Paracrine signaling in a bacterium.
López, Daniel; Vlamakis, Hera; Losick, Richard; Kolter, Roberto
2009-07-15
Cellular differentiation is triggered by extracellular signals that cause target cells to adopt a particular fate. Differentiation in bacteria typically involves autocrine signaling in which all cells in the population produce and respond to the same signal. Here we present evidence for paracrine signaling in bacterial populations-some cells produce a signal to which only certain target cells respond. Biofilm formation in Bacillus involves two centrally important signaling molecules, ComX and surfactin. ComX triggers the production of surfactin. In turn, surfactin causes a subpopulation of cells to produce an extracellular matrix. Cells that produced surfactin were themselves unable to respond to it. Likewise, once surfactin-responsive cells commenced matrix production, they no longer responded to ComX and could not become surfactin producers. Insensitivity to ComX was the consequence of the extracellular matrix as mutant cells unable to make matrix responded to both ComX and surfactin. Our results demonstrate that extracellular signaling was unidirectional, with one subpopulation producing a signal and a different subpopulation responding to it. Paracrine signaling in a bacterial population ensures the maintenance, over generations, of particular cell types even in the presence of molecules that would otherwise cause those cells to differentiate into other cell types.
Riding the Waves: How Our Cells Send Signals | Center for Cancer Research
The ability of cells to perceive and respond to their environment is critical in order to maintain basic cellular functions such as development, tissue repair, and response to stress. This process happens through a complex system of communication, called cell signaling, which governs basic cellular activities and coordinates cell actions. Errors in cell signaling have been linked to numerous diseases, including cancer. NF-κB is a protein complex that plays a critical role in many cell signaling pathways by controlling gene activation. It is widely used by cells to regulate cell growth and survival and helps to protect the cell from conditions that would otherwise cause it to die. Many tumor cells have mutations in genes that cause NF-κB to become overactive. Blocking NF-κB could cause tumor cells to stop growing, die, or become more sensitive to therapeutics.
Wnt Pathway Regulation of Embryonic Stem Cell Self-Renewal
Merrill, Bradley J.
2012-01-01
Embryonic stem cells (ESCs) can generate all of the cell types found in the adult organism. Remarkably, they retain this ability even after many cell divisions in vitro, as long as the culture conditions prevent differentiation of the cells. Wnt signaling and β-catenin have been shown to cause strong effects on ESCs both in terms of stimulating the expansion of stem cells and stimulating differentiation toward lineage committed cell types. The varied effects of Wnt signaling in ESCs, alongside the sometimes unconventional mechanisms underlying the effects, have generated a fair amount of controversy and intrigue regarding the role of Wnt signaling in pluripotent stem cells. Insights into the mechanisms of Wnt function in stem cells can be gained by examination of the causes for seemingly opposing effects of Wnt signaling on self-renewal versus differentiation. PMID:22952393
Loss of PTEN causes SHP2 activation, making lung cancer cells unresponsive to IFN-γ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chia-Ling; Chiang, Tzu-Hui; Tseng, Po-Chun
Src homology-2 domain-containing phosphatase (SHP) 2, an oncogenic phosphatase, inhibits type II immune interferon (IFN)-γ signaling by subverting signal transducers and activators of transcription 1 tyrosine phosphorylation and activation. For cancer immunoediting, this study aimed to investigate the decrease of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor protein, leading to cellular impairment of IFN-γ signaling. In comparison with human lung adenocarcinoma A549 cells, the natural PTEN loss in another human lung adenocarcinoma line, PC14PE6/AS2 cells, presents reduced responsiveness in IFN-γ-induced IFN regulatory factor 1 activation and CD54 expression. Artificially silencing PTEN expression in A549 cellsmore » also caused cells to be unresponsive to IFN-γ without affecting IFN-γ receptor expression. IFN-γ-induced inhibition of cell proliferation and cytotoxicity were demonstrated in A549 cells but were defective in PC14PE6/AS2 cells and in PTEN-deficient A549 cells. Aberrant activation of SHP2 by ROS was specifically shown in PC14PE6/AS2 cells and PTEN-deficient A549 cells. Inhibiting ROS and SHP2 rescued cellular responses to IFN-γ-induced cytotoxicity and inhibition of cell proliferation in PC14PE6/AS2 cells. These results demonstrate that a decrease in PTEN facilitates ROS/SHP2 signaling, causing lung cancer cells to become unresponsive to IFN-γ. - Highlights: • This study demonstrates that PTEN decrease causes cellular unresponsive to IFN-γ. • Lung cancer cells with PTEN deficiency show unresponsive to IFN-γ signaling. • PTEN decrease inhibits IFN-γ-induced CD54, cell proliferation inhibition, and cytotoxicity. • ROS-mediated SHP2 activation makes PTEN-deficient cells unresponsive to IFN-γ.« less
Choe, Youngshik; Zarbalis, Konstantinos S.; Pleasure, Samuel J.
2014-01-01
Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs) leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis. PMID:24516524
Mok, Sue-Ann; Lund, Karen; Campenot, Robert B
2009-05-01
Previous investigations of retrograde survival signaling by nerve growth factor (NGF) and other neurotrophins have supported diverse mechanisms, but all proposed mechanisms have in common the generation of survival signals retrogradely transmitted to the neuronal cell bodies. We report the finding of a retrograde apoptotic signal in axons that is suppressed by local NGF signaling. NGF withdrawal from distal axons alone was sufficient to activate the pro-apoptotic transcription factor, c-jun, in the cell bodies. Providing NGF directly to cell bodies, thereby restoring a source of NGF-induced survival signals, could not prevent c-jun activation caused by NGF withdrawal from the distal axons. This is evidence that c-jun is not activated due to loss of survival signals at the cell bodies. Moreover, blocking axonal transport with colchicine inhibited c-jun activation caused by NGF deprivation suggesting that a retrogradely transported pro-apoptotic signal, rather than loss of a retrogradely transported survival signal, caused c-jun activation. Additional experiments showed that activation of c-jun, pro-caspase-3 cleavage, and apoptosis were blocked by the protein kinase C inhibitors, rottlerin and chelerythrine, only when applied to distal axons suggesting that they block the axon-specific pro-apoptotic signal. The rottlerin-sensitive mechanism was found to regulate glycogen synthase kinase 3 (GSK3) activity. The effect of siRNA knockdown, and pharmacological inhibition of GSK3 suggests that GSK3 is required for apoptosis caused by NGF deprivation and may function as a retrograde carrier of the axon apoptotic signal. The existence of a retrograde death signaling system in axons that is suppressed by neurotrophins has broad implications for neurodevelopment and for discovering treatments for neurodegenerative diseases and neurotrauma.
Wang, Tian; Chen, Jeannie
2014-10-17
Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of "equivalent light" that activates the cascade, whereas other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knock-out mice, caused a rapid and specific induction of the PERK pathway of the unfolded protein response. These changes were not observed in the cGMP-gated channel knock-out rods, an equivalent light condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or unfolded protein response induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the unfolded protein response as a potential target for therapeutic intervention. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
El Shahawy, Maha; Reibring, Claes-Göran; Neben, Cynthia L; Hallberg, Kristina; Marangoni, Pauline; Harfe, Brian D; Klein, Ophir D; Linde, Anders; Gritli-Linde, Amel
2017-07-01
The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity.
Fibroblast growth factor receptor signaling crosstalk in skeletogenesis.
Miraoui, Hichem; Marie, Pierre J
2010-11-02
Fibroblast growth factors (FGFs) play important roles in the control of embryonic and postnatal skeletal development by activating signaling through FGF receptors (FGFRs). Germline gain-of-function mutations in FGFR constitutively activate FGFR signaling, causing chondrocyte and osteoblast dysfunctions that result in skeletal dysplasias. Crosstalk between the FGFR pathway and other signaling cascades controls skeletal precursor cell differentiation. Genetic analyses revealed that the interplay of WNT and FGFR1 determines the fate and differentiation of mesenchymal stem cells during mouse craniofacial skeletogenesis. Additionally, interactions between FGFR signaling and other receptor tyrosine kinase networks, such as those mediated by the epidermal growth factor receptor and platelet-derived growth factor receptor α, were associated with excessive osteoblast differentiation and bone formation in the human skeletal dysplasia called craniosynostosis, which is a disorder of skull development. We review the roles of FGFR signaling and its crosstalk with other pathways in controlling skeletal cell fate and discuss how this crosstalk could be pharmacologically targeted to correct the abnormal cell phenotype in skeletal dysplasias caused by aberrant FGFR signaling.
Baek, Sang-Min; Yu, Seung-Young; Son, Youngsook; Hong, Hyun Sook
2016-01-01
Senescence of the retina causes an accumulation of reactive oxygen species (ROS). Oxidative stress associated with ROS can damage RPE cells, leading to neovascularization and severe ocular disorders, including age-related macular degeneration (AMD). Thus, the early treatment of the damage caused by oxidative stress is critical for preventing the development of ocular diseases such as AMD. In this study, we examined the role of substance P (SP) in the recovery of RPE cells damaged by oxidative stress. To induce oxidative stress, RPE cells were treated with H2O2 at various doses. Recovery from oxidative stress was studied following treatment with SP by analyzing cell viability, cell proliferation, cell apoptosis, and Akt/glycogen synthase kinase (GSK)-3β activation in RPE cells in vitro. H2O2 treatment reduced cellular viability in a dose-dependent manner. SP inhibited the reduction of cell viability due to H2O2 and caused increased cell proliferation and decreased cell apoptosis. Cell survival under oxidative stress requires the activation of Akt signaling that enables cells to resist oxidative stress-induced damage. SP treatment activated Akt/GSK-3β signaling in RPE cells, which were damaged due to oxidative stress, and the inhibition of Akt signaling in SP-treated RPE cells prevented SP-induced recovery. Pretreatment with the neurokinin 1 receptor (NK1R) antagonist reduced the recovery effect of SP on damaged RPE cells. SP can protect RPE cells from oxidant-induced cell death by activating Akt/GSK-3β signaling via NK1R. This study suggests the possibility of SP as a treatment for oxidative stress-related diseases.
Neben, Cynthia L.; Harfe, Brian D.; Linde, Anders
2017-01-01
The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity. PMID:28715412
Ma, Jin; Liu, Qiang; Zeng, Yi-Xin
2004-01-01
Phosphatidylinositol 3-kinase (PI3-K) signaling may inhibit apoptosis in neoplastic cells. The PI-3K inhibitor wortmannin renders cells apoptosis-prone. Inducers of differentiation may also cause apoptosis. To detect the effect of wortmannin on the survival of differentiated human acute promyeloid leukemia cells, HL-60 cells were induced to differentiation with treatment of all trans-retinoic acid (ATRA) followed by treatment with wortmannin. Results showed that apoptosis occurred in cells that underwent differentiation, but not in undifferentiated HL-60 cells. The pro-apoptotic molecule, Bad, played a role in this apoptotic mechanism. Thus, the survival of differentiated HL-60 cells induced by ATRA depends on the ability of the PI3-K pathway to transduce survival signals; the PI3-K inhibitor, wortmannin, can induce apoptosis of differentiated HL-60 cells. These results may indicate a novel method for treating cancer with differentiation induction and signal pathway regulation.
Chen, Shasha; Cai, Chenxu; Li, Zehua; Liu, Guangao; Wang, Yuande; Blonska, Marzenna; Li, Dan; Du, Juan; Lin, Xin; Yang, Meixiang; Dong, Zhongjun
2017-02-01
Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (T FH ) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in T FH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient T FH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. © 2017 Chen et al.
Cai, Chenxu; Liu, Guangao; Wang, Yuande; Du, Juan; Lin, Xin; Yang, Meixiang
2017-01-01
Signaling lymphocytic activation molecule (SLAM)–associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (TFH) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in TFH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient TFH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. PMID:28049627
Skandalis, Spyros S; Afratis, Nikolaos; Smirlaki, Gianna; Nikitovic, Dragana; Theocharis, Achilleas D; Tzanakakis, George N; Karamanos, Nikos K
2014-04-01
In hormone-dependent breast cancer, estrogen receptors are the principal signaling molecules that regulate several cell functions either by the genomic pathway acting directly as transcription factors in the nucleus or by the non-genomic pathway interacting with other receptors and their adjacent pathways like EGFR/IGFR. It is well established in literature that EGFR and IGFR signaling pathways promote cell proliferation and differentiation. Moreover, recent data indicate the cross-talk between ERs and EGFR/IGFR signaling pathways causing a transformation of cell functions as well as deregulation on normal expression pattern of matrix molecules. Specifically, proteoglycans, a major category of extracellular matrix (ECM) and cell surface macromolecules, are modified during malignancy and cause alterations in cancer cell signaling, affecting eventually functional cell properties such as proliferation, adhesion and migration. The on-going strategies to block only one of the above signaling effectors result cancer cells to overcome such inactivation using alternative signaling pathways. In this article, we therefore review the underlying mechanisms in respect to the role of ERs and the involvement of cross-talk between ERs, IGFR and EGFR in breast cancer cell properties and expression of extracellular secreted and cell bound proteoglycans involved in cancer progression. Understanding such signaling pathways may help to establish new potential pharmacological targets in terms of using ECM molecules to design novel anticancer therapies. © 2013. Published by Elsevier B.V. All rights reserved.
P44/WDR77 restricts the sensitivity of proliferating cells to TGFβ signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Pengfei; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030; Gao, Shen
2014-07-18
Highlights: • P44/WDR77 causes proliferating cells to become non-responsive to TGFβ signaling. • P44/WDR77 down-regulates TβRII and TβR2 expression. • P44/WDR77 down-regulated TGFβ signaling correlates with lung tumorigenesis. - Abstract: We previously reported that a novel WD-40 domain-containing protein, p44/WDR77, drives quiescent epithelial cells to re-enter the cell cycle and plays an essential role for growth of lung and prostate cancer cells. Transforming growth factor beta (TGFβ) signaling is important in the maintenance of non-transformed cells in the quiescent or slowly cycling stage. However, both non-transformed proliferating cells and human cancer cells are non-responsive to endogenous TGFβ signaling. The mechanismmore » by which proliferating cells become refractory to TGFβ inhibition is not well established. Here, we found that silencing p44/WDR77 increased cellular sensitivity to TGFβ signaling and that this was inversely correlated with decreased cell proliferation. Smad2 or 3 phosphorylation, TGFβ-mediated transcription, and TGFβ2 and TGFβ receptor type II (TβRII) expression were dramatically induced by silencing of p44/WDR77. These data support the hypothesis that p44/WDR77 down-regulates the expression of the TGFβ ligand and its receptor, thereby leading to a cellular non-response to TGFβ signaling. Finally, we found that p44/WDR77 expression was correlated with cell proliferation and decreased TGFβ signaling during lung tumorigenesis. Together, these results suggest that p44/WDR77 expression causes the non-sensitivity of proliferating cells to TGFβ signaling, thereby contributing to cellular proliferation during lung tumorigenesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunhui; Wu, Huijue; Zhu, Lifeng
2014-02-15
Recently, negative signals are frequently observed during the measuring process of monochromatic incident photon-to-electron conversion efficiency (IPCE) for sensitized solar cells by DC method. This phenomenon is confusing and hindering the reasonable evaluation of solar cells. Here, cause of negative IPCE values is studied by taking quantum dot-sensitized solar cell (QDSC) as an example, and the accurate measurement method to avoid the negative value is suggested. The negative background signals of QDSC without illumination are found the direct cause of the negative IPCE values by DC method. Ambient noise, significant capacitance characteristics, and uncontrolled electrochemical reaction all can lead tomore » the negative background signals. When the photocurrent response of device under monochromatic light illumination is relatively weak, the actual photocurrent signals will be covered by the negative background signals and the resulting IPCE values will appear negative. To improve the signal-to-noise ratio, quasi-AC method is proposed for IPCE measurement of solar cells with weak photocurrent response based on the idea of replacing the absolute values by the relative values.« less
Nam, Seo Hee; Kim, Doyeun; Lee, Mi-Sook; Lee, Doohyung; Kwak, Tae Kyoung; Kang, Minkyung; Ryu, Jihye; Kim, Hye-Jin; Song, Haeng Eun; Choi, Jungeun; Lee, Gyu-Ho; Kim, Sang-Yeob; Park, Song Hwa; Kim, Dae Gyu; Kwon, Nam Hoon; Kim, Tai Young; Thiery, Jean Paul; Kim, Sunghoon; Lee, Jung Weon
2015-01-01
The adhesion properties of cells are involved in tumor metastasis. Although KRS at the plasma membrane is shown important for cancer metastasis, additionally to canonical roles of cytosolic KRS in protein translation, how KRS and its downstream effectors promote the metastatic migration remains unexplored. Disseminative behaviors (an earlier metastatic process) of colon cancer cell spheroids embedded in 3D collagen gels were studied with regards to cell adhesion properties, and relevance in KRS−/+ knocked-down animal and clinical colon cancer tissues. Time-lapse imaging revealed KRS-dependent cell dissemination from the spheroids, whereas KRS-suppressed spheroids remained static due to the absence of outbound movements supported by cell-extracellular matrix (ECM) adhesion. While keeping E-cadherin at the outward disseminative cells, KRS caused integrin-involved intracellular signaling for ERK/c-Jun, paxillin, and cell-ECM adhesion-mediated signaling to modulate traction force for crawling movement. KRS-suppressed spheroids became disseminative following ERK or paxillin re-expression. The KRS-dependent intracellular signaling activities correlated with the invasiveness in clinical colon tumor tissues and in KRS−/+ knocked-down mice tissues. Collectively, these observations indicate that KRS at the plasma membrane plays new roles in metastatic migration as a signaling inducer, and causes intracellular signaling for cancer dissemination, involving cell-cell and cell-ECM adhesion, during KRS-mediated metastasis. PMID:26091349
Ferdek, Pawel E; Jakubowska, Monika A; Gerasimenko, Julia V; Gerasimenko, Oleg V; Petersen, Ole H
2016-11-01
Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas. Bile acids are known to induce Ca 2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored. Here we show that cholate and taurocholate elicit more dramatic Ca 2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3-sulfate primarily affects acinar cells. Ca 2+ signals and necrosis are strongly dependent on extracellular Ca 2+ as well as Na + ; and Na + -dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells. Bile acid-mediated pancreatic damage can be further escalated by bradykinin-induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca 2+ signals and necrosis in acinar cells. However, bile acid-elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca 2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3-sulfate (TLC-S), known to induce Ca 2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca 2+ signals on extracellular Na + and the presence of sodium-taurocholate cotransporting polypeptide (NTCP) indicate a Na + -dependent bile acid uptake mechanism in stellate cells. Bile acid treatment caused necrosis predominantly in stellate cells, which was abolished by removal of extracellular Ca 2+ and significantly reduced in the absence of Na + , showing that bile-dependent cell death was a downstream event of Ca 2+ signals. Finally, combined application of TLC-S and the inflammatory mediator bradykinin caused more extensive necrosis in both stellate and acinar cells than TLC-S alone. Our findings shed new light on the mechanism by which bile acids promote pancreatic pathology. This involves not only signalling in acinar cells but also in stellate cells. © 2016 The Authors The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.
2016-01-01
Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na+‐dependent bile acid uptake mechanism in stellate cells. Bile acid treatment caused necrosis predominantly in stellate cells, which was abolished by removal of extracellular Ca2+ and significantly reduced in the absence of Na+, showing that bile‐dependent cell death was a downstream event of Ca2+ signals. Finally, combined application of TLC‐S and the inflammatory mediator bradykinin caused more extensive necrosis in both stellate and acinar cells than TLC‐S alone. Our findings shed new light on the mechanism by which bile acids promote pancreatic pathology. This involves not only signalling in acinar cells but also in stellate cells. PMID:27406326
Kaltenmeier, Christof T.; Vollmer, Laura L.; Vernetti, Lawrence A.; Caprio, Lindsay; Davis, Keanu; Korotchenko, Vasiliy N.; Day, Billy W.; Tsang, Michael; Hulkower, Keren I.; Lotze, Michael T.
2017-01-01
Dual specificity mitogen-activated protein kinase (MAPK) phosphatases [dual specificity phosphatase/MAP kinase phosphatase (DUSP-MKP)] have been hypothesized to maintain cancer cell survival by buffering excessive MAPK signaling caused by upstream activating oncogenic products. A large and diverse body of literature suggests that genetic depletion of DUSP-MKPs can reduce tumorigenicity, suggesting that hyperactivating MAPK signaling by DUSP-MKP inhibitors could be a novel strategy to selectively affect the transformed phenotype. Through in vivo structure-activity relationship studies in transgenic zebrafish we recently identified a hyperactivator of fibroblast growth factor signaling [(E)-2-benzylidene-5-bromo-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI-215)] that is devoid of developmental toxicity and restores defective MAPK activity caused by overexpression of DUSP1 and DUSP6 in mammalian cells. Here, we hypothesized that BCI-215 could selectively affect survival of transformed cells. In MDA-MB-231 human breast cancer cells, BCI-215 inhibited cell motility, caused apoptosis but not primary necrosis, and sensitized cells to lymphokine-activated killer cell activity. Mechanistically, BCI-215 induced rapid and sustained phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) in the absence of reactive oxygen species, and its toxicity was partially rescued by inhibition of p38 but not JNK or ERK. BCI-215 also hyperactivated MKK4/SEK1, suggesting activation of stress responses. Kinase phosphorylation profiling documented BCI-215 selectively activated MAPKs and their downstream substrates, but not receptor tyrosine kinases, SRC family kinases, AKT, mTOR, or DNA damage pathways. Our findings support the hypothesis that BCI-215 causes selective cancer cell cytotoxicity in part through non-redox-mediated activation of MAPK signaling, and the findings also identify an intersection with immune cell killing that is worthy of further exploration. PMID:28154014
Loss of Acetylcholine Signaling Reduces Cell Clearance Deficiencies in Caenorhabditis elegans.
Pinto, Sérgio M; Almendinger, Johann; Cabello, Juan; Hengartner, Michael O
2016-01-01
The ability to eliminate undesired cells by apoptosis is a key mechanism to maintain organismal health and homeostasis. Failure to clear apoptotic cells efficiently can cause autoimmune diseases in mammals. Genetic studies in Caenorhabditis elegans have greatly helped to decipher the regulation of apoptotic cell clearance. In this study, we show that the loss of levamisole-sensitive acetylcholine receptor, but not of a typical neuronal acetylcholine receptor causes a reduction in the number of persistent cell corpses in worms suffering from an engulfment deficiency. This reduction is not caused by impaired or delayed cell death but rather by a partial restoration of the cell clearance capacity. Mutants in acetylcholine turn-over elicit a similar phenotype, implying that acetylcholine signaling is the process responsible for these observations. Surprisingly, tissue specific RNAi suggests that UNC-38, a major component of the levamisole-sensitive receptor, functions in the dying germ cell to influence engulfment efficiency. Animals with loss of acetylcholine receptor exhibit a higher fraction of cell corpses positive for the "eat-me" signal phosphatidylserine. Our results suggest that modulation by ion channels of ion flow across plasma membrane in dying cells can influence the dynamics of phosphatidylserine exposure and thus clearance efficiency.
Ye, Xin; Wang, Yanshu; Cahill, Hugh; Yu, Minzhong; Badea, Tudor C; Smallwood, Philip M; Peachey, Neal S; Nathans, Jeremy
2009-10-16
Disorders of vascular structure and function play a central role in a wide variety of CNS diseases. Mutations in the Frizzled-4 (Fz4) receptor, Lrp5 coreceptor, or Norrin ligand cause retinal hypovascularization, but the mechanisms by which Norrin/Fz4/Lrp signaling controls vascular development have not been defined. Using mouse genetic and cell culture models, we show that loss of Fz4 signaling in endothelial cells causes defective vascular growth, which leads to chronic but reversible silencing of retinal neurons. Loss of Fz4 in all endothelial cells disrupts the blood brain barrier in the cerebellum, whereas excessive Fz4 signaling disrupts embryonic angiogenesis. Sox17, a transcription factor that is upregulated by Norrin/Fz4/Lrp signaling, plays a central role in inducing the angiogenic program controlled by Norrin/Fz4/Lrp. These experiments establish a cellular basis for retinal hypovascularization diseases due to insufficient Frizzled signaling, and they suggest a broader role for Frizzled signaling in vascular growth, remodeling, maintenance, and disease.
Hsu, Li-Jin; Hong, Qunying; Chen, Shur-Tzu; Kuo, Hsiang-Lin; Schultz, Lori; Heath, John; Lin, Sing-Ru; Lee, Ming-Hui; Li, Dong-Zhang; Li, Zih-Ling; Cheng, Hui-Ching; Armand, Gerard; Chang, Nan-Shan
2017-01-01
Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed. PMID:27845895
Hsu, Li-Jin; Hong, Qunying; Chen, Shur-Tzu; Kuo, Hsiang-Lin; Schultz, Lori; Heath, John; Lin, Sing-Ru; Lee, Ming-Hui; Li, Dong-Zhang; Li, Zih-Ling; Cheng, Hui-Ching; Armand, Gerard; Chang, Nan-Shan
2017-03-21
Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed.
Environmental adjuvants, apoptosis and the censorship over autoimmunity.
Rovere-Querini, Patrizia; Manfredi, Angelo A; Sabbadini, Maria Grazia
2005-11-01
Alterations during apoptosis lead to the activation of autoreactive T cells and the production of autoantibodies. This article discusses the pathogenic potential of cells dying in vivo, dissecting the role of signals that favor immune responses (adjuvants) and the influence of genetic backgrounds. Diverse factors determine whether apoptosis leads or not to a self-sustaining, clinically apparent autoimmune disease. The in vivo accumulation of uncleared dying cells per se is not sufficient to cause disease. However, dying cells are antigenic and their complementation with immune adjuvants causes lethal diseases in predisposed lupus-prone animals. At least some adjuvant signals directly target the function and the activation state of antigen presenting cells. Several laboratories are aggressively pursuing the molecular identification of endogenous adjuvants. Sodium monourate and the high mobility group B1 protein (HMGB1) are, among those identified so far, well known to rheumatologists. However, even the complementation of apoptotic cells with potent adjuvant signals fail to cause clinical autoimmunity in most strains: autoantibodies generated are transient, do not undergo to epitope/spreading and do not cause disease. Novel tools for drug development will derive from the molecular identification of the constraints that prevent autoimmunity in normal subjects.
Sever, Richard; Brugge, Joan S.
2015-01-01
SUMMARY Cancer is driven by genetic and epigenetic alterations that allow cells to overproliferate and escape mechanisms that normally control their survival and migration. Many of these alterations map to signaling pathways that control cell growth and division, cell death, cell fate, and cell motility, and can be placed in the context of distortions of wider signaling networks that fuel cancer progression, such as changes in the tumor microenvironment, angiogenesis, and inflammation. Mutations that convert cellular proto-oncogenes to oncogenes can cause hyperactivation of these signaling pathways, whereas inactivation of tumor suppressors eliminates critical negative regulators of signaling. An examination of the PI3K-Akt and Ras-ERK pathways illustrates how such alterations dysregulate signaling in cancer and produce many of the characteristic features of tumor cells. PMID:25833940
Engström, Wilhelm; Darbre, Philippa; Eriksson, Staffan; Gulliver, Linda; Hultman, Tove; Karamouzis, Michalis V.; Klaunig, James E.; Mehta, Rekha; Moorwood, Kim; Sanderson, Thomas; Sone, Hideko; Vadgama, Pankaj; Wagemaker, Gerard; Ward, Andrew; Singh, Neetu; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A. Ivana; Raju, Jayadev; Hamid, Roslida A.; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K.; Ryan, Elizabeth; Brown, Dustin G.; Bisson, William H.
2015-01-01
The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span. PMID:26106143
O'Donnell, Robert T; Pearson, David; McKnight, Hayes C; Ma, Ya Peng; Tuscano, Joseph M
2009-07-01
CD22 is a cell-surface molecule found on most B-cell lymphomas (NHL). HB22.7 is an anti-CD22 antibody that blocks CD22 ligand binding, initiates signaling, and kills NHL cells. The SHP-1 tyrosine phosphatase is disproportionately associated with the cytoplasmic domain of CD22. Sodium orthovanadate (NaV) and dephostatin (DP) are phosphatase inhibitors. The interaction of SHP-1 with CD22 presents an opportunity to manipulate CD22-mediated signaling effects. NaV caused dose dependent killing of NHL cells in vitro; when HB22.7 was given with NaV, antibody-mediated cell death increased. NaV caused a substantial increase in CD22-mediated SAPK and ERK-1/2 activation when CD22 was crosslinked by HB22.7; NaV did not significantly affect IgM-mediated signals. Studies using Raji NHL cells stably transfected with a SHP-1 dominant negative (DN) confirmed that these observations were due to SHP-1 inhibition. The relatively specific association of SHP-1 with CD22 suggests that CD22-specific signaling may be altered by phosphatase inhibition in ways that could prove useful for anti-CD22-based immunotherapy.
Modeling of cell signaling pathways in macrophages by semantic networks
Hsing, Michael; Bellenson, Joel L; Shankey, Conor; Cherkasov, Artem
2004-01-01
Background Substantial amounts of data on cell signaling, metabolic, gene regulatory and other biological pathways have been accumulated in literature and electronic databases. Conventionally, this information is stored in the form of pathway diagrams and can be characterized as highly "compartmental" (i.e. individual pathways are not connected into more general networks). Current approaches for representing pathways are limited in their capacity to model molecular interactions in their spatial and temporal context. Moreover, the critical knowledge of cause-effect relationships among signaling events is not reflected by most conventional approaches for manipulating pathways. Results We have applied a semantic network (SN) approach to develop and implement a model for cell signaling pathways. The semantic model has mapped biological concepts to a set of semantic agents and relationships, and characterized cell signaling events and their participants in the hierarchical and spatial context. In particular, the available information on the behaviors and interactions of the PI3K enzyme family has been integrated into the SN environment and a cell signaling network in human macrophages has been constructed. A SN-application has been developed to manipulate the locations and the states of molecules and to observe their actions under different biological scenarios. The approach allowed qualitative simulation of cell signaling events involving PI3Ks and identified pathways of molecular interactions that led to known cellular responses as well as other potential responses during bacterial invasions in macrophages. Conclusions We concluded from our results that the semantic network is an effective method to model cell signaling pathways. The semantic model allows proper representation and integration of information on biological structures and their interactions at different levels. The reconstruction of the cell signaling network in the macrophage allowed detailed investigation of connections among various essential molecules and reflected the cause-effect relationships among signaling events. The simulation demonstrated the dynamics of the semantic network, where a change of states on a molecule can alter its function and potentially cause a chain-reaction effect in the system. PMID:15494071
MHY1485 ameliorates UV-induced skin cell damages via activating mTOR-Nrf2 signaling.
Yang, Bo; Xu, Qiu-Yun; Guo, Chun-Yan; Huang, Jin-Wen; Wang, Shu-Mei; Li, Yong-Mei; Tu, Ying; He, Li; Bi, Zhi-Gang; Ji, Chao; Cheng, Bo
2017-02-21
Ultra Violet (UV)-caused skin cell damage is a main cause of skin cancer. Here, we studied the activity of MHY1485, a mTOR activator, in UV-treated skin cells. In primary human skin keratinocytes, HaCaT keratinocytes and human skin fibroblasts, MHY1485 ameliorated UV-induced cell death and apoptosis. mTOR activation is required for MHY1485-induced above cytoprotective actions. mTOR kinase inhibitors (OSI-027, AZD-8055 and AZD-2014) or mTOR shRNA knockdown almost abolished MHY1485-induced cytoprotection. Further, MHY1485 treatment in skin cells activated mTOR downstream NF-E2-related factor 2 (Nrf2) signaling, causing Nrf2 Ser-40 phosphorylation, stabilization/upregulation and nuclear translocation, as well as mRNA expression of Nrf2-dictated genes. Contrarily, Nrf2 knockdown or S40T mutation almost nullified MHY1485-induced cytoprotection. MHY1485 suppressed UV-induced reactive oxygen species production and DNA single strand breaks in skin keratinocytes and fibroblasts. Together, we conclude that MHY1485 inhibits UV-induced skin cell damages via activating mTOR-Nrf2 signaling.
Darling, Nicola J; Balmanno, Kathryn; Cook, Simon J
2017-01-01
Disruption of protein folding in the endoplasmic reticulum (ER) causes ER stress. Activation of the unfolded protein response (UPR) acts to restore protein homeostasis or, if ER stress is severe or persistent, drive apoptosis, which is thought to proceed through the cell intrinsic, mitochondrial pathway. Indeed, cells that lack the key executioner proteins BAX and BAK are protected from ER stress-induced apoptosis. Here we show that chronic ER stress causes the progressive inhibition of the extracellular signal-regulated kinase (ERK1/2) signalling pathway. This is causally related to ER stress since reactivation of ERK1/2 can protect cells from ER stress-induced apoptosis whilst ERK1/2 pathway inhibition sensitises cells to ER stress. Furthermore, cancer cell lines harbouring constitutively active BRAFV600E are addicted to ERK1/2 signalling for protection against ER stress-induced cell death. ERK1/2 signalling normally represses the pro-death proteins BIM, BMF and PUMA and it has been proposed that ER stress induces BIM-dependent cell death. We found no evidence that ER stress increased the expression of these proteins; furthermore, BIM was not required for ER stress-induced death. Rather, ER stress caused the PERK-dependent inhibition of cap-dependent mRNA translation and the progressive loss of pro-survival proteins including BCL2, BCLXL and MCL1. Despite these observations, neither ERK1/2 activation nor loss of BAX/BAK could confer long-term clonogenic survival to cells exposed to ER stress. Thus, ER stress induces cell death by at least two biochemically and genetically distinct pathways: a classical BAX/BAK-dependent apoptotic response that can be inhibited by ERK1/2 signalling and an alternative ERK1/2- and BAX/BAK-independent cell death pathway.
Gryshchenko, Oleksiy; Gerasimenko, Julia V; Peng, Shuang; Gerasimenko, Oleg V; Petersen, Ole H
2018-02-09
Ca 2+ signalling in different cell types in exocrine pancreatic lobules was monitored simultaneously and signalling responses to various stimuli were directly compared. Ca 2+ signals evoked by K + -induced depolarization were recorded from pancreatic nerve cells. Nerve cell stimulation evoked Ca 2+ signals in acinar but not in stellate cells. Stellate cells are not electrically excitable as they, like acinar cells, did not generate Ca 2+ signals in response to membrane depolarization. The responsiveness of the stellate cells to bradykinin was markedly reduced in experimental alcohol-related acute pancreatitis, but they became sensitive to stimulation with trypsin. Our results provide fresh evidence for an important role of stellate cells in acute pancreatitis. They seem to be a critical element in a vicious circle promoting necrotic acinar cell death. Initial trypsin release from a few dying acinar cells generates Ca 2+ signals in the stellate cells, which then in turn damage more acinar cells causing further trypsin liberation. Physiological Ca 2+ signals in pancreatic acinar cells control fluid and enzyme secretion, whereas excessive Ca 2+ signals induced by pathological agents induce destructive processes leading to acute pancreatitis. Ca 2+ signals in the peri-acinar stellate cells may also play a role in the development of acute pancreatitis. In this study, we explored Ca 2+ signalling in the different cell types in the acinar environment of the pancreatic tissue. We have, for the first time, recorded depolarization-evoked Ca 2+ signals in pancreatic nerves and shown that whereas acinar cells receive a functional cholinergic innervation, there is no evidence for functional innervation of the stellate cells. The stellate, like the acinar, cells are not electrically excitable as they do not generate Ca 2+ signals in response to membrane depolarization. The principal agent evoking Ca 2+ signals in the stellate cells is bradykinin, but in experimental alcohol-related acute pancreatitis, these cells become much less responsive to bradykinin and then acquire sensitivity to trypsin. Our new findings have implications for our understanding of the development of acute pancreatitis and we propose a scheme in which Ca 2+ signals in stellate cells provide an amplification loop promoting acinar cell death. Initial release of the proteases kallikrein and trypsin from dying acinar cells can, via bradykinin generation and protease-activated receptors, induce Ca 2+ signals in stellate cells which can then, possibly via nitric oxide generation, damage more acinar cells and thereby cause additional release of proteases, generating a vicious circle. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification
Regard, Jean B.; Malhotra, Deepti; Gvozdenovic-Jeremic, Jelena; Josey, Michelle; Chen, Min; Weinstein, Lee S.; Lu, Jianming; Shore, Eileen M.; Kaplan, Frederick S.; Yang, Yingzi
2014-01-01
Bone formation is exquisitely controlled in space and time. Heterotopic ossification (HO), the pathologic formation of extra-skeletal bone, occurs as a common complication of trauma or in genetic disorders and can be disabling and lethal. However, the underlying molecular mechanisms are largely unknown. Here we demonstrate that Gαs restricts bone formation to the skeleton by inhibiting Hedgehog (Hh) signaling in mesenchymal progenitor cells. In progressive osseous heteroplasia (POH), a human disease caused by null mutations in GNAS that encodes Gαs, HH signaling is upregulated in ectopic osteoblasts and progenitor cells. Ectopic Hh signaling is sufficient to induce HO, while Hh signaling inhibition blocks HO in animal models. As our previous work has shown that GNAS gain of function mutations upregulate WNT/β-Catenin signaling in fibrous dysplasia (FD), our findings identify Gαs as a critical regulator of osteoblast differentiation by maintaining a balance between two key signaling pathways: Wnt/β-catenin and Hh. HH signaling inhibitors developed for cancer therapy may be repurposed to treat HO and other diseases caused by GNAS inactivation. PMID:24076664
Computation and measurement of cell decision making errors using single cell data.
Habibi, Iman; Cheong, Raymond; Lipniacki, Tomasz; Levchenko, Andre; Emamian, Effat S; Abdi, Ali
2017-04-01
In this study a new computational method is developed to quantify decision making errors in cells, caused by noise and signaling failures. Analysis of tumor necrosis factor (TNF) signaling pathway which regulates the transcription factor Nuclear Factor κB (NF-κB) using this method identifies two types of incorrect cell decisions called false alarm and miss. These two events represent, respectively, declaring a signal which is not present and missing a signal that does exist. Using single cell experimental data and the developed method, we compute false alarm and miss error probabilities in wild-type cells and provide a formulation which shows how these metrics depend on the signal transduction noise level. We also show that in the presence of abnormalities in a cell, decision making processes can be significantly affected, compared to a wild-type cell, and the method is able to model and measure such effects. In the TNF-NF-κB pathway, the method computes and reveals changes in false alarm and miss probabilities in A20-deficient cells, caused by cell's inability to inhibit TNF-induced NF-κB response. In biological terms, a higher false alarm metric in this abnormal TNF signaling system indicates perceiving more cytokine signals which in fact do not exist at the system input, whereas a higher miss metric indicates that it is highly likely to miss signals that actually exist. Overall, this study demonstrates the ability of the developed method for modeling cell decision making errors under normal and abnormal conditions, and in the presence of transduction noise uncertainty. Compared to the previously reported pathway capacity metric, our results suggest that the introduced decision error metrics characterize signaling failures more accurately. This is mainly because while capacity is a useful metric to study information transmission in signaling pathways, it does not capture the overlap between TNF-induced noisy response curves.
Genetics of Gonadal Stem Cell Renewal
Greenspan, Leah Joy; de Cuevas, Margaret
2015-01-01
Stem cells are necessary for the maintenance of many adult tissues. Signals within the stem cell microenvironment, or niche, regulate the self-renewal and differentiation capability of these cells. Misregulation of these signals through mutation or damage can lead to overgrowth or depletion of different stem cell pools. In this review, we focus on the Drosophila testis and ovary, both of which contain well-defined niches, as well as the mouse testis, which has become a more approachable stem cell system with recent technical advances. We discuss the signals that regulate gonadal stem cells in their niches, how these signals mediate self-renewal and differentiation under homeostatic conditions, and how stress, whether from mutations or damage, can cause changes in cell fate and drive stem cell competition. PMID:26355592
Ras promotes cell survival by antagonizing both JNK and Hid signals in the Drosophila eye.
Wu, Yue; Zhuang, Yuan; Han, Min; Xu, Tian; Deng, Kejing
2009-10-20
Programmed cell death, or apoptosis, is a fundamental physiological process during normal development or in pathological conditions. The activation of apoptosis can be elicited by numerous signalling pathways. Ras is known to mediate anti-apoptotic signals by inhibiting Hid activity in the Drosophila eye. Here we report the isolation of a new loss-of-function ras allele, rasKP, which causes excessive apoptosis in the Drosophila eye. This new function is likely to be mediated through the JNK pathway since the inhibition of JNK signalling can significantly suppress rasKP-induced apoptosis, whereas the removal of hid only weakly suppresses the phenotype. Furthermore, the reduction of JNK signalling together with the expression of the baculovirus caspase inhibitor p35, which blocks Hid activity, strongly suppresses the rasKP cell death. In addition, we find a strong correlation between rasKP-induced apoptosis in the eye disc and the activation of JNK signalling. In the Drosophila eye, Ras may protect cells from apoptosis by inhibiting both JNK and Hid activities. Surprisingly, reducing Ras activity in the wing, however, does not cause apoptosis but rather affects cell and organ size. Thus, in addition to its requirement for cell viability, Ras appears to mediate different biological roles depending on the developmental context and on the level of its expression.
Hu, Haitao; Hao, Lanxiang; Tang, Chunzhou; Zhu, Yunxi; Jiang, Qin; Yao, Jin
2018-01-15
Ultra-violet (UV) radiation causes oxidative injuries to human retinal pigment epithelium (RPE) cells. We tested the potential effect of keratinocyte growth factor (KGF) against the process. KGF receptor (KGFR) is expressed in ARPE-19 cells and primary human RPE cells. Pre-treatment with KGF inhibited UV-induced reactive oxygen species (ROS) production and RPE cell death. KGF activated nuclear-factor-E2-related factor 2 (Nrf2) signaling in RPE cells, causing Nrf2 Ser-40 phosphorylation, stabilization and nuclear translocation as well as expression of Nrf2-dependent genes (HO1, NOQ1 and GCLC). Nrf2 knockdown (by targeted shRNAs) or S40T mutation almost reversed KGF-induced RPE cell protection against UV. Further studies demonstrated that KGF activated KGFR-Akt-mTORC1 signaling to mediate downstream Nrf2 activation. KGFR shRNA or Akt-mTORC1 inhibition not only blocked KGF-induced Nrf2 Ser-40 phosphorylation and activation, but also nullified KGF-mediated RPE cell protection against UV. We conclude that KGF-KGFR activates Akt-mTORC1 downstream Nrf2 signaling to protect RPE cells from UV radiation. Copyright © 2017 Elsevier Inc. All rights reserved.
Chan, Wen-Hsiung
2007-01-01
The mycotoxin CTN (citrinin), a natural contaminant in foodstuffs and animal feeds, has cytotoxic and genotoxic effects on various mammalian cells. CTN is known to cause cell injury, including apoptosis, but the precise regulatory mechanisms of CTN action, particularly in stem cells and embryos, are currently unclear. In the present paper, I report that CTN has cytotoxic effects on mouse embryonic stem cells and blastocysts, and is associated with defects in their subsequent development, both in vitro and in vivo. Experiments in embryonic stem cells (ESC-B5) showed that CTN induces apoptosis via ROS (reactive oxygen species) generation, increased Bax/Bcl-2 ratio, loss of MMP (mitochondrial membrane potential), induction of cytochrome c release, and activation of caspase 3. In this model, CTN triggers cell death via inactivation of the HSP90 [a 90 kDa isoform of the HSP (heat-shock protein) family proteins]/multichaperone complex and subsequent degradation of Ras and Raf-1, further inhibiting anti-apoptotic processes, such as the Ras→ERK (extracellular-signal-regulated kinase) signal transduction pathway. In addition, CTN causes early developmental injury in mouse ESCs and blastocysts in vitro. Lastly, using an in vivo mouse model, I show that consumption of drinking water containing 10 μM CTN results in blastocyst apoptosis and early embryonic developmental injury. Collectively, these findings show for the first time that CTN induces ROS and mitochondria-dependent apoptotic processes, inhibits Ras→ERK survival signalling via inactivation of the HSP90/multichaperone complex, and causes developmental injury in vivo. PMID:17331071
Computation and measurement of cell decision making errors using single cell data
Habibi, Iman; Cheong, Raymond; Levchenko, Andre; Emamian, Effat S.; Abdi, Ali
2017-01-01
In this study a new computational method is developed to quantify decision making errors in cells, caused by noise and signaling failures. Analysis of tumor necrosis factor (TNF) signaling pathway which regulates the transcription factor Nuclear Factor κB (NF-κB) using this method identifies two types of incorrect cell decisions called false alarm and miss. These two events represent, respectively, declaring a signal which is not present and missing a signal that does exist. Using single cell experimental data and the developed method, we compute false alarm and miss error probabilities in wild-type cells and provide a formulation which shows how these metrics depend on the signal transduction noise level. We also show that in the presence of abnormalities in a cell, decision making processes can be significantly affected, compared to a wild-type cell, and the method is able to model and measure such effects. In the TNF—NF-κB pathway, the method computes and reveals changes in false alarm and miss probabilities in A20-deficient cells, caused by cell’s inability to inhibit TNF-induced NF-κB response. In biological terms, a higher false alarm metric in this abnormal TNF signaling system indicates perceiving more cytokine signals which in fact do not exist at the system input, whereas a higher miss metric indicates that it is highly likely to miss signals that actually exist. Overall, this study demonstrates the ability of the developed method for modeling cell decision making errors under normal and abnormal conditions, and in the presence of transduction noise uncertainty. Compared to the previously reported pathway capacity metric, our results suggest that the introduced decision error metrics characterize signaling failures more accurately. This is mainly because while capacity is a useful metric to study information transmission in signaling pathways, it does not capture the overlap between TNF-induced noisy response curves. PMID:28379950
Engström, Wilhelm; Darbre, Philippa; Eriksson, Staffan; Gulliver, Linda; Hultman, Tove; Karamouzis, Michalis V; Klaunig, James E; Mehta, Rekha; Moorwood, Kim; Sanderson, Thomas; Sone, Hideko; Vadgama, Pankaj; Wagemaker, Gerard; Ward, Andrew; Singh, Neetu; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A Ivana; Raju, Jayadev; Hamid, Roslida A; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K; Ryan, Elizabeth P; Brown, Dustin G; Bisson, William H
2015-06-01
The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Determining the impact of cell mixing on signaling during development.
Uriu, Koichiro; Morelli, Luis G
2017-06-01
Cell movement and intercellular signaling occur simultaneously to organize morphogenesis during embryonic development. Cell movement can cause relative positional changes between neighboring cells. When intercellular signals are local such cell mixing may affect signaling, changing the flow of information in developing tissues. Little is known about the effect of cell mixing on intercellular signaling in collective cellular behaviors and methods to quantify its impact are lacking. Here we discuss how to determine the impact of cell mixing on cell signaling drawing an example from vertebrate embryogenesis: the segmentation clock, a collective rhythm of interacting genetic oscillators. We argue that comparing cell mixing and signaling timescales is key to determining the influence of mixing. A signaling timescale can be estimated by combining theoretical models with cell signaling perturbation experiments. A mixing timescale can be obtained by analysis of cell trajectories from live imaging. After comparing cell movement analyses in different experimental settings, we highlight challenges in quantifying cell mixing from embryonic timelapse experiments, especially a reference frame problem due to embryonic motions and shape changes. We propose statistical observables characterizing cell mixing that do not depend on the choice of reference frames. Finally, we consider situations in which both cell mixing and signaling involve multiple timescales, precluding a direct comparison between single characteristic timescales. In such situations, physical models based on observables of cell mixing and signaling can simulate the flow of information in tissues and reveal the impact of observed cell mixing on signaling. © 2017 Japanese Society of Developmental Biologists.
Nephronophthisis: Disease Mechanisms of a Ciliopathy
Hildebrandt, Friedhelm; Attanasio, Massimo; Otto, Edgar
2009-01-01
Nephronophthisis (NPHP), a recessive cystic kidney disease, is the most frequent genetic cause of end-stage kidney disease in children and young adults. Positional cloning of nine genes (NPHP1-9) and functional characterization of their encoded proteins (nephrocystins) has contributed to a unifying theory that defines cystic kidney diseases as “ciliopathies”. The theory is based on the finding that all proteins mutated in cystic kidney diseases of humans or animal models are expressed in primary cilia or centrosomes of renal epithelial cells. Primary cilia are sensory organelles that connect mechanosensory, visual, and other stimuli to mechanisms of epithelial cell polarity and cell cycle control. Mutations in NPHP genes cause defects in signaling mechanisms that involve the non-canonical Wnt signaling pathway and the sonic hedgehog signaling pathway, resulting in defects of planar cell polarity and tissue maintenance. The ciliary theory explains the multiple organ involvement in NPHP, which includes retinal degeneration, cerebellar hypoplasia, liver fibrosis, situs inversus, and mental retardation. Positional cloning of dozens of unknown genes that cause NPHP will elucidate further signaling mechanisms involved. Nephrocystins are highly conserved in evolution, thus allowing the use of animal models to develop future therapeutic approaches. PMID:19118152
Garnett, David John; Greenhough, Trevor James
2012-01-01
There is increasing evidence that statin treatment can be beneficial in certain cancer patients. To determine if these benefits are a direct result of the cholesterol-lowering effects of statins or a result of secondary, protein transcription effects, the impacts of pravastatin and a cholesterol sequestrating agent methyl-beta-cyclodextrin (MbetaCD) on mRNA expression in the breast cancer cell MDA-MB-231 and the lung carcinoma cell Calu-1 have been compared by microarray techniques. The effects of these agents on cholesterol-rich rafts and caveolae, which have significance in cancer signaling, have also been examined. Both treatments caused a general downregulation of not only signal transduction including cancer pathway proteins, but also apoptosis and chemokine pathways, with statins impacting 35 genes by twofold or greater in MDA-MB-231 and > 300 genes in Calu-1. These manifold dysregulations could also explain the various side effects reportedly caused by statins. MbetaCD produced far fewer statistical events than pravastatin in the breast cancer line but many more in the lung cell line. Pravastatin increased expression of CAV1 but caveolae density decreased and overall raft density was unaffected. MbetaCD also caused an increase in CAV1 expression and reduced the prevalence of both rafts and caveolae. It is proposed that sequestration of cholesterol from the membrane by MbetaCD is not equivalent to blockade of the cholesterol pathway and causes different effects on microdomain-mediated signal transduction dependant on the cell line. The profound effects of statins on mRNA expression can be explained by the failure of caveolin-1 to properly complex with cholesterol in an altered sterol environment, with caveolae acting as the main loci for signaling directed towards those transcription processes unaffected by MbetaCD. Targeted inhibition of the postmevalonate pathway could offer an opportunity to specifically reduce caveolae-based signaling in cancer cells. The observed impact of pravastatin on gene expression may explain the pleiotropic effects of statins when they are used as adjuvants in chemotherapy and suggests impact on gene expression as a possible cause of side effects from statin use.
MHY1485 ameliorates UV-induced skin cell damages via activating mTOR-Nrf2 signaling
Yang, Bo; Xu, Qiu-Yun; Guo, Chun-Yan; Huang, Jin-Wen; Wang, Shu-Mei; Li, Yong-Mei; Tu, Ying; He, Li; Bi, Zhi-Gang; Ji, Chao; Cheng, Bo
2017-01-01
Ultra Violet (UV)-caused skin cell damage is a main cause of skin cancer. Here, we studied the activity of MHY1485, a mTOR activator, in UV-treated skin cells. In primary human skin keratinocytes, HaCaT keratinocytes and human skin fibroblasts, MHY1485 ameliorated UV-induced cell death and apoptosis. mTOR activation is required for MHY1485-induced above cytoprotective actions. mTOR kinase inhibitors (OSI-027, AZD-8055 and AZD-2014) or mTOR shRNA knockdown almost abolished MHY1485-induced cytoprotection. Further, MHY1485 treatment in skin cells activated mTOR downstream NF-E2-related factor 2 (Nrf2) signaling, causing Nrf2 Ser-40 phosphorylation, stabilization/upregulation and nuclear translocation, as well as mRNA expression of Nrf2-dictated genes. Contrarily, Nrf2 knockdown or S40T mutation almost nullified MHY1485-induced cytoprotection. MHY1485 suppressed UV-induced reactive oxygen species production and DNA single strand breaks in skin keratinocytes and fibroblasts. Together, we conclude that MHY1485 inhibits UV-induced skin cell damages via activating mTOR-Nrf2 signaling. PMID:28061443
Uncontrolled angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1.
Wang, Yidong; Wu, Bingruo; Lu, Pengfei; Zhang, Donghong; Wu, Brian; Varshney, Shweta; Del Monte-Nieto, Gonzalo; Zhuang, Zhenwu; Charafeddine, Rabab; Kramer, Adam H; Sibinga, Nicolas E; Frangogiannis, Nikolaos G; Kitsis, Richard N; Adams, Ralf H; Alitalo, Kari; Sharp, David J; Harvey, Richard P; Stanley, Pamela; Zhou, Bin
2017-09-18
Coronary artery anomalies may cause life-threatening cardiac complications; however, developmental mechanisms underpinning coronary artery formation remain ill-defined. Here we identify an angiogenic cell population for coronary artery formation in mice. Regulated by a DLL4/NOTCH1/VEGFA/VEGFR2 signaling axis, these angiogenic cells generate mature coronary arteries. The NOTCH modulator POFUT1 critically regulates this signaling axis. POFUT1 inactivation disrupts signaling events and results in excessive angiogenic cell proliferation and plexus formation, leading to anomalous coronary arteries, myocardial infarction and heart failure. Simultaneous VEGFR2 inactivation fully rescues these defects. These findings show that dysregulated angiogenic precursors link coronary anomalies to ischemic heart disease.Though coronary arteries are crucial for heart function, the mechanisms guiding their formation are largely unknown. Here, Wang et al. identify a unique, endocardially-derived angiogenic precursor cell population for coronary artery formation in mice and show that a DLL4/NOTCH1/VEGFA/VEGFR2 signaling axis is key for coronary artery development.
Starost, Laura Julia; Karassek, Sascha; Sano, Yasuteru; Kanda, Takashi; Kim, Kwang Sik; Dobrindt, Ulrich; Rüter, Christian; Schmidt, Marcus Alexander
2016-10-13
Pertussis toxin (PTx), the major virulence factor of the whooping cough-causing bacterial pathogen Bordetella pertussis , permeabilizes the blood-brain barrier (BBB) in vitro and in vivo. Breaking barriers might promote translocation of meningitis-causing bacteria across the BBB, thereby facilitating infection. PTx activates several host cell signaling pathways exploited by the neonatal meningitis-causing Escherichia coli K1-RS218 for invasion and translocation across the BBB. Here, we investigated whether PTx and E. coli K1-RS218 exert similar effects on MAPK p38, NF-κB activation and transcription of downstream targets in human cerebral endothelial TY10 cells using qRT-PCR, Western blotting, and ELISA in combination with specific inhibitors. PTx and E. coli K1-RS218 activate MAPK p38, but only E. coli K1-RS218 activates the NF-κB pathway. mRNA and protein levels of p38 and NF-κB downstream targets including IL-6, IL-8, CxCL-1, CxCL-2 and ICAM-1 were increased. The p38 specific inhibitor SB203590 blocked PTx-enhanced activity, whereas E. coli K1-RS218's effects were inhibited by the NF-κB inhibitor Bay 11-7082. Further, we found that PTx enhances the adherence of human monocytic THP-1 cells to human cerebral endothelial TY10 cells, thereby contributing to enhanced translocation. These modulations of host cell signaling pathways by PTx and meningitis-causing E. coli support their contributions to pathogen and monocytic THP-1 cells translocation across the BBB.
Starost, Laura Julia; Karassek, Sascha; Sano, Yasuteru; Kanda, Takashi; Kim, Kwang Sik; Dobrindt, Ulrich; Rüter, Christian; Schmidt, Marcus Alexander
2016-01-01
Pertussis toxin (PTx), the major virulence factor of the whooping cough-causing bacterial pathogen Bordetella pertussis, permeabilizes the blood–brain barrier (BBB) in vitro and in vivo. Breaking barriers might promote translocation of meningitis-causing bacteria across the BBB, thereby facilitating infection. PTx activates several host cell signaling pathways exploited by the neonatal meningitis-causing Escherichia coli K1-RS218 for invasion and translocation across the BBB. Here, we investigated whether PTx and E. coli K1-RS218 exert similar effects on MAPK p38, NF-κB activation and transcription of downstream targets in human cerebral endothelial TY10 cells using qRT-PCR, Western blotting, and ELISA in combination with specific inhibitors. PTx and E. coli K1-RS218 activate MAPK p38, but only E. coli K1-RS218 activates the NF-κB pathway. mRNA and protein levels of p38 and NF-κB downstream targets including IL-6, IL-8, CxCL-1, CxCL-2 and ICAM-1 were increased. The p38 specific inhibitor SB203590 blocked PTx-enhanced activity, whereas E. coli K1-RS218’s effects were inhibited by the NF-κB inhibitor Bay 11-7082. Further, we found that PTx enhances the adherence of human monocytic THP-1 cells to human cerebral endothelial TY10 cells, thereby contributing to enhanced translocation. These modulations of host cell signaling pathways by PTx and meningitis-causing E. coli support their contributions to pathogen and monocytic THP-1 cells translocation across the BBB. PMID:27754355
Simons, Matias; Gloy, Joachim; Ganner, Athina; Bullerkotte, Axel; Bashkurov, Mikhail; Krönig, Corinna; Schermer, Bernhard; Benzing, Thomas; Cabello, Olga A; Jenny, Andreas; Mlodzik, Marek; Polok, Bozena; Driever, Wolfgang; Obara, Tomoko; Walz, Gerd
2013-01-01
Cystic renal diseases are caused by mutations of proteins that share a unique subcellular localization: the primary cilium of tubular epithelial cells1. Mutations of the ciliary protein inversin cause nephronophthisis type II, an autosomal recessive cystic kidney disease characterized by extensive renal cysts, situs inversus and renal failure2. Here we report that inversin acts as a molecular switch between different Wnt signaling cascades. Inversin inhibits the canonical Wnt pathway by targeting cytoplasmic dishevelled (Dsh or Dvl1) for degradation; concomitantly, it is required for convergent extension movements in gastrulating Xenopus laevis embryos and elongation of animal cap explants, both regulated by noncanonical Wnt signaling. In zebrafish, the structurally related switch molecule diversin ameliorates renal cysts caused by the depletion of inversin, implying that an inhibition of canonical Wnt signaling is required for normal renal development. Fluid flow increases inversin levels in ciliated tubular epithelial cells and seems to regulate this crucial switch between Wnt signaling pathways during renal development. PMID:15852005
Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche
2018-01-01
ABSTRACT Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. PMID:29361569
Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche.
Wang, Xiaoxi; Page-McCaw, Andrea
2018-02-07
Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. © 2018. Published by The Company of Biologists Ltd.
Serrano, Maria J; Liu, Jingpeng; Svoboda, Kathy K H; Nawshad, Ali; Benson, M Douglas
2015-12-01
The mammalian secondary palate forms from shelves of epithelia-covered mesenchyme that meet at midline and fuse. The midline epithelial seam (MES) is thought to degrade by apoptosis, epithelial-to-mesenchymal transition (EMT), or both. Failure to degrade the MES blocks fusion and causes cleft palate. It was previously thought that transforming growth factor ß3 (Tgfß3) is required to initiate fusion. Members of the Eph tyrosine kinase receptor family and their membrane-bound ephrin ligands are expressed on the MES. We demonstrated that treatment of mouse palates with recombinant EphB2/Fc to activate ephrin reverse signaling (where the ephrin acts as a receptor and transduces signals from its cytodomain) was sufficient to cause mouse palatal fusion when Tgfß3 signaling was blocked by an antibody against Tgfß3 or by an inhibitor of the TgfßrI serine/threonine receptor kinase. Cultured palatal epithelial cells traded their expression of epithelial cell markers for that of mesenchymal cells and became motile after treatment with EphB2/Fc. They concurrently increased their expression of the EMT-associated transcription factors Snail, Sip1, and Twist1. EphB2/Fc did not cause apoptosis in these cells. These data reveal that ephrin reverse signaling directs palatal fusion in mammals through a mechanism that involves EMT but not apoptosis and activates a gene expression program not previously associated with ephrin reverse signaling. © 2015 Wiley Periodicals, Inc.
Tonic LAT-HDAC7 Signals Sustain Nur77 and Irf4 Expression to Tune Naive CD4 T Cells.
Myers, Darienne R; Lau, Tannia; Markegard, Evan; Lim, Hyung W; Kasler, Herbert; Zhu, Minghua; Barczak, Andrea; Huizar, John P; Zikherman, Julie; Erle, David J; Zhang, Weiguo; Verdin, Eric; Roose, Jeroen P
2017-05-23
CD4 + T cells differentiate into T helper cell subsets in feedforward manners with synergistic signals from the T cell receptor (TCR), cytokines, and lineage-specific transcription factors. Naive CD4 + T cells avoid spontaneous engagement of feedforward mechanisms but retain a prepared state. T cells lacking the adaptor molecule LAT demonstrate impaired TCR-induced signals yet cause a spontaneous lymphoproliferative T helper 2 (T H 2) cell syndrome in mice. Thus, LAT constitutes an unexplained maintenance cue. Here, we demonstrate that tonic signals through LAT constitutively export the repressor HDAC7 from the nucleus of CD4 + T cells. Without such tonic signals, HDAC7 target genes Nur77 and Irf4 are repressed. We reveal that Nur77 suppresses CD4 + T cell proliferation and uncover a suppressive role for Irf4 in T H 2 polarization; halving Irf4 gene-dosage leads to increases in GATA3 + and IL-4 + cells. Our studies reveal that naive CD4 + T cells are dynamically tuned by tonic LAT-HDAC7 signals. Published by Elsevier Inc.
Matsushita, Masaki; Kitoh, Hiroshi; Ohkawara, Bisei; Mishima, Kenichi; Kaneko, Hiroshi; Ito, Mikako; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji
2013-01-01
Achondroplasia (ACH) is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS) cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8) cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP) as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias. PMID:24324705
Calcium Signaling enhancement during oocyte maturation
NASA Astrophysics Data System (ADS)
Jung, Peter; Ullah, Ghanim; Machaca, Khaled
2006-03-01
A Ca2+ signal with a special spatial and temporal characteristic universally removes cell-cycle arrest after fertilization of a mature egg cell. The Ca2+ signal is characterized by a fast rise of intracellular Ca2+ and a slow decay on the time scale of minutes. We use computational modeling of Ca2+ release on the microscale (Ca2+ puffs) and cell-scale in conjunction with experimental knowledge of the changes in the Ca2+ signaling apparatus during oocyte maturation and changing signaling patterns to explore the relationship between organization and sensitivity of IP3 receptors and SERCA pumps and the resulting signaling patterns. We hypothesize that potentiation of the IP3 receptors during oocyte maturation is the main cause for the differentiation in the signaling patterns.
Choi, Sun Ju; Kim, Francis; Schwartz, Michael W; Wisse, Brent E
2010-06-01
Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P < 0.05). By comparison, neither mixed saturated fatty acid (100, 250, or 500 microM for
Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis
Tian, Hua; Biehs, Brian; Chiu, Cecilia; Siebel, Chris; Wu, Yan; Costa, Mike; de Sauvage, Frederic J.; Klein, Ophir D.
2015-01-01
Summary Proper organ homeostasis requires tight control of adult stem cells and differentiation through integration of multiple inputs. In the mouse small intestine, Notch and Wnt signaling are required both for stem cell maintenance and for a proper balance of differentiation between secretory and absorptive cell lineages. In the absence of Notch signaling, stem cells preferentially generate secretory cells at the expense of absorptive cells. Here, we use function-blocking antibodies against Notch receptors to demonstrate that Notch blockade perturbs intestinal stem cell function by causing a de-repression of the Wnt signaling pathway, leading to mis-expression of prosecretory genes. Importantly, attenuation of the Wnt pathway rescued the phenotype associated with Notch blockade. These studies bring to light a negative regulatory mechanism that maintains stem cell activity and balanced differentiation, and we propose that the interaction between Wnt and Notch signaling described here represents a common theme in adult stem cell biology. PMID:25818302
Study Illuminates K-Ras4B Activation, Which May Help Predict Drug Resistance | Poster
Until recently, researchers studying RAS, a family of proteins involved in transmitting signals within cells, believed that the exchange of guanosine 5’-diphosphate (GDP) by guanosine triphosphate (GTP) was sufficient to activate the protein. Once activated, RAS can cause unintended and overactive signaling in cells, which can lead to cell division and, ultimately, cancer.
Dong, Liqun; Zhou, Shu; Yang, Xiaohua; Chen, Qianming; He, Yang; Huang, Wen
2013-07-01
Magnolol, an orally available compound from Magnolia officinalis used widely in traditional herbal medicine against a variety of neuronal diseases, possesses potent antioxidant properties and protects the brain against oxidative damage. The aim of the work is to examine the protective mechanisms of magnolol on human neuroblastoma SH-SY5Y cells against apoptosis induced by the neurotoxin acrolein, which can cause neurodegenerative disorders by inducing oxidative stress. By investigating the effect of magnolol on neural cell damage induced by the neurotoxin acrolein, we found that magnolol pretreatment significantly attenuated acrolein-induced oxidative stress through inhibiting reactive oxygen species accumulation caused by intracellular glutathione depletion and nicotinamide adenine dinucleotide phosphate oxidase activation. We next examined the signaling cascade(s) involved in magnolol-mediated antiapoptotic effects. The results showed that acrolein induced SH-SY5Y cell apoptosis by activating mitochondria/caspase and MEK/ERK signaling pathways. Our findings provide the first evidence that magnolol protects SH-SY5Y cells against acrolein-induced oxidative stress and prolongs SH-SY5Y cell survival through regulating JNK/mitochondria/caspase, PI3K/MEK/ERK, and PI3K/Akt/FoxO1 signaling pathways.
Spatial modeling of the membrane-cytosolic interface in protein kinase signal transduction
Schröder, Andreas
2018-01-01
The spatial architecture of signaling pathways and the interaction with cell size and morphology are complex, but little understood. With the advances of single cell imaging and single cell biology, it becomes crucial to understand intracellular processes in time and space. Activation of cell surface receptors often triggers a signaling cascade including the activation of membrane-attached and cytosolic signaling components, which eventually transmit the signal to the cell nucleus. Signaling proteins can form steep gradients in the cytosol, which cause strong cell size dependence. We show that the kinetics at the membrane-cytosolic interface and the ratio of cell membrane area to the enclosed cytosolic volume change the behavior of signaling cascades significantly. We suggest an estimate of average concentration for arbitrary cell shapes depending on the cell volume and cell surface area. The normalized variance, known from image analysis, is suggested as an alternative measure to quantify the deviation from the average concentration. A mathematical analysis of signal transduction in time and space is presented, providing analytical solutions for different spatial arrangements of linear signaling cascades. Quantification of signaling time scales reveals that signal propagation is faster at the membrane than at the nucleus, while this time difference decreases with the number of signaling components in the cytosol. Our investigations are complemented by numerical simulations of non-linear cascades with feedback and asymmetric cell shapes. We conclude that intracellular signal propagation is highly dependent on cell geometry and, thereby, conveys information on cell size and shape to the nucleus. PMID:29630597
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawal, Nina; Corti, Olga; CNRS, UMR 7225, Paris
Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates {beta}-catenin protein levels in vivo. Stabilization of {beta}-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neuronsmore » in parkin null animals, suggesting that both increased stabilization and decreased degradation of {beta}-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and {beta}-catenin-induced cell death.« less
Improving the signal analysis for in vivo photoacoustic flow cytometry
NASA Astrophysics Data System (ADS)
Niu, Zhenyu; Yang, Ping; Wei, Dan; Tang, Shuo; Wei, Xunbin
2015-03-01
At early stage of cancer, a small number of circulating tumor cells (CTCs) appear in the blood circulation. Thus, early detection of malignant circulating tumor cells has great significance for timely treatment to reduce the cancer death rate. We have developed an in vivo photoacoustic flow cytometry (PAFC) to monitor the metastatic process of CTCs and record the signals from target cells. Information of target cells which is helpful to the early therapy would be obtained through analyzing and processing the signals. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The PAFC technique can detect signals from circulating tumor cells or other particles. The processing methods have a great potential for analyzing signals accurately and rapidly.
T Cell Calcium Signaling Regulation by the Co-Receptor CD5
Freitas, Claudia M. Tellez
2018-01-01
Calcium influx is critical for T cell effector function and fate. T cells are activated when T cell receptors (TCRs) engage peptides presented by antigen-presenting cells (APC), causing an increase of intracellular calcium (Ca2+) concentration. Co-receptors stabilize interactions between the TCR and its ligand, the peptide-major histocompatibility complex (pMHC), and enhance Ca2+ signaling and T cell activation. Conversely, some co-receptors can dampen Ca2+ signaling and inhibit T cell activation. Immune checkpoint therapies block inhibitory co-receptors, such as cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) and programmed death 1 (PD-1), to increase T cell Ca2+ signaling and promote T cell survival. Similar to CTLA-4 and PD-1, the co-receptor CD5 has been known to act as a negative regulator of T cell activation and to alter Ca2+ signaling and T cell function. Though much is known about the role of CD5 in B cells, recent research has expanded our understanding of CD5 function in T cells. Here we review these recent findings and discuss how our improved understanding of CD5 Ca2+ signaling regulation could be useful for basic and clinical research. PMID:29701673
Albumin elicits calcium signals from astrocytes in brain slices from neonatal rat cortex
Nadal, Angel; Sul, Jai-Yoon; Valdeolmillos, Miguel; McNaughton, Peter A
1998-01-01
Albumin causes calcium signals and mitosis in cultured astrocytes, but it has not been established whether astrocytes in intact brain also respond to albumin. The effect of albumin on intracellular calcium concentration ([Ca2+]i) in single cells was therefore studied in acutely isolated cortical brain slices from the neonatal rat.Physiological concentrations of albumin from plasma and from serum produced an increase in [Ca2+]i in a subpopulation of cortical cells. Trains of transient elevations in [Ca2+]i (Ca2+ spikes) were seen in 41 % of these cells.The cells responding to albumin are identified as astrocytes because the neurone-specific agonist NMDA caused much smaller and slower responses in these cells. On the other hand NMDA-responsive cells, which are probably neurones, exhibited only small and slow responses to albumin. The residual responses of astrocytes to NMDA and neurones to albumin are likely to be due to crosstalk with adjacent neurones and astrocytes, respectively.Methanol extraction of albumin removes a polar lipid and abolishes the ability of albumin to increase intracellular calcium.Astrocyte calcium signalling caused by albumin may have important physiological consequences when the blood-brain barrier breaks down and allows albumin to enter the CNS. PMID:9596793
Han, Myoung-Eun; Lee, Young-Suk; Baek, Sun-Yong; Kim, Bong-Seon; Kim, Jae-Bong; Oh, Sae-Ock
2009-01-01
Gastric cancer is the second most common cause of cancer deaths worldwide. The underlying molecular mechanisms of its carcinogenesis are relatively poorly characterized. Hedgehog (Hh) signaling, which is critical for development of various organs including the gastrointestinal tract, has been associated with gastric cancer. The present study was undertaken to reveal the underlying mechanism by which Hh signaling controls gastric cancer cell proliferation. Treatment of gastric cancer cells with cyclopamine, a specific inhibitor of Hh signaling pathway, reduced proliferation and induced apoptosis of gastric cancer cells. Cyclopamine treatment induced cytochrome c release from mitochondria and cleavage of caspase 9. Moreover, Bcl-2 expression was significantly reduced by cyclopamine treatment. These results suggest that Hh signaling regulates the survival of gastric cancer cells by regulating the expression of Bcl-2. PMID:19742123
Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice.
Hu, Lingxiang; Lu, Jingrong; Chiang, Hao; Wu, Hao; Edge, Albert S B; Shi, Fuxin
2016-09-07
Cochlear hair cells (HCs), the sensory cells that respond to sound, do not regenerate after damage in adult mammals, and their loss is a major cause of deafness. Here we show that HC regeneration in newborn mouse ears occurred spontaneously when the original cells were ablated by treatment with diphtheria toxin (DT) in ears that had been engineered to overexpress the DT receptor, but was not detectable when HCs were ablated in vivo by the aminoglycoside antibiotic neomycin. A variety of Wnts (Wnt1, Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt7b, Wnt9a, Wnt9b, and Wnt11) and Wnt pathway component Krm2 were upregulated after DT damage. Nuclear β-catenin was upregulated in HCs and supporting cells of the DT-damaged cochlea. Pharmacological inhibition of Wnt decreased spontaneous regeneration, confirming a role of Wnt signaling in HC regeneration. Inhibition of Notch signaling further potentiated supporting cell proliferation and HC differentiation that occurred spontaneously. The absence of new HCs in the neomycin ears was correlated to less robust Wnt pathway activation, but the ears subjected to neomycin treatment nonetheless showed increased cell division and HC differentiation after subsequent forced upregulation of β-catenin. These studies suggest, first, that Wnt signaling plays a key role in regeneration, and, second, that the outcome of a regenerative response to damage in the newborn cochlea is determined by reaching a threshold level of Wnt signaling rather than its complete absence or presence. Sensory HCs of the inner ear do not regenerate in the adult, and their loss is a major cause of deafness. We found that HCs regenerated spontaneously in the newborn mouse after diphtheria toxin (DT)-induced, but not neomycin-induced, HC death. Regeneration depended on activation of Wnt signaling, and regeneration in DT-treated ears correlated to a higher level of Wnt activation than occurred in nonregenerating neomycin-treated ears. This is significant because insufficient regeneration caused by a failure to reach a threshold level of signaling, if true in the adult, has the potential to be exploited for development of clinical approaches for the treatment of deafness caused by HC loss. Copyright © 2016 the authors 0270-6474/16/369479-11$15.00/0.
Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice
Hu, Lingxiang; Lu, Jingrong; Chiang, Hao; Shi, Fuxin
2016-01-01
Cochlear hair cells (HCs), the sensory cells that respond to sound, do not regenerate after damage in adult mammals, and their loss is a major cause of deafness. Here we show that HC regeneration in newborn mouse ears occurred spontaneously when the original cells were ablated by treatment with diphtheria toxin (DT) in ears that had been engineered to overexpress the DT receptor, but was not detectable when HCs were ablated in vivo by the aminoglycoside antibiotic neomycin. A variety of Wnts (Wnt1, Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt7b, Wnt9a, Wnt9b, and Wnt11) and Wnt pathway component Krm2 were upregulated after DT damage. Nuclear β-catenin was upregulated in HCs and supporting cells of the DT-damaged cochlea. Pharmacological inhibition of Wnt decreased spontaneous regeneration, confirming a role of Wnt signaling in HC regeneration. Inhibition of Notch signaling further potentiated supporting cell proliferation and HC differentiation that occurred spontaneously. The absence of new HCs in the neomycin ears was correlated to less robust Wnt pathway activation, but the ears subjected to neomycin treatment nonetheless showed increased cell division and HC differentiation after subsequent forced upregulation of β-catenin. These studies suggest, first, that Wnt signaling plays a key role in regeneration, and, second, that the outcome of a regenerative response to damage in the newborn cochlea is determined by reaching a threshold level of Wnt signaling rather than its complete absence or presence. SIGNIFICANCE STATEMENT Sensory HCs of the inner ear do not regenerate in the adult, and their loss is a major cause of deafness. We found that HCs regenerated spontaneously in the newborn mouse after diphtheria toxin (DT)-induced, but not neomycin-induced, HC death. Regeneration depended on activation of Wnt signaling, and regeneration in DT-treated ears correlated to a higher level of Wnt activation than occurred in nonregenerating neomycin-treated ears. This is significant because insufficient regeneration caused by a failure to reach a threshold level of signaling, if true in the adult, has the potential to be exploited for development of clinical approaches for the treatment of deafness caused by HC loss. PMID:27605621
TGF-β Determines the Pro-migratory Potential of bFGF Signaling in Medulloblastoma.
Santhana Kumar, Karthiga; Neve, Anuja; Guerreiro Stucklin, Ana S; Kuzan-Fischer, Claudia M; Rushing, Elisabeth J; Taylor, Michael D; Tripolitsioti, Dimitra; Behrmann, Lena; Kirschenbaum, Daniel; Grotzer, Michael A; Baumgartner, Martin
2018-06-26
The microenvironment shapes cell behavior and determines metastatic outcomes of tumors. We addressed how microenvironmental cues control tumor cell invasion in pediatric medulloblastoma (MB). We show that bFGF promotes MB tumor cell invasion through FGF receptor (FGFR) in vitro and that blockade of FGFR represses brain tissue infiltration in vivo. TGF-β regulates pro-migratory bFGF function in a context-dependent manner. Under low bFGF, the non-canonical TGF-β pathway causes ROCK activation and cortical translocation of ERK1/2, which antagonizes FGFR signaling by inactivating FGFR substrate 2 (FRS2), and promotes a contractile, non-motile phenotype. Under high bFGF, negative-feedback regulation of FRS2 by bFGF-induced ERK1/2 causes repression of the FGFR pathway. Under these conditions, TGF-β counters inactivation of FRS2 and restores pro-migratory signaling. These findings pinpoint coincidence detection of bFGF and TGF-β signaling by FRS2 as a mechanism that controls tumor cell invasion. Thus, targeting FRS2 represents an emerging strategy to abrogate aberrant FGFR signaling. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Proinflammatory Stem Cell Signaling in Cardiac Ischemia
Herrmann, Jeremy L.; Markel, Troy A.; Abarbanell, Aaron M.; Weil, Brent R.; Wang, Meijing; Wang, Yue; Tan, Jiangning
2009-01-01
Abstract Cardiovascular disease remains a leading cause of mortality in developed nations, despite continued advancement in modern therapy. Progenitor and stem cell–based therapy is a novel treatment for cardiovascular disease, and modest benefits in cardiac recovery have been achieved in small clinical trials. This therapeutic modality remains challenged by limitations of low donor-cell survival rates, transient recovery of cardiac function, and the technical difficulty of applying directed cell therapy. Understanding the signaling mechanisms involved in the stem cell response to ischemia has revealed opportunities to modify directly aspects of these pathways to improve their cardioprotective abilities. This review highlights general considerations of stem cell therapy for cardiac disease, reviews the major proinflammatory signaling pathways of mesenchymal stem cells, and reviews ex vivo modifications of stem cells based on these pathways. Antioxid. Redox Signal. 11, 1883–1896. PMID:19187005
The self-renewal signaling pathways utilized by gastric cancer stem cells.
Fu, Ying; Li, Hui; Hao, Xishan
2017-04-01
Gastric cancer is a leading cause of cancer-related mortality worldwide. Cancer stem cells are the source of tumor recurrence and metastasis. Self-renewal is a marker of cancer stem cells and also the basis of long-lasting survival and tumor progression. Although the mechanism of gastric cancer stem cell self-renewal is not clear, there are several signaling pathways and environmental factors known to be involved. This mini review describes recent developments in the self-renewal signaling pathway of gastric cancer stem cell research. Advancements made in this field of research will likely support the development of novel therapeutic strategies for gastric cancer.
Cheng, Zhe; Liu, Fan; Li, Xiu; Dai, Mengya; Wu, Jianjian; Guo, Xinrui; Tian, Huimin; Heng, Zhijie; Lu, Ying; Chai, Xiaoli; Wang, Yanhai
2017-02-01
Larvae of the tapeworm E. multilocularis cause alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. A population of stem cell-like cells, the germinative cells, is considered to drive the larval growth and development within the host. The molecular mechanisms controlling the behavior of germinative cells are largely unknown. Using in vitro cultivation systems we show here that the EGFR/ERK signaling in the parasite can promote germinative cell proliferation in response to addition of human EGF, resulting in stimulated growth and development of the metacestode larvae. Inhibition of the signaling by either the EGFR inhibitors CI-1033 and BIBW2992 or the MEK/ERK inhibitor U0126 impairs germinative cell proliferation and larval growth. These data demonstrate the contribution of EGF-mediated EGFR/ERK signaling to the regulation of germinative cells in E. multilocularis, and suggest the EGFR/ERK signaling as a potential therapeutic target for AE and perhaps other human cestodiasis.
Lau, Christine; Castellanos, Patricia; Ranev, Dimitre; Wang, Xiaomin; Chow, Chung-Wai
2011-05-01
Human rhinovirus (HRV), cause of the common cold, is a leading cause of exacerbations of asthma and chronic obstruction pulmonary disease (COPD). Binding of HRV to ICAM (intercellular adhesion molecule)-1, its major receptor, induces a profound inflammatory response from airway epithelial cells. My laboratory has identified Syk tyrosine kinase to be an early regulator of HRV-ICAM-1 signalling: Syk mediates replication-independent p38 mitogen-activated protein (MAP) kinase and phosphatidyl-inositol 3 (PI3)-kinase activation, interleukin (IL)-8 expression, as well as HRV internalization via clathrin-mediated endocytosis. Syk activation is accompanied by formation of a protein complex consisting of ICAM-1, ezrin and Syk at the plasma membrane. However, the molecular mechanisms that regulate this process are not understood. In this report, we investigated the role of the Syk-SH2 domains and the ezrin ITAM (immuno-tyrosine activation motif)-like motif in HRV-induced cell activation using the human BEAS-2B airway epithelial cells. Our observations suggest that the ezrin-ITAM plays a role in Syk recruitment and activation by binding to the Syk tandem SH2 domains, as originally described in the canonical ITAM-mediating signal transduction pathway in hematopoietic cells. This report is the first to demonstrate ITAM-mediated signaling in non-hematopoietic cells, suggesting that this signaling paradigm may be more ubiquitous than previously recognized.
G-protein-coupled receptors participate in cytokinesis
Zhang, Xin; Bedigian, Anne V.; Wang, Wenchao; Eggert, Ulrike S.
2014-01-01
Cytokinesis, the last step during cell division, is a highly coordinated process that involves the relay of signals from both the outside and inside of the cell. We have a basic understanding of how cells regulate internal events, but how cells respond to extracellular cues is less explored. In a systematic RNAi screen of G-protein-coupled receptors (GPCRs) and their effectors, we found that some GPCRs are involved in cytokinesis. RNAi knockdown of these GPCRs caused increased binucleated cell formation, and live cell imaging showed that most formed midbodies but failed at the abscission stage. OR2A4 localized to cytokinetic structures in cells and its knockdown caused cytokinesis failure at an earlier stage, likely due to effects on the actin cytoskeleton. Identifying the downstream components that transmit GPCR signals during cytokinesis will be the next step and we show that GIPC1, an adaptor protein for GPCRs, may play a part. RNAi knockdown of GIPC1 significantly increased binucleated cell formation. Understanding the molecular details of GPCRs and their interaction proteins in cytokinesis regulation will give us important clues about GPCRs signaling as well as how cells communicate with their environment during division. PMID:22888021
Basch, Martin L; Brown, Rogers M; Jen, Hsin-I; Semerci, Fatih; Depreux, Frederic; Edlund, Renée K; Zhang, Hongyuan; Norton, Christine R; Gridley, Thomas; Cole, Susan E; Doetzlhofer, Angelika; Maletic-Savatic, Mirjana; Segil, Neil; Groves, Andrew K
2016-01-01
The signals that induce the organ of Corti and define its boundaries in the cochlea are poorly understood. We show that two Notch modifiers, Lfng and Mfng, are transiently expressed precisely at the neural boundary of the organ of Corti. Cre-Lox fate mapping shows this region gives rise to inner hair cells and their associated inner phalangeal cells. Mutation of Lfng and Mfng disrupts this boundary, producing unexpected duplications of inner hair cells and inner phalangeal cells. This phenotype is mimicked by other mouse mutants or pharmacological treatments that lower but not abolish Notch signaling. However, strong disruption of Notch signaling causes a very different result, generating many ectopic hair cells at the expense of inner phalangeal cells. Our results show that Notch signaling is finely calibrated in the cochlea to produce precisely tuned levels of signaling that first set the boundary of the organ of Corti and later regulate hair cell development. DOI: http://dx.doi.org/10.7554/eLife.19921.001 PMID:27966429
Martins, Torcato; Meghini, Francesco; Florio, Francesca; Kimata, Yuu
2017-01-09
The cell cycle is coordinated with differentiation during animal development. Here we report a cell-cycle-independent developmental role for a master cell-cycle regulator, the anaphase-promoting complex or cyclosome (APC/C), in the regulation of cell fate through modulation of Wingless (Wg) signaling. The APC/C controls both cell-cycle progression and postmitotic processes through ubiquitin-dependent proteolysis. Through an RNAi screen in the developing Drosophila eye, we found that partial APC/C inactivation severely inhibits retinal differentiation independently of cell-cycle defects. The differentiation inhibition coincides with hyperactivation of Wg signaling caused by the accumulation of a Wg modulator, Drosophila Nek2 (dNek2). The APC/C degrades dNek2 upon synchronous G1 arrest prior to differentiation, which allows retinal differentiation through local suppression of Wg signaling. We also provide evidence that decapentaplegic signaling may posttranslationally regulate this APC/C function. Thus, the APC/C coordinates cell-fate determination with the cell cycle through the modulation of developmental signaling pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Kintner, Jennifer; Moore, Cheryl G.; Whittimore, Judy D.; Butler, Megan; Hall, Jennifer V.
2017-01-01
Chlamydia trachomatis infections represent the predominant cause of bacterial sexually transmitted infections. As an obligate intracellular bacterium, C. trachomatis is dependent on the host cell for survival, propagation, and transmission. Thus, factors that affect the host cell, including nutrition, cell cycle, and environmental signals, have the potential to impact chlamydial development. Previous studies have demonstrated that activation of Wnt/β-catenin signaling benefits C. trachomatis infections in fallopian tube epithelia. In cervical epithelial cells chlamydiae sequester β-catenin within the inclusion. These data indicate that chlamydiae interact with the Wnt signaling pathway in both the upper and lower female genital tract (FGT). However, hormonal activation of canonical and non-canonical Wnt signaling pathways is an essential component of cyclic remodeling in another prominent area of the FGT, the endometrium. Given this information, we hypothesized that Wnt signaling would impact chlamydial infection in endometrial epithelial cells. To investigate this hypothesis, we analyzed the effect of Wnt inhibition on chlamydial inclusion development and elementary body (EB) production in two endometrial cell lines, Ishikawa (IK) and Hec-1B, in nonpolarized cell culture and in a polarized endometrial epithelial (IK)/stromal (SHT-290) cell co-culture model. Inhibition of Wnt by the small molecule inhibitor (IWP2) significantly decreased inclusion size in IK and IK/SHT-290 cultures (p < 0.005) and chlamydial infectivity (p ≤ 0.01) in both IK and Hec-1B cells. Confocal and electron microscopy analysis of chlamydial inclusions revealed that Wnt inhibition caused chlamydiae to become aberrant in morphology. EB formation was also impaired in IK, Hec-1B and IK/SHT-290 cultures regardless of whether Wnt inhibition occurred throughout, in the middle (24 hpi) or late (36 hpi) during the development cycle. Overall, these data lead us to conclude that Wnt signaling in the endometrium is a key host pathway for the proper development of C. trachomatis. PMID:29322031
... regular beat. Certain cells in your heart make electric signals that cause the heart to contract and ... read your ECG to find out if the electric signals are normal. In atrial fibrillation (AFib), the ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Li; College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158; Huang, Yong
2014-03-07
Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressedmore » cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.« less
Hu, Hua; Vervaeke, Koen; Graham, Lyle J; Storm, Johan F
2009-11-18
Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.
MC1R and cAMP signaling inhibit cdc25B activity and delay cell cycle progression in melanoma cells
Lyons, Jesse; Bastian, Boris C.; McCormick, Frank
2013-01-01
The melanocortin 1 receptor (MC1R) mediates the tanning response through induction of cAMP and downstream pigmentary enzymes. Diminished function alleles of MC1R are associated with decreased tanning and increased melanoma risk, which has been attributed to increased rates of mutation. We have found that MC1R or cAMP signaling also directly decreases proliferation in melanoma cell lines. MC1R overexpression, treatment with the MC1R ligand, or treatment with small-molecule activators of cAMP signaling causes delayed progression from G2 into mitosis. This delay is caused by phosphorylation and inhibition of cdc25B, a cyclin dependent kinase 1-activating phosphatase, and is rescued by expression of a cdc25B mutant that cannot be phosphorylated at the serine 323 residue. These results show that MC1R and cAMP signaling can directly inhibit melanoma growth through regulation of the G2/M checkpoint. PMID:23908401
dOCRL maintains immune cell quiescence by regulating endosomal traffic
Del Signore, Steven J.; Biber, Sarah A.; Lehmann, Katherine S.; Heimler, Stephanie R.; Rosenfeld, Benjamin H.; Eskin, Tania L.
2017-01-01
Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome. PMID:29028801
The merged basins of signal transduction pathways in spatiotemporal cell biology.
Hou, Yingchun; Hou, Yang; He, Siyu; Ma, Caixia; Sun, Mengyao; He, Huimin; Gao, Ning
2014-03-01
Numerous evidences have indicated that a signal system is composed by signal pathways, each pathway is composed by sub-pathways, and the sub-pathway is composed by the original signal terminals initiated with a protein/gene. We infer the terminal signals merged signal transduction system as "signal basin". In this article, we discussed the composition and regulation of signal basins, and the relationship between the signal basin control and triple W of spatiotemporal cell biology. Finally, we evaluated the importance of the systemic regulation to gene expression by signal basins under triple W. We hope our discussion will be the beginning to cause the attention for this area from the scientists of life science. © 2013 Wiley Periodicals, Inc.
Ngn3+ endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium
Magenheim, Judith; Klein, Allon M.; Stanger, Ben Z.; Ashery-Padan, Ruth; Sosa-Pineda, Beatriz; Gu, Guoqiang; Dor, Yuval
2013-01-01
Summary During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3−/− mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta-cells from stem cells. PMID:21888903
Lin, Meng-Chieh; Chen, Shih-Yin; Tsai, Ho-Min; He, Pei-Lin; Lin, Yen-Chun; Herschman, Harvey; Li, Hua-Jung
2017-02-01
Prostaglandin E 2 (PGE 2 )-initiated signaling contributes to stem cell homeostasis and regeneration. However, it is unclear how PGE 2 signaling controls cell stemness. This study identifies a previously unknown mechanism by which PGE 2 /prostaglandin E receptor 4 (EP 4 ) signaling regulates multiple signaling pathways (e.g., PI3K/Akt signaling, TGFβ signaling, Wnt signaling, EGFR signaling) which maintain the basal mammary stem cell phenotype. A shift of basal mammary epithelial stem cells (MaSCs) from a mesenchymal/stem cell state to a non-basal-MaSC state occurs in response to prostaglandin E receptor 4 (EP 4 ) antagonism. EP 4 antagonists elicit release of signaling components, by controlling their trafficking into extracellular vesicles/exosomes in a lipid raft/caveolae-dependent manner. Consequently, EP 4 antagonism indirectly inactivates, through induced extracellular vesicle/exosome release, pathways required for mammary epithelial stem cell homeostasis, e.g. canonical/noncanonical Wnt, TGFβ and PI3K/Akt pathways. EP 4 antagonism causes signaling receptors and signaling components to shift from non-lipid raft fractions to lipid raft fractions, and to then be released in EP 4 antagonist-induced extracellular vesicles/exosomes, resulting in the loss of the stem cell state by mammary epithelial stem cells. In contrast, luminal mammary epithelial cells can acquire basal stem cell properties following ingestion of EP 4 antagonist-induced stem cell extracellular vesicles/exosomes, and can then form mammary glands. These findings demonstrate that PGE 2 /EP 4 signaling controls homeostasis of mammary epithelial stem cells through regulating extracellular vesicle/exosome release. Reprogramming of mammary epithelial cells can result from EP 4 -mediated stem cell property transfer by extracellular vesicles/exosomes containing caveolae-associated proteins, between mammary basal and luminal epithelial cells. Stem Cells 2017;35:425-444. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Ross, Jason; Busch, Julia; Mintz, Ellen; Ng, Damian; Stanley, Alexandra; Brafman, David; Sutton, V. Reid; Van den Veyver, Ignatia; Willert, Karl
2015-01-01
SUMMARY WNT signaling promotes the reprogramming of somatic cells to an induced pluripotent state. We provide genetic evidence that WNT signaling is a requisite step during the induction of pluripotency. Fibroblasts from individuals with Focal Dermal Hypoplasia (FDH), a rare genetic syndrome caused by mutations in the essential WNT processing enzyme PORCN, fail to reprogram using standard methods. This blockade in reprogramming is overcome by ectopic WNT signaling and by PORCN overexpression, thus demonstrating that WNT signaling is essential for reprogramming. The rescue of reprogramming is critically dependent on the level of WNT signaling: steady baseline activation of the WNT pathway yields karyotypically normal iPS cells, whereas daily stimulation with Wnt3a produces FDH-iPS cells with severely abnormal karyotypes. Therefore, although WNT signaling is required for cellular reprogramming, inappropriate activation of WNT signaling induces chromosomal instability, highlighting the precarious nature of ectopic WNT activation, and its tight relationship with oncogenic transformation. PMID:25464842
Renal hypodysplasia associates with a WNT4 variant that causes aberrant canonical WNT signaling.
Vivante, Asaf; Mark-Danieli, Michal; Davidovits, Miriam; Harari-Steinberg, Orit; Omer, Dorit; Gnatek, Yehudit; Cleper, Roxana; Landau, Daniel; Kovalski, Yael; Weissman, Irit; Eisenstein, Israel; Soudack, Michalle; Wolf, Haike Reznik; Issler, Naomi; Lotan, Danny; Anikster, Yair; Dekel, Benjamin
2013-03-01
Abnormal differentiation of the renal stem/progenitor pool into kidney tissue can lead to renal hypodysplasia (RHD), but the underlying causes of RHD are not well understood. In this multicenter study, we identified 20 Israeli pedigrees with isolated familial, nonsyndromic RHD and screened for mutations in candidate genes involved in kidney development, including PAX2, HNF1B, EYA1, SIX1, SIX2, SALL1, GDNF, WNT4, and WT1. In addition to previously reported RHD-causing genes, we found that two affected brothers were heterozygous for a missense variant in the WNT4 gene. Functional analysis of this variant revealed both antagonistic and agonistic canonical WNT stimuli, dependent on cell type. In HEK293 cells, WNT4 inhibited WNT3A induced canonical activation, and the WNT4 variant significantly enhanced this inhibition of the canonical WNT pathway. In contrast, in primary cultures of human fetal kidney cells, which maintain WNT activation and more closely represent WNT signaling in renal progenitors during nephrogenesis, this mutation caused significant loss of function, resulting in diminished canonical WNT/β-catenin signaling. In conclusion, heterozygous WNT4 variants are likely to play a causative role in renal hypodysplasia.
Renal Hypodysplasia Associates with a Wnt4 Variant that Causes Aberrant Canonical Wnt Signaling
Vivante, Asaf; Mark-Danieli, Michal; Davidovits, Miriam; Harari-Steinberg, Orit; Omer, Dorit; Gnatek, Yehudit; Cleper, Roxana; Landau, Daniel; Kovalski, Yael; Weissman, Irit; Eisenstein, Israel; Soudack, Michalle; Wolf, Haike Reznik; Issler, Naomi; Lotan, Danny; Anikster, Yair
2013-01-01
Abnormal differentiation of the renal stem/progenitor pool into kidney tissue can lead to renal hypodysplasia (RHD), but the underlying causes of RHD are not well understood. In this multicenter study, we identified 20 Israeli pedigrees with isolated familial, nonsyndromic RHD and screened for mutations in candidate genes involved in kidney development, including PAX2, HNF1B, EYA1, SIX1, SIX2, SALL1, GDNF, WNT4, and WT1. In addition to previously reported RHD-causing genes, we found that two affected brothers were heterozygous for a missense variant in the WNT4 gene. Functional analysis of this variant revealed both antagonistic and agonistic canonical WNT stimuli, dependent on cell type. In HEK293 cells, WNT4 inhibited WNT3A induced canonical activation, and the WNT4 variant significantly enhanced this inhibition of the canonical WNT pathway. In contrast, in primary cultures of human fetal kidney cells, which maintain WNT activation and more closely represent WNT signaling in renal progenitors during nephrogenesis, this mutation caused significant loss of function, resulting in diminished canonical WNT/β-catenin signaling. In conclusion, heterozygous WNT4 variants are likely to play a causative role in renal hypodysplasia. PMID:23520208
Koehler, Bruno Christian; Jassowicz, Adam; Scherr, Anna-Lena; Lorenz, Stephan; Radhakrishnan, Praveen; Kautz, Nicole; Elssner, Christin; Weiss, Johanna; Jaeger, Dirk; Schneider, Martin; Schulze-Bergkamen, Henning
2015-11-19
Colorectal cancer is the third most common malignancy in humans and novel therapeutic approaches are urgently needed. Autophagy is an evolutionarily highly conserved cellular process by which cells collect unnecessary organelles or misfolded proteins and subsequently degrade them in vesicular structures in order to refuel cells with energy. Dysregulation of the complex autophagy signaling network has been shown to contribute to the onset and progression of cancer in various models. The Bcl-2 family of proteins comprises central regulators of apoptosis signaling and has been linked to processes involved in autophagy. The antiapoptotic members of the Bcl-2 family of proteins have been identified as promising anticancer drug targets and small molecules inhibiting those proteins are in clinical trials. Flow cytometry and colorimetric assays were used to assess cell growth and cell death. Long term 3D cell culture was used to assess autophagy in a tissue mimicking environment in vitro. RNA interference was applied to modulate autophagy signaling. Immunoblotting and q-RT PCR were used to investigate autophagy signaling. Immunohistochemistry and fluorescence microscopy were used to detect autophagosome formation and autophagy flux. This study demonstrates that autophagy inhibition by obatoclax induces cell death in colorectal cancer (CRC) cells in an autophagy prone environment. Here, we demonstrate that pan-Bcl-2 inhibition by obatoclax causes a striking, late stage inhibition of autophagy in CRC cells. In contrast, ABT-737, a Mcl-1 sparing Bcl-2 inhibitor, failed to interfere with autophagy signaling. Accumulation of p62 as well as Light Chain 3 (LC3) was observed in cells treated with obatoclax. Autophagy inhibition caused by obatoclax is further augmented in stressful conditions such as starvation. Furthermore, our data demonstrate that inhibition of autophagy caused by obatoclax is independent of the essential pro-autophagy proteins Beclin-1, Atg7 and Atg12. The objective of this study was to dissect the contribution of Bcl-2 proteins to autophagy in CRC cells and to explore the potential of Bcl-2 inhibitors for autophagy modulation. Collectively, our data argue for a Beclin-1 independent autophagy inhibition by obatoclax. Based on this study, we recommend the concept of autophagy inhibition as therapeutic strategy for CRC.
Suzuki, Michitaka; Sugimoto, Yuko; Ohsaki, Yuki; Ueno, Makoto; Kato, Shinsuke; Kitamura, Yukisato; Hosokawa, Hiroshi; Davies, Joanna P; Ioannou, Yiannis A; Vanier, Marie T; Ohno, Kousaku; Ninomiya, Haruaki
2007-02-21
Niemann-Pick disease type C (NPC) is an inherited lipid storage disorder caused by mutations in NPC1 or NPC2 genes. Loss of function of either protein results in the endosomal accumulation of cholesterol and other lipids, progressive neurodegeneration, and robust glial cell activation. Here, we report that cultured human NPC fibroblasts secrete interferon-beta, interleukin-6 (IL-6), and IL-8, and contain increased levels of signal transducers and activators of transcription (STATs). These cells also contained increased levels of Toll-like receptor 4 (TLR4) that accumulated in cholesterol-enriched endosomes/lysosomes, and small interfering RNA knockdown of this receptor reduced cytokine secretion. In the NPC1-/- mouse brain, glial cells expressed TLR4 and IL-6, whereas both glial and neuronal cells expressed STATs. Genetic deletion of TLR4 in NPC1-/- mice reduced IL-6 secretion by cultured fibroblasts but failed to alter STAT levels or glial cell activation in the brain. In contrast, genetic deletion of IL-6 normalized STAT levels and suppressed glial cell activation. These findings indicate that constitutive cytokine secretion leads to activation of STATs in NPC fibroblasts and that this secretion is partly caused by an endosomal accumulation of TLR4. These results also suggest that similar signaling events may underlie glial cell activation in the NPC1-/- mouse brain.
Cazet, Aurélie; Charest, Jonathan; Bennett, Daniel C; Sambrooks, Cecilia Lopez; Contessa, Joseph N
2014-01-01
Asparagine-linked glycosylation is an endoplasmic reticulum co- and post-translational modification that enables the transit and function of receptor tyrosine kinase (RTK) glycoproteins. To gain insight into the regulatory role of glycosylation enzymes on RTK function, we investigated shRNA and siRNA knockdown of mannose phosphate isomerase (MPI), an enzyme required for mature glycan precursor biosynthesis. Loss of MPI activity reduced phosphorylation of FGFR family receptors in U-251 and SKMG-3 malignant glioma cell lines and also resulted in significant decreases in FRS2, Akt, and MAPK signaling. However, MPI knockdown did not affect ligand-induced activation or signaling of EGFR or MET RTKs, suggesting that FGFRs are more susceptible to MPI inhibition. The reductions in FGFR signaling were not caused by loss of FGF ligands or receptors, but instead were caused by interference with receptor dimerization. Investigations into the cellular consequences of MPI knockdown showed that cellular programs driven by FGFR signaling, and integral to the clinical progression of malignant glioma, were impaired. In addition to a blockade of cellular migration, MPI knockdown also significantly reduced glioma cell clonogenic survival following ionizing radiation. Therefore our results suggest that targeted inhibition of enzymes required for cell surface receptor glycosylation can be manipulated to produce discrete and limited consequences for critical client glycoproteins expressed by tumor cells. Furthermore, this work identifies MPI as a potential enzymatic target for disrupting cell surface receptor-dependent survival signaling and as a novel approach for therapeutic radiosensitization.
Physiological Notch Signaling Maintains Bone Homeostasis via RBPjk and Hey Upstream of NFATc1
Tu, Xiaolin; Chen, Jianquan; Lim, Joohyun; Karner, Courtney M.; Lee, Seung-Yon; Heisig, Julia; Wiese, Cornelia; Surendran, Kameswaran; Kopan, Raphael; Gessler, Manfred; Long, Fanxin
2012-01-01
Notch signaling between neighboring cells controls many cell fate decisions in metazoans both during embryogenesis and in postnatal life. Previously, we uncovered a critical role for physiological Notch signaling in suppressing osteoblast differentiation in vivo. However, the contribution of individual Notch receptors and the downstream signaling mechanism have not been elucidated. Here we report that removal of Notch2, but not Notch1, from the embryonic limb mesenchyme markedly increased trabecular bone mass in adolescent mice. Deletion of the transcription factor RBPjk, a mediator of all canonical Notch signaling, in the mesenchymal progenitors but not the more mature osteoblast-lineage cells, caused a dramatic high-bone-mass phenotype characterized by increased osteoblast numbers, diminished bone marrow mesenchymal progenitor pool, and rapid age-dependent bone loss. Moreover, mice deficient in Hey1 and HeyL, two target genes of Notch-RBPjk signaling, exhibited high bone mass. Interestingly, Hey1 bound to and suppressed the NFATc1 promoter, and RBPjk deletion increased NFATc1 expression in bone. Finally, pharmacological inhibition of NFAT alleviated the high-bone-mass phenotype caused by RBPjk deletion. Thus, Notch-RBPjk signaling functions in part through Hey1-mediated inhibition of NFATc1 to suppress osteoblastogenesis, contributing to bone homeostasis in vivo. PMID:22457635
Khan, Naghma; Afaq, Farrukh; Khusro, Fatima H.; Adhami, Vaqar Mustafa; Suh, Yewseok; Mukhtar, Hasan
2011-01-01
Lung cancer is one of the most commonly occurring malignancies. It has been reported that mTOR is phosphorylated in lung cancer and its activation was more frequent in tumors with over-expression of PI3K/Akt. Therefore, dual inhibitors of PI3K/Akt and mTOR signaling could be valuable agents for treating lung cancer. In the present study, we show that fisetin, a dietary tetrahydroxyflavone inhibits cell-growth with the concomitant suppression of PI3K/Akt and mTOR signaling in human non-small cell lung cancer (NSCLC) cells. Using autodock 4, we found that fisetin physically interacts with the mTOR complex at two sites. Fisetin treatment was also found to reduce the formation of A549 cell colonies in a dose-dependent manner. Treatment of cells with fisetin caused decrease in the protein expression of PI3K (p85 and p110), inhibition of phosphorylation of Akt, mTOR, p70S6K1, eIF-4E and 4E-BP1. Fisetin-treated cells also exhibited dose-dependent inhibition of the constituents of mTOR signaling complex like Rictor, Raptor, GβL and PRAS40. There was increase in the phosphorylation of AMPKα and decrease in the phosphorylation of TSC2 on treatment of cells with fisetin. We also found that treatment of cells with mTOR inhibitor rapamycin and mTOR-siRNA caused decrease in phosphorylation of mTOR and its target proteins which were further downregulated on treatment with fisetin, suggesting that these effects are mediated in part, through mTOR signaling. Our results show that fisetin suppressed PI3K/Akt and mTOR signaling in NSCLC cells and thus, could be developed as a chemotherapeutic agent against human lung cancer. PMID:21618507
Processing umami and other tastes in mammalian taste buds.
Roper, Stephen D; Chaudhari, Nirupa
2009-07-01
Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potential to shape the final signal output that taste buds transmit to the brain. The following paragraphs summarize current thinking about how taste signals generally, and umami taste in particular, are processed in taste buds.
Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Zhiwei; Yu Xinyuan; Shaikh, Zahir A.
2008-05-01
Cadmium (Cd), an endocrine disruptor, can induce a variety of signaling events including the activation of ERK1/2 and AKT. In this study, the involvement of estrogen receptors (ER) in these events was evaluated in three human breast caner cell lines, MCF-7, MDA-MB-231, and SK-BR-3. The Cd-induced signal activation patterns in the three cell lines mimicked those exhibited in response to 17{beta}-estradiol. Specifically, treatment of MCF-7 cells, that express ER{alpha}, ER{beta} and GPR30, to 0.5-10 {mu}M Cd for only 2.5 min resulted in transient phosphorylation of ERK1/2. Cd also triggered a gradual increase and sustained activation of AKT during the 60more » min treatment period. In SK-BR-3 cells, that express only GPR30, Cd also caused a transient activation of ERK1/2, but not of AKT. In contrast, in MDA-MB-231 cells, that express only ER{beta}, Cd was unable to cause rapid activation of either ERK1/2 or AKT. A transient phosphorylation of ER{alpha} was also observed within 2.5 min of Cd exposure in the MCF-7 cells. While the estrogen receptor antagonist, ICI 182,780, did not prevent the effect of Cd on these signals, specific siRNA against hER{alpha} significantly reduced Cd-induced activation of ERK1/2 and completely blocked the activation of AKT. It is concluded that Cd, like estradiol, can cause rapid activation of ERK1/2 and AKT and that these signaling events are mediated by possible interaction with membrane ER{alpha} and GPR30, but not ER{beta}.« less
Harvey, Stephen A K; Anderson, Susan C; SundarRaj, Nirmala
2004-07-01
Rho-associated coiled-coil-containing protein kinase (ROCK) is a downstream target of Rho GTPase signaling and regulates the assembly of stress fibers. Previous reports indicate that Rho/ROCK signaling is involved in the regulation of several cellular processes, some of which may be cell-type specific and are probably critical to corneal stromal cell activation. The present study identified ROCK-regulated gene expression in corneal stromal cells. Corneal stromal cells derived from eyes of three different donors were cultured to yield the following designated phenotypes: baseline fibroblasts (DMEM with 10% serum), activated fibroblasts (10% serum+bFGF+heparin), and myofibroblasts (1% serum+TGF-beta 1). Cells were exposed to the ROCK inhibitor Y-27632 or vehicle for 12 hours, and transcript levels altered by ROCK inhibition were identified with oligonucleotide microarrays (GeneChips; Affymetrix, Santa Clara, CA). In these phenotypes, Y-27632 caused marked (twofold or more) increases or decreases in 14/4, 12/3, and 15/10 transcripts. In both fibroblast groups Y-27632-treatment increased expression of endothelin receptors and of parathyroid hormone-like hormone. The upregulation of alpha-smooth muscle actin in myofibroblasts was attenuated by Y-27632. Combining data from all groups identified ROCK-supported (Y-27632 inhibitable) expression of 10 transcripts, including ribonucleotide reductase M2, the cyclin B1-CDC2-CKS2 system, and four mitotic spindle-associated proteins. ROCK inhibition causes broad inhibition of DNA synthesis and mitosis and causes changes that are different between (bFGF-activated) fibroblasts and (TGF-beta 1-induced) myofibroblasts. Thus, Rho/ROCK signaling regulates both common and distinct downstream events in corneal stromal cells activated (differentiated) to fibroblast or myofibroblast phenotype.
Sung, Hak-Joon; Chandra, Prafulla; Treiser, Matthew D; Liu, Er; Iovine, Carmine P; Moghe, Prabhas V; Kohn, Joachim
2009-03-01
The role of reactive oxygen species (ROS)-mediated cell signal transduction pathways emanating from engineered cell substrates remains unclear. To elucidate the role, polymers derived from the amino acid L-tyrosine were used as synthetic matrix substrates. Variations in their chemical properties were created by co-polymerizing hydrophobic L-tyrosine derivatives with uncharged hydrophilic poly(ethylene glycol) (PEG, Mw = 1,000 Da), and negatively charged desaminotyrosyl-tyrosine (DT). These substrates were characterized for their intrinsic ability to generate ROS, as well as their ability to elicit Saos-2 cell responses in terms of intracellular ROS production, actin remodeling, and apoptosis. PEG-containing substrates induced both exogenous and intracellular ROS production, whereas the charged substrates reduced production of both types, indicating a coupling of exogenous ROS generation and intracellular ROS production. Furthermore, PEG-mediated ROS induction caused nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase and an increase in caspase-3 activity, confirming a link with apoptosis. PEG-rich pro-oxidant substrates caused cytoskeletal actin remodeling through beta-actin cleavage by caspase-3 into fractins. The fractins co-localized to the mitochondria and reduced the mitochondrial membrane potential. The remnant cytosolic beta-actin was polymerized and condensed, events consistent with apoptotic cell shrinkage. The cytoskeletal remodeling was integral to the further augmentation of intracellular ROS production. Conversely, the anti-oxidant DT-containing charged substrates suppressed the entire cascade of apoptotic progression. We demonstrate that ROS activity serves an important role in "outside-in" signaling for cells grown on substrates: the ROS activity couples exogenous stress, driven by substrate composition, to changes in intracellular signaling. This signaling causes cell apoptosis, which is mediated by actin remodeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Weiwei; Otkur, Wuxiyar; Li, Lingzhi
Highlights: ► Silibinin protects A431 cells from UVB irradiation-induced apoptosis. ► Up-regulation of the IGF-1R-JNK/ERK pathways by UVB induces cell apoptosis. ► Silibinin inhibits IGF-1R pathways to repress caspase-8-mediated apoptosis. -- Abstract: Ultraviolet B (UVB) from sunlight is a major cause of cutaneous lesion. Silibinin, a traditional hepatic protectant, elicits protective effects against UVB-induced cellular damage. In A431 cells, the insulin-like growth factor-1 receptor (IGF-1R) was markedly up-regulated by UVB irradiation. The activation of the IGF-1R signalling pathways contributed to apoptosis of the cells rather than rescuing the cells from death. Up-regulated IGF-1R stimulated downstream mitogen-activated protein kinases (MAPKs), suchmore » as c-Jun N-terminal kinases (JNK) and extracellular signal-regulated protein kinases 1/2 (ERK1/2). The subsequent activation of caspase-8 and caspase-3 led to apoptosis. The activation of IGF-1R signalling pathways is the cause of A431 cell death. The pharmacological inhibitors and the small interfering RNA (siRNA) targeting IGF-1R suppressed the downstream activation of JNK/ERK-caspases to help the survival of the UVB-irradiated A431 cells. Indeed, silibinin treatment suppressed the IGF-1R-JNK/ERK pathways and thus protected the cells from UVB-induced apoptosis.« less
Riethmüller, Michaela; Burger, Nils; Bauer, Georg
2015-12-01
Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo.
Ciccarelli, Carmela; Di Rocco, Agnese; Gravina, Giovanni Luca; Mauro, Annunziata; Festuccia, Claudio; Del Fattore, Andrea; Berardinelli, Paolo; De Felice, Francesca; Musio, Daniela; Bouché, Marina; Tombolini, Vincenzo; Zani, Bianca Maria; Marampon, Francesco
2018-06-29
Prostate cancer (PCa) cell radioresistance causes the failure of radiation therapy (RT) in localized or locally advanced disease. The aberrant accumulation of c-Myc oncoprotein, known to promote PCa onset and progression, may be due to the control of gene transcription and/or MEK/ERK-regulated protein stabilization. Here, we investigated the role of MEK/ERK signaling in PCa. LnCAP, 22Rv1, DU145, and PC3 PCa cell lines were used in in vitro and in vivo experiments. U0126, trametinib MEK/ERK inhibitors, and c-Myc shRNAs were used. Radiation was delivered using an x-6 MV photon linear accelerator. U0126 in vivo activity alone or in combination with irradiation was determined in murine xenografts. Inhibition of MEK/ERK signaling down-regulated c-Myc protein in PCa cell lines to varying extents by affecting expression of RNA and protein, which in turn determined radiosensitization in in vitro and in vivo xenograft models of PCa cells. The crucial role played by c-Myc in the MEK/ERK pathways was demonstrated in 22Rv1 cells by the silencing of c-Myc by means of short hairpin mRNA, which yielded effects resembling the targeting of MEK/ERK signaling. The clinically approved compound trametinib used in vitro yielded the same effects as U0126 on growth and C-Myc expression. Notably, U0126 and trametinib induced a drastic down-regulation of BMX, which is known to prevent apoptosis in cancer cells. The results of our study suggest that signal transduction-based therapy can, by disrupting the MEK/ERK/c-Myc axis, reduce human PCa radioresistance caused by increased c-Myc expression in vivo and in vitro and restores apoptosis signals.
Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling
Hirata, Shinji; Takayama, Naoya; Jono-Ohnishi, Ryoko; Endo, Hiroshi; Nakamura, Sou; Dohda, Takeaki; Nishi, Masanori; Hamazaki, Yuhei; Ishii, Ei-ichi; Kaneko, Shin; Otsu, Makoto; Nakauchi, Hiromitsu; Kunishima, Shinji; Eto, Koji
2013-01-01
Congenital amegakaryocytic thrombocytopenia (CAMT) is caused by the loss of thrombopoietin receptor–mediated (MPL-mediated) signaling, which causes severe pancytopenia leading to bone marrow failure with onset of thrombocytopenia and anemia prior to leukopenia. Because Mpl–/– mice do not exhibit the human disease phenotype, we used an in vitro disease tracing system with induced pluripotent stem cells (iPSCs) derived from a CAMT patient (CAMT iPSCs) and normal iPSCs to investigate the role of MPL signaling in hematopoiesis. We found that MPL signaling is essential for maintenance of the CD34+ multipotent hematopoietic progenitor (MPP) population and development of the CD41+GPA+ megakaryocyte-erythrocyte progenitor (MEP) population, and its role in the fate decision leading differentiation toward megakaryopoiesis or erythropoiesis differs considerably between normal and CAMT cells. Surprisingly, complimentary transduction of MPL into normal or CAMT iPSCs using a retroviral vector showed that MPL overexpression promoted erythropoiesis in normal CD34+ hematopoietic progenitor cells (HPCs), but impaired erythropoiesis and increased aberrant megakaryocyte production in CAMT iPSC–derived CD34+ HPCs, reflecting a difference in the expression of the transcription factor FLI1. These results demonstrate that impaired transcriptional regulation of the MPL signaling that normally governs megakaryopoiesis and erythropoiesis underlies CAMT. PMID:23908116
Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling.
Hirata, Shinji; Takayama, Naoya; Jono-Ohnishi, Ryoko; Endo, Hiroshi; Nakamura, Sou; Dohda, Takeaki; Nishi, Masanori; Hamazaki, Yuhei; Ishii, Ei-ichi; Kaneko, Shin; Otsu, Makoto; Nakauchi, Hiromitsu; Kunishima, Shinji; Eto, Koji
2013-09-01
Congenital amegakaryocytic thrombocytopenia (CAMT) is caused by the loss of thrombopoietin receptor-mediated (MPL-mediated) signaling, which causes severe pancytopenia leading to bone marrow failure with onset of thrombocytopenia and anemia prior to leukopenia. Because Mpl(-/-) mice do not exhibit the human disease phenotype, we used an in vitro disease tracing system with induced pluripotent stem cells (iPSCs) derived from a CAMT patient (CAMT iPSCs) and normal iPSCs to investigate the role of MPL signaling in hematopoiesis. We found that MPL signaling is essential for maintenance of the CD34+ multipotent hematopoietic progenitor (MPP) population and development of the CD41+GPA+ megakaryocyte-erythrocyte progenitor (MEP) population, and its role in the fate decision leading differentiation toward megakaryopoiesis or erythropoiesis differs considerably between normal and CAMT cells. Surprisingly, complimentary transduction of MPL into normal or CAMT iPSCs using a retroviral vector showed that MPL overexpression promoted erythropoiesis in normal CD34+ hematopoietic progenitor cells (HPCs), but impaired erythropoiesis and increased aberrant megakaryocyte production in CAMT iPSC-derived CD34+ HPCs, reflecting a difference in the expression of the transcription factor FLI1. These results demonstrate that impaired transcriptional regulation of the MPL signaling that normally governs megakaryopoiesis and erythropoiesis underlies CAMT.
SOCS3: an essential regulator of LIF receptor signaling in trophoblast giant cell differentiation
Takahashi, Yutaka; Carpino, Nick; Cross, James C.; Torres, Miguel; Parganas, Evan; Ihle, James N.
2003-01-01
Suppressor of cytokine signaling 3 (SOCS3) binds cytokine receptors and thereby suppresses cytokine signaling. Deletion of SOCS3 causes an embryonic lethality that is rescued by a tetraploid rescue approach, demonstrating an essential role in placental development and a non-essential role in embryo development. Rescued SOCS3-deficient mice show a perinatal lethality with cardiac hypertrophy. SOCS3-deficient placentas have reduced spongiotrophoblasts and increased trophoblast secondary giant cells. Enforced expression of SOCS3 in a trophoblast stem cell line (Rcho-1) suppresses giant cell differentiation. Conversely, SOCS3-deficient trophoblast stem cells differentiate more readily to giant cells in culture, demonstrating that SOCS3 negatively regulates trophoblast giant cell differentiation. Leukemia inhibitory factor (LIF) promotes giant cell differentiation in vitro, and LIF receptor (LIFR) deficiency results in loss of giant cell differentiation in vivo. Finally, LIFR deficiency rescues the SOCS3-deficient placental defect and embryonic lethality. The results establish SOCS3 as an essential regulator of LIFR signaling in trophoblast differentiation. PMID:12554639
Xu, Zhuojin; Robitaille, Aaron M; Berndt, Jason D; Davidson, Kathryn C; Fischer, Karin A; Mathieu, Julie; Potter, Jennifer C; Ruohola-Baker, Hannele; Moon, Randall T
2016-10-18
In both mice and humans, pluripotent stem cells (PSCs) exist in at least two distinct states of pluripotency, known as the naïve and primed states. Our understanding of the intrinsic and extrinsic factors that enable PSCs to self-renew and to transition between different pluripotent states is important for understanding early development. In mouse embryonic stem cells (mESCs), Wnt proteins stimulate mESC self-renewal and support the naïve state. In human embryonic stem cells (hESCs), Wnt/β-catenin signaling is active in naïve-state hESCs and is reduced or absent in primed-state hESCs. However, the role of Wnt/β-catenin signaling in naïve hESCs remains largely unknown. Here, we demonstrate that inhibition of the secretion of Wnts or inhibition of the stabilization of β-catenin in naïve hESCs reduces cell proliferation and colony formation. Moreover, we show that addition of recombinant Wnt3a partially rescues cell proliferation in naïve hESCs caused by inhibition of Wnt secretion. Notably, inhibition of Wnt/β-catenin signaling in naïve hESCs did not cause differentiation. Instead, it induced primed hESC-like proteomic and metabolic profiles. Thus, our results suggest that naïve hESCs secrete Wnts that activate autocrine or paracrine Wnt/β-catenin signaling to promote efficient self-renewal and inhibit the transition to the primed state.
Zhou, Sha; Jin, Xin; Li, Yalin; Li, Wei; Chen, Xiaojun; Xu, Lei; Zhu, Jifeng; Xu, Zhipeng; Zhang, Yang; Liu, Feng; Su, Chuan
2016-01-01
Background More than 220 million people worldwide are chronically infected with schistosomes, causing severe disease or even death. The major pathological damage occurring in schistosomiasis is attributable to the granulomatous inflammatory response and liver fibrosis induced by schistosome eggs. The inflammatory response is tightly controlled and parallels immunosuppressive regulation, constantly maintaining immune homeostasis and limiting excessive immunopathologic damage in important host organs. It is well known that the activation of programmed death 1 (PD-1) signaling causes a significant suppression of T cell function. However, the roles of PD-1 signaling in modulating CD4+ T cell responses and immunopathology during schistosome infection, have yet to be defined. Methodology/Principal Findings Here, we show that PD-1 is upregulated in CD4+ T cells in Schistosoma japonicum (S. japonicum)-infected patients. We also show the upregulation of PD-1 expression in CD4+ T cells in the spleens, mesenteric lymph nodes, and livers of mice with S. japonicum infection. Finally, we found that the blockade of PD-1 signaling enhanced CD4+ T helper 2 (Th2) cell responses and led to more severe liver immunopathology in mice with S. japonicum infection, without a reduction of egg production or deposition in the host liver. Conclusions/Significance Overall, our study suggests that PD-1 signaling is specifically induced to control Th2-associated inflammatory responses during schistosome infection and is beneficial to the development of PD-1-based control of liver immunopathology. PMID:27792733
Chen, Jianming; Ma, Menglin; Uzal, Francisco A; McClane, Bruce A
2014-01-01
Clostridium perfringens causes enteritis and enterotoxemia in humans and livestock due to prolific toxin production. In broth culture, C. perfringens uses the Agr-like quorum sensing (QS) system to regulate production of toxins important for enteritis/enterotoxemia, including beta toxin (CPB), enterotoxin, and epsilon toxin (ETX). The VirS/VirR two-component regulatory system (TCRS) also controls CPB production in broth cultures. Both the Agr-like QS and VirS/VirR systems are important when C. perfringens senses enterocyte-like Caco-2 cells and responds by upregulating CPB production; however, only the Agr-like QS system is needed for host cell-induced ETX production. These in vitro observations have pathophysiologic relevance since both the VirS/VirR and Agr-like QS signaling systems are required for C. perfringens strain CN3685 to produce CPB in vivo and to cause enteritis or enterotoxemia. Thus, apparently upon sensing its presence in the intestines, C. perfringens utilizes QS and TCRS signaling to produce toxins necessary for intestinal virulence. PMID:24061146
Constitutively active mutation of ACVR1 in oral epithelium causes submucous cleft palate in mice.
Noda, Kazuo; Mishina, Yuji; Komatsu, Yoshihiro
2016-07-15
Cleft palate is among the most common human birth defects. Submucous cleft palate (SMCP) is a subgroup of cleft palate, which may be as common as overt cleft palate. Despite the high frequency of SMCP in humans, only recently have several animal models of SMCP begun to provide insight into the mechanisms by which SMCP develops. In this study, we show that enhanced BMP signaling through constitutively active ACVR1 in palatal epithelium causes submucous cleft palate in mice. In these mutant mice, the fusion of both palatal mesenchyme in hard palate, and muscles in soft palate were hampered by epithelial tissue. During palatal fusion, enhanced SMAD-dependent BMP signaling impaired cell death and altered cell proliferation rate in medial edge epithelium (MEE), and resulted in MEE persistence. At the molecular level, downregulation of ΔNp63, which is crucial for normal palatal fusion, in MEE cells was impaired, leading to a reduction in caspase-3 activation. Our study provides a new insight into the etiology of SMCP caused by augmented BMP signaling. Copyright © 2015 Elsevier Inc. All rights reserved.
Mizutari, Kunio; Fujioka, Masato; Hosoya, Makoto; Bramhall, Naomi; Okano, Hirotaka James; Okano, Hideyuki; Edge, Albert S.B.
2013-01-01
SUMMARY Hearing loss due to damage to auditory hair cells is normally irreversible because mammalian hair cells do not regenerate. Here, we show that new hair cells can be induced and can cause partial recovery of hearing in ears damaged by noise trauma, when Notch signaling is inhibited by a γ-secretase inhibitor selected for potency in stimulating hair cell differentiation from inner ear stem cells in vitro. Hair cell generation resulted from an increase in the level of bHLH transcription factor, Atoh1, in response to inhibition of Notch signaling. In vivo prospective labeling of Sox2-expressing cells with a Cre/lox system unambiguously demonstrated that hair cell generation resulted from transdifferentiation of supporting cells. Manipulating cell fate of cochlear sensory cells in vivo by pharmacological inhibition of Notch signaling is thus a potential therapeutic approach to the treatment of deafness. PMID:23312516
Identification of cell density signal molecule
Schwarz, Richard I.
1998-01-01
Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use.
Ibrutinib: A paradigm shift in management of CLL
Badar, Talha; Burger, Jan A; Wierda, William G; O'Brien, Susan
2016-01-01
1. Summary B-cell receptor (BCR) signaling plays a vital role in B-cell malignancies; Bruton's Tyrosine Kinase (BTK) is a critical mediator of this signaling. BCR signaling, either constitutively or following antigen binding, leads to activation of several downstream pathways involved in cell survival, proliferation, and migration. The efficacy observed in studies of the BTK inhibitor, ibrutinib, confirms that BCR signaling is critical for the growth of B-cell malignancies. Ibrutinib characteristically induces redistribution of malignant B-cells from tissues into the peripheral blood, and rapid resolution of adenopathy. Further, ibrutinib therapy results in normalization of lymphocyte counts and improvement in cytopenias. Ibrutinib has been shown to have an excellent safety profile and does not cause myelosuppression. Early data from combination studies of ibrutinib with anti-CD20 monoclonal antibodies have shown more rapid responses compared to those seen with ibrutinib monotherapy. Current data strongly support continued clinical evaluation of Ibrutinib in B-cell malignancies. PMID:25387837
Ibrutinib: a paradigm shift in management of CLL.
Badar, Talha; Burger, Jan A; Wierda, William G; O'Brien, Susan
2014-12-01
B-cell receptor (BCR) signaling plays a vital role in B-cell malignancies; Bruton tyrosine kinase is a critical mediator of this signaling. BCR signaling, either constitutively or following antigen binding, leads to activation of several downstream pathways involved in cell survival, proliferation and migration. The efficacy observed in studies of the Bruton tyrosine kinase inhibitor, ibrutinib, confirms that BCR signaling is critical for the growth of B-cell malignancies. Ibrutinib characteristically induces redistribution of malignant B cells from tissues into the peripheral blood and rapid resolution of adenopathy. Furthermore, ibrutinib therapy results in normalization of lymphocyte counts and improvement in cytopenias. Ibrutinib has been shown to have an excellent safety profile and does not cause myelosuppression. Early data from combination studies of ibrutinib with anti-CD20 monoclonal antibodies have shown more rapid responses compared to those seen with ibrutinib monotherapy. Current data strongly support continued clinical evaluation of ibrutinib in B-cell malignancies.
Roles of mTOR Signaling in Brain Development.
Lee, Da Yong
2015-09-01
mTOR is a serine/threonine kinase composed of multiple protein components. Intracellular signaling of mTOR complexes is involved in many of physiological functions including cell survival, proliferation and differentiation through the regulation of protein synthesis in multiple cell types. During brain development, mTOR-mediated signaling pathway plays a crucial role in the process of neuronal and glial differentiation and the maintenance of the stemness of neural stem cells. The abnormalities in the activity of mTOR and its downstream signaling molecules in neural stem cells result in severe defects of brain developmental processes causing a significant number of brain disorders, such as pediatric brain tumors, autism, seizure, learning disability and mental retardation. Understanding the implication of mTOR activity in neural stem cells would be able to provide an important clue in the development of future brain developmental disorder therapies.
Meisenberg, Annika; Kaschuba, Dagmar; Balfanz, Sabine; Jordan, Nadine; Baumann, Arnd
2015-10-01
Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Xiu; Dai, Mengya; Wu, Jianjian; Guo, Xinrui; Tian, Huimin; Heng, Zhijie; Lu, Ying; Chai, Xiaoli
2017-01-01
Background Larvae of the tapeworm E. multilocularis cause alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. A population of stem cell-like cells, the germinative cells, is considered to drive the larval growth and development within the host. The molecular mechanisms controlling the behavior of germinative cells are largely unknown. Methodology/Principal findings Using in vitro cultivation systems we show here that the EGFR/ERK signaling in the parasite can promote germinative cell proliferation in response to addition of human EGF, resulting in stimulated growth and development of the metacestode larvae. Inhibition of the signaling by either the EGFR inhibitors CI-1033 and BIBW2992 or the MEK/ERK inhibitor U0126 impairs germinative cell proliferation and larval growth. Conclusions/Significance These data demonstrate the contribution of EGF-mediated EGFR/ERK signaling to the regulation of germinative cells in E. multilocularis, and suggest the EGFR/ERK signaling as a potential therapeutic target for AE and perhaps other human cestodiasis. PMID:28241017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, Young-Ok; Wang Xin; Hitron, John Andrew
2011-09-15
Cadmium is a toxic heavy metal which is environmentally and occupationally relevant. The mechanisms underlying cadmium-induced autophagy are not yet completely understood. The present study shows that cadmium induces autophagy, as demonstrated by the increase of LC3-II formation and the GFP-LC3 puncta cells. The induction of autophagosomes was directly visualized by electron microscopy in cadmium-exposed skin epidermal cells. Blockage of LKB1 or AMPK by siRNA transfection suppressed cadmium-induced autophagy. Cadmium-induced autophagy was inhibited in dominant-negative AMPK-transfected cells, whereas it was accelerated in cells transfected with the constitutively active form of AMPK. mTOR signaling, a negative regulator of autophagy, was downregulatedmore » in cadmium-exposed cells. In addition, cadmium generated reactive oxygen species (ROS) at relatively low levels, and caused poly(ADP-ribose) polymerase-1 (PARP) activation and ATP depletion. Inhibition of PARP by pharmacological inhibitors or its siRNA transfection suppressed ATP reduction and autophagy in cadmium-exposed cells. Furthermore, cadmium-induced autophagy signaling was attenuated by either exogenous addition of catalase and superoxide dismutase, or by overexpression of these enzymes. Consequently, these results suggest that cadmium-mediated ROS generation causes PARP activation and energy depletion, and eventually induces autophagy through the activation of LKB1-AMPK signaling and the down-regulation of mTOR in skin epidermal cells. - Highlights: > Cadmium, a toxic heavy metal, induces autophagic cell death through ROS-dependent activation of the LKB1-AMPK signaling. > Cadmium generates intracellular ROS at low levels and this leads to severe DNA damage and PARP activation, resulting in ATP depletion, which are the upstream events of LKB1-AMPK-mediated autophagy. > This novel finding may contribute to further understanding of cadmium-mediated diseases.« less
Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche
Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting
2015-01-01
Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche. DOI: http://dx.doi.org/10.7554/eLife.08174.001 PMID:26452202
Update on Staphylococcal Superantigen-Induced Signaling Pathways and Therapeutic Interventions
Krakauer, Teresa
2013-01-01
Staphylococcal enterotoxin B (SEB) and related bacterial toxins cause diseases in humans and laboratory animals ranging from food poisoning, acute lung injury to toxic shock. These superantigens bind directly to the major histocompatibility complex class II molecules on antigen-presenting cells and specific Vβ regions of T-cell receptors (TCR), resulting in rapid hyper-activation of the host immune system. In addition to TCR and co-stimulatory signals, proinflammatory mediators activate signaling pathways culminating in cell-stress response, activation of NFκB and mammalian target of rapamycin (mTOR). This article presents a concise review of superantigen-activated signaling pathways and focuses on the therapeutic challenges against bacterial superantigens. PMID:24064719
Sada, Aiko; Hasegawa, Kazuteru; Pin, Pui Han; Saga, Yumiko
2012-02-01
Stem cells are maintained by both stem cell-extrinsic niche signals and stem cell-intrinsic factors. During murine spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) signal emanated from Sertoli cells and germ cell-intrinsic factor NANOS2 represent key regulators for the maintenance of spermatogonial stem cells. However, it remains unclear how these factors intersect in stem cells to control their cellular state. Here, we show that GDNF signaling is essential to maintain NANOS2 expression, and overexpression of Nanos2 can alleviate the stem cell loss phenotype caused by the depletion of Gfra1, a receptor for GDNF. By using an inducible Cre-loxP system, we show that NANOS2 expression is downregulated upon the conditional knockout (cKO) of Gfra1, while ectopic expression of Nanos2 in GFRA1-negative spermatogonia does not induce de novo GFRA1 expression. Furthermore, overexpression of Nanos2 in the Gfra1-cKO testes prevents precocious differentiation of the Gfra1-knockout stem cells and partially rescues the stem cell loss phenotypes of Gfra1-deficient mice, indicating that the stem cell differentiation can be suppressed by NANOS2 even in the absence of GDNF signaling. Taken together, we suggest that NANOS2 acts downstream of GDNF signaling to maintain undifferentiated state of spermatogonial stem cells. Copyright © 2011 AlphaMed Press.
Song, Tuzz-Ying; Yeh, Shu-Lan; Hu, Miao-Lin; Chen, Mei-Yau; Yang, Nae-Cherng
2015-12-01
Vitamin B3 (niacin) deficiency can cause pellagra with symptoms of dermatitis, diarrhea and dementia. However, it is unclear whether the vitamin B3 deficiency causes human aging. FK866 (a Nampt inhibitor) can reduce intracellular NAD(+) level and induce senescence of human Hs68 cells. However, the mechanisms underlying FK866-induced senescence of Hs68 cells are unclear. In this study, we used FK866 to mimic the effects of vitamin B3 deficiency to reduce the NAD(+) level and investigated the mechanisms of FK866-induced senescence of Hs68 cells. We hypothesized that FK866 induced the senescence of Hs68 cells via an attenuation of NAD(+)-silent information regulator T1 (SIRT1) signaling. We found that FK866 induced cell senescence and diminished cellular NAD(+) levels and SIRT1 activity (detected by acetylation of p53), and these effects were dramatically antagonized by co-treatment with nicotinic acid, nicotinamide, or NAD(+). In contrast, the protein expression of SIRT1, AMP-activated protein kinase, mammalian target of rapamycin, and nicotinamide phosphoribosyltransferase (Nampt) was not affected by FK866. In addition, the role of GSH in the FK866-induced cells senescence may be limited, as N-acetylcysteine did not antagonize FK866-induced cell senescence. These results suggest that FK866 induces cell senescence via attenuation of NAD(+)-SIRT1 signaling. The effects of vitamin B3 deficiency on human aging warrant further investigation.
Lactobacillus acidophilus attenuates Salmonella-induced intestinal inflammation via TGF-β signaling.
Huang, I-Fei; Lin, I-Chun; Liu, Pei-Feng; Cheng, Ming-Fang; Liu, Yen-Chen; Hsieh, Yao-Dung; Chen, Jih-Jung; Chen, Chun-Lin; Chang, Hsueh-Wei; Shu, Chih-Wen
2015-10-07
Salmonella is a common intestinal pathogen that causes acute and chronic inflammatory response. Probiotics reduce inflammatory cytokine production and serve as beneficial commensal microorganisms in the human gastrointestinal tract. TGF-β (transforming growth factor β)/SMAD and NF-κB signaling play important roles in inflammation in intestinal cells. However, the involvement of the signaling in regulating inflammation between Salmonella and probiotics is not fully understood. L. acidophilus and prebiotic inulin were used to treat human intestinal Caco-2 cells prior to infection with Salmonella. The cells were harvested to examine the cytokines and MIR21 expression with immunoblotting and real-time PCR. NF-κB and SMAD3/4 reporter vectors were transfected into cells to monitor inflammation and TGF-β1 signaling, respectively. In this study, we showed that the probiotic L. acidophilus decreased Salmonella-induced NF-κB activation in human intestinal Caco-2 cells. Expression of the inflammatory cytokines, TNF-α and IL-8, in L. acidophilus-pretreated cells was also significantly lower than that in cells infected with Salmonella alone. Moreover, TGF-β1 and MIR21 expression was elevated in cells pretreated with L. acidophilus or synbiotic, a combination of inulin and L. acidophilus, compared to that in untreated cells or cells infected with S. typhimurium alone. By contrast, expression of SMAD7, a target of MIR21, was accordingly reduced in cells treated with L. acidophilus or synbiotics. Consistent with TGF-β1/MIR21 and SMAD7 expression, SMAD3/4 transcriptional activity was significantly higher in the cells treated with L. acidophilus or synbiotics. Furthermore, TGF-β1 antibody antagonized the SMAD3/4 and NF-κB transcriptional activity modulated by L. acidophilus in intestinal cells. Our results suggest that the TGF-β1/MIR21 signaling pathway may be involved in the suppressive effects of L. acidophilus on inflammation caused by S. typhimurium in intestinal Caco-2 cells.
Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases.
Lee, Eun-Young; Kim, Sunghoon; Kim, Myung Hee
2018-06-08
Despite remarkable advances in medical science, infection-associated diseases remain among the leading causes of death worldwide. There is a great deal of interest and concern at the rate at which new pathogens are emerging and causing significant human health problems. Expanding our understanding of how cells regulate signaling networks to defend against invaders and retain cell homeostasis will reveal promising strategies against infection. It has taken scientists decades to appreciate that eukaryotic aminoacyl-tRNA synthetases (ARSs) play a role as global cell signaling mediators to regulate cell homeostasis, beyond their intrinsic function as protein synthesis enzymes. Recent discoveries revealed that ubiquitously expressed standby cytoplasmic ARSs sense and respond to danger signals and regulate immunity against infections, indicating their potential as therapeutic targets for infectious diseases. In this review, we discuss ARS-mediated anti-infectious signaling and the emerging role of ARSs in antimicrobial immunity. In contrast to their ability to defend against infection, host ARSs are inevitably co-opted by viruses for survival and propagation. We therefore provide a brief overview of the communication between viruses and the ARS system. Finally, we discuss encouraging new approaches to develop ARSs as therapeutics for infectious diseases. Copyright © 2018. Published by Elsevier Inc.
Jenny, Andreas; Darken, Rachel S.; Wilson, Paul A.; Mlodzik, Marek
2003-01-01
Frizzled (Fz) signaling regulates the establishment of planar cell polarity (PCP). The PCP genes prickle (pk) and strabismus (stbm) are thought to antagonize Fz signaling. We show that they act in the same cell, R4, adjacent to that in which the Fz/PCP pathway is required in the Drosophila eye. We demonstrate that Stbm and Pk interact physically and that Stbm recruits Pk to the cell membrane. Through this interaction, Pk affects Stbm membrane localization and can cause clustering of Stbm. Pk is also known to interact with Dsh and is thought to antagonize Dsh by affecting its membrane localization. Thus our data suggest that the Stbm/Pk complex modulates Fz/Dsh activity, resulting in a symmetry-breaking step during polarity signaling. PMID:12941693
Adhesion signaling promotes protease‑driven polyploidization of glioblastoma cells.
Mercapide, Javier; Lorico, Aurelio
2014-11-01
An increase in ploidy (polyploidization) causes genomic instability in cancer. However, the determinants for the increased DNA content of cancer cells have not yet been fully elucidated. In the present study, we investigated whether adhesion induces polyploidization in human U87MG glioblastoma cells. For this purpose, we employed expression vectors that reported transcriptional activation by signaling networks implicated in cancer. Signaling activation induced by intercellular integrin binding elicited both extracellular signal‑regulated kinase (ERK) and Notch target transcription. Upon the prolonged activation of both ERK and Notch target transcription induced by integrin binding to adhesion protein, cell cultures accumulated polyploid cells, as determined by cell DNA content distribution analysis and the quantification of polynucleated cells. This linked the transcriptional activation induced by integrin adhesion to the increased frequency of polyploidization. Accordingly, the inhibition of signaling decreased the extent of polyploidization mediated by protease‑driven intracellular invasion. Therefore, the findings of this study indicate that integrin adhesion induces polyploidization through the stimulation of glioblastoma cell invasiveness.
Racila, E; Hsueh, R; Marches, R; Tucker, T F; Krammer, P H; Scheuermann, R H; Uhr, J W
1996-01-01
Signal transduction initiated by crosslinking of antigen-specific receptors on T- and B-lymphoma cells induces apoptosis. In T-lymphoma cells, such crosslinking results in upregulation of the APO-1 ligand, which then interacts with induced or constitutively expressed APO-1, thereby triggering apoptosis. Here we show that crosslinking the membrane immunoglobulin on human lymphoma cells (Daudi) (that constitutively express APO-1) does not induce synthesis of APO-1 ligand. Further, a noncytotoxic fragment of anti-APO-1 antibody that blocks T-cell-receptor-mediated apoptosis in T-lymphoma cells does not block anti-mu-induced apoptosis. Hence, in B-lymphoma cells, apoptosis induced by signaling via membrane IgM is not mediated by the APO-1 ligand. Images Fig. 2 Fig. 3 PMID:8700902
Arachidonic acid induces macrophage cell cycle arrest through the JNK signaling pathway.
Shen, Ziying; Ma, Yunqing; Ji, Zhonghao; Hao, Yang; Yan, Xuan; Zhong, Yuan; Tang, Xiaochun; Ren, Wenzhi
2018-02-09
Arachidonic acid (AA) has potent pro-apoptotic effects on cancer cells at a low concentration and on macrophages at a very high concentration. However, the effects of AA on the macrophage cell cycle and related signaling pathways have not been fully investigated. Herein we aim to observe the effect of AA on macrophages cell cycle. AA exposure reduced the viability and number of macrophages in a dose- and time-dependent manner. The reduction in RAW264.7 cell viability was not caused by apoptosis, as indicated by caspase-3 and activated caspase-3 detection. Further research illustrated that AA exposure induced RAW264.7 cell cycle arrested at S phase, and some cell cycle-regulated proteins were altered accordingly. Moreover, JNK signaling was stimulated by AA, and the stimulation was partially reversed by a JNK signaling inhibitor in accordance with cell cycle-related factors. In addition, nuclear and total Foxo1/3a and phosphorylated Foxo1/3a were elevated by AA in a dose- and time-dependent manner, and this elevation was suppressed by the JNK signaling inhibitor. Our study demonstrated that AA inhibits macrophage viability by inducing S phase cell cycle arrest. The JNK signaling pathway and the downstream FoxO transcription factors are involved in AA-induced RAW264.7 cell cycle arrest.
Taglia, Lauren; Matusiak, Damien; Benya, Richard V
2008-01-01
Gastrin-releasing peptide (GRP) and its receptor (GRPR) are not normally expressed by epithelial cells lining the adult human colon. However post malignant transformation both GRP and its receptor are aberrantly expressed in the colon where we have previously shown they act to retard metastasis by enhancing tumor cell attachment to the extracellular matrix. In the present study, we show that GRP signaling via its cognate receptor when both are aberrantly expressed in human colon cancer cells causes heat shock protein 72 (Hsp72) to be expressed. We show that GRP/GRPR induces expression of Hsp72 by signaling via focal adhesion kinase. When expressed, Hsp72 promotes the binding of CD16+ and CD94+ natural killer cells, resulting in tumor cell cytolysis. These findings demonstrate the presence of a novel mechanism whereby aberrantly expressed GRP/GRPR in human colorectal cancer attenuates tumor progression and may promote a favorable outcome.
Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A
2005-06-01
Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.
Evasion of affinity-based selection in germinal centers by Epstein-Barr virus LMP2A.
Minamitani, Takeharu; Yasui, Teruhito; Ma, Yijie; Zhou, Hufeng; Okuzaki, Daisuke; Tsai, Chiau-Yuang; Sakakibara, Shuhei; Gewurz, Benjamin E; Kieff, Elliott; Kikutani, Hitoshi
2015-09-15
Epstein-Barr virus (EBV) infects germinal center (GC) B cells and establishes persistent infection in memory B cells. EBV-infected B cells can cause B-cell malignancies in humans with T- or natural killer-cell deficiency. We now find that EBV-encoded latent membrane protein 2A (LMP2A) mimics B-cell antigen receptor (BCR) signaling in murine GC B cells, causing altered humoral immune responses and autoimmune diseases. Investigation of the impact of LMP2A on B-cell differentiation in mice that conditionally express LMP2A in GC B cells or all B-lineage cells found LMP2A expression enhanced not only BCR signals but also plasma cell differentiation in vitro and in vivo. Conditional LMP2A expression in GC B cells resulted in preferential selection of low-affinity antibody-producing B cells despite apparently normal GC formation. GC B-cell-specific LMP2A expression led to systemic lupus erythematosus-like autoimmune phenotypes in an age-dependent manner. Epigenetic profiling of LMP2A B cells found increased H3K27ac and H3K4me1 signals at the zinc finger and bric-a-brac, tramtrack domain-containing protein 20 locus. We conclude that LMP2A reduces the stringency of GC B-cell selection and may contribute to persistent EBV infection and pathogenesis by providing GC B cells with excessive prosurvival effects.
Anderson, Matthew J.; Schimmang, Thomas; Lewandoski, Mark
2016-01-01
During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is a major advance toward understanding how these tissue layers interact during axis extension with important implications in human disease. PMID:27144312
Kodo, Kazuki; Ong, Sang-Ging; Jahanbani, Fereshteh; Termglinchan, Vittavat; Hirono, Keiichi; InanlooRahatloo, Kolsoum; Ebert, Antje D.; Shukla, Praveen; Abilez, Oscar J.; Churko, Jared M.; Karakikes, Ioannis; Jung, Gwanghyun; Ichida, Fukiko; Wu, Sean M.; Snyder, Michael P.; Bernstein, Daniel; Wu, Joseph C.
2016-01-01
Left ventricular non-compaction (LVNC) is the third most prevalent cardiomyopathy in children and its pathogenesis has been associated with the developmental defect of the embryonic myocardium. We show that patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from LVNC patients carrying a mutation in the cardiac transcription factor TBX20 recapitulate a key aspect of the pathological phenotype at the single-cell level and was associated with perturbed transforming growth factor beta (TGFβ) signaling. LVNC iPSC-CMs have decreased proliferative capacity due to abnormal activation of TGFβ signaling. TBX20 regulates the expression of TGFβ signaling modifiers including a known genetic cause of LVNC, PRDM16, and genome editing of PRDM16 caused proliferation defects in iPSC-CMs. Inhibition of TGFβ signaling and genome correction of the TBX20 mutation were sufficient to reverse the disease phenotype. Our study demonstrates that iPSC-CMs are a useful tool for the exploration of pathological mechanisms underlying poorly understood cardiomyopathies including LVNC. PMID:27642787
Pogrmic-Majkic, Kristina; Fa, Svetlana; Samardzija, Dragana; Hrubik, Jelena; Kaisarevic, Sonja; Andric, Nebojsa
2016-08-10
Atrazine (ATR) is an endocrine disruptor that affects steroidogenic process, resulting in disruption of reproductive function of the male and female gonads. In this study, we used the primary culture of peripubertal Leydig cells to investigate the effect of ATR on the rapid androgen production stimulated by human chorionic gonadotropin (hCG). We demonstrated that ATR activated multiple signaling pathways enhancing the rapid hCG-stimulated androgen biosynthesis in Leydig cells. Low hCG concentration (0.25ng/mL) caused cAMP-independent, but ERK1/2-dependent increase in androgen production after 60min of incubation. Co-treatment with ATR for 60min enhanced the cAMP production in hCG-stimulated cells. Accumulation of androgens was prevented by addition of U0126, N-acetyl-l-cysteine and AG1478. Co-treatment with hCG and ATR for 60min did not alter steroidogenic acute regulatory protein (Star) mRNA level in Leydig cells. After 120min, hCG further increased androgenesis in Leydig cells that was sensitive to inhibition of the cAMP/PKA, ERK1/2 and ROS signaling pathways. Co-treatment with ATR for 120min further enhanced the hCG-induced androgen production, which was prevented by inhibition of the calcium, PKC and EGFR signaling cascades. After 120min, ATR enhanced the expression of Star mRNA in hCG-stimulated Leydig cells through activation of the PKA and PKC pathway. Collectively, these data suggest that exposure to ATR caused perturbations in multiple signaling pathways, thus enhancing the rapid hCG-dependent androgen biosynthesis in peripubertal Leydig cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A link between mitotic entry and membrane growth suggests a novel model for cell size control
Anastasia, Steph D.; Nguyen, Duy Linh; Thai, Vu; Meloy, Melissa; MacDonough, Tracy
2012-01-01
Addition of new membrane to the cell surface by membrane trafficking is necessary for cell growth. In this paper, we report that blocking membrane traffic causes a mitotic checkpoint arrest via Wee1-dependent inhibitory phosphorylation of Cdk1. Checkpoint signals are relayed by the Rho1 GTPase, protein kinase C (Pkc1), and a specific form of protein phosphatase 2A (PP2ACdc55). Signaling via this pathway is dependent on membrane traffic and appears to increase gradually during polar bud growth. We hypothesize that delivery of vesicles to the site of bud growth generates a signal that is proportional to the extent of polarized membrane growth and that the strength of the signal is read by downstream components to determine when sufficient growth has occurred for initiation of mitosis. Growth-dependent signaling could explain how membrane growth is integrated with cell cycle progression. It could also control both cell size and morphogenesis, thereby reconciling divergent models for mitotic checkpoint function. PMID:22451696
A link between mitotic entry and membrane growth suggests a novel model for cell size control.
Anastasia, Steph D; Nguyen, Duy Linh; Thai, Vu; Meloy, Melissa; MacDonough, Tracy; Kellogg, Douglas R
2012-04-02
Addition of new membrane to the cell surface by membrane trafficking is necessary for cell growth. In this paper, we report that blocking membrane traffic causes a mitotic checkpoint arrest via Wee1-dependent inhibitory phosphorylation of Cdk1. Checkpoint signals are relayed by the Rho1 GTPase, protein kinase C (Pkc1), and a specific form of protein phosphatase 2A (PP2A(Cdc55)). Signaling via this pathway is dependent on membrane traffic and appears to increase gradually during polar bud growth. We hypothesize that delivery of vesicles to the site of bud growth generates a signal that is proportional to the extent of polarized membrane growth and that the strength of the signal is read by downstream components to determine when sufficient growth has occurred for initiation of mitosis. Growth-dependent signaling could explain how membrane growth is integrated with cell cycle progression. It could also control both cell size and morphogenesis, thereby reconciling divergent models for mitotic checkpoint function.
Liu, Baocai; Su, Yu; Li, Ting; Yuan, Wanqiong; Mo, Xiaoning; Li, Henan; He, Qihua; Ma, Dalong; Han, Wenling
2015-12-01
The dysregulation of epidermal growth factor receptor (EGFR) signaling has been well documented to contribute to the progression of non-small cell lung cancer (NSCLC), the leading cause of cancer death in the world. EGF-stimulated EGFR activation induces receptor internalization and degradation, which plays an important role in EGFR signaling. This process is frequently deregulated in cancer cells, leading to enhanced EGFR levels and signaling. Our previous study on CMTM7 is only limited to a brief description of the relationship of overexpressed CMTM7 with EGFR-AKT signaling. The biological functions of endogenous CMTM7 and its molecular mechanism remained unclear. In this study, we show that the stable knockdown of CMTM7 augments the malignant potential of NSCLC cells and enhances EGFR-AKT signaling by decreasing EGFR internalization and degradation. Mechanistically, CMTM7 knockdown reduces the activation of Rab5, a protein known to be required for early endosome fusion. In NSCLC, the loss of CMTM7 would therefore serve to sustain aberrant EGFR-mediated oncogenic signaling. Together, our findings highlight the role of CMTM7 in the regulation of EGFR signaling in tumor cells, revealing CMTM7 as a novel molecule related to Rab5 activation.
Hippo Signaling Suppresses Cell Ploidy and Tumorigenesis through Skp2.
Zhang, Shihao; Chen, Qinghua; Liu, Qingxu; Li, Yuxi; Sun, Xiufeng; Hong, Lixin; Ji, Suyuan; Liu, Chengyan; Geng, Jing; Zhang, Weiji; Lu, Zhonglei; Yin, Zhen-Yu; Zeng, Yuanyuan; Lin, Kwang-Huei; Wu, Qiao; Li, Qiyuan; Nakayama, Keiko; Nakayama, Keiich I; Deng, Xianming; Johnson, Randy L; Zhu, Liang; Gao, Daming; Chen, Lanfen; Zhou, Dawang
2017-05-08
Polyploidy can lead to aneuploidy and tumorigenesis. Here, we report that the Hippo pathway effector Yap promotes the diploid-polyploid conversion and polyploid cell growth through the Akt-Skp2 axis. Yap strongly induces the acetyltransferase p300-mediated acetylation of the E3 ligase Skp2 via Akt signaling. Acetylated Skp2 is exclusively localized to the cytosol, which causes hyper-accumulation of the cyclin-dependent kinase inhibitor p27, leading to mitotic arrest and subsequently cell polyploidy. In addition, the pro-apoptotic factors FoxO1/3 are overly degraded by acetylated Skp2, resulting in polyploid cell division, genomic instability, and oncogenesis. Importantly, the depletion or inactivation of Akt or Skp2 abrogated Hippo signal deficiency-induced liver tumorigenesis, indicating their epistatic interaction. Thus, we conclude that Hippo-Yap signaling suppresses cell polyploidy and oncogenesis through Skp2. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Zhi-Li; Li, Hong; Liu, Jia; Wu, Mo-Li; Chen, Xiao-Yan; Liu, Li-Hong; Wang, Qian
2017-01-01
Squamous cell carcinoma (SCC) is the most common epidermal malignancy, and Wnt/β-catenin signaling is frequently activated in SCC. Resveratrol prevents rodent epidermal carcinogenesis, while its effect on human epidermal cancer remains unknown. To address this issue, the impact of resveratrol on the growth and Wnt signaling of skin SCC Colo16 cells were investigated at the cellular and molecular biology levels by flow cytometry, immunocytochemistry, reverse transcription-polymerase chain reaction, western blotting and β-catenin-specific small interfering RNA (siRNA) transfection. Resveratrol (100 µM) suppressed cell growth and induced apoptosis in Colo16 cells. Wnt2 and its downstream genes were downregulated, which was accompanied by increased expression of the Wnt signaling inhibitor Axin2. Transfection with a β-catenin-specific siRNA did not affect cell growth but enhanced the resveratrol susceptibility of Colo16 transfectants. The present results suggest the inhibitory effects of resveratrol on epidermal SCCs and inactivation of Wnt signaling as one of the resveratrol-caused molecular events in Colo16 cells. β-catenin oriented siRNA is insufficient to induce cell crisis, implicating the presence of more critical cancer-associated element(s) as the target in Colo16 cells. PMID:28781663
Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.
Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger
2018-01-01
RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.
Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF
Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger
2018-01-01
RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons. PMID:29590115
Zieba, Jennifer; Forlenza, Kimberly Nicole; Khatra, Jagteshwar Singh; Sarukhanov, Anna; Duran, Ivan; Rigueur, Diana; Lyons, Karen M.; Cohn, Daniel H.; Merrill, Amy E.; Krakow, Deborah
2016-01-01
Spondylocarpotarsal synostosis (SCT) is an autosomal recessive disorder characterized by progressive vertebral fusions and caused by loss of function mutations in Filamin B (FLNB). FLNB acts as a signaling scaffold by linking the actin cytoskleteon to signal transduction systems, yet the disease mechanisms for SCT remain unclear. Employing a Flnb knockout mouse, we found morphologic and molecular evidence that the intervertebral discs (IVDs) of Flnb–/–mice undergo rapid and progressive degeneration during postnatal development as a result of abnormal cell fate changes in the IVD, particularly the annulus fibrosus (AF). In Flnb–/–mice, the AF cells lose their typical fibroblast-like characteristics and acquire the molecular and phenotypic signature of hypertrophic chondrocytes. This change is characterized by hallmarks of endochondral-like ossification including alterations in collagen matrix, expression of Collagen X, increased apoptosis, and inappropriate ossification of the disc tissue. We show that conversion of the AF cells into chondrocytes is coincident with upregulated TGFβ signaling via Smad2/3 and BMP induced p38 signaling as well as sustained activation of canonical and noncanonical target genes p21 and Ctgf. These findings indicate that FLNB is involved in attenuation of TGFβ/BMP signaling and influences AF cell fate. Furthermore, we demonstrate that the IVD disruptions in Flnb–/–mice resemble aging degenerative discs and reveal new insights into the molecular causes of vertebral fusions and disc degeneration. PMID:27019229
Reduced TCR signaling potential impairs negative selection but does not result in autoimmune disease
Hwang, SuJin; Song, Ki-Duk; Lesourne, Renaud; Lee, Jan; Pinkhasov, Julia; Li, LiQi; El-Khoury, Dalal
2012-01-01
Negative selection and regulatory T (T reg) cell development are two thymus-dependent processes necessary for the enforcement of self-tolerance, and both require high-affinity interactions between the T cell receptor (TCR) and self-ligands. However, it remains unclear if they are similarly impacted by alterations in TCR signaling potential. We generated a knock-in allele (6F) of the TCR ζ chain gene encoding a mutant protein lacking signaling capability whose expression is controlled by endogenous ζ regulatory sequences. Although negative selection was defective in 6F/6F mice, leading to the survival of autoreactive T cells, 6F/6F mice did not develop autoimmune disease. We found that 6F/6F mice generated increased numbers of thymus-derived T reg cells. We show that attenuation of TCR signaling potential selectively impacts downstream signaling responses and that this differential effect favors Foxp3 expression and T reg cell lineage commitment. These results identify a potential compensatory pathway for the enforcement of immune tolerance in response to defective negative selection caused by reduced TCR signaling capability. PMID:22945921
Glial response to polyglutamine-mediated stress
Vig, Parminder J.S.; Shao, Qingmei; Lopez, Maripar E
2009-01-01
Neurodegenerative trinucleotide (CAG) repeat disorders are caused by the expansion of polyglutamine tracts within the disease proteins. Some of these proteins have an unknown function. How does expanded polyglutamine cause target neurons to degenerate, is not clear. Recent evidence suggests that intercellular miscommunication may contribute to polyglutamine pathogenesis in CAG repeat disorders. Polyglutamine induced degeneration of the target neuron can be mediated via glia-neuron interactions. Here we hypothesize during neurodegenerative process the failure of cell: cell interactions have more severe consequences than alterations in intracellular neuron biology. We further believe that bidirectional communication between neurons and glia are prerequisite for the normal development and function of either cell-type. Understanding intercellular signaling mechanisms such as glial trophic factors and their receptors, cell adhesion or other well-defined signaling molecules provide opportunities for developing potential therapies. PMID:20046986
Li, Huaidong; Li, Chunsun; Yang, Zhen; Li, Yanqin; She, Danyang; Cao, Lu; Wang, Wenjie; Liu, Changlin; Chen, Liangan
2017-01-01
Background and objective Blast lung injury is a common type of blast injury and has very high mortality. Therefore, research to identify medical therapies for blast injury is important. Perfluorocarbon (PFC) is used to improve gas exchange in diseased lungs and has anti-inflammatory functions in vitro and in vivo. The aim of this study was to determine whether PFC reduces damage to A549 cells caused by blast injury and to elucidate its possible mechanisms of action. Study design and methods A549 alveolar epithelial cells exposed to blast waves were treated with and without PFC. Morphological changes and apoptosis of A549 cells were recorded. PCR and enzyme-linked immunosorbent assay (ELISA) were used to measure the mRNA or protein levels of IL-1β, IL-6 and TNF-α. Malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity levels were detected. Western blot was used to quantify the expression of NF-κB, Bax, Bcl-2, cleaved caspase-3 and MAPK cell signaling proteins. Results A549 cells exposed to blast wave shrank, with less cell-cell contact. The morphological change of A549 cells exposed to blast waves were alleviated by PFC. PFC significantly inhibited the apoptosis of A549 cells exposed to blast waves. IL-1β, IL-6 and TNF-α cytokine and mRNA expression levels were significantly inhibited by PFC. PFC significantly increased MDA levels and decreased SOD activity levels. Further studies indicated that NF-κB, Bax, caspase-3, phospho-p38, phosphor-ERK and phosphor-JNK proteins were also suppressed by PFC. The quantity of Bcl-2 protein was increased by PFC. Conclusion Our research showed that PFC reduced A549 cell damage caused by blast injury. The potential mechanism may be associated with the following signaling pathways: 1) the signaling pathways of NF-κB and MAPK, which inhibit inflammation and reactive oxygen species (ROS); and 2) the signaling pathways of Bcl-2/Bax and caspase-3, which inhibit apoptosis. PMID:28323898
Identification of cell density signal molecule
Schwarz, R.I.
1998-04-21
Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use. 2 figs.
Kageyama, C; Kato, K; Iyozumi, H; Inagaki, H; Yamaguchi, A; Furuse, K; Baba, K
2006-01-01
Biophotons are ultraweak light emissions from biochemical reactions in a living body. They increase in suspension-cultured rice (Oryza sativa L.) cells when elicited by N-acetylchitooligosaccharide. Biochemical analyses were undertaken to investigate the relationship between disease response and biophotons in order to clarify the emission mechanism of biophotons caused by this elicitor. Photon emissions induced by N-acetylchitohexaose were suppressed when cells were pretreated with the reactive oxygen species (ROS)-generating inhibitors: pyrocatechol-3,5-disulfonic acid disodium salt (Tiron); diphenylene iodonium (DPI); and salicylhydroxamic acid (SHAM). Conversely, exogenously applied ROS (superoxide and hydrogen peroxide) were able to induce photon emissions. The effects of protein phosphorylation (K-252a) and the Ca(2+) signaling inhibitors, ethylene glycol-bis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and LaCl(3), caused photon emissions to decrease. It is clear that photon emissions from rice cells elicited by N-acetylchitohexaose are closely associated with the ROS-generating system, and are regulated by Ca(2+) signaling and protein phosphorylation. Exogenously applied phosphatidic acid (PA), the second messenger in the signal transduction of disease response, raised photon emissions in rice cells. Comparisons of photon emissions from PA and N-acetylchitohexaose regarding time courses, spectral compositions, and the inhibition ratios of several inhibitors, as well as a loss- and gain-of-function assay using the protein synthesis inhibitor cycloheximide (CHX) and PA, showed the possibility that photon emissions from rice cells elicited by N-acetylchitooligosaccharide were generated through PA, an intermediate of phospholipid signaling.
Hippo signaling pathway in cardiovascular development and diseases.
Wang, Yong-yu; Yu, Wei; Zhou, Bin
2017-07-20
Cardiovascular diseases have become the leading cause of death in the world. Understanding the development of cardiovascular system and the pathogenesis of cardiovascular diseases will promote the generation of novel preventive and therapeutic strategy. The Hippo pathway is a recently identified signaling cascade that plays a critical role in organ size control, cell proliferation, apoptosis and fate determination of stem cells. Gene knockout and transgenic mouse models have revealed that the Hippo signaling pathway is involved in heart development, cardiomyocyte proliferation, apoptosis, hypertrophy and cardiac regeneration. The Hippo signaling pathway also regulates vascular development, differentiation and various functions of vascular cells. Dysregulation of the Hippo signaling pathway leads to different kinds of cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy, neointima formation and atherosclerosis. In this review, we briefly summarize current research on the roles and regulation mechanisms of the Hippo signaling pathway in cardiovascular development and diseases.
Retrograde Signaling as a Mechanism of Yeast Adaptation to Unfavorable Factors.
Trendeleva, T A; Zvyagilskaya, R A
2018-02-01
Mitochondria perform many essential functions in eukaryotic cells. Being the main producers of ATP and the site of many catabolic and anabolic reactions, they participate in intracellular signaling, proliferation, aging, and formation of reactive oxygen species. Mitochondrial dysfunction is the cause of many diseases and even cell death. The functioning of mitochondria in vivo is impossible without interaction with other cellular compartments. Mitochondrial retrograde signaling is a signaling pathway connecting mitochondria and the nucleus. The major signal transducers in the yeast retrograde response are Rtg1p, Rtg2p, and Rtg3p proteins, as well as four additional negative regulatory factors - Mks1p, Lst8p, and two 14-3-3 proteins (Bmh1/2p). In this review, we analyze current information on the retrograde signaling in yeast that is regarded as a stress or homeostatic response mechanism to changes in various metabolic and biosynthetic activities that occur upon mitochondrial dysfunction. We also discuss relations between retrograde signaling and other signaling pathways in the cell.
Yang, Yin; Wu, Songfang; Wang, Yu; Pan, Shuang; Lan, Bei; Liu, Yaohui; Zhang, Liming; Leng, Qianli; Chen, Da; Zhang, Cuizhu; He, Bin; Cao, Youjia
2015-01-01
Herpes simplex virus 1 (HSV-1) is the most prevalent human virus and causes global morbidity because the virus is able to infect multiple cell types. Remarkably, HSV infection switches between lytic and latent cycles, where T cells play a critical role. However, the precise way of virus-host interactions is incompletely understood. Here we report that HSV-1 productively infected Jurkat T-cells and inhibited antigen-induced T cell receptor activation. We discovered that HSV-1-encoded Us3 protein interrupted TCR signaling and interleukin-2 production by inactivation of the linker for activation of T cells. This study unveils a mechanism by which HSV-1 intrudes into early events of TCR-mediated cell signaling and may provide novel insights into HSV infection, during which the virus escapes from host immune surveillance. PMID:25907557
Numb regulates cell–cell adhesion and polarity in response to tyrosine kinase signalling
Wang, Zezhou; Sandiford, Shelley; Wu, Chenggang; Li, Shawn Shun-Cheng
2009-01-01
Epithelial-mesenchymal transition (EMT), which can be caused by aberrant tyrosine kinase signalling, marks epithelial tumour progression and metastasis, yet the underlying molecular mechanism is not fully understood. Here, we report that Numb interacts with E-cadherin (E-cad) through its phosphotyrosine-binding domain (PTB) and thereby regulates the localization of E-cad to the lateral domain of epithelial cell–cell junction. Moreover, Numb engages the polarity complex Par3–aPKC–Par6 by binding to Par3 in polarized Madin-Darby canine kidney cells. Intriguingly, after Src activation or hepatocyte growth factor (HGF) treatment, Numb decouples from E-cad and Par3 and associates preferably with aPKC–Par6. Binding of Numb to aPKC is necessary for sequestering the latter in the cytosol during HGF-induced EMT. Knockdown of Numb by small hairpin RNA caused a basolateral-to-apicolateral translocation of E-cad and β-catenin accompanied by elevated actin polymerization, accumulation of Par3 and aPKC in the nucleus, an enhanced sensitivity to HGF-induced cell scattering, a decrease in cell–cell adhesion, and an increase in cell migration. Our work identifies Numb as an important regulator of epithelial polarity and cell–cell adhesion and a sensor of HGF signalling or Src activity during EMT. PMID:19609305
Lin, Chiou-Feng; Chien, Shun-Yi; Chen, Chia-Ling; Hsieh, Chia-Yuan; Tseng, Po-Chun; Wang, Yu-Chih
2016-02-01
Treatment of interferon-γ (IFN-γ) causes cell growth inhibition and cytotoxicity in lung epithelial malignancies. Regarding the induction of autophagy related to IFN-γ signaling, this study investigated the link between autophagy and IFN-γ cytotoxicity. In A549 human lung cancer cells, IFN-γ treatment induced concurrent apoptotic and nonapoptotic events. Unexpectedly, the nonapoptotic cells present mimic extracellular trap cell death (ETosis), which was regulated by caspase-3 and by autophagy induction through immunity-related GTPase family M protein 1 and activating transcription factor 6. Furthermore, IFN-γ signaling controlled mimic ETosis through a mechanism involving an autophagy- and Fas-associated protein with death domain-controlled caspase-8/-3 activation. Following caspase-mediated lamin degradation, IFN-γ caused DNA damage-associated ataxia telangiectasia and Rad3-related protein (ATR)/ataxia telangiectasia mutated (ATM)-regulated mimic ETosis. Upon ATR/ATM signaling, peptidyl arginine deiminase 4 (PAD4)-mediated histone 3 citrullination promoted mimic ETosis. Such IFN-γ-induced effects were defective in PC14PE6/AS2 human lung cancer cells, which were unsusceptible to IFN-γ-induced autophagy. Due to autophagy-based caspase cascade activation, IFN-γ triggers unconventional caspase-mediated DNA damage, followed by ATR/ATM-regulated PAD4-mediated histone citrullination during mimic ETosis in lung epithelial malignancy.
mTOR at the Transmitting and Receiving Ends in Tumor Immunity
Guri, Yakir; Nordmann, Thierry M.; Roszik, Jason
2018-01-01
Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis. PMID:29662490
mTOR at the Transmitting and Receiving Ends in Tumor Immunity.
Guri, Yakir; Nordmann, Thierry M; Roszik, Jason
2018-01-01
Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkawa, Yuki; Miyazaki, Sayaka; Miyata, Maiko
2008-08-15
We reported that ganglioside GD3 enhances cell proliferation and invasion of melanomas causing stronger tyrosine-phosphorylation of p130Cas and paxillin after stimulation with fetal calf serum. Besides signals via growth factor/receptor, adhesion signals via integrin might be also enhanced by GD3. Here, roles of integrin-mediated signaling in the cell proliferation and invasion, and in the activation of adaptor molecules were examined, showing that integrin was also important for the cell growth and invasion. p130Cas and paxillin underwent stronger tyrosine-phosphorylation in GD3+ cells than in GD3- cells during the adhesion in the absence of serum. On the other hand, no proteins underwentmore » tyrosine phosphorylation in GD3+ and GD3- cells in a suspension state when stimulated with fetal calf serum. These results suggested that integrin-mediated signaling is essential in the effects of GD3 on the malignant properties of melanomas. Co-localization of GD3 and integrin at the focal adhesion supported these results.« less
Redox signaling regulated by an electrophilic cyclic nucleotide and reactive cysteine persulfides.
Fujii, Shigemoto; Sawa, Tomohiro; Nishida, Motohiro; Ihara, Hideshi; Ida, Tomoaki; Motohashi, Hozumi; Akaike, Takaaki
2016-04-01
Reactive oxygen (oxidant) and free radical species are known to cause nonspecific damage of various biological molecules. The oxidant toxicology is developing an emerging concept of the physiological functions of reactive oxygen species in cell signaling regulation. Redox signaling is precisely modulated by endogenous electrophilic substances that are generated from reactive oxygen species during cellular oxidative stress responses. Among diverse electrophilic molecular species that are endogenously generated, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a unique second messenger whose formation, signaling, and metabolism in cells was recently clarified. Most important, our current studies revealed that reactive cysteine persulfides that are formed abundantly in cells are critically involved in the metabolism of 8-nitro-cGMP. Modern redox biology involves frontiers of cell research and stem cell research; medical and clinical investigations of infections, cancer, metabolic syndrome, aging, and neurodegenerative diseases; and other fields. 8-Nitro-cGMP-mediated signaling and metabolism in cells may therefore be potential targets for drug development, which may lead to discovery of new therapeutic agents for many diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Hypergravity Stimulates Osteoblast Proliferation Via Matrix-Integrin-Signaling Pathways
NASA Technical Reports Server (NTRS)
Vercoutere, W.; Parra, M.; Roden, C.; DaCosta, M.; Wing, A.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.
2003-01-01
Extensive characterizations of the physiologic consequences of microgravity and gravity indicate that lack of weight-bearing may cause tissue atrophy through cellular and subcellular level mechanisms. We hypothesize that gravity is needed for the efficient transduction of cell growth and survival signals from the extra-cellular matrix (ECM) in mechanosensitive tissues. Recent work from our laboratory and from others shows that an increase of gravity increases bone cell growth and survival. We found that 50-g hypergravity stimulation increased osteoblast proliferation for cells grown on Collagen Type I and Fibronectin, but not on Laminin or uncoated plastic. This may be a tissue-specific response, because 50-g hypergravity stimulation caused no increase in proliferation for primary rat fibroblasts. These results combined with RT-PCR for all possible integrins indicate that beta1 integrin subunit may be involved. The osteoblast proliferation response on Collagen Type I was greater at 25-g than at 10-g or 50-g; 24-h duration of hypergravity was necessary to see an increase in proliferation. Survival was enhanced during hypergravity stimulation by the presence of matrix. Flow cytometry analysis indicated that cell cycle may be altered; BrdU incorporation in proliferating cells showed an increase in the number of actively dividing cells from about 60% at 1-g to over 90% at 25-g. To further investigate the molecular components involved, we applied fluorescence labeling of cytoskeletal and signaling molecules to cells after 2 to 30 minutes of hypergravity stimulation. While structural components did not appear to be altered, phosphorylation increased, indicating that signaling pathways may be activated. These data indicate that gravity mechanostimulation of osteoblast proliferation involves specific matrix-integrin signaling pathways which are sensitive to duration and g-level.
Prolonging microtubule dysruption enhances the immunogenicity of chronic lymphocytic leukaemia cells
Shaha, S P; Tomic, J; Shi, Y; Pham, T; Mero, P; White, D; He, L; Baryza, J L; Wender, P A; Booth, J W; Spaner, D E
2009-01-01
Cytotoxic chemotherapies do not usually mediate the expression of an immunogenic gene programme in tumours, despite activating many of the signalling pathways employed by highly immunogenic cells. Concomitant use of agents that modulate and complement stress-signalling pathways activated by chemotherapeutic agents may then enhance the immunogenicity of cancer cells, increase their susceptibility to T cell-mediated controls and lead to higher clinical remission rates. Consistent with this hypothesis, the microtubule inhibitor, vincristine, caused chronic lymphocytic leukaemia (CLL) cells to die rapidly, without increasing their immunogenicity. Protein kinase C (PKC) agonists (such as bryostatin) delayed the death of vincristine-treated CLL cells and made them highly immunogenic, with increased stimulatory abilities in mixed lymphocyte responses, production of proinflammatory cytokines, expression of co-stimulatory molecules and activation of c-Jun N-terminal kinase (JNK), p38 and nuclear factor kappa B (NF-κB) signalling pathways. This phenotype was similar to the result of activating CLL cells through Toll-like receptors (TLRs), which communicate ‘danger’ signals from infectious pathogens. Use of PKC agonists and microtubule inhibitors to mimic TLR-signalling, and increase the immunogenicity of CLL cells, has implications for the design of chemo-immunotherapeutic strategies. PMID:19737143
X-ray irradiation activates K+ channels via H2O2 signaling.
Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard
2015-09-09
Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.
X-ray irradiation activates K+ channels via H2O2 signaling
Gibhardt, Christine S.; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard
2015-01-01
Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345
Zhou, Ding'an; Wei, Zhiyun; Deng, Shanshan; Wang, Teng; Zai, Meiqing; Wang, Honglian; Guo, Luo; Zhang, Junyu; Zhong, Hailei; He, Lin; Xing, Qinghe
2013-06-01
One important function of melanocytes (MCs) is to produce and transfer melanin to neighbouring keratinocytes (KCs) to protect epithelial cells from UV radiation. The mechanisms regulating the specific migration and localisation of the MC lineage remain unknown. We have found three heterozygous mutations that cause amino acid substitutions in the SASH1 gene in individuals with a kind of dyschromatosis. In epidermal tissues from an affected individual, we observed the increased transepithelial migration of melanocytes. Functional analyses indicate that these SASH1 mutations not only cause the increased migration of A375 cells and but also induce intensive bindings with two novel cell adhesion partners IQGAP1 and Gαs. Further, SASH1 mutations induce uniform loss of E-Cadherin in human A375 cells. Our findings suggest a new scaffold protein SASH1 to regulate IQGAP1-E-Cadherin signalling and demonstrate a novel crosstalking between GPCR signalling, calmodulin signalling for the modulation of MCs invasion. Copyright © 2013 Elsevier Inc. All rights reserved.
Kawaguchi-Niida, Motoko; Shibata, Noriyuki; Furuta, Yasuhide
2017-09-01
Signaling by the TGFβ super-family, consisting of TGFβ/activin- and bone morphogenetic protein (BMP) branch pathways, is involved in the central nervous system patterning, growth, and differentiation during embryogenesis. Neural progenitor cells are implicated in various pathological conditions, such as brain injury, infarction, Parkinson's disease and Alzheimer's disease. However, the roles of TGFβ/BMP signaling in the postnatal neural progenitor cells in the brain are still poorly understood. We examined the functional contribution of Smad4, a key integrator of TGFβ/BMP signaling pathways, to the regulation of neural progenitor cells in the subventricular zone (SVZ). Conditional loss of Smad4 in neural progenitor cells caused an increase in the number of neural stem like cells in the SVZ. Smad4 conditional mutants also exhibited attenuation in neuronal lineage differentiation in the adult brain that led to a deficit in olfactory bulb neurons as well as to a reduction of brain parenchymal volume. SVZ-derived neural stem/progenitor cells from the Smad4 mutant brains yielded increased growth of neurospheres, elevated self-renewal capacity and resistance to differentiation. These results indicate that loss of Smad4 in neural progenitor cells causes defects in progression of neural progenitor cell commitment within the SVZ and subsequent neuronal differentiation in the postnatal mouse brain. Copyright © 2017 Elsevier Inc. All rights reserved.
Cell signaling molecules as drug targets in lung cancer: an overview.
Mukherjee, Tapan K; Paul, Karan; Mukhopadhyay, Srirupa
2011-07-01
Lung being one of the vital and essential organs in the body, lung cancer is a major cause of mortality in the modern human society. Lung cancer can be broadly subdivided into nonsmall cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Although NSCLC is sometimes treated with surgery, the advanced and metastatic NSCLC and SCLC usually respond better to chemotherapy and radiation. The most important targets of these chemotherapeutic agents are various intracellular signaling molecules. The primary focus of this review article is to summarize the description of various cell signaling molecules involved in lung cancer development and their regulation by chemotherapeutic agents. Extensive research work in recent years has identified several cellular signaling molecules that may be intricately involved in the complexity of lung cancer. Some of these cell signaling molecules are epidermal growth factor receptors, vascular endothelial growth factor receptors, mammalian target of rapamycin, mitogen-activated protein kinase phosphatase-1, peroxisome proliferator-activated receptor-gamma, matrix metalloproteinases and receptor for advanced glycation end-products. The present review will strengthen our current knowledge regarding the efficacy of the above-mentioned cell signaling molecules as potential beneficial drug targets against lung cancer.
Alby, Caroline; Piquand, Kevin; Huber, Céline; Megarbané, André; Ichkou, Amale; Legendre, Marine; Pelluard, Fanny; Encha-Ravazi, Ferechté; Abi-Tayeh, Georges; Bessières, Bettina; El Chehadeh-Djebbar, Salima; Laurent, Nicole; Faivre, Laurence; Sztriha, László; Zombor, Melinda; Szabó, Hajnalka; Failler, Marion; Garfa-Traore, Meriem; Bole, Christine; Nitschké, Patrick; Nizon, Mathilde; Elkhartoufi, Nadia; Clerget-Darpoux, Françoise; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Saunier, Sophie; Cormier-Daire, Valérie; Attié-Bitach, Tania; Thomas, Sophie
2015-01-01
KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies. PMID:26166481
Apoptosis in neural crest cells by functional loss of APC tumor suppressor gene
Hasegawa, Sumitaka; Sato, Tomoyuki; Akazawa, Hiroshi; Okada, Hitoshi; Maeno, Akiteru; Ito, Masaki; Sugitani, Yoshinobu; Shibata, Hiroyuki; Miyazaki, Jun-ichi; Katsuki, Motoya; Yamauchi, Yasutaka; Yamamura, Ken-ichi; Katamine, Shigeru; Noda, Tetsuo
2002-01-01
Apc is a gene associated with familial adenomatous polyposis coli (FAP) and its inactivation is a critical step in colorectal tumor formation. The protein product, adenomatous polyposis coli (APC), acts to down-regulate intracellular levels of β-catenin, a key signal transducer in the Wnt signaling. Conditional targeting of Apc in the neural crest of mice caused massive apoptosis of cephalic and cardiac neural crest cells at about 11.5 days post coitum, resulting in craniofacial and cardiac anomalies at birth. Notably, the apoptotic cells localized in the regions where β-catenin had accumulated. In contrast to its role in colorectal epithelial cells, inactivation of APC leads to dysregulation of β-catenin/Wnt signaling with resultant apoptosis in certain tissues including neural crest cells. PMID:11756652
Katsukawa, Mitsuko; Ohsawa, Shizue; Zhang, Lina; Yan, Yan; Igaki, Tatsushi
2018-06-04
Normal epithelial tissue exerts an intrinsic tumor-suppressive effect against oncogenically transformed cells. In Drosophila imaginal epithelium, clones of oncogenic polarity-deficient cells mutant for scribble (scrib) or discs large (dlg) are eliminated by cell competition when surrounded by wild-type cells. Here, through a genetic screen in Drosophila, we identify Serpin5 (Spn5), a secreted negative regulator of Toll signaling, as a crucial factor for epithelial cells to eliminate scrib mutant clones from epithelium. Downregulation of Spn5 in wild-type cells leads to elevation of Toll signaling in neighboring scrib cells. Strikingly, forced activation of Toll signaling or Toll-related receptor (TRR) signaling in scrib clones transforms scrib cells from losers to supercompetitors, resulting in tumorous overgrowth of mutant clones. Mechanistically, Toll activation in scrib clones leads to c-Jun N-terminal kinase (JNK) activation and F-actin accumulation, which cause strong activation of the Hippo pathway effector Yorkie that blocks cell death and promotes cell proliferation. Our data suggest that Spn5 secreted from normal epithelial cells acts as a component of the extracellular surveillance system that facilitates elimination of pre-malignant cells from epithelium. Copyright © 2018 Elsevier Ltd. All rights reserved.
Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway
Segalés, Jessica; Perdiguero, Eusebio; Muñoz-Cánoves, Pura
2016-01-01
Formation of skeletal muscle fibers (myogenesis) during development and after tissue injury in the adult constitutes an excellent paradigm to investigate the mechanisms whereby environmental cues control gene expression programs in muscle stem cells (satellite cells) by acting on transcriptional and epigenetic effectors. Here we will review the molecular mechanisms implicated in the transition of satellite cells throughout the distinct myogenic stages (i.e., activation from quiescence, proliferation, differentiation, and self-renewal). We will also discuss recent findings on the causes underlying satellite cell functional decline with aging. In particular, our review will focus on the epigenetic changes underlying fate decisions and on how the p38 MAPK signaling pathway integrates the environmental signals at the chromatin to build up satellite cell adaptive responses during the process of muscle regeneration, and how these responses are altered in aging. A better comprehension of the signaling pathways connecting external and intrinsic factors will illuminate the path for improving muscle regeneration in the aged. PMID:27626031
Targeting Notch signalling pathway of cancer stem cells.
Venkatesh, Vandana; Nataraj, Raghu; Thangaraj, Gopenath S; Karthikeyan, Murugesan; Gnanasekaran, Ashok; Kaginelli, Shanmukhappa B; Kuppanna, Gobianand; Kallappa, Chandrashekrappa Gowdru; Basalingappa, Kanthesh M
2018-01-01
Cancer stem cells (CSCs) have been defined as cells within tumor that possess the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. CSCs have been increasingly identified in blood cancer, prostate, ovarian, lung, melanoma, pancreatic, colon, brain and many more malignancies. CSCs have slow growth rate and are resistant to chemotherapy and radiotherapy that lead to the failure of traditional current therapy. Eradicating the CSCs and recurrence, is promising aspect for the cure of cancer. The CSCs like any other stem cells activate the signal transduction pathways that involve the development and tissue homeostasis, which include Notch signaling pathway. The new treatment targets these pathway that control stem-cell replication, survival and differentiation that are under development. Notch inhibitors either single or in combination with chemotherapy drugs have been developed to treat cancer and its recurrence. This approach of targeting signaling pathway of CSCs represents a promising future direction for the therapeutic strategy to cure cancer.
Cheng, Chia-Wei; Adams, Gregor B; Perin, Laura; Wei, Min; Zhou, Xiaoying; Lam, Ben S; Da Sacco, Stefano; Mirisola, Mario; Quinn, David I; Dorff, Tanya B; Kopchick, John J; Longo, Valter D
2014-06-05
Immune system defects are at the center of aging and a range of diseases. Here, we show that prolonged fasting reduces circulating IGF-1 levels and PKA activity in various cell populations, leading to signal transduction changes in long-term hematopoietic stem cells (LT-HSCs) and niche cells that promote stress resistance, self-renewal, and lineage-balanced regeneration. Multiple cycles of fasting abated the immunosuppression and mortality caused by chemotherapy and reversed age-dependent myeloid-bias in mice, in agreement with preliminary data on the protection of lymphocytes from chemotoxicity in fasting patients. The proregenerative effects of fasting on stem cells were recapitulated by deficiencies in either IGF-1 or PKA and blunted by exogenous IGF-1. These findings link the reduced levels of IGF-1 caused by fasting to PKA signaling and establish their crucial role in regulating hematopoietic stem cell protection, self-renewal, and regeneration. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Briest, N.; Garbe, H.; Potthast, S.
2015-11-01
This article broaches the issue of the propagation of transient signals in gigahertz transverse electromagnetic (GTEM) cells. As a representative for transient signals a damped sinusoidal (DS) is used with three different mid-band frequencies. The signal transmission of the DS in the GTEM1250 is qualified and discussed on the basis of the Pearson correlation coefficient (Pcc). The Pcc gives an overview of the signal transmission quality for all measuring points within the testvolume and signal distortions can be identified. A 100 MHz DS is weakly distorted in several measuring points. The Pcc at those points decreases and a signal shape variance can be assumed. Furthermore inhomogeneities of the GTEM1250 caused by the cell door can be identified.
Kim, Myoung Ok; Lee, Mee-Hyun; Oi, Naomi; Kim, Sung-Hyun; Bae, Ki Beom; Huang, Zunnan; Kim, Dong Joon; Reddy, Kanamata; Lee, Sung-Young; Park, Si Jun; Kim, Jae Young; Xie, Hua; Kundu, Joydeb Kumar; Ryoo, Zae Young; Bode, Ann M; Surh, Young-Joon; Dong, Zigang
2014-03-01
Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. Despite progress in developing chemotherapeutics for the treatment of NSCLC, primary and secondary resistance limits therapeutic success. NSCLC cells exhibit multiple mutations in the epidermal growth factor receptor (EGFR), which cause aberrant activation of diverse cell signaling pathways. Therefore, suppression of the inappropriate amplification of EGFR downstream signaling cascades is considered to be a rational therapeutic and preventive strategy for the management of NSCLC. Our initial molecular target-oriented virtual screening revealed that the ginger components, including [6]-shogaol, [6]-paradol and [6]-gingerol, seem to be potential candidates for the prevention and treatment of NSCLC. Among the compounds, [6]-shogaol showed the greatest inhibitory effects on the NSCLC cell proliferation and anchorage-independent growth. [6]-Shogaol induced cell cycle arrest (G1 or G2/M) and apoptosis. Furthermore, [6]-shogaol inhibited Akt kinase activity, a downstream mediator of EGFR signaling, by binding with an allosteric site of Akt. In NCI-H1650 lung cancer cells, [6]-shogaol reduced the constitutive phosphorylation of signal transducer and activator of transcription-3 (STAT3) and decreased the expression of cyclin D1/3, which are target proteins in the Akt signaling pathway. The induction of apoptosis in NCI-H1650 cells by [6]-shogaol corresponded with the cleavage of caspase-3 and caspase-7. Moreover, intraperitoneal administration of [6]-shogaol inhibited the growth of NCI-H1650 cells as tumor xenografts in nude mice. [6]-Shogaol suppressed the expression of Ki-67, cyclin D1 and phosphorylated Akt and STAT3 and increased terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positivity in xenograft tumors. The current study clearly indicates that [6]-shogaol can be exploited for the prevention and/or treatment of NSCLC.
Kim, Myoung Ok; Lee, Mee-Hyun; Oi, Naomi; Kim, Sung-Hyun; Dong, Zigang
2014-01-01
Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. Despite progress in developing chemotherapeutics for the treatment of NSCLC, primary and secondary resistance limits therapeutic success. NSCLC cells exhibit multiple mutations in the epidermal growth factor receptor (EGFR), which cause aberrant activation of diverse cell signaling pathways. Therefore, suppression of the inappropriate amplification of EGFR downstream signaling cascades is considered to be a rational therapeutic and preventive strategy for the management of NSCLC. Our initial molecular target–oriented virtual screening revealed that the ginger components, including [6]-shogaol, [6]-paradol and [6]-gingerol, seem to be potential candidates for the prevention and treatment of NSCLC. Among the compounds, [6]-shogaol showed the greatest inhibitory effects on the NSCLC cell proliferation and anchorage-independent growth. [6]-Shogaol induced cell cycle arrest (G1 or G2/M) and apoptosis. Furthermore, [6]-shogaol inhibited Akt kinase activity, a downstream mediator of EGFR signaling, by binding with an allosteric site of Akt. In NCI-H1650 lung cancer cells, [6]-shogaol reduced the constitutive phosphorylation of signal transducer and activator of transcription-3 (STAT3) and decreased the expression of cyclin D1/3, which are target proteins in the Akt signaling pathway. The induction of apoptosis in NCI-H1650 cells by [6]-shogaol corresponded with the cleavage of caspase-3 and caspase-7. Moreover, intraperitoneal administration of [6]-shogaol inhibited the growth of NCI-H1650 cells as tumor xenografts in nude mice. [6]-Shogaol suppressed the expression of Ki-67, cyclin D1 and phosphorylated Akt and STAT3 and increased terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positivity in xenograft tumors. The current study clearly indicates that [6]-shogaol can be exploited for the prevention and/or treatment of NSCLC. PMID:24282290
Abraha, Abraham B; Rana, Krupa; Whalen, Margaret M
2010-11-01
Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C(PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml),indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT.However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.
Abraha, Abraham B.; Rana, Krupa; Whalen, Margaret M.
2010-01-01
Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposures of NK cells to tributyltin (TBT) greatly diminish their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in the NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C (PKC) as well as MAPK activity. The TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in the inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposures. TBT caused a 2–3 fold activation of PKC at concentrations ranging from 50–300 nM (16–98 ng/mL), indicating that activation of PKC occurs in response to TBT exposures. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that in NK cells where PKC activation was blocked there was no activation of the MAPK, p44/42 in response to TBT. However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including the activation of p44/42 by TBT in NK cells. PMID:20390410
The Emerging Role of Insulin and Insulin-Like Growth Factor Signaling in Cancer Stem Cells
Malaguarnera, Roberta; Belfiore, Antonino
2014-01-01
Cancer cells frequently exploit the IGF signaling, a fundamental pathway mediating development, cell growth, and survival. As a consequence, several components of the IGF signaling are deregulated in cancer and sustain cancer progression. However, specific targeting of IGF-IR in humans has resulted efficacious only in small subsets of cancers, making researches wondering whether IGF system targeting is still worth pursuing in the clinical setting. Although no definite answer is yet available, it has become increasingly clear that other components of the IGF signaling pathway, such as IR-A, may substitute for the lack of IGF-IR, and induce cancer resistance and/or clonal selection. Moreover, accumulating evidence now indicates that IGF signaling is a central player in the induction/maintenance of epithelial mesenchymal transition (EMT) and cell stemness, two strictly related programs, which play a key role in metastatic spread and resistance to cancer treatments. Here we review the evidences indicating that IGF signaling enhances the expression of transcription factors implicated in the EMT program and has extensive cross-talk with specific pathways involved in cell pluripotency and stemness maintenance. In turn, EMT and cell stemness activate positive feed-back mechanisms causing up-regulation of various IGF signaling components. These findings may have novel translational implications. PMID:24550888
Yoshizaki, Keigo; Hu, Lizhi; Nguyen, Thai; Sakai, Kiyoshi; Ishikawa, Masaki; Takahashi, Ichiro; Fukumoto, Satoshi; DenBesten, Pamela K; Bikle, Daniel D; Oda, Yuko; Yamada, Yoshihiko
2017-08-18
Tooth enamel is mineralized through the differentiation of multiple dental epithelia including ameloblasts and the stratum intermedium (SI), and this differentiation is controlled by several signaling pathways. Previously, we demonstrated that the transcriptional coactivator Mediator 1 (MED1) plays a critical role in enamel formation. For instance, conditional ablation of Med1 in dental epithelia causes functional changes in incisor-specific dental epithelial stem cells, resulting in mineralization defects in the adult incisors. However, the molecular mechanism by which Med1 deficiency causes these abnormalities is not clear. Here, we demonstrated that Med1 ablation causes early SI differentiation defects resulting in enamel hypoplasia of the Med1 -deficient molars. Med1 deletion prevented Notch1-mediated differentiation of the SI cells resulting in decreased alkaline phosphatase (ALPL), which is essential for mineralization. However, it does not affect the ability of ameloblasts to produce enamel matrix proteins. Using the dental epithelial SF2 cell line, we demonstrated that MED1 directly activates transcription of the Alpl gene through the stimulation of Notch1 signaling by forming a complex with cleaved Notch1-RBP-Jk on the Alpl promoter. These results suggest that MED1 may be essential for enamel matrix mineralization by serving as a coactivator for Notch1 signaling regulating transcription of the Alpl gene.
Borlido, Joana; Sakuma, Stephen; Raices, Marcela; Carrette, Florent; Tinoco, Roberto; Bradley, Linda M; D'Angelo, Maximiliano A
2018-06-01
Nuclear pore complexes (NPCs) are channels connecting the nucleus with the cytoplasm. We report that loss of the tissue-specific NPC component Nup210 causes a severe deficit of naïve CD4 + T cells. Nup210-deficient CD4 + T lymphocytes develop normally but fail to survive in the periphery. The decreased survival results from both an impaired ability to transmit tonic T cell receptor (TCR) signals and increased levels of Fas, which sensitize Nup210 -/- naïve CD4 + T cells to Fas-mediated cell death. Mechanistically, Nup210 regulates these processes by modulating the expression of Cav2 (encoding Caveolin-2) and Jun at the nuclear periphery. Whereas the TCR-dependent and CD4 + T cell-specific upregulation of Cav2 is critical for proximal TCR signaling, cJun expression is required for STAT3-dependent repression of Fas. Our results uncover an unexpected role for Nup210 as a cell-intrinsic regulator of TCR signaling and T cell homeostasis and expose NPCs as key players in the adaptive immune system.
Yang, Jiali; Zhang, Kangjian; Wu, Jing; Shi, Juan; Xue, Jing; Li, Jing; Zhu, Yongzhao; Wei, Jun
2016-01-01
The development of chemoresistance to cisplatin regimens causes a poor prognosis in patients with advanced NSCLC. The role of noncanonical Wnt signaling in the regulation of properties of lung cancer stem cells and chemoresistance was interrogated, by accessing capacities of cell proliferation, migration, invasion, and clonogenicity as well as the apoptosis in A549 cell lines and cisplatin-resistant A549 cells treated with Wnt5a conditional medium or protein kinase C (PKC) inhibitor GF109203X. Results showed that the noncanonical Wnt signaling ligand, Wnt5a, could promote the proliferation, migration, invasion, and colony formation in A549 lung adenocarcinoma cells and cisplatin-resistant A549/DDP cells and increase the fraction of ALDH-positive cell in A549/DDP cells. An exposure of cells to Wnt5a led to a significant reduction of A549/DDP cell apoptosis but not A549 cells. An addition of GF109203X could both strikingly increase the baseline apoptosis and resensitize the Wnt5a-inhibited cell apoptosis. Interestingly, an inhibition of Wnt/PKC signaling pathway could reduce properties of lung cancer stem cells, promote cell apoptosis, and resensitize cisplatin-resistant cells to cisplatin via a caspase/AIF-dependent pathway. These data thus suggested that the Wnt5a could promote lung cancer cell mobility and cisplatin-resistance through a Wnt/PKC signaling pathway and a blockage of this signaling may be an alternative therapeutic strategy for NSCLC patients with resistance to chemotherapies. PMID:27895670
Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immunoinflammatory function and genomic signaling in those with heightened inflammatory responsive...
Wang, Jiu-Qiang; Chen, Qian; Wang, Xianhua; Wang, Qiao-Chu; Wang, Yun; Cheng, He-Ping; Guo, Caixia; Sun, Qinmiao; Chen, Quan; Tang, Tie-Shan
2013-02-01
Huntington disease (HD) is an inherited, fatal neurodegenerative disorder characterized by the progressive loss of striatal medium spiny neurons. Indications of oxidative stress are apparent in brain tissues from both HD patients and HD mouse models; however, the origin of this oxidant stress remains a mystery. Here, we used a yeast artificial chromosome transgenic mouse model of HD (YAC128) to investigate the potential connections between dysregulation of cytosolic Ca(2+) signaling and mitochondrial oxidative damage in HD cells. We found that YAC128 mouse embryonic fibroblasts exhibit a strikingly higher level of mitochondrial matrix Ca(2+) loading and elevated superoxide generation compared with WT cells, indicating that both mitochondrial Ca(2+) signaling and superoxide generation are dysregulated in HD cells. The excessive mitochondrial oxidant stress is critically dependent on mitochondrial Ca(2+) loading in HD cells, because blocking mitochondrial Ca(2+) uptake abolished elevated superoxide generation. Similar results were obtained using neurons from HD model mice and fibroblast cells from HD patients. More importantly, mitochondrial Ca(2+) loading in HD cells caused a 2-fold higher level of mitochondrial genomic DNA (mtDNA) damage due to the excessive oxidant generation. This study provides strong evidence to support a new causal link between dysregulated mitochondrial Ca(2+) signaling, elevated mitochondrial oxidant stress, and mtDNA damage in HD. Our results also indicate that reducing mitochondrial Ca(2+) uptake could be a therapeutic strategy for HD.
Iwakiri, Dai; Zhou, Li; Samanta, Mrinal; Matsumoto, Misako; Ebihara, Takashi; Seya, Tsukasa; Imai, Shosuke; Fujieda, Mikiya; Kawa, Keisei
2009-01-01
Epstein-Barr virus–encoded small RNA (EBER) is nonpolyadenylated, noncoding RNA that forms stem-loop structure by intermolecular base-pairing, giving rise to double-stranded RNA (dsRNA)–like molecules, and exists abundantly in EBV-infected cells. Here, we report that EBER induces signaling from the Toll-like receptor 3 (TLR3), which is a sensor of viral double-stranded RNA (dsRNA) and induces type I IFN and proinflammatory cytokines. A substantial amount of EBER, which was sufficient to induce signaling from TLR3, was released from EBV-infected cells, and the majority of the released EBER existed as a complex with a cellular EBER-binding protein La, suggesting that EBER was released from the cells by active secretion of La. Sera from patients with infectious mononucleosis (IM), chronic active EBV infection (CAEBV), and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), whose general symptoms are caused by proinflammatory cytokines contained EBER, and addition of RNA purified from the sera into culture medium induced signaling from TLR3 in EBV-transformed lymphocytes and peripheral mononuclear cells. Furthermore, DCs treated with EBER showed mature phenotype and antigen presentation capacity. These findings suggest that EBER, which is released from EBV-infected cells, is responsible for immune activation by EBV, inducing type I IFN and proinflammatory cytokines. EBER-induced activation of innate immunity would account for immunopathologic diseases caused by active EBV infection. PMID:19720839
Romero, Damian G; Plonczynski, Maria W; Gomez-Sanchez, Elise P; Yanes, Licy L; Gomez-Sanchez, Celso E
2006-08-01
Regulator of G protein signaling (RGS) proteins interact with Galpha-subunits of heterotrimeric G proteins, accelerating the rate of GTP hydrolysis and finalizing the intracellular signaling triggered by the G protein-coupled receptor-ligand interaction. Angiotensin (Ang) II interacts with its G protein-coupled receptor in zona glomerulosa adrenal cells and triggers a cascade of intracellular signals that regulates steroidogenesis and proliferation. We studied Ang II-mediated regulation of RGS2, the role of RGS2 in steroidogenesis, and the intracellular signal events involved in H295R human adrenal cells. We report that both H295R cells and human adrenal gland express RGS2 mRNA. In H295R cells, Ang II caused a rapid and transient increase in RGS2 mRNA levels quantified by real-time RT-PCR. Ang II effects were mimicked by calcium ionophore A23187 and blocked by calcium channel blocker nifedipine. Ang II effects also were blocked by calmodulin antagonists (W-7 and calmidazolium) and calcium/calmodulin-dependent kinase antagonist KN-93. RGS2 overexpression by retroviral infection in H295R cells caused a decrease in Ang II-stimulated aldosterone secretion but did not modify cortisol secretion. In reporter assays, RGS2 decreased Ang II-mediated aldosterone synthase up-regulation. These results suggest that Ang II up-regulates RGS2 mRNA by the calcium/calmodulin-dependent kinase pathway in H295R cells. RGS2 overexpression specifically decreases aldosterone secretion through a decrease in Ang II-mediated aldosterone synthase-induced expression. In conclusion, RGS2 expression is induced by Ang II to terminate the intracellular signaling cascade generated by Ang II. RGS2 alterations in expression levels or functionality could be implicated in deregulations of Ang II signaling and abnormal aldosterone secretion by the adrenal gland.
Zhang, Yu
2017-07-08
The medical mushroom Ganoderma lucidum (Reishi), a traditional Chinese medicine, has exhibited a promising anti-cancer effect. However, the molecular mechanism of its action on cancer cells remains unclear. Aberrant activation of Wnt/β-catenin signaling pathway is the cause of many types of cancer, including breast cancer. Here we investigated the effect of Reishi on Wnt/β-catenin signaling pathway and elucidated the molecular mechanism of its function in inhibiting breast cancer cells. We found that Reishi blocked Wnt/β-catenin signaling through inhibiting the phosphorylation of Wnt co-receptor LRP6. In human (MDA-MB-231) and mouse (4T1) breast cancer cell lines, Reishi significantly decreased the phosphorylation of LRP6 and suppressed Wnt3a-activated Wnt target gene Axin2 expression. Administration of Reishi inhibited Wnt-induced hyper-proliferation of breast cancer cells and MDA-MB-231 cell migration. Our results provide evidence that Reishi suppresses breast cancer cell growth and migration through inhibiting Wnt/β-catenin signaling, indicating that Reishi may be a potential natural inhibitor for breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Jab1 regulates Schwann cell proliferation and axonal sorting through p27
Porrello, Emanuela; Rivellini, Cristina; Dina, Giorgia; Triolo, Daniela; Del Carro, Ubaldo; Ungaro, Daniela; Panattoni, Martina; Feltri, Maria Laura; Wrabetz, Lawrence; Pardi, Ruggero; Quattrini, Angelo
2014-01-01
Axonal sorting is a crucial event in nerve formation and requires proper Schwann cell proliferation, differentiation, and contact with axons. Any defect in axonal sorting results in dysmyelinating peripheral neuropathies. Evidence from mouse models shows that axonal sorting is regulated by laminin211– and, possibly, neuregulin 1 (Nrg1)–derived signals. However, how these signals are integrated in Schwann cells is largely unknown. We now report that the nuclear Jun activation domain–binding protein 1 (Jab1) may transduce laminin211 signals to regulate Schwann cell number and differentiation during axonal sorting. Mice with inactivation of Jab1 in Schwann cells develop a dysmyelinating neuropathy with axonal sorting defects. Loss of Jab1 increases p27 levels in Schwann cells, which causes defective cell cycle progression and aberrant differentiation. Genetic down-regulation of p27 levels in Jab1-null mice restores Schwann cell number, differentiation, and axonal sorting and rescues the dysmyelinating neuropathy. Thus, Jab1 constitutes a regulatory molecule that integrates laminin211 signals in Schwann cells to govern cell cycle, cell number, and differentiation. Finally, Jab1 may constitute a key molecule in the pathogenesis of dysmyelinating neuropathies. PMID:24344238
Lange, Alexander W.; Sridharan, Anusha; Xu, Yan; Stripp, Barry R.; Perl, Anne-Karina; Whitsett, Jeffrey A.
2015-01-01
The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. PMID:25480985
Sex and Violence in Neuroscience.
ERIC Educational Resources Information Center
Barnes, Deborah M.
1988-01-01
Describes advances made in the understanding of how sex hormones may modify various cognitive skills, how normal brain signaling mechanisms may cause nerve cell death, and how many cells appear to hold genetic agents which determine their own destruction. (RT)
A critical role of Gas6/Axl signal in allergic airway responses during RSV vaccine-enhanced disease.
Shibata, Takehiko; Ato, Manabu
2017-11-01
Respiratory syncytial virus (RSV) is a common virus that causes lower respiratory infections across a wide range of ages. A licensed RSV vaccine is not available because vaccination with formalin-inactivated RSV (FI-RSV) and the subsequent RSV infection cause not only insufficient induction of neutralizing antibodies but also severe allergic airway responses, termed FI-RSV vaccine-enhanced disease (FI-RSV VED). However, the underlying mechanism has not been identified, although a Th2-biased immune response is known to be a hallmark of this disease. Our previous studies have shown that growth arrest-specific 6 (Gas6)/Axl signaling leads to Th2-biased immune responses during fungus-induced allergic airway inflammation. Here, we show that Gas6/Axl signaling also leads to FI-RSV VED and partially identify the mechanism in mice. Inhibiting Gas6/Axl signaling using Gas6-deficient mice, neutralizing antibodies, and a specific inhibitor of Axl attenuated allergic airway hyperresponsiveness, including airway inflammation, goblet cell hyperplasia, and Th2 cytokine production, in addition to increasing interferon-γ levels and the production of RSV-neutralizing IgG2a in FI-RSV VED. Gas6 was produced in lymph nodes during immunization with FI-RSV. Lymph node cells derived from immunized mice produced high levels of Gas6 and Th2 cytokines, but not IFN-γ, after restimulation with RSV. Finally, we found that dendritic cells stimulated with RSV-glycoprotein (G protein) produced Gas6 and that Axl signaling suppressed DC maturation and the induction of IL-12 production by the toll-like receptor 4 agonist RSV-fusion protein. Taken together, these results indicate that RSV-G protein-induced Gas6/Axl signaling causes allergic airway responses during FI-RSV VED.
Uzarevic, Zvonimir; Ozretic, Petar; Musani, Vesna; Rafaj, Maja; Cindric, Mario; Levanat, Sonja
2014-01-01
Hedgehog-Gli (Hh-Gli) signaling pathway is one of the new molecular targets found upregulated in breast tumors. Estrogen receptor alpha (ERα) signaling has a key role in the development of hormone-dependent breast cancer. We aimed to investigate the effects of inhibiting both pathways simultaneously on breast cancer cell survival and the potential interactions between these two signaling pathways. ER-positive MCF-7 cells show decreased viability after treatment with cyclopamine, a Hh-Gli pathway inhibitor, as well as after tamoxifen (an ERα inhibitor) treatment. Simultaneous treatment with cyclopamine and tamoxifen on the other hand, causes short-term survival of cells, and increased migration. We found upregulated Hh-Gli signaling under these conditions and protein profiling revealed increased expression of proteins involved in cell proliferation and migration. Therefore, even though Hh-Gli signaling seems to be a good potential target for breast cancer therapy, caution must be advised, especially when combining therapies. In addition, we also show a potential direct interaction between the Shh protein and ERα in MCF-7 cells. Our data suggest that the Shh protein is able to activate ERα independently of the canonical Hh-Gli signaling pathway. Therefore, this may present an additional boost for ER-positive cells that express Shh, even in the absence of estrogen. PMID:25503972
mTOR Signaling Confers Resistance to Targeted Cancer Drugs.
Guri, Yakir; Hall, Michael N
2016-11-01
Cancer is a complex disease and a leading cause of death worldwide. Extensive research over decades has led to the development of therapies that target cancer-specific signaling pathways. However, the clinical benefits of such drugs are at best transient due to tumors displaying intrinsic or adaptive resistance. The underlying compensatory pathways that allow cancer cells to circumvent a drug blockade are poorly understood. We review here recent studies suggesting that mammalian TOR (mTOR) signaling is a major compensatory pathway conferring resistance to many cancer drugs. mTOR-mediated resistance can be cell-autonomous or non-cell-autonomous. These findings suggest that mTOR signaling should be monitored routinely in tumors and that an mTOR inhibitor should be considered as a co-therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease.
Wang, Liqun; Xia, Jing; Li, Jonathan; Hagemann, Tracy L; Jones, Jeffrey R; Fraenkel, Ernest; Weitz, David A; Zhang, Su-Chun; Messing, Albee; Feany, Mel B
2018-05-15
Glial cells have increasingly been implicated as active participants in the pathogenesis of neurological diseases, but critical pathways and mechanisms controlling glial function and secondary non-cell autonomous neuronal injury remain incompletely defined. Here we use models of Alexander disease, a severe brain disorder caused by gain-of-function mutations in GFAP, to demonstrate that misregulation of GFAP leads to activation of a mechanosensitive signaling cascade characterized by activation of the Hippo pathway and consequent increased expression of A-type lamin. Importantly, we use genetics to verify a functional role for dysregulated mechanotransduction signaling in promoting behavioral abnormalities and non-cell autonomous neurodegeneration. Further, we take cell biological and biophysical approaches to suggest that brain tissue stiffness is increased in Alexander disease. Our findings implicate altered mechanotransduction signaling as a key pathological cascade driving neuronal dysfunction and neurodegeneration in Alexander disease, and possibly also in other brain disorders characterized by gliosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumi, Daigo, E-mail: sdaigo@ph.bunri-u.ac.j; Shinkai, Yasuhiro; Kumagai, Yoshito
2010-05-01
Arsenic trioxide (As{sub 2}O{sub 3}) is widely used to treat acute promyelocytic leukemia (APL). Several lines of evidence have indicated that As{sub 2}O{sub 3} affects signal transduction and transactivation of transcription factors, resulting in the stimulation of apoptosis in leukemia cells, because some transcription factors are reported to associate with the redox condition of the cells, and arsenicals cause oxidative stress. Thus, the disturbance and activation of the cellular signaling pathway and transcription factors due to reactive oxygen species (ROS) generation during arsenic exposure may explain the ability of As{sub 2}O{sub 3} to induce a complete remission in relapsed APLmore » patients. In this report, we review recent findings on ROS generation and alterations in signal transduction and in transactivation of transcription factors during As{sub 2}O{sub 3} exposure in leukemia cells.« less
Modulation of occluding junctions alters the hematopoietic niche to trigger immune activation
Khadilkar, Rohan J; Vogl, Wayne; Goodwin, Katharine
2017-01-01
Stem cells are regulated by signals from their microenvironment, or niche. During Drosophila hematopoiesis, a niche regulates prohemocytes to control hemocyte production. Immune challenges activate cell-signalling to initiate the cellular and innate immune response. Specifically, certain immune challenges stimulate the niche to produce signals that induce prohemocyte differentiation. However, the mechanisms that promote prohemocyte differentiation subsequent to immune challenges are poorly understood. Here we show that bacterial infection induces the cellular immune response by modulating occluding-junctions at the hematopoietic niche. Occluding-junctions form a permeability barrier that regulates the accessibility of prohemocytes to niche derived signals. The immune response triggered by infection causes barrier breakdown, altering the prohemocyte microenvironment to induce immune cell production. Moreover, genetically induced barrier ablation provides protection against infection by activating the immune response. Our results reveal a novel role for occluding-junctions in regulating niche-hematopoietic progenitor signalling and link this mechanism to immune cell production following infection. PMID:28841136
Sawaguchi, Shogo; Varshney, Shweta; Ogawa, Mitsutaka; Sakaidani, Yuta; Yagi, Hirokazu; Takeshita, Kyosuke; Murohara, Toyoaki; Kato, Koichi; Sundaram, Subha; Stanley, Pamela; Okajima, Tetsuya
2017-04-11
The glycosyltransferase EOGT transfers O-GlcNAc to a consensus site in epidermal growth factor-like (EGF) repeats of a limited number of secreted and membrane proteins, including Notch receptors. In EOGT-deficient cells, the binding of DLL1 and DLL4, but not JAG1, canonical Notch ligands was reduced, and ligand-induced Notch signaling was impaired. Mutagenesis of O-GlcNAc sites on NOTCH1 also resulted in decreased binding of DLL4. EOGT functions were investigated in retinal angiogenesis that depends on Notch signaling. Global or endothelial cell-specific deletion of Eogt resulted in defective retinal angiogenesis, with a mild phenotype similar to that caused by reduced Notch signaling in retina. Combined deficiency of different Notch1 mutant alleles exacerbated the abnormalities in Eogt -/- retina, and Notch target gene expression was decreased in Eogt -/- endothelial cells. Thus, O-GlcNAc on EGF repeats of Notch receptors mediates ligand-induced Notch signaling required in endothelial cells for optimal vascular development.
A change in structural integrity of c-Kit mutant D816V causes constitutive signaling.
Raghav, Pawan Kumar; Singh, Ajay Kumar; Gangenahalli, Gurudutta
2018-03-01
Several signaling pathways, ligands, and genes that regulate proliferative and self-renewal properties of the Hematopoietic Stem Cells (HSCs) have been studied meticulously. One of the signaling pathways that play a crucial role in the process of hematopoiesis is the Stem Cell Factor (SCF) mediated c-Kit pathway. The c-Kit is a Receptor Tyrosine Kinase (RTK), which is expressed in the cells including HSCs. It undergoes dimerization upon binding with its cognate ligand SCF. As a result, phosphorylation of the Juxtamembrane (JM) domain of c-Kit takes place at Tyr568 and Tyr570 residues. These phosphorylated residues become the docking sites for protein tyrosine phosphatases (PTPs) namely SHP-1 and SHP-2, which in turn cause dephosphorylation and negative regulation of the downstream signaling responsible for the cell proliferation. Interestingly, it has been reported that the mutation of c-Kit at D816V makes it independent of SCF stimulation and SHP-1/SHP-2 inhibition, thereby, causing its constitutive activation. The present study was commenced to elucidate the structural behavior of this mutation in the JM and A-loop region of c-Kit using Molecular Dynamics (MD) simulations of the wild-type and mutant c-Kit in unphosphorylated and phosphorylated states. The energy difference computed between the wild type and mutant (D816V) c-Kit, and protein-protein docking and complex analysis revealed the impact of this single residue mutation on the integrity dynamics of c-Kit that makes it independent of SHP-1/SHP-2 negative regulation. Copyright © 2018 Elsevier B.V. All rights reserved.
Montserrat, Emili
2013-01-01
Chronic lymphocytic leukemia (CLL) cells proliferate in pseudofollicles within the lymphatic tissues, where signals from the microenvironment and BCR signaling drive the expansion of the CLL clone. Mobilization of tissue-resident cells into the blood removes CLL cells from this nurturing milieu and sensitizes them to cytotoxic drugs. This concept recently gained momentum after the clinical activity of kinase inhibitors that target BCR signaling (spleen tyrosine kinase, Bruton tyrosine kinase, PI3Kδ inhibitors) was established. Besides antiproliferative activity, these drugs cause CLL cell redistribution with rapid lymph node shrinkage, along with a transient surge in lymphocytosis, before inducing objective remissions. Inactivation of critical CLL homing mechanism (chemokine receptors, adhesion molecules), thwarting tissue retention and recirculation into the tissues, appears to be the basis for this striking clinical activity. This effect of BCR-signaling inhibitors resembles redistribution of CLL cells after glucocorticoids, described as early as in the 1940s. As such, we are witnessing a renaissance of the concept of leukemia cell redistribution in modern CLL therapy. Here, we review the molecular basis of CLL cell trafficking, homing, and redistribution and similarities between old and new drugs affecting these processes. In addition, we outline how these discoveries are changing our understanding of CLL biology and therapy. PMID:23264597
Gobert, Vanessa; Augé, Benoit; Burlet-Schiltz, Odile; Haenlin, Marc
2017-01-01
A tight regulation of transcription factor activity is critical for proper development. For instance, modifications of RUNX transcription factors dosage are associated with several diseases, including hematopoietic malignancies. In Drosophila, Myeloid Leukemia Factor (MLF) has been shown to control blood cell development by stabilizing the RUNX transcription factor Lozenge (Lz). However, the mechanism of action of this conserved family of proteins involved in leukemia remains largely unknown. Here we further characterized MLF’s mode of action in Drosophila blood cells using proteomic, transcriptomic and genetic approaches. Our results show that MLF and the Hsp40 co-chaperone family member DnaJ-1 interact through conserved domains and we demonstrate that both proteins bind and stabilize Lz in cell culture, suggesting that MLF and DnaJ-1 form a chaperone complex that directly regulates Lz activity. Importantly, dnaj-1 loss causes an increase in Lz+ blood cell number and size similarly as in mlf mutant larvae. Moreover we find that dnaj-1 genetically interacts with mlf to control Lz level and Lz+ blood cell development in vivo. In addition, we show that mlf and dnaj-1 loss alters Lz+ cell differentiation and that the increase in Lz+ blood cell number and size observed in these mutants is caused by an overactivation of the Notch signaling pathway. Finally, using different conditions to manipulate Lz activity, we show that high levels of Lz are required to repress Notch transcription and signaling. All together, our data indicate that the MLF/DnaJ-1-dependent increase in Lz level allows the repression of Notch expression and signaling to prevent aberrant blood cell development. Thus our findings establish a functional link between MLF and the co-chaperone DnaJ-1 to control RUNX transcription factor activity and Notch signaling during blood cell development in vivo. PMID:28742844
Global impact of Salmonella type III secretion effector SteA on host cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenal-Muñoz, Elena, E-mail: e_cardenal@us.es; Gutiérrez, Gabriel, E-mail: ggpozo@us.es; Ramos-Morales, Francisco, E-mail: framos@us.es
Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. Thesemore » systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.« less
Al-Serori, Halh; Ferk, Franziska; Kundi, Michael; Bileck, Andrea; Gerner, Christopher; Mišík, Miroslav; Nersesyan, Armen; Waldherr, Monika; Murbach, Manuel; Lah, Tamara T; Herold-Mende, Christel; Collins, Andrew R; Knasmüller, Siegfried
2018-01-01
Some epidemiological studies indicate that the use of mobile phones causes cancer in humans (in particular glioblastomas). It is known that DNA damage plays a key role in malignant transformation; therefore, we investigated the impact of the UMTS signal which is widely used in mobile telecommunications, on DNA stability in ten different human cell lines (six brain derived cell lines, lymphocytes, fibroblasts, liver and buccal tissue derived cells) under conditions relevant for users (SAR 0.25 to 1.00 W/kg). We found no evidence for induction of damage in single cell gel electrophoresis assays when the cells were cultivated with serum. However, clear positive effects were seen in a p53 proficient glioblastoma line (U87) when the cells were grown under serum free conditions, while no effects were found in p53 deficient glioblastoma cells (U251). Further experiments showed that the damage disappears rapidly in U87 and that exposure induced nucleotide excision repair (NER) and does not cause double strand breaks (DSBs). The observation of NER induction is supported by results of a proteome analysis indicating that several proteins involved in NER are up-regulated after exposure to UMTS; additionally, we found limited evidence for the activation of the γ-interferon pathway. The present findings show that the signal causes transient genetic instability in glioma derived cells and activates cellular defense systems.
Xiong, Hua; Du, Wan; Zhang, Yan-Jie; Hong, Jie; Su, Wen-Yu; Tang, Jie-Ting; Wang, Ying-Chao; Lu, Rong; Fang, Jing-Yuan
2012-02-01
Aberrant janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is involved in the oncogenesis of several cancers. Suppressors of cytokine signaling (SOCS) genes and SH2-containing protein tyrosine phosphatase 1 (SHP1) proteins, which are negative regulators of JAK/STAT signaling, have been reported to have tumor suppressor functions. However, in colorectal cancer (CRC) cells, the mechanisms that regulate SOCS and SHP1 genes, and the cause of abnormalities in the JAK/STAT signaling pathway, remain largely unknown. The present study shows that trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, leads to the hyperacetylation of histones associated with the SOCS1 and SOCS3 promoters, but not the SHP1 promoter in CRC cells. This indicates that histone modifications are involved in the regulation of SOCS1 and SOCS3. Moreover, upregulation of SOCS1 and SOCS3 expression was achieved using TSA, which also significantly downregulated JAK2/STAT3 signaling in CRC cells. We also demonstrate that TSA suppresses the growth of CRC cells, and induces G1 cell cycle arrest and apoptosis through the regulation of downstream targets of JAK2/STAT3 signaling, including Bcl-2, survivin and p16(ink4a) . Therefore, our data demonstrate that TSA may induce SOCS1 and SOCS3 expression by inducing histone modifications and consequently inhibits JAK2/STAT3 signaling in CRC cells. These results also establish a mechanistic link between the inhibition of JAK2/STAT3 signaling and the anticancer action of TSA in CRC cells. Copyright © 2011 Wiley Periodicals, Inc.
cGMP signalling in pre- and post-conditioning: the role of mitochondria.
Costa, Alexandre D T; Pierre, Sandrine V; Cohen, Michael V; Downey, James M; Garlid, Keith D
2008-01-15
Much of cell death from ischaemia/reperfusion in heart and other tissues is generally thought to arise from mitochondrial permeability transition (MPT) in the first minutes of reperfusion. In ischaemic pre-conditioning, agonist binding to G(i) protein-coupled receptors prior to ischaemia triggers a signalling cascade that protects the heart from MPT. We believe that the cytosolic component of this trigger pathway terminates in activation of guanylyl cyclase resulting in increased production of cGMP and subsequent activation of protein kinase G (PKG). PKG phosphorylates a protein on the mitochondrial outer membrane (MOM), which then causes the mitochondrial K(ATP) channel (mitoK(ATP)) on the mitochondrial inner membrane to open, leading to increased production of reactive oxygen species (ROS) by the mitochondria. This implies that the protective signal is somehow transmitted from the MOM to its inner membrane. This is accomplished by a series of intermembrane signalling steps that includes protein kinase C (PKCepsilon) activation. The resulting ROS then activate a second PKC pool which, through another signal transduction pathway termed the mediator pathway, causes inhibition of MPT and reduction in cell death.
Novel targets for prostate cancer chemoprevention
Sarkar, Fazlul H; Li, Yiwei; Wang, Zhiwei; Kong, Dejuan
2010-01-01
Among many endocrine-related cancers, prostate cancer (PCa) is the most frequent male malignancy, and it is the second most common cause of cancer-related death in men in the United States. Therefore, this review focuses on summarizing the knowledge of molecular signaling pathways in PCa because, in order to better design new preventive strategies for the fight against PCa, documentation of the knowledge on the pathogenesis of PCa at the molecular level is very important. Cancer cells are known to have alterations in multiple cellular signaling pathways; indeed, the development and the progression of PCa are known to be caused by the deregulation of several selective signaling pathways such as the androgen receptor, Akt, nuclear factor-κB, Wnt, Hedgehog, and Notch. Therefore, strategies targeting these important pathways and their upstream and downstream signaling could be promising for the prevention of PCa progression. In this review, we summarize the current knowledge regarding the alterations in cell signaling pathways during the development and progression of PCa, and document compelling evidence showing that these are the targets of several natural agents against PCa progression and its metastases. PMID:20576802
Hippi is essential for node cilia assembly and Sonic hedgehog signaling
Houde, Caroline; Dickinson, Robin J.; Houtzager, Vicky M.; Cullum, Rebecca; Montpetit, Rachel; Metzler, Martina; Simpson, Elizabeth M.; Roy, Sophie; Hayden, Michael R.; Hoodless, Pamela A.; Nicholson, Donald W.
2016-01-01
Hippi functions as an adapter protein that mediates pro-apoptotic signaling from poly-glutamine-expanded huntingtin, an established cause of Huntington disease, to the extrinsic cell death pathway. To explore other functions of Hippi we generated Hippi knock-out mice. This deletion causes randomization of the embryo turning process and heart looping, which are hallmarks of defective left–right (LR) axis patterning. We report that motile monocilia normally present at the surface of the embryonic node, and proposed to initiate the break in LR symmetry, are absent on Hippi−/− embryos. Furthermore, defects in central nervous system development are observed. The Sonic hedgehog (Shh) pathway is downregulated in the neural tube in the absence of Hippi, which results in failure to establish ventral neural cell fate. Together, these findings demonstrate a dual role for Hippi in cilia assembly and Shh signaling during development, in addition to its proposed role in apoptosis signal transduction in the adult brain under pathogenically stressful conditions. PMID:17027958
High Glucose Impairs Insulin Signaling in the Glomerulus: An In Vitro and Ex Vivo Approach
Katsoulieris, Elias N.; Drossopoulou, Garyfalia I.; Kotsopoulou, Eleni S.; Vlahakos, Dimitrios V.; Lianos, Elias A.; Tsilibary, Effie C.
2016-01-01
Objective Chronic hyperglycaemia, as seen in type II diabetes, results in both morphological and functional impairments of podocytes in the kidney. We investigated the effects of high glucose (HG) on the insulin signaling pathway, focusing on cell survival and apoptotic markers, in immortalized human glomerular cells (HGEC; podocytes) and isolated glomeruli from healthy rats. Methods and Findings HGEC and isolated glomeruli were cultured for various time intervals under HG concentrations in the presence or absence of insulin. Our findings indicated that exposure of HGEC to HG led to downregulation of all insulin signaling markers tested (IR, p-IR, IRS-1, p-Akt, p-Fox01,03), as well as to increased sensitivity to apoptosis (as seen by increased PARP cleavage, Casp3 activation and DNA fragmentation). Short insulin pulse caused upregulation of insulin signaling markers (IR, p-IR, p-Akt, p-Fox01,03) in a greater extent in normoglycaemic cells compared to hyperglycaemic cells and for the case of p-Akt, in a PI3K-dependent manner. IRS-1 phosphorylation of HG-treated podocytes was negatively regulated, favoring serine versus tyrosine residues. Prolonged insulin treatment caused a significant decrease of IR levels, while alterations in glucose concentrations for various time intervals demonstrated changes of IR, p-IR and p-Akt levels, suggesting that the IR signaling pathway is regulated by glucose levels. Finally, HG exerted similar effects in isolated glomeruli. Conclusions These results suggest that HG compromises the insulin signaling pathway in the glomerulus, promoting a proapoptotic environment, with a possible critical step for this malfunction lying at the level of IRS-1 phosphorylation; thus we herein demonstrate glomerular insulin signaling as another target for investigation for the prevention and/ or treatment of diabetic nephropathy. PMID:27434075
Iwao, Keiichiro; Inatani, Masaru; Matsumoto, Yoshihiro; Ogata-Iwao, Minako; Takihara, Yuji; Irie, Fumitoshi; Yamaguchi, Yu; Okinami, Satoshi; Tanihara, Hidenobu
2009-01-01
During human embryogenesis, neural crest cells migrate to the anterior chamber of the eye and then differentiate into the inner layers of the cornea, the iridocorneal angle, and the anterior portion of the iris. When proper development does not occur, this causes iridocorneal angle dysgenesis and intraocular pressure (IOP) elevation, which ultimately results in developmental glaucoma. Here, we show that heparan sulfate (HS) deficiency in mouse neural crest cells causes anterior chamber dysgenesis, including corneal endothelium defects, corneal stroma hypoplasia, and iridocorneal angle dysgenesis. These dysfunctions are phenotypes of the human developmental glaucoma, Peters anomaly. In the neural crest cells of mice embryos, disruption of the gene encoding exostosin 1 (Ext1), which is an indispensable enzyme for HS synthesis, resulted in disturbed TGF-β2 signaling. This led to reduced phosphorylation of Smad2 and downregulated expression of forkhead box C1 (Foxc1) and paired-like homeodomain transcription factor 2 (Pitx2), transcription factors that have been identified as the causative genes for developmental glaucoma. Furthermore, impaired interactions between HS and TGF-β2 induced developmental glaucoma, which was manifested as an IOP elevation caused by iridocorneal angle dysgenesis. These findings suggest that HS is necessary for neural crest cells to form the anterior chamber via TGF-β2 signaling. Disturbances of HS synthesis might therefore contribute to the pathology of developmental glaucoma. PMID:19509472
Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia
Bongiovanni, Deborah; Saccomani, Valentina
2017-01-01
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy. PMID:28872614
Kochukov, Mikhail Y.; Jeng, Yow-Jiun; Watson, Cheryl S.
2009-01-01
Background Alkylphenols varying in their side-chain lengths [ethyl-, propyl-, octyl-, and nonylphenol (EP, PP, OP, and NP, respectively)] and bisphenol A (BPA) represent a large group of structurally related xenoestrogens that have endocrine-disruptive effects. Their rapid nongenomic effects that depend on structure for cell signaling and resulting functions are unknown. Objectives We compared nongenomic estrogenic activities of alkylphenols with BPA and 17β-estradiol (E2) in membrane estrogen receptor-α–enriched GH3/B6/F10 pituitary tumor cells. These actions included calcium (Ca) signaling, prolactin (PRL) release, extracellular-regulated kinase (ERK) phosphorylation, and cell proliferation. Methods We imaged Ca using fura-2, measured PRL release via radioimmunoassay, detected ERK phosphorylation by fixed cell immunoassay, and estimated cell number using the crystal violet assay. Results All compounds caused increases in Ca oscillation frequency and intracellular Ca volume at 100 fM to 1 nM concentrations, although long-chain alkylphenols were most effective. All estrogens caused rapid PRL release at concentrations as low as 1 fM to 10 pM; the potency of EP, PP, and NP exceeded that of E2. All compounds at 1 nM produced similar increases in ERK phosphorylation, causing rapid peaks at 2.5–5 min, followed by inactivation and additional 60-min peaks (except for BPA). Dose–response patterns of ERK activation at 5 min were similar for E2, BPA, and PP, whereas EP caused larger effects. Only E2 and NP increased cell number. Some rapid estrogenic responses showed correlations with the hydrophobicity of estrogenic molecules; the more hydrophobic OP and NP were superior at Ca and cell proliferation responses, whereas the less hydrophobic EP and PP were better at ERK activations. Conclusions Alkylphenols are potent estrogens in evoking these nongenomic responses contributing to complex functions; their hydrophobicity can largely predict these behaviors. PMID:19479013
Sophoraflavanone G induces apoptosis of human cancer cells by targeting upstream signals of STATs.
Kim, Byung-Hak; Won, Cheolhee; Lee, Yun-Han; Choi, Jung Sook; Noh, Kum Hee; Han, Songhee; Lee, Haeri; Lee, Chang Seok; Lee, Dong-Sup; Ye, Sang-Kyu; Kim, Myoung-Hwan
2013-10-01
Aberrantly activated signal transducer and activator of transcription (STAT) proteins are implicated with human cancers and represent essential roles for cancer cell survival and proliferation. Therefore, the development of small-molecule inhibitors of STAT signaling bearing pharmacological activity has therapeutic potential for the treatment of human cancers. In this study, we identified sophoraflavanone G as a novel small-molecule inhibitor of STAT signaling in human cancer cells. Sophoraflavanone G inhibited tyrosine phosphorylation of STAT proteins in Hodgkin's lymphoma and tyrosine phosphorylation of STAT3 in solid cancer cells by inhibiting phosphorylation of the Janus kinase (JAK) proteins, Src family tyrosine kinases, such as Lyn and Src, Akt, and ERK1/2. In addition, sophoraflavanone G inhibited STAT5 phosphorylation in murine-bone-marrow-derived pro-B cells transfected with translocated Ets Leukemia (TEL)-JAKs and cytokine-induced rat pre-T lymphoma cells, as well as STAT5b reporter activity in TEL-JAKs and STAT5b reporter systems. Sophoraflavanone G also inhibited nuclear factor-κB (NF-κB) signaling in multiple myeloma cells. Furthermore, sophoraflavanone G inhibited cancer cell proliferation and induced apoptosis by regulating the expression of apoptotic and anti-apoptotic proteins. Our data suggest that sophoraflavanone G is a novel small-molecule inhibitor of STAT signaling by targeting upstream signals of STATs that may have therapeutic potential for cancers caused by persistently activated STAT proteins. Copyright © 2013 Elsevier Inc. All rights reserved.
Exclusive photorelease of signalling lipids at the plasma membrane.
Nadler, André; Yushchenko, Dmytro A; Müller, Rainer; Stein, Frank; Feng, Suihan; Mulle, Christophe; Carta, Mario; Schultz, Carsten
2015-12-21
Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems.
Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S
2016-06-01
Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. © 2014 John Wiley & Sons Ltd.
Hyperuricemia Causes Pancreatic β-Cell Death and Dysfunction through NF-κB Signaling Pathway
Jia, Lu; Xing, Jing; Ding, Ying; Shen, Yachen; Shi, Xuhui; Ren, Wei; Wan, Meng; Guo, Jianjin; Zheng, Shujing; Liu, Yun; Liang, Xiubin; Su, Dongming
2013-01-01
Accumulating clinical evidence suggests that hyperuricemia is associated with an increased risk of type 2 diabetes. However, it is still unclear whether elevated levels of uric acid can cause direct injury of pancreatic β-cells. In this study, we examined the effects of uric acid on β-cell viability and function. Uric acid solution or normal saline was administered intraperitoneally to mice daily for 4 weeks. Uric acid-treated mice exhibited significantly impaired glucose tolerance and lower insulin levels in response to glucose challenge than did control mice. However, there were no significant differences in insulin sensitivity between the two groups. In comparison to the islets in control mice, the islets in the uric acid–treated mice were markedly smaller in size and contained less insulin. Treatment of β-cells in vitro with uric acid activated the NF-κB signaling pathway through IκBα phosphorylation, resulting in upregulated inducible nitric oxide synthase (iNOS) expression and excessive nitric oxide (NO) production. Uric acid treatment also increased apoptosis and downregulated Bcl-2 expression in Min6 cells. In addition, a reduction in insulin secretion under glucose challenge was observed in the uric acid–treated mouse islets. These deleterious effects of uric acid on pancreatic β-cells were attenuated by benzbromarone, an inhibitor of uric acid transporters, NOS inhibitor L-NMMA, and Bay 11–7082, an NF-κB inhibitor. Further investigation indicated that uric acid suppressed levels of MafA protein through enhancing its degradation. Collectively, our data suggested that an elevated level of uric acid causes β-cell injury via the NF-κB-iNOS-NO signaling axis. PMID:24205181
Notch signaling drives multiple myeloma induced osteoclastogenesis
Colombo, Michela; Thümmler, Katja; Mirandola, Leonardo; Garavelli, Silvia; Todoerti, Katia; Apicella, Luana; Lazzari, Elisa; Lancellotti, Marialuigia; Platonova, Natalia; Akbar, Moeed; Chiriva-Internati, Maurizio; Soutar, Richard; Neri, Antonino; Goodyear, Carl S.; Chiaramonte, Raffaella
2014-01-01
Multiple myeloma (MM) is closely associated with bone destruction. Once migrated to the bone marrow, MM cells unbalance bone formation and resorption via the recruitment and maturation of osteoclast precursors. The Notch pathway plays a key role in different types of cancer and drives several biological processes relevant in MM, including cell localization within the bone marrow, proliferation, survival and pharmacological resistance. Here we present evidences that MM can efficiently drive osteoclastogenesis by contemporaneously activating Notch signaling on tumor cells and osteoclasts through the aberrant expression of Notch ligands belonging to the Jagged family. Active Notch signaling in MM cells induces the secretion of the key osteoclastogenic factor, RANKL, which can be boosted in the presence of stromal cells. In turn, MM cells-derived RANKL causes the upregulation of its receptor, RANK, and Notch2 in pre-osteoclasts. Notch2 stimulates osteoclast differentiation by promoting autocrine RANKL signaling. Finally, MM cells through Jagged ligands expression can also activate Notch signaling in pre-osteoclast by direct contact. Such synergism between tumor cells and pre-osteoclasts in MM-induced osteoclastogenesis can be disrupted by silencing tumor-derived Jagged1 and 2. These results make the Jagged ligands new promising therapeutic targets in MM to contrast bone disease and the associated co-morbidities. PMID:25257302
Riethmüller, Michaela; Burger, Nils; Bauer, Georg
2015-01-01
Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731
Youns, Mаhmoud; Abdel Halim Hegazy, Wael
2017-01-01
Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.
Youns, Mаhmoud; Abdel Halim Hegazy, Wael
2017-01-01
Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes. PMID:28052097
Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry
NASA Astrophysics Data System (ADS)
Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin
2016-03-01
Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.
Fernandes, Jason R; Berthoud, Tamara K; Kumar, Ashok; Angel, Jonathan B
2017-01-01
HIV infection causes a profound depletion of gut derived Th17 cells, contributing to loss of mucosal barrier function and an increase in microbial translocation, thus driving systemic immune activation. Despite normalization of circulating CD4+ T cell counts with highly active antiretroviral therapy (HAART), Th17 frequency and function often remain impaired. Given the importance of interleukin (IL)-23 in the generation and stabilization of Th17 cells we hypothesized that impaired IL-23 signaling causes persistent Th17 dysfunction in HIV infection. The effects of in vitro HIV infection on responses to IL-23 in Th17 cells were examined. These included the production of IL-17, phosphorylated STAT3 (pSTAT3) and the transcription of retinoic acid orphan receptor C (RORC) gene. Blood derived Th17 cells from untreated and HAART-treated HIV-infected individuals were also examined for the IL-23 induced production of phosphorylated STAT3 (pSTAT3) and the expression of the IL-23 receptors. In vitro HIV infection significantly inhibited IL-17 production and IL-23 induced pSTAT3 while expression of RORC RNA was unaffected. Th17 cells isolated from untreated and HAART-treated HIV-infected individuals showed complete loss of IL-23 induced pSTAT3 without a decrease in the expression of the IL-23 receptors. This study is the first to demonstrate an effect of HIV on the IL-23 signaling pathway in Th17 cells. We show that in vitro and in vivo HIV infection results in impaired IL-23 signaling which is not reversed by HAART nor is it a result of reduced receptor expression, suggesting that HIV interferes with IL-23-activated signaling pathways. These findings may explain the inability of HAART to restore Th17 frequency and function and the resulting persistent chronic immune activation observed in HIV infected individuals.
Chandra, V; Fatima, I; Manohar, M; Popli, P; Sirohi, V K; Hussain, M K; Hajela, K; Sankhwar, P; Dwivedi, A
2014-08-21
Endometrial hyperplasia is a precursor to the most common gynecologic cancer diagnosed in women. Apart from estrogenic induction, aberrant activation of the Wnt/β-catenin signal is well known to correlate with endometrial hyperplasia and its carcinoma. The benzopyran compound 2-(piperidinoethoxyphenyl)-3-(4-hydroxyphenyl)-2H-benzo (b) pyran(K-1), a potent antiestrogenic agent, has been shown to have apoptosis-inducing activity in rat uterine hyperplasia. The current study was undertaken to explore the effect of the benzopyran compound K-1 on growth and Wnt signaling in human endometrial hyperplasial cells. Primary culture of atypical endometrial hyperplasial cells was characterized by the epithelial cell marker cytokeratin-7. Results revealed that compound K-1 reduced the viability of primary endometrial hyperplasial cells and expression of ERα, PR, PCNA, Wnt7a, FZD6, pGsk3β and β-catenin without affecting the growth of the primary culture of normal endometrial cells. The β-catenin target genes CyclinD1 and c-myc were also found to be reduced, whereas the expression of axin2 and Wnt/β-catenin signaling inhibitor Dkk-1 was found to be upregulated, which caused the reduced interaction of Wnt7a and FZD6. Nuclear accumulation of β-catenin was found to be decreased by compound K-1. K-1 also suppressed the pPI3K/pAkt survival pathway and induced the cleavage of caspases and PARP, thus subsequently causing the apoptosis of endometrial hyperplasial cells. In conclusion, compound K-1 suppressed the growth of human primary endometrial hyperplasial cells through discontinued Wnt/β-catenin signaling and induced apoptosis via inhibiting the PI3K/Akt survival pathway.
Thapa, Narendra; Choi, Suyong; Hedman, Andrew; Tan, Xiaojun; Anderson, Richard A.
2013-01-01
A fundamental property of tumor cells is to defy anoikis, cell death caused by a lack of cell-matrix interaction, and grow in an anchorage-independent manner. How tumor cells organize signaling molecules at the plasma membrane to sustain oncogenic signals in the absence of cell-matrix interactions remains poorly understood. Here, we describe a role for phosphatidylinositol 4-phosphate 5-kinase (PIPK) Iγi2 in controlling anchorage-independent growth of tumor cells in coordination with the proto-oncogene Src. PIPKIγi2 regulated Src activation downstream of growth factor receptors and integrins. PIPKIγi2 directly interacted with the C-terminal tail of Src and regulated its subcellular localization in concert with talin, a cytoskeletal protein targeted to focal adhesions. Co-expression of PIPKIγi2 and Src synergistically induced the anchorage-independent growth of nonmalignant cells. This study uncovers a novel mechanism where a phosphoinositide-synthesizing enzyme, PIPKIγi2, functions with the proto-oncogene Src, to regulate oncogenic signaling. PMID:24151076
Adult Stem Cells and Diseases of Aging
Boyette, Lisa B.; Tuan, Rocky S.
2014-01-01
Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526
Lange, Alexander W; Sridharan, Anusha; Xu, Yan; Stripp, Barry R; Perl, Anne-Karina; Whitsett, Jeffrey A
2015-02-01
The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
Kernbauer, Elisabeth; Maier, Verena; Stoiber, Dagmar; Strobl, Birgit; Schneckenleithner, Christine; Sexl, Veronika; Reichart, Ursula; Reizis, Boris; Kalinke, Ulrich; Jamieson, Amanda; Müller, Mathias; Decker, Thomas
2012-01-01
Signal transducer and activator of transcription 1 (Stat1) is a key player in responses to interferons (IFN). Mutations of Stat1 cause severe immune deficiencies in humans and mice. Here we investigate the importance of Stat1 signaling for the innate and secondary immune response to the intracellular bacterial pathogen Listeria monocytogenes (Lm). Cell type-restricted ablation of the Stat1 gene in naïve animals revealed unique roles in three cell types: macrophage Stat1 signaling protected against lethal Lm infection, whereas Stat1 ablation in dendritic cells (DC) did not affect survival. T lymphocyte Stat1 reduced survival. Type I IFN (IFN-I) signaling in T lymphocytes reportedly weakens innate resistance to Lm. Surprisingly, the effect of Stat1 signaling was much more pronounced, indicating a contribution of Stat1 to pathways other than the IFN-I pathway. In stark contrast, Stat1 activity in both DC and T cells contributed positively to secondary immune responses against Lm in immunized animals, while macrophage Stat1 was dispensable. Our findings provide the first genetic evidence that Stat1 signaling in different cell types produces antagonistic effects on innate protection against Lm that are obscured in mice with complete Stat1 deficiency. They further demonstrate a drastic change in the cell type-dependent Stat1 requirement for memory responses to Lm infection. PMID:22719255
TLR/MyD88-mediated Innate Immunity in Intestinal Graft-versus-Host Disease.
Lee, Young-Kwan; Kang, Myungsoo; Choi, Eun Young
2017-06-01
Graft-versus-host disease (GHVD) is a severe complication after allogeneic hematopoietic stem cell transplantation. The degree of inflammation in the gastrointestinal tract, a major GVHD target organ, correlates with the disease severity. Intestinal inflammation is initiated by epithelial damage caused by pre-conditioning irradiation. In combination with damages caused by donor-derived T cells, such damage disrupts the epithelial barrier and exposes innate immune cells to pathogenic and commensal intestinal bacteria, which release ligands for Toll-like receptors (TLRs). Dysbiosis of intestinal microbiota and signaling through the TLR/myeloid differentiation primary response gene 88 (MyD88) pathways contribute to the development of intestinal GVHD. Understanding the changes in the microbial flora and the roles of TLR signaling in intestinal GVHD will facilitate the development of preventative and therapeutic strategies.
Follicular T helper cells and IL-21 in rheumatic diseases.
Rasmussen, Tue Kruse
2016-10-01
Rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are lifelong diseases with increased mortality and chronic pains. They are both characterized by immunological imbalances causing the immune system attack and destroy the bodies own tissues (called autoimmune disease). The best treatment, we are currently able to offer these patients, cause significant side-effects and can not prevent significant loss of quality of life. At the heart of the disease mechanisms in RA and SLE are subsets of immune cells called T and B cells. These cell types produce proteins (called antibodies), which under normal circumstances protect the body against disease. In RA and SLE these cells produce antibodies that are directed at the bodies own tissues (called autoantibodies), causing inflammation and tissue damage. The cause of this loss of tolerance is still unknown. Interleukin 21 (IL-21) is thought to exert key functions in controlling and directing the T and B cell responses leading to formation of antibodies and autoantibodies alike. IL-21 is a signaling molecule secreted by a subpopulation of T cells called follicular T helper (Tfh) cells. IFNα is another signaling molecule of key importance in autoimmune disease. Stratification of SLE patients by their responsiveness to IFNα has proven a crucial tool in stratifying patients in terms of disease development and treatment response. The aim of this PhD study is to investigate the role of IL-21 and IFNα, and their effects on Tfh cells and B cells and the formation of autoantibodies in RA and SLE. The first part of this study addresses whether plasma levels of IL-21 influence disease activity in rheumatic disease. We further investigate the distribution of IL-21-producing Tfh cells in these patients. We find that IL-21 plasma levels correlate to disease activity and radiological progression in RA, and that the IL-21-producing Tfh cell are increased in the blood and synovial fluid of these patients. These findings support the idea that IL-21 and Tfh cells are linked to the development and perpetuation of these diseases. In the second part of this we investigate how small RNA molecules, called microRNAs, can regulate immunological processes. We find that microRNA-155 can regulate IL-21's capacity to signal, while microRNA-21 is important for survival of T cells. The third, and last part of this, concerns IFNα signaling and its impact on the development of SLE and the formation of autoantibodies. We find that IFNα signaling is altered in a murine model of SLE, and that inhibition of this signaling pathway leads to severe kidney disease. The latter is of key importance as inhibition of IFNα is currently in early trial as a new treatment form for SLE patients. In SLE patients, we find that IFNα responsiveness, as measured by a so-called IFN signature, is crucial in terms of development of the disease as well as serious complications such as kidney disease and involvement of the central nervous system. Interferon alpha does this by affecting intracellular signaling responses and the formation of autoantibodies. The data presented in this thesis supports that IL-21 and Tfh cells have a key role in the disease processes characterizing RA and SLE. We further describe a novel mechanism for microRNA-155 and microRNA-21 in regulating immunological processes in these diseases. Finally we show, that IFNα has important functions in the formation of autoantibodies in SLE. In conclusion, this thesis adds new and important knowledge on the interplay between Tfh cells and B cells and their formation of autoantibodies in rheumatic disease. This knowledge will guide and further the development of new treatment strategies to better patient outcome.
HYAL-2–WWOX–SMAD4 Signaling in Cell Death and Anticancer Response
Hsu, Li-Jin; Chiang, Ming-Fu; Sze, Chun-I; Su, Wan-Pei; Yap, Ye Vone; Lee, I-Ting; Kuo, Hsiang-Ling; Chang, Nan-Shan
2016-01-01
Hyaluronidase HYAL-2 is a membrane-anchored protein and also localizes, in part, in the lysosome. Recent study from animal models revealed that both HYAL-1 and HYAL-2 are essential for the metabolism of hyaluronan (HA). Hyal-2 deficiency is associated with chronic thrombotic microangiopathy with hemolytic anemia in mice due to over accumulation of high molecular size HA. HYAL-2 is essential for platelet generation. Membrane HYAL-2 degrades HA bound by co-receptor CD44. Also, in a non-canonical signal pathway, HYAL-2 serves as a receptor for transforming growth factor beta (TGF-β) to signal with downstream tumor suppressors WWOX and SMAD4 to control gene transcription. When SMAD4 responsive element is overly driven by the HYAL-2–WWOX–SMAD4 signaling complex, cell death occurs. When rats are subjected to traumatic brain injury, over accumulation of a HYAL-2–WWOX complex occurs in the nucleus to cause neuronal death. HA induces the signaling of HYAL-2–WWOX–SMAD4 and relocation of the signaling complex to the nucleus. If the signaling complex is overexpressed, bubbling cell death occurs in WWOX-expressing cells. In addition, a small synthetic peptide Zfra (zinc finger-like protein that regulates apoptosis) binds membrane HYAL-2 of non-T/non-B spleen HYAL-2+ CD3− CD19− Z lymphocytes and activates the cells to generate memory anticancer response against many types of cancer cells in vivo. Whether the HYAL-2–WWOX–SMAD4 signaling complex is involved is discussed. In this review and opinion article, we have updated the current knowledge of HA, HYAL-2 and WWOX, HYAL-2–WWOX–SMAD4 signaling, bubbling cell death, and Z cell activation for memory anticancer response. PMID:27999774
Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudás, József, E-mail: jozsef.dudas@i-med.ac.at; Fullár, Alexandra, E-mail: fullarsz@gmail.com; 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest
Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factormore » κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, Timothy N.; Dentener, Mieke A.
Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damagingmore » inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT5A signaling. • Microarray reveals WNT as a novel complex signaling network in silica-mediated injury.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao
Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression ofmore » Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.« less
Kiecker, Clemens; Graham, Anthony; Logan, Malcolm
2016-01-01
A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal—a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in competence for Hedgehog (HH) signalling, a signalling pathway that is reiteratively employed in embryos and adult organisms. We discuss the upstream signals and mechanisms that may establish differential competence for HHs in a range of different tissues. We argue that the changing competence for HH signalling provides a four-dimensional framework for the interpretation of the signal that is essential for the emergence of functional anatomy. A number of diseases—including several types of cancer—are caused by malfunctions of the HH pathway. A better understanding of what provides differential competence for this signal may reveal HH-related disease mechanisms and equip us with more specific tools to manipulate HH signalling in the clinic. PMID:29615599
Emgård, Johanna; Kammoun, Hana; García-Cassani, Bethania; Chesné, Julie; Parigi, Sara M; Jacob, Jean-Marie; Cheng, Hung-Wei; Evren, Elza; Das, Srustidhar; Czarnewski, Paulo; Sleiers, Natalie; Melo-Gonzalez, Felipe; Kvedaraite, Egle; Svensson, Mattias; Scandella, Elke; Hepworth, Matthew R; Huber, Samuel; Ludewig, Burkhard; Peduto, Lucie; Villablanca, Eduardo J; Veiga-Fernandes, Henrique; Pereira, João P; Flavell, Richard A; Willinger, Tim
2018-01-16
Group 3 innate lymphoid cells (ILC3s) sense environmental signals and are critical for tissue integrity in the intestine. Yet, which signals are sensed and what receptors control ILC3 function remain poorly understood. Here, we show that ILC3s with a lymphoid-tissue-inducer (LTi) phenotype expressed G-protein-coupled receptor 183 (GPR183) and migrated to its oxysterol ligand 7α,25-hydroxycholesterol (7α,25-OHC). In mice lacking Gpr183 or 7α,25-OHC, ILC3s failed to localize to cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Gpr183 deficiency in ILC3s caused a defect in CP and ILF formation in the colon, but not in the small intestine. Localized oxysterol production by fibroblastic stromal cells provided an essential signal for colonic lymphoid tissue development, and inflammation-induced increased oxysterol production caused colitis through GPR183-mediated cell recruitment. Our findings show that GPR183 promotes lymphoid organ development and indicate that oxysterol-GPR183-dependent positioning within tissues controls ILC3 activity and intestinal homeostasis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Apoptosis and Molecular Targeting Therapy in Cancer
Hassan, Mohamed; Watari, Hidemichi; AbuAlmaaty, Ali; Ohba, Yusuke; Sakuragi, Noriaki
2014-01-01
Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction. PMID:25013758
Zeng, Junquan; Liu, Xing; Li, Xiaofei; Zheng, Yongliang; Liu, Bin; Xiao, Youzhang
2017-06-02
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. The purpose of this study was to determine the effects of daucosterol on HCC by investigating Wnt/β-catenin signaling. In this study, HepG2 and SMMC-7721 cells were treated with varying concentrations of daucosterol, and the corresponding inhibitory effects on HCC cells were examined via CCK-8 assays. Cell migration and invasion abilities were detected via transwell assays. β-Catenin and phospho (p)-β-catenin levels were analyzed via western blotting. Our results showed that daucosterol reduced the proliferation, migration, and invasion capacities of HCC cells in a concentration-dependent manner. In addition, daucosterol reduced the levels of β-catenin and p-β-catenin in HepG2 and SMMC-7721 cells. Furthermore, the Wnt signaling pathway inhibitor SB-216763 was used to treat HepG2 and SMMC-7721 cells with daucosterol. Our results showed that co-treatment with daucosterol and SB-216763 abolished the effects of daucosterol on cell inhibition ratios, cell migration, and cell invasion. These findings indicated that daucosterol inhibited cell migration and invasion in HCC cells via the Wnt/β-catenin signaling pathway. Therefore, our study highlights the use of daucosterol as a promising therapeutic strategy for HCC treatment.
Letz, Saskia; Haag, Christine; Schulze, Egbert; Frank-Raue, Karin; Raue, Friedhelm; Hofner, Benjamin; Mayr, Bernhard; Schöfl, Christof
2014-01-01
Introduction Activating calcium sensing receptor (CaSR) mutations cause autosomal dominant hypocalcemia (ADH) characterized by low serum calcium, inappropriately low PTH and relative hypercalciuria. Four activating CaSR mutations cause additional renal wasting of sodium, chloride and other salts, a condition called Bartter syndrome (BS) type 5. Until today there is no specific medical treatment for BS type 5 and ADH. We investigated the effects of different allosteric CaSR antagonists (calcilytics) on activating CaSR mutants. Methods All 4 known mutations causing BS type 5 and five ADH mutations were expressed in HEK 293T cells and receptor signalling was studied by measurement of intracellular free calcium in response to extracellular calcium ([Ca2+]o). To investigate the effect of calcilytics, cells were stimulated with 3 mM [Ca2+]o in the presence or absence of NPS-2143, ATF936 or AXT914. Results All BS type 5 and ADH mutants showed enhanced signalling activity to [Ca2+]o with left shifted dose response curves. In contrast to the amino alcohol NPS-2143, which was only partially effective, the quinazolinone calcilytics ATF936 and AXT914 significantly mitigated excessive cytosolic calcium signalling of all BS type 5 and ADH mutants studied. When these mutants were co-expressed with wild-type CaSR to approximate heterozygosity in patients, ATF936 and AXT914 were also effective on all mutants. Conclusion The calcilytics ATF936 and AXT914 are capable of attenuating enhanced cytosolic calcium signalling activity of CaSR mutations causing BS type 5 and ADH. Quinazolinone calcilytics might therefore offer a novel treatment option for patients with activating CaSR mutations. PMID:25506941
Hu, Jie Hong; Wei, Hao; Jaffe, Mia; Airhart, Nathan; Du, Liang; Angelov, Stoyan N; Yan, James; Allen, Julie K; Kang, Inkyung; Wight, Thomas N; Fox, Kate; Smith, Alexandra; Enstrom, Rachel; Dichek, David A
2015-12-01
Prenatal deletion of the type II transforming growth factor-β (TGF-β) receptor (TBRII) prevents normal vascular morphogenesis and smooth muscle cell (SMC) differentiation, causing embryonic death. The role of TBRII in adult SMC is less well studied. Clarification of this role has important clinical implications because TBRII deletion should ablate TGF-β signaling, and blockade of TGF-β signaling is envisioned as a treatment for human aortopathies. We hypothesized that postnatal loss of SMC TBRII would cause aortopathy. We generated mice with either of 2 tamoxifen-inducible SMC-specific Cre (SMC-CreER(T2)) alleles and homozygous floxed Tgfbr2 alleles. Mice were injected with tamoxifen, and their aortas examined 4 and 14 weeks later. Both SMC-CreER(T2) alleles efficiently and specifically rearranged a floxed reporter gene and efficiently rearranged a floxed Tgfbr2 allele, resulting in loss of aortic medial TBRII protein. Loss of SMC TBRII caused severe aortopathy, including hemorrhage, ulceration, dissection, dilation, accumulation of macrophage markers, elastolysis, abnormal proteoglycan accumulation, and aberrant SMC gene expression. All areas of the aorta were affected, with the most severe pathology in the ascending aorta. Cre-mediated loss of SMC TBRII in vitro ablated both canonical and noncanonical TGF-β signaling and reproduced some of the gene expression abnormalities detected in vivo. SMC TBRII plays a critical role in maintaining postnatal aortic homeostasis. Loss of SMC TBRII disrupts TGF-β signaling, acutely alters SMC gene expression, and rapidly results in severe and durable aortopathy. These results suggest that pharmacological blockade of TGF-β signaling in humans could cause aortic disease rather than prevent it. © 2015 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhan
Cleft palate is caused by the failure of palatal midline epithelial cells to disintegrate, which is necessary for palatal mesenchymal confluence. Although 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure is linked to cleft palate at a high rate, the mechanism remains to be elucidated. The present study was designed to determine the effects of TCDD on the fate of epithelial cell isolated from human fetal palatal shelves (hFPECs). We demonstrate that TCDD increased cell proliferation and promoted the progression of cells from G1 to S phase as well as increased the number of cells entering the G2/M phase. We found that TCDD has nomore » measurable effect on apoptosis of hFPECs. The protein level assays revealed that TCDD increased cyclin-dependent kinases 4 (cdk4), cyclin D1, cyclin E and p21 (Waf1/Cip1) but not cdk2, bcl-2, cyclin B1 and cyclin A. Furthermore, TCDD activated PI3K/AKT signaling, and the PI3K inhibitor, LY294002, partially abrogated TCDD-induced cell proliferation and gene modulations. TCDD treatment increased CYP1A1 mRNA and protein levels, which indicated the activation of AhR signaling. Knockdown of the AhR with siRNA suppressed TCDD-induced cell proliferation and PI3K/AKT signaling activation. Taken together, these data demonstrated that TCDD is able to promote growth of hFPECs through AhR-dependent activation of the PI3K/AKT pathway, which may account for the underlying mechanism by which TCDD causes a failure of palatal fusion. - Highlights: • TCDD promoted the cell growth with a character of significant accumulation of cells in G2/M. • TCDD treatment induced a various profile of cell cycle regulatory proteins. • PI3K/AKT pathway was involved in TCDD-induced cell proliferation and gene modifications. • AhR knockdown blocked TCDD-induced cell proliferation and PI3K/Akt signaling activation.« less
Gillespie, Zoe E; MacKay, Kimberly; Sander, Michelle; Trost, Brett; Dawicki, Wojciech; Wickramarathna, Aruna; Gordon, John; Eramian, Mark; Kill, Ian R; Bridger, Joanna M; Kusalik, Anthony; Mitchell, Jennifer A; Eskiw, Christopher H
2015-01-01
Rapamycin is a well-known inhibitor of the Target of Rapamycin (TOR) signaling cascade; however, the impact of this drug on global genome function and organization in normal primary cells is poorly understood. To explore this impact, we treated primary human foreskin fibroblasts with rapamycin and observed a decrease in cell proliferation without causing cell death. Upon rapamycin treatment chromosomes 18 and 10 were repositioned to a location similar to that of fibroblasts induced into quiescence by serum reduction. Although similar changes in positioning occurred, comparative transcriptome analyses demonstrated significant divergence in gene expression patterns between rapamycin-treated and quiescence-induced fibroblasts. Rapamycin treatment induced the upregulation of cytokine genes, including those from the Interleukin (IL)-6 signaling network, such as IL-8 and the Leukemia Inhibitory Factor (LIF), while quiescent fibroblasts demonstrated up-regulation of genes involved in the complement and coagulation cascade. In addition, genes significantly up-regulated by rapamycin treatment demonstrated increased promoter occupancy of the transcription factor Signal Transducer and Activator of Transcription 5A/B (STAT5A/B). In summary, we demonstrated that the treatment of fibroblasts with rapamycin decreased proliferation, caused chromosome territory repositioning and induced STAT5A/B-mediated changes in gene expression enriched for cytokines. PMID:26652669
Nakagata, Naomi; Miyagawa, Shinichi; Suzuki, Kentaro; Kitazawa, Sohei; Yamada, Gen
2012-01-01
Background Congenital diseases of the urinary tract are frequently observed in infants. Such diseases present a number of developmental anomalies such as hydroureter and hydronephrosis. Although some genetically-modified mouse models of growth factor signaling genes reproduce urinary phenotypes, the pathogenic mechanisms remain obscure. Previous studies suggest that a portion of the cells in the external genitalia and bladder are derived from peri-cloacal mesenchymal cells that receive Hedgehog (Hh) signaling in the early developmental stages. We hypothesized that defects in such progenitor cells, which give rise to urinary tract tissues, may be a cause of such diseases. Methodology/Principal Findings To elucidate the pathogenic mechanisms of upper urinary tract malformations, we analyzed a series of Sonic hedgehog (Shh) deficient mice. Shh−/− displayed hydroureter and hydronephrosis phenotypes and reduced expression of several developmental markers. In addition, we suggested that Shh modulation at an early embryonic stage is responsible for such phenotypes by analyzing the Shh conditional mutants. Tissue contribution assays of Hh-responsive cells revealed that peri-cloacal mesenchymal cells, which received Hh signal secreted from cloacal epithelium, could contribute to the ureteral mesenchyme. Gain- and loss-of-functional mutants for Hh signaling revealed a correlation between Hh signaling and Bone morphogenetic protein (Bmp) signaling. Finally, a conditional ablation of Bmp receptor type IA (BmprIA) gene was examined in Hh-responsive cell lineages. This system thus made it possible to analyze the primary functions of the growth factor signaling relay. The defective Hh-to-Bmp signaling relay resulted in severe urinary tract phenotypes with a decrease in the number of Hh-responsive cells. Conclusions/Significance This study identified the essential embryonic stages for the pathogenesis of urinary tract phenotypes. These results suggested that Hh-responsive mesenchymal Bmp signaling maintains the population of peri-cloacal mesenchyme cells, which is essential for the development of the ureter and the upper urinary tract. PMID:22860096
Wu, Nan; Hong, Fashui; Zhou, Yingjun; Wang, Yajing
2017-01-01
Sertoli cells provide appropriate mitogens, differentiation factors and sources of energy for developing germ cells throughout the lifetime of males, and protect these germ cells from harmful agents and from the host's own immune system. Therefore, reductions in the rate and quality of spermatogenesis caused by nanoparticulate titanium dioxide (nano-TiO 2 ) may be closely involved in the immunoregulation of Sertoli cells. However, the underlying mechanism of this response is still unclear. To address this issue, we used mouse primary cultured Sertoli cells to examine the toxic effects of nano-TiO 2 via alterations in morphology, cell viability, and activation of the TAM/TLR3 signal pathway. The results demonstrated that nano-TiO 2 could cross the cytomembrane into the cytoplasm or nucleus, decrease Sertoli cell viability, damage morphology (such as elongated fusiform, cellular and nuclear shrinkage) and induce the expression of various immune mediators and inflammatory cytokines, including TLR3(+0.31-fold to +0.81-fold), IL-lβ(+0.33-fold to +5.0-fold), NF-κB(+0.22-fold to +3.65-fold), IL-6(+0.47-fold to +3.53-fold), TNF-α(+0.14-fold to +2.44-fold), IFN-α(+0.17-fold to +2.27-fold), and IFN-β(+0.09-fold to +2.29-fold), and suppress the expression of Tyro3(-9.33% to -61.93%), Axl(-19.03% to -60.67%), Mer(-8.04% to -59.16%), and IκB(-34.35% to -86.59%) in primary cultured Sertoli cells. These results suggest that testicular innate immune responses to pathogens caused by nano-TiO 2 may be involved in the regulatory mechanisms of TAM/TLR3 signaling in testicular Sertoli cells. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 198-208, 2017. © 2016 Wiley Periodicals, Inc.
Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells
Himburg, Heather A; Muramoto, Garrett G; Daher, Pamela; Meadows, Sarah K; Russell, J Lauren; Doan, Phuong; Chi, Jen-Tsan; Salter, Alice B; Lento, William E; Reya, Tannishtha; Chao, Nelson; Chute, John P
2013-01-01
Hematopoietic stem cell (HSC) self-renewal is regulated by both intrinsic and extrinsic signals. Although some of the pathways that regulate HSC self-renewal have been uncovered, it remains largely unknown whether these pathways can be triggered by deliverable growth factors to induce HSC growth or regeneration. Here we show that pleiotrophin, a neurite outgrowth factor with no known function in hematopoiesis, efficiently promotes HSC expansion in vitro and HSC regeneration in vivo. Treatment of mouse bone marrow HSCs with pleiotrophin caused a marked increase in long-term repopulating HSC counts in culture, as measured in competitive repopulating assays. Treatment of human cord blood CD34+CDCD38−Lin− cells with pleiotrophin also substantially increased severe combined immunodeficient (SCID)-repopulating cell counts in culture, compared to input and cytokine-treated cultures. Systemic administration of pleiotrophin to irradiated mice caused a pronounced expansion of bone marrow stem and progenitor cells in vivo, indicating that pleiotrophin is a regenerative growth factor for HSCs. Mechanistically, pleiotrophin activated phosphoinositide 3-kinase (PI3K) signaling in HSCs; antagonism of PI3K or Notch signaling inhibited pleiotrophin-mediated expansion of HSCs in culture. We identify the secreted growth factor pleiotrophin as a new regulator of both HSC expansion and regeneration PMID:20305662
Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells.
Himburg, Heather A; Muramoto, Garrett G; Daher, Pamela; Meadows, Sarah K; Russell, J Lauren; Doan, Phuong; Chi, Jen-Tsan; Salter, Alice B; Lento, William E; Reya, Tannishtha; Chao, Nelson J; Chute, John P
2010-04-01
Hematopoietic stem cell (HSC) self-renewal is regulated by both intrinsic and extrinsic signals. Although some of the pathways that regulate HSC self-renewal have been uncovered, it remains largely unknown whether these pathways can be triggered by deliverable growth factors to induce HSC growth or regeneration. Here we show that pleiotrophin, a neurite outgrowth factor with no known function in hematopoiesis, efficiently promotes HSC expansion in vitro and HSC regeneration in vivo. Treatment of mouse bone marrow HSCs with pleiotrophin caused a marked increase in long-term repopulating HSC numbers in culture, as measured in competitive repopulating assays. Treatment of human cord blood CD34(+)CDCD38(-)Lin(-) cells with pleiotrophin also substantially increased severe combined immunodeficient (SCID)-repopulating cell counts in culture, compared to input and cytokine-treated cultures. Systemic administration of pleiotrophin to irradiated mice caused a pronounced expansion of bone marrow stem and progenitor cells in vivo, indicating that pleiotrophin is a regenerative growth factor for HSCs. Mechanistically, pleiotrophin activated phosphoinositide 3-kinase (PI3K) signaling in HSCs; antagonism of PI3K or Notch signaling inhibited pleiotrophin-mediated expansion of HSCs in culture. We identify the secreted growth factor pleiotrophin as a new regulator of both HSC expansion and regeneration.
MacKeigan, Jeffrey P.; Krueger, Darcy A.
2015-01-01
Tuberous sclerosis complex (TSC) is a genetic autosomal dominant disorder characterized by benign tumor-like lesions, called hamartomas, in multiple organ systems, including the brain, skin, heart, kidneys, and lung. These hamartomas cause a diverse set of clinical problems based on their location and often result in epilepsy, learning difficulties, and behavioral problems. TSC is caused by mutations within the TSC1 or TSC2 genes that inactivate the genes' tumor-suppressive function and drive hamartomatous cell growth. In normal cells, TSC1 and TSC2 integrate growth signals and nutrient inputs to downregulate signaling to mammalian target of rapamycin (mTOR), an evolutionarily conserved serine-threonine kinase that controls cell growth and cell survival. The molecular connection between TSC and mTOR led to the clinical use of allosteric mTOR inhibitors (sirolimus and everolimus) for the treatment of TSC. Everolimus is approved for subependymal giant cell astrocytomas and renal angiomyolipomas in patients with TSC. Sirolimus, though not approved for TSC, has undergone considerable investigation to treat various aspects of the disease. Everolimus and sirolimus selectively inhibit mTOR signaling with similar molecular mechanisms, but with distinct clinical profiles. This review differentiates mTOR inhibitors in TSC while describing the molecular mechanisms, pathogenic mutations, and clinical trial outcomes for managing TSC. PMID:26289591
Coant, Nicolas; Ben Mkaddem, Sanae; Pedruzzi, Eric; Guichard, Cécile; Tréton, Xavier; Ducroc, Robert; Freund, Jean-Noel; Cazals-Hatem, Dominique; Bouhnik, Yoram; Woerther, Paul-Louis; Skurnik, David; Grodet, Alain; Fay, Michèle; Biard, Denis; Lesuffleur, Thécla; Deffert, Christine; Moreau, Richard; Groyer, André; Krause, Karl-Heinz; Daniel, Fanny; Ogier-Denis, Eric
2010-01-01
The homeostatic self-renewal of the colonic epithelium requires coordinated regulation of the canonical Wnt/β-catenin and Notch signaling pathways to control proliferation and lineage commitment of multipotent stem cells. However, the molecular mechanisms by which the Wnt/β-catenin and Notch1 pathways interplay in controlling cell proliferation and fate in the colon are poorly understood. Here we show that NADPH oxidase 1 (NOX1), a reactive oxygen species (ROS)-producing oxidase that is highly expressed in colonic epithelial cells, is a pivotal determinant of cell proliferation and fate that integrates Wnt/β-catenin and Notch1 signals. NOX1-deficient mice reveal a massive conversion of progenitor cells into postmitotic goblet cells at the cost of colonocytes due to the concerted repression of phosphatidylinositol 3-kinase (PI3K)/AKT/Wnt/β-catenin and Notch1 signaling. This conversion correlates with the following: (i) the redox-dependent activation of the dual phosphatase PTEN, causing the inactivation of the Wnt pathway effector β-catenin, and (ii) the downregulation of Notch1 signaling that provokes derepression of mouse atonal homolog 1 (Math1) expression. We conclude that NOX1 controls the balance between goblet and absorptive cell types in the colon by coordinately modulating PI3K/AKT/Wnt/β-catenin and Notch1 signaling. This finding provides the molecular basis for the role of NOX1 in cell proliferation and postmitotic differentiation. PMID:20351171
Haptoglobin Preserves Vascular Nitric Oxide Signaling during Hemolysis.
Schaer, Christian A; Deuel, Jeremy W; Schildknecht, Daniela; Mahmoudi, Leila; Garcia-Rubio, Ines; Owczarek, Catherine; Schauer, Stefan; Kissner, Reinhard; Banerjee, Uddyalok; Palmer, Andre F; Spahn, Donat R; Irwin, David C; Vallelian, Florence; Buehler, Paul W; Schaer, Dominik J
2016-05-15
Hemolysis occurs not only in conditions such as sickle cell disease and malaria but also during transfusion of stored blood, extracorporeal circulation, and sepsis. Cell-free Hb depletes nitric oxide (NO) in the vasculature, causing vasoconstriction and eventually cardiovascular complications. We hypothesize that Hb-binding proteins may preserve vascular NO signaling during hemolysis. Characterization of an archetypical function by which Hb scavenger proteins could preserve NO signaling during hemolysis. We investigated NO reaction kinetics, effects on arterial NO signaling, and tissue distribution of cell-free Hb and its scavenger protein complexes. Extravascular translocation of cell-free Hb into interstitial spaces, including the vascular smooth muscle cell layer of rat and pig coronary arteries, promotes vascular NO resistance. This critical disease process is blocked by haptoglobin. Haptoglobin does not change NO dioxygenation rates of Hb; rather, the large size of the Hb:haptoglobin complex prevents Hb extravasation, which uncouples NO/Hb interaction and vasoconstriction. Size-selective compartmentalization of Hb functions as a substitute for red blood cells after hemolysis and preserves NO signaling in the vasculature. We found that evolutionarily and structurally unrelated Hb-binding proteins, such as PIT54 found in avian species, functionally converged with haptoglobin to protect NO signaling by sequestering cell-free Hb in large protein complexes. Sequential compartmentalization of Hb by erythrocytes and scavenger protein complexes is an archetypical mechanism, which may have supported coevolution of hemolysis and normal vascular function. Therapeutic supplementation of Hb scavengers may restore vascular NO signaling and attenuate disease complications in patients with hemolysis.
Alby, Caroline; Piquand, Kevin; Huber, Céline; Megarbané, André; Ichkou, Amale; Legendre, Marine; Pelluard, Fanny; Encha-Ravazi, Ferechté; Abi-Tayeh, Georges; Bessières, Bettina; El Chehadeh-Djebbar, Salima; Laurent, Nicole; Faivre, Laurence; Sztriha, László; Zombor, Melinda; Szabó, Hajnalka; Failler, Marion; Garfa-Traore, Meriem; Bole, Christine; Nitschké, Patrick; Nizon, Mathilde; Elkhartoufi, Nadia; Clerget-Darpoux, Françoise; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Saunier, Sophie; Cormier-Daire, Valérie; Attié-Bitach, Tania; Thomas, Sophie
2015-08-06
KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Nabhani, Schafiq; Ginzel, Sebastian; Miskin, Hagit; Revel-Vilk, Shoshana; Harlev, Dan; Fleckenstein, Bernhard; Hönscheid, Andrea; Oommen, Prasad T; Kuhlen, Michaela; Thiele, Ralf; Laws, Hans-Jürgen; Borkhardt, Arndt; Stepensky, Polina; Fischer, Ute
2015-09-01
Autoimmune lymphoproliferative syndrome is frequently caused by mutations in genes involved in the Fas death receptor pathway, but for 20-30% of patients the genetic defect is unknown. We observed that treatment of healthy T cells with interleukin-12 induces upregulation of Fas ligand and Fas ligand-dependent apoptosis. Consistently, interleukin-12 could not induce apoptosis in Fas ligand-deficient T cells from patients with autoimmune lymphoproliferative syndrome. We hypothesized that defects in the interleukin-12 signaling pathway may cause a similar phenotype as that caused by mutations of the Fas ligand gene. To test this, we analyzed 20 patients with autoimmune lymphoproliferative syndrome of unknown cause by whole-exome sequencing. We identified a homozygous nonsense mutation (c.698G>A, p.R212*) in the interleukin-12/interleukin-23 receptor-component IL12RB1 in one of these patients. The mutation led to IL12RB1 protein truncation and loss of cell surface expression. Interleukin-12 and -23 signaling was completely abrogated as demonstrated by deficient STAT4 phosphorylation and interferon γ production. Interleukin-12-mediated expression of membrane-bound and soluble Fas ligand was lacking and basal expression was much lower than in healthy controls. The patient presented with the classical symptoms of autoimmune lymphoproliferative syndrome: chronic non-malignant, non-infectious lymphadenopathy, splenomegaly, hepatomegaly, elevated numbers of double-negative T cells, autoimmune cytopenias, and increased levels of vitamin B12 and interleukin-10. Sanger sequencing and whole-exome sequencing excluded the presence of germline or somatic mutations in genes known to be associated with the autoimmune lymphoproliferative syndrome. Our data suggest that deficient regulation of Fas ligand expression by regulators such as the interleukin-12 signaling pathway may be an alternative cause of autoimmune lymphoproliferative syndrome-like disease. Copyright© Ferrata Storti Foundation.
Planar photovoltaic solar concentrator module
Chiang, Clement J.
1992-01-01
A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.
Planar photovoltaic solar concentrator module
Chiang, C.J.
1992-12-01
A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.
Lack of centrioles and primary cilia in STIL−/− mouse embryos
David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin
2014-01-01
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474
Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.
David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin
2014-01-01
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.
Genetics Home Reference: autosomal recessive cerebellar ataxia type 1
... defective protein is thought to impair Purkinje cell function and disrupt signaling between neurons in the cerebellum. The loss of brain cells in the cerebellum causes the movement problems characteristic of ARCA1 , but it is unclear how this cell loss is ... Learn more about the gene associated with ARCA1 ...
Constitutive activation of NOTCH1 signaling in Sertoli cells causes gonocyte exit from quiescence
Garcia, Thomas Xavier; DeFalco, Tony; Capel, Blanche; Hofmann, Marie-Claude
2013-01-01
Notch signaling components have long been detected in Sertoli and germ cells in the developing and mature testis. However, the role of this pathway in testis development and spermatogenesis remains unknown. Using reporter mice expressing green fluorescent protein following Notch receptor activation, we found that Notch signaling was active in Sertoli cells at various fetal, neonatal, and adult stages. Since Notch signaling specifies stem cell fate in many developing and mature organ systems, we hypothesized that maintenance and differentiation of gonocytes and/or spermatogonial stem cells would be modulated through this pathway in Sertoli cells. To this end, we generated mutant mice constitutively expressing the active, intracellular domain of NOTCH1 (NICD1) in Sertoli cells. We found that mutant Sertoli cells were morphologically normal before and after birth, but presented a number of functional changes that drastically affected gonocyte numbers and physiology. We observed aberrant exit of gonocytes from mitotic arrest, migration toward cord periphery, and premature differentiation before birth. These events, presumably unsupported by the cellular microenvironment, were followed by gonocyte apoptosis and near complete disappearance of the gonocytes by day 2 after birth. Molecular analysis demonstrated that these effects are correlated with a dysregulation of Sertoli-expressed genes that are required for germ cell maintenance, such as Cyp26b1 and Gdnf. Taken together, our results demonstrate that Notch signaling is active in Sertoli cells throughout development and that proper regulation of Notch signaling in Sertoli cells is required for the maintenance of gonocytes in an undifferentiated state during fetal development. PMID:23391689
Endocardial Hippo signaling regulates myocardial growth and cardiogenesis.
Artap, Stanley; Manderfield, Lauren J; Smith, Cheryl L; Poleshko, Andrey; Aghajanian, Haig; See, Kelvin; Li, Li; Jain, Rajan; Epstein, Jonathan A
2018-08-01
The Hippo signaling pathway has been implicated in control of cell and organ size, proliferation, and endothelial-mesenchymal transformation. This pathway impacts upon two partially redundant transcription cofactors, Yap and Taz, that interact with other factors, including members of the Tead family, to affect expression of downstream genes. Yap and Taz have been shown to regulate, in a cell-autonomous manner, myocardial proliferation, myocardial hypertrophy, regenerative potential, and overall size of the heart. Here, we show that Yap and Taz also play an instructive, non-cell-autonomous role in the endocardium of the developing heart to regulate myocardial growth through release of the paracrine factor, neuregulin. Without endocardial Yap and Taz, myocardial growth is impaired causing early post-natal lethality. Thus, the Hippo signaling pathway regulates cell size via both cell-autonomous and non-cell-autonomous mechanisms. Furthermore, these data suggest that Hippo may regulate organ size via a sensing and paracrine function in endothelial cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Drosophila Perlecan Regulates Intestinal Stem Cell Activity via Cell-Matrix Attachment
You, Jia; Zhang, Yan; Li, Zhouhua; Lou, Zhefeng; Jin, Longjin; Lin, Xinhua
2014-01-01
Summary Stem cells require specialized local microenvironments, termed niches, for normal retention, proliferation, and multipotency. Niches are composed of cells together with their associated extracellular matrix (ECM). Currently, the roles of ECM in regulating niche functions are poorly understood. Here, we demonstrate that Perlecan (Pcan), a highly conserved ECM component, controls intestinal stem cell (ISC) activities and ISC-ECM attachment in Drosophila adult posterior midgut. Loss of Pcan from ISCs, but not other surrounding cells, causes ISCs to detach from underlying ECM, lose their identity, and fail to proliferate. These defects are not a result of a loss of epidermal growth factor receptor (EGFR) or Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling activity but partially depend on integrin signaling activity. We propose that Pcan secreted by ISCs confers niche properties to the adjacent ECM that is required for ISC maintenance of stem cell identity, activity, and anchorage to the niche. PMID:24936464
Review of Chromium (VI) Apoptosis, Cell-Cycle-Arrest, and Carcinogenesis
Chiu, A; Shi, J; Lee, WKP; Hill, R; Wakeman, TP; Katz, A; Xu, B; Dalal, NS; Robertson, JD; Chen, C; Chiu, N; Donehower, L
2014-01-01
Hexavalent chromium combines with glutathione in chloride intracellular channel carrier to form tetravalent and pentavelent chromium in plasma and organelle membranes. It also combines with NADH/NADPH to form pentavalent chromium in mitochondria. Tetravalent- and pentavalent- chromium (directly and indirectly) mediated DNA double strand breaks activate DNA damage signaling sensors: DNA-dependent-protein-kinase signals p53-dependent intrinsic mitochorndrial apoptosis, and ataxia-telangiectasia-mutated and ataxia-telangiectasia-Rad3-related signal cell-arrest for DNA repair. Tetravalent chromium may be the most potent species since it causes DNA breaks and somatic recombination, but not apoptosis. Upon further failure of apoptosis and senescence/DNA-repair, damaged cells may become immortal with loss-of-heterozygosity and genetic plasticity. PMID:20859824
Borkowski, Julia; Li, Li; Steinmann, Ulrike; Quednau, Natascha; Stump-Guthier, Carolin; Weiss, Christel; Findeisen, Peter; Gretz, Norbert; Ishikawa, Hiroshi; Tenenbaum, Tobias; Schroten, Horst; Schwerk, Christian
2014-09-13
The human-specific, Gram-negative bacterium Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis worldwide. The blood-cerebrospinal fluid barrier (BCSFB), which is constituted by the epithelial cells of the choroid plexus (CP), has been suggested as one of the potential entry sites of Nm into the CSF and can contribute to the inflammatory response during infectious diseases of the brain. Toll-like receptors (TLRs) are involved in mediating signal transduction caused by the pathogens. Using a recently established in vitro model of the human BCSFB based on human malignant CP papilloma (HIBCPP) cells we investigated the cellular response of HIBCPP cells challenged with the meningitis-causing Nm strain, MC58, employing transcriptome and RT-PCR analysis, cytokine bead array, and enzyme-linked immunosorbent assay (ELISA). In comparison, we analyzed the answer to the closely related unencapsulated carrier isolate Nm α14. The presence of TLRs in HIBCPP and their role during signal transduction caused by Nm was studied by RT-PCR and the use of specific agonists and mutant bacteria. We observed a stronger transcriptional response after infection with strain MC58, in particular with its capsule-deficient mutant MC58siaD-, which correlated with bacterial invasion levels. Expression evaluation and Gene Set Enrichment Analysis pointed to a NFκB-mediated pro-inflammatory immune response involving up-regulation of the transcription factor IκBζ. Infected cells secreted significant levels of pro-inflammatory chemokines and cytokines, including, among others, IL8, CXCL1-3, and the IκBζ target gene product IL6. The expression profile of pattern recognition receptors in HIBCPP cells and the response to specific agonists indicates that TLR2/TLR6, rather than TLR4 or TLR2/TLR1, is involved in the cellular reaction following Nm infection. Our data show that Nm can initiate a pro-inflammatory response in human CP epithelial cells probably involving TLR2/TLR6 signaling and the transcriptional regulator IκBζ.
The mechanical microenvironment in cancer: How physics affects tumours.
Nagelkerke, Anika; Bussink, Johan; Rowan, Alan E; Span, Paul N
2015-12-01
The tumour microenvironment contributes greatly to the response of tumour cells. It consists of chemical gradients, for example of oxygen and nutrients. However, a physical environment is also present. Apart from chemical input, cells also receive physical signals. Tumours display unique mechanical properties: they are a lot stiffer than normal tissue. This may be either a cause or a consequence of cancer, but literature suggests it has a major impact on tumour cells as will be described in this review. The mechanical microenvironment may cause malignant transformation, possibly through activation of oncogenic pathways and inhibition of tumour suppressor genes. In addition, the mechanical microenvironment may promote tumour progression by influencing processes such as epithelial-to-mesenchymal transition, enhancing cell survival through autophagy, but also affects sensitivity of tumour cells to therapeutics. Furthermore, multiple intracellular signalling pathways prove sensitive to the mechanical properties of the microenvironment. It appears the increased stiffness is unlikely to be caused by increased stiffness of the tumour cells themselves. However, there are indications that tumours display a higher cell density, making them more rigid. In addition, increased matrix deposition in the tumour, as well as increased interstitial fluid pressure may account for the increased stiffness of tumours. Overall, tumour mechanics are significantly different from normal tissue. Therefore, this feature should be further explored for use in cancer prevention, detection and treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Arnold-Schrauf, Catharina; Dudek, Markus; Dielmann, Anastasia; Pace, Luigia; Swallow, Maxine; Kruse, Friederike; Kühl, Anja A; Holzmann, Bernhard; Berod, Luciana; Sparwasser, Tim
2014-02-27
Listeria monocytogenes (LM), a facultative intracellular Gram-positive pathogen, can cause life-threatening infections in humans. In mice, the signaling cascade downstream of the myeloid differentiation factor 88 (MyD88) is essential for proper innate immune activation against LM, as MyD88-deficient mice succumb early to infection. Here, we show that MyD88 signaling in dendritic cells (DCs) is sufficient to mediate the protective innate response, including the production of proinflammatory cytokines, neutrophil infiltration, bacterial clearance, and full protection from lethal infection. We also demonstrate that MyD88 signaling by DCs controls the infection rates of CD8α(+) cDCs and thus limits the spread of LM to the T cell areas. Furthermore, in mice expressing MyD88 in DCs, inflammatory monocytes, which are required for bacterial clearance, are activated independently of intrinsic MyD88 signaling. In conclusion, CD11c(+) conventional DCs critically integrate pathogen-derived signals via MyD88 signaling during early infection with LM in vivo. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development.
He, Hua; Huang, Meina; Sun, Shenfei; Wu, Yihui; Lin, Xinhua
2017-08-01
The tree-like structure of the mammalian lung is generated from branching morphogenesis, a reiterative process that is precisely regulated by numerous factors. How the cell surface and extra cellular matrix (ECM) molecules regulate this process is still poorly understood. Herein, we show that epithelial deletion of Heparan Sulfate (HS) synthetase Ext1 resulted in expanded branching tips and reduced branching number, associated with several mesenchymal developmental defects. We further demonstrate an expanded Fgf10 expression and increased FGF signaling activity in Ext1 mutant lungs, suggesting a cell non-autonomous mechanism. Consistent with this, we observed reduced levels of SHH signaling which is responsible for suppressing Fgf10 expression. Moreover, reactivating SHH signaling in mutant lungs rescued the tip dilation phenotype and attenuated FGF signaling. Importantly, the reduced SHH signaling activity did not appear to be caused by decreased Shh expression or protein stability; instead, biologically active form of SHH proteins were reduced in both the Ext1 mutant epithelium and surrounding wild type mesenchymal cells. Together, our study highlights the epithelial HS as a key player for dictating SHH signaling critical for lung morphogenesis.
Notch Signaling in Vascular Smooth Muscle Cells
Baeten, J.T.; Lilly, B.
2018-01-01
The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease. PMID:28212801
Notch Signaling in Postnatal Pituitary Expansion: Proliferation, Progenitors, and Cell Specification
Nantie, Leah B.; Himes, Ashley D.; Getz, Dan R.
2014-01-01
Mutations in PROP1 account for up to half of the cases of combined pituitary hormone deficiency that result from known causes. Despite this, few signaling molecules and pathways that influence PROP1 expression have been identified. Notch signaling has been linked to Prop1 expression, but the developmental periods during which Notch signaling influences Prop1 and overall pituitary development remain unclear. To test the requirement for Notch signaling in establishing the normal pituitary hormone milieu, we generated mice with early embryonic conditional loss of Notch2 (conditional knockout) and examined the consequences of chemical Notch inhibition during early postnatal pituitary maturation. We show that loss of Notch2 has little influence on early embryonic pituitary proliferation but is crucial for postnatal progenitor maintenance and proliferation. In addition, we show that Notch signaling is necessary embryonically and postnatally for Prop1 expression and robust Pit1 lineage hormone cell expansion, as well as repression of the corticotrope lineage. Taken together, our studies identify temporal and cell type–specific roles for Notch signaling and highlight the importance of this pathway throughout pituitary development. PMID:24673559
NO and H2O2 contribute to SO2 toxicity via Ca2+ signaling in Vicia faba guard cells.
Yi, Min; Bai, Heli; Xue, Meizhao; Yi, Huilan
2017-04-01
NO and H 2 O 2 have been implicated as important signals in biotic and abiotic stress responses of plants to the environment. Previously, we have shown that SO 2 exposure increased the levels of NO and H 2 O 2 in plant cells. We hypothesize that, as signaling molecules, NO and H 2 O 2 mediate SO 2 -caused toxicity. In this paper, we show that SO 2 hydrates caused guard cell death in a concentration-dependent manner in the concentration range of 0.25 to 6 mmol L -1 , which was associated with elevation of intracellular NO, H 2 O 2 , and Ca 2+ levels in Vicia faba guard cells. NO donor SNP enhanced SO 2 toxicity, while NO scavenger c-PTIO and NO synthesis inhibitors L-NAME and tungstate significantly prevented SO 2 toxicity. ROS scavenger ascorbic acid (AsA) and catalase (CAT), Ca 2+ chelating agent EGTA, and Ca 2+ channel inhibitor LaCl 3 also markedly blocked SO 2 toxicity. In addition, both c-PTIO and AsA could completely block SO 2 -induced elevation of intracellular Ca 2+ level. Moreover, c-PTIO efficiently blocked SO 2 -induced H 2 O 2 elevation, and AsA significantly blocked SO 2 -induced NO elevation. These results indicate that extra NO and H 2 O 2 are produced and accumulated in SO 2 -treated guard cells, which further activate Ca 2+ signaling to mediate SO 2 toxicity. Our findings suggest that both NO and H 2 O 2 contribute to SO 2 toxicity via Ca 2+ signaling.
McGuire, Amanda L; Mulroney, Kieran T; Carson, Christine F; Ram, Ramesh; Morahan, Grant; Chakera, Aron
2017-01-01
The major complication of peritoneal dialysis (PD) is the development of peritonitis, an infection within the abdominal cavity, primarily caused by bacteria. PD peritonitis is associated with significant morbidity, mortality and health care costs. Staphylococcus epidermidis is the most frequently isolated cause of PD-associated peritonitis. Mesothelial cells are integral to the host response to peritonitis, and subsequent clinical outcomes, yet the effects of infection on mesothelial cells are not well characterised. We systematically investigated the early mesothelial cell response to clinical and reference isolates of S. epidermidis using primary mesothelial cells and the mesothelial cell line Met-5A. Using an unbiased whole genome microarray, followed by a targeted panel of genes known to be involved in the human antibacterial response, we identified 38 differentially regulated genes (adj. p-value < 0.05) representing 35 canonical pathways after 1 hour exposure to S. epidermidis. The top 3 canonical pathways were TNFR2 signaling, IL-17A signaling, and TNFR1 signaling (adj. p-values of 0.0012, 0.0012 and 0.0019, respectively). Subsequent qPCR validation confirmed significant differences in gene expression in a number of genes not previously described in mesothelial cell responses to infection, with heterogeneity observed between clinical isolates of S. epidermidis, and between Met-5A and primary mesothelial cells. Heterogeneity between different S. epidermidis isolates suggests that specific virulence factors may play critical roles in influencing outcomes from peritonitis. This study provides new insights into early mesothelial cell responses to infection with S. epidermidis, and confirms the importance of validating findings in primary mesothelial cells.
Andreucci, Michele; Faga, Teresa; Pisani, Antonio; Sabbatini, Massimo; Russo, Domenico; Mattivi, Fulvio; De Sarro, Giovambattista; Navarra, Michele; Michael, Ashour
2015-03-05
Radiocontrast media (RCM)-induced nephrotoxicity (CIN) is a major clinical problem accounting for 12% of all hospital-acquired cases of acute kidney injury. The pathophysiology of CIN is not well understood, but direct toxic effects on renal cells have been postulated as contributing to CIN. We have investigated the effect of a white grape (Vitis vinifera) juice extract (WGJe) on human renal proximal tubular (HK-2) cells treated with the radiocontrast medium (RCM) sodium diatrizoate. WGJe caused an increase in phosphorylation of the prosurvival kinases Akt and ERK1/2 in HK-2 cells. Treatment of HK-2 cells with 75 mgI/ml sodium diatrizoate for 2.5h and then further incubation (for 27.5h) after removal of the RCM caused a drastic decrease in cell viability. However, pre-treatment with WGJe, prior to incubation with diatrizoate, dramatically improved cell viability. Analysis of key signaling molecules by Western blotting showed that diatrizoate caused a drastic decrease in phosphorylation of Akt (Ser473), FOXO1 (Thr24) and FOXO3a (Thr32) during the initial 2.5h incubation period, and WGJe pre-treatment caused a reversal of these effects. Further analysis by Western blotting of samples from HK-2 cells cultured for longer periods of time (for up to 27.5h after an initial 2.5h exposure to diatrizoate with or without WGJe pre-treatment) showed that WGJe pre-treatment caused a negative effect on phosphorylation of p38, NF-κB (Ser276) and pERK1/2 whilst having a positive effect on the phosphorylation of Akt, FOXO1/FOXO3a and maintained levels of Pim-1 kinase. WGJe may alleviate RCM toxicity through modulation of signaling molecules that are known to be involved in cell death and cell survival and its possible beneficial effects should be further investigated. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Chen, Yan; Lu, Xiaoling; Guo, Luo; Ni, Wenli; Zhang, Yanping; Zhao, Liping; Wu, Lingjie; Sun, Shan; Zhang, Shasha; Tang, Mingliang; Li, Wenyan; Chai, Renjie; Li, Huawei
2017-01-01
Hair cell (HC) loss is the major cause of permanent sensorineural hearing loss in mammals. Unlike lower vertebrates, mammalian cochlear HCs cannot regenerate spontaneously after damage, although the vestibular system does maintain limited HC regeneration capacity. Thus HC regeneration from the damaged sensory epithelium has been one of the main areas of research in the field of hearing restoration. Hedgehog signaling plays important roles during the embryonic development of the inner ear, and it is involved in progenitor cell proliferation and differentiation as well as the cell fate decision. In this study, we show that recombinant Sonic Hedgehog (Shh) protein effectively promotes sphere formation, proliferation, and differentiation of Lgr5+ progenitor cells isolated from the neonatal mouse cochlea. To further explore this, we determined the effect of Hedgehog signaling on cell proliferation and HC regeneration in cultured cochlear explant from transgenic R26-SmoM2 mice that constitutively activate Hedgehog signaling in the supporting cells of the cochlea. Without neomycin treatment, up-regulation of Hedgehog signaling did not significantly promote cell proliferation or new HC formation. However, after injury to the sensory epithelium by neomycin treatment, the over-activation of Hedgehog signaling led to significant supporting cell proliferation and HC regeneration in the cochlear epithelium explants. RNA sequencing and real-time PCR were used to compare the transcripts of the cochleae from control mice and R26-SmoM2 mice, and multiple genes involved in the proliferation and differentiation processes were identified. This study has important implications for the treatment of sensorineural hearing loss by manipulating the Hedgehog signaling pathway. PMID:29311816
Boman, Bruce M.; Fields, Jeremy Z.
2013-01-01
APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT) that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs) at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside). WNT signaling, in contrast, is high at the bottom (where SCs reside) and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g., survivin) are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric). APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly proliferating cells) during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes. PMID:24224156
Wu, Dapeng; Li, Lei; Yan, Wei
2016-04-15
Thyroid cancer 1 (TC-1, C8ofr4) is widely expressed in vertebrates and associated with many kinds of tumors. Previous studies indicated that TC-1 functions as a positive regulator in the Wnt/β-catenin signaling pathway in non-small cell lung cancer (NSCLC). However, its exact role and regulation mechanism in radiosensitivity of NSCLC are still unclear. The expression level of TC-1 was measured by qRT-PCR and western blot in NSCLC cell lines. Proliferation and apoptosis of NSCLC cells in response to TC-1 knockdown or/and radiation were determined by MTT assay and flow cytometry, respectively. The activation of the Wnt/β-catenin signaling pathway was further examined by western blotin vitroandin vivo Compared to TC-1 siRNA or radiotherapy alone, TC-1 silencing combined with radiation inhibited cell proliferation and induced apoptosis in NSCLC cell lines by inactivating of the Wnt/β-catenin signaling pathway. Furthermore, inhibition of the Wnt/β-catenin signaling pathway by XAV939, a Wnt/β-catenin signaling inhibitor, contributed to proliferation inhibition and apoptosis induction in NSCLC A549 cells. Combinative treatment of A549 xenografts with TC-1 siRNA and radiation caused significant tumor regression and inactivation of the Wnt/β-catenin signaling pathway relative to TC-1 siRNA or radiotherapy alone. The results fromin vitroandin vivostudies indicated that TC-1 silencing sensitized NSCLC cell lines to radiotherapy through the Wnt/β-catenin signaling pathway. © 2016. Published by The Company of Biologists Ltd.
Wu, Dapeng; Li, Lei; Yan, Wei
2016-01-01
ABSTRACT Thyroid cancer 1 (TC-1, C8ofr4) is widely expressed in vertebrates and associated with many kinds of tumors. Previous studies indicated that TC-1 functions as a positive regulator in the Wnt/β-catenin signaling pathway in non-small cell lung cancer (NSCLC). However, its exact role and regulation mechanism in radiosensitivity of NSCLC are still unclear. The expression level of TC-1 was measured by qRT-PCR and western blot in NSCLC cell lines. Proliferation and apoptosis of NSCLC cells in response to TC-1 knockdown or/and radiation were determined by MTT assay and flow cytometry, respectively. The activation of the Wnt/β-catenin signaling pathway was further examined by western blot in vitro and in vivo. Compared to TC-1 siRNA or radiotherapy alone, TC-1 silencing combined with radiation inhibited cell proliferation and induced apoptosis in NSCLC cell lines by inactivating of the Wnt/β-catenin signaling pathway. Furthermore, inhibition of the Wnt/β-catenin signaling pathway by XAV939, a Wnt/β-catenin signaling inhibitor, contributed to proliferation inhibition and apoptosis induction in NSCLC A549 cells. Combinative treatment of A549 xenografts with TC-1 siRNA and radiation caused significant tumor regression and inactivation of the Wnt/β-catenin signaling pathway relative to TC-1 siRNA or radiotherapy alone. The results from in vitro and in vivo studies indicated that TC-1 silencing sensitized NSCLC cell lines to radiotherapy through the Wnt/β-catenin signaling pathway. PMID:27029901
Li, Ting; Zeng, Qingwen; Chen, Xingming; Wang, Guojiang; Zhang, Haiqing; Yu, Aihua; Wang, Hairui; Hu, Yang
2018-06-01
Acne rosacea is a type of chronic dermatosis with the characteristics of erubescence, angiotelectasis and pustule formation. However, current treatment methods are limited due to the side effects. Artesunate demonstrated a promising therapeutic efficacy with a high safety margin. HaCaT cells were treated with antibacterial peptide LL‑37 to simulate rosacea caused by Demodex folliculorum (D. folliculorum) infection. Cell Counting kit 8 and flow cytometry assays were performed to measure cellular proliferation, apoptosis, the stage of the cell cycle and reactive oxygen species generation in order to determine the level of cell damage. Then the damaged cells were treated with different concentrations of artesunate and doxycycline to determine the therapeutic effect of artesunate. Pro‑inflammatory cytokines tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑6, IL‑8 and C‑C motif chemokine 2 (MCP‑1) were measured using an ELISA, while western blotting was used to detect the expression of Janus kinase 2 (JAK2) and signal transducer and transcription activator (STAT3). As a result, LL‑37 treated HaCaT cells decreased in cell viability, had an increased apoptotic rate and cell cycle arrest, indicating that cell damage caused by rosacea was simulated. In addition, upregulated concentrations of the pro‑inflammatory cytokines TNF‑α, IL‑6, IL‑8 and MCP‑1 were attenuated in the artesunate group in a dose‑dependent fashion, indicating the therapeutic effect of artesunate. Furthermore, higher concentrations of artesunate exhibited an improved effect compared with the doxycycline group. In addition, increased expression levels of JAK2 and STAT3 following treatment with LL‑37 suggested that rosacea caused by D. folliculorum infection may lead to inflammation through the JAK/STAT signaling pathway. In conclusion, the potential mechanism by which damage occurs in rosacea was revealed and a promising therapeutic method against rosacea was demonstrated.
McNew, Kelsey L; Whipple, William J; Mehta, Anita K; Grant, Trevor J; Ray, Leah; Kenny, Connor; Singh, Anurag
2016-12-01
MEK inhibitors have limited efficacy in treating RAS-RAF-MEK pathway-dependent cancers due to feedback pathway compensation and dose-limiting toxicities. Combining MEK inhibitors with other targeted agents may enhance efficacy. Here, codependencies of MEK, TAK1, and KRAS in colon cancer were investigated. Combined inhibition of MEK and TAK1 potentiates apoptosis in KRAS-dependent cells. Pharmacologic studies and cell-cycle analyses on a large panel of colon cancer cell lines demonstrate that MEK/TAK1 inhibition induces cell death, as assessed by sub-G 1 accumulation, in a distinct subset of cell lines. Furthermore, TAK1 inhibition causes G 2 -M cell-cycle blockade and polyploidy in many of the cell lines. MEK plus TAK1 inhibition causes reduced G 2 -M/polyploid cell numbers and additive cytotoxic effects in KRAS/TAK1-dependent cell lines as well as a subset of BRAF-mutant cells. Mechanistically, sensitivity to MEK/TAK1 inhibition can be conferred by KRAS and BMP receptor activation, which promote expression of NF-κB-dependent proinflammatory cytokines, driving tumor cell survival and proliferation. MEK/TAK1 inhibition causes reduced mTOR, Wnt, and NF-κB signaling in TAK1/MEK-dependent cell lines concomitant with apoptosis. A Wnt/NF-κB transcriptional signature was derived that stratifies primary tumors into three major subtypes: Wnt-high/NF-κB-low, Wnt-low/NF-κB-high and Wnt-high/NF-κB-high, designated W, N, and WN, respectively. These subtypes have distinct characteristics, including enrichment for BRAF mutations with serrated carcinoma histology in the N subtype. Both N and WN subtypes bear molecular hallmarks of MEK and TAK1 dependency seen in cell lines. Therefore, N and WN subtype signatures could be utilized to identify tumors that are most sensitive to anti-MEK/TAK1 therapeutics. This study describes a potential therapeutic strategy for a subset of colon cancers that are dependent on oncogenic KRAS signaling pathways, which are currently difficult to block with selective agents. Mol Cancer Res; 14(12); 1204-16. ©2016 AACR. ©2016 American Association for Cancer Research.
GLI1, a master regulator of the hallmark of pancreatic cancer.
Kasai, Kenji
2016-12-01
Hedgehog signaling is highly conserved across species and governs proper embryonic development. Germline gene mutations that reduce this signaling activity cause a variety of developmental abnormalities such as holoprosencephaly, while those that enhance Hedgehog signaling activity induce a tumor-predisposition condition Nevoid basal cell carcinoma syndrome. Furthermore, dysregulated activation of Hedgehog signaling has been recognized in various sporadic malignancies, including pancreatic adenocarcinoma. Pancreatic adenocarcinoma develops through a multistep carcinogenesis starting with oncogenic mutation of the KRAS gene. During this process, precancerous or cancer cells secrete Hedgehog ligand proteins to promote characteristic desmoplastic stroma around the cells, which in turn activates the expression of the downstream transcription factor GLI1 inside the cells. The quantitative and spatiotemporal dysregulation of GLI1 subsequently leads to the expression of transcriptional target genes of GLI1 that govern the hallmark of malignant properties. Here, after a brief introductory outline, a perspective is offered of Hedgehog signaling with a special focus on the role of GLI1 in pancreatic carcinogenesis. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development.
Kazanskaya, Olga; Ohkawara, Bisei; Heroult, Melanie; Wu, Wei; Maltry, Nicole; Augustin, Hellmut G; Niehrs, Christof
2008-11-01
The vertebrate embryonic vasculature develops from angioblasts, which are specified from mesodermal precursors and develop in close association with blood cells. The signals that regulate embryonic vasculogenesis and angiogenesis are incompletely understood. Here, we show that R-spondin 3 (Rspo3), a member of a novel family of secreted proteins in vertebrates that activate Wnt/beta-catenin signaling, plays a key role in these processes. In Xenopus embryos, morpholino antisense knockdown of Rspo3 induces vascular defects because Rspo3 is essential for regulating the balance between angioblast and blood cell specification. In mice, targeted disruption of Rspo3 leads to embryonic lethality caused by vascular defects. Specifically in the placenta, remodeling of the vascular plexus is impaired. In human endothelial cells, R-spondin signaling promotes proliferation and sprouting angiogenesis in vitro, indicating that Rspo3 can regulate endothelial cells directly. We show that vascular endothelial growth factor is an immediate early response gene and a mediator of R-spondin signaling. The results identify Rspo3 as a novel, evolutionarily conserved angiogenic factor in embryogenesis.
Insulin resistance, metabolic stress, and atherosclerosis
Pansuria, Meghana; Xi, Hang; Li, Le; Yang, Xiao-Feng; Wang, Hong
2012-01-01
Atherosclerosis, a pathological process that underlies the development of cardiovascular disease, is the primary cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). T2DM is characterized by hyperglycemia and insulin resistance (IR), in which target tissues fail to respond to insulin. Systemic IR is associated with impaired insulin signaling in the metabolic tissues and vasculature. Insulin receptor is highly expressed in the liver, muscle, pancreas, and adipose tissue. It is also expressed in vascular cells. It has been suggested that insulin signaling in vascular cells regulates cell proliferation and vascular function. In this review, we discuss the association between IR, metabolic stress, and atherosclerosis with focus on 1) tissue and cell distribution of insulin receptor and its differential signaling transduction and 2) potential mechanism of insulin signaling impairment and its role in the development of atherosclerosis and vascular function in metabolic disorders including hyperglycemia, hypertension, dyslipidemia, and hyperhomocysteinemia. We propose that insulin signaling impairment is the foremost biochemical mechanism underlying increased cardiovascular morbidity and mortality in atherosclerosis, T2DM, and metabolic syndrome. PMID:22202099
ROS-mediated redox signaling during cell differentiation in plants.
Schmidt, Romy; Schippers, Jos H M
2015-08-01
Reactive oxygen species (ROS) have emerged in recent years as important regulators of cell division and differentiation. The cellular redox state has a major impact on cell fate and multicellular organism development. However, the exact molecular mechanisms through which ROS manifest their regulation over cellular development are only starting to be understood in plants. ROS levels are constantly monitored and any change in the redox pool is rapidly sensed and responded upon. Different types of ROS cause specific oxidative modifications, providing the basic characteristics of a signaling molecule. Here we provide an overview of ROS sensors and signaling cascades that regulate transcriptional responses in plants to guide cellular differentiation and organ development. Although several redox sensors and cascades have been identified, they represent only a first glimpse on the impact that redox signaling has on plant development and growth. We provide an initial evaluation of ROS signaling cascades involved in cell differentiation in plants and identify potential avenues for future studies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.
Gryshchenko, Oleksiy; Gerasimenko, Julia V; Gerasimenko, Oleg V; Petersen, Ole H
2016-01-15
Bradykinin may play a role in the autodigestive disease acute pancreatitis, but little is known about its pancreatic actions. In this study, we have investigated bradykinin-elicited Ca(2+) signal generation in normal mouse pancreatic lobules. We found complete separation of Ca(2+) signalling between pancreatic acinar (PACs) and stellate cells (PSCs). Pathophysiologically relevant bradykinin concentrations consistently evoked Ca(2+) signals, via B2 receptors, in PSCs but never in neighbouring PACs, whereas cholecystokinin, consistently evoking Ca(2+) signals in PACs, never elicited Ca(2+) signals in PSCs. The bradykinin-elicited Ca(2+) signals were due to initial Ca(2+) release from inositol trisphosphate-sensitive stores followed by Ca(2+) entry through Ca(2+) release-activated channels (CRACs). The Ca(2+) entry phase was effectively inhibited by a CRAC blocker. B2 receptor blockade reduced the extent of PAC necrosis evoked by pancreatitis-promoting agents and we therefore conclude that bradykinin plays a role in acute pancreatitis via specific actions on PSCs. Normal pancreatic stellate cells (PSCs) are regarded as quiescent, only to become activated in chronic pancreatitis and pancreatic cancer. However, we now report that these cells in their normal microenvironment are far from quiescent, but are capable of generating substantial Ca(2+) signals. We have compared Ca(2+) signalling in PSCs and their better studied neighbouring acinar cells (PACs) and found complete separation of Ca(2+) signalling in even closely neighbouring PACs and PSCs. Bradykinin (BK), at concentrations corresponding to the slightly elevated plasma BK levels that have been shown to occur in the auto-digestive disease acute pancreatitis in vivo, consistently elicited substantial Ca(2+) signals in PSCs, but never in neighbouring PACs, whereas the physiological PAC stimulant cholecystokinin failed to evoke Ca(2+) signals in PSCs. The BK-induced Ca(2+) signals were mediated by B2 receptors and B2 receptor blockade protected against PAC necrosis evoked by agents causing acute pancreatitis. The initial Ca(2+) rise in PSCs was due to inositol trisphosphate receptor-mediated release from internal stores, whereas the sustained phase depended on external Ca(2+) entry through Ca(2+) release-activated Ca(2+) (CRAC) channels. CRAC channel inhibitors, which have been shown to protect PACs against damage caused by agents inducing pancreatitis, therefore also inhibit Ca(2+) signal generation in PSCs and this may be helpful in treating acute pancreatitis. © 2015 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment
Sharghi-Namini, Soheila; Tan, Evan; Ong, Lee-Ling Sharon; Ge, Ruowen; Asada, H. Harry
2014-01-01
Delta-like 4 (Dll4), a membrane-bound Notch ligand, plays a fundamental role in vascular development and angiogenesis. Dll4 is highly expressed in capillary endothelial tip cells and is involved in suppressing neighboring stalk cells to become tip cells during angiogenesis. Dll4-Notch signaling is mediated either by direct cell-cell contact or by Dll4-containing exosomes from a distance. However, whether Dll4-containing exosomes influence tip cells of existing capillaries is unknown. Using a 3D microfluidic device and time-lapse confocal microscopy, we show here for the first time that Dll4-containing exosomes causes tip cells to lose their filopodia and trigger capillary sprout retraction in collagen matrix. We demonstrate that Dll4 exosomes can freely travel through 3D collagen matrix and transfer Dll4 protein to distant tip cells. Upon reaching endothelial sprout, it causes filopodia and tip cell retraction. Continuous application of Dll4 exosomes from a distance lead to significant reduction of sprout formation. This effect correlates with Notch signaling activation upon Dll4-containing exosome interaction with recipient endothelial cells. Furthermore, we show that Dll4-containing exosomes increase endothelial cell motility while suppressing their proliferation. These data revealed novel functions of Dll4 in angiogenesis through exosomes. PMID:24504253
Bychkovskaia, I B; Fedortseva, R F
2014-01-01
The study presents the results of many-years research conducted using biological objects of different organization level. It demonstrates special species-nonspecific form of weak external signals negative effect to cells life expectancy reduction caused by program damage of cells populations. This effect is detected after weak radiation, radio-chemical and thermal influences. It leads to faster extinction of postmitotic populations which can be a reason for life expectancy reduction of multicellular organisms. A possibility of such effect inheritance in the asexual and sexual reproduction is shown. Epigenetic mechanisms of this phenomenon are assumed.
Sahoo, Subhransu S.; Quah, Min Yuan; Nielsen, Sarah; Atkins, Joshua; Au, Gough G.; Cairns, Murray J.; Nahar, Pravin; Lombard, Janine M.; Tanwar, Pradeep S.
2017-01-01
Although aggressive invasion and distant metastases are an important cause of morbidity and mortality in patients with endometrial cancer (EC), the requisite events determining this propensity are currently unknown. Using organotypic three-dimensional culture of endometrial cancer cell lines, we demonstrated anti-correlated TGF-β signalling gene expression patterns that arise among extracellular matrix (ECM)-attached cells. TGF-β pathway seemed to be active in EC cells forming non-glandular colonies in 3D-matrix but weaker in glandular colonies. Functionally we found that out of several ECM proteins, fibronectin relatively promotes Smad phosphorylation suggesting a potential role in regulating TGF-β signalling in non-glandular colonies. Importantly, alteration of TGF-β pathway induced EMT and MET in both type of colonies through slug protein. The results exemplify a crucial role of TGF-β pathway during EC metastasis in human patients and inhibition of the pathway in a murine model impaired tumour cell invasion and metastasis depicting an attractive target for therapeutic intervention of malignant tumour progression. These findings provide key insights into the role of ECM-derived TGF-β signalling to promote endometrial cancer metastasis and offer an avenue for therapeutic targeting of microenvironment derived signals along with tumour cells. PMID:29069715
Dissecting the Impact of Matrix Anchorage and Elasticity in Cell Adhesion
Pompe, Tilo; Glorius, Stefan; Bischoff, Thomas; Uhlmann, Ina; Kaufmann, Martin; Brenner, Sebastian; Werner, Carsten
2009-01-01
Abstract Extracellular matrices determine cellular fate decisions through the regulation of intracellular force and stress. Previous studies suggest that matrix stiffness and ligand anchorage cause distinct signaling effects. We show herein how defined noncovalent anchorage of adhesion ligands to elastic substrates allows for dissection of intracellular adhesion signaling pathways related to matrix stiffness and receptor forces. Quantitative analysis of the mechanical balance in cell adhesion using traction force microscopy revealed distinct scalings of the strain energy imparted by the cells on the substrates dependent either on matrix stiffness or on receptor force. Those scalings suggested the applicability of a linear elastic theoretical framework for the description of cell adhesion in a certain parameter range, which is cell-type-dependent. Besides the deconvolution of biophysical adhesion signaling, site-specific phosphorylation of focal adhesion kinase, dependent either on matrix stiffness or on receptor force, also demonstrated the dissection of biochemical signaling events in our approach. Moreover, the net contractile moment of the adherent cells and their strain energy exerted on the elastic substrate was found to be a robust measure of cell adhesion with a unifying power-law scaling exponent of 1.5 independent of matrix stiffness. PMID:19843448
Syntactic sequencing in Hebbian cell assemblies.
Wennekers, Thomas; Palm, Günther
2009-12-01
Hebbian cell assemblies provide a theoretical framework for the modeling of cognitive processes that grounds them in the underlying physiological neural circuits. Recently we have presented an extension of cell assemblies by operational components which allows to model aspects of language, rules, and complex behaviour. In the present work we study the generation of syntactic sequences using operational cell assemblies timed by unspecific trigger signals. Syntactic patterns are implemented in terms of hetero-associative transition graphs in attractor networks which cause a directed flow of activity through the neural state space. We provide regimes for parameters that enable an unspecific excitatory control signal to switch reliably between attractors in accordance with the implemented syntactic rules. If several target attractors are possible in a given state, noise in the system in conjunction with a winner-takes-all mechanism can randomly choose a target. Disambiguation can also be guided by context signals or specific additional external signals. Given a permanently elevated level of external excitation the model can enter an autonomous mode, where it generates temporal grammatical patterns continuously.
Regulation of EGFR signal transduction by analogue-to-digital conversion in endosomes
Villaseñor, Roberto; Nonaka, Hidenori; Del Conte-Zerial, Perla; Kalaidzidis, Yannis; Zerial, Marino
2015-01-01
An outstanding question is how receptor tyrosine kinases (RTKs) determine different cell-fate decisions despite sharing the same signalling cascades. Here, we uncovered an unexpected mechanism of RTK trafficking in this process. By quantitative high-resolution FRET microscopy, we found that phosphorylated epidermal growth factor receptor (p-EGFR) is not randomly distributed but packaged at constant mean amounts in endosomes. Cells respond to higher EGF concentrations by increasing the number of endosomes but keeping the mean p-EGFR content per endosome almost constant. By mathematical modelling, we found that this mechanism confers both robustness and regulation to signalling output. Different growth factors caused specific changes in endosome number and size in various cell systems and changing the distribution of p-EGFR between endosomes was sufficient to reprogram cell-fate decision upon EGF stimulation. We propose that the packaging of p-RTKs in endosomes is a general mechanism to ensure the fidelity and specificity of the signalling response. DOI: http://dx.doi.org/10.7554/eLife.06156.001 PMID:25650738
Sensing the Environment Through Sestrins: Implications for Cellular Metabolism.
Parmigiani, A; Budanov, A V
2016-01-01
Sestrins are a family of stress-responsive genes that have evolved to attenuate damage induced by stress caused to the cell. By virtue of their antioxidant activity, protein products of Sestrin genes prevent the accumulation of reactive oxygen species within the cell, thereby attenuating the detrimental effects of oxidative stress. In parallel, Sestrins participate in several signaling pathways that control the activity of the target of rapamycin protein kinase (TOR). TOR is a crucial sensor of intracellular and extracellular conditions that promotes cell growth and anabolism when nutrients and growth factors are abundant. In addition to reacting to stress-inducing insults, Sestrins also monitor the changes in the availability of nutrients, which allows them to serve as a key checkpoint for the TOR-regulated signaling pathways. In this review, we will discuss how Sestrins integrate signals from numerous stress- and nutrient-responsive signaling pathways to orchestrate cellular metabolism and support cell viability. Copyright © 2016 Elsevier Inc. All rights reserved.
Fyn/Yes and non-canonical Wnt signalling converge on RhoA in vertebrate gastrulation cell movements
Jopling, Chris; den Hertog, Jeroen
2005-01-01
Convergent extension (CE) cell movements during gastrulation mediate extension of the anterior–posterior body axis of vertebrate embryos. Non-canonical Wnt5 and Wnt11 signalling is essential for normal CE movements in vertebrate gastrulation. Here, we show that morpholino (MO)-mediated double knock-down of the Fyn and Yes tyrosine kinases in zebrafish embryos impaired normal CE cell movements, resembling the silberblick and pipetail mutants, caused by mutations in wnt11 and wnt5, respectively. Co-injection of Fyn/Yes- and Wnt11- or Wnt5-MO was synergistic, but wnt11 or wnt5 RNA did not rescue the Fyn/Yes knockdown or vice versa. Remarkably, active RhoA rescued the Fyn/Yes knockdown as well as the Wnt11 knockdown, indicating that Fyn/Yes and Wnt11 signalling converged on RhoA. Our results show that Fyn and Yes act together with non-canonical Wnt signalling via RhoA in CE cell movements during gastrulation. PMID:15815683
Multiple Facets of cAMP Signalling and Physiological Impact: cAMP Compartmentalization in the Lung
Oldenburger, Anouk; Maarsingh, Harm; Schmidt, Martina
2012-01-01
Therapies involving elevation of the endogenous suppressor cyclic AMP (cAMP) are currently used in the treatment of several chronic inflammatory disorders, including chronic obstructive pulmonary disease (COPD). Characteristics of COPD are airway obstruction, airway inflammation and airway remodelling, processes encompassed by increased airway smooth muscle mass, epithelial changes, goblet cell and submucosal gland hyperplasia. In addition to inflammatory cells, airway smooth muscle cells and (myo)fibroblasts, epithelial cells underpin a variety of key responses in the airways such as inflammatory cytokine release, airway remodelling, mucus hypersecretion and airway barrier function. Cigarette smoke, being next to environmental pollution the main cause of COPD, is believed to cause epithelial hyperpermeability by disrupting the barrier function. Here we will focus on the most recent progress on compartmentalized signalling by cAMP. In addition to G protein-coupled receptors, adenylyl cyclases, cAMP-specific phospho-diesterases (PDEs) maintain compartmentalized cAMP signalling. Intriguingly, spatially discrete cAMP-sensing signalling complexes seem also to involve distinct members of the A-kinase anchoring (AKAP) superfamily and IQ motif containing GTPase activating protein (IQGAPs). In this review, we will highlight the interaction between cAMP and the epithelial barrier to retain proper lung function and to alleviate COPD symptoms and focus on the possible molecular mechanisms involved in this process. Future studies should include the development of cAMP-sensing multiprotein complex specific disruptors and/or stabilizers to orchestrate cellular functions. Compartmentalized cAMP signalling regulates important cellular processes in the lung and may serve as a therapeutic target. PMID:24281338
Notch and the awesome power of genetics.
Greenwald, Iva
2012-07-01
Notch is a receptor that mediates cell-cell interactions in animal development, and aberrations in Notch signal transduction can cause cancer and other human diseases. Here, I describe the major advances in the Notch field from the identification of the first mutant in Drosophila almost a century ago through the elucidation of the unusual mechanism of signal transduction a little over a decade ago. As an essay for the GENETICS Perspectives series, it is my personal and critical commentary as well as an historical account of discovery.
BG60S dissolution interferes with osteoblast calcium signals.
Valério, P; Pereira, M M; Goes, A M; Leite, M F
2007-02-01
We investigated the influence of extracellular calcium concentration, caused by the dissolution of a bioactive glass with 60% of silicon (BG60S), on intracellular calcium (Ca(i) (2 +)) signals and expression of inositol 1, 4, 5-triphosphate receptors (InsP(3)R) in primary culture of osteoblasts. We found that BG60S caused an increase in Ca(i) (2 +) signals in this cell type. Additionally, osteoblasts pre-incubated in the presence of BG60S showed an increase in Ca(i) (2 +) when cells were stimulated with vasopressin. On the other hand, a decrease in Ca(i) (2 +) signals were observed in osteoblasts pre-treated with BG60S and stimulated with KCl. We furher found that in osteoblasts, the type I InsP(3)R is preferentially distributed in the nucleus while the type II InsP(3)R in the cytoplasm. Preincubation of osteoblasts with BG60S altered the receptor expression level, increasing the type I InsP(3)R in the nucleus and decreasing type II InsP(3)R in the cytosol. Together, our results showed that in osteoblasts, BG60S increased Ca(i) (2 +)signals and altered Ca(i) (2 +) machinery.
Sarkar, Sanjay; Balasuriya, Udeni B R; Horohov, David W; Chambers, Thomas M
2016-05-01
Equine herpesvirus-1 (EHV-1) is a major respiratory viral pathogen of horses, causing upper respiratory tract disease, abortion, neonatal death, and neurological disease that may lead to paralysis and death. EHV-1 replicates initially in the respiratory epithelium and then spreads systemically to endothelial cells lining the small blood vessels in the uterus and spinal cord leading to abortion and EHM in horses. Like other herpesviruses, EHV-1 employs a variety of mechanisms for immune evasion including suppression of type-I interferon (IFN) production in equine endothelial cells (EECs). Previously we have shown that the neuropathogenic T953 strain of EHV-1 inhibits type-I IFN production in EECs and this is mediated by a viral late gene product. But the mechanism of inhibition was not known. Here we show that T953 strain infection of EECs induced degradation of endogenous IRF-3 protein. This in turn interfered with the activation of IRF-3 signaling pathways. EHV-1 infection caused the activation of the NF-κB signaling pathways, suggesting that inhibition of type-I IFN production is probably due to interference in IRF-3 and not NF-κB signal transduction. Copyright © 2016 Elsevier B.V. All rights reserved.
Gα modulates salt-induced cellular senescence and cell division in rice and maize
Urano, Daisuke; Colaneri, Alejandro; Jones, Alan M.
2014-09-16
The plant G-protein network, comprising Gα, Gβ, and Gγ core subunits, regulates development, senses sugar, and mediates biotic and abiotic stress responses. Here in this paper, we report G-protein signalling in the salt stress response using two crop models, rice and maize. Loss-of-function mutations in the corresponding genes encoding the Gα subunit attenuate growth inhibition and cellular senescence caused by sodium chloride (NaCl). Gα null mutations conferred reduced leaf senescence, chlorophyll degradation, and cytoplasm electrolyte leakage under NaCl stress. Sodium accumulated in both wild-type and Gα-mutant shoots to the same levels, suggesting that Gα signalling controls cell death in leavesmore » rather than sodium exclusion in roots. Growth inhibition is probably initiated by osmotic change around root cells, because KCl and MgSO 4 also suppressed seedling growth equally as well as NaCl. NaCl lowered rates of cell division and elongation in the wild-type leaf sheath to the level of the Gα-null mutants; however there was no NaCl-induced decrease in cell division in the Gα mutant, implying that the osmotic phase of salt stress suppresses cell proliferation through the inhibition of Gα-coupled signalling. These results reveal two distinct functions of Gα in NaCl stress in these grasses: attenuation of leaf senescence caused by sodium toxicity in leaves, and cell cycle regulation by osmotic/ionic stress.« less
Moen, Erick K.; Ibey, Bennett L.; Beier, Hope T.
2014-01-01
The requirement of center asymmetry for the creation of second harmonic generation (SHG) signals makes it an attractive technique for visualizing changes in interfacial layers such as the plasma membrane of biological cells. In this article, we explore the use of lipophilic SHG probes to detect minute perturbations in the plasma membrane. Three candidate probes, Di-4-ANEPPDHQ (Di-4), FM4-64, and all-trans-retinol, were evaluated for SHG effectiveness in Jurkat cells. Di-4 proved superior with both strong SHG signal and limited bleaching artifacts. To test whether rapid changes in membrane symmetry could be detected using SHG, we exposed cells to nanosecond-pulsed electric fields, which are believed to cause formation of nanopores in the plasma membrane. Upon nanosecond-pulsed electric fields exposure, we observed an instantaneous drop of ∼50% in SHG signal from the anodic pole of the cell. When compared to the simultaneously acquired fluorescence signals, it appears that the signal change was not due to the probe diffusing out of the membrane or changes in membrane potential or fluidity. We hypothesize that this loss in SHG signal is due to disruption in the interfacial nature of the membrane. The results show that SHG imaging has great potential as a tool for measuring rapid and subtle plasma membrane disturbance in living cells. PMID:24853757
Moen, Erick K; Ibey, Bennett L; Beier, Hope T
2014-05-20
The requirement of center asymmetry for the creation of second harmonic generation (SHG) signals makes it an attractive technique for visualizing changes in interfacial layers such as the plasma membrane of biological cells. In this article, we explore the use of lipophilic SHG probes to detect minute perturbations in the plasma membrane. Three candidate probes, Di-4-ANEPPDHQ (Di-4), FM4-64, and all-trans-retinol, were evaluated for SHG effectiveness in Jurkat cells. Di-4 proved superior with both strong SHG signal and limited bleaching artifacts. To test whether rapid changes in membrane symmetry could be detected using SHG, we exposed cells to nanosecond-pulsed electric fields, which are believed to cause formation of nanopores in the plasma membrane. Upon nanosecond-pulsed electric fields exposure, we observed an instantaneous drop of ~50% in SHG signal from the anodic pole of the cell. When compared to the simultaneously acquired fluorescence signals, it appears that the signal change was not due to the probe diffusing out of the membrane or changes in membrane potential or fluidity. We hypothesize that this loss in SHG signal is due to disruption in the interfacial nature of the membrane. The results show that SHG imaging has great potential as a tool for measuring rapid and subtle plasma membrane disturbance in living cells. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Bao, Zhengzheng; Malki, Mohammad I.; Forootan, Shiva S.; Adamson, Janet; Forootan, Farzad S.; Chen, Danqing; Foster, Christopher S.; Rudland, Philip S.
2013-01-01
Cutaneous fatty acid–binding protein (C-FABP), a cancer promoter and metastasis inducer, is overexpressed in the majority of prostatic carcinomas. Investigation of molecular mechanisms involved in tumor-promoting activity of C-FABP has established that there is a fatty acid–initiated signaling pathway leading to malignant progression of prostatic cancer cells. Increased C-FABP expression plays an important role in this novel signaling pathway. Thus, when C-FABP expression is increased, excessive amounts of fatty acids are transported into the nucleus where they act as signaling molecules to stimulate their nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ). The activated PPARγ then modulates the expression of its downstream target regulatory genes, which eventually lead to enhanced tumor expansion and aggressiveness caused by an overgrowth of cells with reduced apoptosis and an increased angiogenesis. PMID:24167657
... are episodes of disturbed brain function that cause changes in attention or behavior. They are caused by abnormally excited electrical signals in the brain, like a lightning storm in the brain. Seizure types vary ... all seizures result from a sudden change in how the cells of the brain send ...
Kawai, Shigeyuki; Urban, Jörg; Piccolis, Manuele; Panchaud, Nicolas; De Virgilio, Claudio; Loewith, Robbie
2011-10-01
TORC1-dependent phosphorylation of Saccharomyces cerevisiae Sch9 was dramatically reduced upon exposure to a protonophore or in respiration-incompetent ρ(0) cells but not in respiration-incompetent pet mutants, providing important insight into the molecular mechanisms governing interorganellar signaling in general and retrograde signaling in particular.
Norambuena, Andrés; Wallrabe, Horst; McMahon, Lloyd; Silva, Antonia; Swanson, Eric; Khan, Shahzad S.; Baerthlein, Daniel; Kodis, Erin; Oddo, Salvatore; Mandell, James W.; Bloom, George S.
2016-01-01
A major obstacle to pre-symptomatic diagnosis and disease-modifying therapy for Alzheimer's disease (AD) is inadequate understanding of molecular mechanisms of AD pathogenesis. For example, impaired brain insulin signaling is an AD hallmark, but whether and how it might contribute to the synaptic dysfunction and neuron death that underlie memory and cognitive impairment has been mysterious. Neuron death in AD is often caused by cell cycle re-entry (CCR) mediated by amyloid-β oligomers (AβOs) and tau, the precursors of plaques and tangles. We now report that CCR results from AβO-induced activation of the protein kinase complex, mTORC1, at the plasma membrane and mTORC1-dependent tau phosphorylation, and that CCR can be prevented by insulin-stimulated activation of lysosomal mTORC1. AβOs were also shown previously to reduce neuronal insulin signaling. Our data therefore indicate that the decreased insulin signaling provoked by AβOs unleashes their toxic potential to cause neuronal CCR, and by extension, neuron death. PMID:27693185
A POGLUT1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss.
Servián-Morilla, Emilia; Takeuchi, Hideyuki; Lee, Tom V; Clarimon, Jordi; Mavillard, Fabiola; Area-Gómez, Estela; Rivas, Eloy; Nieto-González, Jose L; Rivero, Maria C; Cabrera-Serrano, Macarena; Gómez-Sánchez, Leonardo; Martínez-López, Jose A; Estrada, Beatriz; Márquez, Celedonio; Morgado, Yolanda; Suárez-Calvet, Xavier; Pita, Guillermo; Bigot, Anne; Gallardo, Eduard; Fernández-Chacón, Rafael; Hirano, Michio; Haltiwanger, Robert S; Jafar-Nejad, Hamed; Paradas, Carmen
2016-11-01
Skeletal muscle regeneration by muscle satellite cells is a physiological mechanism activated upon muscle damage and regulated by Notch signaling. In a family with autosomal recessive limb-girdle muscular dystrophy, we identified a missense mutation in POGLUT1 (protein O-glucosyltransferase 1), an enzyme involved in Notch posttranslational modification and function. In vitro and in vivo experiments demonstrated that the mutation reduces O-glucosyltransferase activity on Notch and impairs muscle development. Muscles from patients revealed decreased Notch signaling, dramatic reduction in satellite cell pool and a muscle-specific α-dystroglycan hypoglycosylation not present in patients' fibroblasts. Primary myoblasts from patients showed slow proliferation, facilitated differentiation, and a decreased pool of quiescent PAX7 + cells. A robust rescue of the myogenesis was demonstrated by increasing Notch signaling. None of these alterations were found in muscles from secondary dystroglycanopathy patients. These data suggest that a key pathomechanism for this novel form of muscular dystrophy is Notch-dependent loss of satellite cells. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Inhibition of mutant BRAF splice variant signaling by next-generation, selective RAF inhibitors.
Basile, Kevin J; Le, Kaitlyn; Hartsough, Edward J; Aplin, Andrew E
2014-05-01
Vemurafenib and dabrafenib block MEK-ERK1/2 signaling and cause tumor regression in the majority of advanced-stage BRAF(V600E) melanoma patients; however, acquired resistance and paradoxical signaling have driven efforts for more potent and selective RAF inhibitors. Next-generation RAF inhibitors, such as PLX7904 (PB04), effectively inhibit RAF signaling in BRAF(V600E) melanoma cells without paradoxical effects in wild-type cells. Furthermore, PLX7904 blocks the growth of vemurafenib-resistant BRAF(V600E) cells that express mutant NRAS. Acquired resistance to vemurafenib and dabrafenib is also frequently driven by expression of mutation BRAF splice variants; thus, we tested the effects of PLX7904 and its clinical analog, PLX8394 (PB03), in BRAF(V600E) splice variant-mediated vemurafenib-resistant cells. We show that paradox-breaker RAF inhibitors potently block MEK-ERK1/2 signaling, G1/S cell cycle events, survival and growth of vemurafenib/PLX4720-resistant cells harboring distinct BRAF(V600E) splice variants. These data support the further investigation of paradox-breaker RAF inhibitors as a second-line treatment option for patients failing on vemurafenib or dabrafenib. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Reshetnyak, V. Yu.; Pinkevych, I. P.; Evans, D. R.
2018-06-01
We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive cholesteric cell with a short-pitch helix oriented parallel to the cell substrates (so-called uniformly lying helix configuration). Weak and strong light beams incident on the hybrid cell interfere and induce a periodic space-charge field in the photorefractive substrate of the cell, which penetrates into the cholesteric liquid crystal (LC). Due to the flexoelectro-optic effect an interaction of the photorefractive field with the LC flexopolarization causes the spatially periodic modulation of the helix axis in the plane parallel to the cell substrates. Coupling of a weak signal beam with a strong pump beam at the LC permittivity grating, induced by the periodically tilted helix axis, leads to the energy gain of the weak signal beam. Dependence of the signal beam gain coefficient on the parameters of the short-pitch cholesteric LC is studied.
Torbett, Neil E; Luna, Antonio; Knight, Zachary A.; Houk, Andrew; Moasser, Mark; Weiss, William; Shokat, Kevan M.; Stokoe, David
2011-01-01
Synopsis The Phosphoinositide-3-kinase (PI3K) pathway regulates cell proliferation, survival and migration and is consequently of great interest for targeted cancer therapy. Using a panel of small molecule PI3K isoform-selective inhibitors in a diverse set of breast cancer cell lines, we demonstrate that the biochemical and biological responses were highly variable and dependent on the genetic alterations present. p110α inhibitors were generally effective in inhibiting the phosphorylation of Akt and S6, two downstream components of PI3K signaling, in most cell lines examined. In contrast, 110β selective inhibitors only reduced Akt phosphorylation in PTEN mutant cell lines, and was associated with a lesser decrease in S6 phosphorylation. PI3K inhibitors reduced cell viability by causing a cell cycle arrest in the G1 phase of the cell cycle, with multi-targeted inhibitors causing the most potent effects. Cells expressing mutant Ras were resistant to the cell cycle effects of PI3K inhibition, which could be reversed using inhibitors of Ras signaling pathways. Taken together our data indicates that these compounds, alone or in suitable combinations, may be useful as breast cancer therapeutics, when used in appropriate genetic contexts. PMID:18498248
Zhang, Xianming; Tan, Fulong; Brovkovych, Viktor; Zhang, Yongkang; Skidgel, Randal A.
2011-01-01
G protein-coupled receptor (GPCR) signaling is affected by formation of GPCR homo- or heterodimers, but GPCR regulation by other cell surface proteins is not well understood. We reported that the kinin B1 receptor (B1R) heterodimerizes with membrane carboxypeptidase M (CPM), facilitating receptor signaling via CPM-mediated conversion of bradykinin or kallidin to des-Arg kinin B1R agonists. Here, we found that a catalytically inactive CPM mutant that still binds substrate (CPM-E264Q) also facilitates efficient B1R signaling by B2 receptor agonists bradykinin or kallidin. This response required co-expression of B1R and CPM-E264Q in the same cell, was disrupted by antibody that dissociates CPM from B1R, and was not found with a CPM-E264Q-B1R fusion protein. An additional mutation that reduced the affinity of CPM for C-terminal Arg and increased the affinity for C-terminal Lys inhibited the B1R response to bradykinin (with C-terminal Arg) but generated a response to Lys9-bradykinin. CPM-E264Q-mediated activation of B1Rs by bradykinin resulted in increased intramolecular fluorescence resonance energy transfer (FRET) in a B1R FRET construct, similar to that generated directly by a B1R agonist. In cytokine-treated human lung microvascular endothelial cells, disruption of B1R-CPM heterodimers inhibited B1R-dependent NO production stimulated by bradykinin and blocked the increased endothelial permeability caused by treatment with bradykinin and pyrogallol (a superoxide generator). Thus, CPM and B1Rs on cell membranes form a critical complex that potentiates B1R signaling. Kinin peptide binding to CPM causes a conformational change in the B1R leading to intracellular signaling and reveals a new mode of GPCR activation by a cell surface peptidase. PMID:21454694
Mechanotransduction and the functional response of bone to mechanical strain
NASA Technical Reports Server (NTRS)
Duncan, R. L.; Turner, C. H.
1995-01-01
Mechanotransduction plays a crucial role in the physiology of many tissues including bone. Mechanical loading can inhibit bone resorption and increase bone formation in vivo. In bone, the process of mechanotransduction can be divided into four distinct steps: (1) mechanocoupling, (2) biochemical coupling, (3) transmission of signal, and (4) effector cell response. In mechanocoupling, mechanical loads in vivo cause deformations in bone that stretch bone cells within and lining the bone matrix and create fluid movement within the canaliculae of bone. Dynamic loading, which is associated with extracellular fluid flow and the creation of streaming potentials within bone, is most effective for stimulating new bone formation in vivo. Bone cells in vitro are stimulated to produce second messengers when exposed to fluid flow or mechanical stretch. In biochemical coupling, the possible mechanisms for the coupling of cell-level mechanical signals into intracellular biochemical signals include force transduction through the integrin-cytoskeleton-nuclear matrix structure, stretch-activated cation channels within the cell membrane, G protein-dependent pathways, and linkage between the cytoskeleton and the phospholipase C or phospholipase A pathways. The tight interaction of each of these pathways would suggest that the entire cell is a mechanosensor and there are many different pathways available for the transduction of a mechanical signal. In the transmission of signal, osteoblasts, osteocytes, and bone lining cells may act as sensors of mechanical signals and may communicate the signal through cell processes connected by gap junctions. These cells also produce paracrine factors that may signal osteoprogenitors to differentiate into osteoblasts and attach to the bone surface. Insulin-like growth factors and prostaglandins are possible candidates for intermediaries in signal transduction. In the effector cell response, the effects of mechanical loading are dependent upon the magnitude, duration, and rate of the applied load. Longer duration, lower amplitude loading has the same effect on bone formation as loads with short duration and high amplitude. Loading must be cyclic to stimulate new bone formation. Aging greatly reduces the osteogenic effects of mechanical loading in vivo. Also, some hormones may interact with local mechanical signals to change the sensitivity of the sensor or effector cells to mechanical load.
Characterization of Antiapoptotic Activities of Chlamydia pneumoniae in Human Cells
Fischer, Silke F.; Schwarz, Claudia; Vier, Juliane; Häcker, Georg
2001-01-01
Chlamydia pneumoniae is an obligate intracellular bacterium which frequently causes airway infection in humans and has been implicated in atherosclerosis. Here we show that infection with C. pneumoniae protects HeLa human epithelioid cells against apoptosis induced by external stimuli. In infected HeLa cells, apoptosis induced by staurosporine and CD95-death-receptor signaling was strongly reduced. Upon treatment with staurosporine, generation of effector caspase activity, processing of caspase-3 and caspase-9 and cytochrome c redistribution were all profoundly inhibited in cells infected with C. pneumoniae. Bacterial protein synthesis during early infection was required for this inhibition. Furthermore, cytochrome c-induced processing and activation of caspases were inhibited in cytosolic extracts from infected cells, suggesting that a C. pneumoniae-dependent antiapoptotic factor was generated in the cytosol upon infection. Infection with C. pneumoniae failed to induce significant NF-κB activation in HeLa cells, indicating that no NF-κB-dependent cellular factors were involved in the protection against apoptosis. These results show that C. pneumoniae is capable of interfering with the host cell's apoptotic apparatus at probably at least two steps in signal transduction and might explain the propensity of these bacteria to cause chronic infections in humans. PMID:11598088
Saranya, Jayaram; Shilpa, Ganesan; Raghu, Kozhiparambil G.; Priya, Sulochana
2017-01-01
Lectins are a unique class of carbohydrate binding proteins/glycoproteins, and many of them possess anticancer properties. They can induce cell cycle arrest and apoptosis, inhibit protein synthesis, telomerase activity and angiogenesis in cancer cells. In the present study, we have demonstrated the effect of Morus alba leaf lectin (MLL) on anoikis induction in MCF-7 cells. Anoikis induction in cancer cells has a significant role in preventing early stage metastasis. MLL treatment in monolayers of MCF-7 cells caused significant detachment of cells in a time and concentration dependent manner. The detached cells failed to re-adhere and grew even to culture plates coated with different matrix proteins. DNA fragmentation, membrane integrity studies, annexin V staining, caspase 9 activation and upregulation of Bax/Bad confirmed that the detached cells underwent apoptosis. Upregulation of matrix metalloproteinase 9 (MMP-9) caused a decrease in fibronectin (FN) production which facilitated the cells to detach by blocking the FN mediated downstream signaling. On treatment with MLL, we have observed downregulation of integrin expression, decreased phosphorylation of focal adhesion kinase (FAK), loss in FAK-integrin interaction and active Ras. MLL treatment downregulated the levels of phosphorylated Akt and PI3K. Also, we have studied the effect of MLL on two stress activated protein kinases p38 MAPK and JNK. p38 MAPK activation was found to be elevated, but there was no change in the level of JNK. Thus our study substantiated the possible antimetastatic effect of MLL by inducing anoikis in MCF-7 cells by activation of caspase 9 and proapoptotic Bax/Bad by blockage of FN mediated integrin/FAK signaling and partly by activation of p38 MAPK. PMID:28223935
Analysis of DOK-6 function in downstream signaling of RET in human neuroblastoma cells.
Kurotsuchi, Ai; Murakumo, Yoshiki; Jijiwa, Mayumi; Kurokawa, Kei; Itoh, Yasutomo; Kodama, Yoshinori; Kato, Takuya; Enomoto, Atsushi; Asai, Naoya; Terasaki, Hiroko; Takahashi, Masahide
2010-05-01
Point mutations and structural alterations of the RET tyrosine kinase gene cause multiple endocrine neoplasia type 2 (MEN 2) and papillary thyroid carcinoma, respectively. RET activation by glial cell line-derived neurotrophic factor (GDNF) is essential for the development of the enteric nervous system and the kidney. The signal through RET tyrosine kinase requires several adaptor proteins including the DOK (downstream of kinase) family of proteins. Of the seven members of the DOK protein family, DOK-1, -4, -5, and -6 have been reported to play roles in the GDNF-RET signaling pathway. Although DOK-6 has been shown to bind to RET and promote GDNF-induced neurite outgrowth in mouse Neuro2A cells, DOK-6 function in human cells remains unclear. In the present study, we investigated the role of DOK-6 in GDNF-RET signaling in human cells including neuroblastoma cells. DOK-6 was constitutively localized to the plasma membrane via its pleckstrin homology (PH) domain, and was phosphorylated following RET activation via a MEN2A mutation or GDNF stimulation. However, DOK-6 could not significantly affect downstream signaling and neurite outgrowth in human neuroblastoma cells. The binding affinity of the DOK-6 phosphotyrosine-binding (PTB) domain to RET was much lower than that of the DOK-1, DOK-4, and SHC PTB domains to RET. These findings indicate that DOK-6 is involved in RET signaling with less influence when compared with DOK-1, DOK-4, and SHC.
Feng, Weiguo; Zhou, Defang; Meng, Wei; Li, Gen; Zhuang, Pingping; Pan, Zhifang; Wang, Guihua; Cheng, Ziqiang
2017-03-01
Avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, induces growth retardation and neoplasia in chickens, leading to enormous economic losses in poultry industry. Increasing evidences showed several signal pathways involved in ALV-J infection. However, what signaling pathway involved in growth retardation is largely unknown. To explore the possible signaling pathway, we tested the cell proliferation and associated miRNAs in ALV-J infected CEF cells by CCK-8 and Hiseq, respectively. The results showed that cell proliferation was significantly inhibited by ALV-J and three associated miRNAs were identified to target Wnt/β-catenin pathway. To verify the Wnt/β-catenin pathway involved in cell growth retardation, we analyzed the key molecules of Wnt pathway in ALV-J infected CEF cells. Our data demonstrated that protein expression of β-catenin was decreased significantly post ALV-J infection compared with the normal (P < 0.05). The impact of this down-regulation caused low expression of known target genes (Axin2, CyclinD1, Tcf4 and Lef1). Further, to obtain in vivo evidence, we set up an ALV-J infection model. Post 7 weeks infection, ALV-J infected chickens showed significant growth retardation. Subsequent tests showed that the expression of β-catenin, Tcf1, Tcf4, Lef1, Axin2 and CyclinD1 were down-regulated in muscles of growth retardation chickens. Taken together, all data demonstrated that chicken growth retardation caused by ALV-J associated with down-regulated Wnt/β-catenin signaling pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multiple studies conducted by NHEERL scientists in recent years have shown that acute exposure to metals found associated with combustion-derived particulate matter (PM) alters phosphoprotein metabolism in human airway epithelial cells causing intracellular signaling. This disreg...
Gorrepati, Lakshmi; Krause, Michael W; Chen, Weiping; Brodigan, Thomas M; Correa-Mendez, Margarita; Eisenmann, David M
2015-06-05
The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells. Copyright © 2015 Gorrepati et al.
Characterization of a diffusible signaling factor from Xylella fastidiosa.
Beaulieu, Ellen D; Ionescu, Michael; Chatterjee, Subhadeep; Yokota, Kenji; Trauner, Dirk; Lindow, Steven
2013-01-08
Cell-cell signaling in Xylella fastidiosa has been implicated in the coordination of traits enabling colonization in plant hosts as well as insect vectors. This cell density-dependent signaling has been attributed to a diffusible signaling factor (DSF) produced by the DSF synthase RpfF. DSF produced by related bacterial species are unsaturated fatty acids, but that of X. fastidiosa was thought to be different from those of other taxa. We describe here the isolation and characterization of an X. fastidiosa DSF (XfDSF) as 2(Z)-tetradecenoic acid. This compound was isolated both from recombinant Erwinia herbicola expressing X. fastidiosa rpfF and from an X. fastidiosa rpfC deletion mutant that overproduces DSF. Since an rpfF mutant is impaired in biofilm formation and underexpresses the hemagglutinin-like protein-encoding genes hxfA and hxfB, we demonstrate that these traits can be restored by ca. 0.5 µM XfDSF but not by myristic acid, the fully saturated tetradecenoic acid. A phoA-based X. fastidiosa biosensor that assesses DSF-dependent expression of hxfA or hxfB revealed a high level of molecular specificity of DSF signaling. X. fastidiosa causes diseases in many important plants, including grape, where it incites Pierce's disease. Virulence of X. fastidiosa for grape is coordinated by cell-cell signaling molecules, designated DSF (Diffusible Signaling Factor). Mutants blocked in DSF production are hypervirulent for grape, suggesting that virulence is suppressed upon DSF accumulation and that disease could be controlled by artificial elevation of the DSF level in plants. In this work, we describe the isolation of the DSF produced by X. fastidiosa and the verification of its biological activity as an antivirulence factor. We also have developed X. fastidiosa DSF biosensors to evaluate the specificity of cell-cell signaling to be investigated.
Fan, You-Ling; Li, Heng-Chang; Zhao, Wei; Peng, Hui-Hua; Huang, Fang; Jiang, Wei-Hang; Xu, Shi-Yuan
2016-09-01
Bupivacaine is widely used for regional anesthesia, spinal anesthesia, and pain management. However, bupivacaine could cause neuronal injury. Curcumin, a low molecular weight polyphenol, has a variety of bioactivities and may exert neuroprotective effects against damage induced by some stimuli. In the present study, we tested whether curcumin could attenuate bupivacaine-induced neurotoxicity in SH-SY5Y cells. Cell injury was evaluated by examining cell viability, mitochondrial damage and apoptosis. We also investigated the levels of activation of the Akt signaling pathway and the effect of Akt inhibition by triciribine on cell injury following bupivacaine and curcumin treatment. Our findings showed that the bupivacaine treatment could induce neurotoxicity. Pretreatment of the SH-SY5Y cells with curcumin significantly attenuated bupivacaine-induced neurotoxicity. Interestingly, the curcumin treatment increased the levels of Akt phosphorylation. More significantly, the pharmacological inhibition of Akt abolished the cytoprotective effect of curcumin against bupivacaine-induced cell injury. Our data suggest that pretreating SH-SY5Y cells with curcumin provides a protective effect on bupivacaine-induced neuronal injury via activation of the Akt signaling pathway.
Ishida, Sachiko; Matsu-ura, Toru; Fukami, Kiyoko; Michikawa, Takayuki; Mikoshiba, Katsuhiko
2014-01-01
A uniform extracellular stimulus triggers cell-specific patterns of Ca2+ signals, even in genetically identical cell populations. However, the underlying mechanism that generates the cell-to-cell variability remains unknown. We monitored cytosolic inositol 1,4,5-trisphosphate (IP3) concentration changes using a fluorescent IP3 sensor in single HeLa cells showing different patterns of histamine-induced Ca2+ oscillations in terms of the time constant of Ca2+ spike amplitude decay and the Ca2+ oscillation frequency. HeLa cells stimulated with histamine exhibited a considerable variation in the temporal pattern of Ca2+ signals and we found that there were cell-specific IP3 dynamics depending on the patterns of Ca2+ signals. RT-PCR and western blot analyses showed that phospholipase C (PLC)-β1, -β3, -β4, -γ1, -δ3 and -ε were expressed at relatively high levels in HeLa cells. Small interfering RNA-mediated silencing of PLC isozymes revealed that PLC-β1 and PLC-β4 were specifically involved in the histamine-induced IP3 increases in HeLa cells. Modulation of IP3 dynamics by knockdown or overexpression of the isozymes PLC-β1 and PLC-β4 resulted in specific changes in the characteristics of Ca2+ oscillations, such as the time constant of the temporal changes in the Ca2+ spike amplitude and the Ca2+ oscillation frequency, within the range of the cell-to-cell variability found in wild-type cell populations. These findings indicate that the heterogeneity in the process of IP3 production, rather than IP3-induced Ca2+ release, can cause cell-to-cell variability in the patterns of Ca2+ signals and that PLC-β1 and PLC-β4 contribute to generate cell-specific Ca2+ signals evoked by G protein-coupled receptor stimulation. PMID:24475116
Quercetin protects against radiocontrast medium toxicity in human renal proximal tubular cells.
Andreucci, Michele; Faga, Teresa; Pisani, Antonio; Serra, Raffaele; Russo, Domenico; De Sarro, Giovambattista; Michael, Ashour
2018-05-01
Radiocontrast media (RCM)-induced acute kidney injury (CI-AKI) is a major clinical problem whose pathophysiology is not well understood. Direct toxic effects on renal cells, possibly mediated by reactive oxygen species, have been postulated as contributing to CI-AKI. We investigated the effect of quercetin on human renal proximal tubular (HK-2) cells treated with the radiocontrast medium (RCM) sodium diatrizoate. Quercetin is the most widely studied flavonoid, and the most abundant flavonol present in foods. It has been suggested to have many health benefits, including angioprotective properties and anti-cancer effects. These beneficial effects have been attributed to its antioxidant properties and its ability to modulate cell signaling pathways. Incubation of HK-2 cells with 100 μM quercetin caused a decrease in cell viability and pre-treatment of HK-2 cells with 100 μM quercetin followed by incubation with 75 mgI/ml sodium diatrizoate for 2 hr caused a decrease in cell viability which was worse than in cells treated with diatrizoate alone. However, further incubation of the cells (for 22 hr) after removal of the diatrizoate and quercetin caused a recovery in cell viability in those cells previously treated with quercetin + diatrizoate and quercetin alone. Analysis of signaling molecules by Western blotting showed that in RCM-treated cells receiving initial pre-treatment with quercetin, followed by its removal, an increase in phosphorylation of Akt (Ser473), pSTAT3 (Tyr705), and FoxO3a (Thr32) as well as an induction of Pim-1 and decrease in PARP1 cleavage were observed. Quercetin may alleviate the longer-term toxic effects of RCM toxicity and its possible beneficial effects should be further investigated. © 2017 Wiley Periodicals, Inc.
The apical complex couples cell fate and cell survival to cerebral cortical development
Kim, Seonhee; Lehtinen, Maria K.; Sessa, Alessandro; Zappaterra, Mauro; Cho, Seo-Hee; Gonzalez, Dilenny; Boggan, Brigid; Austin, Christina A.; Wijnholds, Jan; Gambello, Michael J.; Malicki, Jarema; LaMantia, Anthony S.; Broccoli, Vania; Walsh, Christopher A.
2010-01-01
Cortical development depends upon tightly controlled cell fate and cell survival decisions that generate a functional neuronal population, but the coordination of these two processes is poorly understood. Here we show that conditional removal of a key apical complex protein, Pals1, causes premature withdrawal from the cell cycle, inducing excessive generation of early-born postmitotic neurons followed by surprisingly massive and rapid cell death, leading to the abrogation of virtually the entire cortical structure. Pals1 loss shows exquisite dosage sensitivity, so that heterozygote mutants show an intermediate phenotype on cell fate and cell death. Loss of Pals1 blocks essential cell survival signals, including the mammalian target of rapamycin (mTOR) pathway, while mTORC1 activation partially rescues Pals1 deficiency. These data highlight unexpected roles of the apical complex protein Pals1 in cell survival through interactions with mTOR signaling. PMID:20399730
Santaguida, Stefano; Richardson, Amelia; Iyer, Divya Ramalingam; M'Saad, Ons; Zasadil, Lauren; Knouse, Kristin A; Wong, Yao Liang; Rhind, Nicholas; Desai, Arshad; Amon, Angelika
2017-06-19
Aneuploidy, a state of karyotype imbalance, is a hallmark of cancer. Changes in chromosome copy number have been proposed to drive disease by modulating the dosage of cancer driver genes and by promoting cancer genome evolution. Given the potential of cells with abnormal karyotypes to become cancerous, do pathways that limit the prevalence of such cells exist? By investigating the immediate consequences of aneuploidy on cell physiology, we identified mechanisms that eliminate aneuploid cells. We find that chromosome mis-segregation leads to further genomic instability that ultimately causes cell-cycle arrest. We further show that cells with complex karyotypes exhibit features of senescence and produce pro-inflammatory signals that promote their clearance by the immune system. We propose that cells with abnormal karyotypes generate a signal for their own elimination that may serve as a means for cancer cell immunosurveillance. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Yuanyuan; Xu, Yang; Du, Jicong; Guo, Jiaming; Lei, Xiao; Cui, Jianguo; Liu, Cong; Cheng, Ying; Li, Bailong; Gao, Fu; Ju, Jintao; Cai, Jianming; Yang, Yanyong
2016-01-01
Exposure to ionizing radiation (IR) often causes severe damage to radiosensitive tissues, which limits the use of radiotherapy in cancer patients. Novel safe and effective radioprotectant is urgently required. It has been reported toll like receptor 2 (TLR2) plays a critical role in radioresistance. In this study, we demonstrated the protective effects of Heat-Killed Mycobacterium tuberculosis (HKMT), a potent TLR2 agonist, against IR. Cell survival and apoptosis were determined by CCK-8 assay and Annexin V assay, respectively. An immunofluorescence staining assay was used to detect the translocation of nuclear faktor-kappa beta (NF-kB) p65. Tissue damage was evaluated by Haematoxilin-Eosin (HE) staining assay. We also used a flow cytometry assay to measure the number of nucleated cells and CD34+ hemopoietic stem cells in bone marrow. A western blot assay was used to detect the changes of proteins involving TLR signaling pathway. We found that HKMT increased cell viability and inhibited cell apoptosis after irradiation. HKMT induced NF-kB translocation and activated Erk1/2, p38 signaling pathway. HKMT also protected bone marrow and testis from destruction. Radiation-induced decreases of nucleated cells and CD34+ hemopoietic stem cells in bone marrow were also inhibited by HKMT treatment. We found that radiation caused increase of inflammatory cytokines was also suppressed by HKMT. Our data showed that HKMT exhibited radioprotective effects in vivo and in vitro through activating NF-kB and MAPK signaling pathway, suggesting a potential of HKMT as novel radioprotector. © 2016 The Author(s) Published by S. Karger AG, Basel.
Gorrepati, Lakshmi; Krause, Michael W.; Chen, Weiping; Brodigan, Thomas M.; Correa-Mendez, Margarita; Eisenmann, David M.
2015-01-01
The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type–specific "mRNA tagging" to enrich for VPC and seam cell–specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type–specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells. PMID:26048561
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, T.-S.; Yang, P.-M.; Tsai, J.-S.
2009-03-01
Cadmium (Cd) induces necrotic death in Chinese hamster ovary (CHO) K1 cells and we have established the responsible signaling pathway. Reportedly, necrostatin-1 (Nec-1) rescues cells from necrotic death by mediating through the death domain receptor (DR) signaling pathway. We show here that Nec-1 also effectively attenuates necrotic death triggered by Cd. Two other treatments that cause necrotic cell death, one can (z-VAD-fmk/TNF-{alpha} on U937 cells) and the other cannot (etherynic acid (EA) on DLD-1 cells) be rescued by Nec-1, were also studied in parallel for comparison. Results show that Nec-1 is ineffectual in modulating intracellular calcium contents, calpain activity (amore » downstream protease), or reactive oxygen species production. It can counteract the reduction in mitochondrial membrane potential (MMP) caused by treating CHO K1 or U937 cells with necrosis-inducing agent. However, this effect was not found in EA-treated DLD-1 cells. Notably, Nec-1 elevates NF-{kappa}B activity in the presence or absence of necrosis-inducing agents. Our study shows that, in addition to DR-mediated necrosis, Nec-1 is effective in attenuating Cd-induced necrosis. It rescues cells with reduced MMP implying that mitochondrion is its major acting site.« less
Chiang, Chih-Kang; Wang, Ching-Chia; Lu, Tien-Fong; Huang, Kuo-How; Sheu, Meei-Ling; Liu, Shing-Hwa; Hung, Kuan-Yu
2016-01-01
Advanced glycation end-products (AGEs)-induced mesangial cell death is one of major causes of glomerulus dysfunction in diabetic nephropathy. Both endoplasmic reticulum (ER) stress and autophagy are adaptive responses in cells under environmental stress and participate in the renal diseases. The role of ER stress and autophagy in AGEs-induced mesangial cell death is still unclear. Here, we investigated the effect and mechanism of AGEs on glomerular mesangial cells. AGEs dose-dependently decreased mesangial cell viability and induced cell apoptosis. AGEs also induced ER stress signals in a time- and dose-dependent manner. Inhibition of ER stress with 4-phenylbutyric acid effectively inhibited the activation of eIF2α and CHOP signals and reversed AGEs-induced cell apoptosis. AGEs also activated LC-3 cleavage, increased Atg5 expression, and decreased p62 expression, which indicated the autophagy induction in mesangial cells. Inhibition of autophagy by Atg5 siRNAs transfection aggravated AGEs-induced mesangial cell apoptosis. Moreover, ER stress inhibition by 4-phenylbutyric acid significantly reversed AGEs-induced autophagy, but autophagy inhibition did not influence the AGEs-induced ER stress-related signals activation. These results suggest that AGEs induce mesangial cell apoptosis via an ER stress-triggered signaling pathway. Atg5-dependent autophagy plays a protective role. These findings may offer a new strategy against AGEs toxicity in the kidney. PMID:27665710
Singh, Nikhlesh K.; Kotla, Sivareddy; Kumar, Raj; Rao, Gadiparthi N.
2015-01-01
Retinal neovascularization is the most common cause of moderate to severe vision loss in all age groups. Despite the use of anti-VEGFA therapies, this complication continues to cause blindness, suggesting a role for additional molecules in retinal neovascularization. Besides VEGFA and VEGFB, hypoxia induced VEGFC expression robustly. Based on this finding, we tested the role of VEGFC in pathological retinal angiogenesis. VEGFC induced proliferation, migration, sprouting and tube formation of human retinal microvascular endothelial cells (HRMVECs) and these responses require CREB-mediated DLL4 expression and NOTCH1 activation. Furthermore, down regulation of VEGFC levels substantially reduced tip cell formation and retinal neovascularization in vivo. In addition, we observed that CREB via modulating the DLL4-NOTCH1 signaling mediates VEGFC-induced tip cell formation and retinal neovascularization. In regard to upstream mechanism, we found that down regulation of p38β levels inhibited hypoxia-induced CREB-DLL4-NOTCH1 activation, tip cell formation, sprouting and retinal neovascularization. Based on these findings, it may be suggested that VEGFC besides its role in the regulation of lymphangiogenesis also plays a role in pathological retinal angiogenesis and this effect depends on p38β and CREB-mediated activation of DLL4-NOTCH1 signaling. PMID:26870802
Alea, Mileidys Perez; Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Fuxe, Kjell; Garriga, Pere
2011-08-15
Muscarinic acetylcholine receptors expression and signaling in the human Jurkat T cell line were investigated. Semiquantitative real-time PCR and radioligand binding studies, using a wide set of antagonist compounds, showed the co-existence of M(3), M(4), and M(5) subtypes. Stimulation of these subpopulations caused a concentration and time- dependent activation of second messengers and ERK signaling pathways, with a major contribution of the M(3) subtype in a G(q/11)-mediated response. In addition, we found that T-cell stimulation leads to increased expression of M(3) and M(5) both at transcriptional and protein levels in a PLC/PKCθ dependent manner. Our data clarifies the functional role of AChR subtypes in Jurkat cells and pave the way to future studies on the potential cross-talk among these subpopulations and their regulation of T lymphocytes immune function. Copyright © 2011 Elsevier B.V. All rights reserved.
Long-distance endosome trafficking drives fungal effector production during plant infection
Bielska, Ewa; Higuchi, Yujiro; Schuster, Martin; Steinberg, Natascha; Kilaru, Sreedhar; Talbot, Nicholas J.; Steinberg, Gero
2014-01-01
To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion. PMID:25283249
Hidalgo, Marta R.; Cubuk, Cankut; Amadoz, Alicia; Salavert, Francisco; Carbonell-Caballero, José; Dopazo, Joaquin
2017-01-01
Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is a main challenge for precision medicine. Here we propose a new method that models cell signaling using biological knowledge on signal transduction. The method recodes individual gene expression values (and/or gene mutations) into accurate measurements of changes in the activity of signaling circuits, which ultimately constitute high-throughput estimations of cell functionalities caused by gene activity within the pathway. Moreover, such estimations can be obtained either at cohort-level, in case/control comparisons, or personalized for individual patients. The accuracy of the method is demonstrated in an extensive analysis involving 5640 patients from 12 different cancer types. Circuit activity measurements not only have a high diagnostic value but also can be related to relevant disease outcomes such as survival, and can be used to assess therapeutic interventions. PMID:28042959
Long-distance endosome trafficking drives fungal effector production during plant infection.
Bielska, Ewa; Higuchi, Yujiro; Schuster, Martin; Steinberg, Natascha; Kilaru, Sreedhar; Talbot, Nicholas J; Steinberg, Gero
2014-10-06
To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion.
Cell Activation Mediated by Glycosylphosphatidylinositol-Anchored or Transmembrane Forms of CD14†
Pugin, J.; Kravchenko, V. V.; Lee, J.-D.; Kline, L.; Ulevitch, R. J.; Tobias, P. S.
1998-01-01
CD14 is a glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein which functions as a receptor on myeloid cells for ligands derived from microbial pathogens such as lipopolysaccharide (LPS). We have studied the importance of the GPI tail of CD14 in signalling with the promonocytic cell line THP-1 expressing recombinant CD14 in a GPI-anchored form (THP1-wtCD14 cells) or in a transmembrane form (THP1-tmCD14). We found that, like other GPI-anchored molecules, GPI-anchored CD14 was recovered mainly from a Triton X-100-insoluble fraction, whereas transmembrane CD14 was fully soluble in Triton X-100. LPS induced cell activation of THP1-wtCD14 and of THP1-tmCD14 (protein tyrosine kinase phosphorylation, NF-κB activation, and cytokine production) in a very similar manner. However, anti-CD14 antibody-induced cross-linking caused a rapid calcium mobilization signal only in GPI-anchored CD14 cells. Studies with pharmacologic inhibitors of intracellular signalling events implicate phospholipase C and protein tyrosine kinases in the genesis of this antibody-induced calcium signal. Our results suggest that GPI anchoring and CD14 targeting to glycolipid-rich membrane microdomains are not required for LPS-mediated myeloid cell activation. GPI anchoring may however be important for other signalling functions, such as those events reflected by antibody cross-linking. PMID:9488411
GRAMD1B regulates cell migration in breast cancer cells through JAK/STAT and Akt signaling.
Khanna, Puja; Lee, Joan Shuying; Sereemaspun, Amornpun; Lee, Haeryun; Baeg, Gyeong Hun
2018-06-22
Dysregulated JAK/STAT signaling has been implicated in breast cancer metastasis, which is associated with high relapse risks. However, mechanisms underlying JAK/STAT signaling-mediated breast tumorigenesis are poorly understood. Here, we showed that GRAMD1B expression is upregulated on IL-6 but downregulated upon treatment with the JAK2 inhibitor AG490 in the breast cancer MDA-MB-231 cells. Notably, Gramd1b knockdown caused morphological changes of the cells, characterized by the formation of membrane ruffling and protrusions, implicating its role in cell migration. Consistently, GRAMD1B inhibition significantly enhanced cell migration, with an increase in the levels of the Rho family of GTPases. We also found that Gramd1b knockdown-mediated pro-migratory phenotype is associated with JAK2/STAT3 and Akt activation, and that JAK2 or Akt inhibition efficiently suppresses the phenotype. Interestingly, AG490 dose-dependently increased p-Akt levels, and our epistasis analysis suggested that the effect of JAK/STAT inhibition on p-Akt is via the regulation of GRAMD1B expression. Taken together, our results suggest that GRAMD1B is a key signaling molecule that functions to inhibit cell migration in breast cancer by negating both JAK/STAT and Akt signaling, providing the foundation for its development as a novel biomarker in breast cancer.
Lee, Se-Jin; Huynh, Thanh V; Lee, Yun-Sil; Sebald, Suzanne M; Wilcox-Adelman, Sarah A; Iwamori, Naoki; Lepper, Christoph; Matzuk, Martin M; Fan, Chen-Ming
2012-08-28
Myostatin and activin A are structurally related secreted proteins that act to limit skeletal muscle growth. The cellular targets for myostatin and activin A in muscle and the role of satellite cells in mediating muscle hypertrophy induced by inhibition of this signaling pathway have not been fully elucidated. Here we show that myostatin/activin A inhibition can cause muscle hypertrophy in mice lacking either syndecan4 or Pax7, both of which are important for satellite cell function and development. Moreover, we show that muscle hypertrophy after pharmacological blockade of this pathway occurs without significant satellite cell proliferation and fusion to myofibers and without an increase in the number of myonuclei per myofiber. Finally, we show that genetic ablation of Acvr2b, which encodes a high-affinity receptor for myostatin and activin A specifically in myofibers is sufficient to induce muscle hypertrophy. All of these findings are consistent with satellite cells playing little or no role in myostatin/activin A signaling in vivo and render support that inhibition of this signaling pathway can be an effective therapeutic approach for increasing muscle growth even in disease settings characterized by satellite cell dysfunction.
MedlinePlus Videos and Cool Tools
... cardiac muscle cells in the walls of the heart that send signals to the heart muscle causing it to contract. The main components ... the cardiac conduction system's electrical activity in the heart.
Coate, Thomas M.; Swanson, Tracy L.; Copenhaver, Philip F.
2011-01-01
Reverse signaling via GPI-linked Ephrins may help control cell proliferation and outgrowth within the nervous system, but the mechanisms underlying this process remain poorly understood. In the embryonic enteric nervous system (ENS) of the moth Manduca sexta, migratory neurons forming the enteric plexus (EP cells) express a single Ephrin ligand (GPI-linked MsEphrin), while adjacent midline cells that are inhibitory to migration express the cognate receptor (MsEph). Knocking down MsEph receptor expression in cultured embryos with antisense morpholino oligonucleotides allowed the EP cells to cross the midline inappropriately, consistent with the model that reverse signaling via MsEphrin mediates a repulsive response in the ENS. Src family kinases have been implicated in reverse signaling by type-A Ephrins in other contexts, and MsEphrin colocalizes with activated forms of endogenous Src in the leading processes of the EP cells. Pharmacological inhibition of Src within the developing ENS induced aberrant midline crossovers, similar to the effect of blocking MsEphrin reverse signaling. Hyperstimulating MsEphrin reverse signaling with MsEph-Fc fusion proteins induced the rapid activation of endogenous Src specifically within the EP cells, as assayed by Western blots of single embryonic gut explants and by whole-mount immunostaining of cultured embryos. In longer cultures, treatment with MsEph-Fc caused a global inhibition of EP cell migration and outgrowth, an effect that was prevented by inhibiting Src activation. These results support the model that MsEphrin reverse signaling induces the Src-dependent retraction of EP cell processes away from the enteric midline, thereby helping to confine the neurons to their appropriate pathways. PMID:19295147
Nam, Seo Hee; Kang, Minkyung; Ryu, Jihye; Kim, Hye-Jin; Kim, Doyeun; Kim, Dae Gyu; Kwon, Nam Hoon; Kim, Sunghoon; Lee, Jung Weon
2016-04-01
The cell-adhesion properties of cancer cells can be targeted to block cancer metastasis. Although cytosolic lysyl-tRNA synthetase (KRS) functions in protein synthesis, KRS on the plasma membrane is involved in cancer metastasis. We hypothesized that KRS is involved in cell adhesion-related signal transduction for cellular migration. To test this hypothesis, colon cancer cells with modulated KRS protein levels were analyzed for cell-cell contact and cell-substrate adhesion properties and cellular behavior. Although KRS suppression decreased expression of cell-cell adhesion molecules, cells still formed colonies without being scattered, supporting an incomplete epithelial mesenchymal transition. Noteworthy, KRS-suppressed cells still exhibited focal adhesions on laminin, with Tyr397-phopshorylated focal adhesion kinase (FAK), but they lacked laminin-adhesion-mediated extracellular signal-regulated kinase (ERK) and paxillin activation. KRS, p67LR and integrin α6β1 were found to interact, presumably to activate ERK for paxillin expression and Tyr118 phosphorylation even without involvement of FAK, so that specific inhibition of ERK or KRS in parental HCT116 cells blocked cell-cell adhesion and cell-substrate properties for focal adhesion formation and signaling activity. Together, these results indicate that KRS can promote cell-cell and cell-ECM adhesion for migration.
Charcoal disrupts cell-cell communication through multiple mechanisms
NASA Astrophysics Data System (ADS)
Gao, X.; Cheng, H. Y.; Liu, S.; Masiello, C. A.; Silberg, J. J.; Del Valle, I.
2016-12-01
Microbial cell-cell communication through the release and detection of small signaling molecules is employed by soil microbes to manage many biogeochemically relevant processes including production of biofilms, priming effects on native SOM, and management of methanogenesis and denitrification. Charcoal is a ubiquitous component of soil, entering soil either from natural fire or intentionally amended as biochar. Charcoal's presence in soil introduces spatial and temporal heterogeneity in nutrients and habitats for soil microbes and may trigger a range of biological effects not yet predictable, in part because it interferes with microbial cell-cell communication. We hypothesized that charcoal's alkalinity and large active surface area could affect the lifetime of some chemical compounds that microbes use for cell-cell signaling on times scales relevant to growth and communication. To test this idea, we examined the extent and rate of charcoal quenching of cell-cell communication caused by ten charcoals with a wide range of physicochemical properties. Our measurements focused on signaling mediated by an acyl-homoserine lactone (AHL), N-3-oxo-dodecanoyl-L-homoserine lactone, which is used by many gram-negative bacteria for quorum sensing. Our results from a bioassay and chemical sorption experiments revealed that charcoal can decrease the bioavailable level of AHL through a combination of sorption and pH-dependent hydrolysis of the lactone ring. We found that the kinetics of hydrolysis can exceed those of sorption. These findings implicate charcoal surface area and alkalinity as properties that could be tuned to regulate the degradation rates of cell-cell signaling molecules in soils. We then built a quantitative model that predicts the half-lives of different microbial signaling compounds in the presence of charcoals varying in pH and surface area. Our model results suggest that the effects of charcoal on pH-sensitive bacterial AHL signals will be fundamentally distinct from effects on pH-insensitive fungal signals, potentially leading to shifts in microbial community structures.
Anderson, Abigail M.; Bailetti, Alessandro A.; Rodkin, Elizabeth; De, Atish; Bach, Erika A.
2017-01-01
A gain-of-function mutation in the tyrosine kinase JAK2 (JAK2V617F) causes human myeloproliferative neoplasms (MPNs). These patients present with high numbers of myeloid lineage cells and have numerous complications. Since current MPN therapies are not curative, there is a need to find new regulators and targets of Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling that may represent additional clinical interventions . Drosophila melanogaster offers a low complexity model to study MPNs as JAK/STAT signaling is simplified with only one JAK [Hopscotch (Hop)] and one STAT (Stat92E). hopTumorous-lethal (Tum-l) is a gain-of-function mutation that causes dramatic expansion of myeloid cells, which then form lethal melanotic tumors. Through an F1 deficiency (Df) screen, we identified 11 suppressors and 35 enhancers of melanotic tumors in hopTum-l animals. Dfs that uncover the Hippo (Hpo) pathway genes expanded (ex) and warts (wts) strongly enhanced the hopTum-l tumor burden, as did mutations in ex, wts, and other Hpo pathway genes. Target genes of the Hpo pathway effector Yorkie (Yki) were significantly upregulated in hopTum-l blood cells, indicating that Yki signaling was increased. Ectopic hematopoietic activation of Yki in otherwise wild-type animals increased hemocyte proliferation but did not induce melanotic tumors. However, hematopoietic depletion of Yki significantly reduced the hopTum-l tumor burden, demonstrating that Yki is required for melanotic tumors in this background. These results support a model in which elevated Yki signaling increases the number of hemocytes, which become melanotic tumors as a result of elevated JAK/STAT signaling. PMID:28620086
Bernatik, Ondrej; Radaszkiewicz, Tomasz; Behal, Martin; Dave, Zankruti; Witte, Florian; Mahl, Annika; Cernohorsky, Nicole H.; Krejci, Pavel; Stricker, Sigmar; Bryja, Vitezslav
2017-01-01
Mammalian limb development is driven by the integrative input from several signaling pathways; a failure to receive or a misinterpretation of these signals results in skeletal defects. The brachydactylies, a group of overlapping inherited human hand malformation syndromes, are mainly caused by mutations in BMP signaling pathway components. Two closely related forms, Brachydactyly type B2 (BDB2) and BDB1 are caused by mutations in the BMP antagonist Noggin (NOG) and the atypical receptor tyrosine kinase ROR2 that acts as a receptor in the non-canonical Wnt pathway. Genetic analysis of Nog and Ror2 functional interaction via crossing Noggin and Ror2 mutant mice revealed a widening of skeletal elements in compound but not in any of the single mutants, thus indicating genetic interaction. Since ROR2 is a non-canonical Wnt co-receptor specific for Wnt-5a we speculated that this phenotype might be a result of deregulated Wnt-5a signaling activation, which is known to be essential for limb skeletal elements growth and patterning. We show that Noggin potentiates activation of the Wnt-5a-Ror2-Disheveled (Dvl) pathway in mouse embryonic fibroblast (MEF) cells in a Ror2-dependent fashion. Rat chondrosarcoma chondrocytes (RCS), however, are not able to respond to Noggin in this fashion unless growth arrest is induced by FGF2. In summary, our data demonstrate genetic interaction between Noggin and Ror2 and show that Noggin can sensitize cells to Wnt-5a/Ror2-mediated non-canonical Wnt signaling, a feature that in cartilage may depend on the presence of active FGF signaling. These findings indicate an unappreciated function of Noggin that will help to understand BMP and Wnt/PCP signaling pathway interactions. PMID:28523267
Hunt, Geoffrey C.; Singh, Purva; Schwarzbauer, Jean E.
2012-01-01
Pluripotent cells are attached to the extracellular matrix (ECM) as they make cell fate decisions within the stem cell niche. Here we show that the ubiquitous ECM protein fibronectin is required for self-renewal decisions by cultured mouse embryonic stem (mES) cells. Undifferentiated mES cells produce fibronectin and assemble a fibrillar matrix. Increasing the level of substrate fibronectin increased cell spreading and integrin receptor signaling through focal adhesion kinase, while concomitantly inducing the loss of Nanog and Oct4 self-renewal markers. Conversely, reducing fibronectin production by mES cells growing on a feeder-free gelatin substrate caused loss of cell adhesion, decreased integrin signaling, and decreased expression of self-renewal markers. These effects were reversed by providing the cells with exogenous fibronectin, thereby restoring adhesion to the gelatin substrate. Interestingly, mES cells do not adhere directly to the gelatin substrate, but rather adhere indirectly through gelatin-bound fibronectin, which facilitates self-renewal via its effects on cell adhesion. These results provide new insights into the mechanism of regulation of self-renewal by growth on a gelatin-coated surface. The effects of increasing or decreasing fibronectin levels show that self-renewal depends on an intermediate level of cell-fibronectin interactions. By providing cell adhesive signals that can act with other self-renewal factors to maintain mES cell pluripotency, fibronectin is therefore a necessary component of the self-renewal signaling pathway in culture. PMID:22710062
Hunt, Geoffrey C; Singh, Purva; Schwarzbauer, Jean E
2012-09-10
Pluripotent cells are attached to the extracellular matrix (ECM) as they make cell fate decisions within the stem cell niche. Here we show that the ubiquitous ECM protein fibronectin is required for self-renewal decisions by cultured mouse embryonic stem (mES) cells. Undifferentiated mES cells produce fibronectin and assemble a fibrillar matrix. Increasing the level of substrate fibronectin increased cell spreading and integrin receptor signaling through focal adhesion kinase, while concomitantly inducing the loss of Nanog and Oct4 self-renewal markers. Conversely, reducing fibronectin production by mES cells growing on a feeder-free gelatin substrate caused loss of cell adhesion, decreased integrin signaling, and decreased expression of self-renewal markers. These effects were reversed by providing the cells with exogenous fibronectin, thereby restoring adhesion to the gelatin substrate. Interestingly, mES cells do not adhere directly to the gelatin substrate, but rather adhere indirectly through gelatin-bound fibronectin, which facilitates self-renewal via its effects on cell adhesion. These results provide new insights into the mechanism of regulation of self-renewal by growth on a gelatin-coated surface. The effects of increasing or decreasing fibronectin levels show that self-renewal depends on an intermediate level of cell-fibronectin interactions. By providing cell adhesive signals that can act with other self-renewal factors to maintain mES cell pluripotency, fibronectin is therefore a necessary component of the self-renewal signaling pathway in culture. Copyright © 2012 Elsevier Inc. All rights reserved.
T Cell Inactivation by Poxviral B22 Family Proteins Increases Viral Virulence
Alzhanova, Dina; Hammarlund, Erika; Reed, Jason; Meermeier, Erin; Rawlings, Stephanie; Ray, Caroline A.; Edwards, David M.; Bimber, Ben; Legasse, Alfred; Planer, Shannon; Sprague, Jerald; Axthelm, Michael K.; Pickup, David J.; Lewinsohn, David M.; Gold, Marielle C.; Wong, Scott W.; Sacha, Jonah B.; Slifka, Mark K.; Früh, Klaus
2014-01-01
Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination. PMID:24832205
T cell inactivation by poxviral B22 family proteins increases viral virulence.
Alzhanova, Dina; Hammarlund, Erika; Reed, Jason; Meermeier, Erin; Rawlings, Stephanie; Ray, Caroline A; Edwards, David M; Bimber, Ben; Legasse, Alfred; Planer, Shannon; Sprague, Jerald; Axthelm, Michael K; Pickup, David J; Lewinsohn, David M; Gold, Marielle C; Wong, Scott W; Sacha, Jonah B; Slifka, Mark K; Früh, Klaus
2014-05-01
Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination.
Yi, Hongying; Yang, Liming; Kong, Zhongxin; Zhang, Lixia; Xue, Shulin; Jia, Haiyan; Ma, Zhengqiang
2011-01-01
Fusarium species cause serious diseases in cereal staple food crops such as wheat and maize. Currently, the mechanisms underlying resistance to Fusarium-caused diseases are still largely unknown. In the present study, we employed a combined proteomic and transcriptomic approach to investigate wheat genes responding to F. graminearum infection that causes Fusarium head blight (FHB). We found a total of 163 genes and 37 proteins that were induced by infection. These genes and proteins were associated with signaling pathways mediated by salicylic acid (SA), jasmonic acid (JA), ethylene (ET), calcium ions, phosphatidic acid (PA), as well as with reactive oxygen species (ROS) production and scavenging, antimicrobial compound synthesis, detoxification, and cell wall fortification. We compared the time-course expression profiles between FHB-resistant Wangshuibai plants and susceptible Meh0106 mutant plants of a selected set of genes that are critical to the plants' resistance and defense reactions. A biphasic phenomenon was observed during the first 24 h after inoculation (hai) in the resistant plants. The SA and Ca2+ signaling pathways were activated within 6 hai followed by the JA mediated defense signaling activated around 12 hai. ET signaling was activated between these two phases. Genes for PA and ROS synthesis were induced during the SA and JA phases, respectively. The delayed activation of the SA defense pathway in the mutant was associated with its susceptibility. After F. graminearum infection, the endogenous contents of SA and JA in Wangshuibai and the mutant changed in a manner similar to the investigated genes corresponding to the individual pathways. A few genes for resistance-related cell modification and phytoalexin production were also identified. This study provided important clues for designing strategies to curb diseases caused by Fusarium. PMID:21533105
Foxp3+ regulatory T cells, immune stimulation and host defence against infection
Rowe, Jared H; Ertelt, James M; Way, Sing Sing
2012-01-01
The immune system is intricately regulated allowing potent effectors to expand and become rapidly mobilized after infection, while simultaneously silencing potentially detrimental responses that averts immune-mediated damage to host tissues. This relies in large part on the delicate interplay between immune suppressive regulatory CD4+ T (Treg) cells and immune effectors that without active suppression by Treg cells cause systemic and organ-specific autoimmunity. Although these beneficial roles have been classically described as counterbalanced by impaired host defence against infection, newfound protective roles for Treg cells against specific viral pathogens (e.g. herpes simplex virus 2, lymphocytic choriomeningitis virus, West Nile virus) have been uncovered using transgenic mice that allow in vivo Treg-cell ablation based on Foxp3 expression. In turn, Foxp3+ Treg cells also provide protection against some parasitic (Plasmodium sp., Toxoplasma gondii) and fungal (Candida albicans) pathogens. By contrast, for bacterial and mycobacterial infections (e.g. Listeria monocytogenes, Salmonella enterica, Mycobacterium tuberculosis), experimental manipulation of Foxp3+ cells continues to indicate detrimental roles for Treg cells in host defence. This variance is probably related to functional plasticity in Treg cell suppression that shifts discordantly following infection with different types of pathogens. Furthermore, the efficiency whereby Treg cells silence immune activation coupled with the plasticity in Foxp3+ cell activity suggest that overriding Treg-mediated suppression represents a prerequisite ‘signal zero’ that together with other stimulation signals [T-cell receptor (signal 1), co-stimulation (signal 2), inflammatory cytokines (signal 3)] are essential for T-cell activation in vivo. Herein, the importance of Foxp3+ Treg cells in host defence against infection, and the significance of infection-induced shifts in Treg-cell suppression are summarized. PMID:22211994
Elevated β-catenin activity contributes to carboplatin resistance in A2780cp ovarian cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barghout, Samir H.; Zepeda, Nubia; Xu, Zhihua
Ovarian cancer is the fifth leading cause of cancer-related mortalities in women. Epithelial ovarian cancer (EOC) represents approximately 90% of all ovarian malignancies. Most EOC patients are diagnosed at advanced stages and current chemotherapy regimens are ineffective against advanced EOC due to the development of chemoresistance. It is important to better understand the molecular mechanisms underlying acquired resistance to effectively manage this disease. In this study, we examined the expression of the Wnt/β-catenin signaling components in the paired cisplatin-sensitive (A2780s) and cisplatin-resistant (A2780cp) EOC cell lines. Our results showed that several negative regulators of Wnt signaling are downregulated, whereas amore » few Wnt ligands and known Wnt/β-catenin target genes are upregulated in A2780cp cells compared to A2780s cells, suggesting that Wnt/β-catenin signaling is more active in A2780cp cells. Further analysis revealed nuclear localization of β-catenin and higher β-catenin transcriptional activity in A2780cp cells compared to A2780s cells. Finally, we demonstrated that chemical inhibition of β-catenin transcriptional activity by its inhibitor CCT036477 sensitized A2780cp cells to carboplatin, supporting a role for β-catenin in carboplatin resistance in A2780cp cells. In conclusion, our data suggest that increased Wnt/β-catenin signaling activity contributes to carboplatin resistance in A2780cp cells. - Highlights: • Wnt ligands and target genes are upregulated in cisplatin resistant A2780cp cells. • Negative regulators of Wnt signaling are down-regulated in A2780cp cells. • β-catenin transcriptional activity is higher in A2780cp cells compared to A2780s cells. • Inhibition of β-catenin activity increases carboplatin cytotoxicity in A2780cp cells.« less
Kichev, Anton; Eede, Pascale; Gressens, Pierre; Thornton, Claire; Hagberg, Henrik
2017-01-01
Inflammation in the perinatal brain caused by maternal or intrauterine fetal infection is now well established as an important contributor to the development of perinatal brain injury. Exposure to inflammatory products can impair perinatal brain development and act as a risk factor for neurological dysfunction, cognitive disorders, cerebral palsy, or preterm birth. Pre-exposure to inflammation significantly exacerbates brain injury caused by hypoxic/ischaemic insult. Tumour necrosis factor (TNF) is a family of cytokines largely involved in inflammation signalling. In our previous study, we identified the importance of TNF-related apoptosis-inducing ligand (TRAIL) signalling in the development of perinatal brain injury. We observed a significant increase in the expression levels of a soluble decoy receptor for TRAIL, osteoprotegerin (OPG). Besides TRAIL, OPG is able to bind the receptor activator of the NF-κB (RANK) ligand (RANKL) and inhibit its signalling. The function of the RANK/RANKL/OPG system in the brain has not come under much scrutiny. The aim of this research study was to elucidate the role of RANK, RANKL, and OPG in microglial responses to the proinflammatory stimuli lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (Poly I:C). Here, we show that RANK signalling is important for regulating the activation of the BV2 microglial cell line. We found that LPS treatment causes a significant decrease in the expression of RANK in the BV2 cell line while significantly increasing the expression of OPG, Toll-like receptor (TLR)3, and the adaptor proteins MyD88 and TRIF. We found that pretreatment of BV2 cells with RANKL for 24 h before the LPS or Poly I:C exposure decreases the expression of inflammatory markers such as inducible nitric oxide synthase and cyclooxygenase. This is accompanied by a decreased expression of the TLR adaptor proteins MyD88 and TRIF, which we observed after RANKL treatment. Similar results were obtained in our experiments with primary mouse microglia. Using recently developed CRISPR/Cas9 technology, we generated a BV2 cell line lacking RANK (RANK-/- BV2). We showed that most effects of RANKL pretreatment were abolished, thereby proving the specificity of this effect. Taken together, these findings suggest that RANK signalling is important for modulating the inflammatory activation of microglial cells to a moderate level, and that RANK attenuates TLR3/TLR4 signalling. PMID:28402971
Kichev, Anton; Eede, Pascale; Gressens, Pierre; Thornton, Claire; Hagberg, Henrik
2017-01-01
Inflammation in the perinatal brain caused by maternal or intrauterine fetal infection is now well established as an important contributor to the development of perinatal brain injury. Exposure to inflammatory products can impair perinatal brain development and act as a risk factor for neurological dysfunction, cognitive disorders, cerebral palsy, or preterm birth. Pre-exposure to inflammation significantly exacerbates brain injury caused by hypoxic/ischaemic insult. Tumour necrosis factor (TNF) is a family of cytokines largely involved in inflammation signalling. In our previous study, we identified the importance of TNF-related apoptosis-inducing ligand (TRAIL) signalling in the development of perinatal brain injury. We observed a significant increase in the expression levels of a soluble decoy receptor for TRAIL, osteoprotegerin (OPG). Besides TRAIL, OPG is able to bind the receptor activator of the NF-κB (RANK) ligand (RANKL) and inhibit its signalling. The function of the RANK/RANKL/OPG system in the brain has not come under much scrutiny. The aim of this research study was to elucidate the role of RANK, RANKL, and OPG in microglial responses to the proinflammatory stimuli lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (Poly I:C). Here, we show that RANK signalling is important for regulating the activation of the BV2 microglial cell line. We found that LPS treatment causes a significant decrease in the expression of RANK in the BV2 cell line while significantly increasing the expression of OPG, Toll-like receptor (TLR)3, and the adaptor proteins MyD88 and TRIF. We found that pretreatment of BV2 cells with RANKL for 24 h before the LPS or Poly I:C exposure decreases the expression of inflammatory markers such as inducible nitric oxide synthase and cyclooxygenase. This is accompanied by a decreased expression of the TLR adaptor proteins MyD88 and TRIF, which we observed after RANKL treatment. Similar results were obtained in our experiments with primary mouse microglia. Using recently developed CRISPR/Cas9 technology, we generated a BV2 cell line lacking RANK (RANK-/- BV2). We showed that most effects of RANKL pretreatment were abolished, thereby proving the specificity of this effect. Taken together, these findings suggest that RANK signalling is important for modulating the inflammatory activation of microglial cells to a moderate level, and that RANK attenuates TLR3/TLR4 signalling. © 2017 The Author(s) Published by S. Karger AG, Basel.
Ortega, E; Schweitzer-Stenner, R; Pecht, I
1988-01-01
Three biologically active monoclonal antibodies (mAbs) specific for the monovalent, high-affinity membrane receptor for IgE (Fc epsilon R) were employed in analysing the secretory response of mast cells of the RBL-2H3 line to crosslinking of their Fc epsilon R. All three mAbs (designated F4, H10 and J17) compete with each other and with IgE for binding to the Fc epsilon R. Their stoichiometry of binding is 1 Fab:1 Fc epsilon R, hence, the intact mAbs can aggregate the Fc epsilon Rs to dimers only. Since all three mAbs induce secretion, we conclude that Fc epsilon R dimers constitute a sufficient 'signal element' for secretion of mediators for RBL-2H3 cells. The secretory dose-response of the cells to these three mAbs are, however, markedly different: F4 caused rather high secretion, reaching almost 80% of the cells' content, while J17 and H10 induced release of only 30-40% mediators content. Both the intrinsic affinities and equilibrium constants for the receptor dimerization were derived from analysis of binding data of the Fab fragments and intact mAbs. These parameters were used to compute the extent of Fc epsilon R dimerization caused by each of the antibodies. However, the different secretory responses to the three mAbs could not be rationalized simply in terms of the extent of Fc epsilon R dimerization which they produce. This suggests that it is not only the number of crosslinked Fc epsilon Rs which determines the magnitude of secretion-causing signal, but rather other constraints imposed by each individual mAb are also important.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2977332
Gram Positive Bacterial Superantigen Outside-In Signaling Causes Toxic Shock Syndrome
Brosnahan, Amanda J.; Schlievert, Patrick M.
2011-01-01
Staphylococcus aureus and Streptococcus pyogenes (group A streptococci) are gram-positive pathogens capable of producing a variety of bacterial exotoxins known as superantigens. Superantigens interact with antigen-presenting cells (APCs) and T cells to induce T cell proliferation and massive cytokine production, which leads to fever, rash, capillary leak, and subsequent hypotension, the major symptoms of toxic shock syndrome. Both S. aureus and group A streptococci colonize mucosal surfaces, including the anterior nares and vagina for S. aureus, and the oropharynx and less commonly the vagina for group A streptococci. However, due to their abilities to secrete a variety of virulence factors, the organisms can also cause illnesses from the mucosa. This review provides an updated discussion of the biochemical and structural features of one group of secreted virulence factors, the staphylococcal and group A streptococcal superantigens, and their abilities to cause toxic shock syndrome from a mucosal surface. The main focus of this review, however, is the abilities of superantigens to induce cytokines and chemokines from epithelial cells, which has been linked to a dodecapeptide region that is relatively conserved among all superantigens and is distinct from the binding sites required for interactions with APCs and T cells. This phenomenon, termed outside-in signaling, acts to recruit adaptive immune cells to the submucosa, where the superantigens can then interact with those cells to initiate the final cytokine cascades that lead to toxic shock syndrome. PMID:21535475
Gram-positive bacterial superantigen outside-in signaling causes toxic shock syndrome.
Brosnahan, Amanda J; Schlievert, Patrick M
2011-12-01
Staphylococcus aureus and Streptococcus pyogenes (group A streptococci) are Gram-positive pathogens capable of producing a variety of bacterial exotoxins known as superantigens. Superantigens interact with antigen-presenting cells (APCs) and T cells to induce T cell proliferation and massive cytokine production, which leads to fever, rash, capillary leak and subsequent hypotension, the major symptoms of toxic shock syndrome. Both S. aureus and group A streptococci colonize mucosal surfaces, including the anterior nares and vagina for S. aureus, and the oropharynx and less commonly the vagina for group A streptococci. However, due to their abilities to secrete a variety of virulence factors, the organisms can also cause illnesses from the mucosa. This review provides an updated discussion of the biochemical and structural features of one group of secreted virulence factors, the staphylococcal and group A streptococcal superantigens, and their abilities to cause toxic shock syndrome from a mucosal surface. The main focus of this review, however, is the abilities of superantigens to induce cytokines and chemokines from epithelial cells, which has been linked to a dodecapeptide region that is relatively conserved among all superantigens and is distinct from the binding sites required for interactions with APCs and T cells. This phenomenon, termed outside-in signaling, acts to recruit adaptive immune cells to the submucosa, where the superantigens can then interact with those cells to initiate the final cytokine cascades that lead to toxic shock syndrome. © 2011 The Authors Journal compilation © 2011 FEBS.
Preta, Giulio; de Klark, Rainier; Chakraborti, Shankhamala; Glas, Rickard
2010-08-27
Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to gamma-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer gamma-hexa-chloro-cyclohexane (gamma-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon gamma-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of gamma-H2AX in gamma-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling. Copyright 2010 Elsevier Inc. All rights reserved.
Gold nanoparticle-mediated laser stimulation causes a complex stress signal in neuronal cells
NASA Astrophysics Data System (ADS)
Johannsmeier, Sonja; Heeger, Patrick; Terakawa, Mitsuhiro; Kalies, Stefan; Heisterkamp, Alexander; Ripken, Tammo; Heinemann, Dag
2017-07-01
Gold nanoparticle mediated laser stimulation of neuronal cells allows for cell activation on a single-cell level. It could therefore be considered an alternative to classical electric neurostimulation. The physiological impact of this new approach has not been intensively studied so far. Here, we investigate the targeted cell's reaction to a laser stimulus based on its calcium response. A complex cellular reaction involving multiple sources has been revealed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saji, Chiaki; Higashi, Chizuka; Niinaka, Yasufumi
Highlights: Black-Right-Pointing-Pointer Constitutive NF-{kappa}B signaling is essential for the survival and growth of PEL cells. Black-Right-Pointing-Pointer NF-{kappa}B signaling is upregulated by the proteasome-dependent degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress NF-{kappa}B signaling and induce apoptosis in PEL cells through stabilization of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress viral replication in PEL cells during lytic KSHV infection. -- Abstract: Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV). This study provides evidence that proteasomal activity is required for both survival of PEL cells stably harboring the KSHV genome and viral replication of KSHV. We evaluated the cytotoxicmore » effects of proteasome inhibitors on PEL cells. The proteasome inhibitors MG132, lactacystin, and proteasome inhibitor I dramatically inhibited cell proliferation and induced apoptosis of PEL cells through the accumulation of p21 and p27. Furthermore, proteasome inhibitors induced the stabilization of NF-{kappa}B inhibitory molecule (I{kappa}B{alpha}) and suppressed the transcriptional activity of NF-{kappa}B in PEL cells. The NF-{kappa}B specific inhibitor BAY11-7082 also induced apoptosis in PEL cells. The constitutive activation of NF-{kappa}B signaling is essential for the survival and growth of B cell lymphoma cells, including PEL cells. NF-{kappa}B signaling is upregulated by proteasome-dependent degradation of I{kappa}B{alpha}. The suppression of NF-{kappa}B signaling by proteasome inhibitors may contribute to the induction of apoptosis in PEL cells. In addition, proteasome activity is required for KSHV replication in KSHV latently infected PEL cells. MG132 reduced the production of progeny virus from PEL cells at low concentrations, which do not affect PEL cell growth. These findings suggest that proteasome inhibitors may represent a novel strategy for the treatment of KSHV infection and KSHV-associated lymphomas.« less
Collective cell migration during inflammatory response
NASA Astrophysics Data System (ADS)
Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim
2012-02-01
Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Yang; Sumi, Daigo; Kumagai, Yoshito
2006-07-01
Although 2,4,6-trinitrotoluene (TNT) has been found to uncouple nitric oxide synthase (NOS), thereby leading to reactive oxygen species (ROS), cellular response against TNT still remains unclear. Exposure of bovine aortic endothelial cells (BAECs) to TNT (100 {mu}M) resulted in serine 1179 phosphorylation of endothelial NOS (eNOS). With specific inhibitors (wortmannin and LY294002), we found that PI3K/Akt signaling participated in the eNOS phosphorylation caused by TNT, whereas the ERK pathway did not. ROS were generated following exposure of BAECs to TNT. However, TNT-mediated phosphorylation of either eNOS or Akt was drastically blocked by NAC and PEG-CAT. Interestingly, pretreatment with apocynin, amore » specific inhibitor for NADPH oxidase, diminished the phosphorylation of eNOS and Akt. These results suggest that TNT affects NADPH oxidase, thereby generating hydrogen peroxide, which is capable of activating PI3K/Akt signaling associated with eNOS Ser 1179 phosphorylation.« less
Tedja, Milly S; Wojciechowski, Robert; Hysi, Pirro G; Eriksson, Nicholas; Furlotte, Nicholas A; Verhoeven, Virginie J M; Iglesias, Adriana I; Meester-Smoor, Magda A; Tompson, Stuart W; Fan, Qiao; Khawaja, Anthony P; Cheng, Ching-Yu; Höhn, René; Yamashiro, Kenji; Wenocur, Adam; Grazal, Clare; Haller, Toomas; Metspalu, Andres; Wedenoja, Juho; Jonas, Jost B; Wang, Ya Xing; Xie, Jing; Mitchell, Paul; Foster, Paul J; Klein, Barbara E K; Klein, Ronald; Paterson, Andrew D; Hosseini, S Mohsen; Shah, Rupal L; Williams, Cathy; Teo, Yik Ying; Tham, Yih Chung; Gupta, Preeti; Zhao, Wanting; Shi, Yuan; Saw, Woei-Yuh; Tai, E-Shyong; Sim, Xue Ling; Huffman, Jennifer E; Polašek, Ozren; Hayward, Caroline; Bencic, Goran; Rudan, Igor; Wilson, James F; Joshi, Peter K; Tsujikawa, Akitaka; Matsuda, Fumihiko; Whisenhunt, Kristina N; Zeller, Tanja; van der Spek, Peter J; Haak, Roxanna; Meijers-Heijboer, Hanne; van Leeuwen, Elisabeth M; Iyengar, Sudha K; Lass, Jonathan H; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G; Vingerling, Johannes R; Lehtimäki, Terho; Raitakari, Olli T; Biino, Ginevra; Concas, Maria Pina; Schwantes-An, Tae-Hwi; Igo, Robert P; Cuellar-Partida, Gabriel; Martin, Nicholas G; Craig, Jamie E; Gharahkhani, Puya; Williams, Katie M; Nag, Abhishek; Rahi, Jugnoo S; Cumberland, Phillippa M; Delcourt, Cécile; Bellenguez, Céline; Ried, Janina S; Bergen, Arthur A; Meitinger, Thomas; Gieger, Christian; Wong, Tien Yin; Hewitt, Alex W; Mackey, David A; Simpson, Claire L; Pfeiffer, Norbert; Pärssinen, Olavi; Baird, Paul N; Vitart, Veronique; Amin, Najaf; van Duijn, Cornelia M; Bailey-Wilson, Joan E; Young, Terri L; Saw, Seang-Mei; Stambolian, Dwight; MacGregor, Stuart; Guggenheim, Jeremy A; Tung, Joyce Y; Hammond, Christopher J; Klaver, Caroline C W
2018-06-01
Refractive errors, including myopia, are the most frequent eye disorders worldwide and an increasingly common cause of blindness. This genome-wide association meta-analysis in 160,420 participants and replication in 95,505 participants increased the number of established independent signals from 37 to 161 and showed high genetic correlation between Europeans and Asians (>0.78). Expression experiments and comprehensive in silico analyses identified retinal cell physiology and light processing as prominent mechanisms, and also identified functional contributions to refractive-error development in all cell types of the neurosensory retina, retinal pigment epithelium, vascular endothelium and extracellular matrix. Newly identified genes implicate novel mechanisms such as rod-and-cone bipolar synaptic neurotransmission, anterior-segment morphology and angiogenesis. Thirty-one loci resided in or near regions transcribing small RNAs, thus suggesting a role for post-transcriptional regulation. Our results support the notion that refractive errors are caused by a light-dependent retina-to-sclera signaling cascade and delineate potential pathobiological molecular drivers.
Raulet, David H; Marcus, Assaf; Coscoy, Laurent
2017-11-01
Natural killer (NK) cells recognize and kill cancer cells and infected cells by engaging cell surface ligands that are induced preferentially or exclusively on these cells. These ligands are recognized by activating receptors on NK cells, such as NKG2D. In addition to activation by cell surface ligands, the acquisition of optimal effector activity by NK cells is driven in vivo by cytokines and other signals. This review addresses a developing theme in NK cell biology: that NK-activating ligands on cells, and the provision of cytokines and other signals that drive high effector function in NK cells, are driven by abnormalities that arise from transformation or the infected state. The pathways include genomic damage, which causes self DNA to be exposed in the cytosol of affected cells, where it activates the DNA sensor cGAS. The resulting signaling induces NKG2D ligands and also mobilizes NK cell activation. Other key pathways that regulate NKG2D ligands include PI-3 kinase activation, histone acetylation, and the integrated stress response. This review summarizes the roles of these pathways and their relevance in both viral infections and cancer. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lenhart, Kari F; Holtzman, Nathalia G; Williams, Jessica R; Burdine, Rebecca D
2013-01-01
Failure to properly establish the left-right (L/R) axis is a major cause of congenital heart defects in humans, but how L/R patterning of the embryo leads to asymmetric cardiac morphogenesis is still unclear. We find that asymmetric Nodal signaling on the left and Bmp signaling act in parallel to establish zebrafish cardiac laterality by modulating cell migration velocities across the L/R axis. Moreover, we demonstrate that Nodal plays the crucial role in generating asymmetry in the heart and that Bmp signaling via Bmp4 is dispensable in the presence of asymmetric Nodal signaling. In addition, we identify a previously unappreciated role for the Nodal-transcription factor FoxH1 in mediating cell responsiveness to Bmp, further linking the control of these two pathways in the heart. The interplay between these TGFβ pathways is complex, with Nodal signaling potentially acting to limit the response to Bmp pathway activation and the dosage of Bmp signals being critical to limit migration rates. These findings have implications for understanding the complex genetic interactions that lead to congenital heart disease in humans.
Hirata, Y; Highstein, S M
2001-05-01
The gain of the vertical vestibuloocular reflex (VVOR), defined as eye velocity/head velocity was adapted in squirrel monkeys by employing visual-vestibular mismatch stimuli. VVOR gain, measured in the dark, could be trained to values between 0.4 and 1.5. Single-unit activity of vertical zone Purkinje cells was recorded from the flocculus and ventral paraflocculus in alert squirrel monkeys before and during the gain change training. Our goal was to evaluate the site(s) of learning of the gain change. To aid in the evaluation, a model of the vertical optokinetic reflex (VOKR) and VVOR was constructed consisting of floccular and nonfloccular systems divided into subsystems based on the known anatomy and input and output parameters. Three kinds of input to floccular Purkinje cells via mossy fibers were explicitly described, namely vestibular, visual (retinal slip), and efference copy of eye movement. The characteristics of each subsystem (gain and phase) were identified at different VOR gains by reconstructing single-unit activity of Purkinje cells during VOKR and VVOR with multiple linear regression models consisting of sensory input and motor output signals. Model adequacy was checked by evaluating the residual following the regressions and by predicting Purkinje cells' activity during visual-vestibular mismatch paradigms. As a result, parallel changes in identified characteristics with VVOR adaptation were found in the prefloccular/floccular subsystem that conveys vestibular signals and in the nonfloccular subsystem that conveys vestibular signals, while no change was found in other subsystems, namely prefloccular/floccular subsystems conveying efference copy or visual signals, nonfloccular subsystem conveying visual signals, and postfloccular subsystem transforming Purkinje cell activity to eye movements. The result suggests multiple sites for VVOR motor learning including both flocculus and nonflocculus pathways. The gain change in the nonfloccular vestibular subsystem was in the correct direction to cause VOR gain adaptation while the change in the prefloccular/floccular vestibular subsystem was incorrect (anti-compensatory). This apparent incorrect directional change might serve to prevent instability of the VOR caused by positive feedback via the efference copy pathway.
Linking the Primary Cilium to Cell Migration in Tissue Repair and Brain Development
Veland, Iben Rønn; Lindbæk, Louise; Christensen, Søren Tvorup
2014-01-01
Primary cilia are unique sensory organelles that coordinate cellular signaling networks in vertebrates. Inevitably, defects in the formation or function of primary cilia lead to imbalanced regulation of cellular processes that causes multisystemic disorders and diseases, commonly known as ciliopathies. Mounting evidence has demonstrated that primary cilia coordinate multiple activities that are required for cell migration, which, when they are aberrantly regulated, lead to defects in organogenesis and tissue repair, as well as metastasis of tumors. Here, we present an overview on how primary cilia may contribute to the regulation of the cellular signaling pathways that control cyclic processes in directional cell migration. PMID:26955067
Kim, Do-Hee; Kwak, Yeonui; Kim, Nam Doo; Sim, Taebo
2016-01-01
ABSTRACT Aberrant mutational activation of FGFR2 is associated with endometrial cancers (ECs). AP24534 (ponatinib) currently undergoing clinical trials has been known to be an orally available multi-targeted tyrosine kinase inhibitor. Our biochemical kinase assay showed that AP24534 is potent against wild-type FGFR1-4 and 5 mutant FGFRs (V561M-FGFR1, N549H-FGFR2, K650E-FGFR3, G697C-FGFR3, N535K-FGFR4) and possesses the strongest kinase-inhibitory activity on N549H-FGFR2 (IC50 of 0.5 nM) among all FGFRs tested. We therefore investigated the effects of AP24534 on endometrial cancer cells harboring activating FGFR2 mutations and explored the underlying molecular mechanisms. AP24534 significantly inhibited the proliferation of endometrial cancer cells bearing activating FGFR2 mutations (N549K, K310R/N549K, S252W) and mainly induced G1/S cell cycle arrest leading to apoptosis. AP24534 also diminished the kinase activity of immunoprecipitated FGFR2 derived from MFE-296 and MFE-280 cells and reduced the phosphorylation of FGFR2 and FRS2 on MFE-296 and AN3CA cells. AP24534 caused substantial reductions in ERK phosphorylation, PLCγ signaling and STAT5 signal transduction on ECs bearing FGFR2 activating mutations. Akt signaling pathway was also deactivated by AP24534. AP24534 causes the chemotherapeutic effect through mainly the blockade of ERK, PLCγ and STAT5 signal transduction on ECs. Moreover, AP24534 inhibited migration and invasion of endometrial cancer cells with FGFR2 mutations. In addition, AP24534 significantly blocked anchorage-independent growth of endometrial cancer cells. We, for the first time, report the molecular mechanisms by which AP24534 exerts antitumor effects on ECs with FGFR2 activating mutations, which would provide mechanistic insight into ongoing clinical investigations of AP24534 for ECs. PMID:26574622
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Wei-Hong; Yang, Li-Yun; Cao, Zhong-Yi, E-mail: m18070383032@163.com
Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. Inmore » all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. - Highlights: • Tivantinib suppresses OSCC cell growth independent of the inhibition of HGF/MET signaling pathway. • Tivantinib blocks cell cycle and induces caspases-mediated apoptosis. • Tivantinib elicits its anti-tumor activity with the inhibition of FAK signaling pathway.« less
SC79 protects retinal pigment epithelium cells from UV radiation via activating Akt-Nrf2 signaling
Cao, Guo-fan; Cao, Cong; Jiang, Qin
2016-01-01
Excessive Ultra-violet (UV) radiation causes oxidative damages and apoptosis in retinal pigment epithelium (RPE) cells. Here we tested the potential activity of SC79, a novel small molecule activator of Akt, against the process. We showed that SC79 activated Akt in primary and established (ARPE-19 line) RPE cells. It protected RPE cells from UV damages possibly via inhibiting cell apoptosis. Akt inhibition, via an Akt specific inhibitor (MK-2206) or Akt1 shRNA silence, almost abolished SC79-induced RPE cytoprotection. Further studies showed that SC79 activated Akt-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited UV-induced oxidative stress in RPE cells. Reversely, Nrf2 shRNA knockdown or S40T mutation attenuated SC79-induced anti-UV activity. For the in vivo studies, we showed that intravitreal injection of SC79 significantly protected mouse retina from light damages. Based on these results, we suggest that SC79 protects RPE cells from UV damages possibly via activating Akt-Nrf2 signaling axis. PMID:27517753
A non-toxic fluorogenic dye for mitochondria labeling.
Han, Junyan; Han, Myung Shin; Tung, Ching-Hsuan
2013-11-01
Mitochondria, powerhouses of cells, are responsible for many critical cellular functions, such as cell energy metabolism, reactive oxygen species production, and apoptosis regulation. Monitoring mitochondria morphology in live cells temporally and spatially could help with the understanding of the mechanisms of mitochondrial functional regulation and the pathogenesis of mitochondria-related diseases. A novel non-cytotoxic fluorogenic compound, AcQCy7, was developed as a mitochondria-specific dye. AcQCy7 emitted no fluorescent signal outside of cells, but it became fluorescent after intracellular hydrolysis of the acetyl group. The hydrolyzed fluorescent product was well retained in mitochondria, enabling long-lasting fluorescence imaging of mitochondria without cell washing. A 2-day culture study using AcQCy7 showed no sign of cytotoxicity, whereas a commonly used mitochondria-staining probe, Mitochondria Tracker Green, caused significant cell death even at a much lower concentration. Apoptosis-causing mitochondria fission was monitored clearly in real time by AcQCy7. A simple add-and-read mitochondria specific dye AcQCy7 has been validated in various cell models. Bright mitochondria specific fluorescent signal in treated cells lasted several days without noticeable toxicity. The probe AcQCy7 has been proofed to be a non-toxic agent for long-term mitochondria imaging. © 2013.
A Non-Toxic Fluorogenic Dye for Mitochondria Labeling
Han, Junyan; Han, Myung Shin; Tung, Ching-Hsuan
2013-01-01
Background Mitochondria, powerhouses of cells, are responsible for many critical cellular functions, such as cell energy metabolism, reactive oxygen species production, and apoptosis regulation. Monitoring mitochondria morphology in live cells temporally and spatially could help with understanding of the mechanisms of mitochondrial functional regulation and the pathogenesis of mitochondria-related diseases. Methods A novel non-cytotoxic fluorogenic compound, AcQCy7, was developed as a mitochondria-specific dye. Results AcQCy7 emitted no fluorescent signal outside of cells, but it became fluorescent after intracellular hydrolysis of the acetyl group. The hydrolyzed fluorescent product was well retained in mitochondria, enabling long-lasting fluorescence imaging of mitochondria without cell washing. A 2-day culture study using AcQCy7 showed no sign of cytotoxicity, whereas a commonly used mitochondria-staining probe, Mitochondria Tracker Green, caused significant cell death even at a much lower concentration. Apoptosis-causing mitochondria fission was monitored clearly in real time by AcQCy7. Conclusions A simple add-and-read mitochondria specific dye AcQCy7 has been validated in various cell models. Bright mitochondria specific fluorescent signal in treated cells lasted several days without noticeable toxicity. General Significance The probe AcQCy7 has been proofed to be a non-toxic agent for long-term mitochondria imaging. PMID:23850639
Digital signaling decouples activation probability and population heterogeneity.
Kellogg, Ryan A; Tian, Chengzhe; Lipniacki, Tomasz; Quake, Stephen R; Tay, Savaş
2015-10-21
Digital signaling enhances robustness of cellular decisions in noisy environments, but it is unclear how digital systems transmit temporal information about a stimulus. To understand how temporal input information is encoded and decoded by the NF-κB system, we studied transcription factor dynamics and gene regulation under dose- and duration-modulated inflammatory inputs. Mathematical modeling predicted and microfluidic single-cell experiments confirmed that integral of the stimulus (or area, concentration × duration) controls the fraction of cells that activate NF-κB in the population. However, stimulus temporal profile determined NF-κB dynamics, cell-to-cell variability, and gene expression phenotype. A sustained, weak stimulation lead to heterogeneous activation and delayed timing that is transmitted to gene expression. In contrast, a transient, strong stimulus with the same area caused rapid and uniform dynamics. These results show that digital NF-κB signaling enables multidimensional control of cellular phenotype via input profile, allowing parallel and independent control of single-cell activation probability and population heterogeneity.
Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M; Liddicoat, Brian; Russell, Megan R; Walkley, Carl R; Karlsson, Stefan
2014-04-01
The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.
Therapeutic antibody targeting of Notch3 signaling prevents mural cell loss in CADASIL
Machuca-Parra, Arturo I.; Bigger-Allen, Alexander A.; Sanchez, Angie V.; Saint-Geniez, Magali
2017-01-01
Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a neurological syndrome characterized by small vessel disease (SVD), stroke, and vascular cognitive impairment and dementia caused by mutations in NOTCH3. No therapies are available for this condition. Loss of mural cells, which encompass pericytes and vascular smooth muscle cells, is a hallmark of CADASIL and other SVDs, including diabetic retinopathy, resulting in vascular instability. Here, we showed that Notch3 signaling is both necessary and sufficient to support mural cell coverage in arteries using genetic rescue in Notch3 knockout mice. Furthermore, we show that systemic administration of an agonist Notch3 antibody prevents mural cell loss and modifies plasma proteins associated with Notch3 activity, including endostatin/collagen 18α1 and Notch3 extracellular domain in mice with the C455R mutation, a CADASIL variant associated with Notch3 loss of function. These findings open opportunities for the treatment of CADASIL and other SVDs by modulating Notch3 signaling. PMID:28698285
Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M.; Liddicoat, Brian; Russell, Megan R.; Walkley, Carl R.; Karlsson, Stefan
2014-01-01
The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease. PMID:24415629
Kim, Tae-Hee; Kim, Byeong-Moo; Mao, Junhao; Rowan, Sheldon; Shivdasani, Ramesh A.
2011-01-01
The digestive tract epithelium and its adjoining mesenchyme undergo coordinated patterning and growth during development. The signals they exchange in the process are not fully characterized but include ligands of the Hedgehog (Hh) family, which originate in the epithelium and are necessary for mesenchymal cells to expand in number and drive elongation of the developing gut tube. The Notch signaling pathway has known requirements in fetal and adult intestinal epithelial progenitors. We detected Notch pathway activity in the embryonic gut mesenchyme and used conditional knockout mice to study its function. Selective disruption of the Notch effector gene RBP-Jκ (Rbpj) in the mesenchyme caused progressive loss of subepithelial fibroblasts and abbreviated gut length, revealing an unexpected requirement in this compartment. Surprisingly, constitutive Notch activity also induced rapid mesenchymal cell loss and impaired organogenesis, probably resulting from increased cell death and suggesting the need for a delicate balance in Notch signaling. Because digestive tract anomalies in mouse embryos with excess Notch activity phenocopy the absence of Hh signaling, we postulated that endodermal Hh restrains mesenchymal Notch pathway activity. Indeed, Hh-deficient embryos showed Notch overactivity in their defective gut mesenchyme and exposure to recombinant sonic hedgehog could override Notch-induced death of cultured fetal gut mesenchymal cells. These results reveal unexpected interactions between prominent signals in gastrointestinal development and provide a coherent explanation for Hh requirements in mesenchymal cell survival and organ growth. PMID:21750033
Lin, Hong-Yu; Haegele, Joseph A.; Disare, Michael T.; Lin, Qishan; Aye, Yimon
2015-01-01
Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized “electrophile toolbox” with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology—T-REX (targetable reactive electrophiles & oxidants)—is established by: (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein—one of several redox-sensitive regulators of the Nrf2–ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2–ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background. PMID:25909755
Lin, Hong-Yu; Haegele, Joseph A; Disare, Michael T; Lin, Qishan; Aye, Yimon
2015-05-20
Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized "electrophile toolbox" with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology, T-REX (targetable reactive electrophiles and oxidants), is established by (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept, which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein, one of several redox-sensitive regulators of the Nrf2-ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2-ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background.
Role of Wnt/β-catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer.
Rahmani, Farzad; Avan, Amir; Hashemy, Seyed Isaac; Hassanian, Seyed Mahdi
2018-02-01
Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. In more than 90% of all CRC patients, the master oncogenic Ras-Wnt signaling axis is over-activated. MicroRNAs (miRNAs) are potential novel diagnostic and prognostic biomarkers as well as therapeutic targets for several cancers including lung, breast, gastric, and colorectal cancers. Oncogenic or tumor suppressor miRNAs modulate tumor cells proliferation, cell cycle progression, angiogenesis, invasion, and metastasis through regulating oncogenic pathways including Wnt/β-catenin signaling. This review summarizes the current knowledge about the role of Wnt/β-catenin signaling regulatory miRNAs in the pathogenesis of colorectal cancer for a better understanding and hence a better management of this disease. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Nomura, Fumimasa; Hattori, Akihiro; Terazono, Hideyuki; Kim, Hyonchol; Odaka, Masao; Sugio, Yoshihiro; Yasuda, Kenji
2016-06-01
For the prediction of lethal arrhythmia occurrence caused by abnormality of cell-to-cell conduction, we have developed a next-generation in vitro cell-to-cell conduction assay, i.e., a quasi in vivo assay, in which the change in spatial cell-to-cell conduction is quantitatively evaluated from the change in waveforms of the convoluted electrophysiological signals from lined-up cardiomyocytes on a single closed loop of a microelectrode of 1 mm diameter and 20 µm width in a cultivation chip. To evaluate the importance of the closed-loop arrangement of cardiomyocytes for prediction, we compared the change in waveforms of convoluted signals of the responses in the closed-loop circuit arrangement with that of the response of cardiomyocyte clusters using a typical human ether a go-go related gene (hERG) ion channel blocker, E-4031. The results showed that (1) waveform prolongation and fluctuation both in the closed loops and clusters increased depending on the E-4031 concentration increase. However, (2) only the waveform signals in closed loops showed an apparent temporal change in waveforms from ventricular tachycardia (VT) to ventricular fibrillation (VF), which is similar to the most typical cell-to-cell conductance abnormality. The results indicated the usefulness of convoluted waveform signals of a closed-loop cell network for acquiring reproducible results acquisition and more detailed temporal information on cell-to-cell conduction.
Ramamoorthi, Ganesan; Sivalingam, Nageswaran
2014-08-01
Colon cancer is one of the third most common cancer in man, the second most common cancer in women worldwide, and the second leading cause of mortality in the USA. There are a number of molecular pathways that have been implicated in colon carcinogenesis, including TGF-β/Smad signaling pathway. TGF-β (transforming growth factor-beta) signaling pathway has the potential to regulate various biological processes including cell growth, differentiation, apoptosis, extracellular matrix modeling, and immune response. TGF-β signaling pathway acts as a tumor suppressor, but alterations in TGF-β signaling pathway promotes colon cancer cell growth, migration, invasion, angiogenesis, and metastasis. Here we review the role of TGF-β signaling cascade in colon carcinogenesis and multiple molecular targets of curcumin in colon carcinogenesis. Elucidation of the molecular mechanism of curcumin on TGF-β signaling pathway-induced colon carcinogenesis may ultimately lead to novel and more effective treatments for colon cancer.
Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function
Smith, Gina A.; Fearnley, Gareth W.; Abdul-Zani, Izma; Wheatcroft, Stephen B.; Tomlinson, Darren C.; Harrison, Michael A.
2017-01-01
ABSTRACT Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response. PMID:28798148
Yuan, Chun-Ling; Liang, Rong; Liu, Zhi-Hui; Li, Yong-Qiang; Luo, Xiao-Ling; Ye, Jia-Zhou; Lin, Yan
2018-06-01
Gastric carcinoma is one of the most common human malignancies and remains the second leading cause of cancer-associated mortality worldwide. Gastric carcinoma is characterized by early-stage metastasis and is typically diagnosed in the advanced stage. Previous results have indicated that bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) overexpression has been demonstrated to inhibit growth and metastasis of gastric cancer cells. However, the molecular mechanisms of the BAMBI-mediated signaling pathway in the progression of gastric cancer are poorly understood. In the present study, to assess whether BAMBI overexpression inhibited the growth and aggressiveness of gastric carcinoma cells through regulation of transforming growth factor (TGF)-β/epithelial-mesenchymal transition (EMT) signaling pathway, the growth and metastasis of gastric carcinoma cells were analyzed following BAMBI overexpression and knockdown in vitro and in vivo . Molecular changes in the TGF-β/EMT signaling pathway were studied in gastric carcinoma cells following BAMBI overexpression and knockdown. DNA methylation of the gene regions encoding the TGF-β/EMT signaling pathway was investigated in gastric carcinoma cells. Tumor growth in tumor-bearing mice was analyzed after mice were subjected to endogenous overexpression of BAMBI. Results indicated that BAMBI overexpression significantly inhibited gastric carcinoma cell growth and aggressiveness, whereas knockdown of BAMBI significantly promoted its growth and metastasis compared with the control (P<0.01). The TGF-β/EMT signaling pathway was downregulated in BAMBI-overexpressed gastric carcinoma cells; however, signaling was promoted following BAMBI knockdown. In addition, it was observed that BAMBI overexpression significantly downregulated the DNA methylation of the gene regions encoding the TGF-β/EMT signaling pathway (P<0.01). Furthermore, RNA interference-mediated BAMBI overexpression also promoted apoptosis in gastric cancer cells and significantly inhibited growth of gastric tumors in murine xenografts (P<0.01). In conclusion, the present findings suggest that BAMBI overexpression inhibited the TGF-β/EMT signaling pathway and suppressed the invasiveness of gastric tumors, suggesting BAMBI may be a potential target for the treatment of gastric carcinoma via regulation of the TGF-β/EMT signaling pathway.
Divya, Sasidharan Padmaja; Turcios, Lilia; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Shi, Xianglin
2016-01-01
Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with an increased risk of lung cancer. However, the mechanisms underlying Cr(VI)-induced carcinogenesis remain unclear. MicroRNA-21 (miR-21) is a key regulator of oncogenic processes. Studies have shown that miR-21 exerts its oncogenic activity by targeting the tumor suppressor gene programmed cell death 4 (PDCD4). The present study examined the role of miR-21-PDCD4 signaling in Cr(VI)-induced cell transformation and tumorigenesis. Results showed that Cr(VI) induces ROS generation in human bronchial epithelial (BEAS-2B) cells. Chronic exposure to Cr(VI) is able to cause malignant transformation in BEAS-2B cells. Cr(VI) caused a significant increase of miR-21 expression associated with an inhibition of PDCD4 expression. Notably, STAT3 transcriptional activation by IL-6 is crucial for the Cr(VI)-induced miR-21 elevation. Stable knockdown of miR-21 or overexpression of PDCD4 in BEAS-2B cells significantly reduced the Cr(VI)-induced cell transformation. Furthermore, the Cr(VI) induced inhibition of PDCD4 suppressed downstream E-cadherin protein expression, but promoted β-catenin/TCF-dependent transcription of uPAR and c-Myc. We also found an increased miR-21 level and decreased PDCD4 expression in xenograft tumors generated with chronic Cr(VI)-exposed BEAS-2B cells. In addition, stable knockdown of miR-21 and overexpression of PDCD4 reduced the tumorogenicity of chronic Cr(VI)-exposed BEAS-2B cells in nude mice. Taken together, these results demonstrate that the miR-21-PDCD4 signaling axis plays an important role in Cr(VI)-induced carcinogenesis. PMID:27323401
Weatherly, Lisa M; Nelson, Andrew J; Shim, Juyoung; Riitano, Abigail M; Gerson, Erik D; Hart, Andrew J; de Juan-Sanz, Jaime; Ryan, Timothy A; Sher, Roger; Hess, Samuel T; Gosse, Julie A
2018-06-15
The antimicrobial agent triclosan (TCS) is used in products such as toothpaste and surgical soaps and is readily absorbed into oral mucosa and human skin. These and many other tissues contain mast cells, which are involved in numerous physiologies and diseases. Mast cells release chemical mediators through a process termed degranulation, which is inhibited by TCS. Investigation into the underlying mechanisms led to the finding that TCS is a mitochondrial uncoupler at non-cytotoxic, low-micromolar doses in several cell types and live zebrafish. Our aim was to determine the mechanisms underlying TCS disruption of mitochondrial function and of mast cell signaling. We combined super-resolution (fluorescence photoactivation localization) microscopy and multiple fluorescence-based assays to detail triclosan's effects in living mast cells, fibroblasts, and primary human keratinocytes. TCS disrupts mitochondrial nanostructure, causing mitochondria to undergo fission and to form a toroidal, "donut" shape. TCS increases reactive oxygen species production, decreases mitochondrial membrane potential, and disrupts ER and mitochondrial Ca 2+ levels, processes that cause mitochondrial fission. TCS is 60 × more potent than the banned uncoupler 2,4-dinitrophenol. TCS inhibits mast cell degranulation by decreasing mitochondrial membrane potential, disrupting microtubule polymerization, and inhibiting mitochondrial translocation, which reduces Ca 2+ influx into the cell. Our findings provide mechanisms for both triclosan's inhibition of mast cell signaling and its universal disruption of mitochondria. These mechanisms provide partial explanations for triclosan's adverse effects on human reproduction, immunology, and development. This study is the first to utilize super-resolution microscopy in the field of toxicology. Copyright © 2018 Elsevier Inc. All rights reserved.
Iqbal, Waqas; Alkarim, Saleh; AlHejin, Ahmed; Mukhtar, Hasan; Saini, Kulvinder S
2016-11-15
Tumor comprises of heterogeneous population of cells where not all the disseminated cancer cells have the prerogative and "in-build genetic cues" to form secondary tumors. Cells with stem like properties complemented by key signaling molecules clearly have shown to exhibit selective growth advantage to form tumors at distant metastatic sites. Thus, defining the role of cancer stem cells (CSC) in tumorigenesis and metastasis is emerging as a major thrust area for therapeutic intervention. Precise relationship and regulatory mechanisms operating in various signal transduction pathways during cancer dissemination, extravasation and angiogenesis still remain largely enigmatic. How the crosstalk amongst circulating tumor cells (CTC), epithelial mesenchymal transition (EMT) process and CSC is coordinated for initiating the metastasis at secondary tissues, and during cancer relapse could be of great therapeutic interest. The signal transduction mechanisms facilitating the dissemination, infiltration of CSC into blood stream, extravasations, progression of metastasis phenotype and angiogenesis, at distant organs, are the key pathologically important vulnerabilities being elucidated. Therefore, current new drug discovery focus has shifted towards finding "key driver genes" operating in parallel signaling pathways, during quiescence, survival and maintenance of stemness in CSC. Understanding these mechanisms could open new horizons for tackling the issue of cancer recurrence and metastasis-the cause of ~90% cancer associated mortality. To design futuristic & targeted therapies, we propose a multi-pronged strategy involving small molecules, RNA interference, vaccines, antibodies and other biotechnological modalities against CSC and the metastatic signal transduction cascade.
NASA Astrophysics Data System (ADS)
Barroso Peña, Álvaro; Nieves, Marcos; Teper, Konrad; Wedlich-Soldner, Roland; Denz, Cornelia
2016-09-01
The plasma membrane serves as protective interface between cells and their environment. It also constitutes a hub for selective nutrient uptake and signal transduction. Increasing evidence over the last years indicates that, similar to eukaryotic cells, lateral membrane organization plays an important role in the regulation of prokaryotic signaling pathways. However, the mechanisms underlying this phenomenon are still poorly understood. Spatiotemporal characterization of bacterial signal transduction demands very sensitive high-resolution microscopy techniques due to the low expression levels of most signaling proteins and the small size of bacterial cells. In addition, direct study of subcellular confinement and dynamics of bacterial signaling proteins during the different stages of the signal transduction also requires immobilization in order to avoid cell displacement caused by Brownian motion, local fluid flows and bacterial self-propulsion. In this work we present a novel approach based on the combination of high resolution imaging and optical manipulation that enables the investigation of the distribution and dynamics of proteins at the bacterial plasma membrane. For this purpose, we combine the versatility of holographic optical tweezers (HOT) with the sensitivity and resolution of total internal reflection fluorescence (TIRF) microscopy. Furthermore, we discuss the implementation of microfluidic devices in our integrated HOT+TIRF system for the control of growth conditions of bacterial cells. The capabilities of our workstation provides thus new valuable insights into the fundamental cellular and physical mechanisms underlying the regulation of bacterial signal transduction.
Chen, Bo; Liang, Yan; He, Zheng; An, Yunhe; Zhao, Weihong; Wu, Jianqing
2016-01-01
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin superfamily, which has been implicated in the pathophysiology of the nervous system. Recently, several studies have suggested that BDNF and/or its receptor, tropomyosin related kinase B (TrkB), are involved in tumor growth and metastasis in several cancers, including prostate cancer, neuroblastoma, pancreatic ductal carcinoma, hepatocellular carcinoma, and lung cancer. Despite the increasing emphasis on BDNF/TrkB signaling in human tumors, how it participates in primary tumors has not yet been determined. Additionally, little is known about the molecular mechanisms that elicit signaling downstream of TrkB in the progression of non-small-cell lung cancer (NSCLC). In this study, we report the significant expression of BDNF in NSCLC samples and show that BDNF stimulation increases the synthesis of BDNF itself through activation of STAT3 in lung cancer cells. The release of BDNF can in turn activate TrkB signaling. The activation of both TrkB and STAT3 contribute to downstream signaling and promote human non-small-cell lung cancer proliferation. PMID:27456333
Recovery from the DNA Replication Checkpoint
Chaudhury, Indrajit; Koepp, Deanna M.
2016-01-01
Checkpoint recovery is integral to a successful checkpoint response. Checkpoint pathways monitor progress during cell division so that in the event of an error, the checkpoint is activated to block the cell cycle and activate repair pathways. Intrinsic to this process is that once repair has been achieved, the checkpoint signaling pathway is inactivated and cell cycle progression resumes. We use the term “checkpoint recovery” to describe the pathways responsible for the inactivation of checkpoint signaling and cell cycle re-entry after the initial stress has been alleviated. The DNA replication or S-phase checkpoint monitors the integrity of DNA synthesis. When replication stress is encountered, replication forks are stalled, and the checkpoint signaling pathway is activated. Central to recovery from the S-phase checkpoint is the restart of stalled replication forks. If checkpoint recovery fails, stalled forks may become unstable and lead to DNA breaks or unusual DNA structures that are difficult to resolve, causing genomic instability. Alternatively, if cell cycle resumption mechanisms become uncoupled from checkpoint inactivation, cells with under-replicated DNA might proceed through the cell cycle, also diminishing genomic stability. In this review, we discuss the molecular mechanisms that contribute to inactivation of the S-phase checkpoint signaling pathway and the restart of replication forks during recovery from replication stress. PMID:27801838
Kozłowska, Emilia; Puszynski, Krzysztof
2016-11-07
Many diseases with a genetic background such as some types of cancer are caused by damage in the p53 signaling pathway. The damage changes the system dynamics providing cancer cells with resistance to therapy such as radiation therapy. The change can be observed as the difference in bifurcation diagrams and equilibria type and location between normal and damaged cells, and summarized as the changes of the mathematical model parameters and following changes of the eigenvalues of Jacobian matrix. Therefore a change in other model parameters, such as mRNA degradation rates, may restore the proper eigenvalues and by that proper system dynamics. From the biological point of view, the change of mRNA degradation rate can be achieved by application of the small interfering RNA (siRNA). Here, we propose a general mathematical framework based on the bifurcation theory and siRNA-based control signal in order to study how to restore the proper response of cells with damaged p53 signaling pathway to therapy by using ionizing radiation (IR) therapy as an example. We show the difference between the cells with normal p53 signaling pathway and cells with abnormalities in the negative (as observed in SJSA-1 cell line) or positive (as observed in MCF-7 or PNT1a cell lines) feedback loop. Then we show how the dynamics of these cells can be restored to normal cell dynamics by using selected siRNA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment
Sun, Xiao-xiao; Yu, Qiang
2015-01-01
Recent studies have revealed extensive genetic and non-genetic variation across different geographical regions of a tumor or throughout different stages of tumor progression, which is referred to as intra-tumor heterogeneity. Several causes contribute to this phenomenon, including genomic instability, epigenetic alteration, plastic gene expression, signal transduction, and microenvironmental differences. These variables may affect key signaling pathways that regulate cancer cell growth, drive phenotypic diversity, and pose challenges to cancer treatment. Understanding the mechanisms underlying this heterogeneity will support the development of effective therapeutic strategies. PMID:26388155
Protein kinase Cδ oxidation contributes to ERK inactivation in lupus T cells.
Gorelik, Gabriela J; Yarlagadda, Sushma; Patel, Dipak R; Richardson, Bruce C
2012-09-01
CD4+ T cells from patients with active lupus have impaired ERK pathway signaling that decreases DNA methyltransferase expression, resulting in DNA demethylation, overexpression of immune genes, and autoimmunity. The ERK pathway defect is due to impaired phosphorylation of T(505) in the protein kinase Cδ (PKCδ) activation loop. However, the mechanisms that prevent PKCδ T(505) phosphorylation in lupus T cells are unknown. Others have reported that oxidative modifications, and nitration in particular, of T cells as well as serum proteins correlate with lupus disease activity. We undertook this study to test our hypothesis that nitration inactivates PKCδ, contributing to impaired ERK pathway signaling in lupus T cells. CD4+ T cells were purified from lupus patients and controls and then stimulated with phorbol myristate acetate (PMA). Signaling protein levels, nitration, and phosphorylation were quantitated by immunoprecipitation and immunoblotting of T cell lysates. Transfections were performed by electroporation. Treating CD4+ T cells with peroxynitrite nitrated PKCδ, preventing PKCδ T(505) phosphorylation and inhibiting ERK pathway signaling similar to that observed in lupus T cells. Patients with active lupus had higher nitrated T cell PKCδ levels than did controls, which correlated directly with disease activity, and antinitrotyrosine immunoprecipitations demonstrated that nitrated PKCδ, but not unmodified PKCδ, was refractory to PMA-stimulated T(505) phosphorylation, similar to PKCδ in peroxynitrite-treated cells. Oxidative stress causes PKCδ nitration, which prevents its phosphorylation and contributes to the decreased ERK signaling in lupus T cells. These results identify PKCδ as a link between oxidative stress and the T cell epigenetic modifications in lupus. Copyright © 2012 by the American College of Rheumatology.
Che, Karlhans Fru; Shankar, Esaki Muthu; Muthu, Sundaram; Zandi, Sasan; Sigvardsson, Mikael; Hinkula, Jorma; Messmer, Davorka; Larsson, Marie
2012-01-01
Human immunodeficiency virus type 1 (HIV-1) infection enhances the expression of inhibitory molecules on T cells, leading to T-cell impairment. The signaling pathways underlying the regulation of inhibitory molecules and subsequent onset of T-cell impairment remain elusive. We showed that both autologous and allogeneic T cells exposed to HIV-pulsed dendritic cells (DCs) upregulated cytotoxic T-lymphocyte antigen (CTLA-4), tumor-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), lymphocyte-activation gene-3 (LAG3), T-cell immunoglobulin mucin-3 (TIM-3), CD160 and certain suppression-associated transcription factors, such as B-lymphocyte induced maturation protein-1 (BLIMP-1), deltex homolog 1 protein (DTX1) and forkhead box P3 (FOXP3), leading to T-cell suppression. This induction was regulated by p38 mitogen-activated protein kinase/signal transducer and activator of transcription-3 (P38MAPK/STAT3) pathways, because their blockade significantly abrogated expression of all the inhibitory molecules studied and a subsequent recovery in T-cell proliferation. Neither interleukin-6 (IL-6) nor IL-10 nor growth factors known to activate STAT3 signaling events were responsible for STAT3 activation. Involvement of the P38MAPK/STAT3 pathways was evident because these proteins had a higher level of phosphorylation in the HIV-1–primed cells. Furthermore, blockade of viral CD4 binding and fusion significantly reduced the negative effects DCs imposed on primed T cells. In conclusion, HIV-1 interaction with DCs modulated their functionality, causing them to trigger the activation of the P38MAPK/STAT3 pathway in T cells, which was responsible for the upregulation of inhibitory molecules. PMID:22777388
Kato, Yuiko; Ochiai, Kazuhiko; Kawakami, Shota; Nakao, Nobuhiro; Azakami, Daigo; Bonkobara, Makoto; Michishita, Masaki; Morimatsu, Masami; Watanabe, Masami; Omi, Toshinori
2017-06-09
The pathological condition of canine prostate cancer resembles that of human androgen-independent prostate cancer. Both canine and human androgen receptor (AR) signalling are inhibited by overexpression of the dimerized co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA), which is considered to cause the development of androgen-independency. Reduced expression in immortalised cells (REIC/Dkk-3) interferes with SGTA dimerization and rescues AR signalling. This study aimed to assess the effects of REIC/Dkk-3 and SGTA interactions on AR signalling in the canine androgen-independent prostate cancer cell line CHP-1. Mammalian two-hybrid and Halo-tagged pull-down assays showed that canine REIC/Dkk-3 interacted with SGTA and interfered with SGTA dimerization. Additionally, reporter assays revealed that canine REIC/Dkk-3 restored AR signalling in both human and canine androgen-independent prostate cancer cells. Therefore, we confirmed the interaction between canine SGTA and REIC/Dkk-3, as well as their role in AR signalling. Our results suggest that this interaction might contribute to the development of a novel strategy for androgen-independent prostate cancer treatment. Moreover, we established the canine androgen-independent prostate cancer model as a suitable animal model for the study of this type of treatment-refractory human cancer.
Bohineust, Armelle; Garcia, Zacarias; Beuneu, Hélène; Lemaître, Fabrice; Bousso, Philippe
2018-05-07
T cells are primed in secondary lymphoid organs by establishing stable interactions with antigen-presenting cells (APCs). However, the cellular mechanisms underlying the termination of T cell priming and the initiation of clonal expansion remain largely unknown. Using intravital imaging, we observed that T cells typically divide without being associated to APCs. Supporting these findings, we demonstrate that recently activated T cells have an intrinsic defect in establishing stable contacts with APCs, a feature that was reflected by a blunted capacity to stop upon T cell receptor (TCR) engagement. T cell unresponsiveness was caused, in part, by a general block in extracellular calcium entry. Forcing TCR signals in activated T cells antagonized cell division, suggesting that T cell hyporesponsiveness acts as a safeguard mechanism against signals detrimental to mitosis. We propose that transient unresponsiveness represents an essential phase of T cell priming that promotes T cell disengagement from APCs and favors effective clonal expansion. © 2018 Bohineust et al.
Günther, Mattias; Plantman, Stefan; Gahm, Caroline; Sondén, Anders; Risling, Mårten; Mathiesen, Tiit
2014-12-01
Experimental CNS trauma results in post-traumatic inflammation for which microglia and macrophages are vital. Experimental brain contusion entails iNOS synthesis and formation of free radicals, NO and peroxynitrite. Shock wave trauma can be used as a model of high-energy trauma in cell culture. It is known that shock wave trauma causes sub-lytic injury and inflammatory activation in endothelial cells. Mechanical disruption of red blood cells can induce iNOS synthesis in experimental systems. However, it is not known whether trauma can induce activation and iNOS synthesis in inflammatory cell lines with microglial or macrophage lineage. We studied the response and activation in two macrophage cell lines and the consequence for iNOS and NO formation after shock wave trauma. Two macrophage cell lines from rat (NR8383) and mouse (RAW264.7) were exposed to shock wave trauma by the Flyer Plate method. The cellular response was investigated by Affymetrix gene arrays. Cell survival and morphological activation was monitored for 24 h in a Cell-IQ live cell imaging system. iNOS induction and NO synthesis were analyzed by Western blot, in cell Western IR-immunofluorescence, and Griess nitrite assay. Morphological signs of activation were detected in both macrophage cell lines. The activation of RAW264.7 was statistically significant (p < 0.05), but activation of NR8383 did not pass the threshold of statistical significance alpha (p > 0.05). The growth rate of idle cells was unaffected and growth arrest was not seen. Trauma did not result in iNOS synthesis or NO induction. Gene array analyses showed high enrichment for inflammatory response, G-protein coupled signaling, detection of stimulus and chemotaxis. Shock wave trauma combined with low LPS stimulation instead led to high enrichment in apoptosis, IL-8 signaling, mitosis and DNA-related activities. LPS/IFN-ɣ stimulation caused iNOS and NO induction and morphological activation in both cell lines. Shock wave trauma by the Flyer Plate method caused an inflammatory response and morphological signs of activation in two macrophage cell lines, while iNOS induction appeared to require humoral signaling by LPS/IFN-ɣ. Our findings indicated that direct energy transfer by trauma can activate macrophages directly without humoral mediators, which comprises a novel activation mechanism of macrophages.
Huang, Shih-Horng; Wu, Jiahn-Chun; Hwang, Ra-Der; Yeo, Hui-Lin; Wang, Seu-Mei
2003-09-01
Cellular junctions play important roles in cell differentiation, signal transduction, and cell function. This study investigated their function in steroid secretion by adrenal cells. Immunofluorescence staining revealed the presence of gap junctions and adherens junctions between adrenal cells. The major gap junction protein, connexin43, was seen as a linear dotted pattern of the typical gap junction plaques, in contrast to alpha-, beta-, and gamma-catenin, which were seen as continuous, linear staining of cell-cell adherens junction. Treatment with 18beta-glycyrrhetinic acid, a gap junction inhibitor, reduced the immunoreactivity of these proteins in a time- and dose-dependent manner, and caused the gap junction and adherens junction to separate longitudinally from the cell-cell contact sites, indicating the structural interdependency of these two junctions. Interestingly, 18beta-glycyrrhetinic acid stimulated a two- to three-fold increase in steroid production in these adrenal cells lacking intact cell junctions. These data raise the question of the necessity for cell communication for the endocrine function of adrenal cells. Pharmacological analyses indicated that the steroidogenic effect of 18beta-glycyrrhetinic acid was partially mediated by extracellular signal-related kinase and calcium/calmodulin-dependent kinase, a pathway distinct from the protein kinase A signaling pathway already known to mediate steroidogenesis in adrenal cells. Copyright 2003 Wiley-Liss, Inc.
Neuroligin-3 protects retinal cells from H2O2-induced cell death via activation of Nrf2 signaling.
Li, Xiu-Miao; Huang, Dan; Yu, Qing; Yang, Jian; Yao, Jin
2018-05-25
Intensified oxidative stress can cause severe damage to human retinal pigment epithelium (RPE) cells and retinal ganglion cells (RGCs). The potential effect of neuroligin-3 (NLGN3) against the process is studied here. Our results show that NLGN3 efficiently inhibited hydrogen peroxide (H 2 O 2 )-induced death and apoptosis in human RPE cells and RGCs. H 2 O 2 -induced reactive oxygen species (ROS) production, lipid peroxidation and DNA damage in retinal cells were alleviated by NLGN3. NLGN3 activated nuclear-factor-E2-related factor 2 (Nrf2) signaling, enabling Nrf2 protein stabilization, nuclear translocation and expression of key anti-oxidant enzymes (HO1, NOQ1 and GCLC) in RPE cells and RGCs. Further results demonstrate that NLGN3 activated Akt-mTORC1 signaling in retinal cells. Conversely, Akt-mTORC1 inhibitors (RAD001 and LY294002) reduced NLGN3-induced HO1, NOQ1 and GCLC mRNA expression. Significantly, Nrf2 silencing by targeted shRNAs reversed NLGN3-induced retinal cytoprotection against H 2 O 2 . We conclude that NLGN3 activates Nrf2 signaling to protect human retinal cells from H 2 O 2 . NLGN3 could be further tested as a valuable retinal protection agent. Copyright © 2018 Elsevier Inc. All rights reserved.
The Role of Hedgehog Signaling in Tumor Induced Bone Disease
Cannonier, Shellese A.; Sterling, Julie A.
2015-01-01
Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors. PMID:26343726
Sahlberg, Anna S.; Ruuska, Marja; Colbert, Robert A.; Granfors, Kaisa; Penttinen, Markus A.
2011-01-01
Infection caused by certain gram negative bacteria, e.g. Salmonella, can trigger inflammatory joint disease reactive arthritis (ReA). It is suggested that the disease-triggering bacteria or bacterial components persist in patients for an abnormally long time. Development of ReA is strongly associated with tissue antigen HLA-B27. Previously, we reported an enhanced replication of S. enteritidis and altered p38 MAP kinase signalling in HLA-B27-expressing monocytic cells. Here we aimed to investigate the role of HLA-B27 in regulation of double-stranded RNA activated kinase (PKR)-related signalling in Salmonella-infected or Salmonella LPS-stimulated human U937 monocytic cells, since PKR has been reported to modify p38 signalling in Salmonella-infected cells. In cells expressing HLA-B27, PKR is overexpressed and hypophosphorylated, and the expression of transcription factor CCAAT enhancer binding protein beta (C/EBPβ) is increased upon Salmonella infection and LPS stimulation. The expression of C/EBPβ is PKR-dependent in LPS-stimulated mock cells whereas in LPS-stimulated B27 cells the majority of C/EBPβ is expressed in a PKR-independent manner. Our results show that the expression of HLA-B27 disturbs the PKR-mediated signalling pathway. Moreover, altered signalling is related to misfolding-linked Glu45 in the B pocket of the HLA-B27 heavy chain. We suggest that the expression of HLA-B27 HCs modulates the intracellular environment of monocyte/macrophages and the mechanisms that are important in eliminating intracellular S. enteritidis by altering the intracellular signalling. This phenomenon is at least partly dependent on the misfolding featureof the B27 molecule. These observations offer a novel mechanism by which HLA-B27 may modulate inflammatory response induced by ReA-triggering bacteria. PMID:21988375
Yokotsuka, Mayumi; Iwaya, Keiichi; Saito, Tsuyoshi; Pandiella, Atanasio; Tsuboi, Ryoji; Kohno, Norio; Matsubara, Osamu; Mukai, Kiyoshi
2011-04-01
The final signal for triggering the formation of lamellipodia that initiate directional migration of mammalian cells is binding of the Wiskott-Aldrich syndrome (WASP)/WASP family verproline-homologous protein 2 (WAVE2) to the actin-related protein 2 and 3 (Arp2/3) complex. This WAVE2-Arp2/3 signal is suggested to be enhanced in some breast cancers, facilitating invasion, and/or metastasis. Here, we demonstrated one cause of the enhanced signal using four breast cancer cell lines (SKBR3, AU565, MCF7, and MDA-MB-231). The WAVE2-Arp2/3 signal was estimated semi-quantitatively by counting the number of lamellipodia expressing both WAVE2 and Arp2 using high-power confocal laser microscopy. Higher expression of the WAVE2-Arp2/3 signal was detected in SKBR3 and AU565, which have HER2 gene amplification, than in the other two cell lines that lack HER2 gene amplification. Trastuzumab suppressed both the formation of lamellipodia and migration in a Boyden chamber experiment in SKBR3 and AU565. When the HER2 gene was transfected into MCF7, the number of both lamellipodia and migrated cells was increased. This enhancement of migration did not occur in the presence of extracellular matrix, and zymographic analysis showed no clear difference between HER2 gene-transfected cells and MCF7 cells. Immunohistochemical analysis of 115 cases of breast cancer revealed that coexpression of WAVE2 and Arp2 was significantly correlated with HER2-overexpression (P < 0.0001). These data indicate that an abnormal signal resulting from HER2 gene amplification activates lamellipodia formation in breast cancer cells, which initiates their metalloproteinase-independent migration.
Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage.
Kitur, Kipyegon; Parker, Dane; Nieto, Pamela; Ahn, Danielle S; Cohen, Taylor S; Chung, Samuel; Wachtel, Sarah; Bueno, Susan; Prince, Alice
2015-04-01
Staphylococcus aureus USA300 strains cause a highly inflammatory necrotizing pneumonia. The virulence of this strain has been attributed to its expression of multiple toxins that have diverse targets including ADAM10, NLRP3 and CD11b. We demonstrate that induction of necroptosis through RIP1/RIP3/MLKL signaling is a major consequence of S. aureus toxin production. Cytotoxicity could be prevented by inhibiting either RIP1 or MLKL signaling and S. aureus mutants lacking agr, hla or Hla pore formation, lukAB or psms were deficient in inducing cell death in human and murine immune cells. Toxin-associated pore formation was essential, as cell death was blocked by exogenous K+ or dextran. MLKL inhibition also blocked caspase-1 and IL-1β production, suggesting a link to the inflammasome. Rip3(-/-) mice exhibited significantly improved staphylococcal clearance and retained an alveolar macrophage population with CD200R and CD206 markers in the setting of acute infection, suggesting increased susceptibility of these leukocytes to necroptosis. The importance of this anti-inflammatory signaling was indicated by the correlation between improved outcome and significantly decreased expression of KC, IL-6, TNF, IL-1α and IL-1β in infected mice. These findings indicate that toxin-induced necroptosis is a major cause of lung pathology in S. aureus pneumonia and suggest the possibility of targeting components of this signaling pathway as a therapeutic strategy.
Disruption of clathrin-mediated trafficking causes centrosome overduplication and senescence.
Olszewski, Maciej B; Chandris, Panagiotis; Park, Bum-Chan; Eisenberg, Evan; Greene, Lois E
2014-01-01
The Hsc70 cochaperone, G cyclin-associated kinase (GAK), has been shown to be essential for the chaperoning of clathrin by Hsc70 in the cell. In this study, we used conditional GAK knockout mouse embryonic fibroblasts (MEFs) to determine the effect of completely inhibiting clathrin-dependent trafficking on the cell cycle. After GAK was knocked out, the cells developed the unusual phenotype of having multiple centrosomes, but at the same time failed to divide and ultimately became senescent. To explain this phenotype, we examined the signaling profile and found that mitogenic stimulation of the GAK KO cells and the control cells were similar except for increased phosphorylation of Akt. In addition, the disruption of intracellular trafficking caused by knocking out GAK destabilized the lysosomal membranes, resulting in DNA damage due to iron leakage. Knocking down clathrin heavy chain or inhibiting dynamin largely reproduced the GAK KO phenotype, but inhibiting only clathrin-mediated endocytosis by knocking down adaptor protein (AP2) caused growth arrest and centrosome overduplication, but no DNA damage or senescence. We conclude that disruption of clathrin-dependent trafficking induces senescence accompanied by centrosome overduplication because of a combination of DNA damage and changes in mitogenic signaling that uncouples centrosomal duplication from DNA replication. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Titin Mutations in iPS cells Define Sarcomere Insufficiency as a Cause of Dilated Cardiomyopathy
Hinson, John T.; Chopra, Anant; Nafissi, Navid; Polacheck, William J.; Benson, Craig C.; Swist, Sandra; Gorham, Joshua; Yang, Luhan; Schafer, Sebastian; Sheng, Calvin C.; Haghighi, Alireza; Homsy, Jason; Hubner, Norbert; Church, George; Cook, Stuart A.; Linke, Wolfgang A.; Chen, Christopher S.; Seidman, J. G.; Seidman, Christine E.
2015-01-01
Human mutations that truncate the massive sarcomere protein titin (TTNtv) are the most common genetic cause for dilated cardiomyopathy (DCM), a major cause of heart failure and premature death. Here we show that cardiac microtissues engineered from human induced pluripotent stem (iPS) cells are a powerful system for evaluating the pathogenicity of titin gene variants. We found that certain missense mutations, like TTNtv, diminish contractile performance and are pathogenic. By combining functional analyses with RNAseq, we explain why truncations in the A-band domain of TTN cause DCM while truncations in the I-band are better tolerated. Finally, we demonstrate that mutant titin protein in iPS-cardiomyocytes results in sarcomere insufficiency, impaired responses to mechanical and β-adrenergic stress, and attenuated growth factor and cell signaling activation. Our findings indicate that titin mutations cause DCM by disrupting critical linkages between sarcomerogenesis and adaptive remodelling. PMID:26315439
Molecular analysis of human papillomavirus virus-like particle activated Langerhans cells in vitro.
Woodham, Andrew W; Raff, Adam B; Da Silva, Diane M; Kast, W Martin
2015-01-01
Langerhans cells (LC) are the resident antigen-presenting cells in human epithelium, and are therefore responsible for initiating immune responses against human papillomaviruses (HPV) entering the epithelial and mucosal layers in vivo. Upon proper pathogenic stimulation, LC become activated causing an internal signaling cascade that results in the up-regulation of co-stimulatory molecules and the release of inflammatory cytokines. Activated LC then migrate to lymph nodes where they interact with antigen-specific T cells and initiate an adaptive T-cell response. However, HPV manipulates LC in a suppressive manner that alters these normal maturation responses. Here, in vitro LC activation assays for the detection of phosphorylated signaling intermediates, the up-regulation of activation-associated surface markers, and the release of inflammatory cytokines in response to HPV particles are described.
Muraro, D; Larrieu, A; Lucas, M; Chopard, J; Byrne, H; Godin, C; King, J
2016-09-07
The growth of the root of Arabidopsis thaliana is sustained by the meristem, a region of cell proliferation and differentiation which is located in the root apex and generates cells which move shootwards, expanding rapidly to cause root growth. The balance between cell division and differentiation is maintained via a signalling network, primarily coordinated by the hormones auxin, cytokinin and gibberellin. Since these hormones interact at different levels of spatial organisation, we develop a multi-scale computational model which enables us to study the interplay between these signalling networks and cell-cell communication during the specification of the root meristem. We investigate the responses of our model to hormonal perturbations, validating the results of our simulations against experimental data. Our simulations suggest that one or more additional components are needed to explain the observed expression patterns of a regulator of cytokinin signalling, ARR1, in roots not producing gibberellin. By searching for novel network components, we identify two mutant lines that affect significantly both root length and meristem size, one of which also differentially expresses a central component of the interaction network (SHY2). More generally, our study demonstrates how a multi-scale investigation can provide valuable insight into the spatio-temporal dynamics of signalling networks in biological tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo
2016-01-01
An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601
Dormann, D; Abe, T; Weijer, C J; Williams, J
2001-04-01
Dd-STATa, the Dictyostelium STAT (signal transducer and activator of transcription) protein, is selectively localised in the nuclei of a small subset of prestalk cells located in the slug tip. Injection of cAMP into the extracellular spaces in the rear of the slug induces rapid nuclear translocation of a Dd-GFP:STATa fusion protein in prespore cells surrounding the site of injection. This suggests that cAMP signals that emanate from the tip direct the localised nuclear accumulation of Dd-STATa. It also shows that prespore cells are competent to respond to cAMP, by Dd-STATa activation, and it implies that cAMP signalling is in some way limiting in the rear of the slug. Co-injection of a specific inhibitor of the cAR1 serpentine cAMP receptor almost completely prevents the cAMP-induced nuclear translocation, showing that most or all of the cAMP signal is transduced by cAR1. Dd-GFP:STATa also rapidly translocates into the nuclei of cells adjoining the front and back cut edges when a slug is bisected. Less severe mechanical disturbances, such as pricking the rear of a slug with an unfilled micropipette, also cause a more limited nuclear translocation of Dd-GFP:STATa. We propose that these signalling events form part of a repair mechanism that is activated when the migrating slug suffers mechanical damage.
Åhsberg, Josefine; Tsapogas, Panagiotis; Qian, Hong; Zetterblad, Jenny; Zandi, Sasan; Månsson, Robert; Jönsson, Jan-Ingvar; Sigvardsson, Mikael
2010-11-19
The development of lymphoid cells from bone marrow progenitors is dictated by interplay between internal cues such as transcription factors and external signals like the cytokines Flt-3 ligand and Il-7. These proteins are both of large importance for normal lymphoid development; however, it is unclear if they act in direct synergy to expand a transient Il-7R(+)Flt-3(+) population or if the collaboration is created through sequential activities. We report here that Flt-3L and Il-7 synergistically stimulated the expansion of primary Il-7R(+)Flt-3(+) progenitor cells and a hematopoietic progenitor cell line ectopically expressing the receptors. The stimulation resulted in a reduced expression of pro-apoptotic genes and also mediated survival of primary progenitor cells in vitro. However, functional analysis of single cells suggested that the anti-apoptotic effect was additive indicating that the synergy observed mainly depends on stimulation of proliferation. Analysis of downstream signaling events suggested that although Il-7 induced Stat-5 phosphorylation, Flt-3L caused activation of the ERK and AKT signaling pathways. Flt-3L could also drive proliferation in synergy with ectopically expressed constitutively active Stat-5. This synergy could be inhibited with either receptor tyrosine kinase or MAPK inhibitors suggesting that Flt-3L and Il-7 act in synergy by activation of independent signaling pathways to expand early hematopoietic progenitors.
Differential signaling and regulation of apical vs. basolateral EGFR in polarized epithelial cells.
Kuwada, S K; Lund, K A; Li, X F; Cliften, P; Amsler, K; Opresko, L K; Wiley, H S
1998-12-01
Overexpression of the epidermal growth factor receptors (EGFR) in polarized kidney epithelial cells caused them to appear in high numbers at both the basolateral and apical cell surfaces. We utilized these cells to look for differences in the regulation and signaling of apical vs. basolateral EGFR. Apical and basolateral EGFR were biologically active and mediated EGF-induced cell proliferation to similar degrees. Receptor downregulation and endocytosis were less efficient at the apical surface, resulting in prolonged EGF-induced tyrosine kinase activity at the apical cell membrane. Tyrosine phosphorylation of EGFR substrates known to mediate cell proliferation, Src-homologous and collagen protein (SHC), extracellularly regulated kinase 1 (ERK1), and ERK2 could be induced similarly by activation of apical or basolateral EGFR. Focal adhesion kinase was tyrosine phosphorylated more by basolateral than by apical EGFR; however, beta-catenin was tyrosine phosphorylated to a much greater degree following the activation of mislocalized apical EGFR. Thus EGFR regulation and EGFR-mediated phosphorylation of certain substrates differ at the apical and basolateral cell membrane domains. This suggests that EGFR mislocalization could result in abnormal signal transduction and aberrant cell behavior.
Jia, Yan-Jun; Kai, Masahiro; Wada, Ikuo; Sakane, Fumio; Kanoh, Hideo
2003-09-25
Lipid phosphate phosphatases (LPPs) are integral membrane proteins with six transmembrane domains that act as ecto-enzymes dephosphorylating a variety of extracellular lipid phosphates. Using polarized MDCK cells stably expressing human LPP1 and LPP3, we found that LPP1 was located exclusively at the apical surface whereas LPP3 was distributed mostly in the basolateral subdomain. We identified a novel apical sorting signal at the N-terminus of LPP1 composed of F(2)DKTRL(7). In the case of LPP3, a dityrosine motif present in the second cytoplasmic portion was identified as basolateral targeting signal. Our work shows that LPP1 and LPP3 are equipped with distinct sorting signals that cause them to differentially localize to the apical vs. the basolateral subdomain, respectively.
LNK mutations and myeloproliferative disorders.
McMullin, Mary Frances; Cario, Holger
2016-02-01
The lymphocyte adaptor protein (LNK) is one of a family of adaptor proteins involved cell signaling and control of B cell populations. It has a critical role in regulation of signaling in hematopoiesis. Lnk negatively regulates cytokine initiated cell signaling and it functions as a negative regulator of the mutant protein in myeloproliferative neoplasms JAK2V617F. A number of mutations in LNK have been described in a variety of myeloproliferative neoplasms some of which have been demonstrated to cause increased cellular proliferation. The majority of mutations occur in exon 2. In a small number of cases idiopathic erythrocytosis with subnormal erythropoietin levels LNK mutations have been found which may account for the clinical phenotype. Thus investigation for LNK mutations should be considered in the investigation of idiopathic erythrocytosis and perhaps other myeloproliferative neoplasms. © 2015 Wiley Periodicals, Inc.
Alayev, Anya; Berger, Sara Malka; Kramer, Melissa Y.; Schwartz, Naomi S.; Holz, Marina K.
2015-01-01
Hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) is a frequent event in breast cancer and current efforts are aimed at targeting the mTORC1 signaling pathway in combination with other targeted therapies. However, patients often develop drug resistance in part due to activation of the oncogenic Akt signaling and upregulation of autophagy, which protects cancer cells from apoptosis. In the present study we investigated the effects of combination therapy of rapamycin (an allosteric mTORC1 inhibitor) together with resveratrol (a phytoestrogen that inhibits autophagy). Our results show that combination of these drugs maintains inhibition of mTORC1 signaling, while preventing upregulation of Akt activation and autophagy, causing apoptosis. Additionally, this combination was effective in estrogen receptor positive and negative breast cancer cells, underscoring its versatility. PMID:25336146
The PI3K/Akt pathway is required for LPS activation of microglial cells.
Saponaro, Concetta; Cianciulli, Antonia; Calvello, Rosa; Dragone, Teresa; Iacobazzi, Francesco; Panaro, Maria Antonietta
2012-10-01
Upregulation of inflammatory responses in the brain is associated with a number of neurodegenerative diseases. Microglia are activated in neurodegenerative diseases, producing pro-inflammatory mediators. Critically, lipopolysaccharide (LPS)-induced microglial activation causes dopaminergic neurodegeneration in vitro and in vivo. The signaling mechanisms triggered by LPS to stimulate the release of pro-inflammatory mediators in microglial cells are still incompletely understood. To further explore the mechanisms of LPS-mediated inflammatory response of microglial cells, we studied the role of phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction pathways known to be activated by toll-like receptor-4 signaling through LPS. In the current study, we report that the activation profile of LPS-induced pAkt activation preceded those of LPS-induced NF-κB activation, suggesting a role for PI3K/Akt in the pathway activation of NF-κB-dependent inflammatory responses of activated microglia. These results, providing the first evidence that PI3K dependent signaling is involved in the inflammatory responses of microglial cells following LPS stimulation, may be useful in preventing inflammatory based neurodegenerative processes.
Dutta, Mukta; Robertson, Shelly J; Okumura, Atsushi; Scott, Dana P; Chang, Jean; Weiss, Jeffrey M; Sturdevant, Gail L; Feldmann, Friederike; Haddock, Elaine; Chiramel, Abhilash I; Ponia, Sanket S; Dougherty, Jonathan D; Katze, Michael G; Rasmussen, Angela L; Best, Sonja M
2017-01-17
The unprecedented 2013-2016 outbreak of Ebola virus (EBOV) resulted in over 11,300 human deaths. Host resistance to RNA viruses requires RIG-I-like receptor (RLR) signaling through the adaptor protein, mitochondrial antiviral signaling protein (MAVS), but the role of RLR-MAVS in orchestrating anti-EBOV responses in vivo is not known. Here we apply a systems approach to MAVS -/- mice infected with either wild-type or mouse-adapted EBOV. MAVS controlled EBOV replication through the expression of IFNα, regulation of inflammatory responses in the spleen, and prevention of cell death in the liver, with macrophages implicated as a major cell type influencing host resistance. A dominant role for RLR signaling in macrophages was confirmed following conditional MAVS deletion in LysM+ myeloid cells. These findings reveal tissue-specific MAVS-dependent transcriptional pathways associated with resistance to EBOV, and they demonstrate that EBOV adaptation to cause disease in mice involves changes in two distinct events, RLR-MAVS antagonism and suppression of RLR-independent IFN-I responses. Published by Elsevier Inc.
The Wnt signaling pathway in familial exudative vitreoretinopathy and Norrie disease.
Warden, Scott M; Andreoli, Christopher M; Mukai, Shizuo
2007-01-01
The Wnt signaling pathway is highly conserved among species and has an important role in many cell biological processes throughout the body. This signaling cascade is involved in regulating ocular growth and development, and recent findings indicate that this is particularly true in the retina. Mutations involving different aspects of the Wnt signaling pathway are being linked to several diseases of retinal development. The aim of this article is to first review the Wnt signaling pathway. We will then describe two conditions, familial exudative vitreoretinopathy (FEVR) and Norrie disease (ND), which have been shown to be caused in part by defects in the Wnt signaling cascade.
Responds of Bone Cells to Microgravity: Ground-Based Research
NASA Astrophysics Data System (ADS)
Zhang, Jian; Li, Jingbao; Xu, Huiyun; Yang, Pengfei; Xie, Li; Qian, Airong; Zhao, Yong; Shang, Peng
2015-11-01
Severe loss of bone occurs due to long-duration spaceflight. Mechanical loading stimulates bone formation, while bone degradation happens under mechanical unloading. Bone remodeling is a dynamic process in which bone formation and bone resorption are tightly coupled. Increased bone resorption and decreased bone formation caused by reduced mechanical loading, generally result in disrupted bone remodeling. Bone remodeling is orchestrated by multiple bone cells including osteoblast, osteocyte, osteoclast and mesenchymal stem cell. It is yet not clear that how these bone cells sense altered gravity, translate physical stimulus into biochemical signals, and then regulate themselves structurally and functionally. In this paper, studies elucidating the bioeffects of microgravity on bone cells (osteoblast, osteocyte, osteoclast, mesenchymal stem cell) using various platforms including spaceflight and ground-based simulated microgravity were summarized. Promising gravity-sensitive signaling pathways and protein molecules were proposed.
Inflammation activates the interferon signaling pathways in taste bud cells.
Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan
2007-10-03
Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.
Mechanisms of Aminoglycoside-Induced Hair Cell Death
ERIC Educational Resources Information Center
Mangiardi, Dominic A.; Cotanche, Douglas A.
2005-01-01
Aminoglycoside antibiotics are commonly used because of their ability to treat bacterial infections, yet they also are a major cause of deafness. Aminoglycosides selectively damage the cochlea's sensory hair cells, the receptors that respond to the fluid movement in the cochlea to produce neural signals that are relayed to the brain. Sensory hair…
Bix, Gregory; Fu, Jian; Gonzalez, Eva M.; Macro, Laura; Barker, Amy; Campbell, Shelly; Zutter, Mary M.; Santoro, Samuel A.; Kim, Jiyeun K.; Höök, Magnus; Reed, Charles C.; Iozzo, Renato V.
2004-01-01
Endorepellin, the COOH-terminal domain of the heparan sulfate proteoglycan perlecan, inhibits several aspects of angiogenesis. We provide evidence for a novel biological axis that links a soluble fragment of perlecan protein core to the major cell surface receptor for collagen I, α2β1 integrin, and provide an initial investigation of the intracellular signaling events that lead to endorepellin antiangiogenic activity. The interaction between endorepellin and α2β1 integrin triggers a unique signaling pathway that causes an increase in the second messenger cAMP; activation of two proximal kinases, protein kinase A and focal adhesion kinase; transient activation of p38 mitogen-activated protein kinase and heat shock protein 27, followed by a rapid down-regulation of the latter two proteins; and ultimately disassembly of actin stress fibers and focal adhesions. The end result is a profound block of endothelial cell migration and angiogenesis. Because perlecan is present in both endothelial and smooth muscle cell basement membranes, proteolytic activity during the initial stages of angiogenesis could liberate antiangiogenic fragments from blood vessels' walls, including endorepellin. PMID:15240572
Zheng, Qing-Qing; Zhao, You-Shan; Guo, Juan; Zhao, Si-da; Song, Lu-Xi; Fei, Cheng-Ming; Zhang, Zheng; Li, Xiao; Chang, Chun-Kang
2017-07-01
Erythroid apoptosis increases significantly in myelodysplastic syndrome (MDS) patients with iron overload, but the underlying mechanism is not fully clear. In this study, we aim to explore the effect of HIF-1a/ROS on erythroid apoptosis in MDS patients with iron overload. We found that iron overload injured cellular functions through up-regulating ROS levels in MDS/AML cells, including inhibited cell viability, increased cell apoptosis and blocked cell cycle at G0/G1 phase. Interestingly, overexpression of hypoxia inducible factor-1a (HIF-1a), which was under-expressed in iron overload models, reduced ROS levels and attenuated cell damage caused by iron overload in MDS/AML cells. And gene knockdown of HIF-1a got the similar results as iron overload in MDS/AML cells. Furthermore, iron overload caused high erythroid apoptosis was closely related with ROS in MDS patients. Importantly, the HIF-1a protein levels of erythrocytes elevated obviously after incubation with desferrioxamine (DFO) from MDS patients with iron overload, accompanied by ROS levels inhibited and erythroid apoptosis reduced. Taken together, our findings determine that the HIF-1a/ROS signaling pathway plays a key role in promoting erythroid apoptosis in MDS patients with iron overload. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bezprozvanny, Ilya
2011-07-01
Huntington's disease (HD) and spinocerebellar ataxias (SCAs) are autosomal-dominant neurodegenerative disorders. HD is caused by polyglutamine (polyQ) expansion in the amino-terminal region of a protein huntingtin (Htt) and primarily affects medium spiny striatal neurons (MSN). Many SCAs are caused by polyQ-expansion in ataxin proteins and primarily affect cerebellar Purkinje cells. The reasons for neuronal dysfunction and death in HD and SCAs remain poorly understood and no cure is available for the patients. Our laboratory discovered that mutant huntingtin, ataxin-2 and ataxin-3 proteins specifically bind to the carboxy-terminal region of the type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R1), an intracellular Ca(2+) release channel. Moreover, we found that association of mutant huntingtin or ataxins with IP(3)R1 causes sensitization of IP(3)R1 to activation by IP(3) in planar lipid bilayers and in neuronal cells. These results suggested that deranged neuronal Ca(2+) signaling might play an important role in pathogenesis of HD, SCA2 and SCA3. In support of this idea, we demonstrated a connection between abnormal Ca(2+) signaling and neuronal cell death in experiments with HD, SCA2 and SCA3 transgenic mouse models. Additional data in the literature indicate that abnormal neuronal Ca(2+) signaling may also play an important role in pathogenesis of SCAl, SCA5, SCA6, SCA14 and SCA15/16. Based on these results I propose that IP(3)R and other Ca(2+) signaling proteins should be considered as potential therapeutic targets for treatment of HD and SCAs.
[Recent Advances of Researches on Expression, Function and Regulation of CD22].
Wu, Xiao-Jing; Shao, Zong-Hong
2015-04-01
CD22 is a type I transmembrane protein expressed on most mature B lymphocyte, and plays a significant role in signal transduction pathways. CD22 acts as a co-receptor of the B-cell receptor (BCR) that inhibits the BCR signaling by antigen-receptor interaction. The phosphorylation of CD22 can be triggered by cross-linking of CD22 with the BCR through antigen, then predominantly triggers the dephosphorylation and inactivation of downstream proteins and inhibit the BCR signaling. Autoimmune disease could be caused by the abnormal expression or dysfunction of CD22 which interrupts BCR signaling and then influences the quantity and function of B cells. The further study of the function and regulation of CD22 would help us understanding the pathogenesis of autoimmune disease and setting theoretical basis for its targeting treatment. In this article, the structure and expression of CD22, the ligands of CD22, the regulation of BCR and transmenbrane signaling, the effect of CD22 on B cells, and CD22 and autoimmune diseases were reviewed.
Shanthalingam, Sudarvili; Tibary, Ahmed; Beever, Jonathan E.; Kasinathan, Poothapillai; Brown, Wendy C.; Srikumaran, Subramaniam
2016-01-01
Signal peptides of membrane proteins are cleaved by signal peptidase once the nascent proteins reach the endoplasmic reticulum. Previously, we reported that, contrary to the paradigm, the signal peptide of ruminant CD18, the β subunit of β2 integrins, is not cleaved and hence remains intact on mature CD18 molecules expressed on the surface of ruminant leukocytes. Leukotoxin secreted by Mannheimia (Pasteurella) haemolytica binds to the intact signal peptide and causes cytolysis of ruminant leukocytes, resulting in acute inflammation and lung tissue damage. We also demonstrated that site-directed mutagenesis leading to substitution of cleavage-inhibiting glutamine (Q), at amino acid position 5 upstream of the signal peptide cleavage site, with cleavage-inducing glycine (G) results in the cleavage of the signal peptide and abrogation of leukotoxin-induced cytolysis of target cells. In this proof-of-principle study, we used precise gene editing to induce Q(‒5)G substitution in both alleles of CD18 in bovine fetal fibroblast cells. The gene-edited fibroblasts were used for somatic nuclear transfer and cloning to produce a bovine fetus homozygous for the Q(‒5)G substitution. The leukocyte population of this engineered ruminant expressed CD18 without the signal peptide. More importantly, these leukocytes were absolutely resistant to leukotoxin-induced cytolysis. This report demonstrates the feasibility of developing lines of cattle genetically resistant to M. haemolytica-caused pneumonia, which inflicts an economic loss of over $1 billion to the US cattle industry alone. PMID:27799556
Shanthalingam, Sudarvili; Tibary, Ahmed; Beever, Jonathan E; Kasinathan, Poothapillai; Brown, Wendy C; Srikumaran, Subramaniam
2016-11-15
Signal peptides of membrane proteins are cleaved by signal peptidase once the nascent proteins reach the endoplasmic reticulum. Previously, we reported that, contrary to the paradigm, the signal peptide of ruminant CD18, the β subunit of β 2 integrins, is not cleaved and hence remains intact on mature CD18 molecules expressed on the surface of ruminant leukocytes. Leukotoxin secreted by Mannheimia (Pasteurella) haemolytica binds to the intact signal peptide and causes cytolysis of ruminant leukocytes, resulting in acute inflammation and lung tissue damage. We also demonstrated that site-directed mutagenesis leading to substitution of cleavage-inhibiting glutamine (Q), at amino acid position 5 upstream of the signal peptide cleavage site, with cleavage-inducing glycine (G) results in the cleavage of the signal peptide and abrogation of leukotoxin-induced cytolysis of target cells. In this proof-of-principle study, we used precise gene editing to induce Q(‒5)G substitution in both alleles of CD18 in bovine fetal fibroblast cells. The gene-edited fibroblasts were used for somatic nuclear transfer and cloning to produce a bovine fetus homozygous for the Q(‒5)G substitution. The leukocyte population of this engineered ruminant expressed CD18 without the signal peptide. More importantly, these leukocytes were absolutely resistant to leukotoxin-induced cytolysis. This report demonstrates the feasibility of developing lines of cattle genetically resistant to M. haemolytica-caused pneumonia, which inflicts an economic loss of over $1 billion to the US cattle industry alone.
Novel role of prostate apoptosis response-4 tumor suppressor in B-cell chronic lymphocytic leukemia.
McKenna, Mary K; Noothi, Sunil K; Alhakeem, Sara S; Oben, Karine Z; Greene, Joseph T; Mani, Rajeswaran; Perry, Kathryn L; Collard, James P; Rivas, Jacqueline R; Hildebrandt, Gerhard; Fleischman, Roger; Durbin, Eric B; Byrd, John C; Wang, Chi; Muthusamy, Natarajan; Rangnekar, Vivek M; Bondada, Subbarao
2018-04-25
Prostate apoptosis response-4 (Par-4), a pro-apoptotic tumor suppressor protein, is down regulated in many cancers including renal cell carcinoma, glioblastoma, endometrial and breast cancer. Par-4 induces apoptosis selectively in various types of cancer cells but not normal cells. We found that chronic lymphocytic leukemia (CLL) cells from human patients and from the Eµ-Tcl1 mice constitutively express Par-4 in greater amounts than normal B-1 or B-2 cells. Interestingly, knockdown of Par-4 in human CLL derived Mec-1 cells results in a robust increase in p21/WAF1 expression and decreased growth due to delayed G1 to S cell cycle transition. Lack of Par-4 also increased the expression of p21 and delayed CLL growth in Eμ-Tcl1 mice. Par-4 expression in CLL cells required constitutively active B-cell receptor (BCR) signaling, as inhibition of BCR signaling with FDA approved drugs caused a decrease in Par-4 mRNA and protein, and an increase in apoptosis. In particular, activities of Lyn, a Src family kinase, spleen tyrosine kinase and Bruton's tyrosine kinase are required for Par-4 expression in CLL cells, suggesting a novel regulation of Par-4 through BCR signaling. Together, these results suggest that Par-4 may play a novel pro-growth rather than pro-apoptotic role in CLL and could be targeted to enhance the therapeutic effects of BCR signaling inhibitors. Copyright © 2018 American Society of Hematology.
Selective Insulin Resistance in the Kidney
Horita, Shoko; Nakamura, Motonobu; Suzuki, Masashi; Satoh, Nobuhiko; Suzuki, Atsushi; Seki, George
2016-01-01
Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved, thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus, the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule. PMID:27247938
Okuyama, H; Shimahara, Y; Kawada, N; Seki, S; Kristensen, D B; Yoshizato, K; Uyama, N; Yamaoka, Y
2001-07-27
Redox-regulated processes are important elements in various cellular functions. Reducing agents, such as N-acetyl-l-cysteine (NAC), are known to regulate signal transduction and cell growth through their radical scavenging action. However, recent studies have shown that reactive oxygen species are not always involved in ligand-stimulated intracellular signaling. Here, we report a novel mechanism by which NAC blocks platelet-derived growth factor (PDGF)-induced signaling pathways in hepatic stellate cells, a fibrogenic player in the liver. Unlike in vascular smooth muscle cells, we found that reducing agents, including NAC, triggered extracellular proteolysis of PDGF receptor-beta, leading to desensitization of hepatic stellate cells toward PDGF-BB. This effect was mediated by secreted mature cathepsin B. In addition, type II transforming growth factor-beta receptor was also down-regulated. Furthermore, these events seemed to cause a dramatic improvement of rat liver fibrosis. These results indicated that redox processes impact the cell's response to growth factors by regulating the turnover of growth factor receptors and that "redox therapy" is promising for fibrosis-related disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Karen E.; Knipe, David M., E-mail: david_knipe@hms.harvard.ed
2010-01-05
Host cells respond to viral infection by the production of type I interferons (IFNs), which induce the expression of antiviral genes. Herpes simplex virus I (HSV-1) encodes many mechanisms that inhibit the type I IFN response, including the ICP27-dependent inhibition of type I IFN signaling. Here we show inhibition of Stat-1 nuclear accumulation in cells that express ICP27. ICP27 expression also induces the secretion of a small, heat-stable type I IFN antagonizing protein that inhibits Stat-1 nuclear accumulation. We show that the inhibition of IFN-induced Stat-1 phosphorylation occurs at or upstream of Jak-1 phosphorylation. Finally, we show that ISG15 expressionmore » is induced after IFNalpha treatment in mock-infected cells, but not cells infected with WT HSV-1 or ICP27{sup -} HSV-1. These data suggest that HSV-1 has evolved multiple mechanisms to inhibit IFN signaling not only in infected cells, but also in neighboring cells, thereby allowing for increased viral replication and spread.« less
Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto
2018-01-18
v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.
Morita, Shin-ichi; Takanezawa, Sota; Hiroshima, Michio; Mitsui, Toshiyuki; Ozaki, Yukihiro; Sako, Yasushi
2014-01-01
Cellular differentiation proceeds along complicated pathways, even when it is induced by extracellular signaling molecules. One of the major reasons for this complexity is the highly multidimensional internal dynamics of cells, which sometimes causes apparently stochastic responses in individual cells to extracellular stimuli. Therefore, to understand cell differentiation, it is necessary to monitor the internal dynamics of cells at single-cell resolution. Here, we used a Raman and autofluorescence spectrum analysis of single cells to detect dynamic changes in intracellular molecular components. MCF-7 cells are a human cancer-derived cell line that can be induced to differentiate into mammary-gland-like cells with the addition of heregulin (HRG) to the culture medium. We measured the spectra in the cytoplasm of MCF-7 cells during 12 days of HRG stimulation. The Raman scattering spectrum, which was the major component of the signal, changed with time. A multicomponent analysis of the Raman spectrum revealed that the dynamics of the major components of the intracellular molecules, including proteins and lipids, changed cyclically along the differentiation pathway. The background autofluorescence signals of Raman scattering also provided information about the differentiation process. Using the total information from the Raman and autofluorescence spectra, we were able to visualize the pathway of cell differentiation in the multicomponent phase space. PMID:25418290
Beta-catenin-dependent Wnt signaling in mandibular bone regeneration.
Leucht, Philipp; Kim, Jae-Beom; Helms, Jill A
2008-02-01
Osteoblasts are derived from two distinct embryonic lineages: cranial neural crest, and mesoderm. Both populations of cells are capable of forming bone and cartilage during fetal development and during adult bone repair, but whether they use equivalent molecular pathways to achieve osteoblast differentiation is unknown. We addressed this question in the context of cranial repair and focused on the role of Wnt signaling in mandibular skeletal healing. Transgenic Wnt reporter mice were used to pinpoint Wnt-responsive cells in the injury callus, and in situ hybridization was used to identify some of the Wnt ligands expressed by cells during the repair process. A gene transfer technique was employed to abrogate Wnt signaling during mandibular healing, and we found that reparative intramembranous ossification requires a functional Wnt pathway. Finally, we evaluated how constitutive activation of the Wnt pathway, caused by mutation of the LRP5 receptor, affected bone repair in the mandible. Taken together, these data underscore the functional requirement for Wnt signaling in cranial skeletal healing.
Repulsive Guidance Molecule is a structural bridge between Neogenin and Bone Morphogenetic Protein
Healey, Eleanor G.; Bishop, Benjamin; Elegheert, Jonathan; Bell, Christian H.; Padilla-Parra, Sergi; Siebold, Christian
2015-01-01
Repulsive guidance molecules (RGMs) control crucial processes spanning cell motility, adhesion, immune cell regulation and systemic iron metabolism. RGMs signal via two fundamental signaling cascades: the Neogenin (NEO1) and the Bone Morphogenetic Protein (BMP) pathways. Here, we report crystal structures of the N-terminal domains of all human RGM family members in complex with the BMP ligand BMP2, revealing a novel protein fold and a conserved BMP-binding mode. Our structural and functional data suggest a pH-linked mechanism for RGM-activated BMP signaling and offer a rationale for RGM mutations causing juvenile hemochromatosis. We also determined the ternary BMP2–RGM–NEO1 complex crystal structure, which combined with solution scattering and live-cell super-resolution fluorescence microscopy, indicates BMP-induced clustering of the RGM–NEO1 complex. Our results show how RGM acts as the central hub linking BMP and NEO1 and physically connecting these fundamental signaling pathways. PMID:25938661
Angiopoietin–Tie signalling in the cardiovascular and lymphatic systems
Eklund, Lauri; Kangas, Jaakko; Saharinen, Pipsa
2016-01-01
Endothelial cells that form the inner layer of blood and lymphatic vessels are important regulators of vascular functions and centrally involved in the pathogenesis of vascular diseases. In addition to the vascular endothelial growth factor (VEGF) receptor pathway, the angiopoietin (Ang)–Tie system is a second endothelial cell specific ligand–receptor signalling system necessary for embryonic cardiovascular and lymphatic development. The Ang–Tie system also regulates postnatal angiogenesis, vessel remodelling, vascular permeability and inflammation to maintain vascular homoeostasis in adult physiology. This system is implicated in numerous diseases where the vasculature has an important contribution, such as cancer, sepsis, diabetes, atherosclerosis and ocular diseases. Furthermore, mutations in the TIE2 signalling pathway cause defects in vascular morphogenesis, resulting in venous malformations and primary congenital glaucoma. Here, we review recent advances in the understanding of the Ang–Tie signalling system, including cross-talk with the vascular endothelial protein tyrosine phosphatase (VE-PTP) and the integrin cell adhesion receptors, focusing on the Ang–Tie system in vascular development and pathogenesis of vascular diseases. PMID:27941161
Cross-talk between AMPK and EGFR dependent Signaling in Non-Small Cell Lung Cancer
NASA Astrophysics Data System (ADS)
Praveen, Paurush; Hülsmann, Helen; Sültmann, Holger; Kuner, Ruprecht; Fröhlich, Holger
2016-06-01
Lung cancers globally account for 12% of new cancer cases, 85% of these being Non Small Cell Lung Cancer (NSCLC). Therapies like erlotinib target the key player EGFR, which is mutated in about 10% of lung adenocarcinoma. However, drug insensitivity and resistance caused by second mutations in the EGFR or aberrant bypass signaling have evolved as a major challenge in controlling these tumors. Recently, AMPK activation was proposed to sensitize NSCLC cells against erlotinib treatment. However, the underlying mechanism is largely unknown. In this work we aim to unravel the interplay between 20 proteins that were previously associated with EGFR signaling and erlotinib drug sensitivity. The inferred network shows a high level of agreement with protein-protein interactions reported in STRING and HIPPIE databases. It is further experimentally validated with protein measurements. Moreover, predictions derived from our network model fairly agree with somatic mutations and gene expression data from primary lung adenocarcinoma. Altogether our results support the role of AMPK in EGFR signaling and drug sensitivity.
Nishioka, Tatsuji; Arima, Naoaki; Kano, Kuniyuki; Hama, Kotaro; Itai, Eriko; Yukiura, Hiroshi; Kise, Ryoji; Inoue, Asuka; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Moolenaar, Wouter H.; Chun, Jerold; Aoki, Junken
2016-01-01
The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation. PMID:27005960
Nishioka, Tatsuji; Arima, Naoaki; Kano, Kuniyuki; Hama, Kotaro; Itai, Eriko; Yukiura, Hiroshi; Kise, Ryoji; Inoue, Asuka; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Moolenaar, Wouter H; Chun, Jerold; Aoki, Junken
2016-03-23
The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation.
Cross-talk between AMPK and EGFR dependent Signaling in Non-Small Cell Lung Cancer
Praveen, Paurush; Hülsmann, Helen; Sültmann, Holger; Kuner, Ruprecht; Fröhlich, Holger
2016-01-01
Lung cancers globally account for 12% of new cancer cases, 85% of these being Non Small Cell Lung Cancer (NSCLC). Therapies like erlotinib target the key player EGFR, which is mutated in about 10% of lung adenocarcinoma. However, drug insensitivity and resistance caused by second mutations in the EGFR or aberrant bypass signaling have evolved as a major challenge in controlling these tumors. Recently, AMPK activation was proposed to sensitize NSCLC cells against erlotinib treatment. However, the underlying mechanism is largely unknown. In this work we aim to unravel the interplay between 20 proteins that were previously associated with EGFR signaling and erlotinib drug sensitivity. The inferred network shows a high level of agreement with protein-protein interactions reported in STRING and HIPPIE databases. It is further experimentally validated with protein measurements. Moreover, predictions derived from our network model fairly agree with somatic mutations and gene expression data from primary lung adenocarcinoma. Altogether our results support the role of AMPK in EGFR signaling and drug sensitivity. PMID:27279498
Cross-talk between AMPK and EGFR dependent Signaling in Non-Small Cell Lung Cancer.
Praveen, Paurush; Hülsmann, Helen; Sültmann, Holger; Kuner, Ruprecht; Fröhlich, Holger
2016-06-09
Lung cancers globally account for 12% of new cancer cases, 85% of these being Non Small Cell Lung Cancer (NSCLC). Therapies like erlotinib target the key player EGFR, which is mutated in about 10% of lung adenocarcinoma. However, drug insensitivity and resistance caused by second mutations in the EGFR or aberrant bypass signaling have evolved as a major challenge in controlling these tumors. Recently, AMPK activation was proposed to sensitize NSCLC cells against erlotinib treatment. However, the underlying mechanism is largely unknown. In this work we aim to unravel the interplay between 20 proteins that were previously associated with EGFR signaling and erlotinib drug sensitivity. The inferred network shows a high level of agreement with protein-protein interactions reported in STRING and HIPPIE databases. It is further experimentally validated with protein measurements. Moreover, predictions derived from our network model fairly agree with somatic mutations and gene expression data from primary lung adenocarcinoma. Altogether our results support the role of AMPK in EGFR signaling and drug sensitivity.
Huang, Shuan Shian; Chen, Chun-Lin; Huang, Franklin W; Johnson, Frank E; Huang, Jung San
2016-04-01
Regular consumption of moderate amounts of ethanol has important health benefits on atherosclerotic cardiovascular disease (ASCVD). Overindulgence can cause many diseases, particularly alcoholic liver disease (ALD). The mechanisms by which ethanol causes both beneficial and harmful effects on human health are poorly understood. Here we demonstrate that ethanol enhances TGF-β-stimulated luciferase activity with a maximum of 0.5-1% (v/v) in Mv1Lu cells stably expressing a luciferase reporter gene containing Smad2-dependent elements. In Mv1Lu cells, 0.5% ethanol increases the level of P-Smad2, a canonical TGF-β signaling sensor, by ∼ 2-3-fold. Ethanol (0.5%) increases cell-surface expression of the type II TGF-β receptor (TβR-II) by ∼ 2-3-fold from its intracellular pool, as determined by I(125) -TGF-β-cross-linking/Western blot analysis. Sucrose density gradient ultracentrifugation and indirect immunofluorescence staining analyses reveal that ethanol (0.5% and 1%) also displaces cell-surface TβR-I and TβR-II from lipid rafts/caveolae and facilitates translocation of these receptors to non-lipid raft microdomains where canonical signaling occurs. These results suggest that ethanol enhances canonical TGF-β signaling by increasing non-lipid raft microdomain localization of the TGF-β receptors. Since TGF-β plays a protective role in ASCVD but can also cause ALD, the TGF-β enhancer activity of ethanol at low and high doses appears to be responsible for both beneficial and harmful effects. Ethanol also disrupts the location of lipid raft/caveolae of other membrane proteins (e.g., neurotransmitter, growth factor/cytokine, and G protein-coupled receptors) which utilize lipid rafts/caveolae as signaling platforms. Displacement of these membrane proteins induced by ethanol may result in a variety of pathologies in nerve, heart and other tissues. © 2015 Wiley Periodicals, Inc.
Obata, Yuuki; Takahashi, Daisuke; Ebisawa, Masashi; Kakiguchi, Kisa; Yonemura, Shigenobu; Jinnohara, Toshi; Kanaya, Takashi; Fujimura, Yumiko; Ohmae, Masumi; Hase, Koji; Ohno, Hiroshi
2012-03-01
Intestinal epithelial cells (IECs) have important functions as the first line of defense against diverse microorganisms on the luminal surface. Impaired integrity of IEC has been implicated in increasing the risk for inflammatory disorders in the gut. Notch signaling plays a critical role in the maintenance of epithelial integrity by regulating the balance of secretory and absorptive cell lineages, and also by facilitating epithelial cell proliferation. We show in this article that mice harboring IEC-specific deletion of Rbpj (RBP-J(ΔIEC)), a transcription factor that mediates signaling through Notch receptors, spontaneously develop chronic colitis characterized by the accumulation of Th17 cells in colonic lamina propria. Intestinal bacteria are responsible for the development of colitis, because their depletion with antibiotics prevented the development of colitis in RBP-J(ΔIEC) mice. Furthermore, bacterial translocation was evident in the colonic mucosa of RBP-J(ΔIEC) mice before the onset of colitis, suggesting attenuated epithelial barrier functions in these mice. Indeed, RBP-J(ΔIEC) mice displayed increase in intestinal permeability after rectal administration of FITC-dextran. In addition to the defect in physical barrier, loss of Notch signaling led to arrest of epithelial cell turnover caused by downregulation of Hes1, a transcriptional repressor of p27(Kip1) and p57(Kip2). Thus, epithelial cell-intrinsic Notch signaling ensures integrity and homeostasis of IEC, and this mechanism is required for containment of intestinal inflammation.
Gorbunova, Elena E.; Dalrymple, Nadine A.; Gavrilovskaya, Irina N.
2013-01-01
Abstract Background Hantaviruses in the Americas cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). Hantaviruses nonlytically infect microvascular and lymphatic endothelial cells and cause dramatic changes in barrier functions without disrupting the endothelium. Hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier functions. The endothelium of arteries, veins, and lymphatic vessels are unique and central to the function of vast pulmonary capillary beds that regulate pulmonary fluid accumulation. Results We have found that HPS-causing hantaviruses alter vascular barrier functions of microvascular and lymphatic endothelial cells by altering receptor and signaling pathway responses that serve to permit fluid tissue influx and clear tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to cause acute pulmonary edema, as well as potential therapeutic targets for reducing the severity of HPS disease. Conclusions Here we discuss interactions of HPS-causing hantaviruses with the endothelium, roles for unique lymphatic endothelial responses in HPS, and therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease. PMID:24024573
Mackow, Erich R; Gorbunova, Elena E; Dalrymple, Nadine A; Gavrilovskaya, Irina N
2013-09-01
Hantaviruses in the Americas cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). Hantaviruses nonlytically infect microvascular and lymphatic endothelial cells and cause dramatic changes in barrier functions without disrupting the endothelium. Hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier functions. The endothelium of arteries, veins, and lymphatic vessels are unique and central to the function of vast pulmonary capillary beds that regulate pulmonary fluid accumulation. We have found that HPS-causing hantaviruses alter vascular barrier functions of microvascular and lymphatic endothelial cells by altering receptor and signaling pathway responses that serve to permit fluid tissue influx and clear tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to cause acute pulmonary edema, as well as potential therapeutic targets for reducing the severity of HPS disease. Here we discuss interactions of HPS-causing hantaviruses with the endothelium, roles for unique lymphatic endothelial responses in HPS, and therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease.
Nevoid Basal Cell Carcinoma Syndrome (Gorlin Syndrome).
Bresler, Scott C; Padwa, Bonnie L; Granter, Scott R
2016-06-01
Nevoid basal cell carcinoma syndrome, or basal cell nevus syndrome (Gorlin syndrome), is a rare autosomal dominantly inherited disorder that is characterized by development of basal cell carcinomas from a young age. Other distinguishing clinical features are seen in a majority of patients, and include keratocystic odontogenic tumors (formerly odontogenic keratocysts) as well as dyskeratotic palmar and plantar pitting. A range of skeletal and other developmental abnormalities are also often seen. The disorder is caused by defects in hedgehog signaling which result in constitutive pathway activity and tumor cell proliferation. As sporadic basal cell carcinomas also commonly harbor hedgehog pathway aberrations, therapeutic agents targeting key signaling constituents have been developed and tested against advanced sporadically occurring tumors or syndromic disease, leading in 2013 to FDA approval of the first hedgehog pathway-targeted small molecule, vismodegib. The elucidation of the molecular pathogenesis of nevoid basal cell carcinoma syndrome has resulted in further understanding of the most common human malignancy.
Serpins Promote Cancer Cell Survival and Vascular Cooption in Brain Metastasis
Valiente, Manuel; Obenauf, Anna C.; Jin, Xin; Chen, Qing; Zhang, Xiang H.-F.; Lee, Derek J.; Chaft, Jamie E.; Kris, Mark G.; Huse, Jason T.; Brogi, Edi; Massagué, Joan
2014-01-01
Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM that metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its deleterious consequences. By protecting cancer cells from death signals and fostering vascular cooption, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers. PMID:24581498
van Schouwenburg, Pauline A; Davenport, Emma E; Kienzler, Anne-Kathrin; Marwah, Ishita; Wright, Benjamin; Lucas, Mary; Malinauskas, Tomas; Martin, Hilary C; Lockstone, Helen E; Cazier, Jean-Baptiste; Chapel, Helen M; Knight, Julian C; Patel, Smita Y
2015-10-01
Common Variable Immunodeficiency Disorders (CVIDs) are the most prevalent cause of primary antibody failure. CVIDs are highly variable and a genetic causes have been identified in <5% of patients. Here, we performed whole genome sequencing (WGS) of 34 CVID patients (94% sporadic) and combined them with transcriptomic profiling (RNA-sequencing of B cells) from three patients and three healthy controls. We identified variants in CVID disease genes TNFRSF13B, TNFRSF13C, LRBA and NLRP12 and enrichment of variants in known and novel disease pathways. The pathways identified include B-cell receptor signalling, non-homologous end-joining, regulation of apoptosis, T cell regulation and ICOS signalling. Our data confirm the polygenic nature of CVID and suggest individual-specific aetiologies in many cases. Together our data show that WGS in combination with RNA-sequencing allows for a better understanding of CVIDs and the identification of novel disease associated pathways. Copyright © 2015. Published by Elsevier Inc.
Evasion of cell senescence in SHH medulloblastoma.
Tamayo-Orrego, Lukas; Swikert, Shannon M; Charron, Frédéric
2016-08-17
The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1 +/- mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis.
Evasion of cell senescence in SHH medulloblastoma
Tamayo-Orrego, Lukas; Swikert, Shannon M.; Charron, Frédéric
2016-01-01
ABSTRACT The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1+/− mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis. PMID:27229128
Roles of proteolysis in regulation of GPCR function
Cottrell, GS
2013-01-01
The enzymatic activity of peptidases must be tightly regulated to prevent uncontrolled hydrolysis of peptide bonds, which could have devastating effects on biological systems. Peptidases are often generated as inactive propeptidases, secreted with endogenous inhibitors, or they are compartmentalized. Propeptidases become active after proteolytic removal of N-terminal activation peptides by other peptidases. Some peptidases only become active towards substrates only at certain pHs, thus confining activity to specific compartments or conditions. This review discusses the different roles proteolysis plays in regulating GPCRs. At the cell-surface, certain GPCRs are regulated by the hydrolytic inactivation of bioactive peptides by membrane-anchored peptidases, which prevent signalling. Conversely, cell-surface peptidases can also generate bioactive peptides, which directly activate GPCRs. Alternatively, cell-surface peptidases activated by GPCRs, can generate bioactive peptides to cause transactivation of receptor tyrosine kinases, thereby promoting signalling. Certain peptidases can signal directly to cells, by cleaving GPCR to initiate intracellular signalling cascades. Intracellular peptidases also regulate GPCRs; lysosomal peptidases destroy GPCRs in lysosomes to permanently terminate signalling and mediate down-regulation; endosomal peptidases cleave internalized peptide agonists to regulate GPCR recycling, resensitization and signalling; and soluble intracellular peptidases also participate in GPCR function by regulating the ubiquitination state of GPCRs, thereby altering GPCR signalling and fate. Although the use of peptidase inhibitors has already brought success in the treatment of diseases such as hypertension, the discovery of new regulatory mechanisms involving proteolysis that control GPCRs may provide additional targets to modulate dysregulated GPCR signalling in disease. PMID:23043558
Shui, Xiaolong; Zhou, Chengwei; Lin, Wei; Yu, Yang; Feng, Yongzeng
2017-01-01
Background: Chondrosarcoma is one of the common malignant histologic tumors, very difficult to treat, but the concrete cause and mechanism have not yet been elucidated. The present study aimed to investigate the functional involvement of BCAR4 in chondrosarcoma and its potentially underlying mechanism. QRT-PCR and western blot were used to determine the expression of BCAR4 and mTOR signaling pathway proteins both in chondrosarcoma tissues and cells. Chondrosarcoma cell proliferation and migration were assessed by MTT assay and transwell migration assay, respectively. The expression vectors were constructed and used to modulate the expression of BCAR4 and mTOR. Chondrosarcoma xenograft mouse model was established by subcutaneous injection with chondrosarcoma cell lines. The tumor volume was monitored to evaluate the effect of BCAR4 on chondrosarcoma cell tumorigenicity. The expressions of BCAR4, p-mTOR and p-P70S6K were up-regulated in chondrosarcoma tissues and cell lines. Moreover, BCAR4 overexpression had significant promoting effect on cell proliferation and migration in chondrosarcoma cells. Furthermore, mTOR signaling pathway was epigenetically activated by BCAR4-induced hyperacetylation of histone H3. We also found that mTOR overexpression abolished the decrease of chondrosarcoma cell proliferation and migration induced by BCAR4 knockdown. In vivo experiments confirmed that BCAR4 overexpression significantly accelerated tumor growth, while the knockdown of BCAR4 significantly inhibited tumor growth. BCAR4 promoted chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway, and thus contributed to chondrosarcoma progression. Impact statement LncRNA BCAR4 promoted chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway, and thus contributed to chondrosarcoma progression. PMID:28399646
Shui, Xiaolong; Zhou, Chengwei; Lin, Wei; Yu, Yang; Feng, Yongzeng; Kong, Jianzhong
2017-05-01
Chondrosarcoma is one of the common malignant histologic tumors, very difficult to treat, but the concrete cause and mechanism have not yet been elucidated. The present study aimed to investigate the functional involvement of BCAR4 in chondrosarcoma and its potentially underlying mechanism. QRT-PCR and western blot were used to determine the expression of BCAR4 and mTOR signaling pathway proteins both in chondrosarcoma tissues and cells. Chondrosarcoma cell proliferation and migration were assessed by MTT assay and transwell migration assay, respectively. The expression vectors were constructed and used to modulate the expression of BCAR4 and mTOR. Chondrosarcoma xenograft mouse model was established by subcutaneous injection with chondrosarcoma cell lines. The tumor volume was monitored to evaluate the effect of BCAR4 on chondrosarcoma cell tumorigenicity. The expressions of BCAR4, p-mTOR and p-P70S6K were up-regulated in chondrosarcoma tissues and cell lines. Moreover, BCAR4 overexpression had significant promoting effect on cell proliferation and migration in chondrosarcoma cells. Furthermore, mTOR signaling pathway was epigenetically activated by BCAR4-induced hyperacetylation of histone H3. We also found that mTOR overexpression abolished the decrease of chondrosarcoma cell proliferation and migration induced by BCAR4 knockdown. In vivo experiments confirmed that BCAR4 overexpression significantly accelerated tumor growth, while the knockdown of BCAR4 significantly inhibited tumor growth. BCAR4 promoted chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway, and thus contributed to chondrosarcoma progression. Impact statement LncRNA BCAR4 promoted chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway, and thus contributed to chondrosarcoma progression.
Zhan, Yingzhuan; Zhang, Yanmin; Liu, Cuicui; Zhang, Jie; Smith, Wanli W; Wang, Nan; Chen, Yinnan; Zheng, Lei; He, Langchong
2012-06-01
Breast cancer is a common cancer with a leading cause of cancer mortality in women. Currently, the chemotherapy for breast cancer is underdeveloped. Here, we report a novel taspine derivative, HMQ1611, which has anticancer effects using in vitro and in vivo breast cancer models. HMQ1611 reduced cancer cell proliferation in four human breast cancer cell lines including MDA-MB-231, SK-BR-3, ZR-75-30, and MCF-7. HMQ1611 more potently reduced growth of estrogen receptor α (ERα)-positive breast cancer cells (ZR-75-30 and MCF-7) than ERα-negative cells (MDA-MB-231 and SK-BR-3). Moreover, HMQ1611 arrested breast cancer cell cycle at S-phase. In vivo tumor xenograft model, treatment of HMQ1611 significantly reduced tumor size and weight compared with vehicles. We also found that HMQ1611 reduced ERα expression and inhibited membrane ERα-mediated mitogen-activated protein kinase (MAPK) signaling following the stimulation of cells with estrogen. Knockdown of ERα by siRNA transfection in ZR-75-30 cells attenuated HMQ1611 effects. In contrast, overexpression of ERα in MDA-MB-231 cells enhanced HMQ1611 effects, suggesting that ERα pathway mediated HMQ1611's inhibition of breast cancer cell growth in ERα-positive breast cancer. HMQ1611 also reduced phosphorylation of EGF receptor (EGFR) and its downstream signaling players extracellular signal-regulated kinase (ERK)1/2 and AKT activation both in ZR-75-30 and MDA-MB-231 cells. These results showed that the novel compound HMQ1611 had anticancer effects, and partially via ERα and/or EGFR signaling pathways, suggesting that HMQ1611 may be a potential novel candidate for human breast cancer intervention. ©2012 AACR.
Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T; Bok, Jinwoong; Ko, Hyuk Wan
2014-06-10
Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome.
Szőke, István; Farkas, Arpád; Balásházy, Imre; Hofmann, Werner; Madas, Balázs G; Szőke, Réka
2012-06-01
The primary objective of this paper was to investigate the distribution of radiation doses and the related biological responses in cells of a central airway bifurcation of the human lung of a hypothetical worker of the New Mexico uranium mines during approximately 12 hours of exposure to short-lived radon progenies. State-of-the-art computational modelling techniques were applied to simulate the relevant biophysical and biological processes in a central human airway bifurcation. The non-uniform deposition pattern of inhaled radon daughters caused a non-uniform distribution of energy deposition among cells, and of related cell inactivation and cell transformation probabilities. When damage propagation via bystander signalling was assessed, it produced more cell killing and cell transformation events than did direct effects. If bystander signalling was considered, variations of the average probabilities of cell killing and cell transformation were supra-linear over time. Our results are very sensitive to the radiobiological parameters, derived from in vitro experiments (e.g., range of bystander signalling), applied in this work and suggest that these parameters may not be directly applicable to realistic three-dimensional (3D) epithelium models.
NASA Astrophysics Data System (ADS)
Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.
2017-06-01
We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.
Harnessing tumor necrosis factor receptors to enhance antitumor activities of drugs.
Muntané, Jordi
2011-10-17
Cancer is the second-leading cause of death in the U.S. behind heart disease and over stroke. The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The inhibition of cell death pathways is one of these tumor characteristics which also include sustained proliferative signaling, evading growth suppressor signaling, replicative immortality, angiogenesis, and promotion of invasion and metastasis. Cell death is mediated through death receptor (DR) stimulation initiated by specific ligands that transmit signaling to the cell death machinery or through the participation of mitochondria. Cell death involving DR is mediated by the superfamily of tumor necrosis factor receptor (TNF-R) which includes TNF-R type I, CD95, DR3, TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 (TRAIL-R1) and -2 (TRAIL-R2), DR6, ectodysplasin A (EDA) receptor (EDAR), and the nerve growth factor (NGF) receptor (NGFR). The expression of these receptors in healthy and tumor cells induces treatment side effects that limit the systemic administration of cell death-inducing therapies. The present review is focused on the different therapeutic strategies such as targeted antibodies or small molecules addressed to selective stimulated DR-mediated apoptosis or reduce cell proliferation in cancer cells.
Chiu, Jen-Hwey; Chen, Fang-Pey; Tsai, Yi-Fang; Lin, Man-Ting; Tseng, Ling-Ming; Shyr, Yi-Ming
2017-08-12
Our previous study demonstrated that an up-regulation of the Brain-Derived Neurotrophic Factor (BDNF) signaling pathway is involved the mechanism causing the recurrence of triple negative breast cancer. The aim of this study is to investigate the effects of commonly used Chinese medicinal herbs on MDA-MB-231 and HUVEC cells and how they interact with BDNF. Human TNBC MDA-MB-231 cells and human endothelial HUVEC cells were used to explore the effect of commonly used Chinese herbal medicines on cancer cells alone, on endothelial cells alone and on cancer cell/endothelial cell interactions; this was done via functional studies, including migration and invasion assays. Furthermore, Western blot analysis and real-time PCR investigations were also used to investigate migration signal transduction, invasion signal transduction, and angiogenic signal transduction in these systems. Finally, the effect of the Chinese medicinal herbs on cancer cell/endothelial cell interactions was assessed using co-culture and ELISA. In terms of autoregulation, BDNF up-regulated TrkB gene expression in both MDA-MB-231 and HUVEC cells. Furthermore, BDNF enhanced migration by MDA-MB-231 cells via Rac, Cdc42 and MMP, while also increasing the migration of HUVEC cells via MMP and COX-2 expression. As measured by ELISA, the Chinese herbal medicinal herbs A. membranaceus, P. lactiflora, L. chuanxiong, P. suffruticosa and L. lucidum increased BDNF secretion by MDA-MB-231 cells. Similarly, using a co-culture system with MDA-MB-231 cells, A. membranaceus and L. lucidum modulated BDNF-TrkB signaling by HUVEC cells. We conclude that BDNF plays an important role in the metastatic interaction between MDA-MB-231 and HUVEC cells. Some Chinese medicinal herbs are able to enhance the BDNF-related metastatic potential of the interaction between cancer cells and endothelial cells. These findings provide important information that should help with the development of integrated medical therapies for breast cancer patients.
Portillo, Jose-Andres C; Muniz-Feliciano, Luis; Lopez Corcino, Yalitza; Lee, So Jung; Van Grol, Jennifer; Parsons, Sarah J; Schiemman, William P; Subauste, Carlos S
2017-10-01
Targeting of Toxoplasma gondii by autophagy is an effective mechanism by which host cells kill the protozoan. Thus, the parasite must avoid autophagic targeting to survive. Here we show that the mammalian cytoplasmic molecule Focal Adhesion Kinase (FAK) becomes activated during invasion of host cells. Activated FAK appears to accompany the formation of the moving junction (as assessed by expression the parasite protein RON4). FAK activation was inhibited by approaches that impaired β1 and β3 integrin signaling. FAK caused activation of Src that in turn mediated Epidermal Growth Factor Receptor (EGFR) phosphorylation at the unique Y845 residue. Expression of Src-resistant Y845F EGFR mutant markedly inhibited ROP16-independent activation of STAT3 in host cells. Activation of FAK, Y845 EGFR or STAT3 prevented activation of PKR and eIF2α, key stimulators of autophagy. Genetic or pharmacologic inhibition of FAK, Src, EGFR phosphorylation at Y845, or STAT3 caused accumulation of the autophagy protein LC3 and LAMP-1 around the parasite and parasite killing dependent on autophagy proteins (ULK1 and Beclin 1) and lysosomal enzymes. Parasite killing was inhibited by expression of dominant negative PKR. Thus, T. gondii activates a FAK→Src→Y845-EGFR→STAT3 signaling axis within mammalian cells, thereby enabling the parasite to survive by avoiding autophagic targeting through a mechanism likely dependent on preventing activation of PKR and eIF2α.
NF-κB deregulation in Hodgkin lymphoma.
Weniger, Marc A; Küppers, Ralf
2016-08-01
Hodgkin and Reed/Sternberg (HRS) cells in classical Hodgkin lymphoma (HL) show constitutive activity of both the canonical and non-canonical NF-κB signaling pathways. The central pathogenetic role of this activity is indicated from studies with HL cell lines, which undergo apoptosis upon NF-κB inhibition. Multiple factors contribute to the strong NF-κB activity of HRS cells. This includes interaction with other cells in the lymphoma microenvironment through CD30, CD40, BCMA and other receptors, but also recurrent somatic genetic lesions in various factors of the NF-κB pathway, including destructive mutations in negative regulators of NF-κB signaling (e.g. TNFAIP3, NFKBIA), and copy number gains of genes encoding positive regulators (e.g. REL, MAP3K14). In Epstein-Barr virus-positive cases of classical HL, the virus-encoded latent membrane protein 1 causes NF-κB activation by mimicking an active CD40 receptor. NF-κB activity is also seen in the tumor cells of the rare nodular lymphocyte predominant form of HL, but the causes for this activity are largely unclear. Copyright © 2016 Elsevier Ltd. All rights reserved.
A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity.
Aquea, Felipe; Federici, Fernan; Moscoso, Cristian; Vega, Andrea; Jullian, Pastor; Haseloff, Jim; Arce-Johnson, Patricio
2012-04-01
Boron is an essential micronutrient for plants and is taken up in the form of boric acid (BA). Despite this, a high BA concentration is toxic for the plants, inhibiting root growth and is thus a significant problem in semi-arid areas in the world. In this work, we report the molecular basis for the inhibition of root growth caused by boron. We show that application of BA reduces the size of root meristems, correlating with the inhibition of root growth. The decrease in meristem size is caused by a reduction of cell division. Mitotic cell number significantly decreases and the expression level of key core cell cycle regulators is modulated. The modulation of the cell cycle does not appear to act through cytokinin and auxin signalling. A global expression analysis reveals that boron toxicity induces the expression of genes related with abscisic acid (ABA) signalling, ABA response and cell wall modifications, and represses genes that code for water transporters. These results suggest that boron toxicity produces a reduction of water and BA uptake, triggering a hydric stress response that produces root growth inhibition. © 2011 Blackwell Publishing Ltd.
Chen, Yuting; Chen, Jiajia; Yun, Lin; Xu, Longmei; Liu, Jiaxian; Xu, Yongchun; Yang, Hui; Liang, Hairong; Tang, Huanwen
2016-09-30
Hydroquinone (HQ), known as one of the metabolic products of benzene, causes a number of hematologic malignancies. The study evaluated the potential mechanism of Sirtuin 1 (SIRT1) in HQ-induced TK6 cell malignant transformation. The data of our study show that short term exposure of TK6 cells to HQ led to a decrease expression of SIRT1. Knockdown of SIRT1 sensitized to the HQ-induced apoptosis in vitro and increased the expression of p53, p21 and γ-H2AX. Furthermore, chronic HQ-treated (20μM once a week for 19 weeks) caused carcinogenic transformation and was confirmed by abnormal cell proliferation, matrix metalloproteinase 9(MMP9) and subcutaneous tumor formation in nude mice. SIRT1 increased KRAS expression, and decreased H3K9 and H3K18 acetylation, inhibited p53 signaling and the level of caspase-3 in HQ-induced transformation cells. Taken together, these data suggest that SIRT1 is involved in HQ-induced malignant transformation associated with suppressing p53 signaling and activation of KRAS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sales, Katiuchia Uzzun; Friis, Stine; Konkel, Joanne E.; Godiksen, Sine; Hatakeyama, Marcia; Hansen, Karina K.; Rogatto, Silvia Regina; Szabo, Roman; Vogel, Lotte K.; Chen, Wanjun; Gutkind, J. Silvio; Bugge, Thomas H.
2014-01-01
The membrane-anchored serine protease, matriptase, is consistently dysregulated in a range of human carcinomas, and high matriptase activity correlates with poor prognosis. Furthermore, matriptase is unique among tumor-associated proteases in that epithelial stem cell expression of the protease suffices to induce malignant transformation. Here, we use genetic epistasis analysis to identify proteinase-activated receptor (PAR)-2-dependent inflammatory signaling as an essential component of matriptase-mediated oncogenesis. In cell-based assays, matriptase was a potent activator of PAR-2, and PAR-2 activation by matriptase caused robust induction of NFκB through Gαi. Importantly, genetic elimination of PAR-2 from mice completely prevented matriptase-induced pre-malignant progression, including inflammatory cytokine production, inflammatory cell recruitment, epidermal hyperplasia, and dermal fibrosis. Selective ablation of PAR-2 from bone marrow-derived cells did not prevent matriptase-driven pre-malignant progression, indicating that matriptase activates keratinocyte stem cell PAR-2 to elicit its pro-inflammatory and pro-tumorigenic effects. When combined with previous studies, our data suggest that dual induction of PAR-2-NFκB inflammatory signaling and PI3K-Akt-mTor survival/proliferative signaling underlies the transforming potential of matriptase and may contribute to pro-tumorigenic signaling in human epithelial carcinogenesis. PMID:24469043
Sales, K U; Friis, S; Konkel, J E; Godiksen, S; Hatakeyama, M; Hansen, K K; Rogatto, S R; Szabo, R; Vogel, L K; Chen, W; Gutkind, J S; Bugge, T H
2015-01-15
The membrane-anchored serine protease, matriptase, is consistently dysregulated in a range of human carcinomas, and high matriptase activity correlates with poor prognosis. Furthermore, matriptase is unique among tumor-associated proteases in that epithelial stem cell expression of the protease suffices to induce malignant transformation. Here, we use genetic epistasis analysis to identify proteinase-activated receptor (PAR)-2-dependent inflammatory signaling as an essential component of matriptase-mediated oncogenesis. In cell-based assays, matriptase was a potent activator of PAR-2, and PAR-2 activation by matriptase caused robust induction of nuclear factor (NF)κB through Gαi. Importantly, genetic elimination of PAR-2 from mice completely prevented matriptase-induced pre-malignant progression, including inflammatory cytokine production, inflammatory cell recruitment, epidermal hyperplasia and dermal fibrosis. Selective ablation of PAR-2 from bone marrow-derived cells did not prevent matriptase-driven pre-malignant progression, indicating that matriptase activates keratinocyte stem cell PAR-2 to elicit its pro-inflammatory and pro-tumorigenic effects. When combined with previous studies, our data suggest that dual induction of PAR-2-NFκB inflammatory signaling and PI3K-Akt-mTor survival/proliferative signaling underlies the transforming potential of matriptase and may contribute to pro-tumorigenic signaling in human epithelial carcinogenesis.
Frankel, Matthew B.; Wojcik, Brandon; DeDent, Andrea C.; Missiakas, Dominique M.; Schneewind, Olaf
2012-01-01
Summary The human pathogen Staphyloccocus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harbored transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross walls and in the relative abundance of staphylococci with cross walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. PMID:20923422
Gartzke, J; Lange, K; Brandt, U; Bergmann, J
1997-06-20
Recently, we presented evidence for the localization of components of the cellular Ca2+ signaling pathway in microvilli. On stimulation of this pathway, microvilli undergo characteristic morphological changes which can be detected by scanning electron microscopy (SEM) of the cell surface. Here we show that both receptor-mediated (vasopressin) and unspecific stimulation of the Ca2+ signaling system by the lipophilic tumor promoters thapsigargin (TG) and phorbolmyristateacetate (PMA) are accompanied by the same type of morphological changes of the cell surface. Since stimulated cell proliferation accelerates tumor development and sustained elevation of the intracellular Ca2+ concentrations is a precondition for stimulated cell proliferation, activated Ca2+ signaling is one possible mechanism of non-genomic tumor promotion. Using isolated rat hepatocytes we show that all tested lipophilic chemicals with known tumor promoter action, caused characteristic microvillar shape changes. On the other hand, lipophilic solvents that were used as differentiating agents in cell cultures such as dimethylsulfoxide (DMSO) and dimethylformamide also, failed to change the microvillar shapes. Instead DMSO stabilized the original appearance of microvilli. The used technique provides a convenient method for the evaluation of non-genomic carcinogenicity of chemicals prior to their industrial application.
Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf
2010-10-01
The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. © 2010 Blackwell Publishing Ltd.
Xu, Yiming; Liu, Ling
2017-09-01
Influenza A viruses (IAV) result in severe public health problems with worldwide each year. Overresponse of immune system to IAV infection leads to complications, and ultimately causing morbidity and mortality. Curcumin has been reported to have anti-inflammatory ability. However, its molecular mechanism in immune responses remains unclear. We detected the pro-inflammatory cytokine secretion and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB)-related protein expression in human macrophages or mice infected by IAV with or without curcumin treatment. We found that the IAV infection caused a dramatic enhancement of pro-inflammatory cytokine productions of human macrophages and mice immune cells. However, curcumin treatment after IAV infection downregulated these cytokines production in a dose-dependent manner. Moreover, the NF-κB has been activated in human macrophages after IAV infection, while administration of curcumin inhibited NF-κB signaling pathway via promoting the expression of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), and inhibiting the translocation of p65 from cytoplasm to nucleus. In summary, IAV infection could result in the inflammatory responses of immune cells, especially macrophages. Curcumin has the therapeutic potentials to relieve these inflammatory responses through inhibiting the NF-κB signaling pathway. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
BmpR1A is a major type 1 BMP receptor for BMP-Smad signaling during skull development.
Pan, Haichun; Zhang, Honghao; Abraham, Ponnu; Komatsu, Yoshihiro; Lyons, Karen; Kaartinen, Vesa; Mishina, Yuji
2017-09-01
Craniosynostosis is caused by premature fusion of one or more sutures in an infant skull, resulting in abnormal facial features. The molecular and cellular mechanisms by which genetic mutations cause craniosynostosis are incompletely characterized, and many of the causative genes for diverse types of syndromic craniosynostosis have not yet been identified. We previously demonstrated that augmentation of BMP signaling mediated by a constitutively active BMP type IA receptor (ca-BmpR1A) in neural crest cells (ca1A hereafter) causes craniosynostosis and superimposition of heterozygous null mutation of Bmpr1a rescues premature suture fusion (ca1A;1aH hereafter). In this study, we superimposed heterozygous null mutations of the other two BMP type I receptors, Bmpr1b and Acvr1 (ca1A;1bH and ca1A;AcH respectively hereafter) to further dissect involvement of BMP-Smad signaling. Unlike caA1;1aH, ca1A;1bH and ca1A;AcH did not restore the craniosynostosis phenotypes. In our in vivo study, Smad-dependent BMP signaling was decreased to normal levels in mut;1aH mice. However, BMP receptor-regulated Smads (R-Smads; pSmad1/5/9 hereafter) levels were comparable between ca1A, ca1A;1bH and ca1A;AcH mice, and elevated compared to control mice. Bmpr1a, Bmpr1b and Acvr1 null cells were used to examine potential mechanisms underlying the differences in ability of heterozygosity for Bmpr1a vs. Bmpr1b or Acvr1 to rescue the mut phenotype. pSmad1/5/9 level was undetectable in Bmpr1a homozygous null cells while pSmad1/5/9 levels did not decrease in Bmpr1b or Acvr1 homozygous null cells. Taken together, our study indicates that different levels of expression and subsequent activation of Smad signaling differentially contribute each BMP type I receptor to BMP-Smad signaling and craniofacial development. These results also suggest differential involvement of each type 1 receptor in pathogenesis of syndromic craniosynostoses. Copyright © 2017 Elsevier Inc. All rights reserved.
Arsenic impairs insulin signaling in differentiated neuroblastoma SH-SY5Y cells.
Niyomchan, Apichaya; Visitnonthachai, Daranee; Suntararuks, Sumitra; Ngamsiri, Pronrumpa; Watcharasit, Piyajit; Satayavivad, Jutamaad
2018-05-01
A strong correlation between chronic arsenic exposure and neuropsychological disorders leads to a growing concern about a potential risk of arsenic related neurodegeneration. Evidently, brain insulin signaling contributes to physiological effects, including energy homeostasis, and learning and memory. Arsenic has been shown to impair insulin signaling in adipocytes and myocytes, however, this impairment has not yet been explored in neurons. Here we showed that NaAsO 2 caused significant reduction in basal levels of glucose, plasma membrane glucose transporter, GLUT 3 and Akt phosphorylation in differentiated human neuroblastoma SH-SY5Y cells. NaAsO 2 significantly decreased insulin-mediated glucose uptake, as well as GLUT1 and 3 membrane translocation. Furthermore, the ability of insulin to increase Akt phosphorylation, a well-recognized insulin signaling response, was significantly lessened by NaAsO 2 treatment. In addition, the classical tyrosine phosphorylation response of insulin was reduced by NaAsO 2 , as evidenced by reduction of insulin-induced tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate-1(IRS-1). Moreover, NaAsO 2 lowered the ratio of p110, a catalytic subunit to p85, a regulatory subunit of PI3K causing an imbalance between p110 and p85, the conditions reported to contribute to insulin sensitivity. Additionally, increment of IRS-1 interaction with GSK3β, and p85-PI3K were observed in NaAsO 2 treated cells. These molecular modulations may be mechanistically attributed to neuronal insulin signaling impairment by arsenic. Copyright © 2018 Elsevier B.V. All rights reserved.
Tian, Yuan; Xiao, Yuehai; Wang, Bolin; Sun, Chao; Tang, Kaifa; Sun, Fa
2017-12-22
Although fluoride has been widely used in toothpaste, mouthwash, and drinking water to prevent dental caries, the excessive intake of fluoride can cause fluorosis which is associated with dental, skeletal, and soft tissue fluorosis. Recent evidences have drawn the attention to its adverse effects on male reproductive system that include spermatogenesis defect, sperm count loss, and sperm maturation impairment. Fluoride induces oxidative stress through the activation of mitogen activated protein kinase (MAPK) cascade which can lead to cell apoptosis. Vitamin E (VE) and lycopene are two common anti-oxidants, being protective to reactive oxygen species (ROS)-induced toxic effects. However, whether and how these two anti-oxidants prevent fluoride-induced spermatogenic cell apoptosis are largely unknown. In the present study, a male rat model for coal burning fluorosis was established and the histological lesions and spermatogenic cell apoptosis in rat testes were observed. The decreased expression of clusterin, a heterodimeric glycoprotein reported to regulate spermatogenic cell apoptosis, is detected in fluoride-treated rat testes. Interestingly, the co-administration with VE or lycopene reduced fluorosis-mediated testicular toxicity and rescued clusterin expression. Further, fluoride caused the enhanced Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK) phosphorylation, which was reduced by VE or lycopene. Thus, VE and lycopene prevent coal burning fluorosis-induced spermatogenic cell apoptosis through the suppression of oxidative stress-mediated JNK and ERK signaling pathway, which could be an alternative therapeutic strategy for the treatment of fluorosis. ©2017 The Author(s).
Zhao, Wanyun; Pan, Xiaoqi; Li, Tao; Zhang, Changchun; Shi, Nian
2016-01-01
Trimethyltin chloride (TMT) is a classic neurotoxicant that can cause severe neurodegenerative diseases. Some signaling pathways involving cell death play pivotal roles in the central nervous system. In this study, the role of Sonic Hedgehog (Shh) and PI3K/Akt pathways in TMT-induced apoptosis and protective effect of Lycium barbarum polysaccharides (LBP) on mouse neuro-2a (N2a) cells were investigated. Results showed that TMT treatment significantly enhanced apoptosis, upregulated proapoptotic Bax, downregulated antiapoptotic Bcl-2 expression, and increased caspase-3 activity in a dose-dependent manner in N2a cells. TMT induced oxidative stress in cells, performing reactive oxygen species (ROS) and malondialdehyde (MDA) excessive generation, and superoxide dismutase (SOD) activity reduction. TMT significantly decreased phosphorylated glycogen synthase kinase-3β (GSK-3β) and inhibited Shh and PI3K/Akt pathways. However, the addition of LBP upregulated GSK-3β phosphorylation, activated Shh and PI3K/Akt pathways, and eventually reduced apoptosis and oxidative stress caused by TMT. The interaction between Shh and PI3K/Akt pathways was clarified by specific PI3K inhibitor LY294002 or Shh inhibitor GDC-0449. Moreover, LY294002 and GDC-0449 pretreatment both induced phosphorylated GSK-3β downregulation and significantly promoted apoptosis induced by TMT. These results suggest that LBP could reduce TMT-induced N2a cells apoptosis by regulating GSK-3β phosphorylation, Shh, and PI3K/Akt signaling pathways.
Zhao, Wanyun; Pan, Xiaoqi; Li, Tao; Zhang, Changchun; Shi, Nian
2016-01-01
Trimethyltin chloride (TMT) is a classic neurotoxicant that can cause severe neurodegenerative diseases. Some signaling pathways involving cell death play pivotal roles in the central nervous system. In this study, the role of Sonic Hedgehog (Shh) and PI3K/Akt pathways in TMT-induced apoptosis and protective effect of Lycium barbarum polysaccharides (LBP) on mouse neuro-2a (N2a) cells were investigated. Results showed that TMT treatment significantly enhanced apoptosis, upregulated proapoptotic Bax, downregulated antiapoptotic Bcl-2 expression, and increased caspase-3 activity in a dose-dependent manner in N2a cells. TMT induced oxidative stress in cells, performing reactive oxygen species (ROS) and malondialdehyde (MDA) excessive generation, and superoxide dismutase (SOD) activity reduction. TMT significantly decreased phosphorylated glycogen synthase kinase-3β (GSK-3β) and inhibited Shh and PI3K/Akt pathways. However, the addition of LBP upregulated GSK-3β phosphorylation, activated Shh and PI3K/Akt pathways, and eventually reduced apoptosis and oxidative stress caused by TMT. The interaction between Shh and PI3K/Akt pathways was clarified by specific PI3K inhibitor LY294002 or Shh inhibitor GDC-0449. Moreover, LY294002 and GDC-0449 pretreatment both induced phosphorylated GSK-3β downregulation and significantly promoted apoptosis induced by TMT. These results suggest that LBP could reduce TMT-induced N2a cells apoptosis by regulating GSK-3β phosphorylation, Shh, and PI3K/Akt signaling pathways. PMID:27143997
Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene
2017-08-01
Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.
Xia, Pu; Mou, Fei-Fei; Wang, Li-Wei
2012-01-01
Non-small-cell lung cancer (NSCLC) is a leading cause of cancer deaths worldwide. Crizotinib has been approved by the U.S. Food and Drug Administration for the treatment of patients with advanced NSCLC. However, understanding of mechanisms of action is still limited. In our studies, we confirmed crizotinib-induced apoptosis in A549 lung cancer cells. In order to assess mechanisms, small molecular docking technology was used as a preliminary simulation of signaling pathways. Interesting, our results of experiments were consistent with the results of computer simulation. This indicates that small molecular docking technology should find wide use for its reliability and convenience.
Thyroid C-Cell Biology and Oncogenic Transformation
Cote, Gilbert J.; Grubbs, Elizabeth G.; Hofmann, Marie-Claude
2017-01-01
The thyroid parafollicular cell, or commonly named “C-cell,” functions in serum calcium homeostasis. Elevations in serum calcium trigger release of calcitonin from the C-cell, which in turn functions to inhibit absorption of calcium by the intestine, resorption of bone by the osteoclast, and reabsorption of calcium by renal tubular cells. Oncogenic transformation of the thyroid C-cell is thought to progress through a hyperplastic process prior to malignancy with increasing levels of serum calcitonin serving as a biomarker for tumor burden. The discovery that Multiple Endocrine Neoplasia, type 2 is caused by activating mutations of the RET gene serves to highlight the RET-RAS-MAPK signaling pathway in both initiation and progression of medullary thyroid carcinoma. Thyroid C-cells are known to express RET at high levels relative to most cell types, therefore aberrant activation of this receptor is targeted primarily to the C-cell, providing one possible cause of tissue-specific oncogenesis. The role of RET signaling in normal C-cell function is unknown though calcitonin gene transcription appears to be sensitive to RET activation. Beyond RET the modeling of oncogenesis in animals and screening of human tumors for candidate gene mutations has uncovered mutation of RAS family members and inactivation of Rb1 regulatory pathway as potential mediators of C-cell transformation. A growing understanding of how RET interacts with these pathways, both in normal C-cell function and during oncogenic transformation will help in the development of novel molecular targeted therapies. PMID:26494382
ADAM10 Regulates Notch Function in Intestinal Stem Cells of Mice
Tsai, Yu-Hwai; VanDussen, Kelli L.; Sawey, Eric T.; Wade, Alex W.; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G.; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C.; Samuelson, Linda C.; Dempsey, Peter J.
2014-01-01
BACKGROUND & AIMS ADAM10 is a cell surface sheddase that regulates physiological processes including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. METHODS We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10f/f mice) and conditional (Vil-CreER;Adam10f/f and Lgr5-CreER;Adam10f/f mice) deletion of ADAM10. We performed cell lineage tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26NICD) or mice with intestine-specific disruption of Notch (Rosa26DN-MAML), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. RESULTS Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26NICD and Rosa26DN-MAML mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage tracing experiments showed that ADAM10 is required for survival of Lgr5+ crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. CONCLUSIONS ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. PMID:25038433
Lim, Hyun Ju; Mosley, Matthew C; Kurosu, Yuki; Smith Callahan, Laura A
2017-07-01
N-cadherin cell-cell signaling plays a key role in the structure and function of the nervous system. However, few studies have incorporated bioactive signaling from n-cadherin into tissue engineering matrices. The present study uses a continuous gradient approach in polyethylene glycol dimethacrylate hydrogels to identify concentration dependent effects of n-cadherin peptide, His-Ala-Val-Asp-Lle (HAVDI), on murine embryonic stem cell survival and neural differentiation. The n-cadherin peptide was found to affect the expression of pluripotency marker, alkaline phosphatase, in murine embryonic stem cells cultured on n-cadherin peptide containing hydrogels in a concentration dependent manner. Increasing n-cadherin peptide concentrations in the hydrogels elicited a biphasic response in neurite extension length and mRNA expression of neural differentiation marker, neuron-specific class III β-tubulin, in murine embryonic stem cells cultured on the hydrogels. High concentrations of n-cadherin peptide in the hydrogels were found to increase the expression of apoptotic marker, caspase 3/7, in murine embryonic stem cells compared to that of murine embryonic stem cell cultures on hydrogels containing lower concentrations of n-cadherin peptide. Increasing the n-cadherin peptide concentration in the hydrogels facilitated greater survival of murine embryonic stem cells exposed to increasing oxidative stress caused by hydrogen peroxide exposure. The combinatorial approach presented in this work demonstrates concentration dependent effects of n-cadherin signaling on mouse embryonic stem cell behavior, underscoring the need for the greater use of systematic approaches in tissue engineering matrix design in order to understand and optimize bioactive signaling in the matrix for tissue formation. Single cell encapsulation is common in tissue engineering matrices. This eliminates cellular access to cell-cell signaling. N-cadherin, a cell-cell signaling molecule, plays a vital role in the development of neural tissues, but has not been well studied as a bioactive signaling element in neural tissue engineering matrices. The present study uses a systematic continuous gradient approach to identify concentration dependent effects of n-cadherin derived peptide, HAVDI, on the survival and neural differentiation of murine embryonic stem cells. This work underscores the need for greater use to combinatorial strategies to understand the effect complex bioactive signaling, such as n-cadherin, and the need to optimize the concentration of such bioactive signaling within tissue engineering matrices for maximal cellular response. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Molecular genetics and targeted therapy of WNT-related human diseases (Review)
Katoh, Masuko; Katoh, Masaru
2017-01-01
Canonical WNT signaling through Frizzled and LRP5/6 receptors is transduced to the WNT/β-catenin and WNT/stabilization of proteins (STOP) signaling cascades to regulate cell fate and proliferation, whereas non-canonical WNT signaling through Frizzled or ROR receptors is transduced to the WNT/planar cell polarity (PCP), WNT/G protein-coupled receptor (GPCR) and WNT/receptor tyrosine kinase (RTK) signaling cascades to regulate cytoskeletal dynamics and directional cell movement. WNT/β-catenin signaling cascade crosstalks with RTK/SRK and GPCR-cAMP-PKA signaling cascades to regulate β-catenin phosphorylation and β-catenin-dependent transcription. Germline mutations in WNT signaling molecules cause hereditary colorectal cancer, bone diseases, exudative vitreoretinopathy, intellectual disability syndrome and PCP-related diseases. APC or CTNNB1 mutations in colorectal, endometrial and prostate cancers activate the WNT/β-catenin signaling cascade. RNF43, ZNRF3, RSPO2 or RSPO3 alterations in breast, colorectal, gastric, pancreatic and other cancers activate the WNT/β-catenin, WNT/STOP and other WNT signaling cascades. ROR1 upregulation in B-cell leukemia and solid tumors and ROR2 upregulation in melanoma induce invasion, metastasis and therapeutic resistance through Rho-ROCK, Rac-JNK, PI3K-AKT and YAP signaling activation. WNT signaling in cancer, stromal and immune cells dynamically orchestrate immune evasion and antitumor immunity in a cell context-dependent manner. Porcupine (PORCN), RSPO3, WNT2B, FZD5, FZD10, ROR1, tankyrase and β-catenin are targets of anti-WNT signaling therapy, and ETC-159, LGK974, OMP-18R5 (vantictumab), OMP-54F28 (ipafricept), OMP-131R10 (rosmantuzumab), PRI-724 and UC-961 (cirmtuzumab) are in clinical trials for cancer patients. Different classes of anti-WNT signaling therapeutics are necessary for the treatment of APC/CTNNB1-, RNF43/ZNRF3/RSPO2/RSPO3- and ROR1-types of human cancers. By contrast, Dickkopf-related protein 1 (DKK1), SOST and glycogen synthase kinase 3β (GSK3β) are targets of pro-WNT signaling therapy, and anti-DKK1 (BHQ880 and DKN-01) and anti-SOST (blosozumab, BPS804 and romosozumab) monoclonal antibodies are being tested in clinical trials for cancer patients and osteoporotic post-menopausal women. WNT-targeting therapeutics have also been applied as reagents for in vitro stem-cell processing in the field of regenerative medicine. PMID:28731148
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández-Breijo, Borja; Monserrat, Jorge; Román, Irene D.
Hepatoblastoma is a primary liver cancer that affects children, due to the sensitivity of this tumor to insulin-like growth factor 1 (IGF-1). In this paper we show that azathioprine (AZA) is capable of inhibiting IGF1-mediated signaling cascade in HepG2 cells. The efficiency of AZA on inhibition of proliferation differs in the evaluated cell lines as follows: HepG2 (an experimental model of hepatoblastoma) > Hep3B (derived from a hepatocellular carcinoma) > HuH6 (derived from a hepatoblastoma) ≫ HuH7 (derived from a hepatocellular carcinoma) = Chang Liver cells (a non-malignant cellular model). The effect of AZA in HepG2 cells has been provenmore » to derive from activation of Ras/ERK/TSC2, leading to activation of mTOR/p70S6K in a sustained manner. p70S6K phosphorylates IRS-1 in serine 307 which leads to the uncoupling between IRS-1 and p85 (the regulatory subunit of PI3K) and therefore causing the lack of response of HepG2 to IGF-1. As a consequence, proliferation induced by IGF-1 is inhibited by AZA and autophagy increases leading to senescence of HepG2 cells. Our results suggest that AZA induces the autophagic process in HepG2 activating senescence, and driving to deceleration of cell cycle but not to apoptosis. However, when simultaneous to AZA treatment the autophagy was inhibited by bafilomycin A1 and the degradation of regulatory proteins of cell cycle (e.g. Rb, E2F, and cyclin D1) provoked apoptosis. In conclusion, AZA induces resistance in hepatoblastoma cells to IGF-1, which leads to autophagy activation, and causes apoptosis when it is combined with bafilomycin A1. We are presenting here a novel mechanism of action of azathioprine, which could be useful in treatment of IGF-1 dependent tumors, especially in its combination with other drugs. - Highlights: • Azathioprine activated Ras/ERK/TSC-2/mTOR/p70S6K signaling pathway in HepG2 cells. • Azathioprine inhibited IGF-1-mediated signaling cascade. • Azathioprine induced autophagy leading to cell cycle arrest. • Cells died by apoptosis when azathioprine was combined with bafilomycin A1.« less
Par3L enhances colorectal cancer cell survival by inhibiting Lkb1/AMPK signaling pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Taiyuan; Liu, Dongning; Lei, Xiong
Partitioning defective 3-like protein (Par3L) is a recently identified cell polarity protein that plays an important role in mammary stem cell maintenance. Previously, we showed that high expression of Par3L is associated with poor survival in malignant colorectal cancer (CRC), but the underlying mechanism remained unknown. To this end, we established a Par3L knockout colorectal cancer cell line using the CRISPR/Cas system. Interestingly, reduced proliferation, enhanced cell death and caspase-3 activation were observed in Par3L knockout (KO) cells as compared with wildtype (WT) cells. Consistent with previous studies, we showed that Par3L interacts with a tumor suppressor protein liver kinasemore » B1 (Lkb1). Moreover, Par3L depletion resulted in abnormal activation of Lkb1/AMPK signaling cascade. Knockdown of Lkb1 in these cells could significantly reduce AMPK activity and partially rescue cell death caused by Par3L knockdown. Furthermore, we showed that Par3L KO cells were more sensitive to chemotherapies and irradiation. Together, these results suggest that Par3L is essential for colorectal cancer cell survival by inhibiting Lkb1/AMPK signaling pathway, and is a putative therapeutic target for CRC. - Highlights: • Par3L knockout using the CRISPR/Cas system induces apoptosis in colorectal cancer cells. • Par3L interacts with Lkb1 and regulates the activity of AMPK signaling cascade. • Par3L knockout cells are more sensitive to treatment of different chemotherapy drugs and irradiation.« less
Jiang, Donglei; Liu, Yan; Jiang, Hui; Rao, Shengqi; Fang, Wu; Wu, Mangang; Yuan, Limin; Fang, Weiming
2018-04-15
A novel screen-printed cell-based electrochemical sensor was developed to assess bacterial quorum signaling molecules, N-acylhomoserine lactones (AHLs). Screen-printed carbon electrode (SPCE), which possesses excellent properties such as low-cost, disposable and energy-efficient, was modified with multi-walled carbon nanotubes (MWNTs) to improve electrochemical signals and enhance the sensitivity. Rat basophilic leukemia (RBL-2H3) mast cells encapsulated in alginate/graphene oxide (NaAgl/GO) hydrogel were immobilized on the MWNTs/SPCE to serve as recognition element. Electrochemical impedance spectroscopy (EIS) was employed to record the cell impedance signal as-influenced by Pseudomonas aeruginosa quorum-sensing molecule, N-3-oxododecanoyl homoserine lactone (3OC 12 -HSL). Experimental results show that 3OC 12 -HSL caused a significant decrease in cell viability in a dose dependent manner. The EIS value decreased with concentrations of 3OC 12 -HSL in the range of 0.1-1μM, and the detection limit for 3OC 12 -HSL was calculated to be 0.094μM. These results were confirmed via cell viability, SEM, TEM analysis. Next, the sensor was successfully applied to monitoring the production of AHLs by spoilage bacteria in three different freshwater fish juice samples which efficiently proved the practicability of this cell based method. Therefore, the proposed cell sensor may serve as an innovative and effective approach to the measurement of quorum signaling molecule and thus provides a new avenue for real-time monitoring the spoilage bacteria in freshwater fish production. Copyright © 2017 Elsevier B.V. All rights reserved.
Matsuzaki, Koichi
2012-01-01
Hepatocellular carcinoma (HCC) usually arises from hepatic fibrosis caused by chronic inflammation. In chronic liver damage, hepatic stellate cells undergo progressive activation to myofibroblasts (MFB), which are important extracellular-matrix-producing mesenchymal cells. Concomitantly, perturbation of transforming growth factor (TGF)-β signaling by pro-inflammatory cytokines in the epithelial cells of the liver (hepatocytes) promotes both fibrogenesis and carcinogenesis (fibro-carcinogenesis). Insights into fibro-carcinogenic effects on chronically damaged hepatocytes have come from recent detailed analyses of the TGF-β signaling process. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad homology (MH) 1 and MH2 domains. TGF-β type I receptor and pro-inflammatory cytokine-activated kinases differentially phosphorylate Smad2 and Smad3 to create phosphoisoforms phosphorylated at the COOH-terminal, linker, or both (L/C) regions. After acute liver injury, TGF-β-mediated pSmad3C signaling terminates hepatocytic proliferation induced by the pro-inflammatory cytokine-mediated mitogenic pSmad3L pathway; TGF-β and pro-inflammatory cytokines synergistically enhance collagen synthesis by activated hepatic stellate cells via pSmad2L/C and pSmad3L/C pathways. During chronic liver disease progression, pre-neoplastic hepatocytes persistently affected by TGF-β together with pro-inflammatory cytokines come to exhibit the same carcinogenic (mitogenic) pSmad3L and fibrogenic pSmad2L/C signaling as do MFB, thereby accelerating liver fibrosis while increasing risk of HCC. This review of Smad phosphoisoform-mediated signals examines similarities and differences between epithelial and mesenchymal cells in acute and chronic liver injuries and considers Smad linker phosphorylation as a potential target for the chemoprevention of fibro-carcinogenesis.
Liu, Pei-Shan; Chueh, Sheau-Huei; Chen, Chin-Chu; Lee, Li-Ya; Shiu, Li-Yen
2017-01-01
Hericium erinaceus is well known for the neurotrophic effect it confers by promoting nerve growth factor biosynthesis. We discovered a novel bioactivity of H. erinaceus in its ability to suppress adenosine triphosphate (ATP)-induced calcium signaling in neuronal PC12 cells. ATP, known primarily as a neurotransmitter, also acts on purinoceptors (P2 purinergic receptor [P2R]) to generate the cellular calcium signaling and secretion that mediate P2R physiological manifestations, including pain. Chronic pain reduces quality of life. However, constant analgesic administration can cause liver and kidney injury, as well as loss of the analgesic effect because of desensitization. In this study we investigated the analgesic potential of H. erinaceus through measurements of ATP-induced Ca2+ signaling in cell lines and observation of pain behaviors in mice. In P2R-coupled Ca2+ signaling measurements, extracts of H. erinaceus mycelia (HEEs) blocked ATP-induced Ca2+ signaling in both rat PC12 cells and human HOS cells. HEEs completely blocked ATP-induced Ca2+ signaling in human HOS cells, suggesting that this effect of HEEs is exerted through the P2R subtypes present in HOS cells, which include the P2X4, P2X7, P2Y2, and P2Y4 subtypes. In observations of animal behavior during pain, HEEs significantly reduced heat-induced pain, including postponing both the tail-flick response to heat stimulation and the paw-lifting response to a hot plate. This study demonstrates novel characteristics of H. erinaceus in reducing nociceptive behavior and blocking the functional activity of P2R. Further studies are required to verify this linkage and its molecular mechanisms.
Zhang, Hua; Risal, Sanjiv; Gorre, Nagaraju; Busayavalasa, Kiran; Li, Xin; Shen, Yan; Bosbach, Benedikt; Brännström, Mats; Liu, Kui
2014-11-03
The majority of oocytes in the mammalian ovary are dormant oocytes that are enclosed in primordial follicles by several somatic cells, which we refer to as primordial follicle granulosa cells (pfGCs). Very little is known, however, about how the pfGCs control the activation of primordial follicles and the developmental fates of dormant oocytes. By targeting molecules in pfGCs with several mutant mouse models, we demonstrate that the somatic pfGCs initiate the activation of primordial follicles and govern the quiescence or awakening of dormant oocytes. Inhibition of mTORC1 signaling in pfGCs prevents the differentiation of pfGCs into granulosa cells, and this arrests the dormant oocytes in their quiescent states, leading to oocyte death. Overactivation of mTORC1 signaling in pfGCs accelerates the differentiation of pfGCs into granulosa cells and causes premature activation of all dormant oocytes and primordial follicles. We further show that pfGCs trigger the awakening of dormant oocytes through KIT ligand (KITL), and we present an essential communication network between the somatic cells and germ cells that is based on signaling between the mTORC1-KITL cascade in pfGCs and KIT-PI3K signaling in oocytes. Our findings provide a relatively complete picture of how mammalian primordial follicles are activated. The microenvironment surrounding primordial follicles can activate mTORC1-KITL signaling in pfGCs, and these cells trigger the awakening of dormant oocytes and complete the process of follicular activation. Such communication between the microenvironment, somatic cells, and germ cells is essential to maintaining the proper reproductive lifespan in mammals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Meng; Zhang, Lianmin; Zhao, Xiaoliang; Liu, Jun; Chen, Yulong; Wang, Changli
2014-09-01
The aim of this study was to investigate the effects of combination of icotinib and cetuximab on the acquired drug resistance caused by T790M mutation of EGFR in NSCLC, and provide experimental evidence for rational treatment of NSCLC. The effects of these two agents on cell proliferation, apoptosis, and EGFR-dependent signaling were evaluated using 3-(4, 5-dimethylthiazol-2-yl)- 5-diphenyltetrazolium bromide (MTT) assay, annexin V staining, and Western blotting. The expression of molecular markers of tumor proliferation PCNA and Ki-67 protein was further examined by immunohistochemistry, and the expression of EGFR-signaling-related proteins in tissue sections taken from H1975 tumor xenografts was assessed by Western blot assay. Sensitivity to EGFR inhibitors was detected in human H1975 tumor xenograft in nude mice. The in vitro experiment showed that the proliferative ability of H1975 cells was inhibited in a dose-dependent manner, along with the increasing doses of cetuximab and icotinib, and the combination of cetuximab with icotinib resulted in a more pronounced growth inhibition of the H1975 cells. The apoptosis rate of H1975 cells after treatment with 0.5 µmol/L icotinib and 1 µg/ml cetuximab was (22.03 ± 2.41)% and that after treatment with 5 µmol/L icotinib and 10 µg/ml cetuximab was (42.75 ± 2.49)%, both were significantly higher than that after treatment with the same dose of icotinib or cetuximab alone (P < 0.05). The nude mouse experiment showed that the transplanted tumor was growing to (614.5 ± 10.8) mm(3) in the blank control group and to (611.2 ± 8.7) mm(3) at 28 days after icotinib treatment, but (30.8 ± 2.0) mm(3) in the cetuximab treatment group and 0 mm(3) in the cetuximab combined with icotinib group. There was a significantly decreased expression of Ki-67 and PCNA proteins and down-regulation of phosphorylation of EGFR signaling-related proteins in the cetuximab combined with icotinib group. The combination of icotinib with cetuximab can exert synergistic inhibitory effect on the acquired drug resistance caused by T790M mutation of EGFR in NSCLC H1975 cells, interrupts the EGFR-downstream signaling pathway, and enhances the anticancer activity of chemotherapeutic drugs. Our results provide further experimental evidence for the clinical studies of combination of icotinib with cetuximab in the treatment of NSCLC patients associated with secondary drug resistance caused by T790M mutation of EGFR.
Wang, Weidong; Sheng, Xianyong; Shu, Zaifa; Li, Dongqin; Pan, Junting; Ye, Xiaoli; Chang, Pinpin; Li, Xinghui; Wang, Yuhua
2016-01-01
Nitric oxide (NO) as a signaling molecule plays crucial roles in many abiotic stresses in plant development processes, including pollen tube growth. Here, the signaling networks dominated by NO during cold stress that inhibited Camellia sinensis pollen tube growth are investigated in vitro. Cytological analysis show that cold-induced NO is involved in the inhibition of pollen tube growth along with disruption of the cytoplasmic Ca2+ gradient, increase in ROS content, acidification of cytoplasmic pH and abnormalities in organelle ultrastructure and cell wall component distribution in the pollen tube tip. Furthermore, differentially expressed genes (DEGs)-related to signaling pathway, such as NO synthesis, cGMP, Ca2+, ROS, pH, actin, cell wall, and MAPK cascade signal pathways, are identified and quantified using transcriptomic analyses and qRT-PCR, which indicate a potential molecular mechanism for the above cytological results. Taken together, these findings suggest that a complex signaling network dominated by NO, including Ca2+, ROS, pH, RACs signaling and the crosstalk among them, is stimulated in the C. sinensis pollen tube in response to cold stress, which further causes secondary and tertiary alterations, such as ultrastructural abnormalities in organelles and cell wall construction, ultimately resulting in perturbed pollen tube extension. PMID:27148289
Sensing and Responding to UV-A in Cyanobacteria
Moon, Yoon-Jung; Kim, Seung Il; Chung, Young-Ho
2012-01-01
Ultraviolet (UV) radiation can cause stresses or act as a photoregulatory signal depending on its wavelengths and fluence rates. Although the most harmful effects of UV on living cells are generally attributed to UV-B radiation, UV-A radiation can also affect many aspects of cellular processes. In cyanobacteria, most studies have concentrated on the damaging effect of UV and defense mechanisms to withstand UV stress. However, little is known about the activation mechanism of signaling components or their pathways which are implicated in the process following UV irradiation. Motile cyanobacteria use a very precise negative phototaxis signaling system to move away from high levels of solar radiation, which is an effective escape mechanism to avoid the detrimental effects of UV radiation. Recently, two different UV-A-induced signaling systems for regulating cyanobacterial phototaxis were characterized at the photophysiological and molecular levels. Here, we review the current understanding of the UV-A mediated signaling pathways in the context of the UV-A perception mechanism, early signaling components, and negative phototactic responses. In addition, increasing evidences supporting a role of pterins in response to UV radiation are discussed. We outline the effect of UV-induced cell damage, associated signaling molecules, and programmed cell death under UV-mediated oxidative stress. PMID:23208372
Ogi, Kazuhiro; Nakashima, Kenji; Chihara, Kazuyasu; Takeuchi, Kenji; Horiguchi, Tomoko; Fujieda, Shigeharu; Sada, Kiyonao
2011-09-01
Tyrosine phosphorylation of adaptor protein c-Abl-Src homology 3 (SH3) domain-binding protein-2 (3BP2, also referred to SH3BP2) positively regulates the B-cell antigen receptor (BCR)-mediated signal transduction, leading to the activation of nuclear factor of activated T cells (NFAT). Here we showed the effect of the proline to arginine substitution of 3BP2 in which is the most common mutation in patients with cherubism (P418R) on B-cell receptor signaling. Comparing to the wild type, overexpression of the mutant form of 3BP2 (3BP2-P416R, corresponding to P418R in human protein) enhanced BCR-mediated activation of NFAT. 3BP2-P416R increased the signaling complex formation with Syk, phospholipase C-γ2 (PLC-γ2), and Vav1. In contrast, 3BP2-P416R could not change the association with the negative regulator 14-3-3. Loss of the association mutant that was incapable to associate with 14-3-3 could not mimic BCR-mediated NFAT activation in Syk-deficient cells. Moreover, BCR-mediated phosphorylation of extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was not affected by P416R mutation. These results showed that P416R mutation of 3BP2 causes the gain of function in B cells by increasing the interaction with specific signaling molecules. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.
Walsh, Kevin B; Teijaro, John R; Zuniga, Elina I; Welch, Megan J; Fremgen, Daniel M; Blackburn, Shawn D; von Tiehl, Karl F; Wherry, E John; Flavell, Richard A; Oldstone, Michael B A
2012-06-14
TLR7 is an innate signaling receptor that recognizes single-stranded viral RNA and is activated by viruses that cause persistent infections. We show that TLR7 signaling dictates either clearance or establishment of life-long chronic infection by lymphocytic choriomeningitis virus (LCMV) Cl 13 but does not affect clearance of the acute LCMV Armstrong 53b strain. TLR7(-/-) mice infected with LCMV Cl 13 remained viremic throughout life from defects in the adaptive antiviral immune response-notably, diminished T cell function, exacerbated T cell exhaustion, decreased plasma cell maturation, and negligible antiviral antibody production. Adoptive transfer of TLR7(+/+) LCMV immune memory cells that enhanced clearance of persistent LCMV Cl 13 infection in TLR7(+/+) mice failed to purge LCMV Cl 13 infection in TLR7(-/-) mice, demonstrating that a TLR7-deficient environment renders antiviral responses ineffective. Therefore, methods that promote TLR7 signaling are promising treatment strategies for chronic viral infections. Copyright © 2012 Elsevier Inc. All rights reserved.
Aurora A drives early signalling and vesicle dynamics during T-cell activation
Blas-Rus, Noelia; Bustos-Morán, Eugenio; Pérez de Castro, Ignacio; de Cárcer, Guillermo; Borroto, Aldo; Camafeita, Emilio; Jorge, Inmaculada; Vázquez, Jesús; Alarcón, Balbino; Malumbres, Marcos; Martín-Cófreces, Noa B.; Sánchez-Madrid, Francisco
2016-01-01
Aurora A is a serine/threonine kinase that contributes to the progression of mitosis by inducing microtubule nucleation. Here we have identified an unexpected role for Aurora A kinase in antigen-driven T-cell activation. We find that Aurora A is phosphorylated at the immunological synapse (IS) during TCR-driven cell contact. Inhibition of Aurora A with pharmacological agents or genetic deletion in human or mouse T cells severely disrupts the dynamics of microtubules and CD3ζ-bearing vesicles at the IS. The absence of Aurora A activity also impairs the activation of early signalling molecules downstream of the TCR and the expression of IL-2, CD25 and CD69. Aurora A inhibition causes delocalized clustering of Lck at the IS and decreases phosphorylation levels of tyrosine kinase Lck, thus indicating Aurora A is required for maintaining Lck active. These findings implicate Aurora A in the propagation of the TCR activation signal. PMID:27091106
Mascharak, Shamik; Benitez, Patrick L.; Proctor, Amy C.; Madl, Christopher M.; Hu, Kenneth H.; Dewi, Ruby E.; Butte, Manish J.; Heilshorn, Sarah C.
2017-01-01
Native vascular extracellular matrices (vECM) consist of elastic fibers that impart varied topographical properties, yet most in vitro models designed to study the effects of topography on cell behavior are not representative of native architecture. Here, we engineer an electrospun elastin-like protein (ELP) system with independently tunable, vECM-mimetic topography and demonstrate that increasing topographical variation causes loss of endothelial cell-cell junction organization. This loss of VE-cadherin signaling and increased cytoskeletal contractility on more topographically varied ELP substrates in turn promote YAP activation and nuclear translocation, resulting in significantly increased endothelial cell migration and proliferation. Our findings identify YAP as a required signaling factor through which fibrous substrate topography influences cell behavior and highlights topography as a key design parameter for engineered biomaterials. PMID:27889666
Age-related changes in the response of intestinal cells to parathyroid hormone.
Russo de Boland, Ana
2004-12-01
The concept of the role(s) of parathyroid hormone (PTH), has expanded from that on acting on the classical target tissues, bone and kidney, to the intestine where its actions are of regulatory and developmental importance: regulation of intracellular calcium through modulation of second messengers and, activation of mitogenic cascades leading to cell proliferation. Several causes have been postulated to modify the hormone response in intestinal cells with ageing, among them, alterations of PTH receptor (PTHR1) binding sites, reduced expression of G proteins and hormone signal transduction changes. The current review summarizes the actual knowledge regarding the molecular and biochemical basis of age-impaired PTH receptor-mediated signaling in intestinal cells. A fundamental understanding of why PTH functions are impaired with age will enhance our understanding of its importance in intestinal cell physiology.
Cheeseman, K M; Weitzman, J B
2017-02-01
Theileria are obligate eukaryotic intracellular parasites of cattle. The diseases they cause, Tropical theileriosis and East Coast Fever, cause huge economic loss in East African, Mediterranean and central and South-East Asian countries. These apicomplexan parasites are the only intracellular eukaryotic parasites known to transform their host cell and represent a unique model to study host-parasite interactions and mechanisms of cancer onset.Here, we review how Theileria parasites induce transformation of their leukocyte host cell and discuss similarities with tumorigenesis. We describe how genomic innovation, epigenetic changes and hijacking of signal transductions enable a eukaryotic parasite to transform its host cell.
Wang, Chun; Xu, Can-Xin; Alippe, Yael; Qu, Chao; Xiao, Jianqiu; Schipani, Ernestina; Civitelli, Roberto; Abu-Amer, Yousef; Mbalaviele, Gabriel
2017-07-07
Skeletal complications are common features of neonatal-onset multisystem inflammatory disease (NOMID), a disorder caused by NLRP3-activating mutations. NOMID mice in which NLRP3 is activated globally exhibit several characteristics of the human disease, including systemic inflammation and cartilage dysplasia, but the mechanisms of skeletal manifestations remain unknown. In this study, we find that activation of NLRP3 in myeloid cells, but not mesenchymal cells triggers chronic inflammation, which ultimately, causes growth plate and epiphyseal dysplasia in mice. These responses are IL-1 signaling-dependent, but independent of PARP1, which also functions downstream of NLRP3 and regulates skeletal homeostasis. Mechanistically, inflammation causes severe anemia and hypoxia in the bone environment, yet down-regulates the HIF-1α pathway in chondrocytes, thereby promoting the demise of these cells. Thus, activation of NLRP3 in hematopoietic cells initiates IL-1β-driven paracrine cascades, which promote abnormal growth plate development in NOMID mice.
Cell Cycle Synchronization of HeLa Cells to Assay EGFR Pathway Activation.
Wee, Ping; Wang, Zhixiang
2017-01-01
Progression through the cell cycle causes changes in the cell's signaling pathways that can alter EGFR signal transduction. Here, we describe drug-derived protocols to synchronize HeLa cells in various phases of the cell cycle, including G1 phase, S phase, G2 phase, and mitosis, specifically in the mitotic stages of prometaphase, metaphase, and anaphase/telophase. The synchronization procedures are designed to allow synchronized cells to be treated for EGF and collected for the purpose of Western blotting for EGFR signal transduction components.S phase synchronization is performed by thymidine block, G2 phase with roscovitine, prometaphase with nocodazole, metaphase with MG132, and anaphase/telophase with blebbistatin. G1 phase synchronization is performed by culturing synchronized mitotic cells obtained by mitotic shake-off. We also provide methods to validate the synchronization methods. For validation by Western blotting, we provide the temporal expression of various cell cycle markers that are used to check the quality of the synchronization. For validation of mitotic synchronization by microscopy, we provide a guide that describes the physical properties of each mitotic stage, using their cellular morphology and DNA appearance. For validation by flow cytometry, we describe the use of imaging flow cytometry to distinguish between the phases of the cell cycle, including between each stage of mitosis.
Bodelón, Gustavo; Montes-García, Verónica; López-Puente, Vanesa; Hill, Eric H.; Hamon, Cyrille; Sanz-Ortiz, Marta N.; Rodal-Cedeira, Sergio; Costas, Celina; Celiksoy, Sirin; Pérez-Juste, Ignacio; Scarabelli, Leonardo; Porta, Andrea La; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel
2016-01-01
Most bacteria in nature exist as biofilms, which support intercellular signaling processes such as quorum sensing (QS), a cell-to-cell communication mechanism that allows bacteria to monitor and respond to cell density and changes in the environment. Because QS and biofilms are involved in the ability of bacteria to cause disease, there is a need for the development of methods for the non-invasive analysis of QS in natural bacterial populations. Here, by using surface-enhanced resonance Raman scattering spectroscopy, we report rationally designed nanostructured plasmonic substrates for the in-situ, label-free detection of a QS signaling metabolite in growing Pseudomonas aeruginosa biofilms and microcolonies. The in situ, non-invasive plasmonic imaging of QS in biofilms provides a powerful analytical approach for studying intercellular communication on the basis of secreted molecules as signals. PMID:27500808
Lee, Hyang-Mi; Kim, Ji-Sun; Kang, Sa-Ouk
2016-12-01
Despite the importance of glutathione in Dictyostelium, the role of glutathione synthetase (gshB/GSS) has not been clearly investigated. In this study, we observed that increasing glutathione content by constitutive expression of gshB leads to mound-arrest and defects in 3',5'-cyclic adenosine monophosphate (cAMP)-mediated aggregation and developmental gene expression. The overexpression of gpaB encoding G protein alpha 2 (Gα2), an essential component of the cAMP signalling pathway, results in a phenotype similar to that caused by gshB overexpression, whereas gpaB knockdown in gshB-overexpressing cells partially rescues the above-mentioned phenotypic defects. Furthermore, Gα2 is highly enriched at the plasma membrane of gshB-overexpressing cells compared to wild-type cells. Therefore, our findings suggest that glutathione upregulates cAMP signalling via Gα2 modulation during Dictyostelium development. © 2016 Federation of European Biochemical Societies.
Onishi, Keisuke
2017-01-01
Commissural axons switch on responsiveness to Wnt attraction during midline crossing and turn anteriorly only after exiting the floor plate. We report here that Sonic Hedgehog (Shh)-Smoothened signaling downregulates Shisa2, which inhibits the glycosylation and cell surface presentation of Frizzled3 in rodent commissural axon growth cones. Constitutive Shisa2 expression causes randomized turning of post-crossing commissural axons along the anterior–posterior (A–P) axis. Loss of Shisa2 led to precocious anterior turning of commissural axons before or during midline crossing. Post-crossing commissural axon turning is completely randomized along the A–P axis when Wntless, which is essential for Wnt secretion, is conditionally knocked out in the floor plate. This regulatory link between Shh and planar cell polarity (PCP) signaling may also occur in other developmental processes. PMID:28885142
Reactive Oxygen Species in Inflammation and Tissue Injury
Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem; Reddy, Sekhar P.
2014-01-01
Abstract Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167. PMID:23991888
Genetic analysis of Ras genes in epidermal development and tumorigenesis
Drosten, Matthias; Lechuga, Carmen G; Barbacid, Mariano
2013-01-01
Proliferation and differentiation of epidermal keratinocytes are tightly controlled to ensure proper development and homeostasis of the epidermis. The Ras family of small GTPases has emerged as a central node in the coordination of cell proliferation in the epidermis. Recent genetic evidence from mouse models has revealed that the intensity of Ras signaling modulates the proliferative capacity of epidermal keratinocytes. Interfering with Ras signaling either by combined elimination of the 3 Ras genes from the basal layer of the epidermis or by overexpression of dominant-negative Ras isoforms caused epidermal thinning due to hypoproliferation of keratinocytes. In contrast, overexpression of oncogenic Ras mutants in different epidermal cell layers led to hyperproliferative phenotypes including the development of papillomas and squamous cell carcinomas. Here, we discuss the value of loss- and gain-of-function studies in mouse models to assess the role of Ras signaling in the control of epidermal proliferation. PMID:24150175
Free Radicals Generated by Ionizing Radiation Signal Nuclear Translocation of p53
NASA Technical Reports Server (NTRS)
Martinez, J. D.; Pennington, M. E.; Craven, M. T.; Warters, R. L.
1997-01-01
The p53 tumor suppressor is a transcription factor that regulates several pathways, which function collectively to maintain the integrity of the genome. Nuclear localization is critical for wild-type function. However, the signals that regulate subcellular localization of p53 have not been identified. Here, we examine the effect of ionizing radiation on the subcellular localization of p53 in two cell lines in which p63 is normally sequestered in the cytoplasm and found that ionizing radiation caused a biphasic translocation response. p53 entered the nucleus 1-2 hours postirradiation (early response), subsequently emerged from the nucleus, and then again entered the nucleus 12-24 hours after the cells had been irradiated (delayed response). These changes in subcellular localization could be completely blocked by the free radical scavenger, WR1065. By comparison, two DNA-damaging agents that do not generate free radicals, mitomycin C and doxorubicin, caused translocation only after 12-24 h of exposure to the drugs, and this effect could not be inhibited by WR1065. Hence, although all three DNA-damaging agents induced relocalization of p53 to the nucleus, only the translocation caused by radiation was sensitive to free radical scavenging. We suggest that the free radicals generated by ionizing radiation can signal p53 translocation to the nucleus.
Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish.
Lim, K-H; Chang, Y-C; Chiang, Y-H; Lin, H-C; Chang, C-Y; Lin, C-S; Huang, L; Wang, W-T; Gon-Shen Chen, C; Chou, W-C; Kuo, Y-Y
2016-10-07
CALR mutations are identified in about 30% of JAK2/MPL-unmutated myeloproliferative neoplasms (MPNs) including essential thrombocythemia (ET) and primary myelofibrosis. Although the molecular pathogenesis of CALR mutations leading to MPNs has been studied using in vitro cell lines models, how mutant CALR may affect developmental hematopoiesis remains unknown. Here we took advantage of the zebrafish model to examine the effects of mutant CALR on early hematopoiesis and model human CALR-mutated MPNs. We identified three zebrafish genes orthologous to human CALR, referred to as calr, calr3a and calr3b. The expression of CALR-del52 and CALR-ins5 mutants caused an increase in the hematopoietic stem/progenitor cells followed by thrombocytosis without affecting normal angiogenesis. The expression of CALR mutants also perturbed early developmental hematopoiesis in zebrafish. Importantly, morpholino knockdown of mpl but not epor or csf3r could significantly attenuate the effects of mutant CALR. Furthermore, the expression of mutant CALR caused jak-stat signaling activation in zebrafish that could be blocked by JAK inhibitors (ruxolitinib and fedratinib). These findings showed that mutant CALR activates jak-stat signaling through an mpl-dependent mechanism to mediate pathogenic thrombopoiesis in zebrafish, and illustrated that the signaling machinery related to mutant CALR tumorigenesis are conserved between human and zebrafish.
Tularemia: Current Diagnosis and Treatment Options
2008-04-01
for growing F. tularensis, which include cysteine blood agar, Thayer–Martin agar and cysteine heart agar with 9% heated sheep red blood cells (CHAB...samples contain inhibitors to PCR reactions, such the heme component of red blood cells [36]. These inhibitors cause the limit of detection of the organism...signaling and cytokine secretion in mouse monocytic and human peripheral blood mononuclear cells . Microb. Pathog. 38, 239–247 (2005). 16 Hrstka R
Mechanical cell competition kills cells via induction of lethal p53 levels
Wagstaff, Laura; Goschorska, Maja; Kozyrska, Kasia; Duclos, Guillaume; Kucinski, Iwo; Chessel, Anatole; Hampton-O'Neil, Lea; Bradshaw, Charles R.; Allen, George E.; Rawlins, Emma L.; Silberzan, Pascal; Carazo Salas, Rafael E.; Piddini, Eugenia
2016-01-01
Cell competition is a quality control mechanism that eliminates unfit cells. How cells compete is poorly understood, but it is generally accepted that molecular exchange between cells signals elimination of unfit cells. Here we report an orthogonal mechanism of cell competition, whereby cells compete through mechanical insults. We show that MDCK cells silenced for the polarity gene scribble (scribKD) are hypersensitive to compaction, that interaction with wild-type cells causes their compaction and that crowding is sufficient for scribKD cell elimination. Importantly, we show that elevation of the tumour suppressor p53 is necessary and sufficient for crowding hypersensitivity. Compaction, via activation of Rho-associated kinase (ROCK) and the stress kinase p38, leads to further p53 elevation, causing cell death. Thus, in addition to molecules, cells use mechanical means to compete. Given the involvement of p53, compaction hypersensitivity may be widespread among damaged cells and offers an additional route to eliminate unfit cells. PMID:27109213
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Juntao; Mao, Zhangfan; Huang, Jie
2014-02-21
Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatmentsmore » that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were enhanced when combined with GSI. Interestingly, this effect was especially significant in CD133+ cells, suggesting that Notch pathway blockade may be a useful CSC-targeted therapy in lung cancer.« less
Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E.; Feldmann, Heinz; Jahrling, Peter B.
2014-01-01
ABSTRACT Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. IMPORTANCE Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most lethal Ebola virus species, with case fatality rates of up to 90%. Although EBOV is considered a worldwide concern, many questions remain regarding EBOV molecular pathogenesis. As it is appreciated that many cellular processes are regulated through kinase-mediated phosphorylation events, we employed temporal kinome analysis to investigate the functional responses of human hepatocytes to EBOV infection. Administration of kinase inhibitors targeting signaling pathway intermediates identified in our kinome analysis inhibited viral replication in vitro and reduced EBOV pathogenesis in vivo. Further analysis of our data also demonstrated that EBOV infection modulated TGF-β-mediated signaling responses and promoted “mesenchyme-like” phenotypic changes. Taken together, these results demonstrated that EBOV infection specifically modulates TGF-β-mediated signaling responses in epithelial cells and may have broader implications in EBOV pathogenesis. PMID:24942569
Brain-Immune Interactions as the Basis of Gulf War Illness: Gulf War Illness Consortium (GWIC)
2014-10-01
neuroinflammation as an end result of initial glial activation and subsequent priming of glial responses that cause a chronic activation loop of...infection, or physical trauma—that mobilizes CNS defense systems via activation of glia, the brain’s primary immune response cells, and release of...oligodendrocytes Microglial Activation (cytokine signaling) Behavioral Effects (fatigue, pain, cognitive problems) Astrocyte Activation (cytokine signaling
Human GH Receptor-IGF-1 Receptor Interaction: Implications for GH Signaling
Gan, Yujun; Buckels, Ashiya; Liu, Ying; Zhang, Yue; Paterson, Andrew J.; Jiang, Jing; Zinn, Kurt R.
2014-01-01
GH signaling yields multiple anabolic and metabolic effects. GH binds the transmembrane GH receptor (GHR) to activate the intracellular GHR-associated tyrosine kinase, Janus kinase 2 (JAK2), and downstream signals, including signal transducer and activator of transcription 5 (STAT5) activation and IGF-1 gene expression. Some GH effects are partly mediated by GH-induced IGF-1 via IGF-1 receptor (IGF-1R), a tyrosine kinase receptor. We previously demonstrated in non-human cells that GH causes formation of a GHR-JAK2-IGF-1R complex and that presence of IGF-1R (even without IGF-1 binding) augments proximal GH signaling. In this study, we use human LNCaP prostate cancer cells as a model system to further study the IGF-1R's role in GH signaling. GH promoted JAK2 and GHR tyrosine phosphorylation and STAT5 activation in LNCaP cells. By coimmunoprecipitation and a new split luciferase complementation assay, we find that GH augments GHR/IGF-1R complex formation, which is inhibited by a Fab of an antagonistic anti-GHR monoclonal antibody. Short hairpin RNA-mediated IGF-1R silencing in LNCaP cells reduced GH-induced GHR, JAK2, and STAT5 phosphorylation. Similarly, a soluble IGF-1R extracellular domain fragment (sol IGF-1R) interacts with GHR in response to GH and blunts GH signaling. Sol IGF-1R also markedly inhibits GH-induced IGF-1 gene expression in both LNCaP cells and mouse primary osteoblast cells. On the basis of these and other findings, we propose a model in which IGF-1R augments GH signaling by allowing a putative IGF-1R-associated molecule that regulates GH signaling to access the activated GHR/JAK2 complex and envision sol IGF-1R as a dominant-negative inhibitor of this IGF-1R-mediated augmentation. Physiological implications of this new model are discussed. PMID:25211187
Schumacher, Jennifer A; Hashiguchi, Megumi; Nguyen, Vu H; Mullins, Mary C
2011-01-01
The specification of the neural crest progenitor cell (NCPC) population in the early vertebrate embryo requires an elaborate network of signaling pathways, one of which is the Bone Morphogenetic Protein (BMP) pathway. Based on alterations in neural crest gene expression in zebrafish BMP pathway component mutants, we previously proposed a model in which the gastrula BMP morphogen gradient establishes an intermediate level of BMP activity establishing the future NCPC domain. Here, we tested this model and show that an intermediate level of BMP signaling acts directly to specify the NCPC. We quantified the effects of reducing BMP signaling on the number of neural crest cells and show that neural crest cells are significantly increased when BMP signaling is reduced and that this increase is not due to an increase in cell proliferation. In contrast, when BMP signaling is eliminated, NCPC fail to be specified. We modulated BMP signaling levels in BMP pathway mutants with expanded or no NCPCs to demonstrate that an intermediate level of BMP signaling specifies the NCPC. We further investigated the ability of Smad5 to act in a graded fashion by injecting smad5 antisense morpholinos and show that increasing doses first expand the NCPCs and then cause a loss of NCPCs, consistent with Smad5 acting directly in neural crest progenitor specification. Using Western blot analysis, we show that P-Smad5 levels are dose-dependently reduced in smad5 morphants, consistent with an intermediate level of BMP signaling acting through Smad5 to specify the neural crest progenitors. Finally, we performed chimeric analysis to demonstrate for the first time that BMP signal reception is required directly by NCPCs for their specification. Together these results add substantial evidence to a model in which graded BMP signaling acts as a morphogen to pattern the ectoderm, with an intermediate level acting in neural crest specification.
Cytomics - importance of multimodal analysis of cell function and proliferation in oncology.
Tárnok, A; Bocsi, J; Brockhoff, G
2006-12-01
Cancer is a highly complex and heterogeneous disease involving a succession of genetic changes (frequently caused or accompanied by exogenous trauma), and resulting in a molecular phenotype that in turn results in a malignant specification. The development of malignancy has been described as a multistep process involving self-sufficiency in growth signals, insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and finally tissue invasion and metastasis. The quantitative analysis of networking molecules within the cells might be applied to understand native-state tissue signalling biology, complex drug actions and dysfunctional signalling in transformed cells, that is, in cancer cells. High-content and high-throughput single-cell analysis can lead to systems biology and cytomics. The application of cytomics in cancer research and diagnostics is very broad, ranging from the better understanding of the tumour cell biology to the identification of residual tumour cells after treatment, to drug discovery. The ultimate goal is to pinpoint in detail these processes on the molecular, cellular and tissue level. A comprehensive knowledge of these will require tissue analysis, which is multiplex and functional; thus, vast amounts of data are being collected from current genomic and proteomic platforms for integration and interpretation as well as for new varieties of updated cytomics technology. This overview will briefly highlight the most important aspects of this continuously developing field.
Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Kaori; Taketomi, Takaharu, E-mail: taketomi@dent.kyushu-u.ac.jp; Yoshizaki, Keigo
2011-01-28
Research highlights: {yields} Sprouty2-deficient mice exhibit cleft palate as a result of failure of palatal shelf elevation. {yields} We examined palate cell proliferation in Sprouty2-deficient mice. {yields} Palate mesenchymal cell proliferation was increased in Sprouty2 KO mice. {yields} Sprouty2 plays roles in murine palatogenesis by regulating cell proliferation. -- Abstract: Cleft palate is one of the most common craniofacial deformities. The fibroblast growth factor (FGF) plays a central role in reciprocal interactions between adjacent tissues during palatal development, and the FGF signaling pathway has been shown to be inhibited by members of the Sprouty protein family. In this study, wemore » report the incidence of cleft palate, possibly caused by failure of palatal shelf elevation, in Sprouty2-deficient (KO) mice. Sprouty2-deficient palates fused completely in palatal organ culture. However, palate mesenchymal cell proliferation estimated by Ki-67 staining was increased in Sprouty2 KO mice compared with WT mice. Sprouty2-null palates expressed higher levels of FGF target genes, such as Msx1, Etv5, and Ptx1 than WT controls. Furthermore, proliferation and the extracellular signal-regulated kinase (Erk) activation in response to FGF was enhanced in palate mesenchymal cells transfected with Sprouty2 small interfering RNA. These results suggest that Sprouty2 regulates palate mesenchymal cell proliferation via FGF signaling and is involved in palatal shelf elevation.« less
Perry, Jacob L.; Ramachandran, Nina K.; Utama, Budi; Hyser, Joseph M.
2015-01-01
Calcium signaling is a ubiquitous and versatile process involved in nearly every cellular process, and exploitation of host calcium signals is a common strategy used by viruses to facilitate replication and cause disease. Small molecule fluorescent calcium dyes have been used by many to examine changes in host cell calcium signaling and calcium channel activation during virus infections, but disadvantages of these dyes, including poor loading and poor long-term retention, complicate analysis of calcium imaging in virus-infected cells due to changes in cell physiology and membrane integrity. The recent expansion of genetically-encoded calcium indicators (GECIs), including blue and red-shifted color variants and variants with calcium affinities appropriate for calcium storage organelles like the endoplasmic reticulum (ER), make the use of GECIs an attractive alternative for calcium imaging in the context of virus infections. Here we describe the development and testing of cell lines stably expressing both green cytoplasmic (GCaMP5G and GCaMP6s) and red ER-targeted (RCEPIAer) GECIs. Using three viruses (rotavirus, poliovirus and respiratory syncytial virus) previously shown to disrupt host calcium homeostasis, we show the GECI cell lines can be used to detect simultaneous cytoplasmic and ER calcium signals. Further, we demonstrate the GECI expression has sufficient stability to enable long-term confocal imaging of both cytoplasmic and ER calcium during the course of virus infections. PMID:26344758
NASA Astrophysics Data System (ADS)
Collakova, Jana; Krizova, Aneta; Kollarova, Vera; Dostal, Zbynek; Slaba, Michala; Vesely, Pavel; Chmelik, Radim
2015-11-01
Coherence-controlled holographic microscopy (CCHM) in low-coherence mode possesses a pronounced coherence gate effect. This offers an option to investigate the details of cellular events leading to cell death caused by cytopathic turbid emulsions. CCHM capacity was first assessed in model situations that showed clear images obtained with low coherence of illumination but not with high coherence of illumination. Then, the form of death of human cancer cells induced by treatment with biologically active phospholipids (BAPs) preparation was investigated. The observed overall retraction of cell colony was apparently caused by the release of cell-to-substratum contacts. This was followed by the accumulation of granules decorating the nuclear membrane. Then, the occurrence of nuclear membrane indentations signaled the start of damage to the integrity of the cell nucleus. In the final stage, cells shrunk and disintegrated. This indicated that BAPs cause cell death by necrosis and not apoptosis. An intriguing option of checking the fate of cancer cells caused by the anticipated cooperative effect after adding another tested substance sodium dichloroacetate to turbid emulsion is discussed on grounds of pilot experiments. Such observations should reveal the impact and mechanism of action of the interacting drugs on cell behavior and fate that would otherwise remain hidden in turbid milieu.
The impact of the unfolded protein response on human disease
Wang, Shiyu
2012-01-01
A central function of the endoplasmic reticulum (ER) is to coordinate protein biosynthetic and secretory activities in the cell. Alterations in ER homeostasis cause accumulation of misfolded/unfolded proteins in the ER. To maintain ER homeostasis, eukaryotic cells have evolved the unfolded protein response (UPR), an essential adaptive intracellular signaling pathway that responds to metabolic, oxidative stress, and inflammatory response pathways. The UPR has been implicated in a variety of diseases including metabolic disease, neurodegenerative disease, inflammatory disease, and cancer. Signaling components of the UPR are emerging as potential targets for intervention and treatment of human disease. PMID:22733998
Su, Tao; Yang, Xia; Deng, Jian-Hua; Huang, Qiu-Ju; Huang, Su-Chao; Zhang, Yan-Min; Zheng, Hong-Ming; Wang, Ying; Lu, Lin-Lin; Liu, Zhong-Qiu
2018-01-01
Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO's anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO's anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment.
Su, Tao; Yang, Xia; Deng, Jian-Hua; Huang, Qiu-Ju; Huang, Su-Chao; Zhang, Yan-Min; Zheng, Hong-Ming; Wang, Ying; Lu, Lin-Lin; Liu, Zhong-Qiu
2018-01-01
Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO’s anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO’s anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment. PMID:29765324
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muselet-Charlier, Celine; Universite Pierre et Marie Curie-Paris 6, Paris, UMR-S719, F-75012; Roque, Telma
2007-06-01
Transcription nuclear factor-{kappa}B (NF-{kappa}B) is hyperactivated in cystic fibrosis (CF) lung epithelial cells, and participates in exaggerated IL-8 production in the CF lung. We recently found that rapid activation of NF-{kappa}B occurred in a CF lung epithelial IB3-1 cell line (CF cells) upon IL-1{beta} stimulation, which was not observed in its CFTR-corrected lung epithelial S9 cell line (corrected cells). To test whether other signaling pathways such as that of mitogen-activated protein kinases (MAPKs) could be involved in IL-1{beta}-induced IL-8 production of CF cells, we investigated ERK1/2, JNK, and p38MAP signaling compared to NF-{kappa}B. Within 30 min, exposure to IL-1{beta} causedmore » high activation of NF-{kappa}B, ERK1/2, p38MAP but not JNK in CF cells compared to corrected cells. Treatment of IL-1{beta}-stimulated CF cells with a series of chemical inhibitors of NF-{kappa}B, ERK1/2, and p38MAP, when used separately, reduced slightly IL-8 production. However, when used together, these inhibitors caused a blockade in IL-1{beta}-induced IL-8 production in CF cells. Understanding of the cross-talk between NF-{kappa}B and MAPKs signaling in CF lung epithelial cells may help in developing new therapeutics to reduce lung inflammation in patients with CF.« less
Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia
Wang, David H.; Tiwari, Anjana; Kim, Monica E.; Clemons, Nicholas J.; Regmi, Nanda L.; Hodges, William A.; Berman, David M.; Montgomery, Elizabeth A.; Watkins, D. Neil; Zhang, Xi; Zhang, Qiuyang; Jie, Chunfa; Spechler, Stuart J.; Souza, Rhonda F.
2014-01-01
Metaplasia can result when injury reactivates latent developmental signaling pathways that determine cell phenotype. Barrett’s esophagus is a squamous-to-columnar epithelial metaplasia caused by reflux esophagitis. Hedgehog (Hh) signaling is active in columnar-lined, embryonic esophagus and inactive in squamous-lined, adult esophagus. We showed previously that Hh signaling is reactivated in Barrett’s metaplasia and overexpression of Sonic hedgehog (SHH) in mouse esophageal squamous epithelium leads to a columnar phenotype. Here, our objective was to identify Hh target genes involved in Barrett’s pathogenesis. By microarray analysis, we found that the transcription factor Foxa2 is more highly expressed in murine embryonic esophagus compared with postnatal esophagus. Conditional activation of Shh in mouse esophageal epithelium induced FOXA2, while FOXA2 expression was reduced in Shh knockout embryos, establishing Foxa2 as an esophageal Hh target gene. Evaluation of patient samples revealed FOXA2 expression in Barrett’s metaplasia, dysplasia, and adenocarcinoma but not in esophageal squamous epithelium or squamous cell carcinoma. In esophageal squamous cell lines, Hh signaling upregulated FOXA2, which induced expression of MUC2, an intestinal mucin found in Barrett’s esophagus, and the MUC2-processing protein AGR2. Together, these data indicate that Hh signaling induces expression of genes that determine an intestinal phenotype in esophageal squamous epithelial cells and may contribute to the development of Barrett’s metaplasia. PMID:25083987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonezawa, Tomo; Haga, Satoshi; Kobayashi, Yosuke
2008-03-21
GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca{sup 2+} concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation.more » Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival.« less
Calcium signalling in salivary gland physiology and dysfunction
2015-01-01
Abstract Studies over the past four decades have established that Ca2+ is a critical factor in control of salivary gland function and have led to identification of the critical components of this process. The major ion transport mechanisms and ion channels that are involved in fluid secretion have also been established. The key event in activation of fluid secretion is an increase in [Ca2+]i triggered by inositol 1,4,5‐trisphosphate (IP3)‐induced release of Ca2+ from ER via the IP3 receptor (IP3R). IP3Rs determine the site of initiation and the pattern of the [Ca2+]i signal in the cell. However, Ca2+ entry into the cell is required to sustain the elevation of [Ca2+]i and fluid secretion and is mediated by the store‐operated Ca2+ entry (SOCE) mechanism. Orai1, TRPC1, TRPC3 and STIM1 have been identified as critical components of SOCE in these cells. Cells finely tune the generation and amplification of [Ca2+]i signals for regulation of cell function. An important emerging area is the concept that unregulated [Ca2+]i signals in cells can directly cause cell damage, dysfunction and disease. Alternatively, aberrant [Ca2+]i signals can also amplify and increase the rates of cell damage. Such defects in Ca2+ signalling have been described in salivary glands in conjunction with radiation‐induced loss of salivary gland function as well as in the salivary defects associated with the autoimmune exocrinopathy Sjögren's syndrome. Such defects have been associated with altered function or expression of key Ca2+ signalling components, such as STIM proteins and TRP channels. These studies offer new avenues for examining the mechanisms underlying the disease and development of novel clinical targets and therapeutic strategies. PMID:26592972