirty-two animals were divided into naringin treatment group (with 2 concentrations of 150 mg/kg and 30 mg/ kg) , DMSO group and PBS blank group, 8 animals in each group. Polymethylmethacrylate (PMMA) particles were injected into the air sacs in naringin treatment groups and DMSO group so as to irritate inflammatory reaction. Naringin with 2 concentrations of 150 mg/kg and 30 mg/kg were dissolved in DMSO of 0.2 ml, and were injected into air sacs, respectively. In PBS black group, no stimulation with PMMA particles, only injected PBS, and in DMSO group, injected DMSO without naringin. Tartrate resistant acid phosphatase (TRAP), Ca2+ release, modified Masson stain and histological analysis were performed on the 7th day after stimulation. Compared with DMSO group, naringin treatment group's cellular infiltration decreased (P < 0.01); concentration of 150 mg/kg was better than that of concentrations of 30 mg/kg (8.90 ± 1.75 vs 15.23 ± 1.86). Naringin can decrease calcium release in the lavage of the air sacs bone resorption model, especially obvious in naringin with concentration of 150 mg/kg. Naringin can ameliorate the inflammatory reaction and the subsequent bone resorption (including bone collagen loss, TRAP positive cells amount and so on) in air sacs with bone implant and PMMA particles. Naringin with concentration of 150 mg/kg appeared to be an optimal dosage to deliver the therapeutic effects. Naringin inhibits PMMA-induced osteoclastogenesis and ameliorates the PMMA-associated inflammatory reaction and the subsequent bone resorption.
Avascular Necrosis of the Femoral Head: Are Any Genes Involved?
Pouya, Farzaneh; Kerachian, Mohammad Amin
2015-01-01
Avascular necrosis of the femoral head (ANFH) is a pathologic process that results from interruption of blood supply to the femur bone resulting in the death of bone cells and collapse of the femoral head. Nontraumatic ANFH continues to be a significant challenge to orthopedic surgeons. While the exact mechanisms remain elusive, many new insights have emerged from research in the last decade that has given us a clearer picture of the pathogenesis of nontraumatic ANFH. Progression to the end stage of ANFH appears to be related to five main mechanisms: hypercoagulable conditions, angiogenesis suppressions, hyperadipogenesis, heritable states, and switching the bone remodelling into bone resorption. Researchers have been examining the pathogenic mechanisms of ANFH but none of these theories have been firmly confirmed although some appear more plausible than the others. All of these factors can switch bone remodelling into bone resorption, which can further lead to ANFH progression ending up to femoral head collapse. PMID:26213697
NASA Astrophysics Data System (ADS)
Jannello, Juan Marcos; Cerda, Ignacio A.; de la Fuente, Marcelo S.
2016-04-01
Yaminuechelys is a long-necked chelid turtle whose remains have been recovered from outcrops of the Santonian-Maastrichtian and Danian of South America. With the purpose of providing data about shell sculpturing origin and palaeoecology, the bone histology of several shell elements (including neural, costal, peripheral and plastral plates) of Yaminuechelys is described herein. Histological analysis reveals that Yaminuechelys shares with Chelidae the presence of interwoven structural fibre bundles in the external cortex, and parallel-fibred bone of the internal cortex. The presence of resorption lines in several samples indicates that the particular ornamentation of the external surfaces originated, at least in part, by focalized resorption and new bone deposition. This mechanism for ornamentation origin and maintenance is here described for the first time in a turtle. Compactness of the shell bones is consistent with an aquatic habitat, which supports previous hypothesis based on palaeoenvironmental and morphological data.
NASA Technical Reports Server (NTRS)
Westerlind, K. C.; Wronski, T. J.; Ritman, E. L.; Luo, Z. P.; An, K. N.; Bell, N. H.; Turner, R. T.
1997-01-01
Estrogen deficiency induced bone loss is associated with increased bone turnover in rats and humans. The respective roles of increased bone turnover and altered balance between bone formation and bone resorption in mediating estrogen deficiency-induced cancellous bone loss was investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in the distal femur. However, cancellous bone was preferentially lost in the metaphysis, a site that normally experiences low strain energy. No bone loss was observed in the epiphysis, a site experiencing higher strain energy. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased and decreased in long bones of ovariectomized rats by treadmill exercise and functional unloading, respectively. Functional unloading was achieved during orbital spaceflight and following unilateral sciatic neurotomy. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing loading accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in the unloaded and prevented loss in the loaded limb following unilateral sciatic neurotomy in part by reducing indices of bone turnover. These results suggest that estrogen regulates the rate of bone turnover, but the overall balance between bone formation and bone resorption is influenced by prevailing levels of mechanical strain.
Rare bone diseases and their dental, oral, and craniofacial manifestations.
Foster, B L; Ramnitz, M S; Gafni, R I; Burke, A B; Boyce, A M; Lee, J S; Wright, J T; Akintoye, S O; Somerman, M J; Collins, M T
2014-07-01
Hereditary diseases affecting the skeleton are heterogeneous in etiology and severity. Though many of these conditions are individually rare, the total number of people affected is great. These disorders often include dental-oral-craniofacial (DOC) manifestations, but the combination of the rarity and lack of in-depth reporting often limit our understanding and ability to diagnose and treat affected individuals. In this review, we focus on dental, oral, and craniofacial manifestations of rare bone diseases. Discussed are defects in 4 key physiologic processes in bone/tooth formation that serve as models for the understanding of other diseases in the skeleton and DOC complex: progenitor cell differentiation (fibrous dysplasia), extracellular matrix production (osteogenesis imperfecta), mineralization (familial tumoral calcinosis/hyperostosis hyperphosphatemia syndrome, hypophosphatemic rickets, and hypophosphatasia), and bone resorption (Gorham-Stout disease). For each condition, we highlight causative mutations (when known), etiopathology in the skeleton and DOC complex, and treatments. By understanding how these 4 foci are subverted to cause disease, we aim to improve the identification of genetic, molecular, and/or biologic causes, diagnoses, and treatment of these and other rare bone conditions that may share underlying mechanisms of disease. © International & American Associations for Dental Research.
Rare Bone Diseases and Their Dental, Oral, and Craniofacial Manifestations
Foster, B.L.; Ramnitz, M.S.; Gafni, R.I.; Burke, A.B.; Boyce, A.M.; Lee, J.S.; Wright, J.T.; Akintoye, S.O.; Somerman, M.J.; Collins, M.T.
2014-01-01
Hereditary diseases affecting the skeleton are heterogeneous in etiology and severity. Though many of these conditions are individually rare, the total number of people affected is great. These disorders often include dental-oral-craniofacial (DOC) manifestations, but the combination of the rarity and lack of in-depth reporting often limit our understanding and ability to diagnose and treat affected individuals. In this review, we focus on dental, oral, and craniofacial manifestations of rare bone diseases. Discussed are defects in 4 key physiologic processes in bone/tooth formation that serve as models for the understanding of other diseases in the skeleton and DOC complex: progenitor cell differentiation (fibrous dysplasia), extracellular matrix production (osteogenesis imperfecta), mineralization (familial tumoral calcinosis/hyperostosis hyperphosphatemia syndrome, hypophosphatemic rickets, and hypophosphatasia), and bone resorption (Gorham-Stout disease). For each condition, we highlight causative mutations (when known), etiopathology in the skeleton and DOC complex, and treatments. By understanding how these 4 foci are subverted to cause disease, we aim to improve the identification of genetic, molecular, and/or biologic causes, diagnoses, and treatment of these and other rare bone conditions that may share underlying mechanisms of disease. PMID:24700690
NASA Technical Reports Server (NTRS)
Jee, W. S. S.; Tang, L.; Ke, H. Z.; Setterberg, R. B.; Kimmel, D. B.
1993-01-01
This experiment contains the crucial data for the Lose, Restore and Maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses ovariectomy (ox) to lose bone, an anabolic agent to restore bone mass and then switches to an anti-resorptive agent to maintain bone mass. We ox'd or sham-ox'd rats for 150 days (Loss Phase), treated them with 6 mg PGE2/kg/d for 75 days to restore lost cancellous bone mass (Restore Phase) and then stopped PGE2 treatment and began treatment with 1 or 5 micro-g/kg Risedronate, a bisphosphonate twice a week for 60 days (Maintain Phase). During the Loss Phase, cancellous bone volumes of the proximal tibial metaphysis (PTM) in the ox'd rat fell to 19% of initial controls. During the Restore Phase, the PTM bone volume in ox'd rats doubled. However, when PGE2 treatment was stopped, the PGE2-induced cancellous bone disappeared. In contrast, 5 micro-g of Risedronate inhibited the bone loss and maintained it at the PGE2 treatment level. The key dynamic histomorphometry value for the restore (R) and maintenance (M) phases was the ratio of bone formation to resorption rates. The ratio was elevated to 5.8 in the R phase and depressed to 0.4 for no and 1 micro-g Risedronate treated M phase and to a ratio of near unity of 1.1 for the 5 micro-g Risedronate treatment. These findings indicate that we were successful in maintaining the new PTM bone induced by PGE2 after discontinuing PGE2 by administering enough Risedronate, a resorption inhibitor. We concluded that the LRM concept is correct and such an approach should be considered when employing anabolic agents or growth factors in the treatment of osteoporosis. Continued use of an anabolic agent may not be appropriate because of cost, potential adverse side effects and a loss of efficacy.
ADRA2A is involved in neuro-endocrine regulation of bone resorption.
Mlakar, Vid; Jurkovic Mlakar, Simona; Zupan, Janja; Komadina, Radko; Prezelj, Janez; Marc, Janja
2015-07-01
Adrenergic stimulation is important for osteoclast differentiation and bone resorption. Previous research shows that this happens through β2-adrenergic receptor (AR), but there are conflicting evidence on presence and role of α2A-AR in bone. The aim of this study was to investigate the presence of α2A-AR and its involvement in neuro-endocrine signalling of bone remodelling in humans. Real-time polymerase chain reaction (PCR) and immunohistochemistry were used to investigate α2A-AR receptor presence and localization in bone cells. Functionality of rs553668 and rs1800544 single nucleotide polymorphism SNPs located in α2A-AR gene was analysed by qPCR expression on bone samples and luciferase reporter assay in human osteosarcoma HOS cells. Using real-time PCR, genetic association study between rs553668 A>G and rs1800544 C>G SNPs and major bone markers was performed on 661 Slovenian patients with osteoporosis. α2A-AR is expressed in osteoblasts and lining cells but not in osteocytes. SNP rs553668 has a significant influence on α2A-AR mRNA level in human bone samples through the stability of mRNA. α2A-AR gene locus associates with important bone remodelling markers (BMD, CTX, Cathepsin K and pOC). The results of this study are providing comprehensive new evidence that α2A-AR is involved in neuro-endocrine signalling of bone turnover and development of osteoporosis. As shown by our results the neurological signalling is mediated through osteoblasts and result in bone resorption. Genetic study showed association of SNPs in α2A-AR gene locus with bone remodelling markers, identifying the individuals with higher risk of development of osteoporosis. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
2013-01-01
Background In this study we evaluated a novel approach to guide the bone marrow-driven articular cartilage repair response in skeletally aged rabbits. We hypothesized that dispersed chitosan particles implanted close to the bone marrow degrade in situ in a molecular mass-dependent manner, and attract more stromal cells to the site in aged rabbits compared to the blood clot in untreated controls. Methods Three microdrill hole defects, 1.4 mm diameter and 2 mm deep, were created in both knee trochlea of 30 month-old New Zealand White rabbits. Each of 3 isotonic chitosan solutions (150, 40, 10 kDa, 80% degree of deaceylation, with fluorescent chitosan tracer) was mixed with autologous rabbit whole blood, clotted with Tissue Factor to form cylindrical implants, and press-fit in drill holes in the left knee while contralateral holes received Tissue Factor or no treatment. At day 1 or day 21 post-operative, defects were analyzed by micro-computed tomography, histomorphometry and stereology for bone and soft tissue repair. Results All 3 implants filled the top of defects at day 1 and were partly degraded in situ at 21 days post-operative. All implants attracted neutrophils, osteoclasts and abundant bone marrow-derived stromal cells, stimulated bone resorption followed by new woven bone repair (bone remodeling) and promoted repair tissue-bone integration. 150 kDa chitosan implant was less degraded, and elicited more apoptotic neutrophils and bone resorption than 10 kDa chitosan implant. Drilled controls elicited a poorly integrated fibrous or fibrocartilaginous tissue. Conclusions Pre-solidified implants elicit stromal cells and vigorous bone plate remodeling through a phase involving neutrophil chemotaxis. Pre-solidified chitosan implants are tunable by molecular mass, and could be beneficial for augmented marrow stimulation therapy if the recruited stromal cells can progress to bone and cartilage repair. PMID:23324433
Treatment of root fracture with accompanying resorption using cermet cement.
Lui, J L
1992-02-01
A method of treating an apical root fracture with accompanying resorption at the junction of the fracture fragments using glass-cermet cement is described. Endodontically, the material had previously been used for repair of lateral resorptive root defects and retrograde root fillings. Complete bone regeneration was observed three years post-operatively following treatment of the root fracture in the conventional manner. The various advantages of glass-cermet cement as a root filling material used in the technique described are discussed.
Changes in jawbones of male patients with chronic renal failure on digital panoramic radiographs.
Dagistan, Saadettin; Miloglu, Ozkan; Caglayan, Fatma
2016-01-01
To compare the existence of gonial cortical bone thickness, antegonial index, mandibular canal bone resorption and gonial angle values and pathologies like ground-glass appearance in jawbones and brown tumor in male patients undergoing dialysis due to chronic renal failure and men from the healthy control group on panoramic radiographs. Panoramic radiographs were taken from 80 male individuals in total (40 normal and 40 dialysis patients). Values obtained from the right and left sides of the mandible were summed and their means were calculated. Gonial cortical thickness, antegonial index and gonial angle values were assessed with the Student's t-test, mandibular canal wall resorption with the Chi-square test, and pathologies such as ground-glass appearance and Brown tumor as "available" or "not available." Statistically significant differences were observed among the antegonial index (P < 0.001), gonial cortical bone thickness (P < 0.001), and gonial angle (P < 0.001) values of study and control groups. Besides, mandibular canal wall resorption (P < 0.001) was also statistically significant. In the study group, pathologies with ground-glass appearance were encountered in mandible, but no radiographic findings were observed similar to brown tumor. Compared to the control group, decreases were found in gonial cortical bone thicknesses, antegonial index values, mandibular canal wall resorption, and gonial angle values of the patients receiving dialysis treatment due to chronic renal failure. Although it is not statistically significant, pathology with ground-glass appearance was detected in a patient, but no pathologies like brown tumor were observed. These findings from patients with chronic renal failure must be evaluated in panoramic radiography.
Effect of supplementary zinc on orthodontic tooth movement in a rat model
Sadegh, Ahmad Akhoundi Mohammad; Rezvaneh, Ghazanfari; Shahroo, Etemad-Moghadam; Mojgan, Alaeddini; Azam, Khorshidian; Shahram, Rabbani; Reza, Shamshiri Ahmad; Nafiseh, Momeni
2016-01-01
ABSTRACT Introduction: Osteoclasts and osteoblasts are responsible for regulating bone homeostasis during which the trace element zinc has been shown to exert a cumulative effect on bone mass by stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. Objective: The aim of the present study was to investigate the effects of zinc (Zn) on orthodontic tooth movement (OTM) in a rat model. Material and Methods: A total of 44 male Wistar rats were divided into four groups of 11 animals each and received 0, 1.5, 20 and 50 ppm Zn in distilled water for 60 days. In the last 21 days of the study, nickel-titanium closed coil springs were ligated between maxillary right incisors and first molars of all rats, and tooth movement was measured at the end of this period. Histological analysis of hematoxylin/eosin slides was performed to assess root resorption lacunae, osteoclast number and periodontal ligament (PDL) width. Results: Mean OTM was calculated as 51.8, 49.1, 35.5 and 45 µm in the 0, 1.5, 20 and 50 ppm zinc-receiving groups, respectively. There were no significant differences in neither OTM nor histological parameters among the study groups (p > 0.05). Conclusion: According to the results obtained in the current investigation, increase in supplementary zinc up to 50 ppm does not affect the rate of OTM neither bone and root resorption in rats. PMID:27275614
A theoretical framework for strain-related trabecular bone maintenance and adaptation.
Ruimerman, R; Hilbers, P; van Rietbergen, B; Huiskes, R
2005-04-01
It is assumed that density and morphology of trabecular bone is partially controlled by mechanical forces. How these effects are expressed in the local metabolic functions of osteoclast resorption and osteoblast formation is not known. In order to investigate possible mechano-biological pathways for these mechanisms we have proposed a mathematical theory (Nature 405 (2000) 704). This theory is based on hypothetical osteocyte stimulation of osteoblast bone formation, as an effect of elevated strain in the bone matrix, and a role for microcracks and disuse in promoting osteoclast resorption. Applied in a 2-D Finite Element Analysis model, the theory explained the formation of trabecular patterns. In this article we present a 3-D FEA model based on the same theory and investigated its potential morphological predictability of metabolic reactions to mechanical loads. The computations simulated the development of trabecular morphological details during growth, relative to measurements in growing pigs, reasonably realistic. They confirmed that the proposed mechanisms also inherently lead to optimal stress transfer. Alternative loading directions produced new trabecular orientations. Reduction of load reduced trabecular thickness, connectivity and mass in the simulation, as is seen in disuse osteoporosis. Simulating the effects of estrogen deficiency through increased osteoclast resorption frequencies produced osteoporotic morphologies as well, as seen in post-menopausal osteoporosis. We conclude that the theory provides a suitable computational framework to investigate hypothetical relationships between bone loading and metabolic expressions.
Lehmann, Giorgia; Cacciotti, Ilaria; Palmero, Paola; Montanaro, Laura; Bianco, Alessandra; Campagnolo, Luisa; Camaioni, Antonella
2012-10-01
Calcium phosphate-based materials should show excellent bone-bonding and cell-mediated resorption characteristics at the same time, in order to be employed for bone replacement. In this perspective, pure (HAp) and silicon-substituted hydroxyapatite (Si-HAp, 1.4% wt) porous cylinders were prepared starting from synthesized powders and polyethylene spheres used as porogens, and investigated as supports for osteoblast and osteoclast progenitor differentiation. A systematic and detailed biological characterization is reported, in terms of cell adhesion, viability, proliferation, differentiation and bioresorption, aimed at proposing a complete and reliable picture of bone cell in vitro behavior, comprehensive of both the osteogenesis and the bone resorption processes. In order to achieve this purpose, cytocompatibility, differentiation and gene expression by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were carried out using parietal bone-derived pre-osteoblasts obtained from neonatal mice and the bioresorption capability was assessed by seeding human peripheral blood monocytes, as osteoclast precursors. It resulted that both pure and Si-substituted HAps were able to promote differentiation of precursor cells in mature osteoblasts and osteoclasts. In particular, the Si-HAps enhanced the pre-osteoblast proliferation and showed higher osteoclast-mediated bioresorption capability, as supported by the presence of larger and more numerous resorption lacunae, whereas HAps promoted a more robust cell differentiation in terms of both osteocalcin gene expression by qRT-PCR and cell morphological evaluation by SEM analysis.
Risedronate and ergocalciferol prevent hip fracture in elderly men with Parkinson disease.
Sato, Yoshihiro; Honda, Yoshiaki; Iwamoto, Jun
2007-03-20
There is a high incidence of hip fractures in patients with Parkinson disease (PD). Bone mineral density (BMD) is decreased in patients with PD, correlating with the immobilization-induced bone resorption and hypovitaminosis D with compensatory hyperparathyroidism. To evaluate the effectiveness of risedronate, an inhibitor of bone resorption, on osteoporosis and the risk of hip fractures in elderly men with PD. This was a 2-year, randomized, double-blind, placebo-controlled trial. In a prospective study of patients with PD, 121 patients received a daily dose of 2.5 mg risedronate and vitamin D2 1,000 IU for 2 years, and the remaining 121 received placebo and vitamin D2 1,000 IU. Incidence of hip fractures was compared between the two groups. Nine patients sustained hip fractures in the placebo group, and three hip fractures occurred in the risedronate group. The relative risk of a hip fracture in the risedronate group vs the placebo group was 0.33 (95% CI, 0.09 to 1.20). BMD increased by 2.2% in the risedronate group and decreased by 2.9% in the placebo group (p < 0.0001). Urinary deoxypyridinoline, a bone resorption marker, decreased by 46.7% in the risedronate group and by 33.0% in the placebo group. Treatment with risedronate and vitamin D2 increases bone mineral density in elderly men with Parkinson disease and reduces the risk of hip fractures.
NASA Technical Reports Server (NTRS)
Akamine, T.; Jee, W. S. S.; Ke, H. Z.; Li, X. J.; Lin, B. Y.
1992-01-01
The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloading)-induced cancellous bone loss. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to right hindlimb immobilization by bandaging and simultaneously treated subcutaneously daily with 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on the cancellous bone using double-fluorescent labeled, 20 micron thick, undecalcified distal femoral metaphysis sections. We found that PGE2 administration not only prevented disuse-induced bone loss, but also added extra bone to disuse cancellous bone in a dose-response manner. PGE2 prevented the disuse-induced osteopenia by stimulating more bone formation than and shortening the period of bone remodeling. It activated woven bone formation, stimulated lamellar bone formation, and increased the eroded bone surface above that caused by disuse alone. While underloading increased the remodeling period (sigma), PGE2 treatment of underloaded bone shortened the time for osteoclastic bone resorption and bone remodeling, and thus reduced the remodeling space. The study shows that PGE2 is a powerful anabolic agent that prevents disuse-induced osteopenia and adds extra bone to these same bones.
Bone Loss from High Repetitive High Force Loading is Prevented by Ibuprofen Treatment
Jain, Nisha X.; Barr-Gillespie, Ann E.; Clark, Brian D.; Kietrys, David M.; Wade, Christine K.; Litvin, Judith; Popoff, Steven N.; Barbe, Mary F.
2014-01-01
We examined roles of loading and inflammation on forearm bones in a rat model of upper extremity overuse. Trabecular structure in distal radius and ulna was examined in three groups of young adult rats: 1) 5% food-restricted that underwent an initial training period of 10 min/day for 5 weeks to learn the repetitive task (TRHF); 2) rats that underwent the same training before performing a high repetition high force task, 2 hours/day for 12 weeks (HRHF); and 3) food-restricted only (FRC). Subsets were treated with oral ibuprofen (IBU). TRHF rats had increased trabecular bone volume and numbers, osteoblasts, and serum osteocalcin, indicative of bone adaptation. HRHF rats had constant muscle pulling forces, showed limited signs of bone adaptation, but many signs of bone resorption, including decreased trabecular bone volume and bone mineral density, increased osteoclasts and bone inflammatory cytokines, and reduced median nerve conduction velocity (15%). HRHF+IBU rats showed no trabecular resorptive changes, no increased osteoclasts or bone inflammatory cytokines, no nerve inflammation, preserved nerve conduction, and increased muscle voluntary pulling forces. Ibuprofen treatment preserved trabecular bone quality by reducing osteoclasts and bone inflammatory cytokines, and improving muscle pulling forces on bones as a result of reduced nerve inflammation. PMID:24583543
Fujii, Toshiaki; Ishikawa, Mizuho; Kubo, Akiko; Tanaka, Yoshitaka
2015-12-01
SI-591[N-[1-[[[(1S)-3-[[(3S)-hexahydro-2-oxo-1H-azepin-3-yl]amino]-1-(1-methylethyl)-2,3-dioxopropyl]amino]carbonyl]cyclohexyl]-2-furancarboxamide] is an orally bioavailable compound that was synthesized as one of several unique peptidomimetic compounds without a basic group. This compound was found to have the ability to inhibit cathepsin K, a lysosomal cysteine protease. Cathepsin K is known to be expressed in osteoclasts and involved in bone loss processes. In this study, SI-591 was shown to inhibit the activity of various purified cathepsin molecules at nanomolar concentrations but had high selectivity for cathepsin K over other subtypes including B and L. SI-591 also decreased the level of CTX-I, a bone resorption marker, which was released from osteoclasts in vitro in a dose-dependent manner. The mobilization of calcium from the bones to the blood stream is known to increase in rats fed with a low calcium diet; SI-591 inhibited this increase in serum calcium level at an oral dose of 3mg/kg. Furthermore, SI-591 significantly decreased the level of CTX-I and DPD, bone resorption markers, at oral doses of 10mg/kg or less in ovariectomized rats, while it did not affect the level of BGP, a bone formation marker. In addition, SI-591 prevented bone mineral density loss in the lumber vertebrae and femurs in ovariectomized rats. These results suggest that SI-591 inhibits bone resorption without affecting osteoblast maturation. Therefore, SI-591, a novel cathepsin K inhibitor, could be a promising agent for the treatment of postmenopausal osteoporosis. Copyright © 2015. Published by Elsevier Inc.
Shen, Yun; Zhang, Zi-Ming; Jiang, Sheng-Dan; Jiang, Lei-Sheng; Dai, Li-Yang
2009-04-09
Osteoporosis (OP) and osteoarthritis (OA) are public health diseases affecting the quality of life of the elderly, and bring about a heavy burden to the society and family of patients. It has been debated whether or not there is an inverse relationship between these two disorders. To compare the exact difference in bone tissue structure between osteoporosis and osteoarthritis, we observed the ultrastructure of trabecular bone from the femoral heads using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A total of 15 femoral head specimens from postmenopausal women were collected during the procedures of total or hemi hip replacement (OP, n = 8; OA, n = 7). The morphologic structure of the trabecular bone, collagen fibers, resorption lacuna and osteoblasts were observed. Under SEM, osteoporotic trabeculae appeared to be thinning, tapering, breaking and perforating. A number of resorption lacunae of various shapes were seen on the surface of the trabeculum. The collagen fibers of lacuna were resorbed. On occasion, naked granular bone crystals could be found. In the OA group, the trabecular bone looked thick with integrated structure. Reticular and granular new bone could be found. The trabeculum was covered by well-arranged collagen fibers around the resorption lacuna. In the OP group, under TEM, marginal collagen fibers were observed to be aligned loosely with enlarged spaces. A few inactive osteoblasts and no inflammatory cells were seen. In the OA group, the collagen fibers inside the trabeculum were arranged in a dense manner with many active osteoblasts and inflammatory cells infiltrating the matrix. We found significant differences in the trabecular bone, collagen fibers, lacunae and osteoblasts between postmenopausal women with OP and OA. These findings support the hypothesis that there is an inverse relationship between OP and OA.
Shen, Yun; Zhang, Zi-Ming; Jiang, Sheng-Dan; Jiang, Lei-Sheng; Dai, Li-Yang
2009-01-01
Background Osteoporosis (OP) and osteoarthritis (OA) are public health diseases affecting the quality of life of the elderly, and bring about a heavy burden to the society and family of patients. It has been debated whether or not there is an inverse relationship between these two disorders. Methods To compare the exact difference in bone tissue structure between osteoporosis and osteoarthritis, we observed the ultrastructure of trabecular bone from the femoral heads using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A total of 15 femoral head specimens from postmenopausal women were collected during the procedures of total or hemi hip replacement (OP, n = 8; OA, n = 7). The morphologic structure of the trabecular bone, collagen fibers, resorption lacuna and osteoblasts were observed. Results Under SEM, osteoporotic trabeculae appeared to be thinning, tapering, breaking and perforating. A number of resorption lacunae of various shapes were seen on the surface of the trabeculum. The collagen fibers of lacuna were resorbed. On occasion, naked granular bone crystals could be found. In the OA group, the trabecular bone looked thick with integrated structure. Reticular and granular new bone could be found. The trabeculum was covered by well-arranged collagen fibers around the resorption lacuna. In the OP group, under TEM, marginal collagen fibers were observed to be aligned loosely with enlarged spaces. A few inactive osteoblasts and no inflammatory cells were seen. In the OA group, the collagen fibers inside the trabeculum were arranged in a dense manner with many active osteoblasts and inflammatory cells infiltrating the matrix. Conclusion We found significant differences in the trabecular bone, collagen fibers, lacunae and osteoblasts between postmenopausal women with OP and OA. These findings support the hypothesis that there is an inverse relationship between OP and OA. PMID:19356253
Bone Resorption and Environmental Exposure to Cadmium in Women: A Population Study
Schutte, Rudolph; Nawrot, Tim S.; Richart, Tom; Thijs, Lutgarde; Vanderschueren, Dirk; Kuznetsova, Tatiana; Van Hecke, Etienne; Roels, Harry A.; Staessen, Jan A.
2008-01-01
Background Environmental exposure to cadmium decreases bone density indirectly through hypercalciuria resulting from renal tubular dysfunction. Objective We sought evidence for a direct osteotoxic effect of cadmium in women. Methods We randomly recruited 294 women (mean age, 49.2 years) from a Flemish population with environmental cadmium exposure. We measured 24-hr urinary cadmium and blood cadmium as indexes of lifetime and recent exposure, respectively. We assessed the multivariate-adjusted association of exposure with specific markers of bone resorption, urinary hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP), as well as with calcium excretion, various calciotropic hormones, and forearm bone density. Results In all women, the effect sizes associated with a doubling of lifetime exposure were 8.4% (p = 0.009) for HP, 6.9% (p = 0.10) for LP, 0.77 mmol/day (p = 0.003) for urinary calcium, –0.009 g/cm2 (p = 0.055) for proximal forearm bone density, and –16.8% (p = 0.065) for serum parathyroid hormone. In 144 postmenopausal women, the corresponding effect sizes were –0.01223 g/cm2 (p = 0.008) for distal forearm bone density, 4.7% (p = 0.064) for serum calcitonin, and 10.2% for bone-specific alkaline phosphatase. In all women, the effect sizes associated with a doubling of recent exposure were 7.2% (p = 0.001) for urinary HP, 7.2% (p = 0.021) for urinary LP, –9.0% (p = 0.097) for serum parathyroid hormone, and 5.5% (p = 0.008) for serum calcitonin. Only one woman had renal tubular dysfunction (urinary retinol-binding protein > 338 μg/day). Conclusions In the absence of renal tubular dysfunction, environmental exposure to cadmium increases bone resorption in women, suggesting a direct osteotoxic effect with increased calciuria and reactive changes in calciotropic hormones. PMID:18560534
Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration
Kasper, Dagmar; Planells-Cases, Rosa; Fuhrmann, Jens C; Scheel, Olaf; Zeitz, Oliver; Ruether, Klaus; Schmitt, Anja; Poët, Mallorie; Steinfeld, Robert; Schweizer, Michaela; Kornak, Uwe; Jentsch, Thomas J
2005-01-01
ClC-7 is a chloride channel of late endosomes and lysosomes. In osteoclasts, it may cooperate with H+-ATPases in acidifying the resorption lacuna. In mice and man, loss of ClC-7 or the H+-ATPase a3 subunit causes osteopetrosis, a disease characterized by defective bone resorption. We show that ClC-7 knockout mice additionally display neurodegeneration and severe lysosomal storage disease despite unchanged lysosomal pH in cultured neurons. Rescuing their bone phenotype by transgenic expression of ClC-7 in osteoclasts moderately increased their lifespan and revealed a further progression of the central nervous system pathology. Histological analysis demonstrated an accumulation of electron-dense material in neurons, autofluorescent structures, microglial activation and astrogliosis. Like in human neuronal ceroid lipofuscinosis, there was a strong accumulation of subunit c of the mitochondrial ATP synthase and increased amounts of lysosomal enzymes. Such alterations were minor or absent in ClC-3 knockout mice, despite a massive neurodegeneration. Osteopetrotic oc/oc mice, lacking a functional H+-ATPase a3 subunit, showed no comparable retinal or neuronal degeneration. There are important medical implications as defects in the H+-ATPase and ClC-7 can underlie human osteopetrosis. PMID:15706348
Diabetes enhances dental caries and apical periodontitis in caries-susceptible WBN/KobSlc rats.
Kodama, Yasushi; Matsuura, Masahiro; Sano, Tomoya; Nakahara, Yutaka; Ozaki, Kiyokazu; Narama, Isao; Matsuura, Tetsuro
2011-02-01
Many epidemiologic studies have suggested that diabetes may be an important risk factor for periodontal disease. To determine whether diabetes induces or enhances periodontal disease or dental caries, dental tissue from diabetic male and nondiabetic female WBN/KobSlc rats and male and female age-matched nondiabetic F344 rats was analyzed morphologically and morphometrically for these 2 types of lesions. Soft X-ray examination revealed that the incidence and severity of both molar caries and alveolar bone resorption were much higher in male WBN/KobSlc rats with chronic diabetes than in nondiabetic female rats of the same strain. Histopathologic examination showed that dental caries progressed from acute to subacute inflammation due to bacterial infections and necrosis in the pulp when the caries penetrated the dentin. In the most advanced stage of dental caries, inflammatory changes caused root abscess and subsequent apical periodontitis, with the formation of granulation tissue around the dental root. Inflammatory changes resulted in resorption of alveolar bone and correlated well with the severity of molar caries. Our results suggest that diabetic conditions enhance dental caries in WBN/KobSlc rats and that periodontal lesions may result from the apical periodontitis that is secondary to dental caries.
Alveolar ridge reduction after tooth extraction in adolescents: an animal study
Sun, Zongyang; Herring, Susan W.; Tee, Boon Ching; Gales, Jordan
2013-01-01
Objective The mechanism for tooth extraction induced residual alveolar ridge reduction (RRR) during adolescence is poorly understood. This study investigated the alveolar bone morphology, growth, resorption and functional loading at normal and extraction sites using an adolescent pig model. Design Sixteen 3-month-old pigs were divided into two groups – immediate post-extraction (IE) and 6-week post-extraction (SE). The IE group received an extraction of one deciduous mandibular molar, immediately followed by a final experiment to record masseter muscle EMGs and strains from the buccal surface of the extraction and contralateral non-extraction sites during function (mastication). The SE group was given the same tooth extraction, then kept for 6 weeks before the same final functional recording as the IE group. Both groups also received baseline (pre-extraction) EMGs and fluorescent vital stains 10 and 3 days before the final functional recording. Immediately after the final functional recording, animals were euthanized and alveolar bone specimens from extraction and contralateral non-extraction sites were collected and used to analyze alveolar bone morphology, apposition and resorption based on fluorescent and hematoxylin and eosin stained histological sections. Results At control sites (IE-extraction, IE-non-extraction and SE-non-extraction), the alveolar ridges grew gingivally and buccally. Bone formation characterized the buccal surface and lingual bundle bone, whereas resorption characterized the lingual surface and buccal bundle bone. The SE-extraction sites showed three major alterations: convergence of the buccal and lingual gingival crests, loss of apposition on the lingual bundle bone, and decelerated growth at the entire buccal surface. These alterations likely resulted from redirected crestal growth as part of the socket healing process, loss of tongue pressure to the lingual side of the teeth which normally provides mechanical stimulation for dental arch expansion, and masticatory underloading during the initial post-extraction period, respectively. Conclusions These data indicate that the initial phase of RRR in adolescents is a product of modified growth, not resorption, possibly because of decreased mechanical stimulation at the extraction site. PMID:23380583
Sukkeaw, Wittawat; Kritpet, Thanomwong; Bunyaratavej, Narong
2015-09-01
To compare the effects of aerobic dance training on mini-trampoline and hard wooden surface on bone resorption, health-related physical fitness, balance, and foot plantar pressure in Thai working women. Sixty-three volunteered females aged 35-45 years old participated in the study and were divided into 3 groups: A) aerobic dance on mini-trampoline (21 females), B) aerobic dance on hard wooden surface (21 females), and C) control group (21 females). All subjects in the aerobic dance groups wore heart rate monitors during exercise. Aerobic dance worked out 3 times a week, 40 minutes a day for 12 weeks. The intensity was set at 60-80% of the maximum heart rate. The control group engaged in routine physical activity. The collected data were bone formation (N-terminal propeptine of procollagen type I: P1NP) bone resorption (Telopeptide cross linked: β-CrossLaps) health-related physical fitness, balance, and foot plantar pressure. The obtained data from pre- and post trainings were compared and analyzed by paired samples t-test and one way analysis of covariance. The significant difference was at 0.05 level. After the 12-week training, the biochemical bone markers of both mini-trampoline and hard wooden surface aerobic dance training subjects decreased in bone resorption (β-CrossLaps) but increased in boneformation (P1NP). Health-related physical fitness, balance, and foot plantar pressure were not only better when comparing to the pre-test result but also significantly different when comparing to the control group (p < 0.05). The aerobic dance on mini-trampoline showed that leg muscular strength, balance and foot plantar pressure were significantly better than the aerobic dance on hard wooden surface (p < 0.05). The aerobic dance on mini-trampoline and hard wooden surface had positive effects on biochemical bone markers. However, the aerobic dance on mini-trampoline had more leg muscular strength and balance including less foot plantar pressure. It is considered to be an appropriate exercise programs in working women.
Li, Nan; Lee, Wayne Yuk-Wai; Lin, Si-En; Ni, Ming; Zhang, Ting; Huang, Xiao-Ru; Lan, Hui-Yao; Li, Gang
2014-10-01
Smad7 is well demonstrated as a negative regulator of TGF-β signaling. Its alteration in expression often results in diseases such as cancer and fibrosis. However, the exact role of Smad7 in regulating bone remodeling during mammalian development has not been properly delineated. In this study we performed experiments to clarify the involvement of Smad7 in regulating osteogenesis and osteoclastogenesis both invivo and invitro. Genetically engineered Smad7(ΔE1) (KO) mice were used, whereby partial functional of Smad7 is lost by deleting exon I of the Smad7 gene and the truncated proteins cause a hypomorphic allele. Analysis with μCT imagery and bone histomorphometry showed that the KO mice had lower TbN, TbTh, higher TbSp in the metaphysic region of the femurs at 6, 12, 24weeks from birth, as well as decreased MAR and increased osteoclast surface compared with the WT mice. In vitro BM-MSC multi-lineage differentiation evaluation showed that the KO group had reduced osteogenic potential, fewer mineralized nodules, lower ALP activity, and reduced gene expression of Col1A1, Runx2 and OCN. The adipogenic potential was elevated in the KO group with more formation of lipid droplets, and increased gene expression of Adipsin and C/EBPα. The osteoclastogenic potential of KO mice BMMs was elevate, with emergence of more osteoclasts, larger resorptive areas, and increased gene expression of TRAP and CTR. Our results indicate that partial loss of Smad7 function in mice leads to compromised bone formation and enhanced bone resorption. Thus, Smad7 is acknowledged as a novel key regulator between osteogenesis and osteoclastogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.
Endocrine Regulation of Bone and Energy Metabolism in Hibernating Mammals
Doherty, Alison H.; Florant, Gregory L.; Donahue, Seth W.
2014-01-01
Precise coordination among organs is required to maintain homeostasis throughout hibernation. This is particularly true in balancing bone remodeling processes (bone formation and resorption) in hibernators experiencing nutritional deprivation and extreme physical inactivity, two factors normally leading to pronounced bone loss in non-hibernating mammals. In recent years, important relationships between bone, fat, reproductive, and brain tissues have come to light. These systems share interconnected regulatory mechanisms of energy metabolism that potentially protect the skeleton during hibernation. This review focuses on the endocrine and neuroendocrine regulation of bone/fat/energy metabolism in hibernators. Hibernators appear to have unique mechanisms that protect musculoskeletal tissues while catabolizing their abundant stores of fat. Furthermore, the bone remodeling processes that normally cause disuse-induced bone loss in non-hibernators are compared to bone remodeling processes in hibernators, and possible adaptations of the bone signaling pathways that protect the skeleton during hibernation are discussed. Understanding the biological mechanisms that allow hibernators to survive the prolonged disuse and fasting associated with extreme environmental challenges will provide critical information regarding the limit of convergence in mammalian systems and of skeletal plasticity, and may contribute valuable insight into the etiology and treatment of human diseases. PMID:24556365
Effect of low gravity on calcium metabolism and bone formation (L-7)
NASA Technical Reports Server (NTRS)
Suda, Tatsuo
1993-01-01
Recently, attention has been focused on the disorders of bone and calcium metabolism during space flight. The skeletal system has evolved on the Earth under 1-g. Space flights under low gravity appear to cause substantial changes in bone and calcium homeostasis of the animals adapted to 1-g. A space experiment for the First Materials Processing Test (FMPT) was proposed to examine the effects of low gravity on calcium metabolism and bone formation using chick embryos loaded in a space shuttle. This space experiment was proposed based on the following two experimental findings. First, it has been reported that bone density decreases significantly during prolonged space flight. The data obtained from the US Skylab and the U.S.S.R. Salyut-6 cosmonauts have also documented that the degree of bone loss is related to the duration of space flight. Second, the US-Soviet joints space experiment demonstrated that the decrease in bone density under low gravity appears to be due to the decrease in bone formation rather than the increase in bone resorption. The purpose of our space experiment is, therefore, to investigate further the mechanisms of bone growth under low gravity using fertilized chick embryos.
NASA Technical Reports Server (NTRS)
Jee, Webster S. S.; Li, Xiao Jian; Schaffler, Mitchell B.
1991-01-01
The experimental increase in mechanical usage or overloading of the left hindlimb was produced by immobilization of the contralateral hindlimb. The right hindlimb was placed in a flexed position against the body and was immobilized using an elastic bandage. Some control animals were sacrificed initially at time zero and increased mechanical usage and age-matched control animals were sacrificed after 2, 10, 18, and 26 weeks of treatment. All animals received double bone fluorochrome labeling prior to sacrifice. Cortical bone histomorphometry and cross-sectional moments of inertia were determined. Marrow cavity enlargement and total cross-sectional area expansion represented the age-related cortical bone changes. Increased mechanical usage enhanced periosteal bone modeling in the formation mode and dampened endocortical bone remodeling and bone modeling in the resorption mode (resorption drift) to create a slight positive bone balance. These observations are in general agreement with Frost's postulate for mechanical effects on bone modeling and remodeling. The maximum moment of inertia did not change significantly in either control or overloaded tibial shafts. The minimum and polar moment of inertias in overloaded bones increases over those of controls at 18 and 26 weeks of the experiment.
NASA Technical Reports Server (NTRS)
Jee, Webster S. S.; Li, Xiao Jian; Schaffler, Mitchell B.
1991-01-01
The experimental increase in mechanical usage or overloading of the left hindlimb was produced by immobilization of the contralateral hindlimb. The right hindlimb was placed in a flexed position against the body and was immobilized using an elastic bandage. Some control animals were sacrificed initially at time zero and increased mechanical usage and age-matched control animals were sacrificed after 2, 10, 18, and 26 weeks of treatment. All animals received double bone fluorochrome labeling prior to sacrifice. Cortical bone histomorphometry and cross-sectional moments of inertia were determined. Marrow cavity enlargement and total cross-sectional area expansion represented the age-related cortical bone changes. Increased mechanical usage enhanced periosteal bone modeling in the formation mode and dampened endocortical bone remodeling and bone modeling in the resorption mode (resorption drift) to create a slight positive bone balance. These observations are in general agreement with Frost's postulate for mechanical effects on bone modeling and remodeling. The maximum moment of inertia did not change significantly in either control or overloaded tibial shafts. The minimum and polar moment of inertias in overloaded bones increases over those of controls at 18 and 26 weeks of the experiment.
Sieroń-Stołtny, Karolina; Teister, Łukasz; Cieślar, Grzegorz; Sieroń, Dominik; Śliwinski, Zbigniew; Kucharzewski, Marek; Sieroń, Aleksander
2015-01-01
The study was focused on the influence of electromagnetic field generated by mobile phone on the skeletal system of rats, assessed by measuring the macrometric parameters of bones, mechanical properties of long bones, calcium and phosphorus content in bones, and the concentration of osteogenesis (osteocalcin) and bone resorption (NTX, pyridinoline) markers in blood serum. The study was carried out on male rats divided into two groups: experimental group subjected to 28-day cycle of exposures in electromagnetic field of 900 MHz frequency generated by mobile phone and a control, sham-exposed one. The mobile phone-generated electromagnetic field did not influence the macrometric parameters of long bones and L4 vertebra, it altered mechanical properties of bones (stress and energy at maximum bending force, stress at fracture), it decreased the content of calcium in long bones and L4 vertebra, and it altered the concentration of osteogenesis and bone resorption markers in rats. On the basis of obtained results, it was concluded that electromagnetic field generated by 900 MHz mobile phone does not have a direct impact on macrometric parameters of bones; however, it alters the processes of bone mineralization and the intensity of bone turnover processes and thus influences the mechanical strength of bones.
Sieroń-Stołtny, Karolina; Teister, Łukasz; Cieślar, Grzegorz; Sieroń, Dominik; Śliwinski, Zbigniew; Sieroń, Aleksander
2015-01-01
The study was focused on the influence of electromagnetic field generated by mobile phone on the skeletal system of rats, assessed by measuring the macrometric parameters of bones, mechanical properties of long bones, calcium and phosphorus content in bones, and the concentration of osteogenesis (osteocalcin) and bone resorption (NTX, pyridinoline) markers in blood serum. The study was carried out on male rats divided into two groups: experimental group subjected to 28-day cycle of exposures in electromagnetic field of 900 MHz frequency generated by mobile phone and a control, sham-exposed one. The mobile phone-generated electromagnetic field did not influence the macrometric parameters of long bones and L4 vertebra, it altered mechanical properties of bones (stress and energy at maximum bending force, stress at fracture), it decreased the content of calcium in long bones and L4 vertebra, and it altered the concentration of osteogenesis and bone resorption markers in rats. On the basis of obtained results, it was concluded that electromagnetic field generated by 900 MHz mobile phone does not have a direct impact on macrometric parameters of bones; however, it alters the processes of bone mineralization and the intensity of bone turnover processes and thus influences the mechanical strength of bones. PMID:25705697
Tan, Shuang; Zhang, Binbin; Zhu, Xiaomei; Ao, Ping; Guo, Huajie; Yi, Weihong; Zhou, Guang-Qian
2014-01-01
Age-related bone loss and osteoporosis are associated with bone remodeling changes that are featured with decreased trabecular and periosteal bone formation relative to bone resorption. Current anticatabolic therapies focusing on the inhibition of bone resorption may not be sufficient in the prevention or reversal of age-related bone deterioration and there is a big need in promoting osteoblastogenesis and bone formation. Enhanced understanding of the network formed by key signaling pathways and molecules regulating bone forming cells in health and diseases has therefore become highly significant. The successful development of agonist/antagonist of the PTH and Wnt signaling pathways are profits of the understanding of these key pathways. As the core component of an approved antiosteoporosis agent, strontium takes its effect on osteoblasts at multilevel through multiple pathways, representing a good example in revealing and exploring anabolic mechanisms. The recognition of strontium effects on bone has led to its expected application in a variety of biomaterial scaffolds used in tissue engineering strategies aiming at bone repairing and regeneration. While summarizing the recent progress in these respects, this review also proposes the new approaches such as systems biology in order to reveal new insights in the pathology of osteoporosis as well as possible discovery of new therapies. PMID:24800251
Al Mamun, Md Abdullah; Islam, Kamrul; Alam, Md Jahangir; Khatun, Amina; Alam, M Masihul; Al-Bari, Md Abdul Alim; Alam, Md Jahangir
2015-09-12
The Tridax procumbens flavonoids (TPF), are well known for their medicinal properties among local natives. The TPF are traditionally used for dropsy, anaemia, arthritis, gout, asthma, ulcer, piles, and urinary problems. It also used in treating gastric problems, body pain, and rheumatic pains of joints. The TPF have been reported to increase osteogenic functioning in mesenchymal stem cells. However, their effects on osteoclastogenesis remain unclear. The TPF isolated from T. procumbens and investigated the effects of the TPF inhibit on osteoclast differentiation and bone resorption activities using primary osteoclastic cells. Osteoclast formation was assessed by counting the number of tartrate resistant acid phosphatase (TRAP) positive multinucleated cells and by measuring both TRAP activities. The TPF significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in primary osteoclastic cells. The TPF also decreased the expression of mRNAs related to osteoclast differentiation, including Trap, Cathepsin K, Mmp-9, and Mmp-13 in primary osteoclastic cells. The treatment of primary osteoclastic cells with the TPF decreased Cathepsin K, Mmp-9, and Mmp-13 proteins expression in primary osteoclastic cells. These results indicated that TPF inhibit osteoclastogenesis and pits formation activities. Our results suggest that the TPF could be a potential anti-bone resorptic agent to treat patients with bone loss-associated diseases such as osteoporosis.
Jiang, Xi; Zhang, Yu; Chen, Bo; Lin, Ye
2017-04-01
Extraction socket remodeling and ridge preservation strategies have been extensively explored. To evaluate the efficacy of applying a micro-titanium stent as a pressure bearing device on extraction socket remodeling of maxillary anterior tooth. Twenty-four patients with a extraction socket of maxillary incisor were treated with spontaneous healing (control group) or by applying a micro-titanium stent as a facial pressure bearing device over the facial bone wall (test group). Two virtual models obtained from cone beam computed tomography data before extraction and 4 months after healing were 3-dimenionally superimposed. Facial bone wall resorption, extraction socket remodeling features and ridge width preservation rate were determined and compared between the groups. Thin facial bone wall resulted in marked resorption in both groups. The greatest palatal shifting distance of facial bone located at the coronal level in the control group, but middle level in the test group. Compared with the original extraction socket, 87.61 ± 5.88% ridge width was preserved in the test group and 55.09 ± 14.46% in the control group. Due to the facial pressure bearing property, the rigid micro-titanium stent might preserve the ridge width and alter the resorption features of extraction socket. © 2016 Wiley Periodicals, Inc.
CD147 promotes the formation of functional osteoclasts through NFATc1 signalling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishioku, Tsuyoshi, E-mail: nishiokut@niu.ac.jp; Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180; Terasawa, Mariko
CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreasedmore » CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. - Highlights: • CD147 expression was markedly upregulated during osteoclast differentiation. • Downregulation of CD147 expression inhibited osteoclastgenesis and bone resorption. • Decreased CD147 expression inhibited RANKL-induced nuclear translocation of NFATc1.« less
NASA Technical Reports Server (NTRS)
Volozhin, A. I.; Shashkov, V. S.; Dmitriyev, B. S.; Yegorov, B. B.; Lobachik, V. I.; Brishin, A. I.
1980-01-01
A 30 day hypokinesia in rabbits led to a considerable lag in weight gain for the skeletal bones, reduction in Ca45 uptake, and an increase in isotope resorption rate in the rapidly metabolized fraction of extremity bones. On the other hand, Ca45 content in the teeth and maxillae increased, which may be explained by redistribution of isotope among the various mineralized tissues. Injection of thyrocalcitonin (50 IU/day) produced a distinct normalizing effect on Ca45 uptake and resorption in the mineralized tissues of rabbits kept hypokinetic.
USDA-ARS?s Scientific Manuscript database
Obesity is associated with chronic up-regulation of inflammatory cytokines which stimulate osteoclast activity and bone resorption. Osteopenia or low bone mass is observed in a variety of physiological conditions with chronic inflammation including aging and post-menopause with estrogen deficiency. ...
Feeding blueberry diets dose-dependently inhibits bone resorption in young rats
USDA-ARS?s Scientific Manuscript database
Nutritional status is a critical factor that influences bone development. We previously reported that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for only two weeks beginning on postnatal day 21 (PND21) significantly promoted bone formation. Howeve...
Occupational acroosteolysis in a guitar player.
Baran, R; Tosti, A
1993-02-01
A case of occupational acroosteolysis in a 24-year-old classical guitar player is reported. Nail tenderness was the only manifestation of initial acroosteolysis, which was due to mechanical stress on the fingers. Radiographs showed initial resorption of the 2nd, 3rd and 4th finger of the left hand. The authors review the clinical and radiological features of acroosteolysis. The pathogenesis of acroosteolysis is discussed as well as the different diseases that may cause destructive changes of the distal phalangeal bones.